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Abstract

An optimal ring resonator and a new square loop resonator are
proposed for designing miniaturized dual-mode bandpass filters. In the
first resonator, the center of each side of the loop resonator is tapped with
a capacitive arrow-shape open stub. The whole resonator encloses four
coupled compact miniaturized hairpin resonators. The slow-wave effect
caused by the capacitively load can reduce the fundamental frequency of
the loop resonator. As a result, this miniaturized loop resonator can be
used to synthesis a miniaturized dual-mode bandpass filter. In the second
resonator, the fundamental frequencies and higher order resonant

harmonics of ring resonators with different numbers of impedance steps



are analyzed against the length and impedance ratios of the hi-Z and
low-Z segments. It is found that the optimal numbers of impedance steps
and length can be obtained for a given hi-Z to low-Z impedance ratio to
minimize the filter size and maximize the upper rejection bandwidth.
Both the proposed bandpass filters not only have good spurious-free
performances, but also achieve more than 50% size reductions, as
compared with a conventional dual-mode ring bandpass filter. The

measured results show a good match with the simulated responses.
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