
 

Chapter 1 
 

Introduction 
Due to quite rapid growth of the wireless communication technologies and 

industries, each device in RF front end is required to have high performance and a 

small size. Filters are one of the essential components in the RF front end of modern 

wireless communication systems, such as mobile communication systems, satellite 

systems, and wireless network systems. Important performances of a bandpass filter 

include good frequency selectivity, compact size, high out-of- band rejection, and low 

insertion loss. Microstrip planar filters are usually preferred due to its low cost, good 

reliability and ease in design and fabrication.  

  The microstrip ring resonator has been widely used to evaluate phase velocity, 

dispersion, and effective dielectric constant of microstrip lines. Many applications, 

such as bandpass filters, oscillators, mixers, and antennas using ring resonators have 

been reported [1]. For years, the use of microstrip ring resonators for bandpass filter 

design has been widely studied. It can be attributed to some of its desirable properties 

such as low radiation loss, high quality factor and compact size. These bandpass 

filters built by dual-mode ring resonators were originally introduced by Wolff [2]. A 

dual-mode resonator consists of two degenerate modes, which are excited by 

perturbation-asymmetrical feed lines, added notches, stubs, or impedance step on the 

ring resonator. The coupling between the two degenerate modes is used to establish 

the bandpass. By proper arrangement of the perturbation, in addition to the excitation 

of the split modes, there are also two transmission zeros created at the both sides of 

the passband, such that a quasi-elliptic characteristic can be achieved.  
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Recently, many researches on ring filters have been published for innovative design 

or analysis methods [3-6], circuit miniaturization [7-11], and wide stopband properties 

[12-13]. In [3], L-shaped arms are used to enhance couplings and dual-mode 

excitations of quasi-elliptic function bandpass filters. Based on the transmission line 

theory, the even- and odd-mode analysis method in [4] is now popular for analysis of 

a dual-mode ring resonator possessing two ports spatially separated at 90o and an 

impedance junction for perturbation at its symmetrical plane. In [5], the angle 

between input/output ports and the coupling between the dual modes are combined in 

formulation to control the attenuation pole frequencies. In [6], a joint field/circuit 

model is proposed to characterize line-to-ring coupling structures for design and 

optimization of microstrip ring resonator circuits. 

Recently, many strategies have been developed for reducing area of a dual-mode 

ring filter. The loop resonator loaded with capacitive stubs in [7] and meander loop in 

[8] has a size reduction of more than 50%. In [9], a dual-mode resonator with a 

sophisticated pattern is designed to achieve a size reduction of 59%. In [10], a 

miniaturized dual-mode ring filter is designed with four equally spaced butterfly 

radial stubs. A new perturbation called local ground defect is included to make the 

orthogonal modes split up. A size reduction of better than 65% can be obtained. The 

etched holes in ground plane, however, need extra steps in circuit fabrication. In [11], 

two pairs of shunt capacitors are used to control the even and odd mode resonances 

for perturbation of the dual-mode ring filter. A size reduction of 55% - 67% is realized. 

Note that their circuit design involves lumped capacitors and via-holes. 

Planar or quasi-planar bandpass filters suffer from unwanted responses in upper 

stopband due to the distributed nature and other circuit properties. The spurious 

response degrades not only the bandwidth of but also the rejection levels in the upper 

stopband. For widening the upper stopband, slow-wave open-loop resonators are 
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embedded into a square loop dual- mode resonator [12]. The spurious is detected at 

2.5 times the design frequency. In [13], two topologies are proposed to suppress the 

unwanted harmonics. One intuitively connects 50-Ω spur-line bandstop filters at the 

I/O ports, and the other incorporates low-pass structures into the ring. Three circuits 

are presented for realizing the low-pass characteristics. 

In this thesis, we propose two new miniaturized dual-mode ring resonator bandpass 

filters. In chapter 2, a capacitively-loaded square loop resonator is employed to design 

miniaturized dual-mode bandpass filters. The whole capacitively-loaded square loop 

resonator consists of four arrow-shape open stubs in a 2×2 configuration. The 

resonance characteristics of this resonator will also be investigated. The methods to 

introduce the optimum miniaturized resonators with perturbations for mode splitting 

and the ways of I/O excitation will be described.  

In chapter 3, we propose a new fully planar microstrip periodic stepped-impedance 

ring resonator (PSIRR) bandpass filter. The design utilizes degenerate modes of a ring 

resonator consisting of a periodic cascade of hi-Z and low-Z sections. The proposed 

PSIRR has a compact area and a wide upper stopband with two transmission zeros. 

One of the zero can be tuned to suppress the first spurious so that the upper stopband 

can be extended up to 3.76 times the passband frequency. 

Finally, conclusions will be drawn in Chapter 4. 
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Chapter 2 
 

A New Miniaturized Dual-Mode Loop Filter 
  In the beginning of this chapter, a brief analysis of a uniform-impedance ring 

resonator is given. The analysis contains the basic resonance condition of a ring 

resonator. A new square loop resonator is then proposed for designing dual-mode 

bandpass filters. The center of each side of the resonator is tapped with a capacitive 

stub. As a result, the whole resonator encloses four coupled compact miniaturized 

hairpin resonators. The proposed dual-mode bandpass filter has not only a good 

stopband performance but also a size reduction of about 54%, as compared with a 

conventional dual-mode square loop bandpass filter. Besides, a parallel-line 

input/output structure is exploited to create an extra zero in upper stopband.  
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2.1 Uniform-Impedance Ring Resonators (UIRRs) 

The ring resonator is merely a transmission line formed in a closed loop. The entire 

circuit consists of the feed lines, coupling gaps, and the resonator. Figure 2-1 shows 

one possible circuit arrangement. The signal power is coupled into and out of the 

resonator through feed lines and coupling gaps. If the distance between the feed lines 

and the resonator is large, the effect of the coupling gaps on the resonant frequencies 

of the ring is negligible. This type of coupling is a structure of loose coupling, which 

is a manifestation of the negligibly small capacitance of the coupling gap. If the feed 

lines are moved closer to the resonator, however, the coupling becomes tight and the 

gap capacitances become appreciable. This will cause the resonant frequencies of the 

circuit to deviate from the intrinsic resonant frequencies of the ring. It is worth 

mentioning that, however, the tight coupling structures can be exploited to reduce 

insertion loss in the passband for the design of ring bandpass filters.  

  When the mean circumference of the ring resonator is equal to an integer multiple 

of a guided wavelength, resonance is established. This may be expressed as following 

expression:  

 

2 π r = n λg    for n = 1, 2, 3, …                  (2.1) 

 

where r is the mean radius that equals the average of the outer and inner radii of the 

ring, λg is the guided wavelength, and n is the mode number. This relation is valid for 

the loose coupling case, as it does not take into account the coupling gap effect. For 

the first mode, maximum of field occur at the coupling gap location, and nulls occur 

90° from the coupling gap locations.  

  For a microstrip ring, λg can be related to frequency by 
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where c is the speed of light and εeff is the effective dielectric constant.From (2.1), the 

resonant frequency can be written as 

 

effr
ncf

επ2
=    for n = 1, 2, 3, …               (2.3) 

 

 Figure 2-2 shows the simulated resonant frequencies of the leading five modes of 

an UIRR using loose coupling with outer radius ro = 12.3 mm and inner radius ri = 

11.7 mm on a substrate with dielectric constant 10.2. The simulator was the software 

package IE3D [14]. 

 

2.2 Development of the resonator 

The proposed new square loop resonator is shown in Figure 2-3. The development 

of this resonator is described as follows. Figure 2-4(a) shows three resonators, namely, 

resonators A, B, and C. Resonator A is a square loop resonator, and its fundamental 

resonant frequency can be predicted by that the mean circumference equals one 

guided wavelength. Four open stubs are then tapped at the centers of the four sides of 

resonator A to make up resonator B [7]. The structure is symmetric about a horizontal 

plane connecting two diagonal corners of the square loop. The conditions for 

determining even- and odd-mode resonant frequencies of resonator B can be 

formulated by using transmission line equations. Conceptually, in its equivalent 

circuit, the open-circuited arms bring out additional capacitive loads on equivalent 

circuit of the resonator, thereby reduce the resonant frequency and increase width of 
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upper stopband at the same time [9]. By further extending these stubs at the open ends 

and making V-shape stubs, resonator C is built up as shown in Figure 2-4(a). 

Compared with the stubs in resonator B, the V-shape stubs together with the resonator 

C is supposed to have more capacitance to further reduce the overall size of the 

resonator. Note that all the three resonators have two degenerate modes. 

The fundamental resonant frequencies of the three loop resonators are investigated 

by the commercial EM simulator IE3D [14]. Through a loose coupling scheme shown 

in Figure 2-4(a), simulated |S21| responses for the three resonators are plotted in Figure 

2-4(b). The detailed dimensions of the circuits are given with the circuit in Figure 

2-4(a), and the circuit substrate has εr =10.2 and thickness = 1.27mm. Resonator A 

shows a resonant frequency at f = 3.7 GHz. When an open stub of 2.7 mm is attached 

to the center of each side, the |S21| response indicates that the resonant frequency of 

resonator B locates at 3.3 GHz. For resonator C, the resonant frequency keeps on 

decreasing as the length of the V-shape stubs is increased. When the length of a 

V-shape stub is 0.8 mm, the resonant frequency locates at 2.93GHz. It means that the 

size of the loop resonator can be successfully reduced by the arrow-shape open stubs. 

 

2.3  Analysis of the arrow-shape open stubs 

Consider only a quarter section of Figure 2-3 which consisting of a arrow-shape 

stub. The circuit plotted again in Figure 2-5(a) and its equivalent transmission line 

model is in Figure 2-5(b). Figure 2-5(c) shows a transmission line resonator loaded 

with a capacitor at it center, which can be the equivalent circuit of Figure 2-5(b) since 

the arrow-shape stub is equivalent to a capacitive load. From Figure 2-5(b) and Figure 

2-5(c), the input characteristic admittances looking to the load at the tap point, YC’ 

and YC can be expressed as the following 
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By setting Y’
C in (2.4) identical to YC in (2.5), we have 
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where θ1 = βl1, θ2 = βl2, β is the phase constant of uniform impedance ring resonator. 

Figure 2-6 plots the effective capacitive load factor C’ with respect to the length ratio 

of arrow-shape stubs θ 1 / (θ 1 +θ 2) for R =0.7, 0.8,1 and 1.2 and θ 1 +θ 2 = 0.25 π. It 

can be observed that in order to obtain a large C’, the impedance ratio R should be 

smaller than one and C’ is increased as R is decreased for a given Z2. Besides, it 

indicated that as the length ratio of arrow-shape stubs θ 1 / (θ 2+θ 1) is about 0.7, C’ 

has a maximum for each R. Several cases are simulated on the substrate with εr =10.2 

and thickness = 1.27mm by the commercial EM simulator IE3D to demonstrate the 

analysis. 

 

  (1) Case A- Resonant characteristics for different lengths of the stubs 

In this case, the length of arrow-shape stubs l1 is increased and l2 is fixed. In Figure 

2-7(a), the increase of l1 is supposed to increase the loading equivalent capacitance. 

Figure 2-7(b) plots the simulated resonant characteristics of the capacitively-loaded 
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square loop resonators for l1 = 0.8, 1.8 and 2.8 mm and R=1. It is found that the closer 

the length ratio θ 1 / (θ 2+θ 1) to 0.7, the lower the fundamental frequency of the loop 

resonator. When l1 = 2.8 mm, the |S21| response indicates that the resonant frequency 

of resonator C locates at 2.82 GHz. The frequency reduction is 24% as compared with 

the frequency of resonator A shown in Figure 2-4(b). In other words, for circuit design, 

at the same frequency, a size reduction of 1-(2.82/3.7)2× 100% or 42% is achieved as 

compared with resonator A. 

(2) Case B- Resonant characteristics for different impedance ratios of the stubs 

In this case, the impedance ratio of arrow-shape stubs R is decreased for a fixed l1+l2. 

As shown in Figure 2-8(a), the decrease of R is again supposed to increase the 

equivalent loading capacitance. Figure 2-8(b) plots the simulated resonant 

characteristics of the capacitively-loaded square loop resonators for R =1, 0.85 and 

0.7 and l1+l2 = 6.9 mm. It is found that the smaller the impedance ratio R is, the more 

the fundamental frequency of the loop resonator can be reduced. When R = 0.7, the 

|S21| response indicates that the resonant frequency of resonator C locates at 2.34 GHz. 

The frequency reduction is 37% as compared with the frequency of resonator A 

shown in Figure 2-4(b). In other words, at the same frequency, there is a size 

reduction of 1-(2.34/3.7)2× 100% or 60% as compared with resonator A. 

  From the simulation results of case A and case B, it is found that the range of the 

frequency reduction depends on not only the lengths of the arrow-shape stubs, but 

also the impedance ratio of transmission line l1 and l2. It is noted that the free area 

inside a loop is limited by the loop circumference, so there are restrictions on the 

stubs length and the value of the impedance ratio.       

   

2.4  Dual-Mode Resonator 

As shown in Figure 2-3, a small square patch of sizes d×d as a perturbation element 
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is attached to the center of the V-shape stub. The degenerate modes of the resonator 

are named as Mode-I and Mode-II. These two modes are excited and coupled to each 

other due to the perturbation element. When there is no perturbation (d = 0), only a 

single resonant frequency will be detected. Figure 2-9 shows the current density 

patterns of the resonant modes obtained by the IE3D. From the patterns, it can be 

clearly observed that one zero current locates at upper right and the other at lower left 

corner, and one pole at upper left and the other at lower right corner of the resonator. 

If the excitation is switched to port 2, the current density is rotated by 90°.  

Figure 2-10 shows the simulated current densities when the perturbation has d = 

0.96. It can be seen that the locations of poles and zeros of Mode-I and those of 

Mode-II rotated by 90°. It can be anticipated that the larger the perturbation, the larger 

the coupling between the two modes. The coupling leads the degenerate resonances to 

be split up into two frequencies, f1 and f2. For observing the mode splitting, the 

dual-mode resonator is simulated with different perturbation sizes, and the results are 

in Figure 2-11. The frequencies of Mode-II are nearly independent of d, while those 

of Mode-I decrease rapidly as d is increased. The coupling coefficient between the 

two modes can be calculated as [5] 

 

21

212
ff
ff

K
+

−
=               (2.8) 

 

The coupling coefficient as a function of d is also plotted in Figure 2-11. 

 

2.5  Simulation and Measurement  

Two dual-mode microstrip bandpass filters were fabricated on substrates having εr 

= 10.2 and thickness = 1.27 mm. For the first filter, the dimensions (mm) are a = b = 
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9.05, d = 0.96, w1 = w2 = 0.7, w3 = 0.88, s = 0.2, l1 = 2.48, l2 = 2.32 and g = 0.25. The 

impedance ratio R and length ratio θ 1 / (θ 2+θ 1) are 0.9 and 0.48, respectively. The 

input and output ports are spatially separated at 90°. Figure 2-12(a) shows the 

simulated and measured frequency responses. At center frequency 2.45GHz, the 

simulation fractional bandwidth is 3.4%, while the measured bandwidth is 3.3%. The 

insertion loss is 2.47 dB, and the return loss in passband is better than 20dB. Figure 

2-12(b) shows the responses in a broad frequency band and 2-12(c) is the circuit 

photograph. The second fiter dimensions (mm) are a = b = 8.37, d = 0.95, w1 =0.91, 

w2 = 0.28, w3 = 1.05, s = 0.18, l1 = 2.19, l2 = 2.13 and g = 0.27. The impedance ratio R 

and length ratio θ 1 / (θ 2+θ 1) are 0.62 and 0.5, respectively. The input and output 

ports are spatially separated at 90°. Figure 2-13(a) shows the simulated and measured 

frequency responses. At center frequency 2.38GHz, the simulation fractional 

bandwidth is 3.3%, while the measured bandwidth is 3%. The insertion loss is 2.56 

dB, and the return loss in passband is better than 20dB. Figure 2-13(b) shows the 

responses in a broad frequency band and 2-13(c) is the circuit photograph. The 

simulated and measured results are in good agreement.  

Compared with the dual-mode filter presented in [2]-[4], our filters exhibit a wide 

stopband with a rejection level better than 22 dB up to 5GHz, and a deep transmission 

zero at two times the fundamental frequency. The frequency of the zero is determined 

by treating the input feeder as a quarter-wave open stub. When the input impedance at 

the tap point of port #1 is virtually short-circuited, the frequency is a zero. It can be 

anticipated that the zero can be tunable by changing the length of feeders. In addition, 

the dual-mode filter has an advantage that the center frequency can be adjusted by 

changing the length of the V-shape stubs l2. Finally, it is worth mentioning that the 

dimensions of the two dual-mode filters are 9.05×9.05 mm2 and 8.37×8.37 mm2 
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which are only about 45% and 38%, respectively, of that of a conventional closed 

loop resonator shown in Figure 2-4(a).  

Coupling Gap

Feed Lines
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Figure 2-1 The uniform impedance microstrip ring resonator with feed lines 
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Figure 2-2 Simulated resonant characteristic of the UIRR in Figure 2-1 for n = 1 to 5. 
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Figure 2-3 The proposed capacitively-loaded dual-mode filter 
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(b) 

 

Figure 2-4 Layouts and resonant behaviors of the three square loop resonators with or 

without arrow-shape stubs. (a) Layouts. (b) Test of resonant frequencies of resonators 

A, B, and C.  

 

 

(a) 
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(b) 

 

 

 

(c) 

 

Figure 2-5 (a) A quarter section of the capacitvely-loaded square loop resonator. (b) 

Its equivalent circuit. (c) A capacitvely loaded transmission line resonator.  
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Figure 2-6 The effective capacitive load factor of varying length ratio and impedance 

ratio of arrow-shape stub.    
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Figure 2-7 Layouts and resonant behaviors of the square loop resonators with 

arrow-shape stubs for different l1. (a) Layouts. (b) Frequency responses 
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Figure 2-8 Layouts and resonant behaviors of the square loop resonators with 

arrow-shape stubs for different impedance ratio R. (a) Layouts. (b) Frequency 

responses 

 

 

 
(a) (b) 

 
Figure 2-9 Simulated current density patterns at resonant frequency f = 2.46GHz with 
d = 0. (a) Excitated at port #1. (b) Excitated at port #2. 
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(a)                     (b) 

 
Figure 2-10 Simulated current densities at resonances with d = 0.96. (a) Mode-I at f = 
2.447GHz. (b) Mode-II at f = 2.492GHz. 

 

 

 
 

 

Figure 2-11 Simulated resonant frequencies of the two degenerate modes and their coupling 

coefficients versus perturbation size d. Referred to Fig.2-3, dimensions of the resonator (mm) 

are a = b = 9.05 mm, w1 = w2 = 0.7 mm, w3 = 0.88mm, s  = 0.2mm, l1  = 2.08 mm, l2 =  2.32 

mm, g =  0.25 mm. 
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(c) 
Figure 2-12 Simulated and measured filter responses for R=0.9 in (a) a narrow band, 
(b) broadband and (c) circuit photo. 
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Figure 2-13 Simulated and measured filter responses for R=0.62 in (a) a narrow band, 
(b) broadband and (c) circuit photo. 
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Chapter 3 

 

Periodic Stepped-Impedance Ring Resonator (PSIRR) 

Bandpass Filter with a Miniaturized Area and  

Desirable Upper Stopband Characteristics 

 

A periodic stepped-impedance ring resonator (PSIRR) is proposed to design 

dual-mode bandpass filters with a miniaturized area. Design parameters of a PSIRR 

include impedance ratio R of the hi-Z to low-Z sections, their lengths, and number of 

impedance steps 2N. The resonant characteristics of PSIRRs with various N and R 

values are investigated by both the transmission line theory and EM simulation. 

Proper choice of above parameters leads to an optimal reduction of circuit area and 

extension of upper rejection bandwidth. Realized by the standard fully planar 

microstrip technology, the proposed dual-mode PSIRR bandpass filter has not only 

the first spurious response at higher than 3.7 times the passband frequency but also an 

area reduction of better than 60% against a conventional ring filter. Two transmission 

zeros exist in the upper stopband and are tunable via changing the arm lengths of the 

line-to-ring coupling structure. Measurement results of several fabricated circuits 

validate the analysis and theoretical prediction. 
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3.1 The Periodic Stepped-Impedance Ring Resonator 
 

Figure 3-1 shows layouts of the proposed PSIRRs of N = 1 through 4. Each PSIRR 

consists of N hi-Z sections of a spatial angle 2θ1. Every two adjacent hi-Z sections are 

spaced by a low-Z section of a spatial angle 2θ2. All PSIRRs are symmetric about at 

least one dashed line so that θ1 + θ2 = π/N. Such a PSIRR is called PSIRRN herein. 

For example, a PSIRR with N = 3 is denoted as PSIRR3. For the PSIRR1 and PSIRR2, 

the Z2-sections are perturbations of the ring. When N ≥ 3 the Z3-section is a 

perturbation of the Z2-section to split off the degenerate modes. For circuit analysis, 

define the impedance ratios of a PSIRR as 

 

1
2

1 ≥=
Z
ZR            (3.1a) 

 

1
3

1 ≥=
Z
ZR'        (3.1b) 

 

where R’/R is close to unity and R’ is used only for N ≥ 3. 

  The resonant conditions for the PSIRRs can be formulated by the transmission line 

theory [4]. First, taking PSIRR2 for instance, the two resonance modes within the ring 

resonator are indicated as odd and even modes shown in Figure 3-2. The resonant 

conditions can be determined by enforcing the respective input admittances to zero: 
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Therefore, the resonant frequencies feven and fodd can be calculated.  
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θ1
e (θ1

o) and θ2
e (θ1

o) are electrical lengths of spatial angles θ1 and θ2, respectively, 

and f0 is the resonant frequency of a uniform ring resonator. 

   The next example is the PSIRR3. The PSIRR3 can be modeled by the 

multistepped-impedance lines with terminations ZL shown in Figure 3-3. The odd and 

even resonances of the PSIRR3 occur when ZL = 0 and ∞, respectively. For the odd 

mode, the resonant condition can be formulated by letting the input admittance to zero 

as follows 
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At resonance, 
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where Zright and Zleft are the input impedances seen at the Z1-Z2 junction looking to the 

right and left. Substituting equations (3.4a) and (3.4b) into (3.5), we have 
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where θ1
o and θ2

o are electrical lengths of spatial angles θ1 and θ2, respectively. 

Rearranging (3.6), we obtain the resonant condition of the odd-mode resonance: 
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   Based on (3.3) and (3.7), a simple root-searching program can be employed to 

calculate the resonant frequencies. It can be anticipated that the frequencies can be 

easily tuned by changing values of R, R’, θ1, and θ2. The above even- and odd-mode 

analysis is also applied to alle other PSIRRs. Note that the above discussion assumes 

the TEM mode and ignores step discontinuities along the ring. Figure 3-4 plots the 

leading two resonant frequencies for PSIRRs with N = 1, 2, …, 8 againstθ2 from 0 to 

min(π/2, π/N) for R = 4 and R’ = 1.04×R. The plotted frequencies are normalized with 

respect to the fundamental frequency of a uniform impedance ring resonator (UIRR) 

f0, i.e., Z1 = Z2 = Z3. Here, all the PSIRRs have identical mean radii. When circuit 
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miniaturization is the design target, the desired resonator will have a frequency as low 

as possible. As indicated in Figure 3-4, PSIRR2 has the lowest resonant frequency. Its 

second resonance, however, is far away from the previous one due to the large R value. 

Note that the design frequency of a dual-mode ring filter should be the algebraic mean 

of these two resonances, i.e., ( fa + fb ) / 2. Obviously, the mean will not be the lowest 

resonant frequency if N and θ2 are free to change. In addition, the large distance 

between the two resonances will lead to a filter with a large bandwidth, but at the 

same time impractically large couplings between feeders and the ring can be 

inevitable.  

 
3.2 Resonator Miniaturization and the Upper Stopband 

For PSIRRs with N ≥ 3, as indicated in Figure 3-4, the two resonant frequencies, fa 

and fb, have a small distance in response to the 4% change of Z2 to Z3. Assume that 

both fa and fb originate from f1, the degenerate frequency, and that fa > fb. In the plotted 

range of θ2, each PSIRR has a minimal resonant frequency. In our theoretical 

calculation, one of the degenerate frequency fa is nearly unchanged due to the 

perturbation, i.e., fa ≈ f1. Detailed data show that the minimal resonant frequencies 

locate at θ1 = θ2 = π/2N. The normalized frequencies fa and fb can be further lowered 

if the impedance ratio R is increased. 

When R = 4, the minimal normalized fa values for N from 3 through 8 are listed in 

Table I. In the table, the fa value for N = 4 is about 4.8% higher than that for N = 3. It 

implies that when they are designed at the same frequency, the former will occupy a 

resonator area of 9.8% more than the latter. The minimal normalized resonant 

frequencies for 3 ≤ N ≤ 8 are between 0.7 and 0.8. Note that the area reduction 

depends also on R value. Table II lists the minimal fa of PSIRR3 and PSIRR4 when 

2.5 ≤ R ≤ 5. As compared with a UIR resonator, the PSIRR3 with R = 4.5 will use 
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only (0.6958)2 = 48.4% area. An area reduction of 51.6% can be achieved. The 

simulation and measured results shown below indicate that a further reduction can be 

obtained due to certain parasitic effects, for example, the large discontinuity junction. 

This point will be addressed soon. 

 

TABLE I 
MINIMAL NORMALIZED RESONANT FREQUENCIES FOR PSIRRS WITH R = 4 

N 3 4 5 6 7 8 

fa 0.7316 0.7666 0.7801 0.7868 0.7910 0.7933 

 
TABLE II 

MINIMAL NORMALIZED FREQUENCIES fa FOR PSIRR3 AND PSIRR4 

R 2.5 3 3.5 4 4.5 5 
N = 3 0.8511 0.8098 0.7677 0.7316 0.6958 0.6700 
N = 4 0.8825 0.8392 0.8003 0.7666 0.7346 0.7069 

 

It is also desirable for a distributed bandpass filter to have a wide upper stopband. 

The performance of the filter in the upper stopband depends much on where the first 

higher-order resonance f2 arises. Figure 3-5 depicts the fundamental and first 

harmonic resonant frequencies against θ2 for R = 3, 4, and 4.5 for PSIRR3. Figure 3-6 

plots f2/f1 against θ2 for R = 3, 4, and 4.5 for PSIRR3 and PSIRR4. As indicated, the 

θ2 where maximal f2/f1 occurs at coincides with that minimal f1 does. It means that 

choosing θ1 = θ2 for a PSIRR structure will have at the same time a minimal ring area 

and maximally possible upper stopband. 

Figure 3-7 compares the resonant spectrum of a PSIRR3 and a PSIRR4 for R = 4.5 

with that of a UIR resonator on a dielectric substrate with εr = 10.2 and thickness = 

1.27 mm. All rings have identical mean radii r’ = 6.27 mm. This size will be used for 

all the PSIRR filters herein. It can be easily verified that the UIR has f1 = 3 GHz. The 
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simulation data are obtained by the EM software package IE3D [14]. The 

fundamental resonances of the PSIRR3 and PSIRR4 are at 1.93 and 1.98 GHz, 

respectively. Thus, the minimal normalized frequencies f1 for both cases are 0.643 and 

0.660. These two values are about 10% less than those given in Table II. This should 

be resulted from the parasitic effects in the 2N step discontinuities along the ring. In 

other words, for the particular PSIRR structures, more area reduction can be expected 

from the full-wave simulation data than that from the theoretic prediction by the 

transmission line theory. 

For the particular I/O arrangement, the first higher-order resonance of the UIR is at 

2f1 = 6 GHz, while those of the PSIRR3 and PSIRR4 are at 6.04 and 7.35 GHz, 

respectively. The corresponding ratios of f2/f1 of PSIRR3 and PSIRR4 are 3.13 and 

3.71. These two values are about 5% less than those shown in Figure 3-6. For the 

PSIRR4, if the I/O feeds are taken collinearly passing through the low-Z sections, 

there is a higher-order resonance at 2.9 GHz and the resonance at 7.35 GHz 

disappears at the same time.  

 

3.3 Dual-Mode Ring Filter Design 

For a dual-mode ring resonator bandpass filter, the feeders should be properly 

designed such that a symmetric passband response can be obtained. Figure 3-8 plots 

the |S21| response for a PISRR3 having R = 4.2 and R’ = 4.6 with various separations θ 

between the feeders, which is symmetric about a vertical axis through center of the 

ring and has a small gap to the ring. It is found that there are two possible separations, 

θ = 60o and 255o to make the |S21| response have equal peaks at fa and fb. For a 

PSIRR4, simulation is done with the Z3-section being symmetrically located at 

vertical axis above the center of the ring. Figure 3-9 plots the |S21| response for a 

PISRR4 having R = 4.5 and R’ = 5.15 with various separations θ between the feeders, 
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which have same orientation as the feeders used in PSIRR3.  

  The purpose that R’ is made a little bit larger than R is to produce a proper 

coupling between the two degenerate modes. This perturbation is similar to the 

conventional patch perturbation in [4, 7-9, 11]. The coupling coefficient between the 

two modes in a PSIRR can be calculated by (2.8). Note that fa and fb are consistent 

with those used in Figure 3-4. 

  As indicated in Figure 3-8 (c), the peak |S21| levels for θ = 60o is about 7 dB 

higher than that for θ = 255o. It means that the latter will need more I/O couplings 

than the former for the synthesis of a given filter bandwidth. However, the I/O search 

for PSIRR4 as indicated in Figure 3-9 (c), the peak |S21| levels for θ = 90o is almost 

the same as that for θ = 275o. It can be anticipated that both of the I/O separations will 

result in same passband response for the same I/O couplings. To establish the 

necessary couplings between the dual-mode resonator and the feeders, the line-to-ring 

strong coupling structures [6] is used herein. 

Both the PSIRR3 and PSIRR4 filters are found to have two zeros in the upper 

stopband before the first spurious arises. These zeros are desirable since they greatly 

improve the rejection levels in the stopband. For investigating the properties of these 

two zeros, Figures 3-10 (a) and 3-10 (b) plot the simulation responses of the PSIRR3 

and PSIRR4 filters, where the feeders have total arc lengths φ1 + φ2 = 140o and 108o, 

respectively. Here, R = 4.13 and R’ = 4.57. The coupling arms have a width and a gap 

from the ring of 0.14 mm. In Figure 3-10(a), when φ1 is decreased from 40o to 25o, the 

distance between the two zeros increases. The separation between the I/O ports is kept 

constant during the change of φ1. Note that the passband responses are close to being 

not altered. The results in Figures 3-10(a) and 3-10(b) indicate that the two zeros are 

tunable via adjusting φ1. 

The even and odd analysis [2] can be invoked to predict the two extra zeros for the 
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PSIRR1 circuits. The analysis network for the prediction includes coupled line 

sections loaded with short-circuited or open stubs. Such an analysis for PSIRR3 and 

PSIRR4, however, will be tedious. Nevertheless, mechanism for generation of the two 

zeros in Fig. 7 is now clear and believed to be the same as the PSIRR1 case. 

 
3.4 Simulations and Measurements 

Four dual-mode PSIRR bandpass filters are fabricated on a substrate with εr = 10.2 

and thickness = 1.27 mm. All the rings have a radius r = 6.2 mm. The relative 

structure parameters are listed in Table III. Figures 3-11 and 3-12 show the layout, 

simulation and measured results for two PSIRR4 filters, with I/O port separations θ = 

90° and 275o, respectively. Both of them have a center frequency fo = 1.93 GHz. In 

Figure 3-11, the measured bandwidth Δ = 6.25 %. Figure 3-11 (a) shows the layout of 

the PSIRR4 bandpass filter. The local and broadband responses are shown in Figure 

3-11 (b) and (c), respectively. Figure 3-11 (d) is the photo of the fabricated circuit. In 

Figure 3-12, the PSIRR4 is a duplicate of the previous one with Z3 = 19.88 Ω for 

reducing the bandwidth to 4.5%. The circuit feeders have φ1 = 90o and φ2 = 10o so that 

the two zeros have a larger separation than that in Figure 3-11 (c). Figure 3-12 (a) and 

(c) show the layout and photo of the circuit. Both filters in Figure 3-11 and 3-12 have 

in-band insertion losses of 1.7 dB and return losses close to 20 dB. Note that these 

two circuits use only (1.93/3)2 = 41.4% of the area of a regular dual-mode ring 

resonator filter. In 3 ~ 4 GHz band, the |S21| in Figure 3-11 (c) shows better filter 

performance in the upper stopband than that in Figure 3-12 (b). The situation is 

reversed if 4.5 ~ 5.5 GHz band is concerned. The spurious responses of the two 

circuits have peaks at 7.3 GHz or 3.78fo, as well predicted by Figure 3-7. 

  Figure 3-13 (b) plots the simulation and measured results of a PSIRR3 filter, 

whose Z1 and Z2 are identical to those used in Figure 3-11, but Z3 = 19.18 Ω. The 
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separation between the input and output ports θ = 60o, and lengths of the feeders’ 

arms φ1 = 17o and φ2 = 93o as shown in Figure 3-13 (a). In measurement, passband 

center fo = 1.85 GHz, Δ = 8%, and in-band insertion loss is 1.24 dB. The circuit 

occupies only 38% of the area of a regular dual-mode UIR filter at the same design 

frequency. The peak of spurious response is detected at 6 GHz or 3.24fo. Figure 3-13 

(d) shows the photo of the circuit in Figure 3-13 (b).  

Figure 3-13 (c) plots the simulation and measured responses of the second PSIRR3 

filter. The circuit is a duplicate of that in Figure 3-13 (b) with Z3 being changed to 

19.88 Ω. With φ1 = 17o, the distance φ2 is swept from 100o to 70o to tune the notch at 

5 GHz in Figure 3-13(b). Simulated |S21| responses with φ2 = 98.3o, 85.8o, 75.1o, and 

71.5o are plotted to show the migration of the notch. When φ2 = 71.5o, the notch 

cancels the spurious response at 6 GHz so that the upper stopband has 1 GHz 

bandwidth extension for a 20-dB rejection level. This circuit is fabricated as shown in 

Figure 3-13 (e) and measured. The measured insertion loss in the passband is only 1.6 

dB. As can be seen from the plots, the measured responses have good agreement with 

the simulation.  

TABLE III 

THE DETAIL CIRCUIT DIMENSIONS FOR THE FILTER IN FIGURE 3-11~3-13 

Figure
3-13(b)

7.32 19.1822.78102.50.145.955.955.564.40.146.2

6.2 0.14 4.4 5.3 0.14 102.5 22.78 19.88Figure 
3-13(c)

93

7.32 5.955.9573

17

17

Figure 
3-12 9010 19.8822.78102.50.145.34.40.146.2 5.42 4.53 4.53

30

φ2
(       )

80

(      )
φ1

Figure 
3-11

Filter r W1 W2 W3 L1 L2 L3 d Z1 Z2 Z3
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (Ω) (Ω) (Ω)

5.42 19.4722.78102.50.144.534.535.454.40.146.2
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Figure 3-1 Layouts of the proposed PSIRRs for N = 1, 2, 3, and 4. θ1 + θ2 = π/N. 
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Figure 3-2 The odd and even modes transmission line modeling of a PSIRR2.  
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Figure 3-3 Transmission line modeling of a PSIRR3. In analysis, ZL = 0 and ∞ for the 
odd and even modes, respectively. 
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Figure 3-4 Normalized resonant frequencies of perturbed PSIRRs for N = 1, 2, …, 8. 
All rings have identical radii. 
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Figure 3-5 The fundamental resonant frequency and the first higher-order resonance 
for PSIRRs with N = 3.  
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Figure 3-6 Ratios of the first higher-order resonant frequency to the fundamental 
resonance for PSIRRs with N = 3 and 4.  
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Figure 3-7 Normalized fundamental and first higher-order resonant frequencies of the 
PSIRR3 and PSIRR4. 
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Figure 3-8 Search for spatial separation θ between I/O feeders for a PSIRR3. (a) θ = 
30o, 45o, 60o, 150o. (b) θ = 180o, 240o, 255o, 280o. (c) θ = 60o, 255o. 
 
 
 
 

 38



 

θ = 130
θ = 110
θ = 90
θ = 75

-90

-70

-50

-30
|S

21
| (

dB
)

Frequency (GHz)

-10

-110
1.5

Z2 Z2

Z2

Z3

θ

2.32.11.91.7

 (a) 

1.5
-110

-10

Frequency (GHz)

|S
21

| (
dB

)

-30

-50

-70

-90
θ = 290
θ = 275
θ = 260
θ = 240

Z2 Z2

Z2

Z3

θ

1.7 1.9 2.1 2.3

 
(b) 

 39



 

 
 
 
 
 
 

θ = 275
θ = 90

-90

-70

-50

-30

|S
21

| (
dB

)

Frequency (GHz)

-10

-110
1.5

Z2 Z2

Z2

Z3

θ

2.32.11.91.7

 
(c) 

 
Figure 3-9 Search for spatial separation θ between I/O feeders for a PSIRR4. (a) θ = 
75o, 90o, 110o, 130o. (b) θ = 240o, 260o, 275o, 290o. (c) θ = 90o, 275o. 
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Figure 3-10 Tuning of the two transmission zeros in the upper stopband for two 
PSIRR filters. (a) N = 3. (b) N = 4. 
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(d) 
 
Figure 3-11 The dual-mode bandpass filter of PSIRR4. R = 4.5, R’ = 5.3, θ = 90°, φ1 = 
30o, φ2 = 80o.(a) Layout. (b) Local simulation and measurement results. (c) Simulation 
and measurement results in the broadband. (d) Photo of the circuit. Substrate: εr = 
10.2, thickness = 1.27 mm. 
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(c) 
Figure 3-12 The dual-mode bandpass filter of PSIRR4. R = 4.5, R’ = 5.15, 
θ = 275°, φ1 = 90o, φ2 = 10o(a) Layout. (b) Simulation and measurement results. (c) 
Photo of the circuit. Substrate: εr = 10.2, thickness = 1.27 mm. 
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(e) 

 
Figure 3-13 Simulated and measured responses of two PSIRR filter with N = 3. 
Center frequency fo = 1.86 GHz. (a) Layout (b) Without spurious suppression. (c) 
With spurious suppression (d) Photograph of circuit in (b). (e) Photograph of circuit in 
(c).Substrate: εr = 10.2, thickness = 1.27 mm. 
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Chapter 4 

 

Conclusion 
  This thesis proposes two miniaturized ring resonators for design of dual-mode 

bandpass filter. The first is a dual-mode microstrip square loop resonator with the 

center of each side of the resonator is tapped with an arrow-shap stub. Two dual-mode 

bandpass filters with bandwidths 3.4% and 3% at center frequency 2.45GHz have 

been designed and fabricated. The two filters have miniaturized dimensions that use 

only 46% and 43% of a conventional dual-mode ring bamdpass filter. The measured 

results have a good agreement with the simulation. 

  The second miniaturized resonator is periodic stepped-impedance ring resonator 

(PSIRR). The resonant characteristics of a PSIRR are investigated. As compared with 

a uniform ring, a PSIRR can not only offer more than 60% in size reduction for 

dual-mode ring resonator filter design but also the first spurious response at higher 

than 3.7 times the passband frequency. The amount of size reduction and the distance 

between passband frequency and first spurious response depend on number of 

stepped-impedance junctions and impedance ratio of hi-Z to low-Z sections in a ring. 

The PSIRR with N = 3 has been shown to have the best size reduction for filters with 

a fractional bandwidth of several percents. Two transmission zeros are generated in 

the upper stopband and are tunable by adjusting the arm lengths of the line-to-ring 

coupling structures. For N = 3, one of the zeros can be used to suppress the first 

spurious response and hence to enhance the bandwidth of and filter performance in 

the upper stopband. The measured results have a good agreement with the simulation. 
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