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Abstract—In orthogonal frequency-division multiplexing
(OFDM) systems, it is generally assumed that the channel
response is static in an OFDM symbol period. However, the
assumption does not hold in high-mobility environments. As
a result, intercarrier interference (ICI) is induced, and system
performance is degraded. A simple remedy for this problem is
the application of the zero-forcing (ZF) equalizer. Unfortunately,
the direct ZF method requires the inversion of an N × N ICI
matrix, where N is the number of subcarriers. When N is large,
the computational complexity can become prohibitively high. In
this paper, we first propose a low-complexity ZF method to solve
the problem in single-input–single-output (SISO) OFDM systems.
The main idea is to explore the special structure inherent in the
ICI matrix and apply Newton’s iteration for matrix inversion.
With our formulation, fast Fourier transforms (FFTs) can be used
in the iterative process, reducing the complexity from O(N3)
to O(N log2 N). Another feature of the proposed algorithm is
that it can converge very fast, typically in one or two iterations.
We also analyze the convergence behavior of the proposed method
and derive the theoretical output signal-to-interference-plus-noise
ratio (SINR). For a multiple-input–multiple-output (MIMO)
OFDM system, the complexity of the ZF method becomes
more intractable. We then extend the method proposed for
SISO-OFDM systems to MIMO-OFDM systems. It can be
shown that the computational complexity can be reduced even
more significantly. Simulations show that the proposed methods
perform almost as well as the direct ZF method, while the required
computational complexity is reduced dramatically.

Index Terms—Fast Fourier transform (FFT), intercarrier inter-
ference (ICI), Newton’s iteration.

I. INTRODUCTION

O RTHOGONAL frequency-division multiplexing
(OFDM) is known to be a successful technique for coping

with the multipath channel effect in wireless communications
[1]. For conventional OFDM systems, it is usually assumed
that the channel is static in an OFDM symbol period. However,
in high-speed mobile environments, this assumption no longer
holds. If the channel is time variant in an OFDM symbol period,
orthogonality will be destroyed. Intercarrier interference (ICI)
is induced, and system performance is degraded. The behavior
of mobility-induced ICI has been extensively investigated
in the literature [2]–[7]. In [2] and [3], it is shown that the
interference on a subcarrier mainly comes from neighboring
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subcarriers. In addition, the interference level is proportional to
the Doppler frequency.

Many techniques have been developed to solve the mobility-
induced ICI problem. Two algorithms are well known, namely,
1) the zero-forcing (ZF) method and 2) the minimum mean
square error (MMSE) equalization method. Unfortunately,
these methods require the inversion of an N × N ICI matrix,
where N is the number of subcarriers. When N is large, the re-
quired computational complexity becomes high. Systems with a
lot of subcarriers are not uncommon in real-world applications.
For example, for the application of digital video broadcasting
(DVB), the number of subcarriers can be as large as 8192. To
solve the problem, a simpler ICI equalizer for the ZF method
was developed in [8]. As mentioned, ICI on a subcarrier mainly
comes from a few neighboring subcarriers. Thus, ICI from
other subcarriers can then be ignored. This method has good
performance in low-mobility environments. In high-mobility
environments, however, the number of insignificant ICI terms
will be decreased, and the computational complexity will be
significantly increased.

Successive interference cancellation (SIC) and parallel in-
terference cancellation (PIC) are two well-known multiuser
interference (MUI) cancellation techniques in code-division
multiple-access systems. Since the characteristic of ICI is sim-
ilar to that of MUI, these methods can be directly applied to
ICI suppression in OFDM systems. A method that combines
the MMSE method and SIC was first proposed in [9]. Later,
it was improved with a recursive method in [10], reducing
the required complexity further. Although good performance
can be achieved with these methods, the required complexity
is still high, and the time delay can be intolerably large.
The PIC technique was then employed to solve the problem
[11]–[15]. Although the processing delay is greatly reduced,
the performance is discounted as well. Other approaches use
transmitter frequency-domain coding or beamforming to reduce
ICI or to enhance the received signal-to-interference-plus-noise
ratio (SINR). Interested readers are referred to [16]–[19].

Apart from the processing in the frequency domain, some
researchers also explore that in the time domain. In [20], a
time-domain filtering technique, maximizing the signal-to-ICI-
plus-noise ratio, was proposed for single-input–single-output
(SISO)/multiple-input–multiple-output (MIMO) OFDM sys-
tems. One disadvantage of this method is that it requires matrix
operations to solve a generalized eigenvalue problem. Another
approach involves the use of a time-variant time-domain equal-
izer, making the time-variant channel less variant. Transferring
the equalizer from time domain to frequency domain, one
can obtain a frequency-domain per-tone equalizer (PTEQ).
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The PTEQ was originally proposed to deal with the insufficient
cyclic prefix (CP) problem in OFDM systems. Lately, it has
been extended to suppress ICI in SISO/MIMO-OFDM systems
[21]–[25]. The PTEQ is well known for its good performance;
however, its implementation complexity and storage require-
ment can be high. In [26], a two-stage equalizer was proposed.
In the first stage, a time-domain windowing technique is used
to shorten the ICI response in the frequency domain. In the
second stage, an iterative MMSE method is used to suppress
the residual ICI. Although the windowing approach is simple,
the iterative MMSE processing is not trivial.

As mentioned, the main problem in the ZF method is the
matrix inversion. Thus, conducting this operation efficiently
becomes the main concern. It is found that some iterative
methods can be much more efficient than the direct inver-
sion method. In [27], the Gauss–Seidel iteration was used to
conduct the matrix inversion. However, it still needs a matrix
inverse in its iterative process. Another method, called operator
perturbation, was recently proposed [28]. Similar to [27], this
method also requires a matrix inverse in its iterations. Thus,
the computational complexity for the methods in [27] and [28]
is still high. In [30], it was discovered that the ICI matrix for
a linear time-variant (LTV) channel model exhibits a special
structure, allowing the application of fast Fourier transforms
(FFTs) in the matrix inversion. The LTV channel model was
proposed in [8], and it is originally designed for time-variant
channel estimation [29]. Exploiting this structure, Fu et al. [30]
proposed a power-series expansion (PSE) method for the ICI
matrix inversion. Although the PSE method can greatly reduce
the computational complexity, it does not perform well in high-
mobility environments.

In this paper, we propose a low-complexity ZF method
to solve the mobility-induced ICI problem in SISO-OFDM
[32] and MIMO-OFDM systems. Similarly to [30], we exploit
the special structure inherent in the LTV channel model. We
first develop a method that can implement Newton’s itera-
tion for the ICI matrix inversion in SISO-OFDM systems.
With our specially designed architecture, FFTs can be used,
reducing the computational complexity effectively. We also
propose a method for the calculation of initial values. With
those values, Newton’s iteration can converge very fast, usually
within a couple of iterations. Unlike the PSE method [30],
our method works well even in high-mobility environments.
Simulation results show that the performance of the proposed
low-complexity ZF method can be as good as that of the direct
ZF method. However, the required computational complexity
is reduced from O(N3) to O(N log2 N). We also analyze
the convergence behavior of the proposed low-complexity ZF
algorithm and derive the theoretical output SINR. With a new
MIMO-OFDM system formulation, we then extend the pro-
posed method to ICI suppression in MIMO-OFDM systems.
It is shown that in MIMO-OFDM systems, the computational
complexity can be reduced even more significantly. For an
M × M system, where M is the number of transmit (receive)
antennas, the proposed algorithm can reduce the computational
complexity from O(M3N3) to O(MN log2 N).

The rest of this paper is organized as follows. Section II
presents the proposed ICI mitigation method for SISO-OFDM

systems. Section III describes the proposed ICI cancella-
tion method for MIMO-OFDM systems. Section IV conducts
the performance analysis. Simulation results are reported in
Section V, demonstrating the effectiveness of the proposed
method. Finally, conclusions are drawn in Section VI.

II. ICI MITIGATION FOR SISO-OFDM

A. ZF Method

Consider a mobile OFDM system whose channel variation is
large such that the mobility-introduced ICI cannot be ignored.
It was shown in [29] that the LTV channel model can be used
to approximate a time-variant channel for normalized Doppler
frequency up to 20%, where the normalized Doppler frequency
is defined as the maximum Doppler frequency divided by
subcarrier spacing. Using the LTV channel model, we can ap-
proximate the time-variant channel in a specific OFDM symbol
period as

hj(n) = h0,j + n × h1,j (1)

where n is the time index, hj(n) is the jth-tap channel re-
sponse at time instant n, h0,j is its constant term, and h1,j

is its variation slope. We assume that n is 0 at the mid-
point of an OFDM symbol. Let h0 = [h0,0, h0,1, . . . , h0,N−1]T ,
h1 = [h1,0, h1,1, . . . , h1,N−1]T , H0 = cir(h0), and H1 =
cir(h1), where cir(c) denotes a circulant matrix with
the first column vector being c. In addition, we de-
fine v1 = [(−N + 1)/2, (−N + 3)/2, . . . , (N − 1)/2]T and
V1 = diag(v1), where the notation diag(d) denotes a diagonal
matrix with the diagonal vector of d. According to (1), we can
express the received time-domain signal in the OFDM symbol
(after CP removal) as

y = (H0 + V1H1)x + z (2)

where y and x are the receive and transmit time-domain
signals, respectively, and z is the noise vector (additive white
Gaussian). Let G be a unitary discrete Fourier transform (DFT)
matrix with the property that GGH = IN , where IN is an
N × N identity matrix. Furthermore, let ỹ =

√
NGy, x̃ =√

NGx, z̃ =
√

NGz, h̃0 =
√

NGh0, h̃1 =
√

NGh1, H̃0 =
diag(h̃0), and H̃1 = diag(h̃1). Multiplying both sides of (2)
by

√
NG, we can express the receive signal in the frequency

domain as

ỹ = [H̃0 + GV1GHH̃1]x̃ + z̃

= M̃x̃ + z̃ (3)

where M̃ = H̃0 + GV1GHH̃1. Note that M̃ can also be
rewritten as M̃ = H̃0 + Ṽ1H̃1, where Ṽ1 = GV1GH =
[cir(ṽ1)]T and ṽ1 = (1/

√
N)GHv1.

Denote the ZF equalized signal as xZF . Then, we can have
xZF = M̃−1ỹ. From the above formulation, it is simple to see
that direct implementation of the ZF method will require high
computational complexity if N is large. The PSE method was
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introduced in [30] to solve the problem. The idea is to express
M̃−1 as

M̃−1 =
[(

IN + GV1GHH̃1H̃−1
0

)
H̃0

]−1

= H̃−1
0 (IN − P)−1 (4)

where P = GV1GHH and H = −H̃1H̃−1
0 . Then, (IN −

P)−1 is expanded with a power series, and high-order terms are
truncated, i.e., (IN − P)−1 ≈

∑Q
i=0 Pi, where Q is the highest

order retained in the expansion. The convergence condition for
this expansion is that ‖P‖ < 1 [30], where ‖P‖ indicates the
p-norm of P [31]. Finally, the equalized x̃, which is denoted
as xPSE , is equal to H̃−1

0

∑Q
i=0 ai, where ai = Piỹ. Note

that ai+1 = Pai = GV1GH(Hai). Thus, ai can be recur-
sively calculated. Furthermore, with the special structure of
P, FFTs/inverse FFTs (IFFTs) can be used to calculate ai.
Although the computational complexity can be reduced effec-
tively, the performance of the PSE method is unsatisfactory in
high-mobility environments. In Section II-B, we will present
the proposed method to solve the problem.

B. Proposed ICI Mitigation Method

As mentioned, the PSE method is unsatisfactory in high-
mobility environments. To solve the problem, we seek for a
more powerful iterative method for matrix inversion. Specif-
ically, we find that Newton’s iteration is useful. Newton’s
iteration is well known for its fast convergence [33], [34] and
has been investigated extensively [35]–[38]. Let Wk be the
estimated inverse of M̃ at the kth iteration. The (k + 1)th
Newton’s iteration can be described as follows:

Wk+1 = (2IN − WkM̃)Wk, k = 0, 1, 2, . . . ,∞. (5)

Let R̃k = IN − WkM̃ represent the estimation residual.
Equation (5) implies that ‖IN − WkM̃‖ ≤ ‖IN − W0M̃‖2k

for all k. If ‖IN − W0M̃‖ < 1, we then have a quadratic
convergence [39]. From (5), we can clearly see that Newton’s
iteration requires matrix-to-matrix multiplications whose com-
putational complexity is high. As a matter of fact, its complexity
is even higher than that of the direct ZF method when k is
large. Thus, a direct application of Newton’s iteration for matrix
inversion is not feasible. In what follows, we propose a method
of solving the problem.

Iterating (5), we obtain a sequence of matrices {W0,W1,
. . . ,Wk}. The relationship between W0 and Wk can be found
straightforwardly in

Wk =
2k−1∑
m=0

ck,m(W0M̃)mW0 (6)

where ck,m is the coefficient of the mth summation term in (6).
Equation (6) can be seen as an expansion form of Newton’s
iteration, while (5) is an iterative form. It turns out that to obtain
a low-complexity algorithm, we have to use the expansion
form. Assign ck,m’s as coefficients of a polynomial function
of z, i.e., fk(z) = ck,0z

0 + ck,1z
1 + · · · + ck,2k−1z

2k−1.

Then, the polynomial fk+1(z) can be derived from fk(z)
as fk+1(z) = 2fk(z) − z[fk(z)]2, where f0(z) = 1. This is
to say that ck,m can be recursively calculated. Note that our
objective is to obtain the equalized result Wkỹ and not the
matrix inverse Wk itself. By multiplying both sides of (6) by
ỹ and letting xk = Wkỹ and um = (W0M̃)mW0ỹ, we have
the equalized result as

xk =
2k−1∑
m=0

ck,mum. (7)

From the definition of um, we can then have

um+1 = (W0M̃)um. (8)

As a result, um can be recursively calculated as well. Using this
approach, we have transformed matrix-to-matrix multiplica-
tions in (6) into matrix-to-vector multiplications in (7) and (8).

To complete our low-complexity algorithm, we make use
of the special structure inherent in the ICI matrix. From the
foregoing derivation, we know that M̃ = H̃0 + GV1GHH̃1.
By using this structure, we can then rewrite (8) as

um+1 =
[
W0(H̃0 + GV1GHH̃1)

]
um

=W0

[
H̃0um + GV1GH(H̃1um)

]
. (9)

Note that H̃0, H̃1, and V1 are all diagonal matrices. If we
further pose a constraint that W0 is a diagonal matrix, we can
transform matrix-to-matrix operations into vector-to-vector and
DFT/IDFT operations, as shown in (9). As known, DFTs/IDFTs
can be efficiently implemented with FFTs/IFFTs whose com-
plexity is O(N log2 N). Thus, the computational complexity
of the proposed algorithm is O(N log2 N). The constraint
on W0 may not always yield satisfactory performance in all
scenarios. Instead of a diagonal matrix, we may let W0 be
a low-bandwidth banded matrix. Let the (i, j)th entry of a
matrix B be denoted as B(i, j). The banded matrix is defined as
B(i, j) �= 0, if |i − j| ≤ D, and B(i, j) = 0, otherwise. Here,
D is the bandwidth of the banded matrix. If D = 0, the banded
matrix is reduced to a diagonal matrix. If D = 1, the matrix will
have three nonzero diagonal vectors. With this type of W0, the
computational complexity in (9) will only be increased slightly.
For later simulations, we will only consider the cases of D = 0
and D = 1. It turns out that for D = 1, the performance of the
proposed algorithm is good enough.

The final thing we have to deal with is how to determine the
initial matrix W0. A good initial matrix can reduce the number
of iterations significantly and provide good cancellation perfor-
mance. As known, the main function of ZF is to invert the ICI
matrix, and in the ideal case, IN − WkM̃ = 0N , where 0N

is an N × N zero matrix. As a result, if IN − W0M̃ can be
made as close to 0N as possible, fast convergence in Newton’s
algorithm can be obtained. Based on this idea, we propose to
minimize the Frobenius norm of IN − W0M̃, i.e.,

W0 = arg min
W

‖IN − WM̃‖2
F (10)
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TABLE I
COMPLEXITY COMPARISON AMONG N-ZF, PSE, AND DIRECT ZF METHODS IN A SISO-OFDM SYSTEM

where ‖R̃‖F means the Frobenius norm of R̃. Since the
derivation of the optimal initial values is tedious, we put that
in Appendix A. For easy reference, we denote the proposed
low-complexity ZF method as the Newton-ZF (N-ZF) method.
Finally, we summarize the required complexity for the N-ZF
method, the PSE method, and the direct ZF method for a
SISO-OFDM system in Table I.

III. PROPOSED ICI CANCELLATION

METHOD FOR MIMO-OFDM

ICI suppression is more challenging in MIMO-OFDM sys-
tems. In the application of spatial multiplexing, interantenna
interference is further introduced. It is possible to formulate
the whole system with a linear model and to apply a ZF
equalizer to suppress all interference. However, the dimension
of the MIMO-OFDM ICI matrix will become much larger than
that in a SISO-OFDM system, and the required complexity is
even more intractable. In this section, we extend the method
proposed in Section II to solve the problem. By considering an
M × M system, where M is the number of transmit/receive
antennas, and by using the signal model in SISO-OFDM sys-
tems, we can express the frequency-domain signal for the ith
receive-antenna as

ỹi =
M∑

j=1

M̃i,jx̃j (11)

where ỹi is the frequency-domain signal in the ith receive
antenna, x̃j is the frequency-domain signal in the jth trans-
mit antenna, and M̃i,j is the ICI matrix for the jth transmit
antenna and the ith receive antenna. By stacking all the receive
frequency-domain signals from all antennas in a column vector,
we have the following signal model:

ỹ = M̃x̃ + z̃ (12)

where ỹ = [ỹT
1 , ỹT

2 , . . . , ỹT
M ]T is the receive frequency-

domain signal, x̃ = [x̃T
1 , x̃T

2 , . . . , x̃T
M ]T is the transmit

frequency-domain signal, z̃ = [z̃T
1 , z̃T

2 , . . . , z̃T
M ]T is the

frequency-domain noise, and the frequency-domain ICI
channel matrix can be expressed as follows:

M̃ =

⎡
⎢⎢⎢⎣

M̃1,1 M̃1,2 . . . M̃1,M

M̃2,1 M̃2,2 . . . M̃2,M

...
...

. . .
...

M̃M,1 M̃M,2 . . . M̃M,M

⎤
⎥⎥⎥⎦ . (13)

For ease of description, we only consider a 2 × 2 MIMO-
OFDM system in the following derivation. However, the
proposed algorithm can be extended to a general M × M
MIMO-OFDM system without any difficulty. Similar to the
channel model in SISO-OFDM systems, we also use the LTV
model for MIMO-OFDM channels. Thus, we can obtain the
MIMO-OFDM ICI matrix given by

M̃ =
[
M̃1,1 M̃1,2

M̃2,1 M̃2,2

]

=
[
Ã0 + GV1GHÃ1 B̃0 + GV1GHB̃1

C̃0 + GV1GHC̃1 D̃0 + GV1GHD̃1

]

=
[
Ã0 B̃0

C̃0 D̃0

]
+
[
GV1GH 0N

0N GV1GH

]
×
[
Ã1 B̃1

C̃1 D̃1

]

(14)

where Ãi, B̃i, C̃i, and D̃i play the same role as H̃i in a
SISO-OFDM system. The derived signal model is obtained
by grouping together subcarrier signals in the same antenna.
For the purpose of comparison, we consider a ZF equalization
method, ignoring the ICI effect in (14). In this case, the ICI
channel matrix turns out to be

M̃s =
[
Ã0 B̃0

C̃0 D̃0

]
. (15)

Thus, the equalized signal can be obtained with xs = M̃−1
s ỹ.

Using the block matrix inversion formula, we know that to
obtain the ith subcarrier equalized signal for antenna one or
two, the method will require two weights. For ease of reference,
we denote this equalization method as a two-tap frequency-
domain equalizer (FEQ).

Using the derived MIMO-OFDM ICI matrix in (14), we can
now apply Newton’s iteration to implement the ZF equalizer.
With (6), we can obtain the equalized result as

xk =
2k−1∑
m=0

ck,mvm (16)

where xk, ck,m, and vm are defined as those in (7). Let
the initial matrix W0 be composed of four N × N matrices
expressed as

W0 =
[
Wα Wβ

Wγ Wω

]
(17)
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TABLE II
COMPLEXITY COMPARISON BETWEEN N-ZF AND DIRECT ZF METHODS IN A 2 × 2 MIMO-OFDM SYSTEM

and vm = [vT
m,1,v

T
m,2]

T . According to the definition of vm,
we can obtain vm+1 as (18), shown at the bottom of the
page. Note that Ãi, B̃i, C̃i, D̃i, and V1 are all diagonal
matrices. It is obvious that if we let Wα, Wβ , Wγ , and Wω

be low-bandwidth banded matrices, (18) can be implemented
by vector and DFT/IDFT operations. Note that the DFT size is
N instead of 2N . Thus, the required computational complexity
is O(MN log2 N). It is straightforward to see that the com-
putational complexity of the direct ZF method is O(M3N3).
The complexity reduction achieved by the proposed method in
MIMO-OFDM systems can be greater compared with that in
SISO-OFDM systems.

The final problem is how the 2N × 2N initial matrix can be
optimally determined. As we did in SISO-OFDM systems, we
use the minimum-Frobenius-norm criterion. Since the deriva-
tion is lengthy, we put it in Appendix B. Finally, we summarize
the computational complexity of the N-ZF and direct ZF meth-
ods for a 2 × 2 MIMO-OFDM system in Table II.

Note that the proposed method can be extended to a general
MT × MR MIMO-OFDM system, where MT < MR. In such
a system, we can use the least squares (LS) method, instead
of ZF, to cancel ICI. Using the LS method, we can have the
equalized signal vector as

x = (M̃HM̃)−1M̃H ỹ

= Q̃−1y (19)

where Q̃ = M̃HM̃, and y = M̃H ỹ. The matrix Q̃, inherit-
ing the properties of M̃, consists of diagonal matrices and
FFT/IFFT matrices as well. As a result, the proposed method
discussed above can be applied. Since the derivation is simple
and straightforward, it is omitted here. Due to the application
of the LS method, the required complexity in this scenario will
be somewhat higher.

IV. PERFORMANCE ANALYSIS

For the proposed algorithm, the iteration number is usually
preset. Unlike other iterative algorithms, the convergence is not
a concern here. The reason we can use a preset iteration number
is due to the fast convergence property of Newton’s iteration,

as well as our good initial values. If the proposed algorithm
converges, only a small number of iterations are necessary. On
the other hand, if the proposed algorithm diverges, the preset
number of iterations will limit the performance degradation. As
a matter of fact, even for divergence cases, we can still have
improved SINRs if the iteration number is set properly. We will
provide intuitive statements to explain why this is true. It turns
out that the determination of the iteration number is simple and
straightforward.

Here, we start with the analysis of convergence behavior.
After that, we will derive theoretical SINRs that the proposed
algorithm can provide. Note that since the SISO/MIMO-OFDM
signal models are similar in form, the only difference is the
dimension. Thus, we focus on a SISO-OFDM system, but the
analysis can be extended to MIMO-OFDM systems. We first
perform the eigenvalue decomposition for R̃0 as follows:

R̃0 = UDU−1 (20)

where U = [u0,u1, . . . ,uN−1] is a matrix composed of eigen-
vectors of R̃0, and D = diag([λ0, λ1, . . . , λN−1]T ) consists of
eigenvalues λi. We assume that |λi| ≥ |λj | for i ≤ j. Since
R̃k = R̃2

k−1, we can then decompose R̃k as

R̃k = UD2k

U−1. (21)

If |λ0| < 1, then R̃k → 0N as k → ∞. Thus, we can have the
convergence condition for Newton’s iteration as ρ(R̃0) < 1,
where ρ(R̃0) denotes the spectral radius of R̃0; the spectral
radius indicates the largest absolute value of all eigenvalues
[34]. This is equivalent to say that for Newton’s iteration to
converge, the amplitudes of all eigenvalues of R̃0 have to be
smaller than one. For a moderate mobile speed, this condition
holds for most cases. If not, the number of eigenvalues with
amplitudes greater than one is small, and their amplitudes do
not deviate from one too much. These results can easily be
observed from simulations, though they are difficult to prove
theoretically. In what follows, we will first show that even for
divergence cases, we may still benefit from Newton’s
iteration. Let U−1 = [p0,p1, . . . ,pN−1]T , |λi| > 1 for
i = 0, 1, . . . , P − 1 and |λi| < 1 for i = P, P + 1, . . . , N − 1.

vm+1 =
[
Wα Wβ

Wγ Wω

]{[
Ã0 B̃0

C̃0 D̃0

]
+
[
GV1GH 0N

0N GV1GH

] [
Ã1 B̃1

C̃1 D̃1

]}[
vm,1

vm,2

]

=
[
Wα Wβ

Wγ Wω

]{[
Ã0vm,1 + B̃0vm,2

C̃0vm,1 + D̃0vm,2

]
+
[
GV1GH(Ã1vm,1 + B̃1vm,2)
GV1GH(C̃1vm,1 + D̃1vm,2)

]}
(18)
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By definition, R̃k = IN − WkM̃. Then, we can represent the
ICI matrix as

WkM̃ = IN −
P−1∑
i=0

λ2k

i uipT
i −

N−1∑
j=P

λ2k

j ujpT
j . (22)

As for Wk, we can reformulate it as

Wk = (IN + R̃k−1)(IN + R̃k−2) . . . (IN + R̃0)W0. (23)

By using (21), we can further express Wk as

Wk =
N−1∑
j=0

φj,kujpT
j W0 (24)

where φj,k =
∏k−1

i=0 (1 + λ2i

j ). With (22) and (24), the
ZF-equalized signal can be expressed as

xk = x̃−
P−1∑
i=0

λ2k

i uipT
i x̃ −

N−1∑
j=P

λ2k

j ujpT
j x̃ +

N−1∑
j=0

φj,kujpT
j ṽ0

(25)

where ṽ0 = W0ṽ. Since the eigenvectors {u0,u1, . . . ,uN−1}
span the N -dimensional space, we can decompose x̃ and
ṽ0 using these eigenvectors. Let x̃ =

∑N−1
l=0 βlul and

ṽ0 =
∑N−1

l=0 γlul, respectively. Then, we can rewrite (25) as

xk = x̃ −
P−1∑
i=0

λ2k

i βiui −
N−1∑
j=P

λ2k

j βjuj +
N−1∑
j=0

φj,kγjuj .

(26)

Let xk =[xk,0, xk,1, . . . , xk,N−1]T and x̃=[x̃0, x̃1, . . . ,
x̃N−1]T . Thus, the mth subcarrier signal after equalization can
be expressed as

xk,m = x̃m + f̃1,k,m + f̃2,k,m + f̃3,k,m (27)

where f̃1,k,m = −
∑P−1

i=0 λ2k

i βiui(m), f̃2,k,m =
−
∑N−1

j=P λ2k

j βjuj(m), and f̃3,k,m =
∑N−1

j=0 φj,kγjuj(m).
From (27), we can see that the equalized signal suffers from
three interference terms. For f̃1,k,m, it will become large when
k increases; however, for f̃2,k,m, it will become small when k
increases.

As for the noise term f̃3,k,m, its dependence on k is not
strong. As mentioned, only a few eigenvalues’ amplitudes will
be larger than one (i.e., P is small), and their amplitudes often
do not deviate from one too much. Then, it is easy to see that the
decreasing amount of f̃2,k,m will be larger than the increasing
amount of f̃1,k,m in the early iteration. Thus, for divergence
cases, the interference will decrease first and then increase as
the iteration proceeds. If we can stop the iteration before the
overall interference increases, we can still have performance
gain even though the iteration diverges eventually. Additionally,
we can increase D to make the initial matrix closer to the exact
matrix inverse. This way, P may be minimized, and f̃1,k,m will
decrease, which makes the proposed method work better. Be-
cause of the fast convergence property of Newton’s method, the

number of iterations required is small. For example, it can be as
small as one or two when D = 1. For divergent cases, the over-
all interference still decreases in the first one or two iterations.

Since the performance of an OFDM-based system depends
on each subcarrier SINR, we will analyze the subcarrier
SINR of the proposed algorithm in the sequel. From (3), we
can express the equalized signal as Wkỹ = Tkx̃ + Wkz̃,

where Tk =
∑2k−1

m=0 ck,m(W0M̃)m+1 is the equalized
ICI matrix. Ideally, Tk will be an identity matrix. Let
z̃ = [z̃0, z̃1, . . . , z̃N−1]T , σ2

x̃
= E{|x̃i|2}, σ2

z̃
= E{|z̃i|2}

(0 ≤ i ≤ N − 1), and ψ = (σ2

z̃
/σ2

x̃
). The subcarrier SINR for

the proposed method with k iterations in the ith subcarrier,
which is denoted as SINRk,i, can be shown as

SINRk,i =
E
{∣∣tki,ix̃i

∣∣2}
E

{∣∣∣∑N−1
j=0
j �=i

tki,j x̃j

∣∣∣2}+ E

{∣∣∣∑N−1
j=0 wk

i,j z̃j

∣∣∣2}

=

∣∣tki,i∣∣2∑N−1
j=0
j �=i

∣∣tki,j∣∣2 + ψ
∑N−1

j=0

∣∣wk
i,j

∣∣2 (28)

where tki,j = Tk(i, j), and wk
i,j = Wk(i, j). For comparison,

we also calculate the SINR in the ith subcarrier before
equalization, which is denoted as SINRi, as

SINRi =
E
{
|m̃i,ix̃i|2

}
E

{∣∣∣∑N−1
j=0
j �=i

m̃i,j x̃j

∣∣∣2}+ E {|z̃i|2}

=
|m̃i,i|2∑N−1

j=0
j �=i

|m̃i,j |2 + ψ
. (29)

As a result, we must calculate each element in Tk and Wk for
SINRk,i. To make the following derivation more compact, we
rewrite the ICI matrix as M̃ =

∑R
r=0 ṼrH̃r, where Ṽ0 = IN ,

and R = 1. Since M̃ =
∑R

r=0 ṼrH̃r, the equalized ICI matrix
Tk can be expanded as (30), shown at the bottom of the next
page, where Ām =

∏m
f=0 W0Ṽrm,f

H̃rm,f
, and Ā−1 = IN .

Using the same way, we also expand Wk as

Wk =
2k−1∑
m=0

ck,m

⎧⎨
⎩

R∑
rm,0=0

R∑
rm,1=0

. . .
R∑

rm,m−1=0

B̄m

⎫⎬
⎭ (31)

where B̄m = Ām−1W0. We then calculate each element
Ām(im, jm). For brevity of presentation, we consider the case
of D = 0. To compact and simplify the notation, we redefine
h̃r = [h̃r

0, h̃
r
1, . . . , h̃

r
N−1]

T and ṽr = [ṽr
0, ṽ

r
1, . . . , ṽ

r
N−1]

T , and

we let wi = wi,i. Since Ṽrm,f
is a circulant matrix, it can be

expressed as Ṽrm,f
= [cir(ṽrm,f

)]T . Furthermore, from the

definition, we have H̃rm,f
= diag(h̃rm,f

). For m = 0, we have
Ā0(i0, j0) as

Ā0(i0, j0) = wi0 ṽ
r0,0

〈j0−i0,N〉h̃
r0,0
j0

. (32)
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Then, we can obtain Ā1 = (W0Ṽr1,1H̃r1,1)Ā0 and
Ā2 = (W0Ṽr2,2H̃r2,2)Ā1 accordingly. By repeating this
process, we can obtain a formula for m ≥ 1. For m ≥ 1, we
have Ām(im, jm), as in (33), shown at the bottom of the page.
With M̃ =

∑R
r=0 ṼrH̃r, we can expand m̃i,j as

m̃i,j =
R∑

r=0

ṽr
〈j−i,N〉h̃

r
j . (34)

From (57) and (34), we can express wi as

wi ≈

(∑R
r=0 ṽr

0h̃
r
i

)∗
∑

j∈Ω′ |
∑R

r=0 ṽr
〈j−i,N〉h̃

r
j |2

. (35)

Since we have derived ṽj
i and h̃j

i , we can then calculate
wi. Thus, we can have Ām(im, jm). By using (30) and
Ām(im, jm), we can obtain Tk. By using the relation of B̄m =
Ām−1W0, (33), and (35), we can compute B̄m(im, jm) as

B̄m(im, jm) =
Ām−1(im, jm)

(∑R
r=0 ṽr

0h̃
r
jm

)∗
∑

j∈Ω′′

∣∣∣∑R
r=0 ṽr

〈j−jm,N〉h̃
r
j

∣∣∣2 (36)

where Ω′′ = 〈jm − S : jm + S,N〉. From (31) and (36), we
can then calculate Wk. Having Tk and Wk ready, we can
finally evaluate SINRk,i in (28). With (34), we can further
express SINRi in (29) as

SINRi =

∣∣∣∑R
r=0 ṽr

0h̃
r
i

∣∣∣2∑N−1
j=0
j �=i

∣∣∣∑R
r=0 ṽr

〈j−i,N〉h̃
r
j

∣∣∣2 + ψ
. (37)

As for the case of D �= 0, it can be derived the same way.

V. SIMULATION RESULTS

In this section, we report simulations to demonstrate the
effectiveness of the proposed method. We consider OFDM
systems with N = 128 and the CP size of 16. The modula-
tion scheme is 16-quadrature amplitude modulation (16-QAM).
The channel length is set to L = 15, and the power delay
profile is characterized by an exponential function, i.e., σ2

l =
e−l/L/

∑L−1
i=0 e−i/L, where l is the tap index. Each channel tap

is generated by Jakes’ model [41]. Here, we assume that the
channel response is exactly known for the direct ZF method.
For the proposed method, the parameters of the LTV chan-
nel model are obtained by LS fittings. Define the normalized
Doppler frequency as fd = fdNTs, where fd is the maxi-
mum Doppler frequency, and Ts is the sampling period. For
a MIMO-OFDM system, its settings are the same as those
in a SISO-OFDM system. Specifically, we consider a 2 × 2
MIMO-OFDM system. Since the N-ZF method with S = 2
have the similar performance to that with S = N/2 − 1, we set
S = 2 for all simulations.

First, we evaluate the validity of the analytic output SINRs
for the proposed method. Two cases are considered: case 1
meets the convergence condition derived in Section IV, whereas
case 2 does not. We consider a SISO-OFDM system, and let
fd = 0.1, signal-to-noise ratio (SNR) = 35 dB, S = 2, and
D = 0. Fig. 1 shows the analytic subcarrier SINRs for case 1.
Since the simulated SINRs are almost identical to the analytic
SINRs, they are not shown in the figure. In this figure, we
find that each subcarrier exhibits a different SINR due to the
characteristic of the frequency-selective channel. In addition,
subcarrier SINRs are all increased as the number of iterations is
increased. The performance of the proposed method with two
iterations is similar to that with three iterations. We can also find
that the output SINRs of the proposed method are very close to
those of the direct ZF method. Fig. 2 shows analytic subcarrier
SINRs for case 2. We see that even in this divergence case,

Tk =
2k−1∑
m=0

ck,m

⎧⎨
⎩

R∑
rm,0=1

W0Ṽrm,0H̃rm,0

R∑
rm,1=1

W0Ṽrm,1H̃rm,1 . . .

R∑
rm,m=1

W0Ṽrm,m
H̃rm,m

⎫⎬
⎭

=
2k−1∑
m=0

ck,m

⎧⎨
⎩

R∑
rm,0=0

R∑
rm,1=0

. . .

R∑
rm,m=0

m∏
f=0

W0Ṽrm,f
H̃rm,f

⎫⎬
⎭

=
2k−1∑
m=0

ck,m

⎧⎨
⎩

R∑
rm,0=0

R∑
rm,1=0

. . .

R∑
rm,m=0

Ām

⎫⎬
⎭ (30)

Ām(im, jm) =
N−1∑

km−1=0

N−1∑
km−2=0

, . . . ,
N−1∑
k0=0

wk0wk1 , . . . , wkm−1wim
ṽ

rm,m

〈jm−km−1,N〉

ṽ
rm,m−1

〈km−1−km−2,N〉, . . . , ṽ
rm,1

〈k1−k0,N〉ṽ
rm,0

〈k0−im,N〉h̃
rm,m

jm
h̃

rm,m−1
km−1

, . . . , h̃
rm,0
k0

(33)
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Fig. 1. SINR analysis of the N-ZF method (D = 0 and S = 2) for case 1,
where fd = 0.1, and SNR = 35 dB.

Fig. 2. SINR analysis of the N-ZF method (D = 0 and S = 2) for case 2,
where fd = 0.1, and SNR = 35 dB.

SINRs are still increased for the first two or three iterations. For
the fourth iteration, subcarrier SINRs start to fall. The result
for D = 1 is similar to that for D = 0, except that the required
number of iterations is reduced to one or two.

Next, we consider the performance comparison for the pro-
posed and conventional methods in a SISO-OFDM system.
Here, fd is set to 0.1. Specifically, the bit error rate (BER)
is used as the performance measure. For the benchmarking
purpose, we also show the result of the direct MMSE method
and that of the direct ZF method with fd = 0 (ICI-free). From
extensive simulations, we also find that the performance of the
PSE method cannot be further enhanced when Q > 2. For this
reason, we only show the result for Q = 2. Fig. 3 shows the
BER performance comparison for D = 0. As we can see, the
performance of the PSE method is limited and has an error
floor phenomenon. The N-ZF method outperforms the PSE
method, even with one iteration only. As mentioned, there is
a convergence condition for the PSE method. This condition is

Fig. 3. BER comparison among one-tap FEQ, PSE, N-ZF (D = 0 and
S = 2), direct ZF, and direct MMSE methods in a SISO-OFDM system;
fd = 0.1, and 16-QAM.

Fig. 4. BER comparison among one-tap FEQ, N-ZF (D = 1 and S = 2),
direct ZF, and direct MMSE methods in an SISO-OFDM system; fd = 0.1,
and 16-QAM.

totally dependent on the channel. The N-ZF method also has
its convergence condition. However, it depends on the initial
matrix as well as the channel. It is then possible to reduce the
probability of divergence through the determination of W0.
This is the main reason the N-ZF method can outperform the
PSE method. The required complexity of the N-ZF method is
lower than that of the PSE method (this can be seen later).
Moreover, the performance of the N-ZF method with three
iterations can approach that of the direct ZF method. Here,
the performance of the direct ZF is only slightly worse than
that of the direct MMSE method. Fig. 4 shows the BER
performance comparison for D = 1. It is obvious that the N-ZF
method can quickly approach the direct ZF method with one or
two iterations. Note that the N-ZF method with two iterations
can even perform slightly better than the direct ZF method.
This behavior is interesting and can be explained as follows.
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Fig. 5. BER comparison among one-tap FEQ, N-ZF (D = 1 and S = 2),
direct ZF, and direct MMSE methods in an SISO-OFDM system; fd = 0.2,
and 16-QAM.

The N-ZF method only iterates Newton’s method two or three
times, and it may not converge completely in all cases. As
known, the direct ZF method has a noise enhancement problem.
It is then possible that the noise enhancement caused by the
N-ZF method is smaller. As a result, the performance of the
N-ZF method can be better than that of the direct ZF method. If
the convergence condition is met and the number of iterations
is high enough, the performance of the N-ZF and direct ZF
methods will be the same. This phenomenon has been verified
by simulations, but the result is not shown here. Compared with
Fig. 3, we see that the N-ZF method with D = 1 has better
performance than that with D = 0, and it can approach the
direct ZF method more quickly.

To test the limitation of all algorithms, we consider a more
severe case in which fd = 0.2. Fig. 5 shows the simulation
result. In this figure, we see that the N-ZF method can still
work, but its performance is degraded since ICI is much larger
than that in the previous cases. In addition, we can see that
the degradation of the MMSE method is smaller and that the
performance gap between the ZF and MMSE methods become
larger. We also conduct simulations to evaluate the robustness
of all algorithms to the variation of the normalized Doppler
frequency. Fig. 6 shows the results for fd, varying from 0 to
0.2. Here, the SNR is set to 30 dB. In this figure, we can
see that the performance of all methods is degraded as the
normalized Doppler frequency is increased. Furthermore, the
MMSE method is the most robust method, followed by the N-
ZF method.

Table III summarizes the required computational complexity
of the direct ZF method, the PSE method, and the N-ZF method
for the simulation setting shown above. In this table, the ratios
inside parentheses indicate the number of operations required
for the N-ZF method divided by those for the direct ZF and
PSE methods. The first ratio is for the direct ZF method, and the
second ratio is for the PSE method. From the above simulations,
we can say that for D = 0, the required iteration number for the
N-ZF method is two or three, whereas for D = 1, it is one or
two. In Table III, we can see that the N-ZF method with D = 0

Fig. 6. BER comparison among one-tap FEQ, N-ZF (D = 1 and S = 2),
direct ZF, and direct MMSE methods in an SISO-OFDM system; fd = 0 ∼
0.2, 16-QAM, and SNR = 30 dB.

can save tremendous computations compared to the direct ZF
method. With two (three) iterations, its multiplication com-
plexity is only 0.007 (0.015) of that of the direct ZF method.
As for the case of D = 1, it also saves a lot of computations
compared to the direct ZF method. We can find that the mul-
tiplication complexity of the N-ZF method with one iteration
(two iterations) is only 0.008 (0.013) of that of the direct ZF
method. As to additions, the complexity ratios are similar to
those of multiplications. As to divisions, the ratios are 0.016
and 0.015 for D = 0 and D = 1, respectively. Compared to the
PSE method (Q = 2), the N-ZF method (k = 1 and D = 0)
also has lower complexity and better performance. Its required
multiplications (additions/divisions) is 0.85 (0.745/0.5) of those
of the PSE method.

Finally, we report the simulation results for a 2 × 2
MIMO-OFDM system. From previous simulations, we can see
that the computational complexity of the N-ZF method with
D = 0 and D = 1 is similar when the required number of
iterations is taken into account. However, the N-ZF method
with D = 1 tends to have better results. Thus, we will only
consider the N-ZF method with D = 1. Here, we consider two
environments, i.e., fd = 0.05 and 0.1. Fig. 7 depicts the BER
performance for the proposed method, the direct ZF method,
and the direct MMSE method for fd = 0.05. In this figure, we
see that the two-tap FEQ method has an irreducible error floor
due to ICI. It is obvious that the N-ZF method can effectively
suppress the ICI and that its performance can quickly approach
that of the direct ZF method. As we can see, the iteration
number can be as small as one. In addition, note that the
direct MMSE method does not give too much performance
enhancement compared with the direct ZF method. Fig. 8
illustrates the BER performance for the case of fd = 0.1. The
N-ZF method can still effectively suppress the interference, and
its performance can approach that of the direct ZF method
quickly. In this case, one or two iterations are sufficient for
the N-ZF method. Note further that with two iterations, the
N-ZF method can outperform the direct ZF method. Table IV
summarizes the required computational complexity of the direct
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TABLE III
COMPLEXITY COMPARISON AMONG N-ZF, PSE, AND DIRECT ZF METHODS IN AN SISO-OFDM SYSTEM (N = 128 AND S = 2)

Fig. 7. BER comparison among two-tap FEQ, N-ZF (D = 1 and S = 2),
direct ZF, and direct MMSE methods in a 2 × 2 MIMO-OFDM system; fd =
0.05, and 16-QAM.

Fig. 8. BER comparison among two-tap FEQ, N-ZF (D = 1 and S = 2),
direct ZF, and direct MMSE methods in a 2 × 2 MIMO-OFDM system; fd =
0.1, and 16-QAM.

ZF and N-ZF methods. With one iteration, the multiplication
(addition) complexity of the N-ZF method (k = 1) is only
0.0053 (0.005) of that of the direct ZF method. With two
iterations, the complexity ratios of multiplications and additions
is 0.0069 and 0.0067.

TABLE IV
COMPLEXITY COMPARISON BETWEEN N-ZF AND DIRECT ZF METHODS

IN A 2 × 2 MIMO-OFDM SYSTEM (N = 128 AND S = 2)

Comparing SISO-OFDM and MIMO-OFDM systems, we
find that the reduction in computational complexity is greater
in a MIMO-OFDM system than that in a SISO-OFDM system.
In a SISO-OFDM system, the ratio of multiplications is 0.013,
while that in a MIMO-OFDM system is 0.0069 (D = 1 and
k = 2). This is because the complexity of the direct ZF method
is proportional to O(M3N3), whereas that of the N-ZF method
is proportional to O(MN log2 N). As a result, we can save
more computations as M increases. In addition, when N gets
larger, the reduction in computations becomes more apparent
as well.

Another important property of the proposed N-ZF method
is that it can trade the desired performance for the required
complexity. However, the direct ZF method does not have
such a choice. This property will make the N-ZF method a
more efficient method since it can adapt itself to various SNR
environments. If the operated SNR is not high, the iteration
number can be reduced. For example, in Fig. 3, it only requires
one iteration to approach the direct ZF method when SNR is
less than 25 dB.

VI. CONCLUSION

In high-mobility environments, the quasi-static channel as-
sumption for SISO/MIMO-OFDM systems no longer holds,
and ICI tends to become the performance bottleneck. The direct
ZF equalization method, relying on the inversion of the ICI
matrix, may require very high computational complexity. In
this paper, we have proposed a low-complexity ZF algorithm
to solve the problem. By exploring the structure inherent in
the ICI matrix, we develop a method that employs Newton’s
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Fig. 9. Example of the structure of a banded initial matrix for N = 8 and
D = 1. The elements in the shaded area are nonzeros, while the others are
zeros.

iteration for the matrix inversion. By using our formulation, we
effectively use FFTs/IFFTs in the iterative process. Simulations
show that while the proposed algorithm can have comparable
performance with the direct ZF method, its computational
complexity is much lower. We also analyze the convergence
behavior of the proposed algorithm and derive the theoretical
output SINRs. Note that FFT/IFFT operations are available
in an OFDM-based transceiver. Thus, the proposed algorithm
only requires limited extra circuits, and the implementation
complexity of the proposed method can be lower, facilitating its
real-world applications. With the similar idea, it is possible to
derive a low-complexity MMSE equalization method that em-
ploys Newton’s iteration. In some scenarios, the MMSE method
can significantly outperform the ZF method. Investigation in
this topic is now underway.

APPENDIX A
DERIVATION OF THE INITIAL VALUE

FOR SISO-OFDM SYSTEMS

Let W be a banded matrix with bandwidth D. Then, the
minimum-Frobenius-norm criterion is given by

W0 = arg min
w

‖IN − WM̃‖2
F . (38)

Before the derivation of the optimal solution in (38), we first
observe a property in a banded matrix. Fig. 9 shows an example
of a banded initial matrix for N = 8 and D = 1. In the figure,
only the data in the shaded area are nonzeros. Note that the
number of the nonzero elements in each row may not be
the same. For the zeroth and seventh rows, the number of
the nonzero elements is two. For the rest of rows, the num-
ber of the nonzero elements is three. For a general case, the
number of the nonzero elements in the ith row first increases,
remains the same, and finally decreases (as i increases). Due
to this property, we need to consider the three cases when
solving (38). Define m̃i,j = M̃(i, j), wi,j = W0(i, j), and
ai,j =

∑N−1
n=0 m̃∗

i,nm̃j,n. By differentiating (38) with respect to

Fig. 10. Example of Ai for N = 8 and D = 1. Note that Ai overlaps with
Ai−1 and Ai+1.

w∗
i,j and setting the result to zero, we can obtain the following

equation:

Aiwi = mi, i = 0, 1, . . . , N − 1 (39)

where wi is the ith row of the optimum W0. Ai, wi, and mi

for the aforementioned three cases are defined as follows.
1) For i = D,D + 1, . . . , N − 1 − D, we have

Ai =

⎡
⎢⎣

ai−D,i−D · · · ai−D,i+D

...
. . .

...
ai+D,i−D · · · ai+D,i+D

⎤
⎥⎦ (40)

wi = [wi,i−D, wi,i−D+1, . . . , wi,i+D]T (41)

mi = [m̃∗
i−D,i, m̃

∗
i−D+1,i, . . . , m̃

∗
i+D,i]

T . (42)

2) For i = 0, 1, . . . ,D − 1, we have

Ai =AD(0 : D + i, 0 : D + i) (43)

wi = [wi,0, wi,1, . . . , wi,i+D]T (44)

mi =
[
m̃∗

0,i, m̃
∗
1,i, . . . , m̃

∗
i+D,i

]T
(45)

where C(i1 : i2, j1 : j2) indicates a submatrix of C, ob-
tained from the i1th row to the i2th row and from the j1th
column to the j2th column of C.

3) For i = N − D,N − D + 1, . . . , N − 1, we have

Ai =AN−1−D(i − N + 1 + D : 2D, i − N + 1 + D : 2D)
(46)

wi = [wi,i−D, wi,i−D+1, . . . , wi,N−1]T (47)

mi =
[
m̃∗

i−D,i, m̃
∗
i−D+1,i, . . . , m̃

∗
N−1,i

]T
. (48)

Note that Ai in the second case is an upper left submatrix of
AD in (40), while that in the third case is a lower right sub-
matrix of AN−1−D in (40). Now, we can obtain the optimum
solution for (38) by wi = A−1

i mi. To clearly understand the
structure of Ai, we show an example in Fig. 10 (N = 8 and
D = 1). In this figure, we can see that A0 is the upper left 2 ×
2 submatrix of A1. For i = 1, 2, . . . , 5, the lower right 2 × 2
submatrix of Ai is exactly the same as the upper left 2 × 2
submatrix of Ai+1. The lower right 2 × 2 submatrix of A6 is
A7. By using this property, we can obtain a recursive algorithm
for fast computation of A−1

i .
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Since aj,i = a∗
i,j , Ai is a Hermitian matrix. For i = D,D +

1, . . . , N − 2 − D, we can further partition Ai into the follow-
ing form:

Ai =
[

si sH
i

si Ui

]
(49)

and Ai+1 into the following form:

Ai+1 =
[

Ui ũi+1

ũH
i+1 ũi+1

]
(50)

where si and ũi+1 are scalars, si and ũi+1 are column vectors,
and Ui is a square matrix whose dimension is smaller than that
of Ai by one. Since Ai is a Hermitian matrix, we can write its
inverse as

A−1
i =
[

vi vH
i

vi Vi

]
(51)

where vi is a scalar, vi is a column vector, and Vi is a square
matrix with dimension smaller than that of A−1

i by one. From
the block matrix inversion formula [42], we can obtain A−1

i+1

from A−1
i with the following formula:

A−1
i+1 =

[
U−1

i + b̃i+1b̃H
i+1β̃i+1 b̃i+1β̃i+1

b̃H
i+1β̃i+1 β̃i+1

]
(52)

where β̃i+1 =(ũi+1 − ũH
i+1U

−1
i ũi+1)−1, b̃i+1 =

−U−1
i ũi+1, and

U−1
i = Vi −

vivH
i

vi
. (53)

For i = 0, 1, . . . , D − 1, Ai+1 includes Ai as its submatrix. We
then have

Ai+1 =
[

Ai ũi+1

ũH
i+1 ũi+1

]
. (54)

Consequently, A−1
i+1 can be obtained by (52), where U−1

i =
A−1

i . For i = N − D, . . . , N − 1, Ai becomes a submatrix of
Ai−1, which is given by

Ai−1 =
[

si sH
i

si Ai

]
. (55)

Thus, A−1
i can be obtained with (53) as follows:

A−1
i = Vi−1 −

vi−1vH
i−1

vi−1
. (56)

Thus, we only have to conduct one matrix inversion explicitly,
i.e., A−1

0 , and its dimension is (D + 1) × (D + 1).
To further reduce the complexity, we can make an approx-

imation when calculating ai,j . From the definition, we have
ai,j =

∑N−1
n=0 m̃∗

i,nm̃j,n. We can reduce the number of terms
included in the summation. We let ai,j ≈

∑
n∈Ω m̃∗

i,nm̃j,n,
where Ω = 〈i − S : i + S,N〉 ∩ 〈j − S : j + S,N〉, and S is
the number of one-sided ICI terms taken into consider-
ation (0 ≤ S ≤ N/2 − 1). The notation 〈i : j,N〉 denotes
a sequence of {i − N�i/N�, i + 1 − N�(i + 1)/N�, . . . , j −

N�j/N�} (here, i and j are integers and i ≤ j). With this
approach, ai,j is approximately evaluated, and so is Ai in (39).
The value of S then determines the accuracy of the solution in
(39). A small S can greatly reduce the complexity but results
in low accuracy of the solution. Recall that ICI on a subcarrier
mainly comes from a few neighboring subcarriers. As a result,
we can always find a small S affecting the final result only
slightly. For the determination of S, it depends on the value
of ICI; the larger the ICI, the larger S we should use. In our
simulations, the largest S that we use is two.

As mentioned, if D = 0, W0 will become a diagonal matrix.
In this case, the initial values can be approximated as

wi,i ≈
m̃∗

i,i∑
n∈Ω′ |m̃i,n|2

(57)

where Ω′ = 〈i − S : i + S,N〉. There is an interesting property
in (57). If we take only the diagonal terms of the ICI matrix
into account (i.e., S = 0), the initial values will degenerate into
the coefficients of the conventional one-tap FEQ. If there is no
ICI, Newton’s iteration with (57) will stop after initialization
(k = 0).

APPENDIX B
DERIVATION OF THE INITIAL VALUE

FOR MIMO-OFDM SYSTEMS

As we did in the SISO-OFDM systems, we use the
minimum-Frobenius-norm criterion to obtain the initial value.
Note that the initial matrix for the MIMO-OFDM scenario is no
longer a banded matrix. Instead, it is a matrix composed of four
banded submatrices. Let αi,j = Wα(i, j), βi,j = Wβ(i, j),
γi,j = Wγ(i, j), and ωi,j = Wω(i, j). Furthermore, define
qi,j =

∑N−1
n=0 (ã∗

i,nãj,n + b̃∗i,nb̃j,n), ri,j =
∑N−1

n=0 (c̃∗i,nc̃j,n +
d̃∗i,nd̃j,n), and si,j =

∑N−1
n=0 (ã∗

i,nc̃j,n + b̃∗i,nd̃j,n), where

ãi,j = M̃1,1(i, j), b̃i,j = M̃1,2(i, j), c̃i,j = M̃2,1(i, j), and
d̃i,j = M̃2,2(i, j). It turns out that we can obtain the optimum
initial values by solving the following equation:

Tibi = ci, i = 0, 1, . . . , 2N − 1 (58)

where bi is the ith row of the optimum W0. Definitions of
Ti, bi, and ci may be different for different i’s. Note that we
have two sets of banded matrices to deal with: One is for i =
0, 1, . . . , N − 1, and the other is for i = N,N + 1, . . . , 2N −
1. We then need to consider three cases for each set. Fortunately,
they are similar. For the set of i = 0, 1, . . . , N − 1, we have the
following.

1) For i = D,D + 1, . . . , N − 1 − D, we have

Ti =
[

Qi Si

SH
i Ri

]
(59)

Qi =

⎡
⎢⎣

qi−D,i−D · · · qi−D,i+D

...
. . .

...
qi+D,i−D · · · qi+D,i+D

⎤
⎥⎦ (60)

bi = [αi,i−D, . . . , αi,i+D, βi,i−D, . . . , βi,i+D]T (61)

ci =
[
ã∗

i−D,i, . . . , ã
∗
i+D,i, c̃

∗
i−D,i, . . . , c̃

∗
i+D,i

]T
. (62)
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Matrices Ri and Si can be obtained by replacing qm,n in
Qi with rm,n and sm,n, respectively.

2) For i = 0, 1, . . . , D − 1, we have

Ti =
[

Qi Si

SH
i Ri

]
(63)

Qi =QD(0 : D + i, 0 : D + i) (64)

Ri =RD(0 : D + i, 0 : D + i) (65)

Si =SD(0 : D + i, 0 : D + i) (66)

bi = [αi,0, . . . , αi,i+D, βi,0, . . . , βi,i+D]T (67)

ci =
[
ã∗
0,i, . . . , ã

∗
i+D,i, c̃

∗
0,i, . . . , c̃

∗
i+D,i

]T
. (68)

3) For i = N − D,N − D + 1, . . . , N − 1, we have

Ti =
[

Qi Si

SH
i Ri

]
(69)

Qi =QN−1−D(i−N+1+D : 2D, i − N + 1 + D : 2D)

(70)

Ri =RN−1−D(i−N + 1 + D : 2D, i − N + 1 + D : 2D)

(71)

Si =SN−1−D(i − N + 1 + D : 2D, i − N + 1 + D : 2D)

(72)

bi = [αi,i−D, . . . , αi,N−1, βi,i−D, . . . , βi,N−1]T (73)

ci =
[
ã∗

i−D,i, . . . , ã
∗
N−1,i, c̃

∗
i−D,i, . . . , c̃

∗
N−1,i

]T
. (74)

Note that Qi, Ri, and Si in the second case correspond to
the upper left submatrices of QD, RD, and SD, respectively.
In addition, Qi, Ri, and Si in the third case correspond to the
lower right submatrices of QN−1−D, RN−1−D, and SN−1−D,
respectively.

For i = N,N + 1, . . . , 2N − 1, we can use the same equa-
tions shown in (59)–(74). However, we have to let Ti = Ti−N

and replace αi,j and βi,j in bi with γi,j and ωi,j , respec-
tively, and ã∗

i,j and c̃∗i,j in ci with b̃∗i,j and d̃∗i,j , respectively.
Since the initial matrix is no longer a banded matrix, we are
not able to obtain a recursive relationship in solving (58).
Gaussian elimination may be a good choice for this problem.
As mentioned, Ti = Ti−N ; we need only to construct Ti and
perform Gaussian elimination of Ti for i = 0, 1, . . . , N − 1
once. Furthermore, Ti is a Hermitian matrix, making Gaussian
elimination even less complex.

To further reduce the computational complexity, we can
make some approximations in the calculation of qi,j , ri,j ,
and si,j . We can let qi,j ≈

∑
n∈Ω(ã∗

i,nãj,n + b̃∗i,nb̃j,n), ri,j ≈∑
n∈Ω(c̃∗i,nc̃j,n + d̃∗i,nd̃j,n), and si,j ≈

∑
n∈Ω(ã∗

i,nc̃j,n +
b̃∗i,nd̃j,n), where Ω = 〈i − S : i + S,N〉 ∩ 〈j − S : j + S,N〉.
Again, this approximation makes use of the property that
elements in M̃i,j close to the main diagonal have larger values
than the others.
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