
�����������

������

����������������������������

��������	
��
��	
��

����������	
��
��������
�	�������������
������������

���������
������
��������

� �

���������

	
���
������

��				�����
�
�
�
��������

���

������

�

���	
�������
��������� � � � ��������

�������� �!��"#$�����%���&

���'()�*+,�-./012345671289���

�� :;���<=:;

�
>*?@AB����C��DE�FGHI�JK�LMNK�

OP�DQRS�JT	UV�
WX�YT	UE$=Z[\S]^

3_`abcSdef`%ghij87klmnopGfqrst&

�����
uvwxyzAB{|}~�����!E}�C��D

�m��m���&�}���������������������� � �

�
��� :;���<=:;

�
>*?@AB����C��DE�F��x�����T	UV

�
WX�YT	UE��P�����aij89klEf�q��

�����
aij89klE=Z[\3]^E��
a!��Z&

�
q���������� 3V��¡¢	&£����pG��¤~¥¦p

G��&£���
��§¨SklSpGV�P�p�©���ª&q�:

;3=:;�«%¬­®¯E�
:;°:��& ������ �

�
�±��²')³´µ�� � �

����� �
�
��¶·')�������������������)�	�
��	

¸¹º»¼½

�
¾")¿����� ���À���¾

�� ���	}aÁºÂÃÄÅÆÇ�È	'É�_É&
�� �� !ÊËE
������Ì�ÍÎÏÐÑ��KNK�OP�DQ
R&

� ���	ÒÈ¿� �	� �À ��¾�}�Hx?@�LMN¸Ó�vwx

yzAB{½Ô»�Õ&

�� �Ö£×��x�JT	U �	�����Ø��	�TÙÚ
���ÛÜÝ&

�
�����������������

����������	
��
��������
�	�������������
������������

���������
������
��������

���������� � � � � � � � � � ���������	�
�����
	�

�	
���
���� � � � � � ���	�������������	��
��

�����������

�����������

�������

��������������

��������������������������� ���������!���!������"�����������#�$�������$

 �%%�$�����#%�!���!�%�#�$�������$����� ���������!���!�

&������%� '����(��$�)��*�����+

���,�����%�-�%��%%���������'��.�/���������

�����'����$������

,'�%����'+

��

 ���������!���!������"�����������#�$�������$

&�*���������

0���!'�1�(��2��1�.����%�!���� '���

�������	�
�

 i

有效率之關聯規則勘測與循序樣式勘測方法

學生: 林明言 指導教授: 李素瑛 教授

國立交通大學資訊工程學系

摘要

自動化與電腦的應用，讓資料收集無時不刻、隨時隨地的進行，也造成資料

大量且迅速增長。隱含於這些巨量資料中的豐富資訊，吸引各領域的學者研發各

種粹取其中有用知識的方法。在眾多資料探勘的目標中，頻繁樣式的勘測一直是

資料庫中知識挖掘的研究焦點。 本論文主旨在於研發有效率的關聯規則及循序

樣式探勘方法。

首先，我們提出 LexMiner 演算法以找出推演關聯規則的頻繁項目集。為了

免除 hash-tree 擺置可能頻繁項目集時的缺點，有些方法將可能項目集依項目的

prefix-order 擺放。LexMiner 進一步利用項目集的字典序特性與字典式比較以加

速探勘演算法中的核心運算—尋找交易紀錄中包含之可能頻繁項目集。

探勘循序樣式是本論文所探討的第二個主題。我們提出一個記憶體索引的方

法，稱為 MEMISP，利用「尋找再索引」的技巧來快速探勘循序樣式。無論資料

庫大小、無論支持度多小，MEMISP 最多僅需檢視資料庫兩回合即可完成探勘。

MEMISP 優於其他方法的因素在於不產生可能樣式、也不產生暫時的中間資料

庫。

探勘具有時間限制的循序樣式，包括時間差與滑動時間窗，可以強化結果的

精確性。過去僅有Apriori 架構可以解決此問題。近來許多研究顯示 pattern-growth

方法可以有效改善探勘速度。因此，我們提出 DELISP 演算法，在 pattern-growth

方法論下，利用 divide-and-conquer 策略，整合限制於子資料庫投射，更有效率

 ii

的完成具時間限制循序樣式之探勘。

知識挖掘原就是一種挖掘、檢視、再挖掘反覆進行互動的過程。如何減少使

用者找到合意結果之交談過程中的反應時間相當重要。我們所提 KISP 演算法利

用進行過程中所得的資訊，累積計數的資訊以促成有效率之樣式計數運算，並加

速整個互動式序列探勘程序。

目前循序樣式的探勘往往假設勘測的資料庫是不變動的。然而，資料庫會有

資料更新變動，以致過去找出的樣式會變成無效或新樣式可能會產生。本論文所

提的 IncSP方法不需因資料變動而整個從頭開始重新探勘。我們透過隱含式合併

與對新增序列有效率分開計數，將過去的樣式漸進式地更新。

 我們進行了大規模完整的實驗以評估所提各方法的效能。在我們的實驗範圍

中，結果顯示，對於各個不同探勘參數及不同特性的資料集，我們的方法都優於

許多著名的方法。針對資料量擴充的實驗也顯示我們探勘頻繁樣式的方法具有線

性擴充能力。

 iii

Efficient Algorithms for Association Rule Mining and

Sequential Pattern Mining

Student: Ming-Yen Lin Advisor: Prof. Suh-Yin Lee

Department of Computer Science and Information Engineering

National Chiao Tung University

Abstract

Tremendous amount of data being collected is increasing speedily by computerized

applications around the world. Hidden in the vast data, the valuable information is

attracting researchers of multiple disciplines to study effective approaches to derive

useful knowledge from within. Among various data mining objectives, the mining of

frequent patterns has been the focus of knowledge discovery in databases. This thesis

aims to investigate efficient algorithms for mining frequent patterns including

association rules and sequential patterns.

We propose the LexMiner algorithm to deal with frequent item-set discovery for

association rules. To alleviate the drawbacks of hash-tree placement of candidates,

some algorithms store candidate patterns according to prefix-order of itemsets.

LexMiner utilizes the lexicographic features and lexicographic comparisons to further

speed up the kernel operation of mining algorithms.

A memory indexing approach called MEMISP is proposed for fast sequential

pattern mining using a find-then-index technique. MEMISP mines databases of any

size, with respect to any support threshold, in just two passes of database scanning.

MEMISP outperforms other algorithms in that neither candidate patterns nor

 iv

intermediate databases are generated.

Mining sequential patterns with time constraints, such as time gaps and sliding

time-window, may reinforce the accuracy of mining results. However, the capabilities

to mine the time-constrained patterns were previously available only within Apriori

framework. Recent studies indicate that pattern-growth methodology could speed up

sequence mining. We integrate the constraints into a divide-and-conquer strategy of

sub-database projection and propose the pattern-growth based DELISP algorithm,

which outperforms other algorithms in mining time-constrained sequential patterns.

In practice, knowledge discovery is an iterative process. Thus, reducing the

response time during user interactions for the desired outcome is crucial. The

proposed KISP algorithm utilizes the knowledge acquired from individual mining

process, accumulates the counting information to facilitate efficient counting of

patterns, and accelerates the whole interactive sequence mining process.

Current approaches for sequential pattern mining usually assume that the mining

is performed with respect to a static sequence database. However, databases are not

static due to update so that the discovered patterns might become invalid and new

patterns could be created. Instead of re-mining from scratch, the proposed IncSP

algorithm solves the incremental update problem through effective implicit merging

and efficient separate counting over appended sequences. Patterns found in prior

stages are incrementally updated rather than re-mining.

 Comprehensive experiments have been conducted to assess the performance of

the proposed algorithms. The empirical results show that these algorithms outperform

state-of-the-art algorithms with respect to various mining parameters and datasets of

different characteristics. The scale-up experiments also verify that our algorithms

successfully mine frequent patterns with good linear scalability.

 v

誌 謝

 恩師 李素瑛教授是我人生的明燈。在我工作多年、日漸沈浸於瑣碎的公務

時，點亮我突破現狀、開創新生涯的道路。在職博士班的學習，沒有恩師的耐心

指導與體諒，絕對無法成就這本博士論文。恩師嚴謹的治學態度，在研究與投稿

的每個階段屢次再現 ，屢見恩師斟酌字句，費心審視。每每讚嘆於恩師思慮的

周延、用字的精準與理直氣和的學者風範。恩師的指引、照顧與提攜，銘感於心。
 博士論文口試委員之一的 楊維邦老師，與李素瑛老師在我碩一時共同啟蒙

我的研究生涯。回首博士班的學習與這本論文的完成，不論是研究興趣的啟發或

是追根究底的研究精神建立，對於楊老師當年的指導與適時的鼓勵，深深受益也

深表感激。
 由衷感謝所有口試委員，不吝於提供多年的寶貴研究經驗，充實了本論文的

深度與廣度。謝謝 蔡中川老師、 張真誠老師、 陳良弼老師、 陳銘憲老師、 李
強老師與 蔡錫鈞老師為豐富本論文內涵提供絕佳的意見，在複雜度與方法適用

範圍、研究關鍵轉折點、方法評比公平性、研究結果的適切論述、方法的差異性

等等見解，使本論文更臻完善。諸位口試委員都是我學術研究的最佳學習典範。
 資訊系統實驗室的學長、姊及學弟、妹們，在研究的坦途上與我攜手並進，
謝謝大家也祝福學弟、妹們早日收穫豐碩的研究成果。特別要謝謝學長沈錳坤博

士的熱心及研究心得的分享，增添許多研究的樂趣。
 父、母親從小至今的關懷，雖然不露於言表，但帶給我的動力是造就我完成

博士學位的種子。一路走來，大姊、二姊默默的支持與哥哥的關心，是我源源不

絕的溫暖泉源。我年少時的病痛，增添家人許多辛勞，沒有他們的犧牲，絕不會

有今日的我。感恩家人的支持、也謝謝兩位姊夫、大嫂及其他親友對我的祝福與

勉勵。
 一直陪伴在我身旁、沒有怨言、不給我壓力、只給我鼓勵的，就是我的太太

夙珍。當我後來辭去工作專心研究時，讓我無後顧之憂，給我綿綿不絕的支持，

也常常與我一起討論，激發研究的創意與靈感。能夠順利完成博士學位，對於夙

珍，我有無盡的感謝。

 要感謝的人真的很多，在此向所有曾經幫過我的人，致上我真切的謝意。

 僅以此論文，獻給我摯愛的家人。

 vi

Contents

摘要 ……………………………………………………………………………...i
Abstract …………………………………………………………………………….iii
誌 謝 ……………………………………………………………………………..v
Contents …………………………………………………………………………….vi
List of Tables..ix
List of Figures...x
Chapter 1 Introduction..1

1.1 Background ..1
1.2 Motivations and Research Objectives..4
1.3 Organization of this Thesis ..6

Chapter 2 Algorithm LexMiner for Association Rule Mining.................................8
2.1 Overview..8
2.2 Problem Statement ...11
2.3 Related Work..11
2.4 The Proposed Method ..14

2.4.1 LexTree: a lexicographically ordered tree ..17
2.4.2 Fast support counting by lexicographic comparisons................................19
2.4.3 Candidate generation by leaf joining ...24

2.5 Performance Evaluation...25
2.5.1 Generation of synthetic data...25
2.5.2 Total execution times of various algorithms ...26
2.5.3 Scale-up experiments ..29

2.6 Summary ..30
Chapter 3 Algorithm MEMISP for Sequential Pattern Mining33

3.1 Overview..33
3.2 Problem Statement ...36
3.3 Related Work..37
3.4 The Proposed Method ..39

3.4.1 Mining sequential patterns by MEMISP: an example39
3.4.2 The MEMISP algorithm..43
3.4.3 Dealing with extra-large databases by database partitioning....................45
3.4.4 Differences between MEMISP and PrefixSpan...46
3.4.5 Implementation issues...48

3.5 Performance Evaluation...49
3.5.1 Generation of experimental data ..49
3.5.2 Execution times of GSP, PrefixSpan, and MEMISP algorithms52

 vii

3.5.3 Scale-up experiments ..55
3.6 Discussion ..56
3.7 Summary ..58

Chapter 4 Algorithm DELISP for Sequential Pattern Mining with Time
Constraints..60

4.1 Overview..60
4.2 Problem Statement ...63
4.3 Related Work..65
4.4 DELISP: Delimited Sequential Pattern Mining...67

4.4.1 Terminology used in DELISP..67
4.4.2 Mining time-constrained sequential patterns by DELISP: an example71
4.4.3 The DELISP algorithm ...76

4.5 Experimental Results ...77
4.5.1 Execution times of GSP and DELISP algorithms79
4.5.2 Scale up experiments on database size ...83

4.6 Discussion ..84
4.7 Summary ..85

Chapter 5 Algorithm KISP for Interactive Discovery of Sequential Patterns87
5.1 Overview..87
5.2 Problem Statement ...89
5.3 Related Work..93

5.3.1. Algorithms for sequential pattern mining ..93
5.3.2 Algorithms for interactive pattern discovery ..96

5.4 The Proposed Algorithm for Interactive Discovery of Sequential Patterns.......97
5.4.1 The KISP (Knowledge base assisted Incremental Sequential Pattern)

mining algorithm..98
5.4.2 New-candidate generation by direct computation....................................101
5.4.3 Concurrent support counting and the placement of variable sized

candidates ..105
5.4.4 Manipulation of the knowledge base ..107
5.4.5 Mining efficiency and space utilization with a large knowledge base...... 111

5.5 Performance Evaluation...112
5.5.1 Comparisons of KISP and GSP .. 113
5.5.2 Scale-up experiments .. 118

5.6 Summary ..119
Chapter 6 Algorithm IncSP for Incremental Discovery of Sequential Patterns 121

6.1 Overview..121
6.2 Problem Statement ...124

 viii

6.2.1 Sequential pattern mining...124
6.2.2 Incremental update of sequential patterns..125
6.2.3 Changes of sequential patterns due to database update...........................128

6.3 Related Work..129
6.3.1 Algorithms for discovering sequential patterns..129
6.3.2 Approaches for incremental pattern updating ..132

6.4 The Proposed Algorithm ..133
6.4.1 Implicit merging of data sequences with same cids..................................136
6.4.2 The IncSP (Incremental Sequential Pattern Upate) algorithm.................137
6.4.3 Pattern maintenance on transaction deletion and modification...............142
6.4.4 Proof of lemmas ..143

6.5 Experimental Results ...146
6.5.1 Synthetic data generation ...146
6.5.2 Comparisons of IncSP and GSP ...147
6.5.3 Scale-up experiments ..154
6.5.4 Memory requirements ...154

6.6 Summary ..155
Chapter 7 Conclusions and Future Work..157

7.1 Contributions..157
7.2 Future work..157

References...160
Vita………………………………………………………………………………….172

 ix

List of Tables

Table 2-1. Notations used ..12

Table 2-2. Itemset grouping by prefixed items ..16

Table 2-3. Parameters used in the experiments..26

Table 3-1. Example sequence database DB and the sequential patterns......................37

Table 3-2. Parameters used in the experiments..51

Table 4-1. Example sequence database DB and the time-constrained sequential

patterns..65

Table 4-2. The projected sub-sequences in the 　-DB sub-databases73

Table 4-3. Parameters used in the experiments..79

Table 5-1. Notations used ..90

Table 5-2. The supports of all sequences in an example database...............................91

Table 5-3. User specified minimum supports and the resultant sequential patterns91

Table 5-4. Candidates generated by GSP and by KISP ...103

Table 5-5. Datasets used in the experiments ..113

Table 5-6. Number of candidates for the Slen dataset ...116

Table 5-7. Effects of concurrent support counting...117

Table 5-8. Execution time of KISP when KB.sup ≤ minsup118

Table 5-9. Space used by KB with respect to KB.sup (dataset Slen)118

Table 6-1. Notations used ..127

Table 6-2. Sequences and support counts for Example 2 ..141

Table 6-3. Parameters used in the experiments..148

 x

List of Figures

Fig. 1-1. The process of knowledge discovery in databases [5]2

Fig. 2-1. Example itemsets stored in a LexTree ...10

Fig. 2-2. Example candidate itemsets stored in a hash-tree...13

Fig. 2-3. Algorithm LexMiner ..15

Fig. 2-4. Construction of a LexTree by inserting 3-itemsets: insert (a)(a,c,d) (b)(a,c,j)

(c)(a,c,k) (d)(a,d,j) (e)(a,j,o) after (a,d,k) and (a,d,o) inserted (f)(c,d,g)18

Fig. 2-5. Procedure Find_and_Increment ..22

Fig. 2-6. Execution times of various algorithms on the dataset having short patterns 27

Fig. 2-7. Performance comparisons of execution time over various supports.............28

Fig. 2-8. Execution results of different ordering..29

Fig. 2-9. Linear scalability of the database size...30

Fig. 3-1. Some index sets and the in-memory DB ...41

Fig. 3-2. Algorithm MEMISP...44

Fig. 3-3. Partition the database and discover patterns for extra-large databases45

Fig. 3-4. Total execution times with respect to various minsup values53

Fig. 3-5. Comparisons of execution times on dataset C20-T2.5-S4-I1.2553

Fig. 3-6. Comparisons of execution times on dataset C10-T5-S4-I1.2554

Fig. 3-7. Comparisons of execution times on dataset C10-T2.5-S8-I1.2554

Fig. 3-8. Comparisons of execution times on dataset C10-T2.5-S4-I2.554

Fig. 3-9. Comparisons of execution times on dataset C10-T7.5-S4-I555

Fig. 3-10. Linear scalability of MEMISP vs. PrefixSpan...56

Fig. 4-1. Example of the sequence containment relationship64

Fig. 4-2. Accessible elements from itemset I in ds with tag-list [st1:et1, st2:et2, …,

stk:etk]..70

 xi

Fig. 4-3. The projected elements of ds with respect to 　 ..70

Fig. 4-4. Eliminating items having smaller lexicographic order from projection

(Lemma 4-2) ...70

Fig. 4-5. Algorithm DELISP ..75

Fig. 4-6. Effect of the mingap constraint ...80

Fig. 4-7. Effect of the maxgap constraint ..81

Fig. 4-8. Effect of the swin constraint..81

Fig. 4-9. Total execution time on datasets of various characteristics82

Fig. 4-10. Linear scalability of DELISP ..83

Fig. 5-1. Proposed Algorithm Basic KISP ...99

Fig. 5-2. Structure of the knowledge base ...109

Fig. 5-3. Structure of a pattern-support table ...110

Fig. 5-4. The knowledge base after the second query in Example 5-1110

Fig. 5-5. Relative execution time and number of candidates on dataset Origin115

Fig. 5-6. Relative mining performance on datasets of various distributions115

Fig. 5-7. Relative performance on datasets with longer customer sequences115

Fig. 5-8. Average execution time vs. number of queries ...117

Fig. 5-9. Linear scalability of the database size...119

Fig. 6-1. Incremental update versus re-mining ..126

Fig. 6-2. The original database DB example, |DB| = 6 ..128

Fig. 6-3. Data sequences in the increment database and the updated database (a) db

with new customers only (b) the updated database UD ...129

Fig. 6-4. Data sequences of old and new customers in db ...130

Fig. 6-5. Merged data sequences in the updated database UD130

Fig. 6-6. The architecture of the k-th pass in IncSP ...134

Fig. 6-7. Algorithm IncSP ..138

 xii

Fig. 6-8. The separate counting procedure...138

Fig. 6-9. Total execution times over various minsup ...150

Fig. 6-10. Total execution times over various incremental ratios..............................151

Fig. 6-11. Total execution times over various comeback ratios.................................152

Fig. 6-12. Total execution times over various former ratios......................................153

Fig. 6-13. Linear scalability of the database size...153

Fig. 6-14. Maximum required memory with respect to various minsup....................153

 1

Chapter 1 Introduction

Recent developments in computing and automation technologies have resulted in

computerizing business and scientific applications in diverse areas. Turing the huge

amounts of accumulated data into knowledge is attracting researchers in various

domains including databases, machine learning, statistics, and so on. From the

perspectives of database researchers, the emphasis is on discovering useful patterns

hidden within the large data sets. Hence, a central issue for knowledge discovery in

databases, also the focus of this thesis, is to develop efficient and scalable mining

algorithms as integrated tools for database management systems.

1.1 Background

Data mining, which is also referred to as knowledge discovery in databases, has been

recognized as the process of extracting non-trivial, implicit, previously unknown, and

potentially useful information from data in databases [8, 15, 88]. The database used in

the mining process generally contains large amounts of data collected by

computerized applications. For example, bar-code readers in retail stores, digital

sensors in scientific experiments, and other automation tools in engineering often

generate tremendous data into databases in a very fast speed. Not to mention the

natively computing-centric environments like Web access logs in Internet applications.

These databases thus serve as rich and reliable sources for knowledge generation and

verification. Meanwhile, the large databases present challenges for effective

approaches for knowledge discovery.

The discovered knowledge can be used in many ways in corresponding

applications. For example, identifying the frequently appeared sets of items in a retail

database can be used to improve the decision making of merchandise placement or

 2

sales promotion. Discovering patterns of customer browsing and purchasing (from

either customer records or Web traversals) may assist the modeling of user behaviors

for customer retention or personalized services. Given the desired databases, whether

relational, transactional, spatial, temporal, or multimedia ones, we may obtain useful

information after the knowledge discovery process if appropriate mining techniques

are used. A typical process of knowledge discovery in databases is illustrated in Fig.

1-1.

Data
Cleaning

Databases

Data
Warehouse

Task-
relevant
Data

Data
Selection

Mining

Evaluation

Knowledge

Patterns

Fig. 1-1. The process of knowledge discovery in databases [5]

Having the databases, relevant prior knowledge, and the goals of the application

domain, the target data set is created by selecting the data required. The data cleaning

in Fig. 1-1 may removes those ‘dirty‘ data, e.g. data with incomplete fields, missing

or wrong values, in the preprocessing stage. The ‘clean’ data is then reduced and/or

transformed so that the data is represented by the useful features and actionable

dimensions. To find the patterns of interest, the users perform the required mining

functions, which include summarization/generalization of data characteristics,

classification/clustering of data for future prediction, association finding for data

 3

correlation, trend and evolution analysis, etc. The discovered patterns are evaluated

and presented as knowledge. The process may iterate and contain certain loops

between any two steps.

Of all the mining functions in the knowledge discovering process, frequent

pattern mining is to find out the frequently occurred patterns. The measure of frequent

patterns is a user-specified threshold that indicates the minimum occurring frequency

of the pattern. We may categorize recent studies in frequent pattern mining into the

discovery of association rules and the discovery of sequential patterns. Association

discovery finds closely correlated sets so that the presence of some elements in a

frequent set will imply the presence of the remaining elements (in the same set).

Sequential pattern discovery finds temporal associations so that not only closely

correlated sets but also their relationships in time are uncovered.

Finding all the frequent patterns from the huge data sets is a very

time-consuming task. Although the frequency of a pattern can be determined by

scanning the database once, the elements of the pattern cannot be known in advance.

Take association discovery for example. Given 100 distinct items in the database, the

total number of potentially frequent sets is C(100, 1) + C(100, 2) + C(100, 3) + … +

C(100, 99) + C(100, 100), where C(m, n) represents the combinations to choose n

items from m distinct items. The total number of potential patterns is too huge so that

validating all the potential patterns in a single database scanning could be impossible.

Thus, it is desirable to design efficient algorithms for frequent pattern mining.

In addition, the mining algorithm must be scalable to handle databases of huge

size. While the response time may be tolerable for an algorithm to check thousands of

potential patterns against a small database having thousands of records, it could be

intolerable against a database having millions of records. Similarly, an algorithm that

assumes the database has maximum 100 elements might fail to mine any database

 4

having more than 100 elements. In the mining of frequent patterns in database context,

the number of elements and the size of the database could be very large. Any

improper assumptions on database or main memory could possibly produce an

impractical algorithm that works well for small problems only.

1.2 Motivations and Research Objectives

Although there has been a large number of algorithms designed for frequent pattern

mining, investigating efficient and scalable algorithms is still very challenging. We

first give an overview of the problems, and then describe the motivations and the

research objectives of this proposal.

In association rule mining, each record in the database is a set of items (called

itemset). To generate a rule that associate an itemset X with the itemset Y, the first

step is to find all the frequent itemsets, i.e. the itemsets whose occurring frequency is

above the user-specified minimum threshold. The second step then uses the

discovered frequent itemsets and their frequency to produce all the association rules.

In general, most studies in association rule mining generate potential patterns (called

candidates) and count their frequency in the database to determine the frequent ones.

Non-frequent candidates are pruned before counting to reduce the search space, using

the property that any candidate having non-frequent sub-sets cannot be frequent.

However, not all the properties of itemsets are utilized in the mining process, e.g. the

lexicographic property in itemsets. This thesis studies the features presented in

itemsets and designs an efficient algorithm to speed up the efficiency of association

rule mining.

Previous studies in frequent pattern mining focused on association discovery the

most. Nevertheless, sequential pattern mining is even more challenging. In sequential

pattern mining, the database is composed of records of data sequences, where each

 5

data sequence is an ordered list of itemsets. The itemsets in a data sequence need not

be distinct. The aim is to discover all the frequent sub-sequences in the sequence

database.

Considering a sequential pattern having three items, the constitution of the pattern

could be a list of: (1) three elements where each element is an item (2) two elements

where the first element has one item and the second has two items (3) two elements

where the first element has two items and the second has one item (4) one element

that has three distinct items. Given the same number of possible items in the itemset

database and the sequence database, the potential sequential patterns having three

items greatly outnumber the potential itemsets having three items. The total number

of candidates, which contains more than patterns having three items, increases

exponentially as the number of possible item increases. Searching in the larger and

more complex sequence database with the enormous number of candidates demands

highly efficient mining algorithms.

Therefore, this thesis investigates an approach that utilizes main memory for

indexing sequences and proposes an efficient algorithm for sequential pattern mining.

Common sequence mining considers no constraints for the time-gaps between

adjacent elements of a pattern, thereby introducing some uninteresting patterns at

times. For example, without specifying the maximum time gap (between adjacent

elements), one may discover an example pattern such as “many customers bought

LCD-projector after purchasing Laser-pointer.” Nevertheless, the pattern could be

insignificant if the time interval between the two elements is too long such as over

years. Typical time constraints include minimum gap, maximum gap, and sliding

time-window [80]. In this thesis, we will look into the time-constraint problem and

propose an approach that integrates these constraints into a divide-and-conquer

strategy for the discovery of sequential patterns with time constraints.

 6

In practice, the mining process is iterative and interactive. The measure of

frequent patterns is dependent on the user-specified threshold. Consequently, different

thresholds generate different outcomes. Once the mining result is unsatisfactory, the

user might try another threshold. Thus, the interactive, time-consuming process

usually repeats several times. To reduce the total response time required, an approach

employing previous mining results to speed up the whole interactive mining process

is investigated in this thesis.

Current approaches for sequential pattern mining usually assume that the mining

is performed in a static sequence database. However, databases are not static due to

update so that the discovered patterns might become invalid and new patterns could

be created. In addition to higher complexity, the maintenance of sequential patterns is

more challenging than that of association rules owing to sequence merging. Sequence

merging, which is unique in sequence databases, requires the appended new

sequences to be merged with the existing ones if their customer ids are the same.

Re-mining of the whole database appears to be inevitable since the information

collected in previous discovery will be corrupted by sequence merging. Instead of

re-mining, we propose an algorithm that solves the maintenance problem through

effective merging for incremental pattern updating in this thesis.

1.3 Organization of this Thesis

This rest of the thesis is organized as follows. We describe efficient algorithms for

mining association rules in Chapter 2. Fast algorithms for mining sequential patterns

are delineated in Chapter 3. Chapter 4 addresses the problem of mining sequential

patterns with time constraints and presents related algorithms. The algorithms for

interactive sequence mining are introduced in Chapter 5. Chapter 6 extends the

sequence mining algorithms over static databases into that over incremental databases.

 7

Finally, Chapter 7 concludes this thesis.

 8

Chapter 2 Algorithm LexMiner for Association Rule Mining

2.1 Overview

Association rule mining has been one of the focusing researches in data mining [4, 5,

9, 14, 22, 28, 31, 37, 58, 95, 101]. The problem is originated from a large

transactional database, in which each transaction is a set of items (named itemset)

purchased by a customer [4]. The result of the mining discovers relationships between

itemsets (called association rules), which can be used for inferring buying patterns of

customers, placement of sales items, and so on in many applications.

An association rule X⇒Y means that the occurrence of itemset X would imply the

occurrence of itemset Y. A transaction T is said to contain X if and only if X ⊆ T. The

support of itemset X is the number of transactions containing X divided by the total

number of transactions in the database. Each rule is associated with two attributes,

support and confidence. The support of the rule is defined as the support of the

itemset X∪Y, and the confidence is defined as the support of X∪Y divided by the

support of X. Association discovery aims to find out all association rules with support

and confidence greater than the user-specified minimum thresholds.

The discovery usually takes two steps, discovering frequent itemsets and

generating rules. Frequent itemsets are those itemsets whose supports are greater than

the specified minimum support. Since the desired rules can be easily generated after

having the supports of itemsets, the overall performance is dominated by the step of

frequent itemset discovering. This issue has been the focus in previous researches [1,

7, 28, 32, 43, 49, 50, 61, 74, 85, 100]. The objective of this chapter is to improve the

performance of frequent itemset discovering by fully utilizing the lexicographic

property of itemsets.

 9

Most algorithms for frequent itemset finding nearly are variations of the Apriori

algorithm [5]. Apriori generated potential frequent itemsets (called candidates), stored

candidates in a hash-tree, and then located the candidates required for support

counting against each transaction. Nevertheless, the hash-tree may introduce

‘irrelevant’ comparisons while counting because the hashing may possibly place

candidates with different prefixed items in the same leaf. Some implementations

stored candidates in a prefix tree, such as the SEAR algorithm [53]. By storing

candidates according to the lexicographic order of items, the prefix tree alleviates

some drawbacks of hashing.

The lexicographic property of itemsets [1, 2, 12] had also been used in some

algorithms. For example, the TreeProjection algorithm [1] generated candidates by

lexicographic extensions, instead of by join operations as in Apriori. The transactions

were then projected onto each node of the ordered candidate tree. Lexicographically

extending the candidate itemsets were also used in the Max-Miner algorithm [12] and

the DepthFirst algorithm [2] for discovering maximal patterns, i.e. the longest

frequent itemsets.

However, the lexicographic property is not fully utilized. In all the mining

algorithms, each transaction has to perform itemset matching, which checks whether

the transaction contains all the items in a candidate, with every located candidate. In

general, all the items in each transaction are sorted in dictionary order after a light

pre-processing. The lexicographic property in transactions can work with the property

in candidates to accelerate itemset matching. In the proposed LexMiner algorithm, we

break the itemset matching into a series of item matching (named lexicographic

comparisons), in addition to storing candidates into a lexicographic tree of items

(named LexTree). We refer k-itemset to an itemset with k items. The LexMiner

algorithm optimizes the discovery of frequent 1-itemsets and 2-itemsets by array

 10

counting, and speeds up the kernel operation, itemset matching, to discover the

frequent k-itemsets (k > 2).

The proposed LexTree is an ordinary trie of k-itemsets, where each node

represents an item in an itemset and common items in itemsets share the same nodes.

An example LexTree is shown in Fig. 2-1 (The detail structure of the LexTree is given

in Section 2.3.1). LexMiner counts the supports efficiently by lexicographic

comparisons between transactions and candidates. Each lexicographic comparison

effectively obtains the group of promising candidates and prunes the group of

irrelevant candidates. Therefore, the support counting is accelerated due to the

reduction in the matching required for every transaction, in every database scanning.

The set = {(a, c, d), (a, c, j), (a, c, k), (a, d, j), (a, d, k),
(a, d, o), (a, j, o), (c, d, g), (c, d, j), (c, d, k), (c, g, k),
(c, g, t), (c, k, t), (d, g, j), (d, j, o), (g, k, t)}

(a) The set of all 3-itemsets

j k

Root

: null link: support#

c

d

g

a

c

d j k

d

j k o

j

o
#

g

k t t

k

#

Na Nb Nc d

g

j

j

o

g

k

t
#

Nd

Ne

Nf

Ng

Nh Ni Nj

Nk

Na, Nb, …, Ny : nodes’ names

Nl Nm Nn

No

Np

Nq

Nr Ns Nt

Nu

Nv

Nx

Ny

(b) The 3-itemset LexTree
Fig. 2-1. Example itemsets stored in a LexTree

The generation of candidates even benefits from the LexTree structure. In

Apriori-like algorithms, the superset of candidate k-itemsets were generated by

self-joining frequent (k-1)-itemsets with common prefix (k-2) items, and then pruning

those having non-frequent (k-1)-subsets. Common implementations usually store

frequent (k-1)-itemsets in a hash table to assist fast pruning. Consequently, either a

 11

traversal over the entire hash table or a pre-sorting of frequent (k-1)-itemsets is

required in the join operation. On the other hand, LexMiner generates candidates

faster without any table searching or sorting since itemsets having common prefixed

(k-2) items are already linked by the leaf-pointers.

In this chapter, we present a scalable mining algorithm for the discovery of

association rules. The extensive experiments on well-known synthetic data show that

our algorithm outperformed Apriori, TreeProjection and FP-growth algorithms.

Scale-up experiments also promise the linear scalability with the number of

transactions. The rest of the chapter is organized as follows. Section 2.2 introduces the

problem. Section 2.3 reviews the related work. The proposed algorithm and the new

data structure are described in Section 2.4. Comparative results of the experiments are

shown in Section 2.5. Section 2.6 summarizes this chapter.

2.2 Problem Statement

Let Ψ = {i1, i2, …, in} be a set of literals, called items. A transaction T with m items is

denoted by T = {x1, x2, …, xm}, such that T ⊆ Ψ. Items within an itemset are kept in

lexicographic order. A k-itemset is represented by (x1, x2, …, xk), where x1 < x2 < …<

xk. Given the database D of transactions and the user specified minimum support

minsup, the mining of frequent itemsets is to find out all the itemsets having support

greater than minsup. Table 2-1 summarizes the notations used in this chapter

2.3 Related Work

Level-wised algorithms like Apriori discover frequent k-itemsets in k-th pass of

database scanning by generating candidate k-itemsets and identifying the frequent

ones. Key factors of mining performance thus are determined by the number of

database scans, the number of transactions needed to be processed in a pass, the

 12

number of candidates generated in a pass, and the efficiency of support counting.

Table 2-1. Notations used

D The database of transactions
T A transaction, T = {x1, x2, …, xp, …, xm}

x1, x2, …, xk Items
X, Y k-itemsets, X = (x1, x2, …, xk), Y = (y1, y2, …, yk)

X.support The support of itemset X
minsup The minimum support specified by the user

Ck The set of candidate k-itemsets, see Section 2.4
Lk The set of frequent k-itemsets, see Section 2.4

kCΓ

The candidate k-itemset LexTree, see Section 2.4

kLΓ

The frequent k-itemset LexTree, see Section 2.4

mpT
The partial transaction of T, mpT = {xp, xp+1, …, xm},
see Section 2.4.2

k
mpT The k-subsets of mpT , see Section 2.4.2

For the reduction of database scans, DIC (Dynamic Itemset Counting) algorithm

starts counting just the 1-itemsets and then quickly adds counters of 2-itemsets, …,

and of k-itemsets, provided that all its subsets have been determined being frequent

[14]. Partition algorithm generates all the candidates by memory-sized partitions of

the database [73]. Besides, DLG (Direct Large itemset Generation) algorithm uses

large bit vectors for transformation and traversal to reduce database scans [86].

Sampling approaches can effectively reduce the number of database passes too [93].

For the reduction of transactions to be processed in a pass, AprioriTid algorithm

replaces itemsets in a transaction T by potentially frequent k-itemsets present in T [7].

DHP (Dynamic Hashing with Pruning) algorithm substantially minimizes the number

of transactions by applying a hashing scheme, which also eliminates some candidates

in advance [58].

For fast support counting, Apriori stores candidates in a hash-tree, where each

interior node contains a hash table and each leaf contains a list of candidates.

Candidates are placed by hashing on consecutive items in the candidate until a leaf is

 13

reached. Inserting a candidate to a leaf without empty entry introduces a

leaf-to-interior conversion and a re-distribution of the candidates. As an example, Fig.

2-2 shows the hash-tree of candidate itemsets in Fig. 2-1(a).

The TreeProjection algorithm [1] generates candidates into a lexicographical tree

of itemsets. After the transaction projecting (i.e. intersecting all transactions with each

node), the supports are obtained by matrix counting. Similar lexicographic extensions

are also used in the Max-Miner [12] and the DepthFirst [2] algorithms to find the

maximal itemsets. Note that these algorithms typically generate more candidates than

Apriori does since the pruning is no longer suitable.

(c, d, g)
(c, d, j)
(c, d, k)
(c, g, k)
(c, g, t)

(c, k, t) (a, c, d)
(a, c, k)
(a, c, l)

(a, d, j)
(a, d, k)
(a, d, o)
(a, j, o)
(d, g, j)

(g, k, t)

(d, j, o)

root

0 1 2

0 1 2 0 1 2

(1) hash function = (x – ‘a’ +1)MOD 3
(2) branches in each interior = 3
(3) entries in each leaf = 5

: empty leaf

: interior node

: leaf node : overflown leaf

(b) The hash-tree of candidate 3-itemsets

Fig. 2-2. Example candidate itemsets stored in a hash-tree

The FP-growth discovers frequent patterns without generating candidates in

advance [28]. The database is first compressed into an in-memory data structure

called FP-tree (Frequent Pattern tree). Frequent patterns are then derived by

“growing” patterns incrementally on the FP-tree by a partitioning-based,

divide-and-conquer method [28]. Based on the similar concept, the CLOSET

algorithm finds out the closed frequent itemsets [66], and the H-mine algorithm

projects transactions to a hyper-link structure for frequent itemset discovering [65].

 14

In addition, some ‘vertical’ algorithms, such as Eclat (Equivalence class and

bottom-up), speed up the discovery by lattice-traversal with vertical database layout,

which associates each candidate with transaction-id lists [74, 101]. Such scheme is

also extended to mine closed frequent itemsets in the CHARM algorithm [100].

To summarize, level-wised mining approaches are generally more scalable than

other approaches with respect to the database size. Projection-based algorithms like

TreeProjection might suffer from memory shortage (for keeping transaction sets in

each node) and it is costly to project volumes of transactions. Algorithms using the

pattern-growth framework like FP-growth might be limited by the available memory

since transactions are compressed into the main memory. Besides, FP-growth might

not compress well to achieve good performance with a non-dense database [19].

Given a ‘horizontal’ database, vertical approaches have to transform the horizontal

layout into vertical. The storage for storing item-oriented transaction lists will also

cost too much for a very large database. Therefore, the Apriori framework still has

competitive advantage in scalable association mining.

2.4 The Proposed Method

Fig. 2-3 lists the proposed LexMiner algorithm using the LexTree to speed up the

kernel operations in frequent itemset discovering. In brief, the LexMiner finds out

frequent 1-itemsets and 2-itemsets by an optimized counting technique. The frequent

k-itemsets (k > 2) are discovered by fast support counting through efficient

lexicographic comparisons, and rapid candidate generation through effective leaf

joining, enabled by prefixed itemset grouping with the LexTree.

Using a one-dimensional array of counters of all items is the fastest way to

compute frequent 1-itemsets since every item is a potentially frequent 1-itemset. Let

Ck be the set of candidate k-itemsets and Lk the set of frequent k-itemsets. The C2 is

 15

generated by joining L1 with L1. Since all the subsets of C2 are frequent, none of the

candidate in C2 can be deleted before counting. We use a two-dimensional array of

counters to store the supports of candidates in C2. In order to minimize the required

storage, we map items in L1 to contiguous integers and the non-frequent items to zero.

A two-level for-loop over each transaction accomplishes the efficient counting and

determines L2.

L1 = {frequent 1-itemsets} ;
if L1 ≠ ∅ then

C2 = L1 × L1 ; // stored in a 2-dimensional array
for each transaction T ∈ D do

for each 2-subset X of T do if (X ∈ C2) X.support++ ;
end
L2= {X ∈ C2 | X.support ≥ minsup} ;

end
for (k=3; Lk-1≠ ∅ , k++) do

Construct Lk-1 into a frequent LexTree, ΓLk-1 // LexTree construction – see Section 2.4.1
Generate Ck from Γ Lk-1 to a candidate LexTree, Γ Ck // Candidate generation – see Section 2.4.3
for each transaction T ∈ D do

Find_and_increment(T , Γ Ck) // Fast support counting – see Section 2.4.2
end
Lk= {X ∈ Ck | X.support ≥ minsup} ;

end
Answer = ∪k Lk ;

Fig. 2-3. Algorithm LexMiner

The fact that frequent itemsets usually have common items inspires the concept

of prefixed itemset grouping, which sorts itemsets into groups according to the same

prefixed items. For example, assume that L3 is the set of frequent 3-itemsets as listed

in Fig. 2-1(a). Since we generate C4 by joining those frequent 3-itemsets having the

same prefixed 2 items. If we perform the prefixed itemset grouping as shown in Table

2-2, the C4 would be simplified into self-joining over the same group. We use LexTree

to group the same prefixed itemsets under the same node. The leaf-linked

(k-1)-itemsets would have the same prefixed (k-2) items. Therefore, a rapid candidate

generation is achieved through effective leaf joining in the LexTree of the frequent

itemsets. For example, candidates (a, c, d, j), (a, c, d, k), (a, c, j, k) are easily obtained

by leaf joining on nodes Nh, Ni, and Nj of the LexTree in Fig. 2-1(b). The construction

 16

of LexTree is described in Section 3.1.

 Prefixed itemset grouping also provides a quick way to identify the promising

group of candidates in support counting. Assume that we are updating the supports of

C3 in Table 2-2, i.e. candidate LexTree in Fig. 2-1(b), with transaction T = {c, d, g, j,

k}. By a simple item comparison of ‘c’ (first item of the transaction T) and ‘a’ (the

item of node Na), we may skip all the candidates in Group 1 (also Groups 2 and 3)

since ‘c’ ≠ ‘a’. On the other hand, since the result of item comparison of ‘c’ (first item

of the transaction T) and ‘c’ (the item of node Nb) is equal, we proceed the

comparison on the second item to find which candidate is eventually contained in T.

In the LexTree of candidate itemsets, the itemsets are grouped and linked by the items

of each level. Therefore, we can speed up the support counting by a series of efficient

item matching, called lexicographic comparisons. We present the details of

lexicographic comparisons in Section 2.4.2.

Table 2-2. Itemset grouping by prefixed items

Group Itemsets
1 (a, c, d), (a, c, j), (a, c, k)
2 (a, d, j), (a, d, k), (a, d, o)
3 (a, j, o)
4 (c, d, g), (c, d, j), (c, d, k)
5 (c, g, k), (c, g, t)
6 (c, k, t)
7 (d, g, j)
8 (d, j, o)
9 (g, k, t)
Note: Group the itemsets in Fig. 2-1(a) according
to the first and then the second item

In short, starting from pass three and beyond, three major steps are performed in

the LexMiner algorithm. At first, frequent (k-1)-itemsets are stored in lexicographic

order into a frequent LexTree, denoted by
1−

Γ
kL . Candidate k-itemsets are then

generated and stored into a candidate LexTree, denoted by
kCΓ . Finally, all the

 17

candidates in each transaction can be efficiently found by lexicographic comparisons.

The following sections give the details of these procedures.

2.4.1 LexTree: a lexicographically ordered tree

LexTree is a compact, trie-like tree structure for hierarchically storing itemsets.

LexTree groups itemsets by same prefixed items and stores itemsets in dictionary

order (lexicographic order). We use X < Y to denote that itemset X precedes itemset Y

in lexicographic order. The item in Y that determines X < Y is called the pivot item of

Y. For example, (a, b, f) < (b, c, d) and (a, b, c) < (a, b, e), where items in boldface are

the pivot items. We insert itemsets in Ck (Lk) to a candidate LexTree (frequent LexTree)

one by one in lexicographic order. The LexTree corresponding to the itemsets in Fig.

2-1(a) is shown in Fig. 2-1(b). The definition of LexTree is given below.

Definition 2-1. A LexTree is a tree such that:

(i) A leaf node comprises three fields, the item identifier (abbreviated as ID), the

sibling pointer (abbreviated as sibling), and the support counter (abbreviated

as support).

(ii) An internal node comprises three fields, ID, sibling, and the next pointer

(abbreviated as next).

(iii) Nodes linked through the sibling pointer are of the same depth. The depth of a

node is (d+1), if the node is linked by the next pointer of another node whose

depth is d.

(iv) The Root is a pointer, which points to the first node of the tree. For

convenience, the node pointed by the Root is called the Root node. The depth

of the Root node is 1.

(v) A k-itemset (x1, x2, …, xk) in a LexTree is represented by a group of nodes at

depth 1, 2, …, k. In this group, the ID of the node at depth d is xd and the

 18

support of the leaf node is the support of this itemset. �

Various fields of a node Nd are referred to by symbols Nd.ID, Nd.sibling, Nd.next,

and Nd.support. The ID of the Root node is Root.ID, for instance.

Auxiliary Last pointers are used to ease the fast construction of LexTree. A

k-itemset LexTree has k Last pointers, where each Last points to the last node in that

level (depth) of the tree. We use Last[k] to denote the node pointed by the Last pointer

at level k. Hence, the latest k-itemset inserted can be described by (Last[1].ID,

Last[2].ID, …, Last[k].ID).

An example, which shows the construction of LexTree by inserting the ordered

3-itemsets in Fig. 2-1(a) is illustrated in Fig. 2-4. Note that the Root pointer is not

shown in Figures 2-4(b) to 2-4(e). One can see that starting from the pivot item of the

current itemset (we are inserting), a series of new nodes are allocated and the

corresponding Last pointers are moved.

Last[1]

Last[2]

Last[3]

Last[1]

Last[2]

Last[3]

Last[1]

Last[2]

(a) (b) (c)

Last[1]

(d)

Last[1]
Last[3]

(e)

Last[1]

Last[2]

Last[3]

(f)

Root

Root

a

c

d
#

c

d
#

j
#

a

Last[3]c

d
#

j
#

a

#
k

Last[3]

c

d
#

j
#

a

#
k

Last[2]

d

j
#

a

c

d j k

d

j k o

j

o
#

Last[2]
c

d

g

a

c

d j k

d

j k o

j

o
#

: null link: support#

Na

Ng Nk

Na, Ng, Nk : nodes’s name

Fig. 2-4. Construction of a LexTree by inserting 3-itemsets: insert (a)(a,c,d) (b)(a,c,j)

(c)(a,c,k) (d)(a,d,j) (e)(a,j,o) after (a,d,k) and (a,d,o) inserted (f)(c,d,g)

By inserting itemsets to LexTree in lexicographic order, we can group itemsets

 19

by the same prefixed items. In addition, the LexTree is compact since common items

share the same nodes. Take itemsets (a, c, d), (a, c, j) and (a, c, k) in Fig. 2-4(f) for

example. They share the same two nodes, Na and Ng. Similarly, itemsets (a, d, j), (a,

d, k), (a, d, o) share the same two nodes, Na and Nk. When we take the above six

itemsets into consideration, node Na is shared by these itemsets. In other words, node

Na groups the itemsets with the same prefixed item ‘a’; nodes Na and Ng group the

itemsets with the same prefixed items ‘a’ and ‘c’; also itemsets with the same prefixed

items ‘a’ and ‘d’ are grouped by nodes Na and Nk.

2.4.2 Fast support counting by lexicographic comparisons

For every transaction in the database, the supports of those candidates contained in the

transaction must be updated. Accordingly, during pass k, all the k-subsets of a

transaction are compared with candidates in Ck. Without structuring candidates on

item basis like LexTree, common implementations processed the kernel operation on

an itemset matching basis. In general, all the items in each transaction are sorted in

lexicographic order after a light pre-processing. Therefore, we may utilize the

lexicographic property (in transactions and in LexTree) to break itemset matching into

lexicographic comparisons. We describe the lexicographic comparison and the total

number of comparisons below.

LexMiner minimizes the number of k-subsets (of a transaction) required

matching by generating only those promising k-subsets. Promising k-subsets are

composed of a heading item xi and some partial transaction that generates the

(k-1)-subsets. The definition of partial transaction is given in Definition 2-2 below.

The heading item xi must appear in the first level of the candidate LexTree to make the

k-subset promising. Similarly, the partial transaction only generates promising

(k-1)-subsets having a heading item xj that appears in the second level of the candidate

 20

LexTree.

Definition 2-2. Given a transaction T = {x1, x2, …, xm}, the partial transaction pTm is

the set of ordered items from item xp to item xm in T. That is, pTm = {xi | xi ∈ T, p ≤ i ≤

m}. □

For example, 1Tm = {x1, x2, …, xm}, 4Tm = {x4, x5,…, xm}, m-1Tm = {xm-1, xm}, and mTm =

{xm}. The partial transaction pTm is an empty set if p > m. Let k
mpT be the k-subsets

of a partial transaction pTm = {xp, xp+1, …, xm}. We have Theorem 2-1.

Theorem 2-1. The k-subsets of a transaction T are Υ
1km

1i

1k
m1ii

k
m1 TxT

+−

=

−
+×= }{ .

Proof. We have 1
m21m21

1
m1 TxxxxT }{}{}{}{ ∪=∪∪∪= Λ .

Also 2
m2

1
m21

2
m1 TTxT }{ ∪×= , and 3

m2
2

m21
3

m1 TTxT }{ ∪×= .

So k
m2

1k
m21

k
m1 TTxT }{ ∪×= − . ⎯ Formula 2-1

Similarly, k
m3

1k
m32

k
m2 TTxT }{ ∪×= − . ⎯ Formula 2-2

So k
m3

1k
m32

1k
m21

k
m1 TTxTxT }{ }{ ∪×∪×= −− by substitution using Formula 2-2.

Finally, the formula k
m2km

1km

1i

1k
m1ii

k
m1 TTxT +−

+−

=

−
+ ∪×= }{Υ is obtained by iterative

substitution of the last item. Sine the last item, k
mkm T2+− is an empty set, the theorem

is proved. □

LexMiner uses Theorem 2-1 to eliminate the generation of many impossible

k-subsets of a transaction. Since candidates are grouped by the same prefixed items in

LexTree, if some item xi, where 1 ≤ i ≤ m-k+1, is not found in the first level of the

candidate LexTree, no k-subsets comprising xi as the first item are generated for

comparison. Again, whether a partial transaction should generate (k-1)-subsets or not

 21

is determined by the existence of some item xj, where i+1 ≤ j ≤ m. If item xj cannot be

found in the second level of the sub-tree headed by the matched xi, these (k-1)-subsets

are excluded. In this way, by comparisons between ordered items in the transaction

and the nodes in the candidate LexTree level by level, those candidates contained in a

transaction are found. For example, while updating the supports of
3CΓ in Fig. 2-1(b)

with transaction T1 = {g, k, t, c’, k’}, the 3-subsets of T1 having k or t as the heading

items as well as 3-subsets {g, t, c’}, {g, t, k’} and {g, c’, k’} never engage in the

computation.

Support counting in LexMiner is accomplished by breaking the searching of

candidates to lexicographic comparisons of sub-items, and then incrementing the

supports of matched candidates, as outlined in Fig. 2-5. Whenever a candidate is

found, its support is added by one. Two pointers, a transaction pointer tp and a

candidate pointer cp, are employed to assist fast matching. Let tp move along T and

cp walk through
kCΓ . Once tp or cp reaches the end of the corresponding list or

structure, the finding stops. In each pass, starting from the first item of the transaction

and the root of candidate tree, fast support counting is accomplished by the

Find_and_Increment procedure.

Assume that we are comparing the q-th item of a transaction T = {x1, …, xm}

with a node Np at level p, where 1 ≤ p ≤ k-1 and 1 ≤ q ≤ m. The matched prefix (p-1)

items can be described by (N1.ID, N2.ID, …, Np-1.ID) if we reach Np via node Ni at

level i, 1 ≤ i ≤ p-1. The xq is the q-th item of T and Np.ID is the item of node Np.

If xq < Np.ID, we advance tp (transaction pointer) so that all the k-subsets of T

having prefix (N1.ID, N2.ID, …, Np-1.ID, xq) are pruned. If xq > Np.ID, we advance cp

(candidate pointer) to eliminate the comparisons of those nodes reached via Np.next.

 22

Procedure Find_and_Increment(tp, cp)
 // input: tp points to the head of a list, cp points to a node in Γ Ck
 // let item[tp] denote the item pointed by tp
 if cp = leaf then
 while (not end_of_the_list) and (cp ≠ null)
 if item[tp] < cp.ID then tp++ ; // advance tp
 else if item[tp] > cp.ID then cp = cp.sibling ; // advance cp
 else // matched candidate found
 cp.support++ ; // increment the support
 tp++ ; // advance tp
 cp = cp.sibling ; // advance cp
 end_while
 else // cp is an interal node */
 if item[tp] < cp.ID then
 tp++ ; // advance tp
 Find_and_Increment(tp, cp) ;
 else if item[tp] > cp.ID then
 cp = cp.sibling ; // advance cp
 Find_and_Increment(tp, cp) ;
 else // matched
 Find_and_Increment(tp+1, cp.sibling) ;
 Find_and_Increment(tp+1, cp.next) ;
End_Procedure

Fig. 2-5. Procedure Find_and_Increment

If xq = Np.ID, it means that candidates with same prefixed p items are found in

the sub-list {x1, ..., xq} of T. Finding candidates whose p-th item is greater than Np.ID

can be done by comparing the sub-list {xq+1 , …, xm} with the sub-tree headed by

Np.sibling. Next, we recursively apply Find_and_Increment on the sub-list {xq+1, ...,

xm} and Np.next, which links the remaining (k-p) items of candidate k-itemsets with

same prefixed p items, for further sub-item comparisons. When p is (k-1), it turns out

to be a fast ordered list-matching between the sub-list {xq+1, …, xm}, and the list made

of leaf Np.next and the (Np.next).sibling linked leaves.

Through eliminating impossible itemsets at each level, the number of

comparisons is minimized in LexMiner. Moreover, the supports are efficiently

updated for transactions containing many candidate k-itemsets, as demonstrated in

Example 2-1. The notation <T.x, Nd.ID: v> means that the item ‘x’ in a transaction T

is compared with v, the value of Nd.ID.

Example 2-1. Updating the supports of candidate 3-itemsets in T= {c, d, g, j, k} is

illustrated. In the beginning, cp points to the Root node Na.

 23

1) < T.c, Na.ID:a>, advance cp to Nb through sibling.

2) < T.c, Nb.ID:c> matched. We first apply Find_and_Increment on cp.sibling to see

whether there is any candidate in the sub-list, {d, g, j, k}, then apply on cp.next to

match the second and the third items of candidates having 3 as the first item.

3) Apply Find_and_Increment on {d, g, j, k} and Nb.sibling: <T.d, Nc.ID:d>, is

matched. Again, Find_and_Increment is applied on {g, j, k} with Nc.sibling and

on {g, j, k} with Nc.next.

(a) Apply Find_and_Increment on {g, j, k} and Nc.sibling: The matched <T.g,

Nd.ID:g> induces two findings, on {j, k} with Nd.sibling and on {j, k} with

Nd.next. The former stops due to the null sibling pointer. The latter, though

<T.k, Ne.ID:k> matches, stops since the end of the list is reached.

(b) Apply Find_and_Increment on {g, j, k} and Nc.next: The matched <T.g,

Nx.ID:g> recursively calls the procedure on {j, k} with Nx.sibling and on {j,

k} with Nx.next. The former eventually stops after reaching the end of the

list. The latter finds the leaf Ny with ID the same as T.j, and

incrementsNy.support by one. It means that the support of candidate (d, g, j)

is incremented.

4) Apply Find_and_Increment on {d, g, j, k} and Nb.next: The matched <T.d,

Nq.ID:d> induces two findings on {g, j, k} with Nq.sibling and on {g, j, k}with

Nq.next.

(a) Apply Find_and_Increment on {g, j, k} with Nq.sibling: This procedure

with <T.g, Nu.ID:g> eventually will increment Nv.support by one. That is,

(c, g, k) will be updated.

(b) Apply Find_and_Increment on {g, j, k} with Nq.next: Since Nr is a leaf

node, it turns out to be a fast ordered list-matching between {g, j, k} and the

list made of Nr.ID, Ns.ID and Nt.ID. The supports of (c, d, g), (c, d, j), and

 24

(c, d, k) are incremented and the process is terminated at last. �

As shown in this example, grouping candidates under LexTree enables fast

list-matching at each level. In fact, the itemset matching in other algorithms, whether

they explored lexicographic property or not, is broken down to a series of item

matching in LexMiner. Efficient candidates matching by lexicographic comparisons

and immediate increment of supports make LexMiner a faster approach for support

counting.

2.4.3 Candidate generation by leaf joining

The Apriori generates Ck in three steps, collecting Lk-1 by traversing candidate

hash-tree, self-joining itemsets in Lk-1 having same prefixed (k-2) items, and pruning

those having any (k-1)-subset that is not in Lk-1. Most approaches like Apriori collect

Lk-1 in a hash table for fast searching in the pruning step. Nevertheless, a complete

traversal over the hash table to find common prefixed (k-2) itemsets in the joining step

is unavoidable. Such an inefficiency is removed by leaf-join in LexMiner.

 In LexMiner, the frequent Lk-1 LexTree is obtained by a traversal on a candidate

Ck-1 LexTree with a removal of leaves having insufficient supports. The

traversal-with-removal results in a frequent Lk-1 LexTree. In LexTree, all (k-1)-itemsets

with the same prefixed (k-2) items are grouped together and are linked through the

sibling pointers. Candidates are efficiently produced by making self-joins with these

sibling-linked leaves. Before placing a newly generated candidate C in the new

candidate Ck LexTree, we search in frequent Lk-1 LexTree for the existence of all the

(k-1)-subsets of C. If any of the searches fails, C is pruned. The search utilizes the

similar technique used in fast support counting. Therefore, LexMiner generates the

same number of candidates as Apriori does, in a faster speed. Note that some

approaches exploring the lexicographic property, like TreeProjection, often generate a

 25

slightly larger number of candidates [1].

2.5 Performance Evaluation

In order to evaluate the performance of the proposed algorithm, we conducted

extensive experiments using an 866 MHz Pentium-III PC with 1024MB-memory

running Windows NT. The databases are synthetic datasets of various characteristics.

The method used to generate these datasets is described in Section 2.5.1. Section 2.5.2

compares the results of executions by various algorithms. Results on some scale-up

experiments are presented in Section 2.5.3.

2.5.1 Generation of synthetic data

The synthetic data were generated by the well-known method in [5]. For

completeness, we briefly review the method here. The datasets mimic the real world

transactions. The total number of possible items for all transactions is |N|. The total

number of transactions in the database D is |D|. |T| is the average number of items in

transactions. The size of each transaction is picked from a Poisson distribution with

mean equal to |T|. The generation of transactions and the generation of potentially

frequent itemsets (abbreviated as PFIs) are described in the following.

Each PFI comprises randomly picked items from the |N| items. L is the set of

PFIs and its size is |L|. The size of each PFI is determined following a Poisson

distribution with mean equal to |I|. In order to model that there are common items in

frequent itemsets, subsequent itemsets in L are related. In subsequent PFIs, a fraction

of items are chosen from the previous PFI, the other items are picked at random. The

fraction corr, called correlation level, is decided by an exponentially distributed

random variable with mean equal to corrµ . Items in the very first PFI are randomly

chosen.

 26

To model that all the items in a frequent itemset do not always jointly appear,

each transaction consists of a series of fractions of PFIs [5]. Each PFI in L is assigned

a weight, which corresponds to the probability that this itemset will be picked. Each

weight is exponentially distributed and then normalized in such a way that the sum of

all the weights is equal to one. In addition, each PFI is associated with a corruption

level (abbreviated as crup). When adding items from a PFI to a transaction, an item is

dropped as long as a uniformly distributed random number between 0 and 1 is less

than crup. The crup is a normally distributed random variable with mean crupµ and

variance crupσ .

The parameters used in the experiments are summarized in Table 2-3. All

datasets used here are generated from 1000 items (|N|=1000), and the number of PFIs

is 5000 (|L|=5000). Like most studies in association rule mining, the crupµ , crupσ ,

and corrµ are set to 0.5, 0.1, and 0.5, respectively.

Table 2-3. Parameters used in the experiments

Parameter Description Value

|D| Number of transactions in database D 100K~10000K

|N| Number of possible items 1000

|T| Average number of items of transactions 10, 15, 18, 25

|L| Number of potentially frequent itemsets 5000

|I| Average size of potentially frequent itemsets 2, 6, 10, 12, 18

2.5.2 Total execution times of various algorithms

Extensive experiments were performed to realize the performance improvements of

LexMiner. We implemented algorithms including FP-growth [28] and TreeProjection

[1], and used a well-known version of Apriori, “GNU Lesser General Public License”

available at http://fuzzy.cs.uni-magdeburg.de/~borgelt/, for comparisons. Algorithms

 27

such as Max-Miner [12], DepthFirst [2], CHARM [100], and CLOSET [65] were not

implemented since they discover only the sub-set, instead of the complete set, of

frequent itemsets.

 The TreeProjection we implemented is a memory-based version of the

techniques reported in [1]. The cache-blocking technique to overcome extra disk I/O

(when memory cannot hold large matrices) was not implemented since the

lexicographic tree, all the matrices, and all the projected transaction sets can fit into

the 1024MB memory in the experiments.

We first evaluated the effect of various minsups for datasets having a typical

value of 100,000 transactions. The notation Tα-Iβ-Dγ means that the dataset is created

with |T| = α, |I| = β, and |D| = γ × 1000. The experiments started from the combination

of (average size of transactions) |T|=10 and (average size of potentially frequent

itemsets) |I|=2. When |T| and |I| are small, all the frequent itemsets can be found in few

passes since most transactions comprise few items and most frequent itemsets have

few items. As shown in Fig. 2-6, there is not much difference among these algorithms

for minsup over 1.25%. The array-counting technique, especially in the pass 2

optimization, makes LexMiner faster than all the other algorithms for short patterns.

T10-I2-D100

0

3

6

9

12

15

18

21

24

27

30

2.5 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25minsup (%)

T
ot
al
 e
xe
cu
ti
on
 t
im
e
(s
ec
.)

Apriori

TreeProjection

FP-growth

LexMiner

Fig. 2-6. Execution times of various algorithms on the dataset having short patterns

 28

T15-I6-D100

0

10

20

30

40

50

60

70

80

2.5 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25minsup (%)

T
o
ta
l
ex
ec
ut
io
n
ti
m
e
(s
ec
.) Apriori

TreeProjection

FP-growth

LexMiner

(a) dataset T15-I6-D100

T15-I12-D100

0

10

20

30

40

50

60

70

80

2.5 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25minsup (%)

T
ot
al
 e
xe
cu
ti
on
 t
im
e
(s
ec
.) Apriori

TreeProjection

FP-growth

LexMiner

(b) dataset T15-I12-D100

T18-I6-D100

0

20

40

60

80

100

120

140

160

180

200

2.5 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25minsup (%)

T
ot
al
 e
xe
cu
ti
on
 t
im
e
(s
ec
.) Apriori

TreeProjection

FP-growth

LexMiner

(c) dataset T18-I6-D100

Fig. 2-7. Performance comparisons of execution time over various supports

Next, various combinations of parameters |T| and |I| were used to generate other

 29

datasets. The combinations of |T| and |I| in these experiments are T15-I6, T15-I12, and

T18-I6. All the three datasets have frequent itemsets size bigger than two even with

large minsup values. The relative performance among these algorithms is shown in

Fig. 2-7. It can be seen from the figure that LexMiner outperforms the others over

various minimum supports. The performance improvement is resulted from the fast

item-matching, especially in lower levels when minsup was smaller than 0.75%.

Fig. 2-8 shows the performance of constructing LexTree using three ordering of

items, support-ascending, support-descending, and lexicographic order. The tree

constructed using support-ascending order is bushier (having more nodes) than the

others. The effect of fast list-matching in leaves thus benefits support-ascending order

the most. In the experiment, transactions in the dataset were not re-ordered so that

item re-ordering (to cope with support ascending/descending ordered nodes) is

required for each transaction, in every pass. Therefore, the performance gap is not

clear until minsup is 0.25%, with the dense dataset T25-I18.

T25-I18-D100

0

50

100

150

200

250

2.5 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25minsup (%)

T
ot
al
 e
xe
cu
ti
on
 t
im
e
(s
ec
.)

LexMiner

Support-Ascending

Support-Descending

Fig. 2-8. Execution results of different ordering

2.5.3 Scale-up experiments

To assess the scalability of our algorithm, several experiments were conducted. Fig.

 30

2-9 shows that the execution time of LexMiner increases linearly as the database size

increases, ranging from 100K to 10 million. The |T| and the |I| were fixed to see how

execution time changes as the database size increases. Different minsups yield similar

and consistent results. Fig. 2-9 displays the result of minsup = 0.5%, which exhibits

good linearity in scale-up.

(a) |D| = 100,000 to 1,000,000

T15-I10 , minsup = 0.5%

4.9

10.0

14.5

18.4

2.2

7.7

12.2

16.3

20.6

22.3

0

5

10

15

20

25

100 200 300 400 500 600 700 800 900 1000

Number of transactions ('000)

T
ot
al
 e
xe
. t
im
e
(s
ec
.)

T15-I10, minsup = 0.5%

22.3

200.0

177.3

158.0

138.4

119.2

99.8

80.6

61.3

41.8

0

50

100

150

200

250

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of transactions ('000)

T
o
ta
l e
x
e.
 ti
m
e
(s
ec
.)

(b) |D| = 1,000,000 to 10,000,000

Fig. 2-9. Linear scalability of the database size

2.6 Summary

The huge amount of data and the complicated interrelationships between data

 31

bring about new challenges in the mining of undiscovered knowledge from large

databases. Various algorithms have been developed for the discovery of association

rules. However, the ordered property embedded in the transactions has never been

fully utilized in existing mining algorithms. Therefore, we take into account the

lexicographic nature of data and propose a novel approach for scalable mining of

association rules. The proposed approach effectively places itemsets in a LexTree

structure and discovers frequent itemsets efficiently by the LexMiner algorithm.

The LexTree structure provides a hierarchical ordering mechanism for storing

candidate itemsets and frequent itemsets, and enables fast support counting and rapid

candidate generation. In the LexTree, an itemset is uniquely represented by a

sequential combination of nodes, one node in each level, in the tree. Itemsets having

the same prefixed items share the same internal nodes and are grouped by these nodes.

Due to sharing, the space used by the candidate LexTree is very compact in

comparison with methods using hash-tree, which usually allocate additional storage

while constructing hash tables. Due to grouping, we can generate candidates more

rapidly from the frequent LexTree since no traversal is needed like those using hash

tables for the storage of frequent itemsets.

In addition, the proposed LexMiner algorithm uses the LexTree to achieve fast

support counting. Our focus is to investigate mechanisms to improve the most

time-taking kernel operation of finding candidates in transactions, since the

candidate-finding procedure is repeatedly executed for every transaction in every pass.

LexMiner exploits the orderly placed candidates, breaks the finding into lexicographic

comparisons to speed up the matching of candidates and prune the impossible

candidates by hierarchical comparisons in each level. The intrinsically ordered

transactions and the hierarchically ordered candidates together improve the matching

efficiency. The speeding up of kernel computation is the key to performance

 32

improvement. The comprehensive experiments also demonstrate that LexMiner

coupled with LexTree is efficient and exhibits good scalability.

In addition to the discovery of association rules, the problem of sequential

pattern mining generalizes the discovery of association rules to relationships of

itemsets over time. The ordering property still holds for items in these transactions. It

is worthy of further investigation on the mining of sequential patterns, which is

explored in Chapter 3.

 33

Chapter 3 Algorithm MEMISP for Sequential Pattern Mining

3.1 Overview

Frequent itemset mining, as discussed in Chapter 2, is extensively studied in data

mining. A more complicated issue in data mining is the discovery of sequential

patterns, which finds frequent sub-sequences in a sequence database. For example, in

the transactional database of an electronic store, each record may correspond to a

sequence of a customer’s transactions ordered by transaction time. An example

sequential pattern might be that customers typically bought PC and printer, followed

by the purchase of scanner and graphics software, and then digital camera. The

mining technique is applicable to many applications, including the analysis of Web

traversal patterns, telecommunication alarms, DNA sequences, to name a few.

Sequential pattern mining is more difficult than association rule mining because

the patterns are formed not only by combinations of items but also by permutations of

item-sets. Enormous patterns can be formed as the length of a sequence is not limited

and the items in a sequence are not necessarily distinct. Let the size of a sequence be

the total number of items in that sequence. Given 100 possible items in a sequence

database, the number of potential patterns of size two is 100*100 + (100*99)/2, that

of size three is 100*100*100 + 100*[(100*99)/2]*2 + (100*99*98)/(2*3), and so on.

Owing to the challenge of exponential possible combinations, improving the

efficiency of sequential pattern mining has been the focus of recent research in data

mining [6, 11, 13, 25, 29, 38, 39, 42, 46, 47, 48, 55, 67, 72, 96, 98, 99].

In general, we may categorize the mining approaches into the generate-and-test

framework and the pattern-growth one, for sequence databases of horizontal layout.

Typifying the former approaches [6, 51, 80], the GSP (Generalized Sequential Pattern)

 34

algorithm [80] generates potential patterns (called candidates), scans each data

sequence in the database to compute the frequencies of candidates (called supports),

and then identifies candidates having enough supports as sequential patterns. The

sequential patterns in current database pass become seeds for generating candidates in

the next pass. This generate-and-test process is repeated until no more new candidates

are generated. When candidates cannot fit in memory in a batch, GSP re-scans the

database to test the remaining candidates that have not been loaded into memory.

Consequently, GSP scans at least k times of the on-disk database if the maximum size

of the discovered patterns is k, which incurs high cost of disk reading. Despite that

GSP was good at candidate pruning, the number of candidates is still very huge that

might impair the mining efficiency.

The PrefixSpan (Prefix-projected Sequential pattern mining) algorithm [67],

representing the pattern-growth methodology [29, 67, 70], finds the frequent items

after scanning the sequence database once. The database is then projected, according

to the frequent items, into several smaller databases. Finally, the complete set of

sequential patterns is found by recursively growing subsequence fragments in each

projected database. Two optimizations for minimizing disk projections were described

in [67]. The bi-level projection technique, dealing with huge databases, scans each

data sequence twice in the (projected) database so that fewer and smaller projected

databases are generated. The pseudo-projection technique, avoiding physical

projections, maintains the sequence-postfix of each data sequence in a projection by a

pointer-offset pair. However, according to [67], maximum mining performance can be

achieved only when the database size is reduced to the size accommodable by the

main memory by employing pseudo-projection after using bi-level optimization.

Although PrefixSpan successfully discovered patterns employing the

divide-and-conquer strategy, the cost of disk I/O might be high due to the creation and

 35

processing of the projected sub-databases.

Besides the horizontal layout, the sequence database can be transformed into a

vertical format consisting of items’ id-lists [11, 64, 98]. The id-list of an item is a list

of (sequence-id, timestamp) pairs indicating the occurring timestamps of the item in

that sequence. Searching in the lattice formed by id-list intersections, the SPADE

(Sequential PAttern Discovery using Equivalence classes) algorithm [98] completed

the mining in three passes of database scanning. Nevertheless, additional computation

time is required to transform a database of horizontal layout to vertical format, which

also requires additional storage space several times larger than that of the original

sequence database.

With rapid cost down and the evidence of the increase in installed memory size,

many small or medium sized databases will fit into the main memory. For example, a

platform with 256MB memory may hold a database with one million sequences of

total size 189MB. Pattern mining performed directly in memory now becomes

possible. However, current approaches discover the patterns either through multiple

scans of the database or by iterative database projections, thereby requiring abundant

disk operations. The mining efficiency could be improved if the excessive disk I/O is

reduced by enhancing memory utilization in the discovering process.

Therefore, we propose a memory-indexing approach for fast discovery of

sequential patterns, called MEMISP (MEMory Indexing for Sequential Pattern

mining). The features of the MEMISP approach lie in no candidate generation, no

database projection, and high CPU and memory utilization. MEMISP reads data

sequences into memory in the first pass, which is the sole pass, of database scanning.

Through index advancement within an index set comprising pointers and position

indices to data sequences, MEMISP discovers patterns by a recursive

finding-then-indexing technique. When the database is too large to fit into the main

 36

memory, we still can mine patterns efficiently in two database scans by running

MEMISP with a partition-and-validation technique discussed in Section 3.4.3. The

conducted experiments show that MEMISP runs faster than both GSP and PrefixSpan

algorithms, whether the main memory can accommodate the database or not.

The rest of the chapter is organized as follows. The problem is formulated in

Section 3.2 and related work is reviewed in Section 3.3. Section 3.4 presents the

MEMISP algorithm. The experimental results of mining memory-accommodable

databases and extra-large databases are described in Section 3.5. We discuss the

performance factors of MEMISP in Section 3.6 and conclude the study in Section 3.7.

3.2 Problem Statement

A sequence s, denoted by <e1e2…en>, is an ordered set of n elements where each

element ei is an itemset. An itemset, denoted by (x1, x2,…, xq), is a nonempty set of q

items, where each item xj is represented by a literal. Without loss of generality, items

in an element are assumed in lexicographic order. The size of sequence s, written as |s|,

is the total number of items in all the elements in s. Sequence s is a k-sequence if |s| =

k. For example, <(a)(c)(a)>, <(a,c)(a)>, and <(b)(a,e)> are all 3-sequences. A

sequence s = <e1e2…en> is a subsequence of another sequence s' = <e1'e2'…em'> if

there exist 1 ≤ i1< i2 < …< in ≤ m such that e1 ⊆ e i1', e2 ⊆ e i2', …, and en ⊆ e in'.

Sequence s' contains sequence s if s is a subsequence of s'. For example,

<(b,c)(c)(a,c,e)> contains <(b)(a,e)>.

 Each sequence in the sequence database DB is referred to as a data sequence.

The support of sequence s, denoted by s.sup, is the number of data sequences

containing s divided by the total number of data sequences in DB. The minsup is the

user specified minimum support threshold. A sequence s is a frequent sequence, or

called sequential pattern, if s.sup ≥ minsup. Given the minsup and the sequence

 37

database DB, the problem of sequential pattern mining is to discover the set of all

sequential patterns.

An example database DB having 6 data sequences is listed in the first column in

Table 3-1. Take the data sequence C6 for instance. It has three elements (i.e. three

itemsets), the first having items b and c, the second having item c, and the third

having items a, c and e. The support of <(b)(a)> is 4/6 since all the data sequences,

except C2 and C3, contain <(b)(a)>. The <(a,d)(a)> is a subsequence of both C1 and

C4, thus <(a,d)(a)>.sup = 2/6. Given minsup = 50%, <(b)(a)> is a sequential pattern

while <(a,d)(a)> is not. The set of all sequential patterns is shown in the second

column in Table 3-1.

Table 3-1. Example sequence database DB and the sequential patterns

Sequence Sequential patterns (minsup=50%)
C1=<(a,d)(b,c)(a,e)>
C2=<(d,g)(c,f)(b,d)>
C3=<(a,c)(d)(f)(b)>
C4=<(a,b,c,d)(a)(b)>
C5=<(b,c,d)(a,c,e)(a)>
C6=<(b,c)(c)(a,c,e)>

<(a)>, <(a)(a) >, <(a)(b)>, <(a,c)>, <(a,c)(a)>, <(a,e)>,
<(b)>, <(b)(a)>, <(b)(a,e)>, <(b)(e)>, <(b,c)>, <(b,c)(a)>,
<(b,c)(a,e)>, <(b,c)(e)>, <(b,d)>,
<(c)>, <(c)(a)>, <(c)(a,e)>, <(c)(b)>, <(c)(e)>,
<(d)>, <(d)(a)>, <(d)(b)>, <(d)(c)>,
<(e)>

3.3 Related Work

The problem of sequential pattern mining is first described and solved in [6] with the

AprioriAll algorithm. In subsequent work, the same authors proposed the GSP

algorithm [80] that outperforms AprioriAll. The GSP algorithm makes multiple passes

over the database and finds frequent k-sequences at k-th database scanning. Initially,

each item is a candidate 1-sequence for the first pass. Frequent 1-sequences are

determined after checking all the data sequences in the database. In succeeding passes,

frequent (k−1)-sequences are self-joined to generate candidate k-sequences, and then

any candidate k-sequence having a non-frequent sub-sequence is deleted. Again, the

 38

supports of candidate k-sequences are counted by examining all data sequences, and

then those candidates having minimum supports become frequent sequences. This

process terminates when there is no candidate sequence any more. Owing to the

generate-and-test nature, the number of candidates often dominates the overall mining

time. However, the total number of candidates increases exponentially as the minsup

decreases, even with effective pruning techniques. The PSP (Prefix Sequential Pattern)

algorithm [51] is similar to GSP, except that the placement of candidates is improved

by prefix tree arrangement to speed up the discovery.

The FreeSpan (Frequent pattern-projected Sequential Pattern Mining) algorithm

was proposed to mine sequential patterns by a database projection technique [29].

FreeSpan first finds the frequent items after scanning the database once. The sequence

database is then projected, according to the frequent items, into several smaller

databases. Finally, all sequential patterns are found by recursively growing

subsequence fragments in each database. Based on the similar projection technique,

the authors proposed the PrefixSpan algorithm [67]. PrefixSpan outperforms

FreeSpan in that only effective postfixes are projected. The bi-level and

pseudo-projection techniques further enhance PrefixSpan to project fewer

sub-databases. However, the total size of the projected databases might be several

times larger than the size of the original database.

In addition, the SPADE algorithm finds sequential patterns using vertical database

layout and join-operations [98]. Vertical database layout transforms data sequences

into items’ id-lists. The id-list of an item is a list of (sequence-id, timestamp) pairs

indicating the occurring timestamps of the item in that sequence-id. The list pairs are

joined to form a sequence lattice, in which SPADE searches and discovers the patterns

[98]. Nevertheless, transforming the naturally horizontal database into vertical

demands more space than the original since a sequence-id is repeated in several items’

 39

id-lists. The gain by vertical approach might diminish owing to the additional space

and transforming time required while mining large databases.

In order to boost the mining performance, memory utilization should be increased

to minimize disk operations, especially when dealing the ever-increasing sequence

databases. Therefore, we propose the MEMISP algorithm, as described next.

3.4 The Proposed Method

In this section, the proposed method for sequential pattern mining, named MEMISP,

is described. MEMISP uses a recursive find-then-index strategy to discover all the

sequential patterns from in-memory data sequences. MEMISP first reads all the data

sequences into memory and counts the supports of 1-sequences (i.e. sequences having

only one item). Next, an index set for each frequent 1-sequence is constructed and

then frequent sequences are found using the data sequences indicated by the index set.

The algorithm is illustrated by mining an example database in Section 3.4.1. Section

3.4.2 presents the algorithm. The procedure for dealing with extra-large databases

beyond main memory space is described in Section 3.4.3. Section 3.4.4 discusses the

differences between MEMISP and PrefixSpan. Some implementation issues are

discussed in Section 3.4.5.

3.4.1 Mining sequential patterns by MEMISP: an example

Definition 3-1(Type-1 pattern, type-2 pattern, stem, P-pat) Given a pattern ρ and a

frequent item x in the sequence database DB, ρ’ is a type-1 pattern if it can be formed

by appending the itemset (x) as a new element to ρ, and is a type-2 pattern by

extending the last element of ρ with x. The frequent item x is called the stem-item

(abbreviated as stem) of the sequential pattern ρ’ and ρ is the prefix pattern

(abbreviated as P-pat) of ρ’.

 40

For example, given a pattern <(a)> and the frequent item b, we have the type-1

pattern <(a)(b)> by appending (b) to <(a)> and the type-2 pattern <(a,b)> by

extending <(a)> with b. The <(a)> is the P-pat and the b is the stem of both <(a)(b)>

and <(a,b)>. As to a type-2 pattern <(c)(a,d)>, its P-pat is <(c)(a)> and its stem is d.

Note that the null sequence, denoted by <>, is the P-pat of any frequent 1-sequence.

Clearly, any frequent k-sequence is either a type-1 pattern or a type-2 pattern of a

frequent (k-1)-sequence.

Example 3-1: Given minsup = 50% and the DB in Table 3-1. MEMISP mines the

patterns by the following steps.

Step 1. Read DB into memory and find frequent 1-sequences. We accumulate the

count of every item while reading data sequences from DB into memory. The

in-memory DB is referred to as MDB hereafter. Hence, we have frequent items a

(count=5 for appearing in 5 data sequences C1, C3, C4, C5, C6), b (count=6), c

(count=6), d (count=5), and e (count=3). All these frequent items are stems of the

type-1 patterns with respect to the P-pat = <>. Loop steps 2 and 3 on each stem to

find all the sequential patterns.

Step 2. Output the sequential pattern ρ formed by current P-pat and stem x, and

construct the index set ρ-idx. We output a sequential pattern ρ generated by current

P-pat and stem x. Next, we allocate a (ptr_ds, pos) pair for each data sequence ds in

MDB if and only if ds contains x, where ptr_ds is a pointer to ds and pos is the first

occurring position of x in ds. The set of these (ptr_ds, pos) pairs is called index set

ρ-idx.

Take stem x = a for example. Now, the P-pat is <>. We output the type-1

sequential pattern ρ = <(a)> and construct the index set <(a)>-idx as shown in Fig.

3-1-(1). For instance, the pos is 1 for C1=<(a,d)(b,c)(a,e)> and 4 for

C6=<(b,c)(c)(a,c,e)>.

 41

: MDB
(the in-memory DB)

: index-set

(1) <(a)>-idx
<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

1 •

4 •
4 •

1 •

1 •

(2) <(a)(a)>-idx
<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

7 •

5 •
5 •

(3) <(a)(b)>-idx
<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

5 •
3 •

6 •

(4) <(a,c)>-idx
<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

2 •

5 •
5 •

3 •

(5) <(a,c)(a)>-idx
<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

7 •
5 •

(6) <(a,e)>-idx
<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

6 •
6 •

6 •

(7) <(b)>-idx
<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

5 •

2 •
1 •

5 •

3 •

1 •

Fig. 3-1. Some index sets and the in-memory DB

Step 3. Use index set ρ-idx and MDB to find stems with respect to P-pat = ρ. Any

sequential pattern having current pattern ρ as its P-pat will be identified in this step.

Now, the ptr_ds of each (ptr_ds, pos) pair in ρ-idx points to a data sequence ds that

contains ρ. Any item appearing after the pos position in ds could be a potential stem

(with respect to ρ). Thus, for every ds existing in ρ-idx, we increase the count of such

item (item appearing after the pos in ds) by one, and then identify the stems having

sufficient support counts.

Let us continue with <(a)>-idx. The pos of the (ptr_ds, pos) pointing to C1 is

1. Only those items occurring after position 1 in C1 need counting. We increase

the count of potential stem d (for potential type-2 pattern <(a,d)>) by one (also

potential stem e for <(a,e)>). We also increase the count of potential stem b (also

c, a, and e) for potential type-1 pattern <(a)(b)> (<(a)(c)>, <(a)(a)>, and

<(a)(e)>) by one. Analogously, items occurring after position 1, 1, 4, 4 for data

sequences C3, C4, C5, and C6 are counted, respectively. After validating the

 42

support counts, we obtain stems a, b of type-1 patterns and stems c, e of type-2

patterns with respect to P-pat = <(a)>. Steps 2 and 3 will be recursively applied

on the stems a, b, c, and e with P-pat = <(a)>. We proceed the mining with stem a

and P-pat = <(a)> as follows.

Applying step 2 generates and outputs the sequential pattern ρ = <(a)(a)>.

Again, a new (ptr_ds, pos) pair for a data sequence ds will be inserted into ρ-idx

(<(a)(a)>-idx) if and only if ds contains ρ. While constructing <(a)(a)>-idx, we

simply check the data sequences indicated by current index set, i.e. <(a)>-idx,

rather than in MDB. Assume that a pair (ptr_ds, pos) in <(a)>-idx points to ds.

The search for the occurring position of stem a (with respect to P-pat = <(a)>)

starts from position pos+1 in ds. Item a occurs at 5 in C1 and in C4, and at 7 in C5.

No entry is created for C3 and C6 since item a cannot be found after position 1

and 4, respectively. Hence, we have the new index set <(a)(a)>-idx as shown in

Fig. 3-1-(2). Note that current index set is ‘pushed’ for later mining before the new

index set becomes active.

Applying step 3 with <(a)(a)>-idx and MDB, no stems can form sequential

patterns further. Therefore, this mining stops and the previous index set, i.e.

<(a)>-idx, is popped. The mining goes on with stem b. The creation and mining

of <(a)(b)>-idx outputs pattern <(a)(b)> but finds no more patterns. Next, the

<(a,c)>-idx is constructed. The result of applying step 2 with <(a,c)>-idx

generates <(a,c)> and discovers next stem a. Thus, <(a,c)>-idx is ‘pushed’ and the

<(a,c)(a)>-idx is created.

After the mining with <(a,c)(a)>-idx, which stops with nothing found but

outputs the pattern <(a,c)(a)>, the pattern <(a,e)> is generated while mining with

<(a,e)>-idx. All the subsequent find-then-index processes regarding stem a with

P-pat = <> now finish.

 43

By collecting the patterns found in the above process, MEMISP efficiently discovers

all the sequential patterns.

3.4.2 The MEMISP algorithm

The central idea of MEMISP is to utilize the memory for both data sequences and

indices in the mining process. A memory size of 256MB is very common in nowadays

computer installation, which can accommodate a sequence database having one

million sequences of size 189MB as indicated in our experiments. Processing

sequences in-memory is more efficient than disk-based processing, either multiple

scans or iterative projections. MEMISP scans only one pass over the database, which

reads data sequences into memory, in the whole mining process. Starting from

sequential patterns of size one, MEMISP then discovers all the frequent sequences of

larger size recursively by searching the set of in-memory data sequences having

common sub-sequences. Fig. 3-2 outlines the proposed MEMISP algorithm.

In order to speed up mining by focused search, we construct a set grouping the

data sequences to check. A data sequence ds participates in the finding of pattern ρ’

only when ds contains the P-pat (prefix-pattern) ρ of pattern ρ’. Consequently, for

each ds containing ρ, we create a pointer ptr_ds pointing to ds in the set for exploring

patterns ρ’ having P-pat ρ. The set is denoted by ρ–idx. For each data sequence ds

pointed in the ρ–idx, we associate ptr_ds with a position index pos indicating where

(in ds) should we begin to find the potential stems. That is, ρ–idx is the set of (ptr_ds,

pos) pairs for discovering patterns whose P-pat = ρ.

Take the data sequence C6=<(b,c)(c)(a,c,e)> in memory for instance. We may

find <(b)> occurring at position 1, <(b,c)> occurring at composite position (1, 2), and

<(b,c)(a)> occurring at composite position (1, 2, 4). Assume that items b, c, and a are

frequent. While mining patterns having P-pat <(b)>, we include C6 in the index set

 44

Algorithm MEMISP

Input: DB = a sequence database; minsup = minimum support.
Output: the set of all sequential patterns.
Method:

1. Scan DB into MDB (the in-memory DB), find the set of all frequent items.
2. For each frequent item x,

(i) form the sequential pattern ρ = <(x)> and output ρ.
(ii) call IndexSet(x, <>, MDB) to construct the index set ρ-idx.
(iii) call Mine(ρ, ρ-idx) to mine patterns with index set ρ-idx.

Subroutine IndexSet(x, ρ, range-set)
Parameters: x = a stem-item; ρ = a (P-pat) pattern; range-set = the set of data

sequences for indexing. /* If range-set is an index set, each data sequence for
indexing is pointed by the ptr_ds of the (ptr_ds, pos) entry in the index set */

Output: index set ρ'-idx, where ρ' denotes the pattern formed by stem-item x and
P-pat ρ.

Method:
1. For each data sequence ds in range-set,

 (i) if range-set = MDB then start-pos = 0; otherwise start-pos = pos.
 (ii) starting from position (start-pos+1) in ds,

if the stem-item x is first found at position pos in ds, insert a (ptr_ds, pos)
pair to the index set ρ'-idx, where ptr_ds points to ds.

2. Return index set ρ'-idx.

Subroutine Mine(ρ, ρ-idx)
Parameter: ρ = a pattern; ρ-idx = an index set.
Method:

For each data sequence ds pointed by the ptr_ds of an entry (ptr_ds, pos) in ρ-idx,
(i) starting from position (pos+1) to |ds| in ds, increase the support count of each

potential stem x by one.
2. Find the set of stems x having enough support count to form a sequential pattern.
3. For each stem x,

(i) form the sequential pattern ρ' with P-pat ρ and stem x, output ρ'.
(ii) call IndexSet(x, ρ, ρ-idx) to construct the index set ρ'-idx.
(iii) call Mine(ρ', ρ'-idx) to mine patterns with index set ρ'-idx.

Fig. 3-2. Algorithm MEMISP

with pos=1, suggesting that only items appearing after position 1 in C6 should engage

in the mining. Similarly, C6 will be included in the index set for patterns having P-pat

 45

<(b,c)> with pos=2, P-pat <(b,c)(a)> with pos=4. As the discovered P-pat becomes

longer, the index set will contain fewer data sequences to process. Moreover, the

number of items in each data sequence remaining to be processed becomes fewer.

Through recursive finding-then-indexing, the proposed MEMISP algorithm efficiently

discovers sequential patterns.

3.4.3 Dealing with extra-large databases by database partitioning

With more and more memory installed, many databases will fit into the main memory

without difficulty. Still, some databases might be too large for the main memory to

accommodate in a batch. In this case, the sequential patterns are discovered by a

partition-and-validation technique, as shown in Fig. 3-3.

DB: the sequence database
Di: a partition of DB which fits in memory
Fi: set of frequent sequences in partition Di
C: set of potential patterns, C = ∪Fi, 1 ≤ i ≤ p

D1 D2 Dp

DB

...

first scan

second scan

F1 F2 Fp

C = ∪Fi, 1 ≤ i ≤ p

compute supports of the patterns
 in C

apply MEMISP to find frequent
sequences in each partition

True patterns found

Fi is saved on disk ...

Fig. 3-3. Partition the database and discover patterns for extra-large databases

The extra-large database DB is partitioned so that each partition can be handled

in main memory by MEMISP. The number of partitions is minimized by reading as

many data sequences into main memory as possible to constitute a partition. The set

of potential patterns in DB is obtained by collecting the discovered patterns after

 46

running MEMISP on these partitions. The true patterns can be identified with only one

extra database pass through support counting against the data sequences in DB one at

a time. Therefore, we may employ MEMISP to mine databases of any size, of any

minimum support, in two passes of database scanning.

In comparison with other approaches, MEMISP minimizes the total number of

complete database passes to two without requiring any additional storage space.

SPADE needs to scan the database three times and demands disk storage for the

transformed vertical database. GSP repeats at least k times to discover the frequent

k-sequences. PrefixSpan often creates and processes the projected databases that

amount to several times the original database size.

3.4.4 Differences between MEMISP and PrefixSpan

The PrefixSpan algorithm proposed in [67] can be optimized with bi-level and

pseudo-projection techniques. Pseudo-projection technique avoids redundant pieces of

postfixes projected when the database/projected database can be held in main memory.

PrefixSpan and MEMISP do differ, although the two algorithms both utilize memory

for fast computation. The differences are illustrated in the following two cases: (1)

when the database can be held in main memory (2) when the database cannot be held

in main memory.

 When the database can be held in main memory, the two algorithms find the

patterns in a similar, but still different way. Both algorithms load the database into

memory, but disagree with the processing of in-memory sequences. PrefixSpan

algorithm removes in-frequent items and greatly shrinks projected sequences. The

example 3 in [67] clearly demonstrates such projections so that item g is not projected

in Table 2 of [67]. Pseudo-projection maintains the sequence-postfix of each data

sequence in memory by a pointer-offset pair. The detailed implementation of

 47

PrefixSpan with the pseudo-projection technique is not available in the literature. To

sustain the spirit of PrefixSpan, in-frequent items are to be removed when

pseudo-projection is applied. For the in-memory sequences, removing in-frequent

items could be done, for example, by copying only frequent items in postfixes or

masking out the in-frequent items. Therefore, besides the index tables, an intermediate

in-memory working database must be generated to present the physically projected

sub-database in each iteration. No matter what the implementation is, the postfixes

(sequences) require rearrangements.

 MEMISP algorithm removes no items from the in-memory sequences. No

intermediate in-memory database generation and no rearrangement of sequences are

required at all. Single sole in-memory sequence database as originally loaded is used

throughout the whole process. We shift the index without modifying any in-memory

sequence to skip the in-frequent items in each iteration. Indeed, the (ds_ptr, pos) index

pairs in MEMISP function similarly as the (pointer, offset) index pairs in

PrefixSpan+pseudo_projection for sequence processing. We believe that fast index

advancement eliminate the need to process the in-frequent items.

 When the database cannot be held in main memory, MEMISP is totally different

from PrefixSpan. PrefixSpan, either with pseudo-projection or not, now generates and

scans sub-databases that might amount to several times the original database size.

Even with bi-level projection technique, PrefixSpan still might suffer from low

support value for generating many projected sub-databases before pseudo-projection

could help. With respect to any support value, MEMISP scans the database only twice,

and no more, without generating any intermediate databases.

 Bi-level projection is proposed to reduce the number and the size of projected

databases, at the cost of doubled scanning to fill the S-matrix (see Lemma 3.3 [67]).

Dealing extra-large databases with bi-level projection means that the entire database

 48

is scanned at least twice at first. Next, if each projected database could be luckily fit

into the memory, pseudo-projection can be applied. This gives the fewest scans, which

is more than twice in total, PrefixSpan can do. Otherwise, re-applying bi-level

projection could result in the total number of scans to be far more than two.

 MEMISP partitions the extra-large database to several sub-databases; each

sub-database can be fit into the memory. The first scan, which mines each

sub-database independently by MEMISP, identifies the potential candidates. The

second scan verifies whether a candidate has sufficient support to be frequent.

MEMISP never scans the database, no matter how large the database is, more than

twice for any value of support. In addition, MEMISP never generates any intermediate

database during the mining process. The partition-based approach is used in [73] for

association rule mining. However, MEMISP is the first algorithm that successfully

adapts the partitioning technique to the mining of sequential patterns in the literature.

3.4.5 Implementation issues

In common implementations, a data sequence is usually represented as a linked list of

itemsets in memory. Such a structure might be suitable for algorithms that access a

single data sequence for support counting at a time. In order to facilitate fast index

construction and speed up searching from specific position (in a data sequence),

MEMISP uses variable-length arrays to hold the data sequences in memory. Data

sequence C1 = <(a,d)(b,c)(a,e)>, for instance, is coded as the array = [a, d, $, b, c, $, a,

e, $], where $ indicates the end of an element. Therefore, both data sequences and

index sets benefit from the array representation for the reduced storage space.

Efficient searching from specific position of a data sequence is also achieved.

 When mining databases that require partitioning, a percentage of main memory

(like 5%) must be reserved for holding variables, index sets, etc. In order to signal that

 49

main memory cannot accept data sequence any more, the amount of available

physical memory is checked periodically while reading the database. Once free

memory space is below the predefined percentage, MEMISP starts mining the

memory partition and the remaining data sequences will be handled in subsequent

reading.

3.5 Performance Evaluation

Extensive experiments were conducted to assess the performance of the MEMISP

algorithm. The experiments used an 866 MHz Pentium-III PC with 256MB memory

running the Windows NT. Like most studies on sequential pattern mining [6, 11, 13,

29, 51, 67, 98], the synthetic datasets for these experiments were generated using the

conventional procedure described in [6]. We briefly review the generation of

experimental data in Section 3.5.1. Section 3.5.2 compares the results of mining by

GSP, PrefixSpan, and MEMISP algorithms. To justify that MEMISP handles large

databases as well, scale-up experiments are presented in Section 3.5.3.

3.5.1 Generation of experimental data

The procedure described in [6] models retailing environment, where each customer

purchases a sequence of itemsets. Such a sequence is referred to as a potentially

frequent sequence (abbreviated as PFS). Still, some customers might buy only some

of the items from a PFS. A customer’s data sequence may consist of items from

several PFSs. The PFSs are composed of potentially frequent itemsets (abbreviated as

PFIs). A table of total NI PFIs (denoted by ΓI) and a table of total NS PFSs (denoted

by ΓS) were generated before picking items for the transactions of customer

sequences.

Table 3-2 summarizes the symbols and the parameters used in the experiments.

 50

The procedure of data sequence generation [6] is reviewed here, first the generation of

PFIs and PFSs, and then the customer sequences. The number of itemsets in a PFS is

generated by picking from a Poisson distribution with mean equal to |S|. The itemsets

in a PFS are picked from table ΓI. In order to model that there are common itemsets in

frequent sequences, subsequent PFSs in ΓS are related. In the subsequent PFS, a

fraction of itemsets are chosen from the previous PFS and the other itemsets are

picked at random from ΓI. The fraction corrS, called correlation level, is decided by

an exponentially distributed random variable with mean equal to
Scorrµ . Itemsets in

the first PFS in ΓS are randomly picked. The generations of PFI and ΓI are analogous

to the generations of PFS and ΓS, with parameters N items, mean |I|, correlation level

corrI and mean
Icorrµ correspondingly.

Customer sequences are generated as follows. The number of transactions for the

next customer and the average size of transactions for this customer are determined

first. The size of the customer’s data sequence is picked from a Poisson distribution

with mean equal to |C|. The average size of the transactions is picked from a Poisson

distribution with mean equal to |T|. Items are then assigned to the transactions of the

customer. Each customer is assigned a series of PFSs from table ΓS.

The assignment of PFSs is based on the weights of PFSs. The weight of the PFS,

representing the probability that this PFS will be chosen, is exponentially distributed

and then normalized in such a way that the sum of all the weights is equal to one.

Since all the itemsets in a PFS are not always bought together, each sequence in ΓS is

assigned a corruption level crupS. When selecting itemsets from a PFS to a customer

sequence, an itemset is dropped as long as a uniformly distributed random number

between 0 and 1 is less than crupS. The crupS is a normally distributed random

variable with mean
Scrupµ and variance

Scrupσ . The assignment of PFIs (from ΓI) to

 51

Table 3-2. Parameters used in the experiments

Parameter Description Value

|DB| Number of data sequences in database DB 200K, 500K, 1000K,
10000K

|C| Average size (number of transactions) per
customer 10, 20

|T| Average size (number of items) per transaction 2.5, 5

|S| Average size of potentially sequential patterns 4, 8

|I| Average size of potentially frequent itemsets 1.25, 2.5

NI Number of potentially frequent itemsets 25000

NS Number of possible sequential patterns 5000

N Number of possible items 10000

ΓS The table of potentially frequent sequences (PFSs)

ΓI The table of potentially frequent itemsets (PFIs)

corrS Correlation level (sequence), exponentially
distributed Scorrµ =0.25

crupS Corruption level (sequence), normally
distributed

Scrupµ =0.75,

Scrupσ =0.1

corrI Correlation level (itemset), exponentially
distributed Icorrµ =0.25

crupI Corruption level (itemset), normally distributed Icrupµ =0.75,

Icrupσ =0.1

a PFS is processed analogously with parameters crupI , mean
Icrupµ and

variance
Icrupσ correspondingly.

All datasets used here were generated by setting N = 10000, NS = 5000, NI =

25000. A dataset created with |C| = α, |T| = β, |S| = χ, and |I| = δ is denoted by the

notation Cα−Tβ−Sχ−Ιδ. In addition,
Scrupµ and

Icrupµ were both set to 0.75,

Scrupσ and
Icrupσ were both set to 0.1. The

Scorrµ and
Icorrµ were both set to

0.25.

 52

3.5.2 Execution times of GSP, PrefixSpan, and MEMISP algorithms

The total execution times of sequence mining with various minsup values by

algorithms GSP, PrefixSpan, and MEMISP using horizontal layout are compared in

the experiments. The PrefixSpan was implemented without further optimizations like

pseudo-projection or bi-level projection. The SPADE algorithm was not implemented

in the comparison because additional storage space and computation time are required

to transform the database to vertical format.

Dataset C10-T2.5-S4-I1.25 having 200,000 data sequences (37.6MB) was used

in the first experiment. Fig. 3-4 shows that the total execution times of the three

algorithms are nearly the same for minsup = 2% and 1.5% because only few (less than

200) patterns have enough supports. Besides, the discovered patterns were all short

patterns of size one. However, the performance gaps become clear as minsup

decreases. In the experiment, MEMISP and PrefixSpan are faster than GSP for all

minsup values. MEMISP outperforms PrefixSpan about 13%~38% for low minsup.

Next, the characteristics of datasets are changed. The results of execution on

dataset C20-T2.5-S4-I1.25 (|DB|=200K, 76.3MB) is shown in Fig. 3-5. The total

execution time of running GSP was too long to be shown in Fig. 3-5 and in the

subsequent figures. With respect to the same minsups, the doubled |C| generated

longer data sequences and produced more patterns, thereby requiring more execution

time. The total execution time of running PrefixSpan is about 1.2 to 3.3 times of

running MEMISP. The efficiency of PrefixSpan was slowed down by fast growth of

the projected databases. For example, PrefixSpan processed total 4.9 times, and 21

times the size of DB when minsup = 2% and misup = 0.75%, respectively. The results

of execution by changing |T| from 2.5 to 5, |S| from 4 to 8, and |I| from 1.25 to 2.5

have the similar effects. Fig. 3-6, 3-7, and 3-8 display that MEMISP outperforms

 53

PrefixSpan. Fig. 3-9 shows that the performance of running with a bigger |T| and a

bigger |I| (|T|=7.5, |I|=5) is consistent with previous experiments. The performance

gain resulted from in-memory processing of the MEMISP algorithm. In summary,

MEMISP is faster than PrefixSpan, ranging from 1.2 to 3.3 times, for various data

characteristics.

C10 -T2.5 -S4 -I1.25 , |DB |=200K

0

250

500

750

1000

1250

1500

0.25 0.5 0.75 1 1.5 2minsup (%)

To
ta

l e
xe

. t
im

e
(s

ec
.) MEMISP

PrefixSpan
GSP

Fig. 3-4. Total execution times with respect to various minsup values

C20 -T2.5 -S4 -I1.25 , |DB |=200K

0

1000
2000

3000

4000

5000
6000

7000

8000

0.25 0.5 0.75 1 1.5 2minsup (%)

To
ta

l e
xe

. t
im

e
(s

ec
.) MEMISP

PrefixSpan

Fig. 3-5. Comparisons of execution times on dataset C20-T2.5-S4-I1.25

 54

C20 -T5 -S4 -I1.25 , |DB |=200K

0

1000

2000

3000

4000

5000

6000
7000

8000

0.25 0.5 0.75 1 1.5 2minsup (%)

To
ta

l e
xe

. t
im

e
(s

ec
.) MEMISP

PrefixSpan

Fig. 3-6. Comparisons of execution times on dataset C10-T5-S4-I1.25

C20 -T2.5 -S8 -I1.25 , |DB |=200K

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0.25 0.5 0.75 1 1.5 2minsup (%)

To
ta

l e
xe

. t
im

e
(s

ec
.) MEMISP

PrefixSpan

Fig. 3-7. Comparisons of execution times on dataset C10-T2.5-S8-I1.25

C20 -T2.5 -S4 -I2.5 , |DB |=200K

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0.25 0.5 0.75 1 1.5 2minsup (%)

To
ta

l e
xe

. t
im

e
(s

ec
.) MEMISP

PrefixSpan

Fig. 3-8. Comparisons of execution times on dataset C10-T2.5-S4-I2.5

 55

C20 -T7.5 -S4 -I5 , |DB |=200K

0

2000
4000

6000
8000

10000
12000

14000
16000

0.5 0.75 1 1.5 2minsup (%)

To
ta

l e
xe

. t
im

e
(s

ec
.) MEMISP

PrefixSpan

Fig. 3-9. Comparisons of execution times on dataset C10-T7.5-S4-I5

3.5.3 Scale-up experiments

The maximum size of the datasets used in Section 3.5.2 is 76.3MB, the

C20-T2.5-S4-I1.25 dataset with 200,000 sequences. Consequently, all the data

sequences can fit into the 256MB main memory. The performance of MEMISP is very

stable even when minsup is very low for large databases, if the database can fit into

memory. Given minsup = 0.25%, MEMISP can perform well in processing one

million data sequences of total size 189MB with a 256MB main memory in the

experiments. Nevertheless, just for the mining of 100K sequences with minsup =

0.5%, GSP scanned the database 4 times to test the 4.4 million candidates in pass two

(more passes to go), and PrefixSpan generated sub-databases which amounts to 9.6

times the size of the original database.

In order to justify the scalability of MEMISP, the next experiments increased the

number of data sequences, from 1000K to 10,000K with C10-T2.5-S4-I1.25. In Fig.

3-10, the total execution times are normalized with respect to the execution time for

|DB| = 1000K. The size of the dataset having 1000K sequences was 189MB so that

MEMISP discovered patterns in a single pass without partitioning. Other datasets

 56

were mined by the partition-and-validation technique as described in Section 3.4.3.

For example, the dataset of |DB| = 10,000K of size 1.8GB was mined by 10 partitions.

Given minsup = 0.75% with 10 million sequences, GSP could not complete the

mining in a reasonable time. PrefixSpan created the projected databases of size to the

amount of 11.4 times the original database size. Though Fig. 3-10 shows that both

PrefixSpan and MEMISP are linearly scalable with the number of data sequences, but

MEMISP has better scalability.

C10 -T2.5 -S4 -I1.25 , minsup = 0.75%

1
3
5
7
9

11
13
15
17
19

1 2 3 4 5 6 7 8 9 10
|DB | (million sequences)

R
el

at
iv

e
ex

ec
ut

io
n

tim
e MEMISP

PrefixSpan

Fig. 3-10. Linear scalability of MEMISP vs. PrefixSpan

3.6 Discussion

We summarize the factors contributing to the efficiency of the proposed MEMISP

algorithm by comparing with the well-known GSP and PrefixSpan algorithms.

• One pass database scanning. MEMISP reads the original database only once,

except for extra-large databases described in Section 3.4.3. In the experiments,

a database with one million data sequences can fit into a platform with 256MB

memory so that the database was scanned only once by MEMISP in the

mining. However, GSP must read the database at least k times, assuming that

 57

the maximum size of the discovered patterns is k. PrefixSpan reads one pass

over the original database, and then writes and reads once for each projected

sub-database. In some cases such as low minsup, the total size of

sub-databases might be several times larger than the size of the original

database.

• No candidate generation. MEMISP discovers patterns directly from data

sequences in-memory by index advancement. In contrast to GSP, MEMISP

generates no candidates so that the time in candidate generation and testing are

saved. Moreover, MEMISP works well even with small memory since the

unknown sized (and often huge) space for candidate storage is unnecessary.

• No database projection. The pure and simple index advancing in MEMISP

creates no new databases so that the intermediate storage, which PrefixSpan

needs, is not needed here. Note that MEMISP and PrefixSpan will have similar

performance in mining a memory-accommodable database if the

pseudo-projection technique [67] is used in PrefixSpan. However, according to

[67], pseudo-projection is not efficient if it is used for disk-based accessing,

and should be employed after bi-level optimization [67] having reduced the

database size to the main memory accommodable size.

• Focused search and effective indexing. MEMISP considers those data

sequences indicated by current index set only instead of searching every data

sequence in the database. Furthermore, each position index keeps moving

forward along a data sequence as the discovered pattern gets longer.

Consequently, fewer and fewer items in a data sequence need to be considered

as a prefix pattern getting longer.

• Compact index storage. MEMISP requires very compact storage for the

index sets. In an index set, the maximum number of indices required equals to

 58

the number of data sequences, no matter how small the minsup value is.

Assume that the database has m million sequences. In a 4-byte addressing

mode, MEMISP demands maximum (4+4)*m MB for an index set. The

required total memory would be less than k*(8*m) MB for discovering the

frequent k-sequences with respect to any minsup value. Nevertheless, the

memory requirement for storing candidates in GSP can hardly be estimated

without giving the minsup. Similarly, the total size of the projected databases

in PrefixSpan increases as the minsup decreases.

• High CPU and memory utilization. PrefixSpan needs only little memory

space during the mining process. It solved the mining problem successfully by

sub-database searching, though, with possible CPU idle while projecting

sub-databases. MEMISP, by contrast, uses all the available memory and

maximizes CPU utilization without extra disk operations.

3.7 Summary

Speeding up the discovery of sequential patterns has been the focus of data mining

research. In this chapter, we present a memory indexing approach for fast discovery of

sequential patterns, called MEMISP. MEMISP mines the set of all sequential patterns

without generating candidates or sub-databases. The performance study exhibits that

MEMISP is more efficient than both GSP and PrefixSpan algorithms, and has good

linear scalability even for very low minimum supports. Moreover, MEMISP may

estimate the total memory required, which is independent of the specified minsup.

MEMISP scans the database at most twice with the partition-and-validation technique

even for extra large databases so that the slow disk I/O is minimized. The compact

indexing and the effective find-then-index technique together makes MEMISP a

promising approach for fast discovery of sequential patterns in sequence databases of

 59

any size, even with small memory and low minsup.

In addition to sequential pattern mining, the technique could be extended to the

discovery of maximum patterns [2], constrained/generalized sequential patterns [80],

multi-dimensional patterns [70], and incremental sequence discovery after database

updating [102]. It is also interesting to integrate the proposed index sets with database

systems for efficient queries.

 60

Chapter 4 Algorithm DELISP for Sequential Pattern Mining

with Time Constraints

4.1 Overview

The discovery of sequential patterns is a complicated issue in data mining [6, 11, 25,

47, 72, 80, 89, 98], as described in Chapter 3. A typical example is a retail database

where each record corresponds to a customer’s purchasing sequence, called data

sequence. A data sequence is composed of all the customer’s transactions ordered by

transaction time. Each transaction is represented by a set of literals indicating the set

of items (called itemset) purchased in the transaction. The objective is to find all the

frequent sub-sequences (called sequential patterns) in the sequence database.

An example sequential pattern might be that 30% customers bought PC and

printer, followed by the purchase of scanner and graphics-software, and then digital

camera. Such a pattern, denoted by <(PC, printer)(scanner,

graphics-software)(digital camera)>, has three elements where each element is an

itemset. Although the issue is motivated by the retail industry, the mining technique is

applicable to domains bearing sequence characteristics, including the analysis of Web

traversal patterns, medical treatments, natural disasters, DNA sequences, and so forth

[6, 70, 92].

Sequential pattern mining [67, 70, 98] is more complex than association rule

mining [14, 84] because the patterns are formed not only by combinations of items

but also by permutations of itemsets. The number of potential sequences is by far

larger than that of potential itemsets. Given 100 possible items in the database, the

total number of possible itemsets is ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛100

0

100

i i
= 2100. Let the size of a sequence be the

 61

total number of items in that sequence. The number of potential sequences of size k is

∑ ∑∑ ∑
−−

=

−−−

==

−

=

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 21

3

11

1

1

2 1 131 1 21

100100100100 iik

i

iik

i k

k

i

ik

i

k

k
iiii

Λ

Λ . The total number of potential

sequences, accumulating from size one to size 100 and more, could be enormous.

The issue of mining sequential patterns with time constraints was first addressed

in [80]. Three time constraints including minimum gap, maximum gap and sliding

time-window are specified to enhance conventional sequence discovery. For example,

without time constraints, one may find a pattern <(b, d, e)(a, f)>. However, the pattern

could be insignificant if the time interval between (b, d, e) and (a, f) is too long. Such

patterns could be filtered out if the maximum gap constraint is specified.

Analogously, one might discover the pattern <(b, d, e)(a, g)> from many data

sequences consisting of itemset (a, g) occurring one day after the occurrence of

itemset (b, d, e). Nonetheless, such a pattern is a false pattern in discovering weekly

patterns, i.e. the minimum gap of 7 days. In other words, the sale of (b, d, e) might not

trigger the sale of (a, g) in next week. Therefore, time constraints including maximum

gap and minimum gap should be incorporated in the mining to reinforce the accuracy

and significance of mining results.

Moreover, conventional definition of an element of a sequential pattern is too

rigid for some applications. Essentially, a data sequence is defined to support a pattern

if each element of the pattern is contained in an individual transaction of the data

sequence. However, the user may not care whether the items in an element (of the

pattern) come from a single transaction or from adjoining transactions of a data

sequence if the adjoining transactions occur close in time (within a specified time

interval). The specified interval is named sliding time-window [80]. For instance,

given a sliding time-window of 5, a data sequence < t1(a, d) t2(b) t3(c)> can support

the pattern <(a, b, d)(c)> if the difference between time t1 and time t2 is no greater

 62

than 5. Adding sliding time-window constraint to relax the definition of an element

will broaden the applications of sequential patterns.

Although there are many algorithms dealing with sequential pattern mining [6,

51, 55, 98], few handle the mining with the addition of time constraints. The GSP

(Generalized Sequential Pattern) algorithm proposed in [80] is the first algorithm that

discovers sequential patterns with time constraints within Apriori framework. GSP

solves the problem by generating and testing candidate patterns in multiple database

scans. Candidate patterns having any non-frequent sub-sequence are pruned before

testing to reduce the search space. Still, the number of candidates might be huge [67].

Furthermore, in order to check whether a data sequence contains a certain candidate,

GSP transforms each data sequence into items’ transaction-time lists. The

transformation speeds up time-constraint related testing but introduces overheads

during each database scanning.

Recent studies indicate that pattern-growth methodology could speed up

sequence mining. Despite many studies on sequential pattern mining within

pattern-growth methodology [29, 67, 68, 69, 70], no algorithm fully functionally

equivalent to GSP on time constraint issues has been proposed so far. Especially,

solving the sliding time-window constraint can be hardly found in the literature

(except in the GSP context). In this chapter, we propose a new algorithm called

DELISP (Delimited Sequential Pattern) for handling all three time constraints on

sequential patterns, introduced in the context of GSP, within the pattern-growth

framework. DELISP solves the problem by recursively growing valid patterns in

projected sub-databases generated by sub-sequence projection. To accelerate mining

by reducing the size of sub-sequences, the constraints are integrated in the projection

to delimit the counting and growing of sequences. In DELISP, the bounded projection

technique eliminates invalid sub-sequence projections caused by unqualified

 63

maximum/minimum gaps, the windowed projection technique reduces redundant

projections for adjacent elements satisfying the sliding window constraint, and the

delimited growth technique grows only the patterns satisfying constraints. The

conducted experiments show that DELISP outperforms the GSP algorithm. The

scale-up experiments also indicate that DELISP has good linear scalability with the

number of data sequences.

The rest of the chapter is organized as follows. We formulate the problem in

Section 4.2 and review some related work in Section 4.3. Section 4.4 presents the

DELISP algorithm. The experimental evaluation is described in Section 4.5. We

discuss the performance improving factors in Section 4.6. Section 4.7 summarizes this

chapter.

4.2 Problem Statement

Let Ψ = {α1, α2, …, αn} be a set of literals, called items. An itemset I = (β1, β2, …, βq)

is a nonempty set of q items such that I ⊆ Ψ. A sequence s, denoted by <e1e2…ew>, is

an ordered list of w elements where each element ei is an itemset. Without loss of

generality, we assume the items in an element are in lexicographic order. The size of a

sequence s, written as |s|, is the total number of items in all the elements in s.

Sequence s is a k-sequence if |s| = k. For example, <(a)(c)(a)>, <(a,c)(a)>, and

<(b)(a,e)> are all 3-sequences.

The sequence database DB contains |DB| data sequences. A data sequence ds

having a unique identifier sid is represented by sid/<t1e1’ t2e2’ … tnen’>, where element

ei’ occurred at time ti , t1 < t2 < ...< tn. Four parameters are specified to mine the

database DB: (1) minsup (minimum support) (2) mingap (minimum time gap) (3)

maxgap (maximum time gap) and (4) swin (sliding time-window). Given minsup, the

three constraints mingap, maxgap, swin, and the database DB, the problem is to

 64

discover the set of all time-constrained sequential patterns, i.e. sequential patterns

satisfying the three time constraints.

A sequence s is a time-constrained sequential pattern if s.sup ≥ minsup, where

s.sup is the support of the sequence s and minsup is the user specified minimum

support threshold. The support of s is the number of data sequences containing s

divided by |DB|. A data sequence ds = sid/<t1e1’ t2e2’… tnen’> contains a sequence s =

<e1e2…ew> if there exist integers l1, u1, l2, u2, …, lw, uw and 1 ≤ l1 ≤ u1 < l2 ≤ u2 < …<

lw ≤ uw ≤ n such that the four conditions hold: (1) ei ⊆ (eli
’ ∪ ...∪ eui

’), 1 ≤ i ≤ w (2)

tui
- tli

 ≤ swin, 1 ≤ i ≤ w (3) tui
- tli-1

 ≤ maxgap, 2 ≤ i ≤ w (4) tli
- tui-1

 > mingap, 2 ≤ i ≤

w. Assume that tj, mingap, maxgap, and swin are all positive integers, mingap and

swin can be zero, and mingap < maxgap. Fig. 4-1 visualizes how a data sequence ds

may contain the sequence s.

eli-1
’ eui-1

’ eli
’ eui

’elements in
ds

timestamp

ei-1 ⊆
(eli-1

’∪… ∪ eui-1
’)

elements in
s

ei ⊆
(eli

’∪… ∪ eui
’)

tli-1
tui-1

tli tui

≤ swin
>mingap

≤ maxgap

sequence s = <e1e2…ew> is contained in data sequence
ds = sid/<t1

e1’ t2
e2’… tn

en’> if all the items in ei can be found
in the element formed by combining elements between eli

’ and eui
’ ,

where 1 ≤ i ≤ w, and the constraints swin, mingap, maxgap are satisfied.

Fig. 4-1. Example of the sequence containment relationship

An example database DB is shown in the first column in Table 4-1. The data

sequence C1/<1(c)35(b,f)> has two elements (itemsets), one having a single item c

occurring at time 1 and the other having items b and f occurring at time 35. Given

 65

Table 4-1. Example sequence database DB and the time-constrained sequential
patterns

Sequence

C1/<1(c)35(b,f)>

C2/<2(b)4(d)>

Time-constrained
sequential patterns
(minsup = 40%, mingap =
2, maxgap = 30, swin = 2)

Sequential patterns
(minsup=40%)

C3/<1(a,d)5(c)6(c)8(b)35(a,f)>

C4/<2(a)4(d)30(f)33(a)61(f)>

C5/<1(a,b,e)4(e)7(f)8(d)9(b)>

<(a)>,<(a)(b)>, <(a,d)>,
<(a)(f)>, <(b)>, <(b,d)>,
<(b,f)>, <(b)(f)>, <(c)>,
<(d)>, <(f)>

<(a)>, <(a)(a)>, <(a)(b)>,
<(a)(d)>, <(a)(f)>, <(b)>,
<(b)(d)>, <(b)(f)>, <(c)>,
<(c)(b)>, <(c)(f)>, <(d)>,
<(d)(a)>, <(d)(b)>,
<(d)(f)>, <(f)>

mingap = 2, maxgap = 30, swin = 2, C1 contains <(c)> and <(b,f)>, but it does not

contain either <(c)(b)> or <(c)(f)> since 35-1 > maxgap. Similarly, C2/<2(b)4(d)>

does not contain <(b)(d)> since 4-2 is not greater than mingap. Sequence <(a)(b)> is

contained in C3/<1(a,d)5(c)6(c)8(b)35(a,f)> and C5/<1(a,b,e)4(e)7(f)8(d)9(b)> so that

<(a)(b)>.sup = 2/5. With the specified swin, C4/<2(a)4(d)30(f)33(a)61(f)> may contain

<(a,d)> (4-2 ≤ 2) and C5 may contain <(b,d,f)> (9-7 ≤ 2). Given minsup = 40%, both

<(a)(b)> and <(a,d)> are time-constrained sequential patterns while <(b,d,f)> is not.

The set of all time-constrained sequential patterns is listed in the second column in

Table 4-1. Note that the mining of sequential patterns without time constraints, shown

in the third column in Table 4-1, is a special case with mingap = 0, maxgap = ∞, and

swin = 0 here.

4.3 Related Work

Much research has been focused in sequence mining without time constraints of

mingap, maxgap and swin [6, 29, 67, 75, 98]. The GSP algorithm is the first algorithm

that handles the time constrains in sequential patterns [80]. Based on the Apriori

framework [6], the patterns are found in multiple database passes. In every database

scan, each data sequence is transformed into items’ time-lists for fast finding of

 66

certain element with a time tag. Since the start-time and end-time of an element (may

comprise several transactions) must be considered, GSP defines ‘contiguous

sub-sequence’ for candidate generation, and move between ‘forward phase’ and

‘backward phase’ for checking whether a data sequence contains a certain candidate

[80].

A general pattern-growth framework was presented in [69] for constraint-based

sequential pattern mining. From the application point of view, seven categories of

constrains including item, length, super-pattern, aggregate, regular expression,

duration, and gap constraints were covered. Among these constraints, duration and

gap constraints are tightly coupled with the support counting process because they

confine how a data sequence contains a pattern. Orthogonally classifying constraints

by their roles in mining, monotonic, anti-monotonic, and succinct constraints were

characterized and the prefix-monotone constraint was introduced. The prefix-growth

framework which pushes prefix-monotone constraints into PrefixSpan was also

proposed in [69]. However, with respect to time constraints, prefix-growth only

mentioned maxgap and mingap time constraints (though duration constraint was

addressed) with no implementation details, and sliding time-window was not

considered at all.

The cSPADE algorithm [97] extends the vertical mining algorithm SPADE [98] to

deal with time constraints. Vertical mining approaches [11, 97, 98] discovers

sequential patterns using join-operations and vertical database layout, where data

sequences are transformed into items’ (sequence-id, time-id) lists. The cSPADE

algorithm checks mingap and maxgap while doing temporal joins. Nevertheless, the

huge sets of frequent 2-sequences must be preserved to generate the required classes

for the maxgap constraint [97]. While it is possible for cSPADE to handle constraints

like maximum/minimum gaps by expanding the id-lists and augmenting the

 67

join-operations with temporal information [97], it does not appear feasible to

incorporate the sliding time-window. The sliding time-window constraint was not

mentioned in cSPADE.

A different kind of time constraints, discovering patterns that involve multiple time

granularities, was addressed in [13]. Simple or complex event structures, which are

episodes [47, 42] with time interval restrictions similar to mingap/maxgap constraints,

are discovered by the introduced timed automaton with granularities [13].

Nevertheless, we are interested in the discovery of time-constrained sequential

patterns forming by itemsets.

4.4 DELISP: Delimited Sequential Pattern Mining

In this section, we describe the proposed pattern-growth mechanism for mining

time-constrained sequential patterns, called DELISP. The main idea is efficiently

‘finding’ the frequent items, and then effectively ‘growing’ potential patterns in the

sub-databases constructed by projecting sub-sequences corresponding to the frequent

items. We also project the time-tags into the sub-databases to generate patterns

satisfying the time constraints. However, DELISP projects fewer but complete

combinations by windowed and bounded projections, and grows potential patterns

effectively by delimited growth. Section 4.4.1 introduces the terminology used in

DELISP. In Section 4.4.2, we demonstrate the method by mining an example database.

Section 4.4.3 describes the proposed algorithm. For convenience, we refer to a data

sequence ds = sid/<t1e1’ t2e2’ … tnen’> as ds in the following context.

4.4.1 Terminology used in DELISP

Definition 4-1 (Frequent item) An item x is called a frequent item in a sequence

database DB if the support of 1-sequence <(x)> is greater than or equal to minsup.

 68

Definition 4-2 (Stem, type-1 growth, type-2 growth, prefix) Given a sequential

pattern ρ and a frequent item x in the sequence database DB, x is called the stem-item

(abbreviated as stem) of the sequential pattern ρ’ if ρ’ can be formed by (1) appending

(x) as a new element to ρ or (2) extending the last element of ρ with x. The formation

of ρ’ is a type-1 growth if it is formed by appending (x), and a type-2 growth if it is

formed by extending with x. The prefix pattern (abbreviated as prefix) of ρ’ is ρ.

For example, given <(a)> and the frequent item b, we may have the type-1

growth <(a)(b)> by appending (b) to <(a)> and the type-2 growth <(a,b)> by

extending <(a)> with b. The <(a)> is the prefix and the b is the stem of both <(a)(b)>

and <(a,b)>. As to a type-2 growth <(c)(a,d)>, its prefix is <(c)(a)> and its stem is d.

Note that the null sequence, denoted by <>, is the prefix of any frequent 1-sequence.

Definition 4-3 (start-time, end-time, tag-list) The timestamp indicating the

occurrence of itemset I in ds is marked in the projected database. If itemset I is

contained in a single element tδeδ’ in ds, the start-time (abbreviated as st) and

end-time (abbreviated as et) pair st:et is marked as tδ : tδ . If I is contained in eδ’∪eδ+1’

∪…∪eε’ (in ds), st:et is marked as tδ : tε . We refer to the list of all the st:et pairs as

the tag-list of I in ds. The tag-list is denoted by [st1:et1, st2:et2, …, stk:etk] where sti ≤

eti for 1 ≤ i ≤ k, sti < sti+1 and eti < eti+1 for 1 ≤ i ≤ k-1.

Definition 4-4 (Accessible) Let the tag-list of itemset I in ds be [st1:et1, st2:et2, …,

stk:etk]. An element ea’ is accessible from I in ds if its timestamp ta satisfies: (1) eti -

swin ≤ ta ≤ sti + swin, where i ∈ {1, 2, …, k} or (2) eti + mingap < ta ≤ sti + maxgap,

where i ∈ {1, 2, …, k} or (3) tb + mingap < ta ≤ tb + maxgap where tb is the timestamp

of an accessible element eb’ from I in ds.

Fig. 4-2 demonstrates the three accessible circumstances. For example, the

tag-list of itemset (c) in C1/<1(c)35(b,f)> is [1:1], that of (b) in C1 is [35:35]. The

tag-list of (a) in C3/<1(a,d)5(c)6(c)8(b)35(a,f)> is [1:1, 35:35], that in

 69

C4/<2(a)4(d)30(f)33(a)61(f)> is [2:2, 33:33], and that in C5/<1(a,b,e)4(e)7(f)8(d)9(b)> is

[1:1]. With respect to (a,d), the tag-list in C3 is [1:1] and that in C4 is [2:4]. The 35(b,f)

in C1 is not accessible from 1(c) if maxgap = 30. Considering 1(a,d) in C3, elements

5(c), 6(c), 8(b) are accessible with mingap = 2 and maxgap = 30. Additionally, 35(a,f) is

also accessible because it is accessible via 8(b) for 8+2 < 35 ≤ 8+30, or via 5(c) then

8(b).

Note that when an accessible element is extended by condition (1) in Definition

4-4, the extension is checked on not violating mingap or maxgap constraints with

respect to the previous itemset of I (in the pattern), denoted by Ip. The checking is to

ensure that itemset I, having timestamps satisfying the mingap/maxgap constraint

with Ip, does not violate the gap constraint after the type-2 extension. Such a checking

requires projecting st:et of Ip, the detail of which is not shown in the following context

for clearer illustration.

Lemma 4-1. Let ds contain the non-null prefix ρ = <e1e2…ep>. Given the tag-list of ep

in ds, a frequent item x in an element ea’ in ds can be a stem only if ea’ is accessible

from ep in ds.

Lemma 4-1 is based on the fact that a valid ‘growth’ must satisfy time constraints.

Hence, we may prevent the inaccessible elements from projection to speed up the

growing process, as shown in Fig. 4-3. We further reduce projections by eliminating

items in an accessible element from projection using Lemma 4-2, as depicted in Fig.

4-4.

 70

tb mingap

maxgap

sti eti

swin

swin

accessible elements

sti eti
mingap

maxgap

(1)

(2)

(3)

applying swin constraint
(resulting in two sets)

applying mingap/maxgap
constraint

applying mingap/maxgap
constraint on another
accessible element eb’
(having timestamp tb)

accessible elements

accessible elements

accessible elements

Fig. 4-2. Accessible elements from itemset I in ds with tag-list [st1:et1, st2:et2, …,

stk:etk]

only accessible elements are projected

ds contains ρ = <e1…ep>
inaccessible elements are eliminated from projection

ep
ds

Fig. 4-3. The projected elements of ds with respect to ρ
ρ = <e1…ep>, ep= (…, x)

ds
st1 et1

swin

swin

any x' in an accessible element ea’ is eliminated from projection if x' ≤ x

st2 et2

ep:

Fig. 4-4. Eliminating items having smaller lexicographic order from projection

(Lemma 4-2)

Lemma 4-2. Let the last element in prefix ρ be ep, the last item in ep be x, and the

tag-list of ep in ds be [st1:et1, st2:et2, …, stk:etk]. Any item x′ in an accessible element

ea’ cannot be a stem if (1) x′ ≤ x and (2) taea’ is accessible from ρ by satisfying et1 -

swin ≤ ta ≤ et1.

 71

Lemma 4-2 is based on the fact that items are in lexicographic order within

elements. Any item to be used as a stem for the type-2 growth having prefix ρ should

have an order greater than the order of the last item in ρ. Thus, any small-ordered x’

(located in taea’, et1 - swin ≤ ta ≤ et1) need not be projected.

Note that all the items in an accessible element taea’ having et1 < ta ≤ st1 + swin

are projected even their lexicographical orders precede that of the last item in prefix ρ.

These items can be stems for potential type-1 growth (prefix ρ) and cannot be

eliminated from projection.

4.4.2 Mining time-constrained sequential patterns by DELISP: an example

All the time-constrained sequential patterns are found by growing frequent sequences

from size one to the maximum size. Frequent items in DB can be determined after

scanning DB once. We then use each frequent item as a stem with prefix <> to form

the set of all frequent 1-sequences. The sub-sequences satisfying the constraints are

then projected into related sub-databases for further ‘growing’. The stems of type-1

and type-2 growth can be determined by scanning the sub-databases once. Recursively,

the time-constraint integrated projection and growing techniques are applied to

discover the frequent 2-sequences, 3-sequences, etc.

Example 1: Given minsup=40%, mingap=2, maxgap=30, swin=2, and the DB as

shown in Table 4-1, DELISP mines the patterns by the following steps.

Step 1. Find frequent items. By scanning DB once, we have frequent items a (count

= 3 for appearing in 3 data sequences C3, C4 and C5), b (count = 4), c (count = 2), d

(count =4), and f (count = 4). Non-frequent item e is omitted from mining afterward.

The five items are stems of type-1 growth having prefix <>.

Step 2. Project corresponding sub-sequences to sub-databases. Considering the

time-constrained sequential patterns having prefix ρ = <(x)>, each can be found in the

 72

sub-database (named ρ-DB) generated by projecting all the data sequences having

item x in DB. While projecting a data sequence ds into ρ-DB, we omit the

non-frequent items, those inaccessible elements (using Lemma 4-1), and those

‘lexicographically smaller’ items (using Lemma 4-2).

We tabulate the sub-databases <(a)>-DB, <(b)>-DB, <(c)>-DB, <(d)>-DB,

and <(f)>-DB in part 1 of Table 4-2. Take <(a)>-DB for instance. The tag-lists of

(a) in C3, C4, and C5 are exemplified in Section 4.4.1. The 1(d) in C3 is

accessible and is projected with respect to st:et = 1:1. Elements 5(c), 6(c), and 8(b)

in C3 are projected since they are all accessible (1+2 < 5 ≤ 1+30, 3 < 6 ≤ 31, and

3 < 8 ≤ 31). The 35(a,f) in C3 is also projected with respect to st:et = 35:35.

Similarly, we project the accessible elements 4(d), 30(f), 33(a), and 61(f) in C4. For

C5, element 7(f), 8(d), and 9(b) are projected, and 1(b), instead of 1(a,b,e), is

projected after dropping non-frequent item e and item a (by Lemma 4-2).

Note that the tag-list of (b) in C3 is [8:8], so 6(c) in C3 is projected into

<(b)>-DB since 8-2 ≤ 6 ≤ 8+2. The 35(a,f) in C1 does not appear in <(c)>-DB

because it is inaccessible from [1:1] (35 > 1+30), hence the tag-list and the entire

sub-sequence of C1 are eliminated. Similarly, C2 is removed from <(d)>-DB. In

addition, the 2(a) in C4 is not projected into <(d)>-DB using Lemma 4-2 (a < d).

However, the 7(f) in C5 must be included in <(d)>-DB because it is accessible

from [8:8].

Step 3. Mine each sub-database for the subsets of time-constrained sequential

patterns. In each sub-database, we grow the patterns in each sequence according to

the time constraints, and determine which pattern is a valid time-constrained

sequential pattern. Assume that we are growing patterns from prefix ρ whose last

element is ep and the tag-list of ep in ds is [st1:et1, st2:et2, …, stk:etk]. The stems of

potential type-1 growth come from the accessible ea’ whose timestamp ta satisfying eti

 73

Table 4-2. The projected sub-sequences in the ρ-DB sub-databases

ρ-DB Projected sub-sequences
Part 1: sub-databases of DB
 <(a)>-DB C3/[1:1,35:35]/<1(d)5(c)6(c)8(b)35(a,f)>;

C4/[2:2,33:33]/<4(d)30(f)33(a)61(f)>; C5/[1:1]/<1(b)7(f)8(d)9(b)>
 <(b)>-DB C1/[35:35]/<35(f)>; C2/[2:2]/<4(d)>; C3/[8:8]/<6(c)35(a,f)>;

C5/[1:1,9:9]/<7(f)8(d)9(b)>
 <(c)>-DB C3/[5:5,6:6]/<6(c)8(b)35(a,f)>
 <(d)>-DB C3/[1:1]/<5(c)6(c)8(b)35(a,f)>; C4/[4:4]/<30(f)33(a)61(f)>;

C5/[8:8]/<7(f)9(b)>
 <(f)>-DB C4/[30:30,61:61]/<33(a)61(f)>; C5/[7:7]/<8(d)9(b)>
Part 2: sub-databases of <(a)>-DB
 <(a)(b)>-DB C3/[8:8]/<35(f)>
 <(a)(f)>-DB C5/[7:7]/<8(d)9(b)>
 <(a,d)>-DB C3/[1:1]/<8(b)35(f)>; C4/[2:4]/<30(f) 61(f)>
Part 3: sub-databases of <(b)>-DB
 <(b)(f)>-DB C5/[7:7]/<8(d)9(b)>
 <(b,d)>-DB None
 <(b,f)>-DB None
Note: the notation ‘st:et’ prior to a data sequence denotes the start-time and the
end-time of the data sequence with respect to ρ projection.

+ mingap < ta ≤ sti + maxgap, where i ∈ {1, 2, …, k}. The stems of potential type-2

growth come from the accessible ea’ satisfying eti - swin ≤ ta ≤ sti + swin, where i ∈ {1,

2, …, k}. We may obtain the occurrence counts (i.e. supports) of stems after scanning

ρ–DB once. Recursively, we then generate the corresponding ρ’–DB (having prefix ρ)

for each stem having sufficient support count.

We mine <(a)>-DB as follows. Potential stems of type-1 growth in C3

(tag-list [1:1:,35:35]) are c and b since 5(c) and 8(b) are accessible within (1 + 2,

1 + 30]. In C4 (tag-list [2:2, 33:33]), f and a are potential stems of type-1 growth

since the accessible ranges are (2 + 2, 2 + 30] and (33 + 2, 33 + 30]. Similarly, f,

d, and b are potential stems of type-1 growth in C5. Thus, b (count = 2) and f

(count = 2) are the valid stems of type-1 growth in <(a)>-DB.

Potential stems of type-2 growth in C3 (tag-list [1:1,35:35]) are d (within

[1-2, 1+2]) and f (within [35-2, 35+2]), and that in C4 is d (within [2-2, 2+2]),

 74

and that in C5 is b (within [1-2, 1+2]). Therefore, d is the valid stem of type-2

growth in <(a)>-DB. Consequently, the time-constrained sequential patterns are

<(a)(b)> (count = 2), <(a)(f)> (count = 2), and <(a,d)> (count = 2) by mining

<(a)>-DB.

Step 4. Find all patterns by applying step 2 and step 3 on the sub-databases

recursively. Considering the time-constrained sequential patterns having prefix ρ =

<(a)(b)>, each can be found in the sub-database (named <(a)(b)>-DB) generated by

projecting all the data sequences having (b) in <(a)>-DB. Again, we eliminate the

non-frequent items, those inaccessible elements (using Lemma 4-1), and those

‘lexicographically smaller’ items (using Lemma 4-2).

Next, we apply step 2 to project the sub-sequences in <(a)>-DB further into

sub-databases <(a)(b)>-DB, <(a)(f)>-DB, and <(a,d)>-DB. The projected

sub-databases of <(a)>-DB are shown in part 2 of Table 4-2. Similarly,

inaccessible elements and non-frequent items (with respect to <(a)>-DB) are not

projected. The <(a)(b)>-DB is constructed by projecting the tag-list of (b) and the

accessible elements in each sub-sequence as follows. In <(a)>-DB of Table 4-2,

the tag-list of (b) in C3 is [8:8], that in C5 is [9:9]. Only C3/8:8/<35(f)> is

projected since there is no accessible element in C5. Neither type-1 nor type-2

growth in the <(a)(b)>-DB finds any pattern so the growth is stopped. The

<(a)(f)>-DB contains only one sequence after projection so that the growth in

<(a)(f)>-DB is also stopped. Again, constructing <(a,d)>-DB is accomplished by

projecting tag-lists of (a,d) and the accessible elements. We project C3 as

1:1/<8(b)35(f)> instead of 1:1/<5(c)6(c)8(b)35(a,f)> by removing non-frequent

items a and c. Growing pattern in <(a,d)>-DB is stopped without forming any

pattern. The mining with sub-databases of <(a)>-DB thus terminates.

We then recursively apply the steps on <(b)>-DB for patterns having prefix <(b)>,

 75

Algorithm DELISP
Input: DB = a sequence database; minsup = minimum support; mingap = minimum

time gap; maxgap = maximum time gap; swin = sliding time-window.
Output: the set of all time-constrained sequential patterns.
Method:

1. Scan DB once, find the set of all frequent items.
2. For each frequent item x,

(a) form a time-constrained sequential pattern ρ = <(x)> and output ρ.
(b) call ProjectDB(ρ, DB) to construct sub-database ρ-DB.
(c) call Mine(ρ-DB).

Subroutine ProjectDB(ρ, Db)
Parameters: ρ = pattern; Db = the sub-database.
Output: the sub-database ρ-DB.
Method:

1. For each data sequence ds = sid/<t1e1’ t2e2’… tnen’> in Db,
(a) record the tag-list [st1:et1, st2:et2, …, stk:etk] of ρ in ds, where each sti:eti

marks the start-time:end-time of the last element of ρ in ds.
(b) (Bounded-projection) mark the list of accessible elements in ds. /* See

Definition 4-4 (accessible) in Section 4.4.1 */
(c) (Windowed-projection) drop item x′ in an accessible element ea’ where et1

- swin ≤ ta ≤ et1 and x′ ≤ x. The item x is the last item in ep ∈ ρ = <e1e2…ep
>. /* Use Lemma 4-2 in Section 4.4.1 */

(d) if the list of accessible elements is not empty, drop the non-frequent items in
ds and project sid/[st1:et1, st2:et2, …, stk:etk]/< the list of accessible elements
> to ρ-DB.

Subroutine Mine(ρ-DB)
Parameter: ρ-DB = the sub-database.
Output: time-constrained sequential patterns having prefix ρ.
Method:

1. For each data sequence ds = sid/[st1:et1, st2:et2, …, stk:etk]/<t1e1’ t2e2’… tnen’> in
ρ-DB,
(a) for each element ei’ with timestamp ti in ds, insert the items in ei’

(i) to the stem set of potential type-1 growth if etj+mingap < ti ≤ stj+maxgap
where j ∈ {1, 2, …, k}. (Delimited-growth/type-1)

(ii) to the stem set of potential type-2 growth if etj-swin ≤ ti ≤ stj+swin
where j ∈ {1, 2, …, k}. (Delimited-growth/type-2)

(b) for each stem in the two sets, increase its support count by one.
2. Find the frequent items in the two sets by comparing the supports with minsup.
3. For each frequent item x in the two sets,

(a) form a time-constrained sequential pattern ρ’ (prefix ρ and stem x) and
output ρ’.
(b) call ProjectDB(ρ’, ρ-DB) to construct sub-database ρ’-DB.
(c) call Mine(ρ’-DB).

Fig. 4-5. Algorithm DELISP

on <(c)>-DB for patterns having prefix <(c)>, …, and on <(f)>-DB for patterns having

prefix <(f)>. By collecting the patterns found in the above process, DELISP efficiently

 76

discovers all the sequential patterns satisfying the time constraints.

4.4.3 The DELISP algorithm

Fig. 4-5 presents the proposed DELISP algorithm. Analogous to PrefixSpan algorithm,

DELISP decomposes the mining problem by recursively growing patterns, one item

longer than the current patterns, in the projected sub-databases. However, the

potential items used to grow are subjected to mingap and maxgap constraints, called

de-limited growth. Therefore, we perform type-1 growth with items in each element

taea’ within range (eti + mingap < ta ≤ sti + maxgap), where i ∈ {1, 2, …, k}, and

type-2 growth with items in each element taea’ within range (eti - swin ≤ ta ≤ sti +

swin), where i ∈ {1, 2, …, k}. The [st1:et1, st2:et2, …, stk:etk] is the tag-list of element

ep ∈ prefix <e1e2…ep> in ds. On projecting sub-databases, we avoid the bi-directional

growth by imposing the item-order in the type-2 growth. We always add a new item

(in ep) whose order is lexicographically larger than the order of the existing items for

type-2 growth. Considering an example element (b, d, e) formed by combining t1(d, e)

and t2(b), i.e. |t1 - t2| ≤ swin. When the time t2 is earlier than time t1, (b, d, e) will be

discovered in the projected <(b)>-DB since t1 ≤ t2 + swin. In case t1 < t2, (d, e) will be

kept in <(b)>-DB since it is accessible for t2 - swin ≤ t1. We refer to such projection as

windowed-projection.

Theorem 4-1. Algorithm DELSIP discovers the set of all time-constrained sequential

patterns.

Proof. Obviously, DELISP discovers the set of all frequent 1-sequences in step 1.

Clearly, a frequent k-sequence is formed by either a type-1 growth or a type-2 growth

from a frequent (k-1)-sequence. Thus, the set of all time-constrained sequential

patterns can be obtained by type-1 and type-2 growth, from size one to the maximum

size. Any item to be used as a stem must come from an accessible element; otherwise,

 77

the corresponding growth would violate either swin or mingap/maxgap constraint. In

Subroutine ProjectDB, by Lemma 4-1 and Lemma 4-2, those inaccessible items need

not be projected so they are eliminated. Subroutine Mine counts the supports of

time-constraint satisfied items for type-1 and type-2 growth, respectively. By

recursively applying ProjectDB and Mine, DELISP discovers the set of all

time-constrained sequential patterns. □

4.5 Experimental Results

Extensive experiments were conducted to assess the performance of the DELISP

algorithm. We compared the total execution times of DELISP and GSP [80] by

varying the parameters of mingap, maxgap, and swin. The scalability of the algorithm

was also evaluated over different database sizes. The experiments were performed on

an 866 MHz Pentium-III PC with 1024MB memory running the Windows NT.

The PrefixSpan [67] does not handle the time constraints and therefore is not

considered. However, note that for gap constraints (mingap and maxgap) PrefixSpan

could be applied with an extra pattern counting step. In the step, patterns discovered

without time constraints can be verified in an extra scan of the whole database.

Nevertheless, such an extension cannot be applied for sliding time-window. The

prefix-growth [69] gives no implementation details of gap constraints and no

descriptions on sliding time-window, so that prefix-growth is not compared in our

experiments.

The cSPADE algorithm [97], though accepts the minimum and maximum gap

constraints, was not implemented in the comparison because it uses vertical database

layout. Additional storage space and computation time are required to transform the

natively horizontal databases into vertical. In addition, the swin constraint is not

 78

handled in cSPADE. Revision of cSPADE to handle swin constraint is not trivial. One

possible implementation is to incorporate sliding time-window by incrementing the

support for each distinct window in the vertical representation. Nevertheless, the join

operation has to be extended, beyond temporal and equality join, to allow ‘window

join’. For example, joining the id-list of item x with that of item y, even their

timestamps are not equal, now might generate itemset (x, y) if the time difference is

no greater than swin. Such an extension could generate many combinations that turn

out to be rejected after invoking another round of validating mingap and/or maxgap.

The structure of the id-list also needs to be expanded to indicate the timestamps of

previous elements to enable the counting of validating mingap gap.

Like most studies on sequential pattern mining [6, 29, 67, 98, 102], synthetic

datasets were used and were generated using the procedure described in [80] for these

experiments. The transaction IDs were used to represent the transaction times. As to

the details of generating synthetic data, please refer to Section 3.5.1. The datasets

mimic the real world transactions by using various parameters. Table 4-3 shows the

meaning and the values of the parameters used in the experiments. A dataset generated

with |C| = 10, |T| = 2.5, |S| = 4, |I| = 1.25 is denoted by C10-T2.5-S4-I1.25. It indicates

that, in average, each customer has 10 transactions, each transaction has 2.5 items,

sequences are generated from a sample having 4 transactions per pattern, and 1.25

items per transaction. The sample was generated with 1000 possible items, 5000

possible sequential patterns, and 25000 possible frequent itemsets. In Section 4.5.1,

experimental results on varying the minsup, mingap, maxgap, and swin, and the

results on various datasets are described. Section 4.5.2 shows the results of the

experiments on scaling up the database size.

 79

Table 4-3. Parameters used in the experiments

Parameter Description Value

|DB| Number of data sequences in database DB 100K, 200K, 400K,
800K, 1000K

|C| Average size (number of transactions) per customer 10, 15
|T| Average size (number of items) per transaction 2.5, 5
|S| Average size of potentially sequential patterns 4, 8
|I| Average size of potentially frequent itemsets 1.25, 2.5

4.5.1 Execution times of GSP and DELISP algorithms

First, we report the results on dataset C10-T2.5-S4-I1.25 having 100,000 sequences.

The execution times of GSP and DELISP in mining time-constrained sequential

patterns are compared. In these experiments, DELISP is about 3 times faster than

GSP.Various values of minsup, mingap, maxgap, and swin are used. Note that the

mining of sequential patterns without time constraints is a special case with mingap =

0, maxgap = ∞, and swin = 0 here. The results of varying minsup (2%, 1.5%, 1%,

0.75%, 0.5%) are consistent. We set the minsup to 0.75% and focus on the

comparisons of varying time constraints in the following.

The result of varying mingap with fixed maxgap and fixed swin is shown in Fig.

4-6. When mingap = 0, maxgap = ∞, and swin = 0, the resulting patterns are the same

as common sequential pattern discovery without time constraints. As mingap

increases, the number of qualified patterns existing in data sequences decreases, and

thereby the total execution time decreases. The total execution time of GSP is 2.8

(mingap = 0) up to 3.3 (mingap = 8) times than that of DELISP. It shows that DELISP

removes more inaccessible elements with larger mingap.

Fixing both mingap and swin to zero, Fig. 4-7 shows the result of varying

maxgap. The number of time-constrained sequential patterns will decrease when the

maxgap value increases, since larger maxgap restricts more data sequences to contain

 80

certain patterns. In Fig. 4-7, the line depicting the execution time of GSP starts to fall

steeply at maxgap = 4, because the sample sequences have 4 transactions (|S| = 4) in

average. Note that GSP runs slightly faster without constraints (673 seconds) than

with maxgap = 12 since most checks eventually are useless and introduce overheads.

DELISP consistently outperforms GSP, from 2.9 (maxgap = 12) down to 1.4 (maxgap

= 1) times, in the experiments.

Next, the swin was varied from 0 up to 4 without setting mingap and maxgap

constraints. The swin allows adjoining transactions to combine either way to form an

element so that each data sequence may contain more patterns. Consequently, more

execution time is required with the increased swin. When swin = 0, it took GSP 673

seconds and DELISP 238 seconds, respectively, for the discovery. To mine the

additional patterns appeared with swin = 1, GSP spent 815 seconds and DELISP spent

272 seconds. Fig. 4-8 displays the effect on performance when constraint swin is

increased. Both algorithms scale up with the increased swin, DELISP performs the

better.

C10 -T2.5 -S4 -I1.25 , |DB | = 100K, minsup = 0.75%

0

100

200

300

400

500

600

700

800

0 1 2 4 8
Minimum time gap

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
.) DELISP

GSP

max. time gap = no constraint
sliding time-window = 0

Fig. 4-6. Effect of the mingap constraint

 81

C10 -T2.5 -S4 -I1.25 , |DB | = 100K, minsup = 0.75%

0

100

200

300

400

500

600

700

800

* 12 8 4 2 1
Maximum gap

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
.)

DELISP

GSPmin. time gap = 0
sliding time-window = 0
Note: * means no constraint

Fig. 4-7. Effect of the maxgap constraint

C10 -T2.5 -S4 -I1.25 , |DB | =100K, minsup = 0.75%

0

200

400

600

800

1000

1200

1400

0 1 2 3 4
Sliding time window

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
.) DELISP

GSP

min. time gap = 0

max. time gap = no constraint

Fig. 4-8. Effect of the swin constraint

To evaluate the performance with respect to datasets of different characteristics,

the series of experiments were applied on dataset C15-T2.5-S4-I1.25 (varying

mingap), C10-T5-S4-I1.25 (varying swin), C10-T2.5-S8-I1.25 (varying maxgap), and

C10-T2.5-S4-I2.5 (varying mingap). The results for sensitivity analysis, displayed in

Fig. 4-9, demonstrate that DELISP algorithm consistently outperforms the GSP

algorithm for various data characteristics.

The effects of varying the three constraints on performance are summarized

below. With respect to mingap constraint, GSP effectively prunes the impossible

candidates utilizing the monotonic property of candidate generation. For instance, if

 82

C10 -T5 -S4 -I1.25 , minsup = 0.75%

0

500

1000

1500

2000

2500

0 1 2 3 4
Sliding time window

To
ta

l e
xe

cu
tio

n
tim

e
(m

in
.) DELISP

GSP

min. time gap = 0
max. time gap = no constraint

C15 -T2.5 -S4 -I1.25 , minsup = 0.75%

0

500

1000

1500

2000

2500

3000

0 1 2 4 8
Minimum time gap

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
.) DELISP

GSP

max. time gap = no
constraint
sliding window = 0

(a) Increase |C| from 10 to 15, varying mingap (b) Increase |T| from 2.5 to 5, varying swin

C10 -T2.5 -S4 -I2.5 , minsup = 0.75%

0

100

200

300

400

500

600

700

800

0 1 2 4 8
Minimum time gap

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
.) DELISP

GSP

max. time gap = no constraint
sliding window = 0

(d) Increase |I| from 1.25 to 2.5, varying mingap(c) Increase |S| from 4 to 8, varying maxgap

C10 -T2.5 -S8 -I1.25 , minsup = 0.75%

0

100

200

300

400

500

600

700

* 12 8 4 2 1
Maximum gap

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
.) DELISP

GSP* = no constraint
min. time gap = 0
sliding window = 0

Fig. 4-9. Total execution time on datasets of various characteristics

(a)(b) fails to be a candidate due to mingap, then (a)(b)(c) cannot be a candidate.

DELISP utilizes mingap constraint to effectively remove the inaccessible items within

pattern-growth framework. Both DELISP and GSP can effectively handles the mining

with mingap constraint, while DELISP outperforms GSP at least two times faster.

In GSP, there is performance degradation when maxgap or swin specified. With

respect to maxgap constraint, the time for the containment test increases when

maxgap is specified. Besides, the number of candidates increases when maxgap is

used, since we can no longer prune non-contiguous subsequences [80]. The time for

the containment test also increases when swin is specified. In addition, the hash-tree is

less effective in reducing the number of candidates that need to be checked against a

 83

data sequence when the user specifies a larger swin value.

However, DELISP effectively handles all the three constraints by integrating

them in sequence projecting and growing within the pattern-growth framework. Thus,

the performance difference between DELISP and GSP increases when maxgap or

swin increases, as shown in Fig. 4-9.

4.5.2 Scale up experiments on database size

In order to justify the scalability of DELISP, the number of data sequences was

increased from 100K to 1000K with C10-T2.5-S4-I1.25. In Fig. 4-10, the total

execution times are normalized with respect to the execution time for |DB| = 100K. As

indicated in Fig. 4-10, the execution time of DELISP scales up sub-linearly with the

number of data sequences. When |DB| increases to very large size like 800K or 1000K

and the average number of items per transaction might be large, the projected

sub-databases increase tremendously, which incurs larger overhead in disk accessing.

In the experiment, the execution time ratio scaled up sub-linearly. The execution time

for maxgap = 12 and swin = 1 is 271 seconds, and that for maxgap = 8, swin = 2 is

304 seconds. It reflects that relaxing swin has stronger influence than restricting

maxgap on the number of patterns discovered.

C10 -T2.5 -S4 -I1.25 , minsup =0.75%

2.1

4.7

13.3

10.3

12.8

10.6

4.9

2.0

1

3

5

7

9

11

13

15

200K 400K 800K 1000K
Number of data sequences

Ex
ec

ut
io

n
tim

e
ra

tio

maxgap = 12, swin = 1,
mingap = 0
maxgap = 8, swin = 2,
mingap = 0 (b

as
ed

 o
n

10
0K

)

100K

Fig. 4-10. Linear scalability of DELISP

 84

4.6 Discussion

We summarize the factors contributing to the efficiency of the proposed DELISP

algorithm, by comparing with the well-known GSP algorithm below.

• No candidate generation. DELISP generates no candidates and saves the time

for not only candidate generation but also candidate testing. Moreover, the huge

space required for candidate hash-tree is eliminated entirely. Such an advantage

is shared by all pattern-growth approaches like PrefixSpan or prefix-growth.

• Focused search. DELISP projects the accessible elements and grows patterns by

considering only constraint satisfied elements in sub-sequences. We search and

grow longer patterns in the smaller, promising subspace. In contrast, GSP takes

every data sequence (the entire sequence) for support calculation in each pass.

• Constraint integration. The maxgap constraint makes candidate reduction less

powerful in GSP since some candidates cannot be pruned in advance. For

instance, given maxgap constraint, a data sequence which supports candidate

(a)(e)(f) may not contain candidate (a)(f). Thus, GSP suffers from maxgap

constraint as candidate pruning is less restrictive. Nevertheless, DELISP benefits

from the maxgap constraint by incorporating the constraint in growing and

projecting shorter sequences. Some posterior elements of a sequence, once they

are inaccessible, need not be considered because of the maxgap constraint.

• Containment checking and sequence shrinking. In each pass, GSP transforms

every data sequence into items’ transaction-time lists, and switches between

alternative phases with excess “pull up” of elements to check whether a data

sequence contains a candidate [8]. For instance, GSP having found (a)(b) in a

data sequence, noticing that adding (c) would violate maxgap, has to "pull-up" (b)

and maybe then (a), considering their later occurrences. Without any

 85

transformation, at each recursion, DELISP shrinks a data sequence by removing

non-frequent items, ‘small’ items, and the inaccessible elements. Moreover,

DELISP finds elements incrementally by checking time-valid subsequences only.

The delimited growth technique further assures each growth satisfies the

constraints and makes pattern-growth more efficient.

• DELISP benefits from the properties of pattern-growth approaches for factors

like “no candidate generation” and “focused search”. However, DELISP

eliminates the need for "switching between forward and backward phases" of

GSP by extending concurrently all valid occurrences of the pattern used for

projection. In addition, DELISP preserves the property of growing longer

patterns from prefixes (i.e., avoiding the bi-directional growth) by extending

pattern elements according to lexicographic order. These core techniques are

specific to DELISP and result in the efficient discovery of time-constrained

sequential patterns.

4.7 Summary

We have presented the DELISP algorithm to provide the full functionality of the

classic GSP algorithm in terms of time constraints. The conducted experiments

confirm that with good scalability, the pattern-growth based DELISP outperforms the

Apriori-based GSP algorithm.

 However, pattern-growth based algorithms usually require the intermediate

storage for the projected sub-databases while mining. Sometimes, the total size of the

sub-databases might amount to several times larger than that of the original sequence

database. It is desirable to employ the pseudo-projection and bi-level projection

techniques [67], described in PrefixSpan, in DELISP to minimize disk projections.

Future improvements may include sharing common sub-sequences among

 86

sub-databases, projecting sub-sequences into memory, or extending the memory

indexing approach in Chapter 3 to mine sequential patterns with time constraints. It is

also interesting to extend the approach to deal with other time constraints like overall

time span [97] and various constraints [25, 47, 56, 97] for effective and efficient

sequential pattern mining.

 87

Chapter 5 Algorithm KISP for Interactive Discovery of

Sequential Patterns

5.1 Overview

An important issue in data mining is the discovery of sequential patterns, which finds

out temporal associations among items in the sequence database [6, 29, 48, 51, 75, 98].

A classic application of the problem is the market basket analysis whose database

contains purchase records, where each record is an ordered sequence of itemsets (sets

of items) bought by a customer. The mining is to discover the itemsets in future

purchase after certain itemsets were bought. For example, a discovery might find out

a sequential pattern “(a, c, d)⇒(b, e) [support=30%]”, which means that 30% of

customers who purchase items a, c and d at the same time would buy items b and e at

some later time. The technique can be applied to various domains such as discovering

the relationships between the symptoms and certain diseases in medical applications.

 In order to find the interesting patterns, a user specifies a minimum support

threshold (abbreviated minsup) for the mining. The result of the mining lists all

patterns, named sequential patterns or frequent sequences, whose supports are greater

than or equal to the minsup. The support of a pattern is the percentage of sequences

(in the database) containing the pattern. In general, we would generate potential

sequential patterns (called candidates), count the occurrence of each candidate, and

then determine the sequential patterns among these candidates.

The mining process is very difficult and time-consuming due to several factors.

First, the formation of a pattern is not limited to single items but itemsets. Second,

neither the number of itemsets in a pattern nor the number of items in an itemset is

known a priori. Third, patterns could be formed by any permutation, of any

 88

combination of possible items in the database. Most approaches focused on

minimizing the search space of candidates [6, 80], or on minimizing the required disk

I/O due to the multiple database scanning [75, 98]. Each time a user specifies a

minsup, all these approaches discover the resultant patterns by executing their mining

algorithms with respect to this minsup.

However, a user may specify a minsup value that results in too many or too few

patterns. When the specified minsup is too large, either no patterns or only few

patterns might satisfy the threshold. On the contrary, the user might have difficulty in

distinguishing the interesting patterns from a large number of patterns due to a very

small minsup. Usually, the user must try various minsups until the result is satisfactory.

Nevertheless, most approaches for mining sequential patterns are not designed to deal

with repeated mining under such circumstance. For such interactive sequence

discovery, these approaches consider no prior results so that the mining process must

start over again for every newly specified minsup. However, keeping knowledge

obtained from the time-consuming process is beneficial to further queries. For

example, the result of mining with minsup = 0.1 could be used to extract the

sequential patterns for minsup = 0.3 without re-examining the sequence database.

Therefore, we propose a novel approach, named KISP (knowledge base assisted

incremental sequential pattern mining), to improve the efficiency of sequential pattern

discovery with changing supports. Instead of re-mining from scratch for each

discovery, KISP utilizes the knowledge obtained from prior minings, and generates a

knowledge base for further queries about sequential patterns of various minsups.

When the sequential patterns cannot be directly derived from the knowledge base,

KISP incorporates the knowledge base into a fast sequence discovery. The candidates

existing in the knowledge base are spared in the support counting process. In addition,

the knowledge base could be used to support OLAP since the knowledge, sufficient

 89

for users’ interests, of current database is accumulated by KISP. The conducted

experiments on synthetic data also show that the proposed algorithm effectively

improves the performance of interactive sequence discovery.

The rest of the chapter is organized as follows. We formulate the problem of

interactive sequential pattern mining in Section 5.2 and review some related

algorithms in Section 5.3. Section 5.4 presents the proposed approach for the

interactive discovery problem. The experimental evaluation is described in Section

5.5. Section 5.6 summarizes this chapter.

5.2 Problem Statement

Table 5-1 summarizes the notations used in this chapter. Let Ψ = {α1, α2, …, αz} be a

set of literals, called items. A set of items is referred to as an itemset. An itemset I with

m items is denoted by I = (β1, β2, …, βm), such that I ⊆ Ψ. A sequence x, denoted by

<a1a2…an>, is an ordered set of n elements where each element aj is an itemset. The

size of the sequence x, denoted by |x|, is the total number of items in all the elements

in x. Sequence x is a k-sequence if |x| = k. For example, <(a)(c)(e)>, <(b)(c,d)>, and

<(a)(b)(a)> are all 3-sequences. A sequence ω = <a1a2…an> is a subsequence of

another sequence ϖ = <b1b2…bw> if there exist 1 ≤ i1< i2 < …< in ≤ w such that a1 ⊆

bi1, a2 ⊆ bi2, …, and an ⊆ bin. Sequence ϖ contains sequence ω if ω is a subsequence

of ϖ. For instance, <(b)(e)> is a subsequence of <(d)(b)(a)(c,e)> since (b) ⊆ (b) and (e)

⊆ (c,e).

Each customer record in the database DB is referred to as a data sequence, which

is a sequence of purchased itemsets ordered by transaction time. The support of

sequence x, denoted by x.sup, is the number of data sequences containing x divided by

the total number of data sequences in database DB. The minsup is the user specified

minimum support threshold. A sequence x is a frequent sequence if x.sup ≥ minsup.

 90

The sequence x is also called a sequential pattern. Given the minsup and the database

DB, the problem of sequential pattern mining is to discover the set of all sequential

patterns, denoted by S[minsup].

The interactive sequence discovery process is described as follows. Given the

database DB, the user queries with several minsup values interactively, and finds out

the desired set of sequential patterns with respect to the final minsup. The objective of

interactive discovery is to respond to each query quickly and to reduce the overall

mining time for the whole process accordingly.

Table 5-1. Notations used

Ψ ={α1, α2, …, αz} The set of all items.
α1, α2, …, αz, β1,

β2, …, βm Items.

I = (β1, β2, …, βm) An m-itemset, I ⊆ Ψ.
x = <a1a2…an> A sequence. Each aj is an itemset.

x.sup The support of sequence x.
DB The database of data sequences.

minsup The user specified minimum support.

S[minsup] The set of all sequential patterns in DB with respect to
minsup.

Sk[minsup] The set of frequent k-sequences with respect to minsup. See
Section 5.3.1.

Xk[minsup] The set of candidate k-sequences with respect to minsup. See
Section 5.3.1.

KB The knowledge base. See Section 5.4.1.

KB.sup The minsup used in the construction of KB. See Section
5.4.1.

Nk[minsup] The set of new frequent k-sequences with respect to minsup.
See Section 5.4.2.

Xk' The reduced set of candidate k-sequences. See Section 5.4.2.

Example 5-1: Interactive sequence discovery without knowledge base. Table 5-2

shows the supports of all sequences in an example database. The sequences are

grouped by sequence-size and are listed in ascending order of supports. The

interactive sequence discovery is described below. For convenience, we list the results

of the four example queries in Table 5-3.

 91

Table 5-2. The supports of all sequences in an example database

Sequence Support Sequence Support
<(a)> 0.90 <(a,b)> 0.80
<(b)> 0.82 <(a)(c)> 0.70
<(c)> 0.75 <(a)(e)> 0.60
<(e)> 0.62 <(b)(b)> 0.55
<(d)> 0.40 <(a)(b)> 0.53

<(a,c)(e)> 0.40 <(c)(e)> 0.51
<(a)(c)(e)> 0.30 <(a,c)> 0.45
<(c)(b,e)> 0.27 <(c)(b)> 0.30
<(a,c)(b)> 0.18 <(b,e)> 0.29
<(a)(b,e)> 0.12 <(b)(c)> 0.20

<(a,c)(b,e)> 0.10 <(a)(d)> 0.10
<*> Less than 0.10

Note: <*> represents the sequence whose support < 0.1, e.g. <(6)>.sup = 0.08.

Table 5-3. User specified minimum supports and the resultant sequential patterns

Query The minsup value and
the set of all sequential patterns

Frequent k-sequences and new
k-sequences

S1[0.7] = {<(a)>, <(b)>, <(c)>}.
S2[0.7] = {<(a,b)>, <(a)(c)>}. First

minsup = 0.7,
S[0.7] = S1[0.7] ∪ S2[0.7] ∪

S3[0.7] ∪ S4[0.7]. S3[0.7] = S4[0.7] = ∅.
S1[0.4] = S1[0.7] ∪ N1[0.4],
N1[0.4] = {<(e)>, <(d)>}.
S2[0.4] = S2[0.7] ∪ N2[0.4],
N2[0.4] = {<(a)(e)>, <(b)(b)>,

<(a)(b)>,<(c)(e)>, <(a,c)>}.
S3[0.4] = {<(a,c)(e)>}.

Second
minsup = 0.4,
S[0.4] = S1[0.4] ∪ S2[0.4] ∪

S3[0.4] ∪ S4[0.4].

S4[0.4] = ∅.
S1[0.1] = S1[0.4] ∪ S1[0.1],
N1[0.1] = ∅.
S2[0.1] = S2[0.4] ∪ N2[0.1],
N2[0.1]={<(c)(b)>, <(b,e)>, <(b)(c)>,

<(a)(d)>}.
S3[0.1] = S3[0.4] ∪ N3[0.1],
S3[0.1]={<(a)(c)(e)>, <(c)(b,e)>,

<(a,c)(b)>, <(a)(b,e)>}.

Third
minsup = 0.1,
S[0.1] = S1[0.1] ∪ S2[0.1] ∪
 S3[0.1] ∪ S4[0.1].

S4[0.1] = {<(a,c)(b,e)>}.

Final

minsup = 0.3,
S[0.3] = S[0.1] − {x|x ∈ S[0.1] ∧ x.sup < 0.3}
 = {<(a)>, <(b)>, <(c)>, <(d)>, <(e)>, <(a,b)>, <(a)(c)>, <(a)(e)>,

<(b)(b)>, <(a)(b)>, <(c)(e)>, <(a,c)>, <(c)(b)>, <(a,c)(e)>,
<(a)(c)(e)>}.

At first, the user specified 0.7 as the minsup and mined the database. Only five

 92

patterns were found so that the user decided to discover more patterns. The second

query with a smaller minsup (minsup = 0.4) found out more patterns (total 13 patterns)

than the first discovery. Running the third time of the mining algorithm, 22 patterns in

total were returned for the third trial with minsup = 0.1. Finally, the user located all

sequential patterns whose supports are at least 0.3 by the fourth execution. The overall

response time for the interactive process is the total time spent for the four rounds of

execution. Although the result of the final mining could be obtained by retrieving

qualified patterns after the third query, current approaches generally re-execute the

mining algorithm without utilizing previous results. On the contrary, Example 5-2

shows that the knowledge base helps to reduce the time for the last three example

queries. That is, the total response time is reduced. �

Example 5-2: Interactive sequence discovery using discovered patterns. The

example database is the same as in Example 5-1. The process for the same four

queries is as follows.

 There was no advantage for the first mining with an empty knowledge base. A

knowledge base (abbreviated KB) containing patterns whose supports are at least 0.7

was built after the first query. For the second trial, patterns in the KB, such as <(b)> or

<(a)(c)>, need not be counted again since they are still frequent with respect to

minsup = 0.4. Only the newly generated candidates, such as <(a)(e)> or <(d)(e)>,

were counted against the sequence database. After the second query, the KB has more

information by accumulating the new patterns such as <(c)(e)>. Similarly, the support

counting of patterns kept in the KB were eliminated in the third mining. The

employment of the KB can accelerate the support counting process by reducing the

number of candidates. The KB contains all the patterns whose supports are at least 0.1

after the third query. At last, no counting is necessary since S[0.3] can be directly

extracted from the KB without any database access. The response time for every query

 93

is reduced by the use of a knowledge base, except for the first query requiring the

same execution time, and consequently the overall response time is reduced. �

Therefore, we propose the KISP mining algorithm to effectively utilize the

discovered knowledge for interactive sequence discovery. In fact, the knowledge base

built by KISP keeps not only the supports of sequential patterns, but also the supports

of all candidates generated in prior minings. The fast response time of interactive

sequence discovery is achieved by the use of the knowledge base, which is

incrementally built by accumulating the information obtained in the mining processes.

5.3 Related Work

Few researches are directly related to interactive sequence discovery. In Section 5.3.1,

we review some algorithms for sequential pattern mining. Section 5.3.2 presents

related approaches for interactive pattern discovery.

5.3.1. Algorithms for sequential pattern mining

The AprioriAll [6] is the first algorithm dealing with sequential pattern discovery [6,

48, 89]. AprioriAll splits sequential pattern mining into three phases: itemset phase,

transformation phase, and sequence phase. The itemset phase uses Apriori to find all

frequent itemsets. The database is transformed by replacing each transaction by the

set of all frequent itemsets contained in the transaction in the transformation phase. In

the third phase, AprioriAll makes multiple passes over the database to generate

candidates and to count the supports of candidates. In subsequent work, the same

authors proposed the GSP (Generalized Sequential Pattern) algorithm that

outperforms AprioriAll [80]. Both algorithms use the similar techniques for candidate

generation and support counting, as described in the following.

GSP algorithm makes multiple passes over the database and finds out frequent

 94

k-sequences at k-th database scanning. In each pass, every data sequence is examined

to update the support counts of the candidates contained in this sequence. Initially,

each item is a candidate 1-sequence for the first pass. Frequent 1-sequences are

determined after checking all the data sequences in the database. In succeeding passes,

frequent (k−1)-sequences are self-joined to generate candidate k-sequences. Again, the

supports of these candidate sequences are counted by examining all data sequences,

and then those candidates having minimum supports become frequent sequences. This

process terminates when there is no candidate sequences any more. In the following,

we further describe two essential sub-processes in GSP, the candidate generation and

the support counting.

Candidate generation: Let Sk[minsup] denote the set of all frequent k-sequences and

Xk[minsup] denote the set of all candidate k-sequences with respect to minsup. GSP

generates Xk[minsup] by two steps. The first step joins Sk-1[minsup] with Sk-1[minsup]

and obtains a superset of the final Xk[minsup]. Those candidates having any

(k-1)-subsequence which is not in Sk-1[minsup] are deleted in the second step. In the

first step, we join a sequence x with another sequence y if the subsequence obtained

by dropping the first item of x is the same as the subsequence obtained by dropping

the last item of y. The resultant candidate from this join is the sequence x extended

with the last item of y. The added item becomes the last element (of the candidate) if

the last item of y itself is an element. Otherwise, the added item becomes the last item

of the last element (of the candidate). For example, the candidate <(a)(c)(e)> is

generated by joining <(a)(c)> with <(c)(e)>, and the candidate <(a)(c,e)> is generated

by joining <(a)(c)> with <(c,e)>. Besides, the Xk[minsup] produced from this

procedure is a superset of Sk[minsup] as proved in [80]. That is, Xk[minsup] ⊇

Sk[minsup].

Specifically note that for candidate 2-sequences, the generation of X2[minsup] is

 95

described by the formula: X2[minsup] = {<(x1, x2)>| ∀x1, ∀x2 ∈ S1[minsup], x1 ≠ x2} ∪

{<(x1)(x2)>| ∀x1, ∀x2 ∈ S1[minsup]}. Take the database in Table 5-2 for instance,

S1[0.8]={<(a)>,<(b)>}, so that X2[0.8]={<(a,b)>, <(a)(a)>, <(a)(b)>, <(b)(a)>,

<(b)(b)>}.

Support counting: GSP adopts a hash-tree structure [7, 80] for storing candidates to

reduce the number of candidates that need to be checked for each data sequence.

Candidates would be placed in the same leaf if their leading items, starting from the

first item, were hashed to the same node. The next item is used for hashing when an

interior node, instead of a leaf node, is reached [80]. The candidates required for

checking against a data sequence are located in leaves reached by applying the

hashing procedure on each item of the data sequence [80]. The support of the

candidate is incremented by one if it is contained in the data sequence.

The SPADE (Sequential PAttern Discovery using Equivalence classes) algorithm

finds out sequential patterns using vertical database layout and join-operations [98].

Vertical database layout transforms data sequences into item-oriented lists. For

example, the transformation of a sequence <(a,c)(e)> with sequence id = C310 would

generate an entry (C310, a) in the list of item ‘a’, an entry (C310, a) in the list of item

‘c’, and an entry (C310, e) in the list of item ‘e’. The lists are joined to form a

sequence lattice, in which SPADE searches and discovers the patterns [98].

 Recently, the FreeSpan (Frequent pattern-projected Sequential Pattern Mining)

algorithm was proposed to mine sequential patterns by a database projection

technique [29]. FreeSpan first finds the frequent items after scanning the database

once. The sequence database is then projected, according to the frequent items, into

several smaller databases. Finally, all sequential patterns are found by recursively

growing subsequence fragments in each projected database. Based on the similar

projection technique, PrefixSpan (Prefix-projected Sequential pattern mining)

 96

algorithm [67] efficiently mines the complete set of patterns employing a

divide-and-conquer strategy with the PatternGrowth methodology.

However, as mentioned above, all these algorithms re-execute the mining

procedure every time a new minsup is specified during the interactive process.

Therefore, the response time would be longer for subsequent queries with smaller

minsup values with all these algorithms.

5.3.2 Algorithms for interactive pattern discovery

The objective of interactive pattern discovery is to reduce the response time for users’

online queries. In general, the discovery of frequent patterns in large databases is

categorized into association discovery and sequence discovery. The problem of

interactive association discovery, also called online association generation, was

addressed in [3]. The method in [3] preprocesses the data in the transactional database,

and stores frequent itemsets in an adjacency lattice. Each vertex in the adjacency

lattice is labeled with the support of the corresponding itemset. A directed edge in the

lattice links from a ‘parent’ itemset to one of its ‘child’ itemsets. An itemset Y is a

‘child’ of itemset X if Y can be obtained from X by dropping a single item from X.

Online repeated queries about association rules are answered by graph theoretic

searching on the lattice.

Similarly, a knowledge cache storing the discovered frequent itemsets and the

non-frequent itemsets is used for interactive discovery of association rules [54]. It is

indicated that their benefit replacement algorithm using B+-tree to store cache buckets

is the best caching algorithm [54].

Although on-line association discovery is close to our problem, the aim of these

approaches [3, 30, 54, 63] is to interactively find frequent itemsets rather than

frequent sequences. Sequence discovery is more complicated than association

 97

discovery because with n frequent items, the total number of candidates in pass k is

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
n

 for association discovery and ∑ ∑∑ ∑
−−

=

−−−

==

−

=

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 21

3

1k1

k1

1

2

iik

1i

iik

1i k3

k

1i

ik

1i 21 i
n

i
n

i
n

i
n Λ

Λ for

sequence discovery. One related work of interactive sequence mining is described

below.

The SPADE algorithm [98] was extended into the ISM (Incremental Sequence

Mining) algorithm for incremental sequence mining and interactive sequence mining

[64]. All queries are performed on a pre-processed in-memory data structure, the

Increment Sequence Lattice (ISL). Therefore, a ‘small enough’ minsup must be

selected in advance to mine all patterns by executing SPADE and save the results in

the ISL. Nevertheless, if a query involves a support smaller than the pre-selected

minsup, another (more) lengthy mining process must be performed to generate

another new ISL sufficient for the new query. Moreover, the ISM might encounter

memory problem if the number of the potentially frequent patterns is too large [64].

Without any assumption on the possible values of minsup, our algorithm aims to

reduce the response time for each query for sequential patterns in a large database. In

the proposed algorithm, subsequent mining is assisted with the information

accumulated from prior mining processes and an efficient interactive sequence

discovery is achieved.

5.4 The Proposed Algorithm for Interactive Discovery of Sequential

Patterns

The proposed KISP algorithm is described in Section 5.4.1. The algorithm speeds up

the mining process by eliminating the counting efforts required for those candidates

already existing in the knowledge base. Two optimizations are proposed for further

improvements. In Section 5.4.2, the generation of the remaining ‘new’ candidates is

 98

optimized by direct computation. Enabled by candidate reduction and assisted by the

information in the knowledge base, the optimization by current support counting is

depicted in Section 5.4.3. Section 5.4.4 presents the manipulation of the knowledge

base. Section 5.4.5 discusses the mining efficiency and space utilization with a large

knowledge base.

5.4.1 The KISP (Knowledge base assisted Incremental Sequential Pattern) mining

algorithm

Fig. 5-1 outlines the proposed Basic KISP algorithm for interactive discovery of

sequential patterns. We adopt the GSP algorithm as the basis for constructing the

knowledge base assisted mining algorithm. KISP uses similar procedures of candidate

generation and support counting as used in GSP. Nevertheless, KISP speeds up

support counting by reducing considerable amounts of candidates. It reduces the

number of database passes by concurrent counting of variable-sized candidates.

Consequently, KISP makes a significant performance improvement for interactive

discovery.

During the interactive process, the knowledge base (denoted by KB) is empty

only in the very first mining. Once KISP is executed, the information about the

supports of counted candidates would be inserted into KB. The KB.sup is the minsup

used when KB is constructed or expanded. Although KISP would degenerate into the

GSP algorithm with an empty KB, KISP will enrich KB from every counting effort in

later minings. The details are given below.

 In the beginning, KB contains no information since no mining has been

performed. KISP works similar to GSP for the very first mining. Initially every item

in the database is a candidate 1-sequence. The fundamental KB is built, only once, by

a simple scan over the database to count the supports of candidate 1-sequences (line

 99

1). After that, the supports of all candidate 1-sequences are included in KB, and

S[minsup] contains the frequent 1-sequences (line 2). Sine the supports of candidates

having size other than one is unavailable from KB at the time being, no candidate

counting can be spared by KISP. At the end of this mining, KB would collect the

supports of all the candidates in each pass (line 13), and KB.sup is the minsup

designated for this mining (line 19).

Algorithm KISP (DB, KB, minsup)
Input: DB = the database of data sequences; minsup = user specified minimum support ;
 KB = knowledge base having the supports of all the candidates in prior minings
Output : S[minsup] = sequential patterns with respect to minsup; KB = (new) knowledge base

// Let x.sup be the support of a candidate x , Xk[minsup] be the set of candidate k-sequence in DB with
// respect to minsup, and KB.sup be the smallest minsup used in the construction of KB
1) if KB = φ then KB = {x and x.sup, ∀ x ∈ X1} ;
2) S[minsup] = {x| x∈KB ∧ x.sup ≥ minsup} ; // obtain valid sequential patterns from knowledge base
3) if minsup < KB.sup then // mine new patterns and accumulate new knowledge
4) k = 2 ;
5) generate Xk [minsup] from the frequent (k-1)-sequences in S[minsup] ;
6) Xk'= Xk [minsup] - {x| x ∈ KB} ; // eliminate those candidate k-sequences in KB
7) while Xk' ≠ φ do // there exists candidate k-sequences, obtains their supports
8) for each data sequence ds in database DB do
9) for each candidate x ∈ Xk' do
10) increase the support of x if x is contained in ds ;
11) endfor
12) endfor
13) KB = KB ∪ {x and x.sup, ∀ x ∈ Xk'} ; // collect new candidates and their supports
14) S[minsup] = S[minsup] ∪ {x | x.sup ≥ minsup ∧ x ∈ Xk'} ; // collect new patterns from Xk'
15) k = k+1 ;
16) generate Xk [minsup] from the frequent (k-1)-sequences in S[minsup] ;
17) Xk'= Xk [minsup] - {x| x ∈ KB} ; // the reduced set eliminates candidate k-sequences in KB
18) endwhile
19) KB.sup = minsup ; // update the smallest minsup of KB
20)endif

Fig. 5-1. Proposed Algorithm Basic KISP

Note that in KB besides the sequential patterns we also keep the supports of all

candidates regardless of their values for two reasons. First, several currently

non-frequent candidates might turn out to be frequent when a smaller minsup is

specified in subsequent queries. We can immediately obtain these patterns from KB

without any database access. Second, to find out the true patterns, the mining process

 100

generally counts a large number of candidates although they are eventually rejected.

We can get rid of the ‘useless counting’ for the ‘commonly non-frequent’ candidates if

their supports were kept. For example, those candidates ever counted with the support

value of zero would not be inserted into the candidate hash-tree afterward.

Consequently, a faster counting is enabled due to the smaller hash-tree of the reduced

set of candidates.

 For subsequent queries, KB is not empty. Assume that the user specifies minsup

to KISP with a non-empty KB. KB now contains the supports of all the generated

candidates while mining with KB.sup as the support threshold. Since the supports of

all the candidates in KB are available, whether new counting is required or not

depends on the values of minsup and KB.sup. If the minsup is greater than KB.sup, we

simply search in KB for patterns whose supports satisfy the new minsup, and return all

patterns in S[minsup] (line 2). KB and KB.sup stay intact since no counting is

performed. In this case, the employment of KB eliminates the need of re-mining

completely in comparison with GSP. Tremendous gains in performance can be

resulted from direct retrieval of valid patterns without re-counting the huge database.

In fact, KISP would output all the valid patterns in constant time independent of the

database size when KB.sup is less than the user specified minsup. On the contrary,

other re-mining based algorithms such as GSP need to re-scan the database.

 In case the minsup is less than KB.sup, we have to mine the database for new

patterns that are not in KB. The fundamental difference between KISP and GSP is that

KISP only needs to count the supports of the ‘new’ candidates by sparing the counting

of the candidates already existing in KB (line 6 and line 17). Even the modest

technique spares the counting of a substantial amount of candidates, as confirmed by

our experiments. Take the number of candidates in pass 2 for example. Assume that in

query Qi, there are 100 frequent 1-sequences so that (100*100)+(100*99)/2 = 14950

 101

candidate 2-sequences are generated and counted in pass 2. Assume that the number

of frequent 1-sequences is 110 for query Qi+1. In pass 2 of Qi+1, GSP must count in

total (110*110)+(110*109)/2 = 18095 candidates, while KISP counts only

(18095-14950)= 3145 candidates. In each pass of a query, we first generate the

candidates and then remove those existing in KB. Next, we expand KB with the

support of every new candidate for reuse in future mining processes (line 13). The

sequential patterns are collected (line 14). Finally, KB.sup is replaced by the new

minsup since the counting base is changed (line 19). Thereafter, KISP uses KB to

answer all queries whose minsup are greater than or equal to KB.sup. The ‘new

pattern’ mining part (line 3 through line 20), which is also the part of new information

acquisition step, of the procedure is activated again only when minsup < KB.sup

occurs in subsequent queries.

 In fact, instead of generating all candidates and then removing the counted ones

(line 5 then line 6, and line 16 then line 17), the optimized KISP directly generates the

new candidates requiring counting with the assistance of KB, as presented in Section

5.4.2. In the following context, KISP stands for the optimized KISP.

5.4.2 New-candidate generation by direct computation

The first optimization in KISP is the direct generation of new candidates. In GSP, the

joining-then-pruning procedure generates the set of required candidate k-sequences in

pass k. KISP further removes the candidates existing in KB from the set before

counting. The remaining candidates are referred to as new-candidates in KISP. The

candidates to be removed from counting are those generated by the self-join of the

frequent (k-1)-sequences in Sk-1[KB.sup]. Therefore, any formation of the

new-candidates must involve one of the new frequent (k-1)-sequences. These

new-candidates can be directly generated as follows.

 102

Let Xk[minsup] be the set of candidate k-sequences, Sk[minsup] be the set of

frequent k-sequences, and Xk' be the reduced set of candidate k-sequence, i.e. the

new-candidates in pass k. We use Nk[minsup] to designate the new frequent

k-sequences (due to minsup) in contrast to the frequent k-sequences in KB. Recall that

KISP mines the database for new patterns only when minsup < KB.sup. Hence,

Sk[minsup] = Sk[KB.sup] ∪ Nk[minsup]. The Xk' is the union of the two sets; one

obtained from joining the frequent (k-1)-sequences in KB with the new frequent

(k-1)-sequences, the other is obtained from self-joining the new frequent

(k-1)-sequences. Theorem 5-1 derives the Xk'.

Theorem 5-1. Xk' = (Sk-1[KB.sup] ⊗ Nk-1[minsup]) ∪ (Nk-1[minsup] ⊗ Nk-1[minsup]),

where “⊗” represents the join operation described in Section 3.1.

Proof. Xk[minsup] = Sk-1[minsup] ⊗ Sk-1[minsup],

1) Xk[minsup] = (Sk-1[KB.sup] ∪ Nk-1[minsup]) ⊗ (Sk-1[KB.sup] ∪ Nk-1[minsup]).

2) Xk[minsup] = (Sk-1[KB.sup] ⊗ Sk-1[KB.sup]) ∪ (Sk-1[KB.sup] ⊗ Nk-1[minsup]) ∪

(Nk-1[minsup] ⊗ Sk-1[KB.sup]) ∪ (Nk-1[minsup] ⊗ Nk-1[minsup]).

3) Xk[minsup] = Xk[KB.sup] ∪ (Sk-1[KB.sup] ⊗ Nk-1[minsup]) ∪ (Nk-1[minsup] ⊗

Nk-1[minsup]) due to Xk[KB.sup] = Sk-1[KB.sup] ⊗ Sk-1[KB.sup] and Nk-1[minsup] ⊗

Sk-1[KB.sup] = Sk-1[KB.sup] ⊗ Nk-1[minsup].

4) By definition Xk' = Xk[minsup] − Xk[KB.sup], so Xk' = (Sk-1[KB.sup] ⊗ Nk-1[minsup])

∪ (Nk-1[minsup] ⊗ Nk-1[minsup]) since Xk[KB.sup] ∩ [(Sk-1[KB.sup] ⊗ Nk-1[minsup])

∪ (Nk-1[minsup] ⊗ Nk-1[minsup])]=∅. �

The direct generation of new-candidates eliminates the searching and the

removing of candidates in KB, and speeds up the mining process. Example 5-3

contrasts the number of candidates requiring support counting in GSP and in KISP. It

also shows that KISP might generate very few candidates even for a low minsup. The

counting effort of each mining incrementally expands KB so that KISP is gradually

 103

enhanced with greater candidate reduction capability during the interactive process.

Example 5-3: Number of candidates generated by GSP, and by KISP. The

database and the queries are the same as in Example 5-1. Assume that the set of items

Ψ = {a, b, c, d, e, f}. Table 5-4 tabulates the candidates generated by GSP and those

generated by KISP.

Table 5-4. Candidates generated by GSP and by KISP

Candidate k-sequences Query GSP KISP
X1[0.7] = {<(a)>, <(b)>, <(c)>, <(d)>,

<(e)>, <(f)>}
Number of candidates in X1[0.7] = 6

The same as in GSP First
(minsup
= 0.7) X2[0.7] = S1[0.7] ⊗ S1[0.7]

Number of candidates in X2[0.7] = 12 The same as in GSP

X1[0.4] = X1[0.7]
Number of candidates in X1[0.4] = 6 0

X2[0.4] = S1[0.4] ⊗ S1[0.4]
Number of candidates in X2[0.4] = 35

Χ2' = (S1[0.7] ⊗ N1[0.4]) ∪
(N1[0.4]) ⊗ N1[0.4])

Number of candidates in Χ2' = 23

Second
(minsup
= 0.4)

X3[0.4] = S2[0.4] ⊗ S2[0.4]
Number of candidates in X3[0.4] = 5

Χ3' = (S2[0.7] ⊗ N2[0.4]) ∪
(N2[0.4]) ⊗ N2[0.4])

Number of candidates in Χ3' = 5
X1[0.1] = Χ1[0.7]
Number of candidates in X1[0.1] = 6 0

X2[0.1] = X2[0.4]
Number of candidates in X2[0.1] = 35
(Note: S1[0.1] = S1[0.4])

Χ2' = (S1[0.4] ⊗ N1[0.1]) ∪
(N1[0.1]) ⊗ N1[0.1])

Number of candidates in Χ2' = 0
X3[0.1] = S2[0.1] ⊗ S2[0.1]
Number of candidates in Χ3[0.1] = 14
(Note: after 4 candidates pruned)

Χ3' = (S2[0.4] ⊗ N2[0.1]) ∪
(N2[0.1]) ⊗ N2[0.1])

Number of candidates in Χ3' = 9
(Note: after 4 candidates pruned)

Third
(minsup
= 0.1)

X4[0.1] = S3[0.1] ⊗ S3[0.1]
Number of candidates in Χ4[0.1] = 1

Χ4' = (S3[0.4] ⊗ N3[0.1]) ∪
(N3[0.1]) ⊗ N3[0.1])

Number of candidates in Χ4' = 1
X1[0.3] = X1[0.4]
Number of candidates in X1[0.3] = 6 0

X2[0.3] = X2[0.4]
Number of candidates in X2[0.3] = 35
(Note: S1[0.3] = S1[0.4])

0
Final

(minsup
= 0.3)

X3[0.3] = S2[0.3] ⊗ S2[0.3]
Number of candidates in Χ3[0.3] = 8 0

(a) Candidates generated by GSP. GSP generates 6+12 = 18 candidates for the

 104

first query. For the second and the third query, there are 46(6+35+5) and

56(6+35+14+1) candidates requiring support counting by GSP, respectively.

Note that four candidates are pruned before counting in the third mining. For

instance, candidate <(a, b, e)> is pruned because it contains a non-frequent

subsequence <(a, e)>. As described in Example 5-1, in total 49 candidates

still need support counting by GSP for the final query without a knowledge

base.

(b) Candidates generated by KISP. For the first query, KISP generates the same

number of candidates as in GSP since KB is empty. For the remaining queries,

KB already has the supports of the entire candidate 1-sequences so that no

candidate 1-sequence is generated. As shown in Table 5-4, KISP generates

only 28 candidates for minsup = 0.4. Moreover, only 10 candidates are

generated for minsup = 0.1. Finally, no candidate is generated for the last

query since all the desired patterns are available from KB. �

 With the assistance of KB, KISP directly generates fewer candidates for support

counting in comparison with GSP. The capability of candidate reduction becomes

more powerful as the minimum support threshold getting smaller gradually. In GSP,

the number of candidates is proportional to the value of minsup, while the number of

new-candidates is not necessarily proportional to minsup in KISP. KISP might have

only very few new-candidates at a very low minsup value since the information

gathered from each mining during the interactive process all contribute to the

candidate reduction. In each pass, the number of candidates inserted into the hash-tree

is smaller. Therefore, KISP is enabled to accommodate more candidates, even

candidates of different size, in the same hash-tree during the same pass of database

scanning. The improved counting technique and the placement of variable sized

candidates are described in Section 5.4.3.

 105

5.4.3 Concurrent support counting and the placement of variable sized candidates

The second optimization in KISP is the technique of concurrent support counting.

Being a multi-pass based instead of a memory-based mining algorithm, without

optimization, the number of database passes required in KISP (also in GSP) is equal

to the size of the longest pattern. Concerning mining efficiency, reducing the number

of database scanning is thus as important as minimizing the search space of

candidates. Concurrent support counting is used to achieve database-pass reduction

while preserving the completeness of pattern discovery. Specifically, we can reduce

the number of database accesses if we count not only the supports of candidate

k-sequences but also that of length longer than k in pass k. An intuitive way is to

generate candidates of all sizes simultaneously. Nevertheless, the support counting

would be slowed down if the space for storing candidates exceeds the memory limit

so that the candidates have to be fetched from the disk rather than the memory.

Therefore, the available memory restricts the generation of all sized candidates at the

same time.

In general, KISP counts the supports of candidate k-sequences in pass k. One

situation is that the available memory is not enough for the generation of candidate

k-sequences. For example, the number of candidate 2-sequences might be huge for the

very first mining. Analogous to GSP, if the set of frequent (k-1)-sequences, i.e.

Sk-1[KB.sup] and Nk-1[minsup], cannot fit into the memory, the reduced candidate set

Xk' is generated by the relational merge-join technique without pruning [80]. If the

memory can completely hold Sk-1[KB.sup] and Nk-1[minsup], but not the entire Xk',

then KISP generates as many candidates of the Xk' as possible. The supports of these

candidates are counted and are written out to disk. This procedure is repeated until all

the candidates are processed.

 106

On the contrary, the Xk' is more likely to occupy just a small part of the memory

at pass k as illustrated in Section 5.4.2. In KISP, we maximize memory utilization to

reduce the number of database passes by inserting as many candidates as possible into

the same hash-tree. We continuously generate the candidates of longer size until the

memory space is nearly full. All the candidates of the same size are inserted in a batch

at the same time. With the information about Sk-1[KB.sup] and the Nk-1[minsup], KISP

can estimate the number of new-candidates, which indicates the space required.

Therefore, we can place variable-sized candidates in the same hash-tree and

concurrently count the supports against the data sequences in the same database pass.

This technique reduces the total number of database scanning. The estimation

procedure and the placement of variable-sized candidates that enables concurrent

counting are described in the following.

Considering the number of candidates generated in each pass, the number of

candidates in X2' is greater than that in other Xk' because none in the candidate

superset of size two can be pruned. Every frequent 1-sequence must join with other

frequent 1-sequence since the subsequence of any frequent 1-sequence is an empty

sequence. For candidates of Xk' where k > 2, some frequent (k-1)-sequences are not

joined if their subsequences do not match. Assume the number of patterns in

S1[KB.sup] is p and the number of patterns in N1[minsup] is q. The number of

new-candidates in pass 2 is [3(p+q)2-(p+q)]/2-(3p2-p)/2 = 3pq+(3q2-q)/2. This formula

can be applied to roughly estimate the maximum number of candidates in other passes.

Whenever there is room for the next set of candidates (of longer size), KISP

continuously generates and inserts the candidates into the same hash-tree. Thus, KISP

can generate as many candidates as possible in the same pass.

Originally, the hash-tree in GSP is designed to store the same sized candidates in

the leaves. The leaf where a candidate should be placed in is the leaf reached by

 107

consecutive hashing on the items of the candidate. Since the GSP-generated

candidates are of the same size in the same hash-tree, the item for hashing is always

available while determining the branch to be followed. Nonetheless, the

accommodation of variable sized candidates in the same hash-tree might have the

problem of having no item for hashing. For example, inserting a candidate 4-sequence

might cause the re-distribution of an overflowed node, while the re-distribution might

need to hash on the fourth item of a candidate 3-sequence in the node. We modify the

hashing procedure slightly to store the same prefixed candidates, despite their sizes, in

the same leaf. In case there is no item for hashing any more, the candidate is stored in

one of the descendent leaves (due to the splitting of the overflowed leaf). We select

the leaf having the fewest number of candidates stored to maximize memory

utilization. Since candidates of different size are stored in the same hash-tree, we can

check the variable sized candidates against a data sequence at the same time.

Therefore, the concurrent support counting minimizes the number of database passes

required in KISP.

Note that a similar technique named pass bundling is described for association

mining in [53]. However, pass bundling statically sets a limit to determine whether

the generation should be continued or not, while KISP dynamically estimates and

computes the available memory for maximum utilization. The next section will

describe the structure and the manipulation of the knowledge base, which is the key to

facilitate the above stated improvements.

5.4.4 Manipulation of the knowledge base

The knowledge base is essential to the proposed algorithm since it is the groundwork

for all improvements. Thus, the knowledge base should be manipulated effectively to

supply necessary information. We store the knowledge base in disk so that KISP is

 108

independent of the main memory size. The information about the candidate supports

in KB helps to eliminate all database access. The candidate information also enables

direct new-candidate generation and concurrent support counting. In addition, the

knowledge base is incrementally increased as new support information is acquired.

Therefore, the knowledge base should provide fast access to the counting information

of patterns, carry quick estimation of required candidate storage, and be able to

expand incrementally. Fig. 5-2 shows the logical structure of the knowledge base

designed based on these requirements.

 A knowledge base is composed of a minimal KB.sup, and one or more KB

heads. The minimal KB.sup is the smallest KB.sup among all the KB.sups in the KB

heads. We create a KB head to store the newly acquired information only when the

‘new pattern’ mining part of KISP is executed (i.e. when the user-specified minsup is

less than the minimal KB.sup). A KB head comprises a KB.sup, the number of

pattern-support heads (ps_heads), the pattern-support heads, and the position of

next KB head. The KB.sup indicates the minsup used while adding this head. The

number of ps_heads indicates the total number of pattern-support heads in this KB

head. The pattern-support heads summarizes the pattern-support tables, which

contain the information of all patterns and their supports as described below. The

position of next KB head links the next KB head so that the knowledge base can

‘grow’ incrementally.

The details of pattern information are collected in the pattern-support tables

after mining. We group all the same sized patterns in the same table so that the pattern

information of desired size can be directly found through the position of

pattern-support in the corresponding ps_head. The ps_head also contains a summary

of the size of the patterns, the total number of counted candidates (of that size),

and the total number of non-zero patterns. The total number of counted candidates

 109

KB.sup number of ps_heads

position of next KB head

Minimal KB.sup

: KB head : ps_head (pattern-support head)

number of non-zero patterns
position of pattern-supportsize of pattern

number of counted candidates

number of non-zero patterns
position of pattern-supportsize of pattern

number of counted candidates

number of non-zero patterns
position of pattern-supportsize of pattern

number of counted candidates

Fig. 5-2. Structure of the knowledge base

and the total number of non-zero patterns are used for estimating the number of

new-candidates. During the interactive process, KISP can obtain effectively the full

pattern information of certain size by accessing the pattern-support table (of that

size) in every KB head. The position of pattern-support, in the ps_head within a

KB head, indicates the location of the pattern-support table.

 Fig. 5-3 shows the pattern-support table. Note that we keep only the patterns

with non-zero support value to minimize the total size of each pattern-support table.

The supports of patterns (of the same size) are stored in support-descending order in

the structure. The descending ordered patterns eases the searching of valid patterns on

answering an online query. Sorting pattern-supports before writing to the disk might

increase the response time if the number of candidates is very huge. An option to

eliminate support sorting is writing the supports in the order of hash-tree traversal.

Even when the pattern supports are directly stored without sorting, searching within

the knowledge base is still more efficient than re-mining.

 110

support value of pattern pattern

support value of pattern pattern

.

.

.

support value of pattern pattern

Fig. 5-3. Structure of a pattern-support table

2
23 10

0.90 <(a)>
0.82 <(b)>
0.75 <(c)>
0.62 <(e)>
0.40 <(d)>
0.08 <(f)>

0.80 <(a,b)>
0.70 <(a)(c)>
0.55 <(b)(b)>
0.53 <(a)(b)>
0.45 <(a,c)>
0.3 <(c)(b)>
0.2 <(b)(c)>
0.09 <(b,c)>
0.07 <(a)(a)>

0.60 <(a)(e)>
0.51 <(c)(e)>
0.29 <(b,e)>
0.10 <(a)(d)>
0.07 <(a,d)>
0.07 <(a,e)>
0.05 <(b,d)>
0.03 <(c,d)>
0.02 <(c,e)>
0.01 <(b)(d)>

0.40 <(a,c)(e)>
0.30 <(a)(c)(e)>
0.08 <(a,b)(b)>

0.7 2
0.4*

6
1

0.4 2

Incremented by the second mining

Built by the first mining

*

6

2
12 9

3
5 3

: changed by the second mining*
: end of KB

(a), (b)&(c): paths to patterns of size

(a)

(b)

(c)

Fig. 5-4. The knowledge base after the second query in Example 5-1

 Fig. 5-4 illustrates a sample knowledge base, showing the incrementally

expanded support information after the second query in Example 5-1. In this figure,

the minimal KB.sup and the position of next KB head are changed, and a new KB

head is built by the second mining. The minimal KB.sup is changed from 0.7 to 0.4.

The position of next KB head in the left-hand-side (built after the first mining) are

changed to indicate the position of the new knowledge base (for KB.sup = 0.4). For

instance, the supports of all size-2 patterns can be easily found by path (a), and path (b)

then (c). The second KB head also shows that only 10 non-zero patterns out of the 23

 111

counted size-2 candidates are stored after mining with minsup = 0.4.

5.4.5 Mining efficiency and space utilization with a large knowledge base

Given a very low KB.sup value, one might concern that the space used by KB could

be so large that KISP might not sustain the high level of performance. Although KB

may increase as a result of accumulating more pattern information, KISP still could

efficiently answer the interactive query request with new minsup. We analyze the

overall performance affected when KB is getting very large below.

KISP retrieves two kinds of data from KB, the KB heads and the stored patterns

with associated supports (i.e. pattern-support tables). Relatively small space is

required by a KB head for recording merely pattern summaries. Accessing these

linked KB heads is so easy and there is no influence. The performance could be

affected only by the reading of the pattern-support tables. However, the reading is

confined to qualified patterns only, instead of every pattern, in the tables. KISP may

sustain the good performance by skipping a large number of unqualified patterns in

KB, even if the KB is large.

The pattern-support tables are utilized to assist KISP in either directly answering

a query (when KB.sup ≤ minsup) or generating the ‘new candidates’ by Theorem 5-1

in Section 5.4.2 (when KB.sup > minsup). In both circumstances, not every pattern

needs to be scanned. Given a support-descending ordered table, when the first pattern

whose support is smaller than minsup is encountered, we stop reading the rest of the

patterns in that table. Such an operation is also used in retrieving Sk-1[KB.sup] for

new-candidate generation. Thus, by sparing the reading of many unqualified patterns,

KISP may effectively retrieve the desired patterns and outperform the re-mining based

approaches. In fact, KISP would output all the valid patterns in constant time

independent of the database size when KB.sup ≤ minsup. Note that when patterns are

 112

stored in the hash-tree traversal order initially, we may re-arrange the tables in

support-descending order, periodically or after several KB heads are generated.

Therefore, the overall performance affected due to a large KB is quite limited.

We now examine the space utilization of KB, which comprises KB heads and the

pattern-support tables. When the requested new query with KB.sup > minsup invokes

new pattern generation in the interactive mining, one and only one KB head will be

added to KB. Otherwise, KB stays intact because KISP simply responds by retrieving

patterns from KB. The total number of KB heads hence is the total number of

‘new-pattern’ generation triggered. As described in Section 5.4.4, a KB head contains

KB.sup, the position of next KB head, the number of ps_heads, and the ps_heads. A

major portion of KB is the ps_heads, i.e. the pattern-support tables. The others need

only negligible space. The size of a pattern-support table is proportional to the number

of stored patterns where a pattern takes typically 19 to 22 bytes according to our

experiments (details in Table 5-6, Section 5.5.1). The size of KB, as a consequence,

might be larger than that of the original database. Appropriate compression on the

pattern-support tables, being collections of the same sized patterns, could be

employed to reduce the storage consumption for better storage utilization.

Nevertheless, how compression would affect the performance needs further

investigations.

5.5 Performance Evaluation

In order to assess the performance of the KISP algorithm, we conducted

comprehensive experiments. All experiments were performed with an 866 MHz

Pentium-III PC having 1024MB memory, running the Windows NT. In these

experiments, the databases are composed of synthetic data. Please refer to Section

3.5.1 for the method used to generate these data. The performance of interactive

 113

sequence discovery using the KISP and the GSP algorithms are compared in Section

5.5.1. Results of scale-up experiments are presented in Section 5.5.2. Table 5-5 lists

the datasets used in the experiments. A dataset created with |C| = α, |T| = β, |S| =χ, and

|I| =δ is denoted by the notation Cα.Tβ.Sχ.Ιδ. For instance, the Origin dataset is

denoted by C10.T2.5.S4.Ι1.25. The last four datasets are used for scalability tests in

Section 5.5.2.

Table 5-5. Datasets used in the experiments

Name |DB| |C| |T| |S| |I| N NS NI Size (MB)

Origin 100K 10 2.5 4 1.25 10,000 2500 25,000 18.8
NItem 100K 10 2.5 4 1.25 5,000 2500 25,000 18.8
SNpat 100K 10 2.5 4 1.25 10,000 5000 25,000 18.8
LNpat 100K 10 2.5 4 1.25 10,000 2500 12,500 18.8
Slen 100K 20 2.5 4 1.25 10,000 2500 25,000 28.4
Tlen 100K 10 5 4 1.25 10,000 2500 25,000 28.0

SPLen 100K 10 2.5 8 1.25 10,000 2500 25,000 20.0
LPLen 100K 10 2.5 4 2.5 10,000 2500 25,000 18.5

DB250k 250K 10 2.5 4 1.25 10,000 2500 25,000 46.9
DB500k 500K 10 2.5 4 1.25 10,000 2500 25,000 94.0
DB750k 750K 10 2.5 4 1.25 10,000 2500 25,000 140.9
DB1000k 1000K 10 2.5 4 1.25 10,000 2500 25,000 187.9

5.5.1 Comparisons of KISP and GSP

Extensive experiments were performed to compare the execution times of KISP and

GSP. The effect of using knowledge base without concurrent support counting

optimization is studied first. The interactive discovery comprises five consecutive

queries, with minsup values varying from 2.5% down to 0.5%.

Fig. 5-5 compares the relative performance of KISP and GSP on the Origin

dataset with respect to various minsups. The total number of candidates and the total

number of database scanning required for each query in GSP are also shown in the

bottom of Fig. 5-5. The number of passes is the same in GSP and in KISP without

 114

concurrent support counting. The total execution time with KISP and GSP are 6652

and 8028 seconds, respectively. As to individual mining, KISP is faster than GSP for

the last two queries with smaller minsup since considerable amount of candidates

were eliminated. Fig. 5-5 also depicts the ratios of the number of candidates in GSP to

those in KISP. Since the mining time reduced from the size-1 patterns in KB is very

little in comparison with the pattern-outputting time increased, the overhead of KISP

accounted for this phenomenon in the first three queries with larger minsup. In the

first three queries, KISP runs slower than GSP due to the extra time spent for writing

pattern information to KB being relatively larger than the time saved for the reduction

in candidates. For instance, the mining stopped after pass two for the second query.

Not much time was saved by the assistance of KB since the size-1 patterns occupied

77% of the reduced candidates.

Keeping the number of customers and the distribution of customer database the

same, the series of queries were applied on the datasets NItem, LNpat, SNpat, SPLen,

and LPLen to evaluate the impact of different sequence space for sampling. Similar

results were obtained as shown in Fig. 5-6. The total execution time ratios of KISP to

GSP are 67%, 74%, 97%, 89%, and 93%, respectively for the datasets NItem, LNpat,

SNpat, SPLen, and LPLen. Due to the rush increase of qualified frequent 1-sequences

which incurred the mass production of new candidates in the third query, the

performance drops for minsup = 1% in Fig. 5-6. Note that for dataset SNpat, the sizes

of the longest patterns are respectively 2, 2, 2, 3, and 5 for the five queries. Therefore,

the reduction of total execution time is not apparent since the KB manifests much

effect on candidate reduction only for the last two queries.

 115

Mining Performance (Origin)

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

2.5% 2% 1% 0.75% 0.50%minsup

R
at

io
 (G

SP
/K

IS
P)

Execution time
(GSP/KISP)

candidates
(GSP/KISP)

pass (GSP) 2 2 4 5 7
can. (GSP) 13015 33751 839993 1898078 4438725

C10 .T2.5 .S4 .I1.25

Fig. 5-5. Relative execution time and number of candidates on dataset Origin

Mining Performance

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

250%

275%

300%

325%

350%

375%

2.5% 2% 1% 0.75% 0.50%minsup

R
at

io
 (G

SP
/K

IS
P)

N Item (Exe. time)

LNpat (Exe. time)

SNpat (Exe.time)

SPLen (Exe. time)

LPLen (Exe. time)

NItem (can.)

LNpat (can.)

SNpat (can.)

SPLen (can.)

LPLen (can.)

C10 .T2.5 .S4 .I1.25

Fig. 5-6. Relative mining performance on datasets of various distributions

Mining Performance

0%
25%
50%
75%

100%
125%
150%
175%
200%
225%
250%
275%
300%

2.5% 2% 1% 0.75% 0.50%minsup

R
at

io
 (G

SP
/K

IS
P)

Slen (Exe. time) Tlen (Exe. time)
Slen (can.) Tlen (can.)

Slen: C20.T2.5.S4.I1.25
Tlen: C10.T5.S4.I1.25

Fig. 5-7. Relative performance on datasets with longer customer sequences

 116

Table 5-6. Number of candidates for the Slen dataset

Pass number Number of
candidates 1 2 3 4 5 6 7 8

GSP GSP GSP terminated 2.5% KISP 10000 78547 terminated
GSP 10000 259376 1 terminated 2% KISP 0 180829 1 terminated
GSP 10000 2534350 463 105 8 terminated 1% KISP 0 2274974 462 105 8 terminated
GSP 10000 4550975 2045 413 80 6 terminated0.75% KISP 0 2016625 1582 308 72 6 terminated
GSP 10000 7673835 7986 2800 1339 430 63 3

Minsup
value

0.5% KISP 0 3122860 5941 2387 1259 424 63 3

Next, the distributions of customer sequences were changed. The Slen dataset

increases the average sequence size of customers (from 10 to 20), and the Tlen dataset

increases the average transaction size of customers (from 2.5 to 5). In general, both

changes would allowthe databases to have more (and longer) sequential patterns with

respect to the above minsup values. As indicated in Fig. 5-7, KISP runs faster than

GSP for each individual mining except for the very first mining. KISP benefits from

the accumulated information so that the individual discovery could be accelerated.

Take minsup = 0.75% for example, the execution time ratio of GSP to KISP is 2.9

times for dataset Tlen. The time saved by KISP resulted from the reduced number of

candidates. In contrast, GSP generated three times the number of candidates.

Additionally, the total execution time ratios of KISP to GSP are 54% for dataset Slen,

and 48% for dataset Tlen. To illustrate the accumulating power of KB, the number of

candidates in each pass generated by GSP and by KISP for the Slen dataset are

enumerated in Table 5-6.

KISP exhibits excellent mining capability for query intensive applications, as

demonstrated in Fig. 5-8. The average execution time (also the time required for

posterior queries) decreases as the number of queries increased. That is, users might

have shorter response time in each query by decreasing minsup value gradually to

 117

reach the desirable minsup value, which generates the desired patterns. Similar results

were obtained for the same series of queries applying on datasets Slen and Tlen.

Note: Series of minsup values
 3: (2.5%, 1.5%, 0.5%)
 5: (2.5%, 2%, 1.5%, 1%, 0.5%)
 6: (2.5%, 2.1%, 1.7%, 1.3%, 0.9%, 0.5%)
11: (2.5%, 2.3%, 2.1%, 1.9%, 1.7%, 1.5%, 1.3%, 1.1%, 0.9%, 0.7%, 0.5%)

Number of Queries vs. Average Execution Time

400

800

1200

1600

2000

2400

3 5 6 11No. of queries

A
ve

ra
ge

 e
xe

. t
im

e
(s

ec
.)

Origin
NItem
LNpat
SNpat
SPLen
LPLen

dataset

Fig. 5-8. Average execution time vs. number of queries

All the preceding experiments were performed without optimization by

concurrent support counting so that the number of database passes is the same in

GSP and in KISP. Table 5-7 illustrates the number of database scanning reduced by

concurrent support counting, and the reduced execution times for all the datasets with

respect to minsup = 0.5% and KB.sup = 0.75%. The first pass for support counting of

candidate 1-sequences is not required for all minings in KISP in comparison with GSP.

In general, the number of size-2 candidates is so many that the concurrent

optimization is effective from the second pass of database scanning (which counts

candidates of size-3 and above). However, most scans were combined in pass two so

that the total number of passes and the total execution times were reduced.

Table 5-7. Effects of concurrent support counting

minsup = 0.5% Origin NItem LNpat SNpat SPLen LPLen Slen Tlen

Reduced execution time (sec.) 29 39 40 4 8 5 94 157

Reduced number of passes 5 5 5 3 5 3 6 8

 118

When users need to find the appropriate set of patterns by reducing the number of

sequential patterns found in a query, the next specified minsup would be greater than

the counting base of KB (KB.sup). KISP is faster than all the other re-mining based

algorithms for such queries since the answer set is already in KB. In the next

experiment, all KB.sups of the KBs were 0.5%, and 100 minsups ranging from 0.5%

to 2.5% were randomly selected. As shown in Table 5-8, the mining results are all

available in very short time for all datasets. For most queries, the execution time of

KISP is several orders of magnitude faster than GSP, which always re-mines from

scratch.

However, one drawback of KISP is that the size of KB might be larger than the

size of the original database, due to the space increased for storing supports. The size

of KB is proportional to the number of patterns existing in KB. The maximum sizes of

KB are also shown in Table 5-8. Table 5-9 shows that, in worst case, KB might need as

much as five times the space of the sequence database for low KB.sup

Table 5-8. Execution time of KISP when KB.sup ≤ minsup

Exe. Time (sec.) Origin Slen Tlen SPLen LPLen

Minimum 0 4 10 0 0

Maximum 22 29 13 14 16

Average 4.3 11.8 10.8 5.1 4.4

Table 5-9. Space used by KB with respect to KB.sup (dataset Slen)

KB.sup 2% 1% 0.5%

Worst case size of KB (MByte) 5.6 51.7 140.9

Number of patterns stored 269377 2544926 7696456

Average cost of a pattern (Byte) 21.9 21.3 19.2

5.5.2 Scale-up experiments

To assess the scalability of the proposed algorithm, several experiments were

conducted. Since the basic construct of KISP is similar to that of GSP, similar scalable

 119

results could be expected. In the scale-up experiments, the total number of customers

was increased from 100K to 1000K and other parameters were the same as the Origin

dataset. Again, KISP were faster than GSP for all the datasets. The execution times

were normalized with respect to the time for 100,000 customers here. Fig. 5-9 shows

that the execution time of KISP increases linearly as the database size increases,

which demonstrates good scalability of KISP.

Scale-up Performance of KISP

1.0

3.0

5.0

7.0

9.0

11.0

13.0

15.0

100K 250K 500K 750K 1000K

N umber of customers

Ex
ec

ut
io

n
tim

e
ra

tio 2.50%

2%

1%

0.75%

0.50%

minsup

Fig. 5-9. Linear scalability of the database size

5.6 Summary

In this chapter, we propose an efficient knowledge base assisted mining algorithm for

interactive discovery of sequential patterns. For online queries, manual tuning on

mining parameters such as the minimum support is inevitable since no one can predict

the best parameter and the corresponding outcome. A result driven discovery requires

many times of repeated mining in an interactive process. A fast mining algorithm that

always re-mines from scratch is not good enough for interactive query in practice.

Knowledge obtained from each mining should be utilized to accelerate the entire

process.

 The proposed KISP algorithm constructs a knowledge base for minimizing the

total response time for online queries. Neither database access nor counting is

 120

required if the query result is a subset of patterns in the knowledge base. In case some

resultant patterns are new to the knowledge base, we speed up the mining process by

the assistance of the knowledge base. The proposed approach directly generates only

the new candidates which are not counted before, concurrently counts variable sized

candidates in the same database scanning, and incrementally expand the knowledge

base by every counting effort for future queries. The knowledge base keeps the

patterns grouped by the size to provide fast access to pattern information. The

experiments performed shows that the proposed approach is faster than GSP by

several orders of magnitude, with good linear scalability.

 121

Chapter 6 Algorithm IncSP for Incremental Discovery of

Sequential Patterns

6.1 Overview

Sequential pattern discovery, which finds frequent temporal patterns in databases, is

an important issue in data mining originated from retailing databases with broad

applications [6, 29, 64, 75, 80, 99]. The discovery problem is difficult considering the

numerous combinations of potential sequences, not to mention the re-mining required

when databases are updated or changed. Therefore, it is essential to investigate

efficient algorithms for sequential pattern mining and effective approaches for

sequential pattern updating.

A sequential pattern is a relatively frequent sequence of transactions, where each

transaction is a set of items (called itemset). For example, one might purchase a PC

and then purchase a printer later. After some time, he or she could possibly buy some

printing software and a scanner. If there exists a sufficient number of customers in the

transactional database who have the purchasing sequence of PC, printer, printing

software and scanner, then such a frequent sequence is a sequential pattern. In general,

each customer record in the transactional database is an itemset associated with the

transaction time and a customer-id [6]. Records having the same customer-id are

sorted by ascending transaction time into a data sequence before mining. The

objective of the discovery is to find out all sequential patterns from these data

sequences.

A sequential pattern is a sequence having support greater than or equal to a

minimum threshold, called the minimum support. The support of a sequence is the

 122

percentage of data sequences containing the sequence. Note that the support

calculation is different in the mining of association rules [5, 18, 58] and sequential

patterns [6, 80]. The former is transaction-based, while the latter is sequence-based.

Suppose that a customer has two transactions buying the same item. In association

discovery, the customer “contributes” to the support count of that item by two,

whereas it counts only once in the support counting in sequential pattern mining.

The discovery of sequential patterns is more difficult than association discovery

because the patterns are formed not only by combinations of items but also by

permutations of itemsets. For example, given 50 possible items in a sequence database,

the number of potential patterns is 50*50+C(50,2) regarding two items, and 50*50*50

+ 50*C(50,2)*2 + C(50,3) regarding three items (formed by 1-1-1, 1-2, 2-1, and 3), ...,

etc. Most current approaches assume that the sequence database is static and focus on

speeding up the time-consuming mining process. In practice, databases are not static

and are usually appended with new data sequences, conducted by either existing or

new customers. The appending might invalidate some existing patterns whose

supports become insufficient with respect to the currently updated database, or might

create some new patterns due to the increased supports. Hence, we need an effective

approach for keeping patterns up-to-dated.

However, not much work has been done on the maintenance of sequential patterns

in large databases. Many algorithms deal with the mining of association rules [5, 58],

the mining of sequential patterns [6, 29, 67, 80, 93, 99], and parallel mining of

sequential patterns [75]. Some algorithms discover frequent episodes in a single long

sequence [46]. Nevertheless, when there are changes in the database, all these

approaches have to re-mine the whole updated database. The re-mining demands

more time than the previous mining process since the appending increases the size of

the database.

 123

Although there are some incremental techniques for updating association rules

[18, 19, 40, 87], few research has been done on the updating of sequential patterns,

which is quite different. Association discovery is transaction-based; thus, none of the

new transactions appended is related to the old transactions in the original database.

Sequential pattern mining is sequence-based; thus, the two data sequences, one in the

newly appended database and the other in the original database, must be merged into

a data sequence if their customer-ids are the same. However, the sequence merging

will corrupt previous support count information so that either FUP or FUP2 [19]

algorithm could not be directly extended for the maintenance of sequential patterns.

One work dealing with incremental sequence mining for vertical database is the

ISM (Incremental Sequence Mining) algorithm [64]. Sequence databases of vertical

layout comprise a list of (cid, timestamp) pairs for each of all the items. In order to

update the supports and enumerate frequent sequences, ISM maintains “maximally

frequent sequences” and “minimally infrequent sequences” (called negative border).

However, the problem with ISM is that the size of negative border (i.e. the number of

potentially frequent sequences) might be too large to be processed in memory. Besides,

the size of extra space for transformed vertical lists might be several times the size of

the original sequence database.

This chapter presents an efficient incremental updating algorithm for up-to-date

maintenance of sequential patterns after a nontrivial number of data sequences are

appended to the sequence database. Assume that the minimum support keeps the same.

Instead of re-mining the whole database for pattern discovery, the proposed algorithm

utilizes the knowledge of previously computed frequent sequences. We merge data

sequences implicitly, generate fewer but more promising candidates, and separately

count supports with respect to the original database and the newly appended database.

The supports of old patterns are updated by merging new data sequences implicitly

 124

into the original database. Since the data sequences of old customers are processed

already, efficient counting over the data sequences of new customers further optimizes

the pattern updating process.

The rest of the chapter is organized as follows. Section 6.2 describes the problem

of sequential pattern mining and addresses the issue of incremental update. In Section

6.3, we review some previous algorithms of sequence mining. Section 6.4 presents

our proposed approach for the updating of sequential patterns after databases are

changed. Comparative results of the experiments by comprehensive synthetic data

sets are depicted in Section 6.5. Section 6.6 concludes this chapter.

6.2 Problem Statement

In Section 6.2.1, we formally describe the problem of sequential pattern mining and

the terminology used in this chapter. The issue of incremental update is presented in

Section 6.2.2. Section 6.2.3 demonstrates the changes of sequential patterns due to

database update.

6.2.1 Sequential pattern mining

A sequence s, denoted by <e1e2…en>, is an ordered set of n elements where each

element ei is an itemset. An itemset, denoted by (x1, x2,…, xq), is a nonempty set of q

items, where each item xj is represented by a literal. Without loss of generality, we

assume the items in an element are in lexicographic order. The size of sequence s,

written as |s|, is the total number of items in all the elements in s. Sequence s is a

k-sequence if |s| = k. For example, <(e)(b)(a)>, <(a,b)(a)>, and <(c)(e,f)> are all

3-sequences. A sequence s = <e1e2…en> is a subsequence of another sequence s' =

<e1'e2'…em'> if there exist 1 ≤ i1< i2 < …< in ≤ m such that e1 ⊆e i1', e2 ⊆e i2', …, and en

⊆e in'. Sequence s' contains sequence s if s is a subsequence of s'. For example,

 125

<(b)(a,e)> is a subsequence of <(b,d)(c)(a,c,e)>.

 Each sequence in the sequence database DB is referred to as a data sequence.

Each data sequence is associated with a customer-id (abbreviated as cid). The number

of data sequences in DB is denoted by |DB|. The support of sequence s, denoted by

s.sup, is the number of data sequences containing s divided by the total number of

data sequences in DB. The minsup is the user specified minimum support threshold. A

sequence s is a frequent sequence, or called sequential pattern, if s.sup ≥ minsup.

Given the minsup and the sequence database DB, the problem of sequential pattern

mining is to discover the set of all sequential patterns, denoted by SDB.

6.2.2 Incremental update of sequential patterns

In practice, the sequence database will be updated with new transactions after the

pattern mining process. Possible updating includes transaction appending, deletions,

and modifications. With respect to the same minsup, the incremental update problem

aims to find out the new set of all sequential patterns after database updating without

re-mining the whole database. First, we describe the issue of incremental updating by

taking the transaction appending as an illustrating example. Transaction modification

can be accomplished by transaction deletion and appending.

The original database DB is appended with a few data sequences after some time.

The increment database db is referred to as the set of these newly appended data

sequences. The cids of the data sequences in db may already exist in DB. The whole

database combining all the data sequences from the original database DB and the

increment database db is referred to as the updated database UD. Let the support

count of a sequence s in DB be DB
counts . A sequence s is a frequent sequence in UD if

UD
counts ≥ minsup × |UD|, where UD

counts is the support count of s in UD. Although UD is

 126

(a) Obtain SUD by re-executing mining algorithm on UD

DB

data sequence

|old|

|new|

Database
updatingdata sequence db

SDB

Mining
with

minsup

UD
 is
DB∪db

data sequence

data sequence

SUD

Mining
with

minsup

(b) Obtain SUD by incremental updating with SDB

DB

data sequence

|old|

|new|

Database
updatingdata sequence db

SDB

Mining
with

minsup

SDB |new|

Implicit
merging

DB with db

SUD

Incremental
update
with

minsup

Fig. 6-1. Incremental update versus re-mining

the union of DB and db, |UD| is not necessarily equal to |DB| plus |db|. If there are

|old| cids appearing both in DB and db, then the number of ‘new’ customers is |new| =

|db|−|old|. Thus |UD| = |DB|+|db|−|old| due to sequence merging. When all cids in db

are different from those in DB, |old| (the number of ‘old’ customers) is zero. On the

contrary, |old| equals |db| in case all cids in db exist in DB. Let db
counts be the increase

in support count of sequence s due to db. Whether sequence s in UD is frequent or not

depends on UD
counts , with respect to the same minsup and |UD|.

Most approaches re-execute mining algorithms over all data sequences in UD to

 127

Table 6-1. Notations used

x1, x2, …, xq Items.
(x1, x2, …, xq) A q-itemset, each xi is an item.
s = <e1e2…en> A sequence with n element.
e1, e2, …, en Elements (of a sequence). Each ei is an itemset.
minsup The minimum support specified by the user.
UD The updated database.
DB The original database.
db The increment database.

|UD|, |DB|, |db| The total number of data sequences in UD, DB, and db
respectively.

|old| The total number of data sequences of ‘old’ customers in
db.

|new| The total number of data sequences of ‘new’ customers in
db.

SDB, SUD The set of all sequential patterns in DB and UD
respectively.

DB
counts ,

UD
counts

The support counts of candidate sequence s in DB and UD
respectively.

db
counts

The increase in support count of candidate sequence s due
to db.

Sk The set of all frequent k-sequences, see Section 6.3.1.
Χk The set of all candidate k-sequences, see Section 6.3.1.
Χk ' The reduced set of candidate k-sequences, see Section 6.4.

DB
kS The set of frequent k-sequences in DB, see Section 6.4.2.

Χκ(DB) The set of candidates in Χκ that are also in
DB
kS , see

Section 6.4.
Χκ(DB)' Χκ(DB)' = Xk − Χκ(DB), see Section 6.4.

dsUD, dsDB, dsdb
A data sequence in UD, DB, and db respectively, see
Section 6.4.1.

dsDB∪ dsdb An implicitly merged data sequence, see Section 6.4.1.

UDDB Data sequences in UD whose cids appearing in DB only, see
Section 6.4.4.

UDdb
Data sequences in UD whose cids appearing in db only, see
see Section 6.4.1.

UDDd
Data sequences in UD whose cids are in both DB and db,
see Section 6.4.1.

obtain UD
counts and discover UDS , as shown in Fig. 6-1(a). However, we can effectively

calculate UD
counts utilizing the support count of each sequential pattern s in SDB. Fig.

6-1(b) shows that we discover UDS through incremental update on SDB
 after implicit

 128

merging. Table 6-1 summarizes the notations used in this chapter.

6.2.3 Changes of sequential patterns due to database update

Consider an example database DB with 6 data sequences as shown in Fig. 6-2.

Assume that minsup = 33%, i.e., minimum support count being 2. The sequential

patterns in DB are <(a)>, <(b)>, <(c)>, <(d)>, <(a,b)>, <(a)(d)>, <(b)(b)>, and

<(c)(a)>. Note that <(f)>, though appeared twice in the same data sequence C6, is not

frequent because its support count is one.

 Data Sequence (dsDB)
C1 <(a)(d)>
C2 <(b)(c,e)(a,b)>
C3 <(a,b)(b,d)>
C4 <(d)(c)(a)>
C5 <(a)>
C6 <(g)(b,f,g)>

Fig. 6-2. The original database DB example, |DB| = 6

Fig. 6-3(a) shows the data sequences in the increment database db after some

updates from new customers only. The updated database UD is shown in Fig. 6-3(b).

Corresponding to the nine data sequences and with the same minsup, the support

count of a frequent sequence must be three or larger. The support counts of previous

sequential patterns <(c)>, <(a)(d)>, and <(c)(a)> are less than three, and are no longer

frequent due to the database updates. While <(e)>, <(b)(e)>, and <(b,d)> become new

patterns because they have minimum supports now.

In the cases of updates when the new sequences are from old customers, i.e., the cids

of the new sequences appear in the original database. These data sequences must be

appended to the old data sequences of the same customers in DB. Assume that two

customers, cid=C4 and cid=C8, bought item ‘h’ afterward. The data sequences for

cid=C4 and cid=C8 now become <(d)(c)(a)(h)> and <(b,d)(e)(h)>, respectively. Fig.

6-4 shows the example of an increment database having data sequences from both old

 129

and new customers. In this example, |old| = 4, |new| = 3, and |db| = 7 where records in

shadow are old customers. Fig. 6-5 presents the resulting data sequences in UD. After

invalidating the patterns <(e)>, <(b)(b)>, <(b)(e)>, and <(a,b)>, the up-to-date

sequential patterns are <(a)>, <(b)>, <(d)>, <(f)>, <(b,d)>, <(b,f)> and <(a)(d)>, for

the given minsup 33%.

(a) new customers only, |db|=3.

Cid

C8
C9

C7 <(b,d)>
<(b,d)(e)>
<(a,b)(e)(b,f)>

Data Sequence (dsdb)

Cid

C2
C3

C1 <(a)(d)>
<(b)(c,e)(a,b)>
<(a,b)(b,d)>

Data Sequence (dsUD)

C5
C6

C4 <(d)(c)(a)>
<(a)>
<(f)(b,f,g) >

C8
C9

C7 <(b,d)>
<(b,d)(e)>
<(a,b)(e)(b,f)>

(b) the updated database, |UD|=9.

Fig. 6-3. Data sequences in the increment database and the updated database (a) db

with new customers only (b) the updated database UD

6.3 Related Work

In Section 6.3.1, we review some algorithms for discovering sequential patterns.

Section 6.3.2 presents related approaches for incremental pattern updating.

6.3.1 Algorithms for discovering sequential patterns

The Apriori algorithm discovers association rules [5], while the AprioriAll algorithm

deals with the problem of sequential pattern mining [6]. AprioriAll splits sequential

pattern mining into three phases, itemset phase, transformation phase, and sequence

phase. The itemset phase uses Apriori to find all frequent itemsets. The database is

transformed, with each transaction being replaced by the set of all frequent itemsets

contained in the transaction, in the transformation phase. In the third phase, AprioriAll

 130

makes multiple passes over the database to generate candidates and to count the

supports of candidates. In subsequent work, the same authors proposed the GSP

(Generalized Sequential Pattern) algorithm that outperforms AprioriAll [80]. Both

algorithms use the similar techniques for candidate generation and support counting,

as described in the following.

Cid Data Sequence (dsdb)
C2 <(d)>
C4 <(h)>
C5 <(a,d)>
C8 <(h)>
C10 <(b,d,f,h)>
C11 <(a)(g)>
C12 <(b,f)(g)>

Fig. 6-4. Data sequences of old and new customers in db

Cid Data Sequence (dsUD)
C1 <(a)(d)>
C2 <(b)(c,e)(a,b)(d)>
C3 <(a,b)(b,d)>
C4 <(d)(c)(a)(h)>
C5 <(a)(a,d)>
C6 <(f)(b,f,g)>
C7 <(b,d)>
C8 <(b,d)(e)(h)>
C9 <(a,b)(e)(b,f)>
C10 <(b,d,f,h)>
C11 <(a)(g)>
C12 <(b,f)(g)>

Fig. 6-5. Merged data sequences in the updated database UD

The GSP algorithm makes multiple passes over the database and finds out

frequent k-sequences at k-th database scanning. In each pass, every data sequence is

examined to update the support counts of the candidates contained in this sequence.

Initially, each item is a candidate 1-sequence for the first pass. Frequent 1-sequences

are determined after checking all the data sequences in the database. In succeeding

passes, frequent (k−1)-sequences are self-joined to generate candidate k-sequences.

Again, the supports of these candidate sequences are counted by examining all data

 131

sequences, and then those candidates having minimum supports become frequent

sequences. This process terminates when there is no candidate sequence any more. In

the following, we further depict two essential sub-processes in GSP, the candidate

generation and the support counting.

Candidate generation: Let Sk denote the set of all frequent k-sequences, and Xk

denote the set of all candidate k-sequences. GSP generates Xk by two steps. The first

step joins Sk-1 with Sk-1 and obtains a superset of the final Xk. Those candidates in the

superset having any (k-1)-subsequence which is not in Sk-1 are deleted in the second

step. In the first step, a (k-1)-sequence s1 = <e1e2…en-1en> is joined with another

(k-1)-sequence s2 = <e1’e2’…en’ > if s1 = s2 , where s1 is the (k-2)-sequence of

s1 dropping the first item of e1 and s2 is the (k-2)-sequence of s2 dropping the last

item of en’. The generated candidate k-sequence s3 is <e1e2…en-1enen’ > if en’ is a

1-itemset. Otherwise, s3 is <e1e2…en-1en’ >. For example, the candidate 5-sequence

<(a,b)(c,e)(f)> is generated by joining <(a,b)(c,e)> with <(b)(c,e)(f)>, and the

candidate <(a,b)(c,e,f)> is generated by joining <(a,b)(c,e)> with <(b)(c,e,f)>. In

addition, the Xk produced from this procedure is a superset of Sk as proved in [80].

That is, Xk ⊇ Sk.

Support counting: GSP adopts a hash-tree structure [5, 80] for storing candidates to

reduce the number of candidates that need to be checked for each data sequence.

Candidates would be placed in the same leaf if their leading items, starting from the

first item, were hashed to the same node. The next item is used for hashing when an

interior node, instead of a leaf node, is reached [80]. The candidates required for

checking against a data sequence are located in leaves reached by applying the

hashing procedure on each item of the data sequence [80]. The support of the

candidate is incremented by one if it is contained in the data sequence.

In addition, the SPADE (Sequential PAttern Discovery using Equivalence classes)

 132

algorithm finds out sequential patterns using vertical database layout and

join-operations [99]. Vertical database layout transforms customer sequences into

items’ id-lists. The id-list of an item is a list of (cid, timestamp) pairs indicating the

occurring timestamps of the item in that customer-id. The list pairs are joined to form

a sequence lattice, in which SPADE searches and discovers the patterns [99].

 Recently, the FreeSpan (Frequent pattern-projected Sequential Pattern Mining)

algorithm was proposed to mine sequential patterns by a database projection

technique [29]. FreeSpan first finds the frequent items after scanning the database

once. The sequence database is then projected, according to the frequent items, into

several smaller intermediate databases. Finally, all sequential patterns are found by

recursively growing subsequence fragments in each database. Based on the similar

projection technique, the authors proposed the PrefixSpan (Prefix-projected

Sequential pattern mining) algorithm [67].

 Nevertheless, all these algorithms have to re-mine the database after the database

is appended with new data sequences. Next, we introduce some approaches for

updating patterns without re-mining.

6.3.2 Approaches for incremental pattern updating

A work for incremental sequential pattern updating was proposed in [90]. The

approach uses a dynamic suffix tree structure for incremental mining in a single long

sequence. However, the focus of research here is on multiple sequences of itemsets,

instead of a single long sequence of items.

Based on the SPADE algorithm, the ISM (Incremental Sequence Mining)

algorithm was proposed for incremental sequence mining [64]. An Increment

Sequence Lattice consisting of both frequent sequences and the nearly frequent ones

(called negative border) is built to prune the search space for potential new patterns.

 133

However, the ISM might encounter memory problem if the number of the potentially

frequent patterns is too large [64]. Besides, computation is required to transform the

sequence database into vertical layout, which also requires additional storage several

times the original database.

In order to avoid re-mining from scratch with respect to database updates with

both old and new customers, we propose a pattern updating approach that

incrementally mines sequential patterns by utilizing the discovered knowledge.

Section 6.4 gives the details of the proposed algorithm.

6.4 The Proposed Algorithm

In sequence mining, frequent patterns are those candidates whose supports are greater

than or equal to the minimum support. In order to obtain the supports, every data

sequence in the database is examined, and the support of each candidate contained in

that data sequence is incremented by one. For pattern updating after database update,

the database DB was already mined and the supports of the frequent patterns with

respect to DB are known. Intuitively, the number of data sequences need to be

examined in current updating with database UD seems to be |UD|. However, we can

utilize the prior knowledge to improve the overall updating efficiency. Therefore, we

propose the IncSP (Incremental Sequential Pattern Upate) algorithm to speed up the

incremental updating problem. Fig. 6-6 depicts the architecture of a single pass in the

IncSP algorithm. In brief, IncSP incrementally updates and discovers the sequential

patterns through effective implicit merging, early candidate pruning, and efficient

separate counting.

 134

Read k-sequence s ∈SDB

∀ data sequence dsdb ∈ db

Filtered Χk'

Sk = {s| s ∈ Χk ∧ ≥ minsup × |UD|}UD
counts

Support
Counting

(I)

∀ data sequence dsDB ∈ DB

Support
Counting

(II)

Generate Χk

: separate counting
: candidate pruning: previous knowledge
: (embedded) implicit merging

: operation

Fig. 6-6. The architecture of the k-th pass in IncSP

The data sequence of a customer in DB and the sequence with same cid in db

must be merged into the customer’s data sequence in UD. If all such sequences are

merged explicitly, we have to re-mine and re-count the supports of the candidates

contained in the resultant customer sequences from scratch. Hence, IncSP deals with

the required sequence merging implicitly for incremental pattern updating, which is

described in Section 6.4.1.

IncSP further speeds up the support counting by partitioning the candidates into

two sets. The candidates with respect to DB which were also frequent patterns before

updating are placed into set Χκ(DB), and the remaining candidates are placed into set

Χκ(DB)'. After the partitioning, the supports of the candidates in Χκ(DB) can be

incremented and updated simply by scanning over the increment database db. During

the same scanning, we also calculate the increment supports of the candidates in

Χκ(DB)' with respect to db. Since the supports of the candidates in Χκ(DB)' are not

available (only the supports of frequent patterns in DB are kept in prior mining over

DB), we need to compute their supports against the data sequences in DB. The

 135

number of candidates need to be checked is reduced to the size of set Χκ(DB)' instead

of the full set Xk. Thus, IncSP divides the counting procedure into separate processes

to efficiently count the supports of candidates with respect to DB and db. We show

that the support of a candidate is the sum of the two support counts after the two

counting processes in Lemma 6-1 (in Section 6.4.2).

 Moreover, some candidates in Χκ(DB)' can be pruned earlier before the actual

counting over the data sequences in DB. By partitioning the set of candidates into

Χκ(DB) and Χκ(DB)', we know that all the candidates in Χκ(DB)' are not frequent patterns

with respect to DB. If the support of a candidate in Χκ(DB)' with respect to db is

smaller than the proportion minsup × (|UD|−|DB|), the candidate cannot possibly

become a frequent pattern in UD. Such unqualifying candidates are pruned and only

the more promising candidates go through the actual support counting over DB.

Lemma 6-2 (in Section 6.4.2) shows this property. This early pruning further reduces

the number of candidates required to be counted against the data sequences in DB.

The reduced set of candidates is referred to as Χκ'.

 In essence, IncSP generates candidates and examines data sequences to

determine frequent patterns in multiple passes. As shown in Fig. 6-6, IncSP reduces

the size of Xk into Χκ' and updates the supports of patterns in SDB by simply checking

the increment database db, which is usually smaller than the original database DB. In

addition, the separate counting technique enables IncSP to accumulate candidates’

supports quickly because only the new candidates, whose supports are unavailable

from SDB, need to be checked against DB. The complete IncSP algorithm and the

separate counting are described in Section 6.4.2. Section 6.4.3 further illustrates other

updating operations such as modifications and deletions. In Section 6.4.4, we provide

the proof of lemmas used in Section 6.4.

 136

6.4.1 Implicit merging of data sequences with same cids

For the discovery of sequential patterns, transactions coming from the same customer,

either in DB or in db, are parts of the unique data sequence corresponding to that

customer in UD. Given a customer having one data sequence in DB and another

sequence in db, the proper data sequence for the customer (in UD) is the merged

sequence of the two. Since the transaction times in db are later than those in DB, the

merging appends the data sequences in db to the sequences in DB. Nevertheless, such

“explicit merging” might invalidate SDB because the data sequence of the customer

becomes a longer sequence. Some patterns in SDB, which are not contained in the data

sequence before merging, might become contained in the now longer data sequence

so that the support counts of these patterns become larger. In order to effectively keep

the patterns in SDB up-to-date, IncSP implicitly merges data sequences of the same

customers and delays the actual action of merging until pattern updating completes.

Assume that an explicit merging must merge dsDB with dsdb into dsUD, where dsDB,

dsdb, and dsUD represent the data sequences in DB, db, and UD respectively. In each

pass, the mining process needs to count the supports of candidate sequences against

dsUD. The “implicit merging” in IncSP employs dsDB and dsdb as if dsUD is produced

during mining process. We will describe how “implicit merging” updates the supports

of sequential patterns in SDB, and how “implicit merging” counts the supports of

candidates contained in the implicitly merged data sequence, represented by dsDB ∪

dsdb.

The “implicit merging” updates the supports of sequential patterns in SDB

according to dsDB
 and dsdb. This updating involves only the newly generated

(candidate) k-sequences in the k-th pass, which are contained in dsUD but not in dsDB,

since dsDB
 had already engaged in the discovery of SDB. We refer to these candidate

 137

k-sequences as the new k-sequences. As indicated in Fig. 6-6, when dsdb is checked in

Support Counting (I), only the supports of such new k-sequences must be counted. If

this new k-sequence is also a sequential pattern in SDB, we update the support count of

the sequence in SDB. Otherwise, supports of new k-sequences which are not in SDB,

being initialized to zero before counting, are incremented by one for this data

sequence (dsDB ∪ dsdb). In this way, IncSP correctly maintains SDB with the new

k-sequences and counts supports with respect to dsdb during Support Counting (I).

Example 1: Implicit merging for support updating in pass-1. Take customers in

Fig. 6-5 for example, the DB is shown in Fig. 6-3(b) and the db is shown in Fig. 6-4.

The customer with cid=C2 has the two sequences, dsDB =<(b)(c,e)(a,b)> and dsdb

=<(d)>. During pass 1, <(d)> DB
count is increased by one due to the implicit merging

with dsdb and dsDB (of C2). Note that implicit merging for the customer with cid=C5

whose dsDB =<(a)> and dsdb =<(a,d)> contains only the new 1-sequence <(d)> because

<(a)> was already counted when we examined dsDB
 to produce SDB. Eventually, the

support count <(d)> DB
count is increased by two considering the two implicitly merged

sequences of C2 and C5. Similarly, the support count of candidate <(h)> DB
count is two

after the implicit merging on customer sequences whose cid=C4 and cid=C8. �

6.4.2 The IncSP (Incremental Sequential Pattern Upate) algorithm

The implicit merging technique preserves the correctness of supports of the

patterns and enables IncSP to count the supports in DB and db separately for pattern

updating. Fig. 6-7 lists the proposed IncSP algorithm and Fig. 6-8 depicts the two

separate sub-processes of support counting in the IncSP algorithm. Through separate

counting, we do not have to check the full candidate set Xk against all data sequences

from db and DB. Only the (usually) smaller db must take all the candidates in Xk into

 138

1) /* Init ially, each item is a candidate 1-sequence */
2) Χ1 = set of candidate 1-sequences;
3) k = 1 ; /* Start from pass 1 */
4) repeat /* Find frequent k-sequences in the k-th pass */
5) for each s ∈ Χk do = = 0 ; /* In itialize counters */
6) Read ; /* = {frequent k-sequences in DB} */
7) Check sequences in db by Support Counting (I) ; /* See Fig. 6-8 */
8) /* Prune candidates: (1) counted in (2) insufficient “new” counts */
9) Χk' = Χk−{s |s ∈ }−{s | < minsup × (|UD|− |DB |)} ;
10) Check sequences in DB by Support Counting (II) ;/* See Fig. 6-8 */
11) /* Frequent k-sequences in UD found */
12) Sk = {s | s ∈ Χk ∧ + ≥ minsup × |UD|} ;
13) k = k + 1;
14) Generate Ck with Sk-1 ; /* Generate candidates for next pass */
15) until no more candidates
16) Answer SUD = ∪k Sk ;

DB
kS

db
counts

DB
counts

DB
kS

DB
kS db

counts

DB
counts

db
counts

DB
kS

Fig. 6-7. Algorithm IncSP

Support Counting (I):
 /* Updating “old” supports and counting candidates against data sequences in db */
1) for each data sequence dsdb in db do
2) if cid of dsdb is not found in DB then /* dsdb is a new customer’s sequence */
3) /* Increment by 1 if s is contained in dsdb */
4) for each s ∈ Χk ∧ s ⊆ dsdb do ++ ;
5) endif
6) if cid of dsdb is found in DB then /* dsdb should be appended to dsDB */
7) for each s ∈ Χk ∧ s ⊆ (dsDB ∪ dsdb) do /* Implicit merging and counting */
8) /* Increment by 1 if s is contained in dsdb but not in dsDB */
9) if s⊄ dsDB then ++ ;
10) endfor
11) endif
12) endfor

db
counts

Support Counting (II):
 /* Counting “new” candidates against data sequences in DB */
1) for each data sequence dsDB in DB do
2) /* Increment by 1 if s is contained in dsDB */
3) for each s ∈ Χk' ∧ s ⊆ dsDB do ++ ; /* Χk' is the reduced candidate set */
4) endfor

DB
counts

db
counts

db
counts

db
counts

DB
counts

Fig. 6-8. The separate counting procedure

 139

consideration for support updating. Furthermore, we can prune previous patterns and

leave fewer but more promising candidates in Χκ' before applying the data sequences

in DB for support counting.

The IncSP algorithm generates candidates and computes the supports for pattern

updating in multiple passes. In each pass, we initialize the two support counts of each

candidate in UD to zero, and read the support count of each frequent k-sequence s in

DB to DB
counts . We then accumulate the increases in support count of candidates with

respect to the sequences in db by Support Counting (I). Before Support Counting (II)

starts, candidates which are frequent in DB but cannot be frequent in UD according to

Lemma 6-4 are filtered out. The full candidate set Xk is reduced into the set Χκ'. Next,

the Support Counting (II) calculates the support counts of these promising candidates

with respect to the sequences in DB. As indicated in Lemma 6-1, the support count of

any candidate k-sequence is the sum of the two counts obtained after the two counting

processes. Consequently, we can discover the set of frequent k-sequences Sk by

validating the sum of the two counts of every candidate. The Sk is used to generate the

complete candidate set for the next pass, employing the similar candidate generation

procedure in GSP. The above process is iterated until no more candidates.

We need to show that IncSP updates the supports and discovers frequent patterns

correctly. Several properties used in the IncSP algorithm are described as follows. The

details of the proof of the lemmas are included in Appendix.

Lemma 6-1. The support count of any candidate k-sequence s in UD is equal to DB
counts

+ db
counts .

Lemma 6-2. A candidate sequence s, which is not frequent in DB, is a frequent

sequence in UD only if db
counts ≥ minsup × (|UD|−|DB|).

 140

Lemma 6-3. The separate counting procedure (in Fig. 6-8) completely counts the

supports of candidate k-sequences against all data sequences in UD.

Lemma 6-4. The candidates required for checking against the data sequences in DB

in Support Counting (II) is the set Χκ', where Χκ' = Xk −{s| s∈ DB
kS } − {s| db

counts <

minsup× (|UD|−|DB|)}.

Theorem 6-1. IncSP updates the supports and discovers frequent patterns correctly.

Proof: In IncSP, we use the candidate generation procedure analogous to GSP to

produce the complete set of candidates in Xk. By Lemma 6-3, the separate counting

procedure completely counts the supports of candidate k-sequences against all data

sequences in UD. Lemma 6-1 determines frequent patterns in UD and the updated

supports. Therefore, IncSP correctly maintains sequential patterns. �

Example 2: Sequential pattern updating using IncSP. The data sequences in the

original database DB is shown in Fig. 6-3(b). The minsup is 33%. SDB is listed in

Table 6-2. The increment database db is shown in Fig. 6-4. IncSP discovers SUD as

follows.

Pass 1:

1) Generate candidates for pass 1, Χ1 = {<(a)>, <(b)>, …, <(h)>}.

2) Initialize the two counts of each candidate in Χ1 to zero, and read DBS1 .

After Support Counting (I), the increases in support count are listed in Part (b) of

Table 6-2. Note that for customer with cid=C5, the increase in support count of <(a)>

is not changed. Now |UD| = 12 and |DB| = 9. Since DB
1S ={<(a)>,<(b)>,<(d)>,<(e)>}

and the increase in support count of <(c)> are less than 33% × (|UD|−|DB|), the

reduced set Χ1' is {<(f)>,<(g)>,<(h)>}.

 141

Table 6-2. Sequences and support counts for Example 2

Part (a): SDB Part (b): Pass 1 Part (c): Pass 2 Part (d): SUD

DB
counts Support Counting (I)

db
counts

Support Counting (I)
db
counts

UD
counts

<(a)> 6 <(a)> 1 <(a)(a)> 1 <(a)> 7

<(b)> 6 <(b)> 2 <(a)(d)> 2 <(b)> 8

<(d)> 5 <(d)> 3 <(b)(d)> 1 <(d)> 8

<(e)> 3 <(f)> 2 <(b,d)> 1 <(f)> 4

<(b)(b)> 3 <(g)> 2 <(b,f)> 2 <(a)(d)> 4

<(b)(e)> 3 <(h)> 3 <(d,f)> 1 <(b,d)> 4

<(a,b)> 3 <(c)> 0 <(a,d)> 1 <(b,f)> 4

<(b,d)> 3 <(e)> 0 Others 0

Support Counting (II)
DB
counts

Support Counting (II)
DB
counts

<(f)> 2 <(a)(d)> 2

<(g)> 1 <(b)(d)> 1

<(h)> 0 <(b,f)> 2

<(a)(a)> 0

<(a,d)> 0

<(d,f)> 0

3) After Support Counting (II), the DB
counts of <(f)> and <(g)> are 2 and 1 respectively.

The minimum support count is 4 in UD.IncSP obtains the updated frequent

1-sequences, which are <(a)>, <(b)>, <(d)>, and <(f)>. Total 22 candidate

2-sequences are generated with the four frequent 1-sequences.

Pass 2:

4) We read DBS2 after initializing the two support counts of all candidate

2-sequences. Note that the DB
counts of <(b)(e)> is useless because <(b)(e)> is not a

candidate in UD in this pass.

5) We list the result of Support Counting (I) in Part (c) of Table 6-2. The increases in

 142

support count of some candidates, such as <(a,f)> or <(d)(f)>, are all zero and are

not listed.

6) Again, we compute the Χ2' so that the candidates need to be checked against the

data sequences in DB are <(a)(a)>, <(a)(d)>, <(a,d)>, <(b)(d)>, <(b,f)>, and

<(d,f)>. We filter out 16 candidates (13 candidates with insufficient “support

increases” and 3 candidates in DBS2) before Support Counting (II) starts.

7) The DB
counts of <(a)(d)>, <(b)(d)>, and <(b,f)> are 2, 1, and 2 respectively after

Support Counting (II). IncSP then sums up the counts (DB
counts and db

counts) to obtain

the updated frequent 2-sequences. Finally, IncSP terminates since no candidate

3-sequence is generated. Part (d) of Table 6-2 lists the sequential patterns and their

support counts in UD.�

In comparison with GSP, IncSP updates supports of sequential patterns in SDB by

scanning data sequences in db only. New sequential patterns, which are not in DB, are

generated from fewer candidate sequences comparing with previous methods. The

support increases of new candidates are checked in advance and leave the most

promising candidates for Support Counting (II) against data sequences in DB. Every

candidate in the reduced set is then checked against DB to see if it is frequent in UD.

On the contrary, GSP takes every candidate and counts over all data sequences in the

updated database. Consequently, IncSP is much faster than GSP as shown in the

experimental results.

6.4.3 Pattern maintenance on transaction deletion and modification

Common operations on constantly updated databases include not only appending, but

also deletions and modifications. Deleting transactions from a data sequence changes

the sequence; thereby changing the supports of patterns contained in this sequence.

 143

The supports of the discovered patterns might decrease but no new patterns would

occur. We check patterns in SDB against these data sequences. Assume that a data

sequence ds is changed to ds' due to deletion. The ds' is an empty sequence when all

transactions in ds are deleted. If a frequent sequence s is contained in ds but not in ds',

DB
counts is decreased by one. The resulting sequential patterns in the updated database

are those patterns still having minimum supports.

A transaction modification can be accomplished by deleting the old transaction

and then inserting the new transaction. In IncSP, we delete the original data sequence

from the original database, create a new sequence comprising the substituted

transaction(s), and then append the new sequence to the increment database.

6.4.4 Proof of lemmas

We provide the proof of lemmas used in Section 6.4. As noted in Table 6-1, DB
counts is

the support count of candidate sequence s in DB, and db
counts denotes the increase in

support count of candidate sequence s due to db. The candidate k-sequences in UD is

partitioned into Χκ(DB) and Χκ(DB)'. That is, Xk = Χκ(DB) ∪ Χκ(DB)', where Χκ(DB) = {s|

s ∈ Xk ∧ s ∈ DB
kS } and Χκ(DB)' = Xk − Χκ(DB). The data sequences in UD could be

partitioned into three sets: sequences with cids appearing in DB only, sequences with

cids appearing in db only, and sequences with cids occurring in both DB and db. The

cid of a data sequence ds is represented by ds.cid. Let UD = UDDB ∪ UDdb ∪ UDDd,

where UDDB = {ds| ds ∈ DB ∧ ds ∉ db}, UDdb = {ds| ds ∈ db ∧ ds ∉ DB}, and UDDd

= {ds| ds = ds1 + ds2, ds1 ∈ DB ∧ ds2 ∈ db ∧ ds1.cid = ds2.cid }.

Lemma 6-1. The support count of any candidate k-sequence s in UD is equal to DB
counts

+ db
counts .

 144

Proof: The support count of s in UD is the support count of s in DB, plus the count

increase due to the data sequences in db. That is DB
counts + db

counts by definition. �

Lemma 6-2. A candidate sequence s, which is not frequent in DB, is a frequent

sequence in UD only if db
counts ≥ minsup × (|UD|−|DB|).

Proof: Since s ∉ SDB, we have DB
counts < minsup × |DB|. If db

counts < minsup

× (|UD|−|DB|), then DB
counts + db

counts < minsup × |UD|. That is, s ∉ SUD. �

Lemma 6-3. The separate counting procedure (in Fig. 6-8) completely counts the

supports of candidate k-sequences against all data sequences in UD.

Proof: Considering a data sequence ds in UD and a candidate k-sequence s ∈ Xk,

(i) For each candidate k-sequence s contained in ds where ds ∈ UDdb: The support

count increase (due to ds) is accumulated in db
counts , by line 4 of Support Counting

(I) in Fig. 6-8.

(ii) For each candidate k-sequence s contained in ds where ds ∈ UDDB: (a) If s ∈

Χκ(DB), no counting is required since s had been counted while discovering SDB.

The support count of s in DB is read in DB
counts by line 6 in Fig. 6-7. (b) If s ∈

Χκ(DB)', DB
counts accumulates the support count of s, by line 3 of Support Counting

(II) in Fig. 6-8. Note that in this counting, we reduce Χκ(DB)' to Χκ' by Lemma

6-4.

(iii)For each candidate k-sequence s contained in ds where ds ∈ UDDd: Now ds is

formed by appending dsdb to dsDB. (a) If s ⊄ dsDB, i.e., dsDB of the ds does not

contain s. We accumulate the increase in db
counts , by line 9 of Support Counting (I)

in Fig. 6-8. (b) If s ⊆ dsDB ∧ s ∈ Χκ(DB), similar to (ii)-(a), the support count is

already read in DB
counts so that no counting is required. (c) If s ⊆ dsDB ∧ s ∈ Χκ(DB)',

 145

similar to (ii)-(b), we calculate DB
counts by line 3 of Support Counting (II) in Fig.

6-8. Again, Χκ(DB)' is reduced to Χκ' by Lemma 6-4 here.

The separate counting considers all the data sequences in UD as described here.

Next, we show that the supports of all candidates are calculated. By Lemma 6-1, the

support count of s in UD is the sum of DB
counts and db

counts .

(iv) For any candidate s in Χκ(DB): The DB
counts is from (ii)-(a) and (iii)-(b), and the

db
counts is accumulated by (i) and (iii)-(a).

(v) For any candidate s in Χκ(DB)': The DB
counts is counted by (ii)-(b) and (iii)-(c), and

the db
counts is counted by (i) and (iii)-(a). The separate counting is complete. �

Lemma 6-4. The candidates required for checking against the data sequences in DB

in Support Counting (II) is the set Χκ', where Χκ' = Xk − {s| s ∈ DB
kS } − {s| db

counts <

minsup × (|UD|−|DB|)}.

Proof: Since UD = UDDB ∪ UDdb ∪ UDDd and UDdb contains no data sequence in DB,

the data sequences concerned are in UDDB and UDDd. Considering a candidate s,

(i) If s ∈ DB
kS : For any data sequence ds ∈ UDDB or ds ∈ UDDd ∧ s ⊆ dsDB, s was

counted while discovering DB
kS . For ds ∈ UDDd ∧ s ⊄ dsDB, the increase in

support count db
counts is accumulated by line 9 of Support Counting (I). Therefore,

in Support Counting (II), we can exclude any candidate s which is also in DB
kS .

(ii) If s ∉ DB
kS : After Support Counting (I), the db

counts now contains the support count

counted for data sequence ds, where ds ∈ UDdb or ds ∈ UDDd ∧ s ⊄ dsDB. By

Lemma 6-2, if the db
counts is less than minsup × (|UD|−|DB|), this candidate s

 146

cannot be frequent in UD. Therefore, such candidate s could be filtered out.

(iii)By (i) and (ii), we have Χκ' = Xk − {s| s ∈ DB
kS } − {s| db

counts < minsup ×

(|UD|−|DB|)}. �

6.5 Experimental Results

In order to assess the performance of the IncSP algorithm, we conducted

comprehensive experiments using an 866 MHz Pentium-III PC with 1024MB memory.

In these experiments, the databases are composed of synthetic data. The method used

to generate these data is described in Section 6.5.1. Section 6.5.2 compares the

performance and resource consumption of algorithms GSP, ISM and IncSP. Results of

scale-up experiments are presented in Section 6.5.3. Section 6.5.4 discusses the

memory requirements of these algorithms.

6.5.1 Synthetic data generation

Updating the original database DB with the increment database db was modeled by

generating the update database UD, then partitioning UD into DB and db. Synthetic

transactions covering various data characteristics were generated by the well-known

method in [6]. As to the details of generating synthetic data, please refer to Section

3.5.1. Since all sequences were generated from the same statistical patterns, it might

model real updates very well.

At first, total |UD| data sequences were created as UD. Three parameters are used

to partition UD for simulating different updating scenarios. Parameter Rinc, called

increment ratio, decides the size of db. Total |db| = |UD| × Rinc sequences were

randomly picked from UD into db. The remaining |UD|−|db| sequences would be

placed in DB. The comeback ratio Rcb determines the number of “old” customers in

db. Total |old| = |db| × Rcb sequences were randomly chosen from these |db| sequences

 147

as “old” customer sequences, which were to be split further. The splitting of a data

sequence is to simulate that some transactions were conducted formerly (thus in DB),

while the remaining transactions were newly appended. The splitting was controlled

by the third parameter Rf, the former ratio. If a sequence with total |dsUD| transactions

was to split, we placed the leading |dsDB| = |dsUD| × Rf transactions in DB and the

remaining |dsUD|−|dsDB| transactions in db. For example, a UD with Rinc = 20%, Rcb =

30%, and Rf = 40% means that 20% of sequences in UD come from db, 30% of the

sequences in db have cids occurring in DB, and that for each “old” customer, 40% of

his/her transactions were conducted before current pattern updating. Note that the

calculation is integer-based with ‘ceiling’ function. E.g. |dsUD| = 4, |dsDB| = ⎡4*40%⎤ =

2. Table 6-3 summarizes the symbols and the parameters used in the experiments. A

database generated with these parameters is described as follows. The updated

database has |UD| customer sequences, each customer has |C| transactions on average,

and each transaction has average |T| items. A table of total NI PFIs and a table of total

NS PFSs were generated before picking items for the transactions of customer

sequences. On average, a PFS has |S| transactions and a PFI has |I| items. The total

number of possible items for all PFIs is N. All datasets used here were generated by

setting
Scrupµ and

Icrupµ to 0.75,
Scrupσ and

Icrupσ to 0.1,
Scorrµ and

Icorrµ

to 0.25, NS = 5000, NI = 25000. Two values of N (1000 and 10000) were used. A

dataset created with |C| = α, |T| = β, |S| =χ, and |I| =δ is denoted by the notation

Cα.Tβ.Sχ.Ιδ.

6.5.2 Comparisons of IncSP and GSP

To realize the performance improvements of IncSP, we first compare the efficiency of

incremental updating with that of re-mining from scratch, and then contrast that with

other incremental mining approaches. The well-known GSP algorithm [80], which is

 148

Table 6-3. Parameters used in the experiments

Parameter Description Value
|UD| Number of data sequences in database UD 10K, 100K, 250K,

500K, 750K, 1000K
|C| Average size (number of transactions) per

customer
10, 20

|T| Average size (number of items) per transaction 2.5, 5
|S| Average size of potentially sequential patterns 4, 8
|I| Average size of potentially frequent itemsets 1.25, 2.5
N Number of possible items 1000, 10000
NI Number of potentially frequent itemsets 25000
NS Number of possible sequential patterns 5000
ΓS The table of potentially frequent sequences (PFSs)

ΓI The table of potentially frequent itemsets (PFIs)

corrS Correlation level (sequence), exponentially

distributed Scorrµ =0.25

crupS Corruption level (sequence), normally distributed
Scrupµ =0.75,

Scrupσ =0.1

corrI Correlation level (itemset), exponentially
distributed Icorrµ =0.25

crupI Corruption level (itemset), normally distributed
Icrupµ =0.75,

Icrupσ =0.1

Rinc Ratio of increment database db to updated
database UD

1%, 2%, 5%, 8%, 10%,
20%, 30%, …, 90%

Rcb Ratio of comeback customers to all customers in
increment database db

0%, 10%, 25%, 50%,
75%, 100%

Rf Ratio of former transactions to all transactions
for each “old” customer

10%, 20%, …, 90%

a re-mining based algorithm, is used as the basis for comparison. The PrefixSpan

algorithm [67] mines patterns by recursively projecting data sequences to smaller

intermediate databases. Starting from prefix-items (the frequent items), sequential

patterns are found by recursively growing subsequence fragments in each

intermediate database. Except re-mining, mechanisms of modifying PrefixSpan to

solve incremental updating is not found in the literature. Since it demands a totally

different framework to handle the sequence projection of the original database and the

increment database, the PrefixSpan is not included in the experiments. The ISM

algorithm [64], which is the incremental mining version of the SPADE algorithm [99],

 149

deals with database update using databases of vertical layout. We pre-processed the

databases for ISM into vertical layout and the pre-processing time is not counted in

the following context.

Extensive experiments were performed to compare the execution times of GSP,

ISM, and IncSP with respect to critical factors that reflect the performance of

incremental updating, including minsup, increment ratio, comeback ratio, and former

ratio. We set Rinc=10%, Rcb=50%, and Rf=80% to model common database updating

scenarios. The dataset has 20000 sequences (|UD| = 20K, 3.8MB), generated with

|C|=10, |T|=2.5, |S|=4, |I|=1.25.

The effect on performance with various minsups was evaluated first. Re-mining is

less efficient than incremental updating, as indicated in Fig. 6-9. In the experiments,

both ISM and IncSP are faster than GSP for all values of minimum supports. Fig.

6-9(a) shows that ISM is faster than IncSP when the number of items (N) is 1000 and

minsup ≤ 1%. When N is 10000, IncSP outperforms ISM for all values of minsup, as

shown in Fig. 6-9(b). The total execution time is longer for all the three algorithms for

smaller minsup value, which allows more patterns to pass the frequent threshold. GSP

suffers from the explosive growth of the number of candidates and the re-counting of

supports for each pattern. For example, when minsup is 1% and N = 10000, the

number of candidate 2-sequences in GSP is 532526 and that of ‘new’ candidate

2-sequences in IncSP is 59. Only 59 candidate 2-sequences required counting over the

data sequences in UD. The other candidate 2-sequences are updated, rather than

re-counted, against the 2000 sequences in UD (UD*10%).

 150

C10 .T2.5 .S4 .I1.25 , |UD | = 20K, N = 1000
R inc = 10%, R cb = 50%, R f = 80%

0

50

100

150

200

250

3% 2% 1% 0.75%

To
ta

l E
xe

. T
im

e
(s

ec
.)

GSP

ISM

IncSP

minsup

(a) N = 1000

C10 .T2.5 .S4 .I1.25 , |UD | = 20K, N = 10000
R inc = 10%, R cb = 50%, R f = 80%

0
50

100

150
200
250
300

350
400

3% 2% 1% 0.75%

To
ta

l E
xe

. T
im

e
(s

ec
.)

GSP

ISM

IncSP

minsup

(b) N = 10000

Fig. 6-9. Total execution times over various minsup

Comparing Fig. 6-9(a) with Fig. 6-9(b), it indicates that ISM is more efficient

with a smaller N. ISM keeps all frequent sequences, as well as the maximally potential

frequent sequences (negative borders), in memory. Take minsup = 0.75% for example.

The number of frequent sequences is 701 for N = 1000 and 1017 for N = 10000,

respectively. Accordingly, the size of negative borders of size two is 736751 and

1550925, respectively. Those turn-into-frequent patterns that were in negative borders

before database updating must intersect with the complete set of frequent patterns.

Consequently, with a smaller minsup like 0.75%, the larger N provides more possible

 151

items to pass the frequent threshold so that the total execution is less efficient in ISM.

Instead of frequent-pattern intersection, IncSP deals with candidates separately, the

explosively increased frequent items (because of the larger N) affect the efficiency of

the pattern updating less. This also accounts for the performance gaps between IncSP

and ISM, no matter how increment ratio, comeback ratio or former ratio changes.

The results of varying increment ratio from 1% to 50% are shown in Fig. 6-10.

The minsup is fixed at 2%. In general, IncSP gains less at higher increment ratio

because larger increment ratio means more sequences appearing in db and causes

more pattern updatings. As indicated in Fig. 6-10, the smaller the increment database

db is, the more time on the discovery IncSP could save.

C10 .T2.5 .S4 .I1.25 , |UD | = 20K
R cb = 50%, R f = 80%, minsup = 2%

1

3

5

7

9

11

50% 20% 10% 8% 5% 2% 1%

Ex
ec

ut
io

n
Ti

m
e

R
at

io T(GSP)/T(ISM)

T(GSP)/T(IncSP)

R inc

Fig. 6-10. Total execution times over various incremental ratios

IncSP is still faster than GSP even when increment ratio is 50%. When increment

ratio becomes much larger, say over 60%, IncSP is slower than GSP. Clearly, when

most of the frequent sequences in DB turn out to be invalid in UD, the information

used by IncSP in pattern updating might become useless. When the size of the

increment database becomes larger than the size of the original database, i.e. the

 152

database has accumulated dramatic change and not incremental change any more,

re-mining might be a better choice for the total new sequence database.

The impact of the comeback ratio is presented in Fig. 6-11. IncSP updates

patterns more efficiently than GSP and ISM for all the comeback ratios. High

comeback ratio means that there are many ‘old’ customers in the increment database.

Consequently, the speedup ratio decreases as the comeback ratio increases because

more sequence merging is required. Fig. 6-11 shows that IncSP was efficient with

implicit merging, even when the comeback ratio was increased to 100%, i.e., all the

sequences in the increment database must be merged.

Fig. 6-12 depicts the performance comparisons concerning former ratios. It can

be seen from the figure that IncSP was constantly about 6.5 times faster than GSP

over various former ratios, ranging from 10% to 90%.

C10 .T2.5 .S4 .I1.25 , |UD | = 20K
R inc = 10%, R f = 80%, minsup = 2%

0
1
2
3
4
5
6
7
8

10% 25% 50% 75% 100%

Ex
ec

ut
io

n
Ti

m
e

R
at

io

T(GSP)/T(ISM)

T(GSP)/T(IncSP)

R cb

Fig. 6-11. Total execution times over various comeback ratios

 153

C10 .T2.5 .S4 .I1.25 , |UD | = 20K
R inc = 10%, R cb = 50%, minsup = 2%

2.8 2.8 2.7 2.6 2.5

7.1 6.7
6.4 6.3 6.1

0

1
2

3
4

5

6
7

8

10% 30% 50% 70% 90%

Ex
ec

ut
io

n
Ti

m
e

R
at

io

T(GSP)/T(ISM)

T(GSP)/T(IncSP)

R f

Fig. 6-12. Total execution times over various former ratios

C10 .T2.5 .S4 .I1.25, minsup = 0.75%

9.59

2.42

1

4.79

7.71

1

2

3

4

5

6

7

8

9

10

100,000 250,000 500,000 750,000 1,000,000

|UD |, number of data sequences

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Rinc = 10%, Rcb = 50%, Rf = 80%

Fig. 6-13. Linear scalability of the database size

C10 .T2.5 .S4 .I1.25 , |UD | = 20K, N = 1000
R inc = 10%, R cb = 50%, R f = 80%

0

100

200

300

400

500

3% 2% 1% 0.75%

M
ax

im
um

 u
se

d
m

em
or

y
(M

B
)

GSP

ISM

IncSP

minsup

Fig. 6-14. Maximum required memory with respect to various minsup

 154

6.5.3 Scale-up experiments

To assess the scalability of our algorithm, several experiments of large databases were

conducted. Since the basic construct of IncSP is similar to that of GSP, similar

scalable results could be expected. In the scale-up experiments, the total number of

customers was increased from 100K (18.8MB) to 1000K (187.9MB), with fixed

parameters C10.T2.5.S4.I1.25, N = 10000, Rinc = 10%, Rcb = 50%, and Rf = 80%.

Again, IncSP are faster than GSP for all the datasets. The execution times were

normalized with respect to the execution time for 100K customers here. Fig. 6-13

shows that the execution time of IncSP increases linearly as the database size

increases, which demonstrates good scalability of IncSP.

6.5.4 Memory requirements

Although IncSP uses separate counting to speed up mining, it generates candidates

and then performs counting by multiple database scanning, like GSP. The pattern

updating process in IncSP reads in the previous discovered patterns and stores them

into a hash-tree for fast support updating. Therefore, the maximum size of memory

required for both GSP and IncSP is determined by the space required to store the

candidates. A smaller minsup often generates a large number of candidates, thereby

demanding a larger memory space.

 In contrast, ISM applies item-intersection in each class for new pattern discovery,

assuming that all frequent sequences as well as potentially frequent sequences are

stored in a lattice in memory. Storing every possible frequent sequence costs a huge

memory space, not to mention those required for lattice links. For instance, the size of

negative borders of size two is over 1.5 million with N = 10000 (minsup = 0.75%) in

the experiment of Fig. 6-9(b). As shown in Fig. 6-14, the required memory for IncSP

is smaller than that of ISM. More memory is required in vertical approaches like

 155

SPADE.

6.6 Summary

The problem of sequential pattern mining is much more complicated than association

discovery due to sequence permutation. Validity of discovered patterns may change

and new patterns may emerge after updates on databases. In order to keep the

sequential patterns current and up-to-dated, re-execution of the mining algorithm on

the whole database updated is required. However, it takes more time than required in

prior mining because of the additional data sequences appended. Therefore, we

proposed the IncSP algorithm utilizing previously discovered knowledge to solve the

maintenance problem efficiently by incremental updating without re-mining from

scratch. The performance improvements result from effective implicit merging, early

candidate pruning, and efficient separate counting.

Implicit merging ensures that IncSP employs correctly combined data sequences

while preserving previous knowledge useful for incremental updating. Candidate

pruning after updating pattern supports against the increment database further

accelerates the whole process, since fewer but more promising candidates are

generated by just checking counts in the increment database. Eventually, efficient

support counting of promising candidates over the original database accomplishes the

discovery of new patterns. IncSP both updates the supports of existing patterns and

finds out new patterns for the updated database. The simulation performed shows that

the proposed incremental updating mechanism is several times faster than re-mining

using the GSP algorithm, with respect to various data characteristics or data

combinations. IncSP outperforms GSP with regard to different ratios of the increment

database to the original database except when the increment database becomes larger

than the original database. It means that it has been long time since last database

 156

maintenance and most of the patterns become obsolete. In such a case, re-mining with

new minsup over the whole database would be more appropriate since the original

minsup might not be suitable for current database any more.

The IncSP algorithm currently solves the pattern updating problems using

previously specified minimum support. Further researches could be extended to the

problems of dynamically varying minimum supports. Generalized sequential pattern

problems [80], such as patterns with is-a hierarchy or with sliding-time window

property, are also worthy of further investigation since different constraints induce

diversified maintenance difficulties. In addition to the maintenance problem,

constantly updated database generally create a pattern-changing history, indicating

changes of sequential patterns at different time. It is challenging to extend the

proposed algorithm to exploring the pattern changing history for trend prediction.

 157

Chapter 7 Conclusions and Future Work

7.1 Contributions

The objective of this thesis is to investigate efficient and scalable algorithms for

mining frequent patterns in large databases. The algorithms proposed in this thesis

include:

 LexMiner: A fast algorithm for mining frequent itemsets in association rule

mining

 MEMISP: An efficient algorithm for mining sequential patterns in databases of

any size, using only two passes of database scanning at most

 DELISP: A divide-and-conquer method for mining sequential patterns with

time constraints including minimum gap, maximum gap, and sliding windows

 KISP: An interactive algorithm that reduce the total response time

 IncSP: An incremental algorithm for updating sequential patterns after a

non-trivial updates of the large database.

All the proposed algorithms are verified by experiments of mining large datasets of

various characteristics. In the experiments comprising comprehensive comparisons,

the proposed algorithms outperform several related algorithms, and they all show

excellent linear scalability with respect to the size of the databases.

7.2 Future work

With the mining capabilities of the proposed algorithms, there are several interesting

extensions on frequent pattern mining, as listed below.

 The discovery of sequential patterns with time constraints by memory

indexing

 158

The proposed algorithm for sequence mining with constraints in this thesis,

though outperforms the other mining algorithms, requires the creation of

intermediate sub-databases. The accumulated size of the sub-databases

might be several times bigger than that of the original database. The memory

indexing approach is efficient for the discovery of common sequential

patterns without the need of generating any sub-databases. It is worthy of

study on extending the memory indexing approach for efficient mining of

generalized sequential patterns.

 Maximal frequent sequence mining

Most sequence mining algorithms aim to find out the set of all frequent

sequences. In some applications, we only need to discover those frequent

sequences that have no super-sequences. For example, given the longest

frequent sequences <(e)(f)> and <(b,c)(a,d)>, the users also learn that all

their sub-sequences (like <(e)>, <(f)>, <(b,c)>, <(a)>, <(b,c)(d)>, etc.) are

frequent. Once we have the maximal frequent sequences, we may start

classifying data sequences according to the longest common elements. The

lengthy process for mining the complete set of the frequent sequences is no

longer needed.

 Integration with database management systems

Given the success of the proposed algorithms, a seamless integration with

the database management system is necessary. The benefits for end-users

will be maximized only if the trivial process of selecting target data,

transforming data, and mining data is integrated as one of the query

functions of the database management system. However, such an integration

requires not only extensions on data manipulation languages but also

effective indexing and accessing mechanisms coupled with the system. It is

 159

challenging to integrate the mining algorithms with the database

management systems.

 160

References

[1] R. C. Agarwal, C. C. Aggarwal, and V.V.V. Prasad, “A Tree Projection Algorithm

for Generation of Frequent Item Sets,” Journal of Parallel and Distributed

Computing, Vol. 61, No. 3, pp. 350-371, 2001.

[2] R. C. Agarwal, C. C. Aggarwal, “Depth First Generation of Long Patterns,”

Proceedings of 2000 ACM International Conference on Knowledge Discovery in

Databases, pp. 108-118, 2000.

[3] C. C. Aggarwal and P. S. Yu, “Online Generation of Association Rules,”

Proceedings of the 14th International Conference on Data Engineering, Orlando,

Florida, USA, pp. 402-411, Feb. 1998.

[4] R. Agrawal, T. Imielinski, A. Swami, “Mining Association Rules between Sets of

Items in Large Databases,” Proceedings of the 1993 ACM SIGMOD Conference

on Management of Data, Washington D.C., pp. 207-216, May 1993.

[5] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, “Fast

Discovery of Association Rules,” Advances in Knowledge Discovery and Data

Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, eds.,

AAAI/MIT Press, pp. 307-328, 1996.

[6] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proceedings of the 11th

International Conference on Data Engineering, Taipei, Taiwan, pp. 3-14, March

1995.

[7] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,”

Proceedings of the 20th International Conference on Very Large Data Bases,

Santiago, Chile, pp. 487-499, Sep. 1994.

[8] R. Agrawal, T. Imielinski, and A. Swami, “Database Mining: A Performance

Perspective,” IEEE Transaction on Knowledge and Data Engineering, special

 161

issue on Learning & Discovery in Knowledge-Based Databases, Chile, Vol.5, No.

6, pp.914-925, Dec. 1993.

[9] A. Amir, R. Feldman, and R. Kashi, “A New and Versatile Method for

Association Generation,” Information Systems, Vol. 22, No. 6/7, pp. 333-347,

1997.

[10] N. F. Ayan, A. U. Tansel and E. Arkun, “An Efficient Algorithm to Update Large

Itemsets with Early Pruning,” ACM SIGKDD Intl. Conf. on Knowledge Discovery

in Data and Data Mining, San Diego, California, pp. 287-291, Aug. 1999.

[11] J. Ayres, J. E. Gehrke, T. Yiu, and J. Flannick, “Sequential PAttern Mining Using

Bitmaps,” Proceedings of the Eighth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. Edmonton, Alberta, Canada, July 2002.

[12] R. J. Bayardo Jr., “Efficiently Mining Long Patterns from Databases,”

Proceedings of the 1998 ACM-SIGMOD International Conference on

Management of Data, pp. 85-93, 1998.

[13] C. Bettini, X. S. Wang, and S. Jajodia, “Mining Temporal Relationships with

Multiple Granularities in Time Sequences,” Data Engineering Bulletin, Vol. 21,

pp. 32-38, 1998.

[14] S. Brin, R. Motwani, J. Ullman, and S. Tsur, “Dynamic Itemset Counting and

Implication Rule for Market Basket Data,” Proceedings of the 1997 SIGMOD

Conference on Management of Data, pp. 255-264, 1997.

[15] M. S. Chen, J. Han, and P. S. Yu, “Data Mining: An Overview from Database

Perspective,” IEEE Transactions on Knowledge and Data Engineering, Vol. 8,

No. 6, pp. 866-883, 1996.

[16] M. S. Chen, J. S. Park, P. S. Yu, “Efficient Data Mining for Path Traversal

Patterns,” IEEE Transactions on Knowledge and Data Engineering, Vol. 10, No.

2, pp. 209-221, 1998.

 162

[17] M. S. Chen, J. S. Park and P. S. Yu, ”Data mining for path traversal patterns in a

web environment,” Proceedings of 16th International Conference on Distributed

Computing Systems, pp. 385-392, May 1996.

[18] D. W. Cheung, J. Han, V. Ng, and C. Y. Wong, “Maintenance of Discovered

Association Rules in Large Databases: An Incremental Updating Technique,”

Proceedings of 12th IEEE International Conference on Data Engineering, pp.

106-114, 1996.

[19] D. W. Cheung, S. D. Lee, and B. Kao, “A general incremental technique for

maintaining discovered association rules,” Proceedings of the 5th International

Conference on Database Systems for Advanced Applications, pp. 185-194, 1997.

[20] R. Cooley, B. Mobasher, and J. Srivastava, “Web Mining：Information and

Pattern Discovery on the World Wide Web,” Proceedings of the 1997 IEEE

International Conference on Tools with Artificial Intelligence, pp. 558-567, 1997.

[21] R. Feldman, Y. Aumann, A. Amir, and H. Mannila, “Efficient Algorithms for

Discovering Frequent Sets in Incremental Databases,” 2nd SIGMOD Workshop

on Research Issues in Data Mining and Knowledge Discovery, May 1997.

[22] J. L. Feng and Y. Feng, “Binary partition based algorithms for mining association

rules,” Proceedings IEEE International Forum on Research and

Technology –Advances in Digital Libraries (ADL'98), pp. 30-34, Apr. 1998.

[23] Y. Fu and J. Han, “Metarule-guided Mining of Association Rules in Relational

Databases,” Proceedings of the 1995 International Workshop on Knowledge

Discovery and Deductive and Object-Oriented Databases, Singapore, Dec. 1995.

[24] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, “Mining Optimized

Association Rules for Numeric Attributes,” Proceedings of the Fifteenth ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,, pp.

182-191, 1996.

 163

[25] M. N. Garofalakis, R. Rastogi, and K. Shim, “SPIRIT: Sequential Pattern Mining

with Regular Expression Constraints,” Proceedings of the 25th International

Conference on Very Large Data Bases, Edinburgh, Scotland, pp. 223-234, 1999.

[26] J. Han, Y. Cai, and N. Cercone, “Data-Driven Discovery of Quantitative Rules in

Relational Databases” IEEE Transactions on Knowledge and Data Engineering,

Vol. 5, No. 1, pp.29-40, 1993.

[27] J. Han, Y. Cai, and N. Cercone, “Knowledge Discovery in Databases: An

Attribute-Oriented Approach,” Proceeding of the 18th VLDB Conference,

pp.547-559, 1992.

[28] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate

Generation,” Proceedings of the 2000 ACM SIGMOD Conference on

Management of Data, Dallas, Texas, USA, pp. 1-12, May 2000.

[29] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal and M.-C. Hsu, “FreeSpan:

Frequent Pattern-projected Sequential Pattern Mining,” Proceedings of the 6th

ACM SIGKDD international conference on Knowledge discovery and data

mining, pp. 355-359, 2000.

[30] C. Hidber, “Online Association Rule Mining,” Technical Report

UCB/CSD-98-1004, Department of Electrical Engineering and Computer Science,

University of California at Berkeley, 1998.

[31] J. Hipp, U. Güntzer, and G. Nakhaeizadeh, “Algorithms for Association Rule

Mining – A General Survey and Comparison,” SIGKDD Explorations, Vol. 2,

Issue 1, pp. 58-64, 2000.

[32] M. Houtsma and A. Swami, “Set-Oriented Mining of Association Rules in

Relational Databases,” Int’l Conference on Data Engineering, pp. 25-33, Taipei,

Taiwan, March 1995.

[33] H. Kan, D. W. Cheung, and S. W. Xia, “Efficient parallel mining of association

 164

rules on shared-memory multiple-processor machine,” IEEE International

Conference on Intelligent Processing Systems, pp. 1133-1137, Oct. 1997.

[34] K. Koperski and J. Han, “Discovery of Spatial Association Rules in Geographic

Information Databases," SSD, pp. 47-66, 1995.

[35] M. Klemettinen, H. Mannila, P. Ronkainen, and H. Toivonen, “Finding

Interesting Rules from Large Sets of Discovered Association Rules,” 3rd

International Conference on Information and Knowledge Management, pp.

401-407, Nov. 1994.

[36] C. M. Kuok, A. Fu, and M. H. Wong, “Mining Fuzzy Association Rules in

Databases,” SIGMOD Record, pp. 41-46, Mar. 1998.

[37] G. Lee, K.L. Lee and A.L.P. Chen, “Efficient Graph-Based Algorithms for

Discovering and Maintaining Association Rules in Large Databases,” Knowledge

and Information Systems, Springer-Verlag, Vol. 3, 2001, pp.338-355.

[38] C.-H. Lee, P. S. Yu and M.-S. Chen, “Causality Rules: Exploring the Relationship

between Triggering and Consequential Events in a Database of Short

Transactions,” Proceedings of the 2nd SIAM International Conference on Data

Mining (SDM-02), April 11-13, 2002, pp. 403-419.

[39] C.-H. Lee, C.-R. Lin and M.-S. Chen, “On Mining General Temporal Association

Rules in a Publication Database,” Proceedings of the First IEEE International

Conference on Data Mining (ICDM-01), Nov. 29 – Dec. 2, 2001.

[40] C.-H. Lee, C.-R. Lin and M.-S. Chen, “Sliding-Window Filtering: An Efficient

Algorithm for Incremental Mining,” Proceedings of the ACM 10th International

Conference on Information and Knowledge Management (CIKM-01), Nov. 5-10,

2001, pp. 263-270.

[41] S. D. Lee, D. Cheung, and B. Kao, "A General Incremental Technique For

Maintaining Discovered Association Rules," Proceedings of the 5th International

 165

Conference On Database Systems For Advanced Applications, pp. 185-194,

Melbourne, Australia, Apr. 1997.

[42] C.-R. Lin, C.-H. Yun and M.-S. Chen, “Utilizing Slice Scan and Selective Hash

for Episode Mining,” KDD-01 Workshop on Temporal Data Mining, August

26-29, 2001.

[43] J. L. Lin and M. H. Dunham, “Mining association rules: anti-skew algorithms,”

Proceedings 14th International Conference on Data Engineering, Orlando, FL,

USA., pp. 486-493, Feb. 1998.

[44] B. Liu, W. Hsu, and Y. Ma, “Mining Association Rules with Multiple Minimum

Supports,” SIGKDD International Conference on Knowledge Discovery and Data

Mining, Aug. 1999.

[45] D. J. Lubinsky, “Discovery from Databases: A Review of AI and Statistical

Techniques,” IJCAI-89 Workshop on Knowledge Discovery in Databases,

pp.204-218, Aug. 1989.

[46] H. Mannila, H. Toivonen and A. I. Verkamo, “Discovery of Frequent Episodes in

Event Sequences,” Data Mining and Knowledge Discovery, Vol. 1, Issue 3, pp.

259-289, 1997.

[47] H. Mannila and H. Toivonen, "Discovering Generalized Episodes using Minimal

Occurrences," Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining (KDD’96), pp. 146-151, Portland, 1996.

[48] H. Mannila, H. Toivonen, and A. I. Verkamo, "Discovering Frequent Episodes in

Sequences," Proceedings of the First International Conference on Knowledge

Discovery and Data Mining (KDD’95), pp. 210-215, Montreal, Canada, 1995.

[49] H. Mannila, H. Toivonen, and A. I. Verkamo, “Efficient Algorithms for

Discovering Association Rules,” KDD-94: AAAI Workshop on Knowledge

Discovery in Databases, Seattle, Washington, pp.181-192, July 1994.

 166

[50] H. Mannila, H. Toivonen, and A. I. Verkamo, “Improved Methods for Finding

Association Rule,” Report C-1993-65,U. Helsinki 1994.

[51] F. Masseglia, F. Cathala, and P. Poncelet, “The PSP Approach for Mining

Sequential Patterns,” Proceedings of 1998 2nd European Symposium on

Principles of Data Mining and Knowledge Discovery, Vol. 1510, Nantes, France,

pp. 176-184, Sep. 1998.

[52] R. J. Miller, Y. Yang, “Association Rules over Interval Data,” Proceedings ACM

SIGMOD International Conference on Management of Data, pp. 452-461,May

1997.

[53] A. M. Mueller, Fast Sequential and Parallel Algorithm for Association Rule

Mining: A Comparison, Technical report CS-TR-3515, University of Maryland,

1995.

[54] B. Nag, P. M. Deshpande and D. J. DeWitt, “Using a Knowledge Cache for

Interactive Discovery of Association Rules,” Proceedings of Fifth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Aug. 1999.

[55] T. Oates, M. D. Schmill, D. Jensen, and P. R. Cohen, “A Family of Algorithms for

Finding Temporal Structure in Data,” Proceedings of the 6th International

Workshop on AI and Statistics, Fort Lauderdale, Florida, pp. 371-378, 1997.

[56] J.-Z. Ouh, P. Wu, and M.-S. Chen, “Constrained Based Sequential Pattern

Mining,” Proceedings of International Workshop on Web Technology, Dec. 4-6,

2001.

[57] B. Ozden, S. Ramaswamy and A. Silberschatz, “Cyclic Association Rules,”

International Conference on Data Engineering, 1998.

[58] J. S. Park, M. S. Chen, and P. S. Yu, “Using a Hash-Based Method with

Transaction Trimming for Mining Association Rules,” IEEE Transactions on

Knowledge and Data Engineering, Vol. 9, No. 5, pp. 813-825, 1997.

 167

[59] J. S. Park, M. S. Chen and P. S. Yu, “Mining Association Rules with Adjustable

Accuracy,” IBM Research Report, 1995.

[60] J. S. Park, P. S. Yu and M. S. Chen, “Mining Association Rules with Adjustable

Accuracy,” Proceedings of ACM International Conference on Information and

Knowledge Management, pp. 151-160, 1997.

[61] J. S. Park, M. S. Chen, and P. S. Yu., “An Effective Hash based Algorithm for

Mining Association Rules,” Proceedings ACM SIGMOD International

Conference on Management of Data, pp. 175-186 ,May 1995.

[62] J. S. Park, M. S. Chen and P. S. Yu, “Efficient Parallel Data Mining for

Association Rules,” Proceedings of 4th International Conf. on Information and

Knowledge Management, pp. 31-36, Baltimore, Maryland, Nov. 1995.

[63] S. Parthasarathy, S. Dwarkadas, and M. Ogihara, “Active Mining in a Distributed

Setting,” Large-Scale Parallel Data Mining, Lecture Notes in Computer Science

Vol. 1759, Springer- Verlag, pp. 65-82, 2000.

[64] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas, “Incremental and

Interactive Sequence Mining,” Proceedings of the 8th International Conference

on Information and Knowledge Management, Kansas, Missouri, USA, pp.

251-258, Nov. 1999.

[65] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, “H-Mine: Hyper-Structure

Mining of Frequent Patterns in Large Databases,” Proceedings of 2001

International Conference on Data Mining, San Jose, CA, Nov. 2001.

[66] J. Pei, J. Han, and R. Mao, “CLOSET: An Efficient Algorithm for Mining

Frequent Closed Itemsets,” Proceedings of 2000 ACM-SIGMOD International

Workshop on Data Mining and Knowledge Discovery, Dallas, TX, May 2000.

[67] J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal and M.-C. Hsu, “PrefixSpan: Mining

Sequential Patterns Efficiently by Prefix-projected Pattern Growth,” Proceedings

 168

of 2001 International Conference on Data Engineering, pp. 215-224, 2001.

[68] J. Pei and J. Han, “Constrained Frequent Pattern Mining: A Pattern-Growth

View,” SIGKDD Explorations, Vol. 4, Issue 1, pp. 31-39, June 2002.

[69] J. Pei, J. Han, and W. Wang, “Mining Sequential Patterns with Constraints in

Large Databases,” Proceedings of the 11th International Conference on

Information and Knowledge Management, 2002.

[70] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal, “Multi-Dimensional

Sequential Pattern Mining,” Proceedings of the 10th International Conference on

Information and Knowledge Management, pp. 81-88, 2001.

[71] V. Pudi and J. Haritsa, “Quantifying the Utility of the Past in Mining Large

Databases,” Information Systems, Vol. 25, N. 5, pp. 323-343, Jul. 2000.

[72] P. Rolland, “FlExPat: Flexible Extraction of Sequential Patterns,” Proceedings of

the IEEE International Conference on Data Mining 2001, pp. 481-488, 2001.

[73] A. Sarasere, E. Omiecinsky, and S. Navathe, “An Efficient Algorithm for Mining

Association Rules in Large Databases,” Proceedings of the 21st International

Conference on Very Large Data Bases, Zurich, Switzerland, pp. 432-444, 1995.

[74] P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and D. Shah,

“Turbo-charging Vertical Mining of Large Databases,” Proceedings of the 2000

ACM SIGMOD Conference on Management of Data, Dallas, Texas, USA, pp.

22-33, May 2000.

[75] T. Shintani and M. Kitsuregawa, “Mining Algorithms for Sequential Patterns in

Parallel: Hash Based Approach,” Proceedings of the Second Pacific–Asia

Conference on Knowledge Discovery and Data mining, pp. 283-294, 1998.

[76] T. Shintani and M. Kitsuregawa, “Parallel Mining Algorithms for Generalized

Association Rules with Classification Hierarchy,” Proceedings of ACM SIGMOD

Conference, pp. 25-36, 1998.

 169

[77] T. Shintani, and M. Kitsuregawa, “Hash based parallel algorithms for mining

association rules,” Proceedings of 4th International Conference on Parallel and

Distributed Information Systems, FL, USA, pp. 19-30, Dec. 1996.

[78] Shrividya, "DELTA: A Fast Algorithm for Incremental Mining of Association

Rules," Project report, Dept. of Computer Science and Automation, Indian

Institute of Science, 1997.

[79] A. Siberschatz and A. Tuzhilin, “On Subjecive Measure of Interestingness in

Knowledge Discovery,” Proc. 1st Int’l Conf. Knowledge Discovery and Data

Mining, pp.275-281, 1995.

[80] R. Srikant and R. Agrawal, “Mining Sequential Patterns: Generalizations and

Performance Improvements,” Proceedings of the 5th International Conference on

Extending Database Technology, Avignon, France, pp. 3-17, 1996. (An extended

version is the IBM Research Report RJ 9994)

[81] R. Srikant, Q. Vu, and R. Agrawal, “Mining Association Rules with Item

Constraints,” Proceedings of the Third International Conference on Knowledge

Discovery and Data Mining(KDD’97), pp. 67-73,1997.

[82] R. Srikant and R. Agrawal, “Mining Quantitative Association Rules in Large

Relational Tables,” Proceedings of the ACM SIGMOD Int’l Conference on

Management of Data, pp. 1-12, 1996.

[83] R. Srikant, R. Agrawal, “Mining Generalized Association Rules,” Proceedings of

the 21th VLDB Conference Zurich, Switzerland, pp. 407-419, 1995.

[84] S. Thomas, S. Sarawagi, "Mining Generalized Association Rules and Sequential

Patterns Using SQL Queries," Proceedings of the 4th International Conference on

Knowledge Discovery and Data Mining (KDD’98), pp. 344-348, 1998.

[85] H. Toivonen, "Discovery of Frequent Patterns in Large Data Collections," Ph.D.

thesis, University of Helsinki, Finland, 1996.

 170

[86] H. Toivonen, “Sampling Large Databases for Association Rules,” Proceedings

of the 22nd International Conference on Very Large Data Bases, pp. 134-145,

1996.

[87] P. S. M. Tsai, C. C. Lee, A. L. P. Chen, “An Efficient Approach for Incremental

Association Rule Mining,” Proceedings of the Pacific-Asia Conference on

Knowledge Discovery and Data Mining 1999, pp. 74-83.

[88] S. Tsur, “Data Dredging,” IEEE Data Engineering Bulletin, Vol. 13, No. 4, pp.

58-63, Dec. 1990.

[89] K. Wang, “Discovering Patterns from Large and Dynamic Sequential Data,”

Journal of Intelligent Information Systems, Vol. 9, No. 1, pp. 33-56, 1997.

[90] K. Wang and J. Tan, “Incremental discovery of sequential patterns,”

Proceedings. of Workshop on Research Issues on Data Mining and Knowledge

Discovery, Montreal, Canada, June 1996.

[91] M. Wojciechowski, “Interactive Constraint-Based Sequential Pattern Mining,”

Proceedings of the 5th East European Conference on Advances in Databases and

Information Systems, pp. 169-181, 2001.

[92] P. H. Wu, W. C. Peng, and M. S. Chen, “Mining Sequential Alarm Patterns in a

Telecommunication Database,” Proceedings of VLDB-01 Workshop on Databases

in Telecommunications 2001, pp. 37-51, 2001.

[93] S. J. Yen and A. L. P. Chen, “An Efficient Approach to Discovering Knowledge

from Large Databases,” Proceedings of 4th International Conference on Parallel

and Distributed Information Systems, pp. 8-18, Dec. 1996.

[94] S. J. Yen and A. L. P. Chen, “An efficient data mining technique for discovering

interesting association rules,” Proceedings of Database and Expert Systems

Applications. 8th International Conference (DEXA '97), pp. 664-669, Sep. 1997.

[95] S. J. Yen and A. L. P. Chen, “A Graph-Based Approach for Discovering Various

 171

Types of Association Rules,” IEEE Transactions on Knowledge and Data

Engineering, Vol. 13, No. 5, pp.839-845.

[96] M. J. Zaki, "Fast Mining of Sequential Patterns in Very Large Databases,"

Technical Report 668, The University of Rochester, New York, Nov. 1997.

[97] M. J. Zaki, “Sequence Mining in Categorical Domains: Incorporating

Constraints,” Proceedings of the 9th International Conference on Information

and Knowledge Management, Washington D.C., pp. 422-429, 2000.

[98] M. J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent Sequences,”

Machine Learning Journal, Vol. 42, No. 1/2, pp. 31-60, 2001.

[99] M. J. Zaki, “Efficient enumeration of frequent sequences,” Proceedings of the

7th International Conference on Information and Knowledge Management,

Washington, USA, pp. 68-75, Nov.1998.

[100] M. J. Zaki and C. Hsiao, “CHARM: An Efficient Algorithm for Closed

Association Rule Mining,” RPI Technical Report 99-10, 1999.

[101] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New Algorithms for

Fast Discovery of Association Rules,” Proceedings of the 3rd International

Conference on Knowledge Discovery and Data Mining, Newport, California, pp.

283-286, Aug. 1997.

[102] M. Zhang, B. Kao, D. Cheung, and C.-L. Yip, “Efficient Algorithms for

Incremental Update of Frequent Sequences,” Proceedings of the 6th Pacific-Asia

Conference on Knowledge Discovery and Data Mining, pp. 186-197, 2002.

 172

Vita

Ming-Yen Lin was born on March 31, 1966 in Kaohsiung, Taiwan, Republic of China.

He received the BS degree in Computer Engineering and the MS degree in Computer

Science and Information Engineering both from National Chiao Tung University,

Taiwan, in 1988 and 1990, respectively. After that time, he was a software engineer, in

charge of system/VGA BIOS of PCs, in Mitac Inc. In 1991, he changed the job and

worked for CTXOPTO Electronics Co. He had completed the design of the

firmware/software of LCD monitors/projectors, established the Internet networking

infrastructure of the company, introduced Oracle Database/Applications and EDI

systems, formulated the ISO9000 management system of MIS department, and

developed new techniques (which becomes an US patent 6,326,961) for the R&D

department. Later in 1998, he quitted the job and served as an adjunct lecturer in

Providence University for one semester. Starting from 2003, he is an adjunct lecturer

both in Feng Chia University and Taichung HealthCare and Management University.

He is currently working towards the Ph.D. degree in National Chiao Tung University.

His research interests include data mining, database systems, data stream management

systems, bioinformatics, and semantic Web.

