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Neural Fuzzy Call Admission Control for WCDMA
Cellular Systems Providing Multirate Services

Student: Li-Chung Kuo Advisor: Dr. Chung-Ju Chang

Institute of Communication Engineering
National Chiao Tung University

Abstract

Wideband code division multiple access (WCDMA) is used as a radio interface for the
third generation (3G) mobile systems.-Many venders invest in lots of money and people on
WCDMA cellular systems. What venders consider isithe performance of the system. A good
call admission control (CAC) scheme can improve the performance and maintain the quality
of service (QoS) requirements of the system. To design a suitable CAC scheme for WCDMA
cellular systems is important and necessary. In this thesis, we propose a neural fuzzy call
admission and rate control (NFCAC-RC) scheme. Considering the outage probabilities of all
services, forced termination probability, the interference mean at the next time instant, and
the influence of a call request on the adjacent cell, NFCAC-RC guarantee the QoS
requirements and maximize the utilization of the system.

In addition, we consider the influences of different data source models in the system.
When the system is heavily loaded with bursty data traffics, it is hard to maintain the QoS
requirements. NFCAC-RC overcomes this situation by adopting rate control. Simulation

results show that NFCAC-RC can improve performance.
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Chapter 1

| ntroduction

Wideband code division multiple access (WCDMA) is used as a radio interface
for the third generation (3G) mobile systems. It has been chosen by European
Telecommunications Standards Institute (ETSI) as the basic radio access technology for the
universal mobile telecommunications system (UMTYS). Both Europe and Japan have adopted
the WCDMA standard for their third generation wireless services [1], [2]. WCDMA system
can reach speeds up to 2 Mbps, .which supperts higher rate packet data services. The
coverage and capacity are significantly improved.

In recent years, WCDMA has been one of the focuses which draw most attention. Many
venders invest in lots of money“and ‘people on WCDMA cellular systems. What venders
consider is the performance of the system. A good call admission control (CAC) scheme can
improve the performance and maintain a high utilization of the system. To design a suitable
CAC scheme for WCDMA cellular systems is important and necessary.

In WCDMA systems, the uplink load can be regarded as the total interference that the
base station (BS) receives [4], [5], and admitting a new call will increase the interference in
cellular systems. When the system is heavily loaded and a new call is accepted, the
increasing interference may cause the system to enter a state of which the quality-of-service
(QoS) requirements of existing calls in the system may not be guaranteed. Notice that this
WCDMA system will support multimedia and multirate services. A higher data rate service
will cause more interference to the system. Therefore, it is more complicated to design CAC

scheme for WCDMA cellular systems providing multirate services to limit the interference.



Number-based CAC and interference-based CAC are two basic methods for call
admission control. Interference-based CAC method is more suitable with respect to the
interference-limited attribute of WCDMA cellular systems [3]. Shin, Cho, and Sung [4]
proposed an interference-based channel assignment scheme for DS-CDMA cellular systems.
Instead of a fixed link capacity, the scheme calculates the current interference margin and the
handoff interference margin. If the interference after the channel assignment is below the
allowed level which is determined by the network, a new channel is assigned to the new call.
In [5], Dimitriou and Tafazolli developed a mathematical model to maintain system stability
with minimum outage probability. According to the residual capacity of the home and
adjacent cells, the system can measure the current level of multiple access interference (MAI)
and then decide a new call is accepted or blocked. These schemes used the interference at the
present time instant to determine’the acceptance of the call request. However, the present
interference will change right “after the acceptance-of a new call. It makes the decision
imprecise.

Shen et al. [6] proposed an intelligent call admission controller (ICAC) for WCDMA
cellular systems to support differentiated quality of service provisioning. In the scheme,
fuzzy equivalent interference estimator determines the interference power incurred by the
new call request, pipeline recurrent neural network (PRNN) accurately predicts the next-step
existing-call interference, and fuzzy call admission processor makes admission decision for
the call request. However, ICAC does not consider the leading conditions of adjacent cells.
The user position can affect the interference to adjacent cell base stations. Accepting a user
near the cell boundary can make the interference experienced by the adjacent cell higher and
increase the outage probability, even if the home cell interference is low [7]. If the CAC
scheme does not consider the adjacent cells’ residual capacity, it does not lead to an optimum
resource allocation [5].

Besides, one of the promising important applications of WCDMA systems is the World



Wide Web (WWW) transfers. Wireless data services such as on-line games, music downloads
and photo messaging are in wide use. The traditional Poisson traffic model is not suitable for
the internet service. The WWW traffic is bursty on many or all time scales. It can be modeled
as a self-similar process [8]. The self-similar traffic is obtained as the effect of multiplexing a
large number of ON/OFF sources which have heavy-tailed ON and OFF period lengths.
ICAC cannot serve such bursty traffic. Most data users will be rejected because ICAC allows
the bursty traffic be transmitted without delay. Since data services can tolerate delays, a rate
control scheme should be adopted to overcome this situation [9].

Additionally, intelligent techniques such as fuzzy logics, neural networks, and neural
fuzzy networks are effective methods to perform radio resource management. In [10], Lo,
Chang, and Shung used a neural fuzzy call-admission and rate controller (NFCRC) to decide
whether a call request is accepted or not,. NFCRC can guarantee the QoS and provide an
appropriate rate for users. Instead of the rate control in [11] that the transmission rate is
adaptively modified from one time slot-to-another, the rate control in [10] allocates the
transmission rate for the user until the connection is finished. The method in [10] is a good
choice for its simplicity, but it is not suitable to transmit a fixed rate during the hole
connection time. The variation of the transmitting situation should be considered. It is more
suitable to allocate a fixed rate at the beginning of the burst-mode traffic.

The paper proposes a neural fuzzy call admission control method for WCDMA cellular
systems supporting multirate services. It contains a PRNN/ERLS interference predictor to
predict the next time instant existing-call interference, and a neural fuzzy call admission and
rate controller to determine whether the call request is accepted or not and the transmission
rate assigned at the beginning of each data burst. An extended recursive least squares (ERLS)
training algorithm for the PRNN has been shown to achieve significantly higher prediction
precision values [12]. By using PRNN/ERLS interference predictor, the next time instant

existing-call interference can be predicted accurately. The neural network can make the fuzzy



logic systems more adaptive and effective. Adaptive network based fuzzy inference system
(ANFIS) [13] is a good choice to fine-tune the membership functions of the fuzzy logic
systems. ANFIS is used in this thesis to tune the membership functions of neural fuzzy call
admission control.

Considering the adjacent cell interference, our proposed CAC scheme will monitor the
adjacent cells’ residual capacity by the radio network controller (RNC) and make proper
admission decision, which can avoid the outage condition of adjacent cell. The next time
instant existing-call interference is used to avoid the outage condition of home cell.
According to the QoS measures such as the outage probabilities of all service types and the
forced termination probability, the CAC scheme can maintain the QoS requirements. The
data source models, which include batch Poisson process and Pareto distributed, are taken
into account in the systems, individually..And, in‘order to increase the system capacity and
maintain the QoS requirements; the rate controller iscused to determine the transmission rate
assigned at the beginning of each data burst:

The performance evaluation will;be based on the QoS requirements and the utilities of
the system. Instead of the considerations in [14] that the new-call-blocking probability and
the handoff-dropping probability are measured, only handoff dropping probability is adopted
in the performance measurement. New-call-blocking probability is not considered because
the system utilities should be focus on the mean number of users and packets per second
transmitted in a cell.

The rest of the thesis is organized as follows. Chapter 2 describes the system model of a
WCDMA cellular system. Chapter 3 gives the designs for the PRNN/ERLS interference
predictor, and the neural fuzzy call admission and rate controller. Two scenarios are
illustrated in chapter 4, and the simulation results and discussions are presented. Finally,

concluding remarks are given in chapter 5.



Chapter 2

System Moded

We consider a WCDMA cellular system with K cells and a large number of
wireless users. Mobile users communicate with each other via air interface to
BS, and BSs are connected to a RNC. The WCDMA cellular system has different frequency
bands for the uplink and the downlink. Each base station has an omni antenna located at
center in the cell. A user arriving at the system will choose its home cell of which the radio
propagation attenuation is the smallest. Mobility: of users is modeled and users are assumed
to be uniformly distributed within each cell.»The number of pseudo-noise (PN) codes
available for code-division multiplexing is assumed to be large enough to support all services.

Only the first-tier adjacent cells’ interférence is considered.

2.1 Propagation M odd

In the radio propagation, two main factors are considered which are the path loss and the
shadowing effects. Compensated by perfect power control scheme, the effect of short-term
fading is ignored. The propagation loss is generally modeled as the product of the q th power
of the distance and a log-normal component representing shadowing losses. Thus, the radio

propagation (link gain) model, L(r), isgiven by

z

L(r)=10%r"9, (2.2)

where r is the distance between the mobile user and the base station. z is the decibel
attenuation due to shadowing, with zero mean and standard deviation s . q isthe path loss

exponent.



2.2 Source Modd

Input traffic generated within mobile users is classified into two types of service as
real-time voice (type-1) and non-real-time data (type-2). New voice and data calls arrive at
the system according to Poisson distributions with average arrival rates of |, and |,
respectively. Every voice source is characterized by a two-state (ON and OFF) discrete-time
Markov chain traffic model and will generate one air-interface packet in each frame time of
T during ON state (talk spurts) but none during OFF state (silence). The mean durations of
talk spurts and silence periods are assumed to be exponentially distributed with 1/a and
1/b , respectively. The ON/OFF source model is shown in Fig. 2.1 as described in [15]. All

air-interface packets generated in atalk spurts form a voice message.

b

Figure 2.1 ON/OFF model

On the other hand, the data source is characterized by a batch Poisson process with an
average message arrival rate A, . The size of data message is assumed to be a
positive-valued random variable, which is generally distributed. The data message will
further be segmented into a number of air-interface packets according to the processing gain
set for the service.

If the bursty traffic condition is considered, the data source is characterized by a
self-similar process and the packets are Pareto distributed, as shown in [11]. When a data
session arrives to the system, it is consisted of a number of packet call requests, N, which

is geometrically distributed with mean m,, as described in [16],[17]. The packet call



requests are separated by reading time, D, which is geometrically distributed with mean

mp,. . Each packet call consists of a number of packets, N , which is geometrically

p )
distributed with mean m,, . The time interval between two consecutive packets, D, is
geometrically distributed with mean my, . The packet size, S, is modeled as a Pareto

distribution. The Pareto distribution is defined by:

a_ X’
f, (x)= ;ap+f . X3 K, (2.2
.8p
F(x)=1- 250" ek (2.3)
eXg
kpap
m=——, a,>1 (2.4
a,-1
k’ >a
= e P ,a,>2 (2.5)

(ap- 2)>(ap- 1)2

where a ; is the Pareto distribution parameter and -k, is the minimal packet size (bytes).
The packet size is defined as the following formula

S, =min(P,m) (2.6)

where P is normal Pareto distributed random variable (a , =1.1, k, =81.5 bytes) and m
is maximum allowed packet size, m=66666 bytes. The datasession is depicted in Fig. 2.2.
Each terminal supports two finite separate buffers for voice and data services. Also, the
distributions of the holding times for voice and data call were assumed to be exponentially
distributed. Voice and data terminals in a cell transmit their packets by sharing the common
air interface. When a packet in aterminal isready for transmission, the transmitter waits until
the beginning of the next slot and begins transmitting. For multirate services, we pair up

multiple basic channels until the required data rate is achieved.
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Figure 2.2: Data session

2.3 Interference Modd

For differentiated bit-error-rate (BER) requirements set for the type-1 and type-2 traffic,
we define their individual processing gains, which are denoted by G, and G,.The G, and
G, are chosen to be the closest integer greater than the required spreading factor.
Corresponding to each specific BER requirement and processing gain, the
signal-to-interference ratio (SIR) threshold values of type-1 and type-2 traffic, denoted by
SR and SR,, can be obtained. Two basic transmission rates (basic channels) are
supported: 1) R =R, which is dedicated to active voice users and is egual to the voice
coding rate and 2) R, =R>G,/G,, which is dedicated to active data users. If a data user
requires a transmission rate X higher than the basic transmission rate R,, this rate will be
quantized into M times of R,, where M =[X/R,] and [4 denotes the smallest integer
greater than or equal to the argument. Each R, is encoded with a different pseudo-noise
code.

All users in their home cell are assumed to be perfectly power controlled, and the power



level of basic channel received at the base station is a constant value S. During the
connection, as the user detects the pilot strength of adjacent cell stronger than that of home
cell by | dB, the handoff procedure is performed. Assume that there are N, type-1 users
and N,, type-2 users in home cell k for communication. n; denotes the type-1 traffic
activity factor and d, denotes the type-2 traffic activity factor. The home cell interference,

l,, « (n), can be obtained by

le N2k

(M) = SEAN, +& d R M, ()u 2.7)
@i=1 i=1 U

where M, (n) is a random variable, denoting that the number of basic code channels
needed by type-2 user i in home cell k for communication, and R; =R,/R. And the

first-tier adjacent cell interference, 1,, (n), isgiven by

Ny, 3 ik~ Zib sz 3 k" |bU
IA’k(n):Sébgaln >§' tho © 4 doRom,, )?bZ&o 10 E (2.8)
= |k

where bl {the firgt-tier adjacent cells neighboringto cell k}, r, isthe distance of the user
i incell b to the base station of cell 'k, and “r, isthedistanceof theuser i incell b to
the base station of its home cell. Therefore, the interference power of cell k at time instant

n, which isdenoted by 1, (n), isthe summationof 1, ,(n) and I,,(n).



Chapter 3

Neural Fuzzy Call Admission and Rate
Controller

I n this chapter, the system parameters are introduced first. Then the PRNN/ERLS
interference predictor is described. Finally, the design of neural fuzzy call admission

and rate controller is presented.

3.1 System Parameters

> Accept / Reject

»
>

P..(n

0t92( ) » Neural Fuzzy
Call Admission

Ia(n) | and

Rate Controller Rate control for

Non-real-time Data

»
>

mererce _Tu(n) | e F(ne1)
Samples »

Predictor

Figure 3.1: System architecture

Fig. 3.1 depicts the system architecture of the proposed neural fuzzy call admission and

rate controller. Notably, the rate controller only works for non-real-time data user.
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The proposed CAC consists of a PRNN/ERLS interference predictor, and neural fuzzy
call admisson and rate controller. The PRNN/ERLS interference predictor takes the
interference mean of cell k at the present time instant n, I« (n) , 8 an input variable to
accurately predict the interference mean at the next time instant (n+1), ?k(n +1). The
1 (n) isobtained by

_ 3 .N_"Ollk n-jT
T\ (n) =20 N( ) (3.)

where N isthe size of time window, and Ik(q) is the received interference power at time
instant q. And the neural fuzzy call admisson and rate controller chooses the forced
termination probability for handoffs measured at present time n, denoted by P, (n), the
outage probabilities of type-1 and type-2 services measured at the present time n, denoted

by P,.(n) and P

02 (N), the influence.of ;acall request on the adjacent cell base stations,

denoted by 1,(n), and i (n+1)vas input variables to determine the acceptance for the call
request. If the call request is a non-real=timerdata, the neural fuzzy call admission and rate
controller allocates an appropriate rate for the user. The influence of a call request on the

adjacent cell base stations, |, isgiven by
(0=, T ()] > ) @2

where 14 (n) is the interference mean of adjacent cell b at the present time instant n,
L, isthe link gain from the call request to the base station of adjacent cell b, and L, is
the threshold that the call request can cause significant influence to the adjacent cell base
station. In a hexagonal cellular system, a user at cell boundary can influence at most three
cells. So, there are a most two adjacent cells in the equation (3.2).

Voice service requires less bandwidth but no delays. On the other hand, data service can

tolerate moderate delays and permit a variable rate transmission scheme. For data source, the

rate control scheme will assign the transmission rate at the beginning of each packet burst.

1



According to T (n+1) and 1,(n), a proper transmission rate is alocated to the packet
burst. Mobile user will obey the assignment from home base station and transmits the packet.
If the packet cannot be transmitted in one frame time, the remained bits of the packet will be
transmitted at next frame time obeying the assigned transmission rate until all of the bits are
transmitted. To storage the packets waiting for transmitting, the buffer for data service must
be large enough.

In the paper, the required outage probability for type-i traffic, denoted by Pc;gi , IS set
to be the system QoS requirements. In order to protect the handoff connection against forced
termination, the required forced termination probability, denoted by P;, is also set to be the

QoS requirement.

3.2 PRNN/ERLS Interference Predictor

In the WCDMA cellular=systems, the interference measured at the base station is
non-linear and non-stationary. I nstead of uising-the traditional auto-regressive moving average
(ARMA) model, the interference process.is assumed to be in a nonlinear ARMA (NARMA)
model due to its non-linearity. Approximating the NARMA model, with one-step prediction,
we can express the mean interference as a function of p measured interference powers and
g previously predicted interference powers. Thet is,

it (n+1)=H (I_k(n),K,I_k (n- p+1);?k (n),K,?k(n- q+1)), (3.3

where T (i) is the previously predicted mean interference sample at time i ,
n- p+1£i£n,and H (¥ isanunknown nonlinear function to be determined.

Since the neural network prediction is a fast, low complexity, and non-linear one that
can estimate the non-linear and time-varying value of WCDMA interference, we adopt
PRNN to approximate the function H(¥. PRNN prediction yields a high prediction

accuracy, fast convergent speed, and low computation complexity. It is a good choice for us

12



to predict the next time system existing calls’ mean interference.

Tk(n- q+1) @: o K(n-ivy) . T ()

. You () 1 va(n)

— Module q ..., _—3 Modulei ——--- — Module 1l —
yll(n)zf’k(n+1)

Figure 3.2: Structure of the PRNN interference predictor

Fig. 3.2 showsthe architecture of, PRNN .interference predictor, which involves a total of
g levels of processing. Each level has-an identical neural module and a subtractor. For level
i, two external inputs are fed into the module: the delayed version of the measured
interference sample 1 (n- i +1) and.thefirst outplt of the preceding level y,,,,(n), and
the output of this module subtracted fromi T« (n- i +2) forms an error signal g (n). The
error signal is used to adjust the synaptic weights in the ith neural module. Consequently,
the output of the first module yl,l(n) is the desired next-step interference prediction
T (n+1).

Fig. 3.3 depicts the detailed structure of module i, which is constituted by a two-layer
recurrent neural network (RNN). Each module is constituted of a neural network part and a
comparator. The output vector, l;/'i(n): [y.(n),K,y , (n)], consists of M elements,
among which, (M - 1) outputs are fed back to the input, and the first output, y;,(n), is
applied directly to the next module i- 1. The input vector lU,IIIi (n) consists of three parts: the
p -tuple external input vector [ 1« (n-i+1), ~,l«(n-i- p+2)], abias input whose value
is always maintained at +1, a feedforward input from the preceding level y.,,,(n), and the
M -tuple feedback vector gy.,(n-1),K,y, (n-1)g. The dimension of the prediction

13



order p isadesign parameter such that the PRNN can approximate the NARMA process
more accurate and efficient. The input vector can be defined by

Ui(n)= §(n-i+1),L,Tu(n-i- p+2).1

Yiaa(n).¥i2(n- 1)L,y (n- D (3.4)

I (n-i+1)

yi +1,1 ( n)

Module i

Figure 3.3: The ith small RNN module in the PRNN interference predictor

The p+M +1 neurons of input layer are fully connected to M neurons of output
layer by a M -by- (p+M +1) synaptic weight matrix W . An element w,, of W
represents the weight of the connection fromthe j th input node to the kth output node. Let

V. (n) to bethenetinput of the kth neuron at output layer, thus, Vi (n) will be

14



Vi (n) =wui(n). (3.5)

And v, (n) isdefined by

J - I
v, (n)= aka’jIk(n' (i+j- 2))+Wk,(p+l)
=
p+cl)\/|+1
W (o Yiens (M) + @ WY (n-1). (3.6)
j=p+

The activation function of each neuron f (¥ is a sigmoid function described by logistic

function

o () =F (4 ) = 1 (_1Vi’k ol (37)

where i =1L ,q,and k=1L ,M.

The first output signal y,,(n) of each module is also fed into a comparator. Each
comparator subtract 1« (n-i+2) from"y.(n), to form an error signa g (n), which is
defined as

e (n)=1x(n-i1+2)- y,(n). (3.8)

Because Y;,(n) is limited in amplitude within the range (0,1) due to the characteristics of
sigmoid activation function, 1« (n- [ +2) is normalized before being actually put into the
PRNN predictor.

The prediction error can be used for updating the weights. Here, the extended recursive
least square (ERLS) is applied as the learning algorithm for PRNN [18]. The prediction

errors of all modules in the PRNN are combined as
9
E(n)=4 1 "¢ (n), (3.9
i=1

where | 1 (0,1] is the forgetting factor. The term | ! is an approximate measure of the

memory of the individual modules in the PRNN. The cost function of ERLS is defined as
ems(n)=a ! " E(k). (3.10)
k=1

The ERLS algorithm minimizes the cost function, equation (3.10), and then updates the

15



weights of the neurons in the modules accordingly.

The training of PRNN/ERLS consists of two stages. During the off-line training phase,
interference samples using typical system parameters and traffic load are generated. The
PRNN/ERLS, fed with these samples, adjusts the synaptic weights recursively until the root
mean square error (RMSE) of the desired prediction output is lower than the criteria. During
the on-line training phase, the PRNN interference predictor obtains the interference
predictions for existing calls at time instant (n+1), i (n+1), from the output of the first
neuron of the first module, and measures the interference sample 1« (n+1); then it adjusts
the synaptic weights using the ERLS algorithm. Due to the on-line learning capability,
PRNN/ERLS can adapt its weights to the current load conditions. So, PRNN/ERLS is

appropriate for being applied to interference prediction in WCDMA system.

3.3 Design of Neural Fuzzy Call Admisson and Rate

Controller

A neural fuzzy controller is an integration of the fuzzy logic system and the neural
network. The integration brings the low-level learning and computation power of the neural
network into the fuzzy logic system, and provides the high-level, humanlike thinking and

reasoning of fuzzy logic system into the neural network.

3.3.1 Fuzzy Logic Controller

A fuzzy set F in an universe of discourse U is characterized by a membership
function which takes values in the interval (0,1). A linguistic variable x in U is defined
by T(x)={TLT2L. T} and M(x)={M}M?L,M!}, where T(x) is a term set of
X, i.e, aset of tems T, with membership function M, defined on U, and M (X) isa

semantic rule for associating each term with its meaning.
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A fuzzy logic controller has functional blocks of a fuzzifier, a defuzzifier, and an
inference engine containing a fuzzy rule base, as shown in Fig. 3.4. The fuzzifier is a
mapping from observed m-dim inputs x to fuzzy set T, with degree M, i =1L, m.
The fuzzy rule base is a control knowledge-base characterized by a set of linguistic
statements in the form of “if-then” rules that describe a fuzzy logic relationship between
m-dim inputs x and n-dim outputs z,. The inference engine is a decision-making logic
that acquires the input linguistic terms of T()g) from the fuzzifier and uses a inference
method to obtain the output linguistic terms of T(zj). The defuzzifier adopts a
defuzzification function to convert T(zj) into a non-fuzzy value that represents decision

Z.

Fuzzifier —» Inference Engine — Defuzzifier

Fuzzy Rule Base

Figure 3.4: Fuzzy system

3.3.2 Neural Network

A multi-layer feedforward neural network is a layered network which consists of an
input layer, an output layer, and a least one hidden layer. The hidden layer consists of
nonlinear processing elements, called nodes. Nodes between two adjacent layers are fully
interconnected with variable link weights. The output of a node in one layer multiplied by the
link weight becomes the input of a node in the next layer. Each node forms a weighted sum
of its inputs and generates an output according to a predefined activation functions a(>§.
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Consider a feedforward network NN(X,W) with input vector X and a set of weight
vector W which will be updated by some learning rules. It is desired to train NN (X, W)

(actual output) to approximate a desired output function z( X ) as close as possible.

3.3.3 Neural Fuzzy Controller

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

P (n) Potgl(n) Pot92(n) ?_k (n + 1) Ia(n)

Figure 3.5: The structure of the neural fuzzy call admission and rate controller

We adopt afive-layer neural fuzzy controller which is implemented by ANFIS to design
the neural fuzzy call admission and rate controller. The adaptive-network-based fuzzy

inference system (ANFIS) employs the adaptive network architecture to represent the fuzzy
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inference system. ANFIS can be applied to a wide range of areas, such as nonlinear function
modeling, time series prediction, and fuzzy controller design [19], [20].
The fuzzy inference system under consideration has five linguistic variables (P, (n),
P (n), Py2(n), ?k(n+1), and 1,(n)) and each variable is divided into two fuzzy terms.
Fig. 3.5 shows the corresponding equivalent ANFIS architecture, which represents the
first-order Sugeno fuzzy model. The node functions of each layer are similar and they are
described as below:
Layer 1: Every node i inthislayer is an adaptive node with a node function
: m, (Pf (n)) for i=1
=:i: M, (Pf (n)) for i=2
.
%mﬂ(la(n)), for i =10

Q, (3.11)

where P, (n) (P, (n), Py.(n); fk(n+1), or 1;(n)) is the input to the node i and

otg2
Sa; (Ns,, Sa, Ns, Sa,, Ns;, Sn, Lg, WK or S) is a linguistic term associated
withthisnode. m, ,L.,m, isthe membership function for theterm Sa,,L, S . Each node
function specifies the degree to which the given input P, (n) (P (n). P.(n).
?k(n+1), or 1,(n)) satisfies the qualifier Sa, (Ns,, Sa, Ns, Sa,, Ns,, Sm, Lg,
WKk or S).

Layer 2: Every node i in this layer is afixed node labeled P . The output of node i,
denoted by Q,;, isthe product of all the incoming signals for the i-thrule. It is given by
tm, (R () e (R () M (Ru (1) i (Fe(n+0) m (1, (), for i =2

(P () M (P ()" (Poge ()" g (Fu () (1, (), for =2 . (3.12)

m,
m,

Qi =W
N

|
J.
|

_1

=1

.I.

.I.

I e e e s .

[Me, (Pf (n)) mﬂsi(Rngl(n)) M, (Potgz(n)) My (fk(n"'l)) m, (Ia(n))' for i =32

Each node output represents the firing strength of i-th rule and performs the fuzzy AND

operation.
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Layer 3: Every node i in this layer is a fixed node labeled N. The i-th node
calculates the ratio of the i-th rule’s firing strength to the sum of all rules’ firing strengths.

The output of node i, denoted by Q,,, is called normalized firing strength and calculated as

Q=W =55 —. (3.13)

Layer 4: Every node i inthislayer is an adaptive node with a node function

Q. =w’ f=w (p X+q Y+r), 1£i£32 (3.14)

where Q,; is the output, f;

is a crisp output in the consequent, and p, g, r. are the
consequent parameter setsof node i .
Layer 5: The single node in this layer is a fixed node labeled S, which computes the

overall output Q, asthe summation:of all incaming signals.

o 32
o o a i= VVI fi
Q=8,Qu=a Wh="2— (3.15)
a ':1Wj

j

For the new call request, ‘the processor considers the P (n), P, (n), Py.(n),
I,(n), and ?k(n+1) asitsinput linguistic variables which indicate the system performance
measures, the influence of the call request on the adjacent cell base stations, and the
predicted system load. For the handoff call request, the processor considers the same input
variables as for the new call request except Ia(n) since the influence of a handoff call on
the adjacent cell base stations has already in the system. The adjacent cells have already
considered this influence as Ia(n) is included in its interference. For the rate control, the
processor considers 1,(n), and ?k(n+1) as its input linguistic variables. These two
parameters indicate the system loading. The assigned transmission rate for data user will be
reduced if the system loading is high.

The details of Layer 1 are described as follows. According to the domain knowledge

from simulations, term sets and membership functions of input linguistic variables P, (n),
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Pw(n), Py.(n), 1.(n), and ?k(n+1) are defined in Table 3.1, in which trapezoidal

function h(X;%,,%,a,,8,) ischosen to be the membership function and is given by
I X- X,

+1 for x,- a,<XEX,

i
.I.
:::1 for x, <X£X,
h(x;xo,xl,ao,al):% , (3.16)
i
i
i
i

,_><
X

+1 for x <xX£x+a
0 otherwise

where, as shown in Fig. 3.6, X, (%) in h(¥ is the left (right) edge of the trapezoidal

function, and a, (&) istheleft (right) width of the trgpezoidal function.

Elements of term sets Membership function
o () Satisfied (Say) m, (P.(n))= h(Pf (n);O,SaEf,O,San)
¢ \n
Not satisfied (NS¢) | M, (Pf (n)) h(Pf( n);Ns, .1, NaNf,O)
b (n) | SHsied(S) M, (Pyga (1)) = h(Pyga (n);0,5a,,,0,%8,, )
Not satisfied (Ns)) | M, (Pyga (n)) = (Pyge (n); NSy 1 Ns,,.,0)
P (n) | Sted(S8) | My (Rus () =(Ps(n):0.58,.0.%,,)
’ Not satisfied (NS,) | M, (Pyg2 (1)) = h(Pag2 (n): N8, 1N, 0)
5 (e small(Sm) rrgﬂ(?k(nﬂ)) h(?k(n'f'l) 0,9m,,0, SmN)
k(n+1
Large(LQ) nlg(?k(nﬂ)) h(?s (n+1);1,.¥,Lg,, )
(1) Weak(WK ) My (12) = h(1,;0,Wk,,0Wk,,)
) Strong( S ) m, (1,)=h(1,;1,,¥,,.0)

Table 3.1: The term sets and their membership function for input variables
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&% % X Xta

Figure 3.6: The figure of h(%

As for the parameter setting for these membership functions, Ns, is set to be P;
minus a safety margin, and Sa. is a value less than Ns, by a safety amount for
separating the satisfactory region and the violation region; Ns, (Ns,,)issettobe P, (P,)
minus a safety margin, and Say (Sa,,) Is also set to a value less than Ns, (Ns,,) for the
same reason as the safety amount for™Sa, ; |; is the tolerable interference power
corresponding to the minimal Signal-to-interference power ratio SR . Sm and Wk,
would be sets to be fraction of |,. We also set Sm,=I,-Sm,=Lg,, WK,=1,-WK.=S,
to simplify the design of fuzzy logic parameters. The other endpoints of Sa,, , Ns,,, Sa,,
Ns,, $Sa,,, and Ns,, must be fine-tuned to proper values during simulations. We use
ANFIS to tune all of these membership functions.

The fuzzy rules in Layer 2 are described as follows. According to the fuzzy set theory,
the fuzzy rule base of new call forms a fuzzy set with dimensions |T (Pf (n))| I'|T (POtgl (n))|
I'|T(Potgz(n))| I"T(?k(nﬂ))‘ T [T(1,(n)] ([T(x)| denotes the number of terms in
T (x)). Therefore, there are a total of 32 fuzzy inference rules. Table 3.2 and 3.3 list these
fuzzy inference rules of new voice call and new data cal. The more (less) satisfied the

P (n), Pg(n), Py.(n) areand the smaller (larger) the ?k(n+1) is, the higher (lower)

otgl

likelihood the system can accept the new call request. At any specific system load condition,
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the system will tend to reject the bad users with larger influence on the adjacent cell base
stations according to Ia(n). Similarly, there are a total of 16 fuzzy inference rules for
handoff call request. Table 3.4 and 3.5 list these fuzzy inference rules of handoff voice call
and handoff data call. Since dropping an ongoing call is assumed to be more annoying than
blocking a new call, it is needed to give a high priority to the handoff calls as compared to
new calls. The system tends to accept the handoff call as the P, (n) is not satisfied more
likely than as P, (n) is satisfied to protect the ongoing call anyway except the condition
that the traffic load is very heavy. And the larger P, (n), P,,,(n) and ?k(n+1) imply
the heavier traffic load, then the system tends to regject the handoff call request. For rate
controller, there are atotal of four inference rules. The smaller ?k(n+1) and 1,(n) imply
the lighter traffic load, then the system tends to assign a higher transmission rate to the data
call. Otherwise, a lower transmission rate will ‘be assigned. Table 3.6 lists these fuzzy

inference rules.

Rue | P | P, | P, | fua LASZ frie s P | P | P, T I, | Z,
1 Sa, | S8 | Sa | Smi WkT| sA 17| Ns | Ssa | S8, | Sm | Wk | A
2 Sa, | S | Sa | Sm S SA |“18 | Ns, | sa | sa | Sm S SA
3 Sa, | S | Sa, Lg | Wk | sA 19 | Ns | sa | S lg | Wk | sA
4 S, | S| | S, Lg S |WA | 20 | Ns, | S | S Lg S | WA
5 Sa, Sa | Ns Sm | Wk | sAa | 21 | Ns, Sa | Ns | Sm | Wk | WA
6 S, | Sa | Ns Sm | & | WA | 22 | Ns | S8 | Ns, | Sm | & | WR
7 Sa, Sa | Ns Lg | Wk | wAa | 23 | Ns, Sa | Ns Lg | Wk | WR
8 Sa, | S | Ns | Lg S [WR | 24 | Ns, | Ssa | Ns Lg S R,
9 S, | Ns | Sa, | Sm | Wk | WA | 25 | Ns, | Ns | Sa, | Sm | Wk | WR,

10 | 2, | Ns, | Sa, | Sm | & | WA | 26 | Ns | Ns | Sa, | Sm | & | WR

11 | &2, | Ns | S, | Lg | Wk | WR | 27 | Ns, | Ns | Sa lg | Wk | R

12 | sa, | Ns | S Lg s SR | 28 | Ns, | Ns | Sa Lg s R,

13 | s», | Ns | Ns | Sm | Wk | WA | 29 [ Ns | Ns | Ns | Sm | Wk | WR

14 Sa, Ns, Ns, Sm S SR 30 Ns, Ns, Ns, Sm S SR

15 | s», | Ns | Ns | Lg | Wk | SR | 31 | Ns, | Ns | Ns lg | W | R,

16 | sa, | Ns | Ns | Lg s SR | 32 | Ns, | Ns | Ns, Lg s R,

Table 3.2: The rule structure for new voice call request
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Rie | P | P, Foo | 1 Rule Poo | P | Toa | 1.
1 S | S Sno| Wk 17 | Ns, | S8 | Sa, | Sm | Wk
2 S, | S sm | & 18 | Ns, | S8 | Sa, | S | &
3 S, | S Lg | Wk 19 | Ns, | sa | s Lg | Wk
4 S | S Lg s 20 | Ns, | Sa | S Lg s
5 Sa, | S Smo| Wk 21 | Ns, | Sa | Ns, | Sm | Wk | WA
6 S, | S Sm S 22 | Ssa | Ns | Sm S R,
7 S | S Lg | Wk 23 .| Sa | Ns, | Lo | WKk | SR
8 S, | S Lg s 24 | Sa | Ns Lg s R,
9 S, | Ns Smo| Wk 25 | Ns | Sa, | Sm | Wk | WR,
10 | sa, | Ns Sm S 26 | Ns | Sa, | Sm S R,
11 | s | Ns Lg | Wk 27 | Ns | S lg | Wk | SR
12 | sa, | Ns Lg S 28 .| Ns | Sa Lg s R,
13 | sa, | Ns Smo| Wk 29 .| Ns | Ns Sm | Wk | SR,
14 | sa, | Ns sm | & 30 | Ns, | Ns | Sm | & | SR
15 | s | Ns Lg | Wk 31 .| Ns | Ns | Lg | Wk | SR
16 | sa, | Ns Lg S 32 | Ns | Ns Lg s R,
Table 3.3: Therule structure for new data call request
P oz | Toa | Z, | Rue ot | Pz | fon
S, S | Sm | sAa | 9 | S | S, | Sm
2 | s S | Lo | s | 10 | s, | %, | Lo
3 | s Ns, | Sn | wr | 11 .| s | Ns, | Sm
4 Sa, Ns, Lg | WR 12 : Sa Ns, Lg
5 | s S, | sm | wWR | 13 .| Ns, | Sa, | Sm
6 Sa, Sa, Lg | R 14 .| Ns | Sa Lg
7 Sa, Ns Sn R 15 : Ns, Ns Sm
8 Sa, Ns, | Lg | R 16 | Ns Ns, Lg

Table 3.4: The rule structure for handoff voice call request




Rie | P | P [P, | T | Z, |Rie| P | P, | P, | b | Z,
1 Sa, | Sa | S, | Sm | sA 9 Ns | Sa | Sa | Sm | sAa
2 Sa, | Sa | S lg | sa | 10 | Ns | sa | S Lg | A,
3 Sa, | Sa | Ns, | Sm |WR | 11 | Ns | Sa | Ns, | Sm | A
4 Sa, Sa | Ns Lg | WR | 12 | Ns Sa | Ns Lg | WR,
5 Sa, | Ns | sa | sm |[WR | 13 | Ns, | Ns | Sa | Sm | A
6 Sa, | Ns | Sa lg | SR | 14 | Ns, | Ns | Sa Lg | WR
7 Sa, Ns, Ns, Sn SR 15 Ns, Ns, Ns, Sm SR,
8 S, | Ns | Ns, | Lg | SR | 16 | Ns, | Ns | Ns Lg | R

Table 3.5: The rule structure for handoff data call request

Rue | ¥, I Z Rule | ¥, I Z

a T a T

1 Sm WK HR 17 Lg Wk BR

2 Sm S MR 18 Lg S BR

Table 3.6: Therule structure for rate control at each burst

In Layer 4, the term set forthe output linguistic variable of new voice call request
T(z =Z,,)={Straightly Accept, Weakly Accept, Weakly Reject, Straightly Reject}={ SA,,
WA, , WR,, SR,}. Membership functions for Z, are denoted by M(Z,)={ m, ,
My, » Mg Mg }, where m (Z,)=(Z,;X,0,0), and X is SA,, WA,, WR,, or
SR, - The triangular function f (x;%,,8,,8 ) is chosen to be the membership function and

isgiven by
X_

N

&

Ba

+1 for x,- a, <x£X,

R
X

i
:
!
f (%%8.8) =1 +1 for x,<xEx+a, (3.17)
:
:
i0 otherwise
f

where, as shown in Fig. 3.7, %, in (3 is the center of the triangular function, and a,

(&) isthe left (right) width of the triangular function.
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%% % %+a

Figure 3.7: Thefigure of f (3

A new voice call request can be.accepted if. Z_, isgreater than an acceptance threshold
Z., R, Ez, E£SA,. Wihout aloss-of generdity, SR, =0, SA,6 =1, and let WR, =
(SR, *+2,.)/2, WA, =(SA, £2,,)/2. Similarly, the term set for the output linguistic
variable of handoff voice cal’request” T(Z=2,)={ $A,, WA,, WR,, SR,}., ad
membership functions for Z,, are denoted by M(Z,)={ my, , My, ., My , My },
where m, (Z,,)=f(Z,;X,0,0),and X is SA,, WA,, WR,,, or SR, . A handoff voice
call request can be accepted if Z,, is greater than an acceptance threshold z
Ry £ Zye £ A, - Similarly, we set SR, =0, A, =1, and let WR,=(SR,, +7,,)/2, and
WA, =(SA,, +7,,)/2. And the term set for the output linguistic variable of data call request
is similar as voice call request. The term set for the output linguistic variable of rate control
T(Z=2,)={High Rate, Medium Rate, Basic Rate}={ HR, MR, BR}. Membership
functionsfor Z,  aresimilar aswhat we mentioned before.

In Layer 2 to Layer 5, the max-min inference method is adopted. The max-min inference
method initially applies the min operator on membership values of terms of all input
linguistic variables for each rule and then applies the max operator to yield the overall

membership value, for each output term. For example, there are rule 3, rule 5, rule 19, and
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rule 21 which have the same term WA, in table 3.3. Results of the min operator for rule 3,

rule 5, rule 19, and rule 21, denoted as w,, w,, wg,and w,,, are expressed as

w, =minn, (), m, (Ru) m, (Rea) mg (Foa ) m (1,)8 (3.18)
w, =mingm, (P ), my (Pyg.).ms, (thgz),rrbn(?m)mw('a)% (319)
w, =mindn,, (P,).m, (Re,)m, (Roe).my (Foa) ma (108 320)
= minn,, (P ).m, (Pua) M, (B P ma (1,8 (3.21)

Then, the method applies the max operator to yield the overall membership value of the term

WA, , denoted as Wy, , can be obtained by

W, = MaX (W, W, Wig, W, ) (3.22)

The center of area defuzzification-method is used-because of its simplicity in computation.

This defuzzification method obtains: Z,; by.combining wg, , Wy, , W and Wg —as

7, =on AR @i v WRo*Vr, R (309

Wep, T Wop,, TWir, + W,

For Z.,, Z,,, Z4, and Z , the max-min inference method is employed to calculate
the membership value and the center of area method is then applied for defuzzification,
similarly.

For tuning the membership functions, different situations in the simulated WCDMA
system are collected as training data. For example, P, (n), P, (n), Py,(n), ?k(n+1)
and 1,(n) are recorded when a new call request arrives. This new call request will be
accepted and the system recorded the home cell and adjacent cells’ interferences at next time
slot. The effect of these interferences, which are higher or lower than the threshold, is treated
as the actual output of layer 5 and quantized to compare with the predicted output Q.

The output linguistic variables are single terms, which can reduce the complexity of the

fuzzy models. So, (p,” X+q Y +r) in equation (3.14) is set to be a constant, and the
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max-min inference method can be implemented by ANFIS and the membership functions can
be tuned.

By using the MATLAB fuzzy logic toolbox, ANFIS can be implemented efficiently. The
anfisedit command is a graphical user interface (GUI) for editing ANFIS. This tool applies
fuzzy inference techniques to data modeling. By using this ANFIS editor GUI, training data
can be loaded and anfisedit adopts these training data to find the appropriate parameters. The
shape of the membership functions depends on these parameters, and changing these
parameters will change the shape of the membership functions. Using the given input/output
data set, the toolbox function anfisedit constructs a fuzzy inference system whose
membership function parameters are tuned using a backpropagation algorithm. After the
system is fine-tuned, the membership functions are derived and they will be used in the

neural fuzzy call admission and rate controller.
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Chapter 4

Simulation Results and Discussion

I n the simulations, we consider a WCDMA cellular system with K =49 hexagonal

cells, E,/N, of type-l connection g, =7 dB, E,/N, of type-2 connection
g, =10dB, and the spreading factor of each basic code channel SF =256. The air interface
has the frame time of T =10 m second, and the frequency spectrum bandwidth
W = 3.84 MHz. The QoS requirements of outage probability aresettobe P,,, =2"10"* and
P, =510, and the QoS constraint of forced termination probability is defined as
P =510,

To achieve the required outage requirement of type-2 connections, the processing gain
ratio ischosento be R, = R,/R =3, and therefore'the SIR threshold before despreading are
set to be SR =-14dB, SR, =-17dB. The filtering factor (the exponential decay factor)
to obtain the interference mean estimation is 0.02. The voice source model is assumed to be
with 1/a =1 second and 1/b =1.35 seconds. If the data source is characterized by a batch
Poisson process, the model is assumed to be with 1/ A, =0.1 and the size of data message is
in a geometric distribution with mean 2 and maximum length 10. If the data source is
characterized by a self-similar process and the packets are Pareto distributed, the model is
assumed to be with m, =5, m_ =12 seconds, m,, =25, and m, =0.0083 second.
The mean holding times for both voice and data services are 90 seconds. The speed of mobile
users is either V, =20 Km/Hr or V, =60 Km/Hr with equal probability. The moving
direction is modeled by the angle t with uniform distribution. The radio propagation

parametersof q and z are set to be 4 and 8dB [21], [22], and the handoff margin is set to
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be 3dB.

The effectiveness of the proposed neural fuzzy call admission and rate controller
(NFCAC-RC) is tested by comparing it with the ICAC, which is proposed in [6]. Difference
data source models will be considered individually in scenario one and two. In these two
scenarios, the QoS requirements including the outage probability of type-1, the outage
probability of type-2, and the forced termination probability will be examined to see if they
are satisfactory. Then, the mean number of users and packets per second transmitted in a cell

will be compared.

4.1 Scenariol: Data Source M oddl is Batch Poisson
Distributed

In the first case, the data source model is characterized by a batch Poisson process.
Neural fuzzy call admission controller, (NFCAC), which is NFCAC-RC without rate control,
is compared in this scenario, too.-ICAC and NFCAC are compared with each other for their
different input linguistic variables.

Fig. 4.1 shows the outage probabilities versus new call arrival rate for ICAC, NFCAC,
and NFCAC-RC. It can be seen that all of them can guarantee the QoS requirements of
outage probabilities for all traffic types in all arrival rate conditions. The lines of ICAC and
NFCAC are amost overlapped with each other. The voice outage probability of NFCAC-RC
is much smaller than those of ICAC and NFCAC before the new call arrival rate exceeding
0.5, and the curve of NFAC-RC is also smoothed out. This is because the rate control for data
users reduces the system interference and decreases the outage probability of voice users. But
rate control makes the ON state duration of data user increasing, which is the reason that

P2 Of NFCAC-RC islarger than the other two schemes.
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Figure 4.2: Forced termination probabilities versus new call arrival rate in scenario |
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Fig. 4.2 shows the forced termination probabilities versus new call arrival rate for ICAC,
NFCAC, and NFCAC-RC. Even though all of them guarantee the QoS requirements of
forced termination probability, NFCAC and NFCAC-RC outperform ICAC significantly. By
considering the influence of a call request on the adjacent cell base stations, NFCAC and
NFCAC-RC reject new calls which are located near cell boundary when the system loading
of adjacent cell is high. It will maintain the outage probability of adjacent cell not exceeding
too high. According to the fuzzy rule of handoff call request, lower outage probability makes

the handoff users be accepted more.
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Figure 4.3: Mean number of usersin acell versus new call arrival rate in scenario |

Fig. 4.3 illustrates the mean number of users in a cell versus new call arrival rate for
ICAC, NFCAC, and NFCAC-RC. It can be found that NFCAC-RC accepts users more than
ICAC by an amount of 31.52%. Without rate control, NFCAC still accepts more number of

users than ICAC by an amount of 9.53%. The rate control makes the data user not igniting
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larger interference to the system and more users can be accepted. PRNN/ERLS interference
predictor provides accuracy prediction and the system can accept user without exceeding the
interference threshold.

Fig. 4.4 shows the mean packets per second transmitted in a cell versus new call arrival
rate for ICAC, NFCAC, and NFCAC-RC. NFCAC-RC can attain maximal 50.81% compared
with ICAC. Even without rate control, NFCAC improves about 4.53% more than ICAC.
Such huge improvement in NFCAC-RC is because more users are accepted in the cell and

data user with rate control will transmit for several time slots to finish the whole data
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Figure 4.4: Mean packets per second transmitted in a cell versus new call arrival rate in

scenario |

Fig. 4.5 illustrates the mean data packets delay time versus new call arrival rate for

ICAC, NFCAC, and NFCAC-RC. According to the low-delay data defined as service class A
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in [5], the delay-constraint is between 20 and 50ms. The mean data packets delay time of
NFCAC-RC is35ms and it is satisfied the constraint of low-delay data. The value of 356msis
set by the fuzzy rules and the membership functions of rate control. By tuning the
membership functions, the delay time can be manipulated. For long constrained delay data
and unconstrained delay data, the delay time of NFCAC-RC is satisfied, too. On the other

hand, NFCAC and ICAC transmit data without delay.
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Figure 4.5: Mean data packets delay time versus new call arrival rate in scenario |

4.2 Scenario |IlI: Data Source Modde is Pareto
Distributed

Then, we consider about the data source characterized by a self-similar process and the
packets are Pareto distributed. By considering the bursty traffic condition, the capability of

the CAC scheme could be tested.
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Figure 4.6: Outage probabilities versus new:call arrival rate in scenario |1

Fig. 4.6 shows the outage probabilities versus new call arrival rate for ICAC, NFCAC,
and NFCAC-RC when the data packets are Pareto distributed. The data user generates bursty
traffic and it causes the outage probability of type-2 out of order. Since the outage probability
of type-2 is out of order, ICAC and NFCAC tend to reject new data call requests and handoff
data call requests. Fewer data users in the system will lower the total interference so the
outage probability of type-1 is reduced. NFCAC-RC can overcome this situation by adopting
rate control on data users. Data traffic will not be so huge and the QoS requirements can be
guaranteed. Even though NFCAC is not guaranteed the QoS requirement of the outage

probability of type-2, the outage probabilities of NFCAC are better than ICAC'’s.
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Figure 4.7: Forced termination probabilities.versus new call arrival rate in scenario |1

Fig. 4.7 shows the forced termination probabilities versus new call arrival rate for ICAC,
NFCAC, and NFCAC-RC. For ICAC and'NFCAC shown in Fig. 4.6, the outage probability
of type-2 cannot guarantee the QoS requirement. According to the fuzzy rule of ICAC and
NFCAC, it will reject the handoff call requests and the forced termination probability will
increase. In Fig. 4.7, it can be seen that ICAC and NFCAC still cannot guarantee the QoS
requirement of forced termination probability. On the other hand, NFCAC-RC does not
experience the situation like ICAC and NFCAC, and the QoS requirements of forced
termination probability can be guaranteed.

Fig. 4.8 illustrates the mean number of users in a cell versus new call arrival rate for
ICAC, NFCAC, and NFCAC-RC. Notably, ICAC and NFCAC cannot guarantee the QoS
requirements and most of the data users are rejected when the data packets are Pareto
distributed. 1t can be seen that NFCAC-RC can still accept more users than ICAC by an

amount of 114.70%. QoS requirements are input linguistic variables for fuzzy rules of ICAC,
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NFCAC and NFCAC-RC. Since ICAC and NFCAC cannot guarantee the QoS requirements
of outage probability of type-2 and forced termination probability, the fuzzy rule of ICAC
and NFCAC tend to reject the call requests. The utilizations of ICAC and NFCAC are not

efficient, and NFCAC-RC overcomes this situation.
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Figure 4.8: Mean number of usersin acell versus new call arrival rate in scenario 11

In Fig. 4.8, it seems that the mean number of NFCAC is closed to NFCAC-RC when the
arrival rate is increased. It is because NFCAC rejects data users and more voice users are in
the system. Fig. 4.9 shows the mean number of voice and data users in a cell versus new call
arrival rate for ICAC, NFCAC, and NFCAC-RC. The mean number of data usersin ICAC
and NFCAC are much smaller than NFCAC-RC. Even though the mean number of data users
in ICAC and NFCAC are amost the same, the mean number of voice users in NFCAC is

larger than ICAC.
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Figure 4.9: Mean number of voice:and data usersin a cell versus new call arrival rate in

scenario ||

Fig. 4.10 shows the mean packets per-second transmitted in a cell versus new call arrival
rate for ICAC, NFCAC, and NFCAC-RC. Although ICAC and NFCAC cannot guarantee the
QoS requirements and most of the data users are regjected, NFCAC-RC can still attain
maximal 254.96% compared with ICAC. After the new call arrival rate exceeding 0.3, the
mean packets of NFCAC-RC are reduced. This situation can be explained that the data users
increase and transmit many data packets at the new call arrival rate exceeding 0.3. The data
packets are too many to be handled by the system, and the NFCAC-RC scheme tends to
reject the new data call requests for maintaining the QoS requirements. The data users are
reduced that cause this situation. In fact, scenario two is a strict situation for the system to
serve data users transmitting huge packets. According to the simulation results, it can be seen
that NFCAC-RC maintains the system QoS requirements, increases mean number of usersin

a cell by rate control scheme, and rejects heavily loading call requests when the system
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cannot handle the situation.
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Fig. 4.11 illustrates the mean data packets delay time versus new call arrival rate for
ICAC, NFCAC, and NFCAC-RC. In the scenario of bursty data traffic, the mean data
packets delay time exceeds to 14 seconds. NFCAC-RC can maintain the QoS requirements of
the best effort services. When the system is heavily loaded, all of the data users will transmit
at basic rate and the delay time will increase. However, it is a trade-off between the system
utilization and the delay time. In the scenario of bursty data traffic, it cannot be avoided to
adopt rate control scheme. The membership functions of rate control in scenario two is the
same as scenario one. If the delay time is a QoS requirement in the system, the membership
functions of rate control should be changed to suit the scenario, or the delay time should be
an input linguistic variable of the CAC scheme.

The system is much heavier in scenario two than in scenario one. ICAC and NFCAC
cannot guarantee the QoS requirements when.users transmit bursty data traffic. NFCAC-RC

can overcome this situation by adopting rate eontrol :
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Chapter 5

Concluding Remarks

WCDMA cellular system has been shown to be an effective mobile system for
personal communications. Due to the capacity of WCDMA is interference
limited from all connected users, it is necessary to have an appropriate CAC scheme to
manage the system resource. This thesis presents a neural fuzzy call admission and rate
controller (NFCAC-RC) for WCDMA cellular systems to support differentiated QoS
provisioning, satisfy the system QoS constramts; .and maximize the system utilization.

By using the PRNN/ERLS interference. predictor, NFCAC-RC forecasts the system
interference at the next time ‘period. It has been shown to achieve significantly higher
prediction precision. The neural fuzzy call admission processor considers the system QoS
performance measures of each traffic type and the interference of home cell and adjacent
cells to determine whether to accept the call request or not. By using the MATLAB fuzzy
logic toolbox, ANFIS can be implemented efficiently to fine-tune the membership functions.
The neural network makes the fuzzy logic systems more adaptive and effective.

By considering the influence of a call request on the adjacent cell base stations, the CAC
scheme becomes more precise. NFCAC-RC reduces the outage probability of adjacent cells,
which is caused by accepting a new call request. New call requests, which are located near
cell boundary, will be rejected when the system loading of adjacent cell is high. And the
handoff call requests will be accepted more.

With rate control at each data burst, the mean number of users and mean packets in a

cell are improved significantly. Considering the bursty traffic condition, the data source is
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characterized by a self-similar process and the packets are Pareto distributed. According to
the huge bursty traffic, ICAC cannot guarantee the outage probability of type-2 and the
forced termination probability. To solve this problem, the rate control scheme has to be
considered.

NFCAC-RC can guarantee the QoS requirements, maximize the mean number of users
in a cell, and maximize the mean packets per second transmitted in a cell. Therefore,

NFCAC-RC is suitable for WCDMA cellular systems.
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