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有效率之關聯規則勘測與循序樣式勘測方法 

學生: 林明言              指導教授: 李素瑛 教授 

國立交通大學資訊工程學系 

摘要 

自動化與電腦的應用，讓資料收集無時不刻、隨時隨地的進行，也造成資料

大量且迅速增長。隱含於這些巨量資料中的豐富資訊，吸引各領域的學者研發各

種粹取其中有用知識的方法。在眾多資料探勘的目標中，頻繁樣式的勘測一直是

資料庫中知識挖掘的研究焦點。 本論文主旨在於研發有效率的關聯規則及循序

樣式探勘方法。 

首先，我們提出 LexMiner 演算法以找出推演關聯規則的頻繁項目集。為了

免除 hash-tree 擺置可能頻繁項目集時的缺點，有些方法將可能項目集依項目的

prefix-order 擺放。LexMiner 進一步利用項目集的字典序特性與字典式比較以加

速探勘演算法中的核心運算—尋找交易紀錄中包含之可能頻繁項目集。  

探勘循序樣式是本論文所探討的第二個主題。我們提出一個記憶體索引的方

法，稱為 MEMISP，利用「尋找再索引」的技巧來快速探勘循序樣式。無論資料

庫大小、無論支持度多小，MEMISP 最多僅需檢視資料庫兩回合即可完成探勘。

MEMISP 優於其他方法的因素在於不產生可能樣式、也不產生暫時的中間資料

庫。  

探勘具有時間限制的循序樣式，包括時間差與滑動時間窗，可以強化結果的

精確性。過去僅有Apriori 架構可以解決此問題。近來許多研究顯示 pattern-growth

方法可以有效改善探勘速度。因此，我們提出 DELISP 演算法，在 pattern-growth

方法論下，利用 divide-and-conquer 策略，整合限制於子資料庫投射，更有效率
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的完成具時間限制循序樣式之探勘。 

知識挖掘原就是一種挖掘、檢視、再挖掘反覆進行互動的過程。如何減少使

用者找到合意結果之交談過程中的反應時間相當重要。我們所提 KISP 演算法利

用進行過程中所得的資訊，累積計數的資訊以促成有效率之樣式計數運算，並加

速整個互動式序列探勘程序。 

目前循序樣式的探勘往往假設勘測的資料庫是不變動的。然而，資料庫會有

資料更新變動，以致過去找出的樣式會變成無效或新樣式可能會產生。本論文所

提的 IncSP方法不需因資料變動而整個從頭開始重新探勘。我們透過隱含式合併

與對新增序列有效率分開計數，將過去的樣式漸進式地更新。  

 我們進行了大規模完整的實驗以評估所提各方法的效能。在我們的實驗範圍

中，結果顯示，對於各個不同探勘參數及不同特性的資料集，我們的方法都優於

許多著名的方法。針對資料量擴充的實驗也顯示我們探勘頻繁樣式的方法具有線

性擴充能力。  

 



 iii

Efficient Algorithms for Association Rule Mining and 

Sequential Pattern Mining 

Student: Ming-Yen Lin             Advisor: Prof. Suh-Yin Lee 

Department of Computer Science and Information Engineering 

National Chiao Tung University 

Abstract 

Tremendous amount of data being collected is increasing speedily by computerized 

applications around the world. Hidden in the vast data, the valuable information is 

attracting researchers of multiple disciplines to study effective approaches to derive 

useful knowledge from within. Among various data mining objectives, the mining of 

frequent patterns has been the focus of knowledge discovery in databases. This thesis 

aims to investigate efficient algorithms for mining frequent patterns including 

association rules and sequential patterns.  

We propose the LexMiner algorithm to deal with frequent item-set discovery for 

association rules. To alleviate the drawbacks of hash-tree placement of candidates, 

some algorithms store candidate patterns according to prefix-order of itemsets. 

LexMiner utilizes the lexicographic features and lexicographic comparisons to further 

speed up the kernel operation of mining algorithms.  

A memory indexing approach called MEMISP is proposed for fast sequential 

pattern mining using a find-then-index technique. MEMISP mines databases of any 

size, with respect to any support threshold, in just two passes of database scanning. 

MEMISP outperforms other algorithms in that neither candidate patterns nor 
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intermediate databases are generated.  

Mining sequential patterns with time constraints, such as time gaps and sliding 

time-window, may reinforce the accuracy of mining results. However, the capabilities 

to mine the time-constrained patterns were previously available only within Apriori 

framework. Recent studies indicate that pattern-growth methodology could speed up 

sequence mining. We integrate the constraints into a divide-and-conquer strategy of 

sub-database projection and propose the pattern-growth based DELISP algorithm, 

which outperforms other algorithms in mining time-constrained sequential patterns.  

In practice, knowledge discovery is an iterative process. Thus, reducing the 

response time during user interactions for the desired outcome is crucial. The 

proposed KISP algorithm utilizes the knowledge acquired from individual mining 

process, accumulates the counting information to facilitate efficient counting of 

patterns, and accelerates the whole interactive sequence mining process. 

Current approaches for sequential pattern mining usually assume that the mining 

is performed with respect to a static sequence database. However, databases are not 

static due to update so that the discovered patterns might become invalid and new 

patterns could be created. Instead of re-mining from scratch, the proposed IncSP 

algorithm solves the incremental update problem through effective implicit merging 

and efficient separate counting over appended sequences. Patterns found in prior 

stages are incrementally updated rather than re-mining.  

 Comprehensive experiments have been conducted to assess the performance of 

the proposed algorithms. The empirical results show that these algorithms outperform 

state-of-the-art algorithms with respect to various mining parameters and datasets of 

different characteristics. The scale-up experiments also verify that our algorithms 

successfully mine frequent patterns with good linear scalability.  
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Chapter 1 Introduction 

Recent developments in computing and automation technologies have resulted in 

computerizing business and scientific applications in diverse areas. Turing the huge 

amounts of accumulated data into knowledge is attracting researchers in various 

domains including databases, machine learning, statistics, and so on. From the 

perspectives of database researchers, the emphasis is on discovering useful patterns 

hidden within the large data sets. Hence, a central issue for knowledge discovery in 

databases, also the focus of this thesis, is to develop efficient and scalable mining 

algorithms as integrated tools for database management systems.  

1.1 Background  

Data mining, which is also referred to as knowledge discovery in databases, has been 

recognized as the process of extracting non-trivial, implicit, previously unknown, and 

potentially useful information from data in databases [8, 15, 88]. The database used in 

the mining process generally contains large amounts of data collected by 

computerized applications. For example, bar-code readers in retail stores, digital 

sensors in scientific experiments, and other automation tools in engineering often 

generate tremendous data into databases in a very fast speed. Not to mention the 

natively computing-centric environments like Web access logs in Internet applications. 

These databases thus serve as rich and reliable sources for knowledge generation and 

verification. Meanwhile, the large databases present challenges for effective 

approaches for knowledge discovery. 

The discovered knowledge can be used in many ways in corresponding 

applications. For example, identifying the frequently appeared sets of items in a retail 

database can be used to improve the decision making of merchandise placement or 
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sales promotion. Discovering patterns of customer browsing and purchasing (from 

either customer records or Web traversals) may assist the modeling of user behaviors 

for customer retention or personalized services. Given the desired databases, whether 

relational, transactional, spatial, temporal, or multimedia ones, we may obtain useful 

information after the knowledge discovery process if appropriate mining techniques 

are used. A typical process of knowledge discovery in databases is illustrated in Fig. 

1-1. 

Data
Cleaning

Databases

Data
Warehouse

Task-
relevant
Data

Data
Selection

Mining

Evaluation

Knowledge

Patterns

 

Fig. 1-1. The process of knowledge discovery in databases [5] 

Having the databases, relevant prior knowledge, and the goals of the application 

domain, the target data set is created by selecting the data required. The data cleaning 

in Fig. 1-1 may removes those ‘dirty‘ data, e.g. data with incomplete fields, missing 

or wrong values, in the preprocessing stage. The ‘clean’ data is then reduced and/or 

transformed so that the data is represented by the useful features and actionable 

dimensions. To find the patterns of interest, the users perform the required mining 

functions, which include summarization/generalization of data characteristics, 

classification/clustering of data for future prediction, association finding for data 
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correlation, trend and evolution analysis, etc. The discovered patterns are evaluated 

and presented as knowledge. The process may iterate and contain certain loops 

between any two steps. 

Of all the mining functions in the knowledge discovering process, frequent 

pattern mining is to find out the frequently occurred patterns. The measure of frequent 

patterns is a user-specified threshold that indicates the minimum occurring frequency 

of the pattern. We may categorize recent studies in frequent pattern mining into the 

discovery of association rules and the discovery of sequential patterns. Association 

discovery finds closely correlated sets so that the presence of some elements in a 

frequent set will imply the presence of the remaining elements (in the same set). 

Sequential pattern discovery finds temporal associations so that not only closely 

correlated sets but also their relationships in time are uncovered.  

Finding all the frequent patterns from the huge data sets is a very 

time-consuming task. Although the frequency of a pattern can be determined by 

scanning the database once, the elements of the pattern cannot be known in advance. 

Take association discovery for example. Given 100 distinct items in the database, the 

total number of potentially frequent sets is C(100, 1) + C(100, 2) + C(100, 3) + … + 

C(100, 99) + C(100, 100), where C(m, n) represents the combinations to choose n 

items from m distinct items. The total number of potential patterns is too huge so that 

validating all the potential patterns in a single database scanning could be impossible. 

Thus, it is desirable to design efficient algorithms for frequent pattern mining.  

In addition, the mining algorithm must be scalable to handle databases of huge 

size. While the response time may be tolerable for an algorithm to check thousands of 

potential patterns against a small database having thousands of records, it could be 

intolerable against a database having millions of records. Similarly, an algorithm that 

assumes the database has maximum 100 elements might fail to mine any database 
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having more than 100 elements. In the mining of frequent patterns in database context, 

the number of elements and the size of the database could be very large. Any 

improper assumptions on database or main memory could possibly produce an 

impractical algorithm that works well for small problems only.   

1.2 Motivations and Research Objectives 

Although there has been a large number of algorithms designed for frequent pattern 

mining, investigating efficient and scalable algorithms is still very challenging. We 

first give an overview of the problems, and then describe the motivations and the 

research objectives of this proposal. 

In association rule mining, each record in the database is a set of items (called 

itemset). To generate a rule that associate an itemset X with the itemset Y, the first 

step is to find all the frequent itemsets, i.e. the itemsets whose occurring frequency is 

above the user-specified minimum threshold. The second step then uses the 

discovered frequent itemsets and their frequency to produce all the association rules. 

In general, most studies in association rule mining generate potential patterns (called 

candidates) and count their frequency in the database to determine the frequent ones. 

Non-frequent candidates are pruned before counting to reduce the search space, using 

the property that any candidate having non-frequent sub-sets cannot be frequent. 

However, not all the properties of itemsets are utilized in the mining process, e.g. the 

lexicographic property in itemsets. This thesis studies the features presented in 

itemsets and designs an efficient algorithm to speed up the efficiency of association 

rule mining.  

Previous studies in frequent pattern mining focused on association discovery the 

most. Nevertheless, sequential pattern mining is even more challenging. In sequential 

pattern mining, the database is composed of records of data sequences, where each 
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data sequence is an ordered list of itemsets. The itemsets in a data sequence need not 

be distinct. The aim is to discover all the frequent sub-sequences in the sequence 

database. 

Considering a sequential pattern having three items, the constitution of the pattern 

could be a list of: (1) three elements where each element is an item (2) two elements 

where the first element has one item and the second has two items (3) two elements 

where the first element has two items and the second has one item (4) one element 

that has three distinct items. Given the same number of possible items in the itemset 

database and the sequence database, the potential sequential patterns having three 

items greatly outnumber the potential itemsets having three items. The total number 

of candidates, which contains more than patterns having three items, increases 

exponentially as the number of possible item increases. Searching in the larger and 

more complex sequence database with the enormous number of candidates demands 

highly efficient mining algorithms.  

Therefore, this thesis investigates an approach that utilizes main memory for 

indexing sequences and proposes an efficient algorithm for sequential pattern mining.  

Common sequence mining considers no constraints for the time-gaps between 

adjacent elements of a pattern, thereby introducing some uninteresting patterns at 

times. For example, without specifying the maximum time gap (between adjacent 

elements), one may discover an example pattern such as “many customers bought 

LCD-projector after purchasing Laser-pointer.” Nevertheless, the pattern could be 

insignificant if the time interval between the two elements is too long such as over 

years. Typical time constraints include minimum gap, maximum gap, and sliding 

time-window [80]. In this thesis, we will look into the time-constraint problem and 

propose an approach that integrates these constraints into a divide-and-conquer 

strategy for the discovery of sequential patterns with time constraints. 
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In practice, the mining process is iterative and interactive. The measure of 

frequent patterns is dependent on the user-specified threshold. Consequently, different 

thresholds generate different outcomes. Once the mining result is unsatisfactory, the 

user might try another threshold. Thus, the interactive, time-consuming process 

usually repeats several times. To reduce the total response time required, an approach 

employing previous mining results to speed up the whole interactive mining process 

is investigated in this thesis.  

Current approaches for sequential pattern mining usually assume that the mining 

is performed in a static sequence database. However, databases are not static due to 

update so that the discovered patterns might become invalid and new patterns could 

be created. In addition to higher complexity, the maintenance of sequential patterns is 

more challenging than that of association rules owing to sequence merging. Sequence 

merging, which is unique in sequence databases, requires the appended new 

sequences to be merged with the existing ones if their customer ids are the same. 

Re-mining of the whole database appears to be inevitable since the information 

collected in previous discovery will be corrupted by sequence merging. Instead of 

re-mining, we propose an algorithm that solves the maintenance problem through 

effective merging for incremental pattern updating in this thesis.  

1.3 Organization of this Thesis  

This rest of the thesis is organized as follows. We describe efficient algorithms for 

mining association rules in Chapter 2. Fast algorithms for mining sequential patterns 

are delineated in Chapter 3. Chapter 4 addresses the problem of mining sequential 

patterns with time constraints and presents related algorithms. The algorithms for 

interactive sequence mining are introduced in Chapter 5. Chapter 6 extends the 

sequence mining algorithms over static databases into that over incremental databases. 
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Finally, Chapter 7 concludes this thesis. 
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Chapter 2 Algorithm LexMiner for Association Rule Mining 

2.1 Overview 

Association rule mining has been one of the focusing researches in data mining [4, 5, 

9, 14, 22, 28, 31, 37, 58, 95, 101]. The problem is originated from a large 

transactional database, in which each transaction is a set of items (named itemset) 

purchased by a customer [4]. The result of the mining discovers relationships between 

itemsets (called association rules), which can be used for inferring buying patterns of 

customers, placement of sales items, and so on in many applications.  

An association rule X⇒Y means that the occurrence of itemset X would imply the 

occurrence of itemset Y. A transaction T is said to contain X if and only if X ⊆ T. The 

support of itemset X is the number of transactions containing X divided by the total 

number of transactions in the database. Each rule is associated with two attributes, 

support and confidence. The support of the rule is defined as the support of the 

itemset X∪Y, and the confidence is defined as the support of X∪Y divided by the 

support of X. Association discovery aims to find out all association rules with support 

and confidence greater than the user-specified minimum thresholds.  

The discovery usually takes two steps, discovering frequent itemsets and 

generating rules. Frequent itemsets are those itemsets whose supports are greater than 

the specified minimum support. Since the desired rules can be easily generated after 

having the supports of itemsets, the overall performance is dominated by the step of 

frequent itemset discovering. This issue has been the focus in previous researches [1, 

7, 28, 32, 43, 49, 50, 61, 74, 85, 100]. The objective of this chapter is to improve the 

performance of frequent itemset discovering by fully utilizing the lexicographic 

property of itemsets. 
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Most algorithms for frequent itemset finding nearly are variations of the Apriori 

algorithm [5]. Apriori generated potential frequent itemsets (called candidates), stored 

candidates in a hash-tree, and then located the candidates required for support 

counting against each transaction. Nevertheless, the hash-tree may introduce 

‘irrelevant’ comparisons while counting because the hashing may possibly place 

candidates with different prefixed items in the same leaf. Some implementations 

stored candidates in a prefix tree, such as the SEAR algorithm [53]. By storing 

candidates according to the lexicographic order of items, the prefix tree alleviates 

some drawbacks of hashing. 

The lexicographic property of itemsets [1, 2, 12] had also been used in some 

algorithms. For example, the TreeProjection algorithm [1] generated candidates by 

lexicographic extensions, instead of by join operations as in Apriori. The transactions 

were then projected onto each node of the ordered candidate tree. Lexicographically 

extending the candidate itemsets were also used in the Max-Miner algorithm [12] and 

the DepthFirst algorithm [2] for discovering maximal patterns, i.e. the longest 

frequent itemsets. 

However, the lexicographic property is not fully utilized. In all the mining 

algorithms, each transaction has to perform itemset matching, which checks whether 

the transaction contains all the items in a candidate, with every located candidate. In 

general, all the items in each transaction are sorted in dictionary order after a light 

pre-processing. The lexicographic property in transactions can work with the property 

in candidates to accelerate itemset matching. In the proposed LexMiner algorithm, we 

break the itemset matching into a series of item matching (named lexicographic 

comparisons), in addition to storing candidates into a lexicographic tree of items 

(named LexTree). We refer k-itemset to an itemset with k items. The LexMiner 

algorithm optimizes the discovery of frequent 1-itemsets and 2-itemsets by array 
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counting, and speeds up the kernel operation, itemset matching, to discover the 

frequent k-itemsets (k > 2). 

The proposed LexTree is an ordinary trie of k-itemsets, where each node 

represents an item in an itemset and common items in itemsets share the same nodes. 

An example LexTree is shown in Fig. 2-1 (The detail structure of the LexTree is given 

in Section 2.3.1). LexMiner counts the supports efficiently by lexicographic 

comparisons between transactions and candidates. Each lexicographic comparison 

effectively obtains the group of promising candidates and prunes the group of 

irrelevant candidates. Therefore, the support counting is accelerated due to the 

reduction in the matching required for every transaction, in every database scanning. 

The set  = {(a, c, d), (a, c, j), (a, c, k), (a, d, j), (a, d, k),
(a, d, o), (a, j, o), (c, d, g), (c, d, j), (c, d, k), (c, g, k),
(c, g, t), (c, k, t), (d, g, j), (d, j, o), (g, k, t)}

(a) The set of all 3-itemsets
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(b) The 3-itemset LexTree  
Fig. 2-1. Example itemsets stored in a LexTree 

The generation of candidates even benefits from the LexTree structure. In 

Apriori-like algorithms, the superset of candidate k-itemsets were generated by 

self-joining frequent (k-1)-itemsets with common prefix (k-2) items, and then pruning 

those having non-frequent (k-1)-subsets. Common implementations usually store 

frequent (k-1)-itemsets in a hash table to assist fast pruning. Consequently, either a 
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traversal over the entire hash table or a pre-sorting of frequent (k-1)-itemsets is 

required in the join operation. On the other hand, LexMiner generates candidates 

faster without any table searching or sorting since itemsets having common prefixed 

(k-2) items are already linked by the leaf-pointers. 

In this chapter, we present a scalable mining algorithm for the discovery of 

association rules. The extensive experiments on well-known synthetic data show that 

our algorithm outperformed Apriori, TreeProjection and FP-growth algorithms. 

Scale-up experiments also promise the linear scalability with the number of 

transactions. The rest of the chapter is organized as follows. Section 2.2 introduces the 

problem. Section 2.3 reviews the related work. The proposed algorithm and the new 

data structure are described in Section 2.4. Comparative results of the experiments are 

shown in Section 2.5. Section 2.6 summarizes this chapter. 

2.2 Problem Statement  

Let Ψ = {i1, i2, …, in} be a set of literals, called items. A transaction T with m items is 

denoted by T = {x1, x2, …, xm}, such that T ⊆ Ψ. Items within an itemset are kept in 

lexicographic order. A k-itemset is represented by (x1, x2, …, xk), where x1 < x2 < …< 

xk. Given the database D of transactions and the user specified minimum support 

minsup, the mining of frequent itemsets is to find out all the itemsets having support 

greater than minsup. Table 2-1 summarizes the notations used in this chapter  

2.3 Related Work 

Level-wised algorithms like Apriori discover frequent k-itemsets in k-th pass of 

database scanning by generating candidate k-itemsets and identifying the frequent 

ones. Key factors of mining performance thus are determined by the number of 

database scans, the number of transactions needed to be processed in a pass, the 
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number of candidates generated in a pass, and the efficiency of support counting. 

Table 2-1. Notations used 

D The database of transactions 
T A transaction, T = {x1, x2, …, xp, …, xm} 

x1, x2, …, xk Items 
X, Y k-itemsets, X = (x1, x2, …, xk), Y = (y1, y2, …, yk) 

X.support The support of itemset X 
minsup The minimum support specified by the user 

Ck The set of candidate k-itemsets, see Section 2.4 
Lk The set of frequent k-itemsets, see Section 2.4 

kCΓ
 

The candidate k-itemset LexTree, see Section 2.4 

kLΓ
 

The frequent k-itemset LexTree, see Section 2.4 

mpT  
The partial transaction of T, mpT = {xp, xp+1, …, xm}, 
see Section 2.4.2 

k
mpT  The k-subsets of mpT , see Section 2.4.2 

 

For the reduction of database scans, DIC (Dynamic Itemset Counting) algorithm 

starts counting just the 1-itemsets and then quickly adds counters of 2-itemsets, …, 

and of k-itemsets, provided that all its subsets have been determined being frequent 

[14]. Partition algorithm generates all the candidates by memory-sized partitions of 

the database [73]. Besides, DLG (Direct Large itemset Generation) algorithm uses 

large bit vectors for transformation and traversal to reduce database scans [86]. 

Sampling approaches can effectively reduce the number of database passes too [93].  

For the reduction of transactions to be processed in a pass, AprioriTid algorithm 

replaces itemsets in a transaction T by potentially frequent k-itemsets present in T [7]. 

DHP (Dynamic Hashing with Pruning) algorithm substantially minimizes the number 

of transactions by applying a hashing scheme, which also eliminates some candidates 

in advance [58]. 

For fast support counting, Apriori stores candidates in a hash-tree, where each 

interior node contains a hash table and each leaf contains a list of candidates. 

Candidates are placed by hashing on consecutive items in the candidate until a leaf is 
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reached. Inserting a candidate to a leaf without empty entry introduces a 

leaf-to-interior conversion and a re-distribution of the candidates. As an example, Fig. 

2-2 shows the hash-tree of candidate itemsets in Fig. 2-1(a). 

The TreeProjection algorithm [1] generates candidates into a lexicographical tree 

of itemsets. After the transaction projecting (i.e. intersecting all transactions with each 

node), the supports are obtained by matrix counting. Similar lexicographic extensions 

are also used in the Max-Miner [12] and the DepthFirst [2] algorithms to find the 

maximal itemsets. Note that these algorithms typically generate more candidates than 

Apriori does since the pruning is no longer suitable.  

(c, d, g)
(c, d, j)
(c, d, k)
(c, g, k)
(c, g, t)

(c, k, t) (a, c, d)
(a, c, k)
(a, c, l)

(a, d, j)
(a, d, k)
(a, d, o)
(a, j, o)
(d, g, j)

(g, k, t)

(d, j, o)

root

0 1 2

0 1 2 0 1 2

(1) hash function = (x – ‘a’ +1 )MOD 3 
(2) branches in each interior = 3
(3) entries in each leaf = 5 

: empty leaf

: interior node

: leaf node : overflown leaf

(b) The hash-tree of candidate 3-itemsets
 

Fig. 2-2. Example candidate itemsets stored in a hash-tree 

The FP-growth discovers frequent patterns without generating candidates in 

advance [28]. The database is first compressed into an in-memory data structure 

called FP-tree (Frequent Pattern tree). Frequent patterns are then derived by 

“growing” patterns incrementally on the FP-tree by a partitioning-based, 

divide-and-conquer method [28]. Based on the similar concept, the CLOSET 

algorithm finds out the closed frequent itemsets [66], and the H-mine algorithm 

projects transactions to a hyper-link structure for frequent itemset discovering [65]. 
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In addition, some ‘vertical’ algorithms, such as Eclat (Equivalence class and 

bottom-up), speed up the discovery by lattice-traversal with vertical database layout, 

which associates each candidate with transaction-id lists [74, 101]. Such scheme is 

also extended to mine closed frequent itemsets in the CHARM algorithm [100].  

To summarize, level-wised mining approaches are generally more scalable than 

other approaches with respect to the database size. Projection-based algorithms like 

TreeProjection might suffer from memory shortage (for keeping transaction sets in 

each node) and it is costly to project volumes of transactions. Algorithms using the 

pattern-growth framework like FP-growth might be limited by the available memory 

since transactions are compressed into the main memory. Besides, FP-growth might 

not compress well to achieve good performance with a non-dense database [19]. 

Given a ‘horizontal’ database, vertical approaches have to transform the horizontal 

layout into vertical. The storage for storing item-oriented transaction lists will also 

cost too much for a very large database. Therefore, the Apriori framework still has 

competitive advantage in scalable association mining.  

2.4 The Proposed Method 

Fig. 2-3 lists the proposed LexMiner algorithm using the LexTree to speed up the 

kernel operations in frequent itemset discovering. In brief, the LexMiner finds out 

frequent 1-itemsets and 2-itemsets by an optimized counting technique. The frequent 

k-itemsets (k > 2) are discovered by fast support counting through efficient 

lexicographic comparisons, and rapid candidate generation through effective leaf 

joining, enabled by prefixed itemset grouping with the LexTree.  

Using a one-dimensional array of counters of all items is the fastest way to 

compute frequent 1-itemsets since every item is a potentially frequent 1-itemset. Let 

Ck be the set of candidate k-itemsets and Lk the set of frequent k-itemsets. The C2 is 
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generated by joining L1 with L1. Since all the subsets of C2 are frequent, none of the 

candidate in C2 can be deleted before counting. We use a two-dimensional array of 

counters to store the supports of candidates in C2. In order to minimize the required 

storage, we map items in L1 to contiguous integers and the non-frequent items to zero. 

A two-level for-loop over each transaction accomplishes the efficient counting and 

determines L2.  

L1 = {frequent 1-itemsets} ;
if L1 ≠ ∅ then

C2 = L1 × L1 ;      // stored in a 2-dimensional array
for each transaction T ∈ D do

for each 2-subset X of T do if (X ∈ C2) X.support++ ;
end
L2= {X ∈ C2 |  X.support ≥ minsup} ;

end
for (k=3; Lk-1≠ ∅ , k++) do

Construct Lk-1 into a frequent LexTree, ΓLk-1 // LexTree construction – see Section 2.4.1
Generate Ck from Γ Lk-1 to a candidate LexTree, Γ Ck  // Candidate generation – see Section 2.4.3
for each transaction T ∈ D do

Find_and_increment(T , Γ Ck) // Fast support counting – see Section 2.4.2
end
Lk= {X ∈ Ck |  X.support ≥ minsup} ;

end
Answer = ∪k Lk ;  

Fig. 2-3. Algorithm LexMiner 

The fact that frequent itemsets usually have common items inspires the concept 

of prefixed itemset grouping, which sorts itemsets into groups according to the same 

prefixed items. For example, assume that L3 is the set of frequent 3-itemsets as listed 

in Fig. 2-1(a). Since we generate C4 by joining those frequent 3-itemsets having the 

same prefixed 2 items. If we perform the prefixed itemset grouping as shown in Table 

2-2, the C4 would be simplified into self-joining over the same group. We use LexTree 

to group the same prefixed itemsets under the same node. The leaf-linked 

(k-1)-itemsets would have the same prefixed (k-2) items. Therefore, a rapid candidate 

generation is achieved through effective leaf joining in the LexTree of the frequent 

itemsets. For example, candidates (a, c, d, j), (a, c, d, k), (a, c, j, k) are easily obtained 

by leaf joining on nodes Nh, Ni, and Nj of the LexTree in Fig. 2-1(b). The construction 
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of LexTree is described in Section 3.1. 

 Prefixed itemset grouping also provides a quick way to identify the promising 

group of candidates in support counting. Assume that we are updating the supports of 

C3 in Table 2-2, i.e. candidate LexTree in Fig. 2-1(b), with transaction T = {c, d, g, j, 

k}. By a simple item comparison of ‘c’ (first item of the transaction T) and ‘a’ (the 

item of node Na), we may skip all the candidates in Group 1 (also Groups 2 and 3) 

since ‘c’ ≠ ‘a’. On the other hand, since the result of item comparison of ‘c’ (first item 

of the transaction T) and ‘c’ (the item of node Nb) is equal, we proceed the 

comparison on the second item to find which candidate is eventually contained in T. 

In the LexTree of candidate itemsets, the itemsets are grouped and linked by the items 

of each level. Therefore, we can speed up the support counting by a series of efficient 

item matching, called lexicographic comparisons. We present the details of 

lexicographic comparisons in Section 2.4.2. 

Table 2-2. Itemset grouping by prefixed items 

Group Itemsets 
1 (a, c, d), (a, c, j), (a, c, k) 
2 (a, d, j), (a, d, k), (a, d, o) 
3 (a, j, o) 
4 (c, d, g), (c, d, j), (c, d, k) 
5 (c, g, k), (c, g, t) 
6 (c, k, t) 
7 (d, g, j) 
8 (d, j, o) 
9 (g, k, t) 
Note: Group the itemsets in Fig. 2-1(a) according 
to the first and then the second item 

In short, starting from pass three and beyond, three major steps are performed in 

the LexMiner algorithm. At first, frequent (k-1)-itemsets are stored in lexicographic 

order into a frequent LexTree, denoted by 
1−

Γ
kL . Candidate k-itemsets are then 

generated and stored into a candidate LexTree, denoted by 
kCΓ . Finally, all the 
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candidates in each transaction can be efficiently found by lexicographic comparisons. 

The following sections give the details of these procedures. 

2.4.1 LexTree: a lexicographically ordered tree 

LexTree is a compact, trie-like tree structure for hierarchically storing itemsets. 

LexTree groups itemsets by same prefixed items and stores itemsets in dictionary 

order (lexicographic order). We use X < Y to denote that itemset X precedes itemset Y 

in lexicographic order. The item in Y that determines X < Y is called the pivot item of 

Y. For example, (a, b, f) < (b, c, d) and (a, b, c) < (a, b, e), where items in boldface are 

the pivot items. We insert itemsets in Ck (Lk) to a candidate LexTree (frequent LexTree) 

one by one in lexicographic order. The LexTree corresponding to the itemsets in Fig. 

2-1(a) is shown in Fig. 2-1(b). The definition of LexTree is given below. 

Definition 2-1. A LexTree is a tree such that: 

(i) A leaf node comprises three fields, the item identifier (abbreviated as ID), the 

sibling pointer (abbreviated as sibling), and the support counter (abbreviated 

as support). 

(ii) An internal node comprises three fields, ID, sibling, and the next pointer 

(abbreviated as next). 

(iii) Nodes linked through the sibling pointer are of the same depth. The depth of a 

node is (d+1), if the node is linked by the next pointer of another node whose 

depth is d.  

(iv) The Root is a pointer, which points to the first node of the tree. For 

convenience, the node pointed by the Root is called the Root node. The depth 

of the Root node is 1. 

(v) A k-itemset (x1, x2, …, xk) in a LexTree is represented by a group of nodes at 

depth 1, 2, …, k. In this group, the ID of the node at depth d is xd and the 
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support of the leaf node is the support of this itemset.          � 

Various fields of a node Nd are referred to by symbols Nd.ID, Nd.sibling, Nd.next, 

and Nd.support. The ID of the Root node is Root.ID, for instance.  

Auxiliary Last pointers are used to ease the fast construction of LexTree. A 

k-itemset LexTree has k Last pointers, where each Last points to the last node in that 

level (depth) of the tree. We use Last[k] to denote the node pointed by the Last pointer 

at level k. Hence, the latest k-itemset inserted can be described by (Last[1].ID, 

Last[2].ID, …, Last[k].ID). 

An example, which shows the construction of LexTree by inserting the ordered 

3-itemsets in Fig. 2-1(a) is illustrated in Fig. 2-4. Note that the Root pointer is not 

shown in Figures 2-4(b) to 2-4(e). One can see that starting from the pivot item of the 

current itemset (we are inserting), a series of new nodes are allocated and the 

corresponding Last pointers are moved. 
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Fig. 2-4. Construction of a LexTree by inserting 3-itemsets: insert (a)(a,c,d) (b)(a,c,j) 

(c)(a,c,k) (d)(a,d,j) (e)(a,j,o) after (a,d,k) and (a,d,o) inserted (f)(c,d,g) 

By inserting itemsets to LexTree in lexicographic order, we can group itemsets 
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by the same prefixed items. In addition, the LexTree is compact since common items 

share the same nodes. Take itemsets (a, c, d), (a, c, j) and (a, c, k) in Fig. 2-4(f) for 

example. They share the same two nodes, Na and Ng. Similarly, itemsets (a, d, j), (a, 

d, k), (a, d, o) share the same two nodes, Na and Nk. When we take the above six 

itemsets into consideration, node Na is shared by these itemsets. In other words, node 

Na groups the itemsets with the same prefixed item ‘a’; nodes Na and Ng group the 

itemsets with the same prefixed items ‘a’ and ‘c’; also itemsets with the same prefixed 

items ‘a’ and ‘d’ are grouped by nodes Na and Nk. 

2.4.2 Fast support counting by lexicographic comparisons 

For every transaction in the database, the supports of those candidates contained in the 

transaction must be updated. Accordingly, during pass k, all the k-subsets of a 

transaction are compared with candidates in Ck. Without structuring candidates on 

item basis like LexTree, common implementations processed the kernel operation on 

an itemset matching basis. In general, all the items in each transaction are sorted in 

lexicographic order after a light pre-processing. Therefore, we may utilize the 

lexicographic property (in transactions and in LexTree) to break itemset matching into 

lexicographic comparisons. We describe the lexicographic comparison and the total 

number of comparisons below.  

LexMiner minimizes the number of k-subsets (of a transaction) required 

matching by generating only those promising k-subsets. Promising k-subsets are 

composed of a heading item xi and some partial transaction that generates the 

(k-1)-subsets. The definition of partial transaction is given in Definition 2-2 below. 

The heading item xi must appear in the first level of the candidate LexTree to make the 

k-subset promising. Similarly, the partial transaction only generates promising 

(k-1)-subsets having a heading item xj that appears in the second level of the candidate 
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LexTree. 

Definition 2-2. Given a transaction T = {x1, x2, …, xm}, the partial transaction pTm is 

the set of ordered items from item xp to item xm in T. That is, pTm = {xi | xi ∈ T, p ≤ i ≤ 

m}. □ 

For example, 1Tm = {x1, x2, …, xm}, 4Tm = {x4, x5,…, xm}, m-1Tm = {xm-1, xm}, and mTm = 

{xm}. The partial transaction pTm is an empty set if p > m. Let k
mpT  be the k-subsets 

of a partial transaction pTm = {xp, xp+1, …, xm}. We have Theorem 2-1. 

Theorem 2-1. The k-subsets of a transaction T are Υ
1km

1i

1k
m1ii

k
m1 TxT

+−

=

−
+×=    }{ . 

Proof. We have 1
m21m21

1
m1 TxxxxT   }{}{}{}{ ∪=∪∪∪= Λ .  
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m2

1
m21

2
m1 TTxT      }{ ∪×= , and 3

m2
2

m21
3

m1 TTxT      }{ ∪×= . 

So k
m2

1k
m21

k
m1 TTxT     }{ ∪×= − .     ⎯ Formula 2-1 

Similarly, k
m3

1k
m32

k
m2 TTxT     }{ ∪×= − .   ⎯ Formula 2-2 

So k
m3

1k
m32

1k
m21

k
m1 TTxTxT     }{     }{ ∪×∪×= −−  by substitution using Formula 2-2.  

Finally, the formula k
m2km

1km

1i

1k
m1ii

k
m1 TTxT +−

+−

=

−
+ ∪×=     }{Υ  is obtained by iterative 

substitution of the last item. Sine the last item, k
mkm T2+−  is an empty set, the theorem 

is proved.                                                 □ 

LexMiner uses Theorem 2-1 to eliminate the generation of many impossible 

k-subsets of a transaction. Since candidates are grouped by the same prefixed items in 

LexTree, if some item xi, where 1 ≤ i ≤ m-k+1, is not found in the first level of the 

candidate LexTree, no k-subsets comprising xi as the first item are generated for 

comparison. Again, whether a partial transaction should generate (k-1)-subsets or not 
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is determined by the existence of some item xj, where i+1 ≤ j ≤ m. If item xj cannot be 

found in the second level of the sub-tree headed by the matched xi, these (k-1)-subsets 

are excluded. In this way, by comparisons between ordered items in the transaction 

and the nodes in the candidate LexTree level by level, those candidates contained in a 

transaction are found. For example, while updating the supports of 
3CΓ in Fig. 2-1(b) 

with transaction T1 = {g, k, t, c’, k’}, the 3-subsets of T1 having k or t as the heading 

items as well as 3-subsets {g, t, c’}, {g, t, k’} and {g, c’, k’} never engage in the 

computation. 

Support counting in LexMiner is accomplished by breaking the searching of 

candidates to lexicographic comparisons of sub-items, and then incrementing the 

supports of matched candidates, as outlined in Fig. 2-5. Whenever a candidate is 

found, its support is added by one. Two pointers, a transaction pointer tp and a 

candidate pointer cp, are employed to assist fast matching. Let tp move along T and 

cp walk through 
kCΓ . Once tp or cp reaches the end of the corresponding list or 

structure, the finding stops. In each pass, starting from the first item of the transaction 

and the root of candidate tree, fast support counting is accomplished by the 

Find_and_Increment procedure. 

Assume that we are comparing the q-th item of a transaction T = {x1, …, xm} 

with a node Np at level p, where 1 ≤ p ≤ k-1 and 1 ≤ q ≤ m. The matched prefix (p-1) 

items can be described by (N1.ID, N2.ID, …, Np-1.ID) if we reach Np via node Ni at 

level i, 1 ≤ i ≤ p-1. The xq is the q-th item of T and Np.ID is the item of node Np. 

If xq < Np.ID, we advance tp (transaction pointer) so that all the k-subsets of T 

having prefix (N1.ID, N2.ID, …, Np-1.ID, xq) are pruned. If xq > Np.ID, we advance cp 

(candidate pointer) to eliminate the comparisons of those nodes reached via Np.next. 
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Procedure Find_and_Increment(tp, cp)
  // input: tp points to the head of a list, cp points to a node in Γ Ck
  // let item[tp] denote the item pointed by tp 
  if  cp =  leaf  then
      while (not end_of_the_list ) and (cp ≠ null) 
         if  item[tp] < cp.ID  then tp++ ;                                 // advance tp 
            else if   item[tp] > cp.ID then cp = cp.sibling ;        // advance cp 
            else    // matched candidate found 
                 cp.support++ ;                                                    // increment the support 
                 tp++ ;                                                // advance tp 
                cp = cp.sibling ;                                                    // advance cp
       end_while
  else      // cp is an interal node */
       if item[tp] < cp.ID then 
            tp++ ;                                                                       // advance tp  
            Find_and_Increment(tp, cp) ;
         else if item[tp] > cp.ID then 
             cp = cp.sibling ;                                                      // advance cp
             Find_and_Increment(tp, cp) ;
         else  // matched 
              Find_and_Increment(tp+1, cp.sibling)  ;               
              Find_and_Increment(tp+1, cp.next)  ;
End_Procedure 

 
Fig. 2-5. Procedure Find_and_Increment 

If xq = Np.ID, it means that candidates with same prefixed p items are found in 

the sub-list {x1, ..., xq} of T. Finding candidates whose p-th item is greater than Np.ID 

can be done by comparing the sub-list {xq+1 , …, xm} with the sub-tree headed by 

Np.sibling. Next, we recursively apply Find_and_Increment on the sub-list {xq+1, ..., 

xm} and Np.next, which links the remaining (k-p) items of candidate k-itemsets with 

same prefixed p items, for further sub-item comparisons. When p is (k-1), it turns out 

to be a fast ordered list-matching between the sub-list {xq+1, …, xm}, and the list made 

of leaf Np.next and the (Np.next).sibling linked leaves. 

Through eliminating impossible itemsets at each level, the number of 

comparisons is minimized in LexMiner. Moreover, the supports are efficiently 

updated for transactions containing many candidate k-itemsets, as demonstrated in 

Example 2-1. The notation <T.x, Nd.ID: v> means that the item ‘x’ in a transaction T 

is compared with v, the value of Nd.ID. 

Example 2-1. Updating the supports of candidate 3-itemsets in T= {c, d, g, j, k} is 

illustrated. In the beginning, cp points to the Root node Na. 



 23

1) < T.c, Na.ID:a>, advance cp to Nb through sibling. 

2) < T.c, Nb.ID:c> matched. We first apply Find_and_Increment on cp.sibling to see 

whether there is any candidate in the sub-list, {d, g, j, k}, then apply on cp.next to 

match the second and the third items of candidates having 3 as the first item.  

3) Apply Find_and_Increment on {d, g, j, k} and Nb.sibling: <T.d, Nc.ID:d>, is 

matched. Again, Find_and_Increment is applied on {g, j, k} with Nc.sibling and 

on {g, j, k} with Nc.next.  

(a) Apply Find_and_Increment on {g, j, k} and Nc.sibling: The matched <T.g, 

Nd.ID:g> induces two findings, on {j, k} with Nd.sibling and on {j, k} with 

Nd.next. The former stops due to the null sibling pointer. The latter, though 

<T.k, Ne.ID:k> matches, stops since the end of the list is reached.  

(b) Apply Find_and_Increment on {g, j, k} and Nc.next: The matched <T.g, 

Nx.ID:g> recursively calls the procedure on {j, k} with Nx.sibling and on {j, 

k} with Nx.next. The former eventually stops after reaching the end of the 

list. The latter finds the leaf Ny with ID the same as T.j, and 

incrementsNy.support by one. It means that the support of candidate (d, g, j) 

is incremented.  

4) Apply Find_and_Increment on {d, g, j, k} and Nb.next: The matched <T.d, 

Nq.ID:d> induces two findings on {g, j, k} with Nq.sibling and on {g, j, k}with 

Nq.next. 

(a) Apply Find_and_Increment on {g, j, k} with Nq.sibling: This procedure 

with <T.g, Nu.ID:g> eventually will increment Nv.support by one. That is, 

(c, g, k) will be updated.  

(b) Apply Find_and_Increment on {g, j, k} with Nq.next: Since Nr is a leaf 

node, it turns out to be a fast ordered list-matching between {g, j, k} and the 

list made of Nr.ID, Ns.ID and Nt.ID. The supports of (c, d, g), (c, d, j), and 
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(c, d, k) are incremented and the process is terminated at last.   � 

As shown in this example, grouping candidates under LexTree enables fast 

list-matching at each level. In fact, the itemset matching in other algorithms, whether 

they explored lexicographic property or not, is broken down to a series of item 

matching in LexMiner. Efficient candidates matching by lexicographic comparisons 

and immediate increment of supports make LexMiner a faster approach for support 

counting. 

2.4.3 Candidate generation by leaf joining 

The Apriori generates Ck in three steps, collecting Lk-1 by traversing candidate 

hash-tree, self-joining itemsets in Lk-1 having same prefixed (k-2) items, and pruning 

those having any (k-1)-subset that is not in Lk-1. Most approaches like Apriori collect 

Lk-1 in a hash table for fast searching in the pruning step. Nevertheless, a complete 

traversal over the hash table to find common prefixed (k-2) itemsets in the joining step 

is unavoidable. Such an inefficiency is removed by leaf-join in LexMiner.  

 In LexMiner, the frequent Lk-1 LexTree is obtained by a traversal on a candidate 

Ck-1 LexTree with a removal of leaves having insufficient supports. The 

traversal-with-removal results in a frequent Lk-1 LexTree. In LexTree, all (k-1)-itemsets 

with the same prefixed (k-2) items are grouped together and are linked through the 

sibling pointers. Candidates are efficiently produced by making self-joins with these 

sibling-linked leaves. Before placing a newly generated candidate C in the new 

candidate Ck LexTree, we search in frequent Lk-1 LexTree for the existence of all the 

(k-1)-subsets of C. If any of the searches fails, C is pruned. The search utilizes the 

similar technique used in fast support counting. Therefore, LexMiner generates the 

same number of candidates as Apriori does, in a faster speed. Note that some 

approaches exploring the lexicographic property, like TreeProjection, often generate a 
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slightly larger number of candidates [1]. 

2.5 Performance Evaluation 

In order to evaluate the performance of the proposed algorithm, we conducted 

extensive experiments using an 866 MHz Pentium-III PC with 1024MB-memory 

running Windows NT. The databases are synthetic datasets of various characteristics. 

The method used to generate these datasets is described in Section 2.5.1. Section 2.5.2 

compares the results of executions by various algorithms. Results on some scale-up 

experiments are presented in Section 2.5.3. 

2.5.1 Generation of synthetic data 

The synthetic data were generated by the well-known method in [5]. For 

completeness, we briefly review the method here. The datasets mimic the real world 

transactions. The total number of possible items for all transactions is |N|. The total 

number of transactions in the database D is |D|. |T| is the average number of items in 

transactions. The size of each transaction is picked from a Poisson distribution with 

mean equal to |T|. The generation of transactions and the generation of potentially 

frequent itemsets (abbreviated as PFIs) are described in the following. 

Each PFI comprises randomly picked items from the |N| items. L is the set of 

PFIs and its size is |L|. The size of each PFI is determined following a Poisson 

distribution with mean equal to |I|. In order to model that there are common items in 

frequent itemsets, subsequent itemsets in L are related. In subsequent PFIs, a fraction 

of items are chosen from the previous PFI, the other items are picked at random. The 

fraction corr, called correlation level, is decided by an exponentially distributed 

random variable with mean equal to corrµ . Items in the very first PFI are randomly 

chosen.  
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To model that all the items in a frequent itemset do not always jointly appear, 

each transaction consists of a series of fractions of PFIs [5]. Each PFI in L is assigned 

a weight, which corresponds to the probability that this itemset will be picked. Each 

weight is exponentially distributed and then normalized in such a way that the sum of 

all the weights is equal to one. In addition, each PFI is associated with a corruption 

level (abbreviated as crup). When adding items from a PFI to a transaction, an item is 

dropped as long as a uniformly distributed random number between 0 and 1 is less 

than crup. The crup is a normally distributed random variable with mean crupµ  and 

variance crupσ . 

The parameters used in the experiments are summarized in Table 2-3. All 

datasets used here are generated from 1000 items (|N|=1000), and the number of PFIs 

is 5000 (|L|=5000). Like most studies in association rule mining, the crupµ , crupσ , 

and corrµ are set to 0.5, 0.1, and 0.5, respectively. 

Table 2-3. Parameters used in the experiments 

Parameter Description Value 

|D| Number of transactions in database D 100K~10000K 

|N| Number of possible items 1000 

|T| Average number of items of transactions 10, 15, 18, 25 

|L| Number of potentially frequent itemsets 5000 

|I| Average size of potentially frequent itemsets 2, 6, 10, 12, 18 

2.5.2 Total execution times of various algorithms 

Extensive experiments were performed to realize the performance improvements of 

LexMiner. We implemented algorithms including FP-growth [28] and TreeProjection 

[1], and used a well-known version of Apriori, “GNU Lesser General Public License” 

available at http://fuzzy.cs.uni-magdeburg.de/~borgelt/, for comparisons. Algorithms 
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such as Max-Miner [12], DepthFirst [2], CHARM [100], and CLOSET [65] were not 

implemented since they discover only the sub-set, instead of the complete set, of 

frequent itemsets.  

 The TreeProjection we implemented is a memory-based version of the 

techniques reported in [1]. The cache-blocking technique to overcome extra disk I/O 

(when memory cannot hold large matrices) was not implemented since the 

lexicographic tree, all the matrices, and all the projected transaction sets can fit into 

the 1024MB memory in the experiments. 

We first evaluated the effect of various minsups for datasets having a typical 

value of 100,000 transactions. The notation Tα-Iβ-Dγ means that the dataset is created 

with |T| = α, |I| = β, and |D| = γ × 1000. The experiments started from the combination 

of (average size of transactions) |T|=10 and (average size of potentially frequent 

itemsets) |I|=2. When |T| and |I| are small, all the frequent itemsets can be found in few 

passes since most transactions comprise few items and most frequent itemsets have 

few items. As shown in Fig. 2-6, there is not much difference among these algorithms 

for minsup over 1.25%. The array-counting technique, especially in the pass 2 

optimization, makes LexMiner faster than all the other algorithms for short patterns.  
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Fig. 2-6. Execution times of various algorithms on the dataset having short patterns 
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(a) dataset T15-I6-D100 
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(b) dataset T15-I12-D100 
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(c) dataset T18-I6-D100 

Fig. 2-7. Performance comparisons of execution time over various supports 

Next, various combinations of parameters |T| and |I| were used to generate other 
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datasets. The combinations of |T| and |I| in these experiments are T15-I6, T15-I12, and 

T18-I6. All the three datasets have frequent itemsets size bigger than two even with 

large minsup values. The relative performance among these algorithms is shown in 

Fig. 2-7. It can be seen from the figure that LexMiner outperforms the others over 

various minimum supports. The performance improvement is resulted from the fast 

item-matching, especially in lower levels when minsup was smaller than 0.75%. 

Fig. 2-8 shows the performance of constructing LexTree using three ordering of 

items, support-ascending, support-descending, and lexicographic order. The tree 

constructed using support-ascending order is bushier (having more nodes) than the 

others. The effect of fast list-matching in leaves thus benefits support-ascending order 

the most. In the experiment, transactions in the dataset were not re-ordered so that 

item re-ordering (to cope with support ascending/descending ordered nodes) is 

required for each transaction, in every pass. Therefore, the performance gap is not 

clear until minsup is 0.25%, with the dense dataset T25-I18.  
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Fig. 2-8. Execution results of different ordering 

2.5.3 Scale-up experiments 

To assess the scalability of our algorithm, several experiments were conducted. Fig. 
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2-9 shows that the execution time of LexMiner increases linearly as the database size 

increases, ranging from 100K to 10 million. The |T| and the |I| were fixed to see how 

execution time changes as the database size increases. Different minsups yield similar 

and consistent results. Fig. 2-9 displays the result of minsup = 0.5%, which exhibits 

good linearity in scale-up. 
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Fig. 2-9. Linear scalability of the database size 

2.6 Summary 

The huge amount of data and the complicated interrelationships between data 
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bring about new challenges in the mining of undiscovered knowledge from large 

databases. Various algorithms have been developed for the discovery of association 

rules. However, the ordered property embedded in the transactions has never been 

fully utilized in existing mining algorithms. Therefore, we take into account the 

lexicographic nature of data and propose a novel approach for scalable mining of 

association rules. The proposed approach effectively places itemsets in a LexTree 

structure and discovers frequent itemsets efficiently by the LexMiner algorithm. 

The LexTree structure provides a hierarchical ordering mechanism for storing 

candidate itemsets and frequent itemsets, and enables fast support counting and rapid 

candidate generation. In the LexTree, an itemset is uniquely represented by a 

sequential combination of nodes, one node in each level, in the tree. Itemsets having 

the same prefixed items share the same internal nodes and are grouped by these nodes. 

Due to sharing, the space used by the candidate LexTree is very compact in 

comparison with methods using hash-tree, which usually allocate additional storage 

while constructing hash tables. Due to grouping, we can generate candidates more 

rapidly from the frequent LexTree since no traversal is needed like those using hash 

tables for the storage of frequent itemsets. 

In addition, the proposed LexMiner algorithm uses the LexTree to achieve fast 

support counting. Our focus is to investigate mechanisms to improve the most 

time-taking kernel operation of finding candidates in transactions, since the 

candidate-finding procedure is repeatedly executed for every transaction in every pass. 

LexMiner exploits the orderly placed candidates, breaks the finding into lexicographic 

comparisons to speed up the matching of candidates and prune the impossible 

candidates by hierarchical comparisons in each level. The intrinsically ordered 

transactions and the hierarchically ordered candidates together improve the matching 

efficiency. The speeding up of kernel computation is the key to performance 
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improvement. The comprehensive experiments also demonstrate that LexMiner 

coupled with LexTree is efficient and exhibits good scalability. 

In addition to the discovery of association rules, the problem of sequential 

pattern mining generalizes the discovery of association rules to relationships of 

itemsets over time. The ordering property still holds for items in these transactions. It 

is worthy of further investigation on the mining of sequential patterns, which is 

explored in Chapter 3. 
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Chapter 3 Algorithm MEMISP for Sequential Pattern Mining 

3.1 Overview 

Frequent itemset mining, as discussed in Chapter 2, is extensively studied in data 

mining. A more complicated issue in data mining is the discovery of sequential 

patterns, which finds frequent sub-sequences in a sequence database. For example, in 

the transactional database of an electronic store, each record may correspond to a 

sequence of a customer’s transactions ordered by transaction time. An example 

sequential pattern might be that customers typically bought PC and printer, followed 

by the purchase of scanner and graphics software, and then digital camera. The 

mining technique is applicable to many applications, including the analysis of Web 

traversal patterns, telecommunication alarms, DNA sequences, to name a few.  

Sequential pattern mining is more difficult than association rule mining because 

the patterns are formed not only by combinations of items but also by permutations of 

item-sets. Enormous patterns can be formed as the length of a sequence is not limited 

and the items in a sequence are not necessarily distinct. Let the size of a sequence be 

the total number of items in that sequence. Given 100 possible items in a sequence 

database, the number of potential patterns of size two is 100*100 + (100*99)/2, that 

of size three is 100*100*100 + 100*[(100*99)/2]*2 + (100*99*98)/(2*3), and so on. 

Owing to the challenge of exponential possible combinations, improving the 

efficiency of sequential pattern mining has been the focus of recent research in data 

mining [6, 11, 13, 25, 29, 38, 39, 42, 46, 47, 48, 55, 67, 72, 96, 98, 99]. 

In general, we may categorize the mining approaches into the generate-and-test 

framework and the pattern-growth one, for sequence databases of horizontal layout. 

Typifying the former approaches [6, 51, 80], the GSP (Generalized Sequential Pattern) 
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algorithm [80] generates potential patterns (called candidates), scans each data 

sequence in the database to compute the frequencies of candidates (called supports), 

and then identifies candidates having enough supports as sequential patterns. The 

sequential patterns in current database pass become seeds for generating candidates in 

the next pass. This generate-and-test process is repeated until no more new candidates 

are generated. When candidates cannot fit in memory in a batch, GSP re-scans the 

database to test the remaining candidates that have not been loaded into memory. 

Consequently, GSP scans at least k times of the on-disk database if the maximum size 

of the discovered patterns is k, which incurs high cost of disk reading. Despite that 

GSP was good at candidate pruning, the number of candidates is still very huge that 

might impair the mining efficiency. 

The PrefixSpan (Prefix-projected Sequential pattern mining) algorithm [67], 

representing the pattern-growth methodology [29, 67, 70], finds the frequent items 

after scanning the sequence database once. The database is then projected, according 

to the frequent items, into several smaller databases. Finally, the complete set of 

sequential patterns is found by recursively growing subsequence fragments in each 

projected database. Two optimizations for minimizing disk projections were described 

in [67]. The bi-level projection technique, dealing with huge databases, scans each 

data sequence twice in the (projected) database so that fewer and smaller projected 

databases are generated. The pseudo-projection technique, avoiding physical 

projections, maintains the sequence-postfix of each data sequence in a projection by a 

pointer-offset pair. However, according to [67], maximum mining performance can be 

achieved only when the database size is reduced to the size accommodable by the 

main memory by employing pseudo-projection after using bi-level optimization. 

Although PrefixSpan successfully discovered patterns employing the 

divide-and-conquer strategy, the cost of disk I/O might be high due to the creation and 
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processing of the projected sub-databases. 

Besides the horizontal layout, the sequence database can be transformed into a 

vertical format consisting of items’ id-lists [11, 64, 98]. The id-list of an item is a list 

of (sequence-id, timestamp) pairs indicating the occurring timestamps of the item in 

that sequence. Searching in the lattice formed by id-list intersections, the SPADE 

(Sequential PAttern Discovery using Equivalence classes) algorithm [98] completed 

the mining in three passes of database scanning. Nevertheless, additional computation 

time is required to transform a database of horizontal layout to vertical format, which 

also requires additional storage space several times larger than that of the original 

sequence database. 

With rapid cost down and the evidence of the increase in installed memory size, 

many small or medium sized databases will fit into the main memory. For example, a 

platform with 256MB memory may hold a database with one million sequences of 

total size 189MB. Pattern mining performed directly in memory now becomes 

possible. However, current approaches discover the patterns either through multiple 

scans of the database or by iterative database projections, thereby requiring abundant 

disk operations. The mining efficiency could be improved if the excessive disk I/O is 

reduced by enhancing memory utilization in the discovering process. 

Therefore, we propose a memory-indexing approach for fast discovery of 

sequential patterns, called MEMISP (MEMory Indexing for Sequential Pattern 

mining). The features of the MEMISP approach lie in no candidate generation, no 

database projection, and high CPU and memory utilization. MEMISP reads data 

sequences into memory in the first pass, which is the sole pass, of database scanning. 

Through index advancement within an index set comprising pointers and position 

indices to data sequences, MEMISP discovers patterns by a recursive 

finding-then-indexing technique. When the database is too large to fit into the main 
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memory, we still can mine patterns efficiently in two database scans by running 

MEMISP with a partition-and-validation technique discussed in Section 3.4.3. The 

conducted experiments show that MEMISP runs faster than both GSP and PrefixSpan 

algorithms, whether the main memory can accommodate the database or not.  

The rest of the chapter is organized as follows. The problem is formulated in 

Section 3.2 and related work is reviewed in Section 3.3. Section 3.4 presents the 

MEMISP algorithm. The experimental results of mining memory-accommodable 

databases and extra-large databases are described in Section 3.5. We discuss the 

performance factors of MEMISP in Section 3.6 and conclude the study in Section 3.7. 

3.2 Problem Statement 

A sequence s, denoted by <e1e2…en>, is an ordered set of n elements where each 

element ei is an itemset. An itemset, denoted by (x1, x2,…, xq), is a nonempty set of q 

items, where each item xj is represented by a literal. Without loss of generality, items 

in an element are assumed in lexicographic order. The size of sequence s, written as |s|, 

is the total number of items in all the elements in s. Sequence s is a k-sequence if |s| = 

k. For example, <(a)(c)(a)>, <(a,c)(a)>, and <(b)(a,e)> are all 3-sequences. A 

sequence s = <e1e2…en> is a subsequence of another sequence s' = <e1'e2'…em'> if 

there exist 1 ≤ i1< i2 < …< in ≤ m such that e1 ⊆ e i1', e2 ⊆ e i2', …, and en ⊆ e in'. 

Sequence s' contains sequence s if s is a subsequence of s'. For example, 

<(b,c)(c)(a,c,e)> contains <(b)(a,e)>. 

 Each sequence in the sequence database DB is referred to as a data sequence. 

The support of sequence s, denoted by s.sup, is the number of data sequences 

containing s divided by the total number of data sequences in DB. The minsup is the 

user specified minimum support threshold. A sequence s is a frequent sequence, or 

called sequential pattern, if s.sup ≥ minsup. Given the minsup and the sequence 
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database DB, the problem of sequential pattern mining is to discover the set of all 

sequential patterns. 

An example database DB having 6 data sequences is listed in the first column in 

Table 3-1. Take the data sequence C6 for instance. It has three elements (i.e. three 

itemsets), the first having items b and c, the second having item c, and the third 

having items a, c and e. The support of <(b)(a)> is 4/6 since all the data sequences, 

except C2 and C3, contain <(b)(a)>. The <(a,d)(a)> is a subsequence of both C1 and 

C4, thus <(a,d)(a)>.sup = 2/6. Given minsup = 50%, <(b)(a)> is a sequential pattern 

while <(a,d)(a)> is not. The set of all sequential patterns is shown in the second 

column in Table 3-1.   

Table 3-1. Example sequence database DB and the sequential patterns 

Sequence Sequential patterns (minsup=50%) 
C1=<(a,d)(b,c)(a,e)> 
C2=<(d,g)(c,f)(b,d)> 
C3=<(a,c)(d)(f)(b)> 
C4=<(a,b,c,d)(a)(b)> 
C5=<(b,c,d)(a,c,e)(a)> 
C6=<(b,c)(c)(a,c,e)> 

<(a)>, <(a)(a) >, <(a)(b)>, <(a,c)>, <(a,c)(a)>, <(a,e)>, 
<(b)>, <(b)(a)>, <(b)(a,e)>, <(b)(e)>, <(b,c)>, <(b,c)(a)>, 
<(b,c)(a,e)>, <(b,c)(e)>, <(b,d)>,  
<(c)>, <(c)(a)>, <(c)(a,e)>, <(c)(b)>, <(c)(e)>, 
<(d)>, <(d)(a)>, <(d)(b)>, <(d)(c)>, 
<(e)> 

3.3 Related Work 

The problem of sequential pattern mining is first described and solved in [6] with the 

AprioriAll algorithm. In subsequent work, the same authors proposed the GSP 

algorithm [80] that outperforms AprioriAll. The GSP algorithm makes multiple passes 

over the database and finds frequent k-sequences at k-th database scanning. Initially, 

each item is a candidate 1-sequence for the first pass. Frequent 1-sequences are 

determined after checking all the data sequences in the database. In succeeding passes, 

frequent (k−1)-sequences are self-joined to generate candidate k-sequences, and then 

any candidate k-sequence having a non-frequent sub-sequence is deleted. Again, the 
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supports of candidate k-sequences are counted by examining all data sequences, and 

then those candidates having minimum supports become frequent sequences. This 

process terminates when there is no candidate sequence any more. Owing to the 

generate-and-test nature, the number of candidates often dominates the overall mining 

time. However, the total number of candidates increases exponentially as the minsup 

decreases, even with effective pruning techniques. The PSP (Prefix Sequential Pattern) 

algorithm [51] is similar to GSP, except that the placement of candidates is improved 

by prefix tree arrangement to speed up the discovery.  

The FreeSpan (Frequent pattern-projected Sequential Pattern Mining) algorithm 

was proposed to mine sequential patterns by a database projection technique [29]. 

FreeSpan first finds the frequent items after scanning the database once. The sequence 

database is then projected, according to the frequent items, into several smaller 

databases. Finally, all sequential patterns are found by recursively growing 

subsequence fragments in each database. Based on the similar projection technique, 

the authors proposed the PrefixSpan algorithm [67]. PrefixSpan outperforms 

FreeSpan in that only effective postfixes are projected. The bi-level and 

pseudo-projection techniques further enhance PrefixSpan to project fewer 

sub-databases. However, the total size of the projected databases might be several 

times larger than the size of the original database. 

In addition, the SPADE algorithm finds sequential patterns using vertical database 

layout and join-operations [98]. Vertical database layout transforms data sequences 

into items’ id-lists. The id-list of an item is a list of (sequence-id, timestamp) pairs 

indicating the occurring timestamps of the item in that sequence-id. The list pairs are 

joined to form a sequence lattice, in which SPADE searches and discovers the patterns 

[98]. Nevertheless, transforming the naturally horizontal database into vertical 

demands more space than the original since a sequence-id is repeated in several items’ 
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id-lists. The gain by vertical approach might diminish owing to the additional space 

and transforming time required while mining large databases.  

In order to boost the mining performance, memory utilization should be increased 

to minimize disk operations, especially when dealing the ever-increasing sequence 

databases. Therefore, we propose the MEMISP algorithm, as described next.  

3.4 The Proposed Method 

In this section, the proposed method for sequential pattern mining, named MEMISP, 

is described. MEMISP uses a recursive find-then-index strategy to discover all the 

sequential patterns from in-memory data sequences. MEMISP first reads all the data 

sequences into memory and counts the supports of 1-sequences (i.e. sequences having 

only one item). Next, an index set for each frequent 1-sequence is constructed and 

then frequent sequences are found using the data sequences indicated by the index set. 

The algorithm is illustrated by mining an example database in Section 3.4.1. Section 

3.4.2 presents the algorithm. The procedure for dealing with extra-large databases 

beyond main memory space is described in Section 3.4.3. Section 3.4.4 discusses the 

differences between MEMISP and PrefixSpan. Some implementation issues are 

discussed in Section 3.4.5. 

3.4.1 Mining sequential patterns by MEMISP: an example 

Definition 3-1(Type-1 pattern, type-2 pattern, stem, P-pat) Given a pattern ρ and a 

frequent item x in the sequence database DB, ρ’ is a type-1 pattern if it can be formed 

by appending the itemset (x) as a new element to ρ, and is a type-2 pattern by 

extending the last element of ρ with x. The frequent item x is called the stem-item 

(abbreviated as stem) of the sequential pattern ρ’ and ρ is the prefix pattern 

(abbreviated as P-pat) of ρ’. 
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For example, given a pattern <(a)> and the frequent item b, we have the type-1 

pattern <(a)(b)> by appending (b) to <(a)> and the type-2 pattern <(a,b)> by 

extending <(a)> with b. The <(a)> is the P-pat and the b is the stem of both <(a)(b)> 

and <(a,b)>. As to a type-2 pattern <(c)(a,d)>, its P-pat is <(c)(a)> and its stem is d. 

Note that the null sequence, denoted by <>, is the P-pat of any frequent 1-sequence. 

Clearly, any frequent k-sequence is either a type-1 pattern or a type-2 pattern of a 

frequent (k-1)-sequence. 

Example 3-1: Given minsup = 50% and the DB in Table 3-1. MEMISP mines the 

patterns by the following steps.  

Step 1. Read DB into memory and find frequent 1-sequences. We accumulate the 

count of every item while reading data sequences from DB into memory. The 

in-memory DB is referred to as MDB hereafter. Hence, we have frequent items a 

(count=5 for appearing in 5 data sequences C1, C3, C4, C5, C6), b (count=6), c 

(count=6), d (count=5), and e (count=3). All these frequent items are stems of the 

type-1 patterns with respect to the P-pat = <>. Loop steps 2 and 3 on each stem to 

find all the sequential patterns. 

Step 2. Output the sequential pattern ρ formed by current P-pat and stem x, and 

construct the index set ρ-idx. We output a sequential pattern ρ generated by current 

P-pat and stem x. Next, we allocate a (ptr_ds, pos) pair for each data sequence ds in 

MDB if and only if ds contains x, where ptr_ds is a pointer to ds and pos is the first 

occurring position of x in ds. The set of these (ptr_ds, pos) pairs is called index set 

ρ-idx.  

Take stem x = a for example. Now, the P-pat is <>. We output the type-1 

sequential pattern ρ = <(a)> and construct the index set <(a)>-idx as shown in Fig. 

3-1-(1). For instance, the pos is 1 for C1=<(a,d)(b,c)(a,e)> and 4 for 

C6=<(b,c)(c)(a,c,e)>.  
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: MDB 
(the in-memory DB)

: index-set

(1) <(a)>-idx
<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

1   • 

4   • 
4   • 

1   • 

1   • 

(2) <(a)(a)>-idx
<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

7   • 

5   • 
5   • 

(3) <(a)(b)>-idx
<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

5   • 
3   • 

6   • 

(4) <(a,c)>-idx
<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

2   • 

5   • 
5   • 

3   • 

(5) <(a,c)(a)>-idx
<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

7   • 
5   • 

(6) <(a,e)>-idx
<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

6   • 
6   • 

6   • 

(7) <(b)>-idx
<(a,d)(b,c)(a,e)>
<(d,g)(c,f)(b,d)>
<(a,c)(d)(f)(b)>
<(a,b,c,d)(a)(b)>
<(b,c,d)(a,c,e)(a)>
<(b,c)(c)(a,c,e)>

5   • 

2   • 
1   • 

5   • 

3   • 

1   • 

 
Fig. 3-1. Some index sets and the in-memory DB 

Step 3. Use index set ρ-idx and MDB to find stems with respect to P-pat = ρ. Any 

sequential pattern having current pattern ρ as its P-pat will be identified in this step. 

Now, the ptr_ds of each (ptr_ds, pos) pair in ρ-idx points to a data sequence ds that 

contains ρ. Any item appearing after the pos position in ds could be a potential stem 

(with respect to ρ). Thus, for every ds existing in ρ-idx, we increase the count of such 

item (item appearing after the pos in ds) by one, and then identify the stems having 

sufficient support counts. 

Let us continue with <(a)>-idx. The pos of the (ptr_ds, pos) pointing to C1 is 

1. Only those items occurring after position 1 in C1 need counting. We increase 

the count of potential stem d (for potential type-2 pattern <(a,d)>) by one (also 

potential stem e for <(a,e)>). We also increase the count of potential stem b (also 

c, a, and e) for potential type-1 pattern <(a)(b)> (<(a)(c)>, <(a)(a)>, and 

<(a)(e)>) by one. Analogously, items occurring after position 1, 1, 4, 4 for data 

sequences C3, C4, C5, and C6 are counted, respectively. After validating the 
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support counts, we obtain stems a, b of type-1 patterns and stems c, e of type-2 

patterns with respect to P-pat = <(a)>. Steps 2 and 3 will be recursively applied 

on the stems a, b, c, and e with P-pat = <(a)>. We proceed the mining with stem a 

and P-pat = <(a)> as follows. 

Applying step 2 generates and outputs the sequential pattern ρ = <(a)(a)>. 

Again, a new (ptr_ds, pos) pair for a data sequence ds will be inserted into ρ-idx 

(<(a)(a)>-idx) if and only if ds contains ρ. While constructing <(a)(a)>-idx, we 

simply check the data sequences indicated by current index set, i.e. <(a)>-idx, 

rather than in MDB. Assume that a pair (ptr_ds, pos) in <(a)>-idx points to ds. 

The search for the occurring position of stem a (with respect to P-pat = <(a)>) 

starts from position pos+1 in ds. Item a occurs at 5 in C1 and in C4, and at 7 in C5. 

No entry is created for C3 and C6 since item a cannot be found after position 1 

and 4, respectively. Hence, we have the new index set <(a)(a)>-idx as shown in 

Fig. 3-1-(2). Note that current index set is ‘pushed’ for later mining before the new 

index set becomes active. 

Applying step 3 with <(a)(a)>-idx and MDB, no stems can form sequential 

patterns further. Therefore, this mining stops and the previous index set, i.e. 

<(a)>-idx, is popped. The mining goes on with stem b. The creation and mining 

of <(a)(b)>-idx outputs pattern <(a)(b)> but finds no more patterns. Next, the 

<(a,c)>-idx is constructed. The result of applying step 2 with <(a,c)>-idx 

generates <(a,c)> and discovers next stem a. Thus, <(a,c)>-idx is ‘pushed’ and the 

<(a,c)(a)>-idx is created. 

After the mining with <(a,c)(a)>-idx, which stops with nothing found but 

outputs the pattern <(a,c)(a)>, the pattern <(a,e)> is generated while mining with 

<(a,e)>-idx. All the subsequent find-then-index processes regarding stem a with 

P-pat = <> now finish.  
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By collecting the patterns found in the above process, MEMISP efficiently discovers 

all the sequential patterns.  

3.4.2 The MEMISP algorithm 

The central idea of MEMISP is to utilize the memory for both data sequences and 

indices in the mining process. A memory size of 256MB is very common in nowadays 

computer installation, which can accommodate a sequence database having one 

million sequences of size 189MB as indicated in our experiments. Processing 

sequences in-memory is more efficient than disk-based processing, either multiple 

scans or iterative projections. MEMISP scans only one pass over the database, which 

reads data sequences into memory, in the whole mining process. Starting from 

sequential patterns of size one, MEMISP then discovers all the frequent sequences of 

larger size recursively by searching the set of in-memory data sequences having 

common sub-sequences. Fig. 3-2 outlines the proposed MEMISP algorithm. 

In order to speed up mining by focused search, we construct a set grouping the 

data sequences to check. A data sequence ds participates in the finding of pattern ρ’ 

only when ds contains the P-pat (prefix-pattern) ρ of pattern ρ’. Consequently, for 

each ds containing ρ, we create a pointer ptr_ds pointing to ds in the set for exploring 

patterns ρ’ having P-pat ρ. The set is denoted by ρ–idx. For each data sequence ds 

pointed in the ρ–idx, we associate ptr_ds with a position index pos indicating where 

(in ds) should we begin to find the potential stems. That is, ρ–idx is the set of (ptr_ds, 

pos) pairs for discovering patterns whose P-pat = ρ.  

Take the data sequence C6=<(b,c)(c)(a,c,e)> in memory for instance. We may 

find <(b)> occurring at position 1, <(b,c)> occurring at composite position (1, 2), and 

<(b,c)(a)> occurring at composite position (1, 2, 4). Assume that items b, c, and a are 

frequent. While mining patterns having P-pat <(b)>, we include C6 in the index set 
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Algorithm MEMISP 

Input: DB = a sequence database; minsup = minimum support. 
Output: the set of all sequential patterns. 
Method:  

1. Scan DB into MDB (the in-memory DB), find the set of all frequent items.  
2. For each frequent item x,  

(i) form the sequential pattern ρ = <(x)> and output ρ. 
(ii) call IndexSet(x, <>, MDB) to construct the index set ρ-idx.  
(iii) call Mine(ρ, ρ-idx) to mine patterns with index set ρ-idx. 

Subroutine IndexSet(x, ρ, range-set) 
Parameters: x = a stem-item; ρ = a (P-pat) pattern; range-set = the set of data 

sequences for indexing. /* If range-set is an index set, each data sequence for 
indexing is pointed by the ptr_ds of the (ptr_ds, pos) entry in the index set */ 

Output: index set ρ'-idx, where ρ' denotes the pattern formed by stem-item x and 
P-pat ρ. 

Method:  
1. For each data sequence ds in range-set,  

 (i) if range-set = MDB then start-pos = 0; otherwise start-pos = pos. 
 (ii) starting from position (start-pos+1) in ds, 

if the stem-item x is first found at position pos in ds, insert a (ptr_ds, pos) 
pair to the index set ρ'-idx, where ptr_ds points to ds.  

2. Return index set ρ'-idx. 

Subroutine Mine(ρ, ρ-idx) 
Parameter: ρ = a pattern; ρ-idx = an index set. 
Method:  

For each data sequence ds pointed by the ptr_ds of an entry (ptr_ds, pos) in ρ-idx, 
(i) starting from position (pos+1) to |ds| in ds, increase the support count of each 

potential stem x by one. 
2. Find the set of stems x having enough support count to form a sequential pattern. 
3. For each stem x,  

(i) form the sequential pattern ρ'  with P-pat ρ and stem x, output ρ'. 
(ii) call IndexSet(x, ρ, ρ-idx) to construct the index set ρ'-idx. 
(iii) call Mine(ρ', ρ'-idx) to mine patterns with index set ρ'-idx. 

Fig. 3-2. Algorithm MEMISP 

with pos=1, suggesting that only items appearing after position 1 in C6 should engage 

in the mining. Similarly, C6 will be included in the index set for patterns having P-pat 
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<(b,c)> with pos=2, P-pat <(b,c)(a)> with pos=4. As the discovered P-pat becomes 

longer, the index set will contain fewer data sequences to process. Moreover, the 

number of items in each data sequence remaining to be processed becomes fewer. 

Through recursive finding-then-indexing, the proposed MEMISP algorithm efficiently 

discovers sequential patterns. 

3.4.3 Dealing with extra-large databases by database partitioning 

With more and more memory installed, many databases will fit into the main memory 

without difficulty. Still, some databases might be too large for the main memory to 

accommodate in a batch. In this case, the sequential patterns are discovered by a 

partition-and-validation technique, as shown in Fig. 3-3.  

 

DB: the sequence database 
Di: a partition of DB which fits in memory
Fi: set of frequent sequences in partition Di
C: set of potential patterns, C = ∪Fi, 1 ≤ i ≤ p

D1 D2 Dp

DB

...

first scan

second scan

F1 F2 Fp

C = ∪Fi, 1 ≤ i ≤ p

compute supports of the patterns
 in C

apply MEMISP to find frequent 
sequences in each partition

True patterns found

Fi is saved on disk ...

 
Fig. 3-3. Partition the database and discover patterns for extra-large databases 

The extra-large database DB is partitioned so that each partition can be handled 

in main memory by MEMISP. The number of partitions is minimized by reading as 

many data sequences into main memory as possible to constitute a partition. The set 

of potential patterns in DB is obtained by collecting the discovered patterns after 
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running MEMISP on these partitions. The true patterns can be identified with only one 

extra database pass through support counting against the data sequences in DB one at 

a time. Therefore, we may employ MEMISP to mine databases of any size, of any 

minimum support, in two passes of database scanning. 

In comparison with other approaches, MEMISP minimizes the total number of 

complete database passes to two without requiring any additional storage space. 

SPADE needs to scan the database three times and demands disk storage for the 

transformed vertical database. GSP repeats at least k times to discover the frequent 

k-sequences. PrefixSpan often creates and processes the projected databases that 

amount to several times the original database size. 

3.4.4 Differences between MEMISP and PrefixSpan 

The PrefixSpan algorithm proposed in [67] can be optimized with bi-level and 

pseudo-projection techniques. Pseudo-projection technique avoids redundant pieces of 

postfixes projected when the database/projected database can be held in main memory. 

PrefixSpan and MEMISP do differ, although the two algorithms both utilize memory 

for fast computation. The differences are illustrated in the following two cases: (1) 

when the database can be held in main memory (2) when the database cannot be held 

in main memory. 

 When the database can be held in main memory, the two algorithms find the 

patterns in a similar, but still different way. Both algorithms load the database into 

memory, but disagree with the processing of in-memory sequences. PrefixSpan 

algorithm removes in-frequent items and greatly shrinks projected sequences. The 

example 3 in [67] clearly demonstrates such projections so that item g is not projected 

in Table 2 of [67]. Pseudo-projection maintains the sequence-postfix of each data 

sequence in memory by a pointer-offset pair. The detailed implementation of 
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PrefixSpan with the pseudo-projection technique is not available in the literature. To 

sustain the spirit of PrefixSpan, in-frequent items are to be removed when 

pseudo-projection is applied. For the in-memory sequences, removing in-frequent 

items could be done, for example, by copying only frequent items in postfixes or 

masking out the in-frequent items. Therefore, besides the index tables, an intermediate 

in-memory working database must be generated to present the physically projected 

sub-database in each iteration. No matter what the implementation is, the postfixes 

(sequences) require rearrangements. 

 MEMISP algorithm removes no items from the in-memory sequences. No 

intermediate in-memory database generation and no rearrangement of sequences are 

required at all. Single sole in-memory sequence database as originally loaded is used 

throughout the whole process. We shift the index without modifying any in-memory 

sequence to skip the in-frequent items in each iteration. Indeed, the (ds_ptr, pos) index 

pairs in MEMISP function similarly as the (pointer, offset) index pairs in 

PrefixSpan+pseudo_projection for sequence processing. We believe that fast index 

advancement eliminate the need to process the in-frequent items.  

 When the database cannot be held in main memory, MEMISP is totally different 

from PrefixSpan. PrefixSpan, either with pseudo-projection or not, now generates and 

scans sub-databases that might amount to several times the original database size. 

Even with bi-level projection technique, PrefixSpan still might suffer from low 

support value for generating many projected sub-databases before pseudo-projection 

could help. With respect to any support value, MEMISP scans the database only twice, 

and no more, without generating any intermediate databases. 

 Bi-level projection is proposed to reduce the number and the size of projected 

databases, at the cost of doubled scanning to fill the S-matrix (see Lemma 3.3 [67]). 

Dealing extra-large databases with bi-level projection means that the entire database 
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is scanned at least twice at first. Next, if each projected database could be luckily fit 

into the memory, pseudo-projection can be applied. This gives the fewest scans, which 

is more than twice in total, PrefixSpan can do. Otherwise, re-applying bi-level 

projection could result in the total number of scans to be far more than two. 

 MEMISP partitions the extra-large database to several sub-databases; each 

sub-database can be fit into the memory. The first scan, which mines each 

sub-database independently by MEMISP, identifies the potential candidates. The 

second scan verifies whether a candidate has sufficient support to be frequent. 

MEMISP never scans the database, no matter how large the database is, more than 

twice for any value of support. In addition, MEMISP never generates any intermediate 

database during the mining process. The partition-based approach is used in [73] for 

association rule mining. However, MEMISP is the first algorithm that successfully 

adapts the partitioning technique to the mining of sequential patterns in the literature. 

3.4.5 Implementation issues 

In common implementations, a data sequence is usually represented as a linked list of 

itemsets in memory. Such a structure might be suitable for algorithms that access a 

single data sequence for support counting at a time. In order to facilitate fast index 

construction and speed up searching from specific position (in a data sequence), 

MEMISP uses variable-length arrays to hold the data sequences in memory. Data 

sequence C1 = <(a,d)(b,c)(a,e)>, for instance, is coded as the array = [a, d, $, b, c, $, a, 

e, $], where $ indicates the end of an element. Therefore, both data sequences and 

index sets benefit from the array representation for the reduced storage space. 

Efficient searching from specific position of a data sequence is also achieved. 

 When mining databases that require partitioning, a percentage of main memory 

(like 5%) must be reserved for holding variables, index sets, etc. In order to signal that 
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main memory cannot accept data sequence any more, the amount of available 

physical memory is checked periodically while reading the database. Once free 

memory space is below the predefined percentage, MEMISP starts mining the 

memory partition and the remaining data sequences will be handled in subsequent 

reading. 

3.5 Performance Evaluation 

Extensive experiments were conducted to assess the performance of the MEMISP 

algorithm. The experiments used an 866 MHz Pentium-III PC with 256MB memory 

running the Windows NT. Like most studies on sequential pattern mining [6, 11, 13, 

29, 51, 67, 98], the synthetic datasets for these experiments were generated using the 

conventional procedure described in [6]. We briefly review the generation of 

experimental data in Section 3.5.1. Section 3.5.2 compares the results of mining by 

GSP, PrefixSpan, and MEMISP algorithms. To justify that MEMISP handles large 

databases as well, scale-up experiments are presented in Section 3.5.3. 

3.5.1 Generation of experimental data 

The procedure described in [6] models retailing environment, where each customer 

purchases a sequence of itemsets. Such a sequence is referred to as a potentially 

frequent sequence (abbreviated as PFS). Still, some customers might buy only some 

of the items from a PFS. A customer’s data sequence may consist of items from 

several PFSs. The PFSs are composed of potentially frequent itemsets (abbreviated as 

PFIs). A table of total NI PFIs (denoted by ΓI) and a table of total NS PFSs (denoted 

by ΓS) were generated before picking items for the transactions of customer 

sequences. 

Table 3-2 summarizes the symbols and the parameters used in the experiments. 
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The procedure of data sequence generation [6] is reviewed here, first the generation of 

PFIs and PFSs, and then the customer sequences. The number of itemsets in a PFS is 

generated by picking from a Poisson distribution with mean equal to |S|. The itemsets 

in a PFS are picked from table ΓI. In order to model that there are common itemsets in 

frequent sequences, subsequent PFSs in ΓS are related. In the subsequent PFS, a 

fraction of itemsets are chosen from the previous PFS and the other itemsets are 

picked at random from ΓI. The fraction corrS, called correlation level, is decided by 

an exponentially distributed random variable with mean equal to 
Scorrµ . Itemsets in 

the first PFS in ΓS are randomly picked. The generations of PFI and ΓI are analogous 

to the generations of PFS and ΓS, with parameters N items, mean |I|, correlation level 

corrI and mean 
Icorrµ  correspondingly. 

Customer sequences are generated as follows. The number of transactions for the 

next customer and the average size of transactions for this customer are determined 

first. The size of the customer’s data sequence is picked from a Poisson distribution 

with mean equal to |C|. The average size of the transactions is picked from a Poisson 

distribution with mean equal to |T|. Items are then assigned to the transactions of the 

customer. Each customer is assigned a series of PFSs from table ΓS. 

The assignment of PFSs is based on the weights of PFSs. The weight of the PFS, 

representing the probability that this PFS will be chosen, is exponentially distributed 

and then normalized in such a way that the sum of all the weights is equal to one. 

Since all the itemsets in a PFS are not always bought together, each sequence in ΓS is 

assigned a corruption level crupS. When selecting itemsets from a PFS to a customer 

sequence, an itemset is dropped as long as a uniformly distributed random number 

between 0 and 1 is less than crupS. The crupS is a normally distributed random 

variable with mean 
Scrupµ  and variance

Scrupσ . The assignment of PFIs (from ΓI) to 
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Table 3-2. Parameters used in the experiments 

Parameter Description Value 

|DB| Number of data sequences in database DB 200K, 500K, 1000K, 
10000K 

|C| Average size (number of transactions) per 
customer 10, 20 

|T| Average size (number of items) per transaction 2.5, 5 

|S| Average size of potentially sequential patterns 4, 8 

|I| Average size of potentially frequent itemsets 1.25, 2.5 

NI Number of potentially frequent itemsets 25000 

NS Number of possible sequential patterns 5000 

N Number of possible items 10000 

ΓS The table of potentially frequent sequences (PFSs)
 

ΓI The table of potentially frequent itemsets (PFIs)
 

corrS Correlation level (sequence), exponentially 
distributed  Scorrµ =0.25 

crupS Corruption level (sequence), normally 
distributed  

Scrupµ =0.75, 

Scrupσ =0.1 

corrI Correlation level (itemset), exponentially 
distributed  Icorrµ =0.25 

crupI Corruption level (itemset), normally distributed Icrupµ =0.75, 

Icrupσ =0.1 

a PFS is processed analogously with parameters crupI , mean 
Icrupµ  and 

variance
Icrupσ  correspondingly. 

All datasets used here were generated by setting N = 10000, NS = 5000, NI = 

25000. A dataset created with |C| = α, |T| = β, |S| = χ, and |I| = δ is denoted by the 

notation Cα−Tβ−Sχ−Ιδ. In addition, 
Scrupµ  and 

Icrupµ  were both set to 0.75, 

Scrupσ  and 
Icrupσ were both set to 0.1. The 

Scorrµ  and 
Icorrµ  were both set to 

0.25. 
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3.5.2 Execution times of GSP, PrefixSpan, and MEMISP algorithms 

The total execution times of sequence mining with various minsup values by 

algorithms GSP, PrefixSpan, and MEMISP using horizontal layout are compared in 

the experiments. The PrefixSpan was implemented without further optimizations like 

pseudo-projection or bi-level projection. The SPADE algorithm was not implemented 

in the comparison because additional storage space and computation time are required 

to transform the database to vertical format.  

Dataset C10-T2.5-S4-I1.25 having 200,000 data sequences (37.6MB) was used 

in the first experiment. Fig. 3-4 shows that the total execution times of the three 

algorithms are nearly the same for minsup = 2% and 1.5% because only few (less than 

200) patterns have enough supports. Besides, the discovered patterns were all short 

patterns of size one. However, the performance gaps become clear as minsup 

decreases. In the experiment, MEMISP and PrefixSpan are faster than GSP for all 

minsup values. MEMISP outperforms PrefixSpan about 13%~38% for low minsup.  

Next, the characteristics of datasets are changed. The results of execution on 

dataset C20-T2.5-S4-I1.25 (|DB|=200K, 76.3MB) is shown in Fig. 3-5. The total 

execution time of running GSP was too long to be shown in Fig. 3-5 and in the 

subsequent figures. With respect to the same minsups, the doubled |C| generated 

longer data sequences and produced more patterns, thereby requiring more execution 

time. The total execution time of running PrefixSpan is about 1.2 to 3.3 times of 

running MEMISP. The efficiency of PrefixSpan was slowed down by fast growth of 

the projected databases. For example, PrefixSpan processed total 4.9 times, and 21 

times the size of DB when minsup = 2% and misup = 0.75%, respectively. The results 

of execution by changing |T| from 2.5 to 5, |S| from 4 to 8, and |I| from 1.25 to 2.5 

have the similar effects. Fig. 3-6, 3-7, and 3-8 display that MEMISP outperforms 
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PrefixSpan. Fig. 3-9 shows that the performance of running with a bigger |T| and a 

bigger |I| (|T|=7.5, |I|=5) is consistent with previous experiments. The performance 

gain resulted from in-memory processing of the MEMISP algorithm. In summary, 

MEMISP is faster than PrefixSpan, ranging from 1.2 to 3.3 times, for various data 

characteristics. 
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Fig. 3-4. Total execution times with respect to various minsup values 
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Fig. 3-5. Comparisons of execution times on dataset C20-T2.5-S4-I1.25 
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Fig. 3-6. Comparisons of execution times on dataset C10-T5-S4-I1.25 
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Fig. 3-7. Comparisons of execution times on dataset C10-T2.5-S8-I1.25 
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Fig. 3-8. Comparisons of execution times on dataset C10-T2.5-S4-I2.5 
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Fig. 3-9. Comparisons of execution times on dataset C10-T7.5-S4-I5 

3.5.3 Scale-up experiments 

The maximum size of the datasets used in Section 3.5.2 is 76.3MB, the 

C20-T2.5-S4-I1.25 dataset with 200,000 sequences. Consequently, all the data 

sequences can fit into the 256MB main memory. The performance of MEMISP is very 

stable even when minsup is very low for large databases, if the database can fit into 

memory. Given minsup = 0.25%, MEMISP can perform well in processing one 

million data sequences of total size 189MB with a 256MB main memory in the 

experiments. Nevertheless, just for the mining of 100K sequences with minsup = 

0.5%, GSP scanned the database 4 times to test the 4.4 million candidates in pass two 

(more passes to go), and PrefixSpan generated sub-databases which amounts to 9.6 

times the size of the original database.  

In order to justify the scalability of MEMISP, the next experiments increased the 

number of data sequences, from 1000K to 10,000K with C10-T2.5-S4-I1.25. In Fig. 

3-10, the total execution times are normalized with respect to the execution time for 

|DB| = 1000K. The size of the dataset having 1000K sequences was 189MB so that 

MEMISP discovered patterns in a single pass without partitioning. Other datasets 
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were mined by the partition-and-validation technique as described in Section 3.4.3. 

For example, the dataset of |DB| = 10,000K of size 1.8GB was mined by 10 partitions. 

Given minsup = 0.75% with 10 million sequences, GSP could not complete the 

mining in a reasonable time. PrefixSpan created the projected databases of size to the 

amount of 11.4 times the original database size. Though Fig. 3-10 shows that both 

PrefixSpan and MEMISP are linearly scalable with the number of data sequences, but 

MEMISP has better scalability.  
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Fig. 3-10. Linear scalability of MEMISP vs. PrefixSpan 

3.6 Discussion 

We summarize the factors contributing to the efficiency of the proposed MEMISP 

algorithm by comparing with the well-known GSP and PrefixSpan algorithms.  

• One pass database scanning. MEMISP reads the original database only once, 

except for extra-large databases described in Section 3.4.3. In the experiments, 

a database with one million data sequences can fit into a platform with 256MB 

memory so that the database was scanned only once by MEMISP in the 

mining. However, GSP must read the database at least k times, assuming that 



 57

the maximum size of the discovered patterns is k. PrefixSpan reads one pass 

over the original database, and then writes and reads once for each projected 

sub-database. In some cases such as low minsup, the total size of 

sub-databases might be several times larger than the size of the original 

database.  

• No candidate generation. MEMISP discovers patterns directly from data 

sequences in-memory by index advancement. In contrast to GSP, MEMISP 

generates no candidates so that the time in candidate generation and testing are 

saved. Moreover, MEMISP works well even with small memory since the 

unknown sized (and often huge) space for candidate storage is unnecessary.  

• No database projection. The pure and simple index advancing in MEMISP 

creates no new databases so that the intermediate storage, which PrefixSpan 

needs, is not needed here. Note that MEMISP and PrefixSpan will have similar 

performance in mining a memory-accommodable database if the 

pseudo-projection technique [67] is used in PrefixSpan. However, according to 

[67], pseudo-projection is not efficient if it is used for disk-based accessing, 

and should be employed after bi-level optimization [67] having reduced the 

database size to the main memory accommodable size. 

• Focused search and effective indexing. MEMISP considers those data 

sequences indicated by current index set only instead of searching every data 

sequence in the database. Furthermore, each position index keeps moving 

forward along a data sequence as the discovered pattern gets longer. 

Consequently, fewer and fewer items in a data sequence need to be considered 

as a prefix pattern getting longer.  

• Compact index storage. MEMISP requires very compact storage for the 

index sets. In an index set, the maximum number of indices required equals to 
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the number of data sequences, no matter how small the minsup value is. 

Assume that the database has m million sequences. In a 4-byte addressing 

mode, MEMISP demands maximum (4+4)*m MB for an index set. The 

required total memory would be less than k*(8*m) MB for discovering the 

frequent k-sequences with respect to any minsup value. Nevertheless, the 

memory requirement for storing candidates in GSP can hardly be estimated 

without giving the minsup. Similarly, the total size of the projected databases 

in PrefixSpan increases as the minsup decreases. 

• High CPU and memory utilization. PrefixSpan needs only little memory 

space during the mining process. It solved the mining problem successfully by 

sub-database searching, though, with possible CPU idle while projecting 

sub-databases. MEMISP, by contrast, uses all the available memory and 

maximizes CPU utilization without extra disk operations. 

3.7 Summary 

Speeding up the discovery of sequential patterns has been the focus of data mining 

research. In this chapter, we present a memory indexing approach for fast discovery of 

sequential patterns, called MEMISP. MEMISP mines the set of all sequential patterns 

without generating candidates or sub-databases. The performance study exhibits that 

MEMISP is more efficient than both GSP and PrefixSpan algorithms, and has good 

linear scalability even for very low minimum supports. Moreover, MEMISP may 

estimate the total memory required, which is independent of the specified minsup. 

MEMISP scans the database at most twice with the partition-and-validation technique 

even for extra large databases so that the slow disk I/O is minimized. The compact 

indexing and the effective find-then-index technique together makes MEMISP a 

promising approach for fast discovery of sequential patterns in sequence databases of 
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any size, even with small memory and low minsup. 

In addition to sequential pattern mining, the technique could be extended to the 

discovery of maximum patterns [2], constrained/generalized sequential patterns [80], 

multi-dimensional patterns [70], and incremental sequence discovery after database 

updating [102]. It is also interesting to integrate the proposed index sets with database 

systems for efficient queries.  
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Chapter 4 Algorithm DELISP for Sequential Pattern Mining 

with Time Constraints 

4.1 Overview 

The discovery of sequential patterns is a complicated issue in data mining [6, 11, 25, 

47, 72, 80, 89, 98], as described in Chapter 3. A typical example is a retail database 

where each record corresponds to a customer’s purchasing sequence, called data 

sequence. A data sequence is composed of all the customer’s transactions ordered by 

transaction time. Each transaction is represented by a set of literals indicating the set 

of items (called itemset) purchased in the transaction. The objective is to find all the 

frequent sub-sequences (called sequential patterns) in the sequence database.  

An example sequential pattern might be that 30% customers bought PC and 

printer, followed by the purchase of scanner and graphics-software, and then digital 

camera. Such a pattern, denoted by <(PC, printer)(scanner, 

graphics-software)(digital camera)>, has three elements where each element is an 

itemset. Although the issue is motivated by the retail industry, the mining technique is 

applicable to domains bearing sequence characteristics, including the analysis of Web 

traversal patterns, medical treatments, natural disasters, DNA sequences, and so forth 

[6, 70, 92]. 

Sequential pattern mining [67, 70, 98] is more complex than association rule 

mining [14, 84] because the patterns are formed not only by combinations of items 

but also by permutations of itemsets. The number of potential sequences is by far 

larger than that of potential itemsets. Given 100 possible items in the database, the 

total number of possible itemsets is ∑
=
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total number of items in that sequence. The number of potential sequences of size k is 
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sequences, accumulating from size one to size 100 and more, could be enormous.  

The issue of mining sequential patterns with time constraints was first addressed 

in [80]. Three time constraints including minimum gap, maximum gap and sliding 

time-window are specified to enhance conventional sequence discovery. For example, 

without time constraints, one may find a pattern <(b, d, e)(a, f)>. However, the pattern 

could be insignificant if the time interval between (b, d, e) and (a, f) is too long. Such 

patterns could be filtered out if the maximum gap constraint is specified. 

Analogously, one might discover the pattern <(b, d, e)(a, g)> from many data 

sequences consisting of itemset (a, g) occurring one day after the occurrence of 

itemset (b, d, e). Nonetheless, such a pattern is a false pattern in discovering weekly 

patterns, i.e. the minimum gap of 7 days. In other words, the sale of (b, d, e) might not 

trigger the sale of (a, g) in next week. Therefore, time constraints including maximum 

gap and minimum gap should be incorporated in the mining to reinforce the accuracy 

and significance of mining results. 

Moreover, conventional definition of an element of a sequential pattern is too 

rigid for some applications. Essentially, a data sequence is defined to support a pattern 

if each element of the pattern is contained in an individual transaction of the data 

sequence. However, the user may not care whether the items in an element (of the 

pattern) come from a single transaction or from adjoining transactions of a data 

sequence if the adjoining transactions occur close in time (within a specified time 

interval). The specified interval is named sliding time-window [80]. For instance, 

given a sliding time-window of 5, a data sequence < t1(a, d) t2(b) t3(c)> can support 

the pattern <(a, b, d)(c)> if the difference between time t1 and time t2 is no greater 
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than 5. Adding sliding time-window constraint to relax the definition of an element 

will broaden the applications of sequential patterns.  

Although there are many algorithms dealing with sequential pattern mining [6, 

51, 55, 98], few handle the mining with the addition of time constraints. The GSP 

(Generalized Sequential Pattern) algorithm proposed in [80] is the first algorithm that 

discovers sequential patterns with time constraints within Apriori framework. GSP 

solves the problem by generating and testing candidate patterns in multiple database 

scans. Candidate patterns having any non-frequent sub-sequence are pruned before 

testing to reduce the search space. Still, the number of candidates might be huge [67]. 

Furthermore, in order to check whether a data sequence contains a certain candidate, 

GSP transforms each data sequence into items’ transaction-time lists. The 

transformation speeds up time-constraint related testing but introduces overheads 

during each database scanning. 

Recent studies indicate that pattern-growth methodology could speed up 

sequence mining. Despite many studies on sequential pattern mining within 

pattern-growth methodology [29, 67, 68, 69, 70], no algorithm fully functionally 

equivalent to GSP on time constraint issues has been proposed so far. Especially, 

solving the sliding time-window constraint can be hardly found in the literature 

(except in the GSP context). In this chapter, we propose a new algorithm called 

DELISP (Delimited Sequential Pattern) for handling all three time constraints on 

sequential patterns, introduced in the context of GSP, within the pattern-growth 

framework. DELISP solves the problem by recursively growing valid patterns in 

projected sub-databases generated by sub-sequence projection. To accelerate mining 

by reducing the size of sub-sequences, the constraints are integrated in the projection 

to delimit the counting and growing of sequences. In DELISP, the bounded projection 

technique eliminates invalid sub-sequence projections caused by unqualified 
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maximum/minimum gaps, the windowed projection technique reduces redundant 

projections for adjacent elements satisfying the sliding window constraint, and the 

delimited growth technique grows only the patterns satisfying constraints. The 

conducted experiments show that DELISP outperforms the GSP algorithm. The 

scale-up experiments also indicate that DELISP has good linear scalability with the 

number of data sequences. 

The rest of the chapter is organized as follows. We formulate the problem in 

Section 4.2 and review some related work in Section 4.3. Section 4.4 presents the 

DELISP algorithm. The experimental evaluation is described in Section 4.5. We 

discuss the performance improving factors in Section 4.6. Section 4.7 summarizes this 

chapter. 

4.2 Problem Statement 

Let Ψ = {α1, α2, …, αn} be a set of literals, called items. An itemset I = (β1, β2, …, βq) 

is a nonempty set of q items such that I ⊆ Ψ. A sequence s, denoted by <e1e2…ew>, is 

an ordered list of w elements where each element ei is an itemset. Without loss of 

generality, we assume the items in an element are in lexicographic order. The size of a 

sequence s, written as |s|, is the total number of items in all the elements in s. 

Sequence s is a k-sequence if |s| = k. For example, <(a)(c)(a)>, <(a,c)(a)>, and 

<(b)(a,e)> are all 3-sequences. 

The sequence database DB contains |DB| data sequences. A data sequence ds 

having a unique identifier sid is represented by sid/<t1e1’ t2e2’ … tnen’>, where element 

ei’ occurred at time ti , t1 < t2 < ...< tn. Four parameters are specified to mine the 

database DB: (1) minsup (minimum support) (2) mingap (minimum time gap) (3) 

maxgap (maximum time gap) and (4) swin (sliding time-window). Given minsup, the 

three constraints mingap, maxgap, swin, and the database DB, the problem is to 
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discover the set of all time-constrained sequential patterns, i.e. sequential patterns 

satisfying the three time constraints.  

A sequence s is a time-constrained sequential pattern if s.sup ≥ minsup, where 

s.sup is the support of the sequence s and minsup is the user specified minimum 

support threshold. The support of s is the number of data sequences containing s 

divided by |DB|. A data sequence ds = sid/<t1e1’ t2e2’… tnen’> contains a sequence s = 

<e1e2…ew> if there exist integers l1, u1, l2, u2, …, lw, uw and 1 ≤ l1 ≤ u1 < l2 ≤ u2 < …< 

lw ≤ uw ≤ n such that the four conditions hold: (1) ei ⊆ (eli
’ ∪ ...∪ eui

’), 1 ≤ i ≤ w (2) 

tui 
- tli

 ≤ swin, 1 ≤ i ≤ w (3) tui 
- tli-1

 ≤ maxgap, 2 ≤ i ≤ w (4) tli 
- tui-1

 > mingap, 2 ≤ i ≤ 

w. Assume that tj, mingap, maxgap, and swin are all positive integers, mingap and 

swin can be zero, and mingap < maxgap. Fig. 4-1 visualizes how a data sequence ds 

may contain the sequence s.  

eli-1
’ eui-1

’ eli
’ eui

’elements in
ds

timestamp

ei-1 ⊆
(eli-1

’∪… ∪ eui-1
’)

elements in
s

ei ⊆
(eli

’∪… ∪ eui
’)

tli-1
tui-1

tli tui

≤ swin
>mingap

≤ maxgap

sequence s = <e1e2…ew> is contained in data sequence 
ds = sid/<t1

e1’ t2
e2’… tn

en’> if all the items in ei can be found 
in the element formed by combining elements between eli

’ and eui
’ , 

where 1 ≤ i ≤ w, and the constraints swin, mingap, maxgap are satisfied.
 

Fig. 4-1. Example of the sequence containment relationship 

An example database DB is shown in the first column in Table 4-1. The data 

sequence C1/<1(c)35(b,f)> has two elements (itemsets), one having a single item c 

occurring at time 1 and the other having items b and f occurring at time 35. Given  
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Table 4-1. Example sequence database DB and the time-constrained sequential 
patterns 

Sequence 

C1/<1(c)35(b,f)> 

C2/<2(b)4(d)> 

Time-constrained 
sequential patterns  
(minsup = 40%, mingap = 
2, maxgap = 30, swin = 2) 

Sequential patterns 
(minsup=40%) 

C3/<1(a,d)5(c)6(c)8(b)35(a,f)> 

C4/<2(a)4(d)30(f)33(a)61(f)> 

C5/<1(a,b,e)4(e)7(f)8(d)9(b)> 

<(a)>,<(a)(b)>, <(a,d)>, 
<(a)(f)>, <(b)>, <(b,d)>, 
<(b,f)>, <(b)(f)>, <(c)>, 
<(d)>, <(f)> 

<(a)>, <(a)(a)>, <(a)(b)>, 
<(a)(d)>, <(a)(f)>, <(b)>, 
<(b)(d)>, <(b)(f)>, <(c)>, 
<(c)(b)>, <(c)(f)>, <(d)>, 
<(d)(a)>, <(d)(b)>, 
<(d)(f)>, <(f)> 

mingap = 2, maxgap = 30, swin = 2, C1 contains <(c)> and <(b,f)>, but it does not 

contain either <(c)(b)> or <(c)(f)> since 35-1 > maxgap. Similarly, C2/<2(b)4(d)> 

does not contain <(b)(d)> since 4-2 is not greater than mingap. Sequence <(a)(b)> is 

contained in C3/<1(a,d)5(c)6(c)8(b)35(a,f)> and C5/<1(a,b,e)4(e)7(f)8(d)9(b)> so that 

<(a)(b)>.sup = 2/5. With the specified swin, C4/<2(a)4(d)30(f)33(a)61(f)> may contain 

<(a,d)> (4-2 ≤ 2) and C5 may contain <(b,d,f)> (9-7 ≤ 2). Given minsup = 40%, both 

<(a)(b)> and <(a,d)> are time-constrained sequential patterns while <(b,d,f)> is not. 

The set of all time-constrained sequential patterns is listed in the second column in 

Table 4-1. Note that the mining of sequential patterns without time constraints, shown 

in the third column in Table 4-1, is a special case with mingap = 0, maxgap = ∞, and 

swin = 0 here.  

4.3 Related Work 

Much research has been focused in sequence mining without time constraints of 

mingap, maxgap and swin [6, 29, 67, 75, 98]. The GSP algorithm is the first algorithm 

that handles the time constrains in sequential patterns [80]. Based on the Apriori 

framework [6], the patterns are found in multiple database passes. In every database 

scan, each data sequence is transformed into items’ time-lists for fast finding of 
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certain element with a time tag. Since the start-time and end-time of an element (may 

comprise several transactions) must be considered, GSP defines ‘contiguous 

sub-sequence’ for candidate generation, and move between ‘forward phase’ and 

‘backward phase’ for checking whether a data sequence contains a certain candidate 

[80]. 

A general pattern-growth framework was presented in [69] for constraint-based 

sequential pattern mining. From the application point of view, seven categories of 

constrains including item, length, super-pattern, aggregate, regular expression, 

duration, and gap constraints were covered. Among these constraints, duration and 

gap constraints are tightly coupled with the support counting process because they 

confine how a data sequence contains a pattern. Orthogonally classifying constraints 

by their roles in mining, monotonic, anti-monotonic, and succinct constraints were 

characterized and the prefix-monotone constraint was introduced. The prefix-growth 

framework which pushes prefix-monotone constraints into PrefixSpan was also 

proposed in [69]. However, with respect to time constraints, prefix-growth only 

mentioned maxgap and mingap time constraints (though duration constraint was 

addressed) with no implementation details, and sliding time-window was not 

considered at all.  

The cSPADE algorithm [97] extends the vertical mining algorithm SPADE [98] to 

deal with time constraints. Vertical mining approaches [11, 97, 98] discovers 

sequential patterns using join-operations and vertical database layout, where data 

sequences are transformed into items’ (sequence-id, time-id) lists. The cSPADE 

algorithm checks mingap and maxgap while doing temporal joins. Nevertheless, the 

huge sets of frequent 2-sequences must be preserved to generate the required classes 

for the maxgap constraint [97]. While it is possible for cSPADE to handle constraints 

like maximum/minimum gaps by expanding the id-lists and augmenting the 
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join-operations with temporal information [97], it does not appear feasible to 

incorporate the sliding time-window. The sliding time-window constraint was not 

mentioned in cSPADE. 

A different kind of time constraints, discovering patterns that involve multiple time 

granularities, was addressed in [13]. Simple or complex event structures, which are 

episodes [47, 42] with time interval restrictions similar to mingap/maxgap constraints, 

are discovered by the introduced timed automaton with granularities [13]. 

Nevertheless, we are interested in the discovery of time-constrained sequential 

patterns forming by itemsets. 

4.4 DELISP: Delimited Sequential Pattern Mining 

In this section, we describe the proposed pattern-growth mechanism for mining 

time-constrained sequential patterns, called DELISP. The main idea is efficiently 

‘finding’ the frequent items, and then effectively ‘growing’ potential patterns in the 

sub-databases constructed by projecting sub-sequences corresponding to the frequent 

items. We also project the time-tags into the sub-databases to generate patterns 

satisfying the time constraints. However, DELISP projects fewer but complete 

combinations by windowed and bounded projections, and grows potential patterns 

effectively by delimited growth. Section 4.4.1 introduces the terminology used in 

DELISP. In Section 4.4.2, we demonstrate the method by mining an example database. 

Section 4.4.3 describes the proposed algorithm. For convenience, we refer to a data 

sequence ds = sid/<t1e1’ t2e2’ … tnen’> as ds in the following context.  

4.4.1 Terminology used in DELISP 

Definition 4-1 (Frequent item) An item x is called a frequent item in a sequence 

database DB if the support of 1-sequence <(x)> is greater than or equal to minsup.  
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Definition 4-2 (Stem, type-1 growth, type-2 growth, prefix) Given a sequential 

pattern ρ and a frequent item x in the sequence database DB, x is called the stem-item 

(abbreviated as stem) of the sequential pattern ρ’ if ρ’ can be formed by (1) appending 

(x) as a new element to ρ or (2) extending the last element of ρ with x. The formation 

of ρ’ is a type-1 growth if it is formed by appending (x), and a type-2 growth if it is 

formed by extending with x. The prefix pattern (abbreviated as prefix) of ρ’ is ρ. 

For example, given <(a)> and the frequent item b, we may have the type-1 

growth <(a)(b)> by appending (b) to <(a)> and the type-2 growth <(a,b)> by 

extending <(a)> with b. The <(a)> is the prefix and the b is the stem of both <(a)(b)> 

and <(a,b)>. As to a type-2 growth <(c)(a,d)>, its prefix is <(c)(a)> and its stem is d. 

Note that the null sequence, denoted by <>, is the prefix of any frequent 1-sequence.  

Definition 4-3 (start-time, end-time, tag-list) The timestamp indicating the 

occurrence of itemset I in ds is marked in the projected database. If itemset I is 

contained in a single element tδeδ’ in ds, the start-time (abbreviated as st) and 

end-time (abbreviated as et) pair st:et is marked as tδ : tδ . If I is contained in eδ’∪eδ+1’ 

∪…∪eε’ (in ds), st:et is marked as tδ : tε . We refer to the list of all the st:et pairs as 

the tag-list of I in ds. The tag-list is denoted by [st1:et1, st2:et2, …, stk:etk] where sti ≤ 

eti for 1 ≤ i ≤ k, sti < sti+1 and eti < eti+1 for 1 ≤ i ≤ k-1. 

Definition 4-4 (Accessible) Let the tag-list of itemset I in ds be [st1:et1, st2:et2, …, 

stk:etk]. An element ea’ is accessible from I in ds if its timestamp ta satisfies: (1) eti - 

swin ≤ ta ≤ sti + swin, where i ∈ {1, 2, …, k} or (2) eti + mingap < ta ≤ sti + maxgap, 

where i ∈ {1, 2, …, k} or (3) tb + mingap < ta ≤ tb + maxgap where tb is the timestamp 

of an accessible element eb’ from I in ds.  

Fig. 4-2 demonstrates the three accessible circumstances. For example, the 

tag-list of itemset (c) in C1/<1(c)35(b,f)> is [1:1], that of (b) in C1 is [35:35]. The 

tag-list of (a) in C3/<1(a,d)5(c)6(c)8(b)35(a,f)> is [1:1, 35:35], that in 
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C4/<2(a)4(d)30(f)33(a)61(f)> is [2:2, 33:33], and that in C5/<1(a,b,e)4(e)7(f)8(d)9(b)> is 

[1:1]. With respect to (a,d), the tag-list in C3 is [1:1] and that in C4 is [2:4]. The 35(b,f) 

in C1 is not accessible from 1(c) if maxgap = 30. Considering 1(a,d) in C3, elements 

5(c), 6(c), 8(b) are accessible with mingap = 2 and maxgap = 30. Additionally, 35(a,f) is 

also accessible because it is accessible via 8(b) for 8+2 < 35 ≤ 8+30, or via 5(c) then 

8(b).  

Note that when an accessible element is extended by condition (1) in Definition 

4-4, the extension is checked on not violating mingap or maxgap constraints with 

respect to the previous itemset of I (in the pattern), denoted by Ip. The checking is to 

ensure that itemset I, having timestamps satisfying the mingap/maxgap constraint 

with Ip, does not violate the gap constraint after the type-2 extension. Such a checking 

requires projecting st:et of Ip, the detail of which is not shown in the following context 

for clearer illustration. 

Lemma 4-1. Let ds contain the non-null prefix ρ = <e1e2…ep>. Given the tag-list of ep 

in ds, a frequent item x in an element ea’ in ds can be a stem only if ea’ is accessible 

from ep in ds. 

Lemma 4-1 is based on the fact that a valid ‘growth’ must satisfy time constraints. 

Hence, we may prevent the inaccessible elements from projection to speed up the 

growing process, as shown in Fig. 4-3. We further reduce projections by eliminating 

items in an accessible element from projection using Lemma 4-2, as depicted in Fig. 

4-4. 
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(resulting in two sets)

applying mingap/maxgap
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applying mingap/maxgap
constraint on another
accessible element eb’
(having timestamp tb)

accessible elements

accessible elements

accessible elements  

Fig. 4-2. Accessible elements from itemset I in ds with tag-list [st1:et1, st2:et2, …, 

stk:etk] 

only accessible elements are projected

ds contains ρ = <e1…ep>
inaccessible elements are eliminated from projection

ep
ds

 

Fig. 4-3. The projected elements of ds with respect to ρ 
ρ = <e1…ep>, ep= (…, x)

ds
st1 et1

swin

swin

any x' in an accessible element ea’ is eliminated from projection if x' ≤ x

st2 et2

ep:

 
Fig. 4-4. Eliminating items having smaller lexicographic order from projection 

(Lemma 4-2) 

Lemma 4-2. Let the last element in prefix ρ be ep, the last item in ep be x, and the 

tag-list of ep in ds be [st1:et1, st2:et2, …, stk:etk]. Any item x′ in an accessible element 

ea’ cannot be a stem if (1) x′ ≤ x and (2) taea’ is accessible from ρ by satisfying et1 - 

swin ≤ ta ≤ et1.  
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Lemma 4-2 is based on the fact that items are in lexicographic order within 

elements. Any item to be used as a stem for the type-2 growth having prefix ρ should 

have an order greater than the order of the last item in ρ. Thus, any small-ordered x’ 

(located in taea’, et1 - swin ≤ ta ≤ et1) need not be projected. 

Note that all the items in an accessible element taea’ having et1 < ta ≤ st1 + swin 

are projected even their lexicographical orders precede that of the last item in prefix ρ. 

These items can be stems for potential type-1 growth (prefix ρ) and cannot be 

eliminated from projection.  

4.4.2 Mining time-constrained sequential patterns by DELISP: an example 

All the time-constrained sequential patterns are found by growing frequent sequences 

from size one to the maximum size. Frequent items in DB can be determined after 

scanning DB once. We then use each frequent item as a stem with prefix <> to form 

the set of all frequent 1-sequences. The sub-sequences satisfying the constraints are 

then projected into related sub-databases for further ‘growing’. The stems of type-1 

and type-2 growth can be determined by scanning the sub-databases once. Recursively, 

the time-constraint integrated projection and growing techniques are applied to 

discover the frequent 2-sequences, 3-sequences, etc.  

Example 1: Given minsup=40%, mingap=2, maxgap=30, swin=2, and the DB as 

shown in Table 4-1, DELISP mines the patterns by the following steps.  

Step 1. Find frequent items. By scanning DB once, we have frequent items a (count 

= 3 for appearing in 3 data sequences C3, C4 and C5), b (count = 4), c (count = 2), d 

(count =4), and f (count = 4). Non-frequent item e is omitted from mining afterward. 

The five items are stems of type-1 growth having prefix <>. 

Step 2. Project corresponding sub-sequences to sub-databases. Considering the 

time-constrained sequential patterns having prefix ρ = <(x)>, each can be found in the 
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sub-database (named ρ-DB) generated by projecting all the data sequences having 

item x in DB. While projecting a data sequence ds into ρ-DB, we omit the 

non-frequent items, those inaccessible elements (using Lemma 4-1), and those 

‘lexicographically smaller’ items (using Lemma 4-2).  

We tabulate the sub-databases <(a)>-DB, <(b)>-DB, <(c)>-DB, <(d)>-DB, 

and <(f)>-DB in part 1 of Table 4-2. Take <(a)>-DB for instance. The tag-lists of 

(a) in C3, C4, and C5 are exemplified in Section 4.4.1. The 1(d) in C3 is 

accessible and is projected with respect to st:et = 1:1. Elements 5(c), 6(c), and 8(b) 

in C3 are projected since they are all accessible (1+2 < 5 ≤ 1+30, 3 < 6 ≤ 31, and 

3 < 8 ≤ 31). The 35(a,f) in C3 is also projected with respect to st:et = 35:35. 

Similarly, we project the accessible elements 4(d), 30(f), 33(a), and 61(f) in C4. For 

C5, element 7(f), 8(d), and 9(b) are projected, and 1(b), instead of 1(a,b,e), is 

projected after dropping non-frequent item e and item a (by Lemma 4-2).  

Note that the tag-list of (b) in C3 is [8:8], so 6(c) in C3 is projected into 

<(b)>-DB since 8-2 ≤ 6 ≤ 8+2. The 35(a,f) in C1 does not appear in <(c)>-DB 

because it is inaccessible from [1:1] (35 > 1+30), hence the tag-list and the entire 

sub-sequence of C1 are eliminated. Similarly, C2 is removed from <(d)>-DB. In 

addition, the 2(a) in C4 is not projected into <(d)>-DB using Lemma 4-2 (a < d). 

However, the 7(f) in C5 must be included in <(d)>-DB because it is accessible 

from [8:8]. 

Step 3. Mine each sub-database for the subsets of time-constrained sequential 

patterns. In each sub-database, we grow the patterns in each sequence according to 

the time constraints, and determine which pattern is a valid time-constrained 

sequential pattern. Assume that we are growing patterns from prefix ρ whose last 

element is ep and the tag-list of ep in ds is [st1:et1, st2:et2, …, stk:etk]. The stems of 

potential type-1 growth come from the accessible ea’ whose timestamp ta satisfying eti  
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Table 4-2. The projected sub-sequences in the ρ-DB sub-databases 

ρ-DB Projected sub-sequences 
Part 1: sub-databases of DB 
  <(a)>-DB C3/[1:1,35:35]/<1(d)5(c)6(c)8(b)35(a,f)>; 

C4/[2:2,33:33]/<4(d)30(f)33(a)61(f)>; C5/[1:1]/<1(b)7(f)8(d)9(b)> 
  <(b)>-DB C1/[35:35]/<35(f)>; C2/[2:2]/<4(d)>; C3/[8:8]/<6(c)35(a,f)>; 

C5/[1:1,9:9]/<7(f)8(d)9(b)> 
  <(c)>-DB C3/[5:5,6:6]/<6(c)8(b)35(a,f)> 
  <(d)>-DB C3/[1:1]/<5(c)6(c)8(b)35(a,f)>; C4/[4:4]/<30(f)33(a)61(f)>; 

C5/[8:8]/<7(f)9(b)> 
  <(f)>-DB C4/[30:30,61:61]/<33(a)61(f)>; C5/[7:7]/<8(d)9(b)> 
Part 2: sub-databases of <(a)>-DB 
  <(a)(b)>-DB C3/[8:8]/<35(f)> 
  <(a)(f)>-DB C5/[7:7]/<8(d)9(b)> 
  <(a,d)>-DB C3/[1:1]/<8(b)35(f)>; C4/[2:4]/<30(f) 61(f)> 
Part 3: sub-databases of <(b)>-DB 
  <(b)(f)>-DB C5/[7:7]/<8(d)9(b)> 
  <(b,d)>-DB None 
  <(b,f)>-DB None 
Note: the notation ‘st:et’ prior to a data sequence denotes the start-time and the 
end-time of the data sequence with respect to ρ projection.  

+ mingap < ta ≤ sti + maxgap, where i ∈ {1, 2, …, k}. The stems of potential type-2 

growth come from the accessible ea’ satisfying eti - swin ≤ ta ≤ sti + swin, where i ∈ {1, 

2, …, k}. We may obtain the occurrence counts (i.e. supports) of stems after scanning 

ρ–DB once. Recursively, we then generate the corresponding ρ’–DB (having prefix ρ) 

for each stem having sufficient support count.  

We mine <(a)>-DB as follows. Potential stems of type-1 growth in C3 

(tag-list [1:1:,35:35]) are c and b since 5(c) and 8(b) are accessible within (1 + 2, 

1 + 30]. In C4 (tag-list [2:2, 33:33]), f and a are potential stems of type-1 growth 

since the accessible ranges are (2 + 2, 2 + 30] and (33 + 2, 33 + 30]. Similarly, f, 

d, and b are potential stems of type-1 growth in C5. Thus, b (count = 2) and f 

(count = 2) are the valid stems of type-1 growth in <(a)>-DB.  

Potential stems of type-2 growth in C3 (tag-list [1:1,35:35]) are d (within 

[1-2, 1+2]) and f (within [35-2, 35+2]), and that in C4 is d (within [2-2, 2+2]), 
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and that in C5 is b (within [1-2, 1+2]). Therefore, d is the valid stem of type-2 

growth in <(a)>-DB. Consequently, the time-constrained sequential patterns are 

<(a)(b)> (count = 2), <(a)(f)> (count = 2), and <(a,d)> (count = 2) by mining 

<(a)>-DB. 

Step 4. Find all patterns by applying step 2 and step 3 on the sub-databases 

recursively. Considering the time-constrained sequential patterns having prefix ρ = 

<(a)(b)>, each can be found in the sub-database (named <(a)(b)>-DB) generated by 

projecting all the data sequences having (b) in <(a)>-DB. Again, we eliminate the 

non-frequent items, those inaccessible elements (using Lemma 4-1), and those 

‘lexicographically smaller’ items (using Lemma 4-2).  

Next, we apply step 2 to project the sub-sequences in <(a)>-DB further into 

sub-databases <(a)(b)>-DB, <(a)(f)>-DB, and <(a,d)>-DB. The projected 

sub-databases of <(a)>-DB are shown in part 2 of Table 4-2. Similarly, 

inaccessible elements and non-frequent items (with respect to <(a)>-DB) are not 

projected. The <(a)(b)>-DB is constructed by projecting the tag-list of (b) and the 

accessible elements in each sub-sequence as follows. In <(a)>-DB of Table 4-2, 

the tag-list of (b) in C3 is [8:8], that in C5 is [9:9]. Only C3/8:8/<35(f)> is 

projected since there is no accessible element in C5. Neither type-1 nor type-2 

growth in the <(a)(b)>-DB finds any pattern so the growth is stopped. The 

<(a)(f)>-DB contains only one sequence after projection so that the growth in 

<(a)(f)>-DB is also stopped. Again, constructing <(a,d)>-DB is accomplished by 

projecting tag-lists of (a,d) and the accessible elements. We project C3 as 

1:1/<8(b)35(f)> instead of 1:1/<5(c)6(c)8(b)35(a,f)> by removing non-frequent 

items a and c. Growing pattern in <(a,d)>-DB is stopped without forming any 

pattern. The mining with sub-databases of <(a)>-DB thus terminates.  

We then recursively apply the steps on <(b)>-DB for patterns having prefix <(b)>,  
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Algorithm DELISP 
Input: DB = a sequence database; minsup = minimum support; mingap = minimum 

time gap; maxgap = maximum time gap; swin = sliding time-window. 
Output: the set of all time-constrained sequential patterns. 
Method:  

1. Scan DB once, find the set of all frequent items.  
2. For each frequent item x,  

(a) form a time-constrained sequential pattern ρ = <(x)> and output ρ. 
(b) call ProjectDB(ρ, DB) to construct sub-database ρ-DB.  
(c) call Mine(ρ-DB). 

Subroutine ProjectDB(ρ, Db) 
Parameters: ρ = pattern; Db = the sub-database. 
Output: the sub-database ρ-DB. 
Method:  

1. For each data sequence ds = sid/<t1e1’ t2e2’… tnen’> in Db,  
(a) record the tag-list [st1:et1, st2:et2, …, stk:etk] of ρ in ds, where each sti:eti 

marks the start-time:end-time of the last element of ρ in ds. 
(b) (Bounded-projection) mark the list of accessible elements in ds. /* See 

Definition 4-4 (accessible) in Section 4.4.1 */  
(c) (Windowed-projection) drop item x′ in an accessible element ea’ where et1 

- swin ≤ ta ≤ et1 and x′ ≤ x. The item x is the last item in ep ∈ ρ = <e1e2…ep 
>. /* Use Lemma 4-2 in Section 4.4.1 */ 

(d) if the list of accessible elements is not empty, drop the non-frequent items in 
ds and project sid/[st1:et1, st2:et2, …, stk:etk]/< the list of accessible elements 
> to ρ-DB.  

Subroutine Mine(ρ-DB) 
Parameter: ρ-DB = the sub-database. 
Output: time-constrained sequential patterns having prefix ρ. 
Method:  

1. For each data sequence ds = sid/[st1:et1, st2:et2, …, stk:etk]/<t1e1’ t2e2’… tnen’> in 
ρ-DB,  
(a) for each element ei’ with timestamp ti in ds, insert the items in ei’ 

(i) to the stem set of potential type-1 growth if etj+mingap < ti ≤ stj+maxgap 
where j ∈ {1, 2, …, k}. (Delimited-growth/type-1) 

(ii) to the stem set of potential type-2 growth if etj-swin ≤ ti ≤ stj+swin 
where j ∈ {1, 2, …, k}. (Delimited-growth/type-2) 

(b) for each stem in the two sets, increase its support count by one. 
2. Find the frequent items in the two sets by comparing the supports with minsup. 
3. For each frequent item x in the two sets,  

(a) form a time-constrained sequential pattern ρ’ (prefix ρ and stem x) and 
output ρ’. 
(b) call ProjectDB(ρ’, ρ-DB) to construct sub-database ρ’-DB.  
(c) call Mine(ρ’-DB). 

Fig. 4-5. Algorithm DELISP 

on <(c)>-DB for patterns having prefix <(c)>, …, and on <(f)>-DB for patterns having 

prefix <(f)>. By collecting the patterns found in the above process, DELISP efficiently 
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discovers all the sequential patterns satisfying the time constraints. 

4.4.3 The DELISP algorithm 

Fig. 4-5 presents the proposed DELISP algorithm. Analogous to PrefixSpan algorithm, 

DELISP decomposes the mining problem by recursively growing patterns, one item 

longer than the current patterns, in the projected sub-databases. However, the 

potential items used to grow are subjected to mingap and maxgap constraints, called 

de-limited growth. Therefore, we perform type-1 growth with items in each element 

taea’ within range (eti + mingap < ta ≤ sti + maxgap), where i ∈ {1, 2, …, k}, and 

type-2 growth with items in each element taea’ within range (eti - swin ≤ ta ≤ sti + 

swin), where i ∈ {1, 2, …, k}. The [st1:et1, st2:et2, …, stk:etk] is the tag-list of element 

ep ∈ prefix <e1e2…ep> in ds. On projecting sub-databases, we avoid the bi-directional 

growth by imposing the item-order in the type-2 growth. We always add a new item 

(in ep) whose order is lexicographically larger than the order of the existing items for 

type-2 growth. Considering an example element (b, d, e) formed by combining t1(d, e) 

and t2(b), i.e. |t1 - t2| ≤ swin. When the time t2 is earlier than time t1, (b, d, e) will be 

discovered in the projected <(b)>-DB since t1 ≤ t2 + swin. In case t1 < t2, (d, e) will be 

kept in <(b)>-DB since it is accessible for t2 - swin ≤ t1. We refer to such projection as 

windowed-projection. 

Theorem 4-1. Algorithm DELSIP discovers the set of all time-constrained sequential 

patterns. 

Proof. Obviously, DELISP discovers the set of all frequent 1-sequences in step 1. 

Clearly, a frequent k-sequence is formed by either a type-1 growth or a type-2 growth 

from a frequent (k-1)-sequence. Thus, the set of all time-constrained sequential 

patterns can be obtained by type-1 and type-2 growth, from size one to the maximum 

size. Any item to be used as a stem must come from an accessible element; otherwise, 
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the corresponding growth would violate either swin or mingap/maxgap constraint. In 

Subroutine ProjectDB, by Lemma 4-1 and Lemma 4-2, those inaccessible items need 

not be projected so they are eliminated. Subroutine Mine counts the supports of 

time-constraint satisfied items for type-1 and type-2 growth, respectively. By 

recursively applying ProjectDB and Mine, DELISP discovers the set of all 

time-constrained sequential patterns.         □ 

4.5 Experimental Results 

Extensive experiments were conducted to assess the performance of the DELISP 

algorithm. We compared the total execution times of DELISP and GSP [80] by 

varying the parameters of mingap, maxgap, and swin. The scalability of the algorithm 

was also evaluated over different database sizes. The experiments were performed on 

an 866 MHz Pentium-III PC with 1024MB memory running the Windows NT. 

The PrefixSpan [67] does not handle the time constraints and therefore is not 

considered. However, note that for gap constraints (mingap and maxgap) PrefixSpan 

could be applied with an extra pattern counting step. In the step, patterns discovered 

without time constraints can be verified in an extra scan of the whole database. 

Nevertheless, such an extension cannot be applied for sliding time-window. The 

prefix-growth [69] gives no implementation details of gap constraints and no 

descriptions on sliding time-window, so that prefix-growth is not compared in our 

experiments. 

The cSPADE algorithm [97], though accepts the minimum and maximum gap 

constraints, was not implemented in the comparison because it uses vertical database 

layout. Additional storage space and computation time are required to transform the 

natively horizontal databases into vertical. In addition, the swin constraint is not 
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handled in cSPADE. Revision of cSPADE to handle swin constraint is not trivial. One 

possible implementation is to incorporate sliding time-window by incrementing the 

support for each distinct window in the vertical representation. Nevertheless, the join 

operation has to be extended, beyond temporal and equality join, to allow ‘window 

join’. For example, joining the id-list of item x with that of item y, even their 

timestamps are not equal, now might generate itemset (x, y) if the time difference is 

no greater than swin. Such an extension could generate many combinations that turn 

out to be rejected after invoking another round of validating mingap and/or maxgap. 

The structure of the id-list also needs to be expanded to indicate the timestamps of 

previous elements to enable the counting of validating mingap gap.   

Like most studies on sequential pattern mining [6, 29, 67, 98, 102], synthetic 

datasets were used and were generated using the procedure described in [80] for these 

experiments. The transaction IDs were used to represent the transaction times. As to 

the details of generating synthetic data, please refer to Section 3.5.1. The datasets 

mimic the real world transactions by using various parameters. Table 4-3 shows the 

meaning and the values of the parameters used in the experiments. A dataset generated 

with |C| = 10, |T| = 2.5, |S| = 4, |I| = 1.25 is denoted by C10-T2.5-S4-I1.25. It indicates 

that, in average, each customer has 10 transactions, each transaction has 2.5 items, 

sequences are generated from a sample having 4 transactions per pattern, and 1.25 

items per transaction. The sample was generated with 1000 possible items, 5000 

possible sequential patterns, and 25000 possible frequent itemsets. In Section 4.5.1, 

experimental results on varying the minsup, mingap, maxgap, and swin, and the 

results on various datasets are described. Section 4.5.2 shows the results of the 

experiments on scaling up the database size.  
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Table 4-3. Parameters used in the experiments 

Parameter Description Value 

|DB| Number of data sequences in database DB 100K, 200K, 400K, 
800K, 1000K 

|C| Average size (number of transactions) per customer 10, 15 
|T| Average size (number of items) per transaction 2.5, 5 
|S| Average size of potentially sequential patterns 4, 8 
|I| Average size of potentially frequent itemsets 1.25, 2.5 

4.5.1 Execution times of GSP and DELISP algorithms 

First, we report the results on dataset C10-T2.5-S4-I1.25 having 100,000 sequences. 

The execution times of GSP and DELISP in mining time-constrained sequential 

patterns are compared. In these experiments, DELISP is about 3 times faster than 

GSP.Various values of minsup, mingap, maxgap, and swin are used. Note that the 

mining of sequential patterns without time constraints is a special case with mingap = 

0, maxgap = ∞, and swin = 0 here. The results of varying minsup (2%, 1.5%, 1%, 

0.75%, 0.5%) are consistent. We set the minsup to 0.75% and focus on the 

comparisons of varying time constraints in the following. 

The result of varying mingap with fixed maxgap and fixed swin is shown in Fig. 

4-6. When mingap = 0, maxgap = ∞, and swin = 0, the resulting patterns are the same 

as common sequential pattern discovery without time constraints. As mingap 

increases, the number of qualified patterns existing in data sequences decreases, and 

thereby the total execution time decreases. The total execution time of GSP is 2.8 

(mingap = 0) up to 3.3 (mingap = 8) times than that of DELISP. It shows that DELISP 

removes more inaccessible elements with larger mingap. 

Fixing both mingap and swin to zero, Fig. 4-7 shows the result of varying 

maxgap. The number of time-constrained sequential patterns will decrease when the 

maxgap value increases, since larger maxgap restricts more data sequences to contain 
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certain patterns. In Fig. 4-7, the line depicting the execution time of GSP starts to fall 

steeply at maxgap = 4, because the sample sequences have 4 transactions (|S| = 4) in 

average. Note that GSP runs slightly faster without constraints (673 seconds) than 

with maxgap = 12 since most checks eventually are useless and introduce overheads. 

DELISP consistently outperforms GSP, from 2.9 (maxgap = 12) down to 1.4 (maxgap 

= 1) times, in the experiments.  

Next, the swin was varied from 0 up to 4 without setting mingap and maxgap 

constraints. The swin allows adjoining transactions to combine either way to form an 

element so that each data sequence may contain more patterns. Consequently, more 

execution time is required with the increased swin. When swin = 0, it took GSP 673 

seconds and DELISP 238 seconds, respectively, for the discovery. To mine the 

additional patterns appeared with swin = 1, GSP spent 815 seconds and DELISP spent 

272 seconds. Fig. 4-8 displays the effect on performance when constraint swin is 

increased. Both algorithms scale up with the increased swin, DELISP performs the 

better. 
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Fig. 4-6. Effect of the mingap constraint 
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Fig. 4-7. Effect of the maxgap constraint 
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Fig. 4-8. Effect of the swin constraint 

To evaluate the performance with respect to datasets of different characteristics, 

the series of experiments were applied on dataset C15-T2.5-S4-I1.25 (varying 

mingap), C10-T5-S4-I1.25 (varying swin), C10-T2.5-S8-I1.25 (varying maxgap), and 

C10-T2.5-S4-I2.5 (varying mingap). The results for sensitivity analysis, displayed in 

Fig. 4-9, demonstrate that DELISP algorithm consistently outperforms the GSP 

algorithm for various data characteristics. 

The effects of varying the three constraints on performance are summarized 

below. With respect to mingap constraint, GSP effectively prunes the impossible 

candidates utilizing the monotonic property of candidate generation. For instance, if  



 82

C10 -T5 -S4 -I1.25 , minsup  = 0.75%

0

500

1000

1500

2000

2500

0 1 2 3 4
Sliding time window

To
ta

l e
xe

cu
tio

n 
tim

e 
(m

in
.) DELISP

GSP

min. time gap = 0
max. time gap = no constraint

C15 -T2.5 -S4 -I1.25 , minsup  = 0.75%

0

500

1000

1500

2000

2500

3000

0 1 2 4 8
Minimum time gap

To
ta

l e
xe

cu
tio

n 
tim

e 
(s

ec
.) DELISP

GSP

max. time gap = no
constraint
sliding window = 0

(a) Increase |C| from 10 to 15, varying mingap (b) Increase |T| from 2.5 to 5, varying swin  

C10 -T2.5 -S4 -I2.5 , minsup  = 0.75%

0

100

200

300

400

500

600

700

800

0 1 2 4 8
Minimum time gap

To
ta

l e
xe

cu
tio

n 
tim

e 
(s

ec
.) DELISP

GSP

max. time gap = no constraint
sliding window = 0

(d) Increase |I| from 1.25 to 2.5, varying mingap(c) Increase |S| from 4 to 8, varying maxgap

C10 -T2.5 -S8 -I1.25 , minsup  = 0.75%

0

100

200

300

400

500

600

700

* 12 8 4 2 1
Maximum gap

To
ta

l e
xe

cu
tio

n 
tim

e 
(s

ec
.) DELISP

GSP* = no constraint
min. time gap = 0
sliding window = 0

 

Fig. 4-9. Total execution time on datasets of various characteristics 

(a)(b) fails to be a candidate due to mingap, then (a)(b)(c) cannot be a candidate. 

DELISP utilizes mingap constraint to effectively remove the inaccessible items within 

pattern-growth framework. Both DELISP and GSP can effectively handles the mining 

with mingap constraint, while DELISP outperforms GSP at least two times faster. 

In GSP, there is performance degradation when maxgap or swin specified. With 

respect to maxgap constraint, the time for the containment test increases when 

maxgap is specified. Besides, the number of candidates increases when maxgap is 

used, since we can no longer prune non-contiguous subsequences [80]. The time for 

the containment test also increases when swin is specified. In addition, the hash-tree is 

less effective in reducing the number of candidates that need to be checked against a 
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data sequence when the user specifies a larger swin value.  

However, DELISP effectively handles all the three constraints by integrating 

them in sequence projecting and growing within the pattern-growth framework. Thus, 

the performance difference between DELISP and GSP increases when maxgap or 

swin increases, as shown in Fig. 4-9. 

4.5.2 Scale up experiments on database size  

In order to justify the scalability of DELISP, the number of data sequences was 

increased from 100K to 1000K with C10-T2.5-S4-I1.25. In Fig. 4-10, the total 

execution times are normalized with respect to the execution time for |DB| = 100K. As 

indicated in Fig. 4-10, the execution time of DELISP scales up sub-linearly with the 

number of data sequences. When |DB| increases to very large size like 800K or 1000K 

and the average number of items per transaction might be large, the projected 

sub-databases increase tremendously, which incurs larger overhead in disk accessing. 

In the experiment, the execution time ratio scaled up sub-linearly. The execution time 

for maxgap = 12 and swin = 1 is 271 seconds, and that for maxgap = 8, swin = 2 is 

304 seconds. It reflects that relaxing swin has stronger influence than restricting 

maxgap on the number of patterns discovered. 
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Fig. 4-10. Linear scalability of DELISP 
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4.6 Discussion 

We summarize the factors contributing to the efficiency of the proposed DELISP 

algorithm, by comparing with the well-known GSP algorithm below.  

• No candidate generation. DELISP generates no candidates and saves the time 

for not only candidate generation but also candidate testing. Moreover, the huge 

space required for candidate hash-tree is eliminated entirely. Such an advantage 

is shared by all pattern-growth approaches like PrefixSpan or prefix-growth. 

• Focused search. DELISP projects the accessible elements and grows patterns by 

considering only constraint satisfied elements in sub-sequences. We search and 

grow longer patterns in the smaller, promising subspace. In contrast, GSP takes 

every data sequence (the entire sequence) for support calculation in each pass.   

• Constraint integration. The maxgap constraint makes candidate reduction less 

powerful in GSP since some candidates cannot be pruned in advance. For 

instance, given maxgap constraint, a data sequence which supports candidate 

(a)(e)(f) may not contain candidate (a)(f). Thus, GSP suffers from maxgap 

constraint as candidate pruning is less restrictive. Nevertheless, DELISP benefits 

from the maxgap constraint by incorporating the constraint in growing and 

projecting shorter sequences. Some posterior elements of a sequence, once they 

are inaccessible, need not be considered because of the maxgap constraint. 

• Containment checking and sequence shrinking. In each pass, GSP transforms 

every data sequence into items’ transaction-time lists, and switches between 

alternative phases with excess “pull up” of elements to check whether a data 

sequence contains a candidate [8]. For instance, GSP having found (a)(b) in a 

data sequence, noticing that adding (c) would violate maxgap, has to "pull-up" (b) 

and maybe then (a), considering their later occurrences. Without any 
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transformation, at each recursion, DELISP shrinks a data sequence by removing 

non-frequent items, ‘small’ items, and the inaccessible elements. Moreover, 

DELISP finds elements incrementally by checking time-valid subsequences only. 

The delimited growth technique further assures each growth satisfies the 

constraints and makes pattern-growth more efficient.   

• DELISP benefits from the properties of pattern-growth approaches for factors 

like “no candidate generation” and “focused search”. However, DELISP 

eliminates the need for "switching between forward and backward phases" of 

GSP by extending concurrently all valid occurrences of the pattern used for 

projection. In addition, DELISP preserves the property of growing longer 

patterns from prefixes (i.e., avoiding the bi-directional growth) by extending 

pattern elements according to lexicographic order. These core techniques are 

specific to DELISP and result in the efficient discovery of time-constrained 

sequential patterns.   

4.7 Summary 

We have presented the DELISP algorithm to provide the full functionality of the 

classic GSP algorithm in terms of time constraints. The conducted experiments 

confirm that with good scalability, the pattern-growth based DELISP outperforms the 

Apriori-based GSP algorithm. 

 However, pattern-growth based algorithms usually require the intermediate 

storage for the projected sub-databases while mining. Sometimes, the total size of the 

sub-databases might amount to several times larger than that of the original sequence 

database. It is desirable to employ the pseudo-projection and bi-level projection 

techniques [67], described in PrefixSpan, in DELISP to minimize disk projections. 

Future improvements may include sharing common sub-sequences among 
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sub-databases, projecting sub-sequences into memory, or extending the memory 

indexing approach in Chapter 3 to mine sequential patterns with time constraints. It is 

also interesting to extend the approach to deal with other time constraints like overall 

time span [97] and various constraints [25, 47, 56, 97] for effective and efficient 

sequential pattern mining. 
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Chapter 5 Algorithm KISP for Interactive Discovery of 

Sequential Patterns 

5.1 Overview 

An important issue in data mining is the discovery of sequential patterns, which finds 

out temporal associations among items in the sequence database [6, 29, 48, 51, 75, 98]. 

A classic application of the problem is the market basket analysis whose database 

contains purchase records, where each record is an ordered sequence of itemsets (sets 

of items) bought by a customer. The mining is to discover the itemsets in future 

purchase after certain itemsets were bought. For example, a discovery might find out 

a sequential pattern “(a, c, d)⇒(b, e) [support=30%]”, which means that 30% of 

customers who purchase items a, c and d at the same time would buy items b and e at 

some later time. The technique can be applied to various domains such as discovering 

the relationships between the symptoms and certain diseases in medical applications. 

 In order to find the interesting patterns, a user specifies a minimum support 

threshold (abbreviated minsup) for the mining. The result of the mining lists all 

patterns, named sequential patterns or frequent sequences, whose supports are greater 

than or equal to the minsup. The support of a pattern is the percentage of sequences 

(in the database) containing the pattern. In general, we would generate potential 

sequential patterns (called candidates), count the occurrence of each candidate, and 

then determine the sequential patterns among these candidates.  

The mining process is very difficult and time-consuming due to several factors. 

First, the formation of a pattern is not limited to single items but itemsets. Second, 

neither the number of itemsets in a pattern nor the number of items in an itemset is 

known a priori. Third, patterns could be formed by any permutation, of any 
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combination of possible items in the database. Most approaches focused on 

minimizing the search space of candidates [6, 80], or on minimizing the required disk 

I/O due to the multiple database scanning [75, 98]. Each time a user specifies a 

minsup, all these approaches discover the resultant patterns by executing their mining 

algorithms with respect to this minsup.  

However, a user may specify a minsup value that results in too many or too few 

patterns. When the specified minsup is too large, either no patterns or only few 

patterns might satisfy the threshold. On the contrary, the user might have difficulty in 

distinguishing the interesting patterns from a large number of patterns due to a very 

small minsup. Usually, the user must try various minsups until the result is satisfactory. 

Nevertheless, most approaches for mining sequential patterns are not designed to deal 

with repeated mining under such circumstance. For such interactive sequence 

discovery, these approaches consider no prior results so that the mining process must 

start over again for every newly specified minsup. However, keeping knowledge 

obtained from the time-consuming process is beneficial to further queries. For 

example, the result of mining with minsup = 0.1 could be used to extract the 

sequential patterns for minsup = 0.3 without re-examining the sequence database. 

Therefore, we propose a novel approach, named KISP (knowledge base assisted 

incremental sequential pattern mining), to improve the efficiency of sequential pattern 

discovery with changing supports. Instead of re-mining from scratch for each 

discovery, KISP utilizes the knowledge obtained from prior minings, and generates a 

knowledge base for further queries about sequential patterns of various minsups. 

When the sequential patterns cannot be directly derived from the knowledge base, 

KISP incorporates the knowledge base into a fast sequence discovery. The candidates 

existing in the knowledge base are spared in the support counting process. In addition, 

the knowledge base could be used to support OLAP since the knowledge, sufficient 
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for users’ interests, of current database is accumulated by KISP. The conducted 

experiments on synthetic data also show that the proposed algorithm effectively 

improves the performance of interactive sequence discovery.  

The rest of the chapter is organized as follows. We formulate the problem of 

interactive sequential pattern mining in Section 5.2 and review some related 

algorithms in Section 5.3. Section 5.4 presents the proposed approach for the 

interactive discovery problem. The experimental evaluation is described in Section 

5.5. Section 5.6 summarizes this chapter. 

5.2 Problem Statement 

Table 5-1 summarizes the notations used in this chapter. Let Ψ = {α1, α2, …, αz} be a 

set of literals, called items. A set of items is referred to as an itemset. An itemset I with 

m items is denoted by I = (β1, β2, …, βm), such that I ⊆ Ψ. A sequence x, denoted by 

<a1a2…an>, is an ordered set of n elements where each element aj is an itemset. The 

size of the sequence x, denoted by |x|, is the total number of items in all the elements 

in x. Sequence x is a k-sequence if |x| = k. For example, <(a)(c)(e)>, <(b)(c,d)>, and 

<(a)(b)(a)> are all 3-sequences. A sequence ω = <a1a2…an> is a subsequence of 

another sequence ϖ = <b1b2…bw> if there exist 1 ≤ i1< i2 < …< in ≤ w such that a1 ⊆ 

bi1, a2 ⊆ bi2, …, and an ⊆ bin. Sequence ϖ contains sequence ω if ω is a subsequence 

of ϖ. For instance, <(b)(e)> is a subsequence of <(d)(b)(a)(c,e)> since (b) ⊆ (b) and (e) 

⊆ (c,e).  

Each customer record in the database DB is referred to as a data sequence, which 

is a sequence of purchased itemsets ordered by transaction time. The support of 

sequence x, denoted by x.sup, is the number of data sequences containing x divided by 

the total number of data sequences in database DB. The minsup is the user specified 

minimum support threshold. A sequence x is a frequent sequence if x.sup ≥ minsup. 
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The sequence x is also called a sequential pattern. Given the minsup and the database 

DB, the problem of sequential pattern mining is to discover the set of all sequential 

patterns, denoted by S[minsup].  

The interactive sequence discovery process is described as follows. Given the 

database DB, the user queries with several minsup values interactively, and finds out 

the desired set of sequential patterns with respect to the final minsup. The objective of 

interactive discovery is to respond to each query quickly and to reduce the overall 

mining time for the whole process accordingly. 

Table 5-1. Notations used 

Ψ ={α1, α2, …, αz} The set of all items. 
α1, α2, …, αz, β1, 

β2, …, βm Items. 

I = (β1, β2, …, βm) An m-itemset, I ⊆ Ψ. 
x = <a1a2…an> A sequence. Each aj is an itemset. 

x.sup The support of sequence x. 
DB The database of data sequences. 

minsup The user specified minimum support. 

S[minsup] The set of all sequential patterns in DB with respect to 
minsup. 

Sk[minsup] The set of frequent k-sequences with respect to minsup. See 
Section 5.3.1. 

Xk[minsup] The set of candidate k-sequences with respect to minsup. See 
Section 5.3.1. 

KB The knowledge base. See Section 5.4.1. 

KB.sup The minsup used in the construction of KB. See Section 
5.4.1. 

Nk[minsup] The set of new frequent k-sequences with respect to minsup. 
See Section 5.4.2. 

Xk' The reduced set of candidate k-sequences. See Section 5.4.2.

Example 5-1: Interactive sequence discovery without knowledge base. Table 5-2 

shows the supports of all sequences in an example database. The sequences are 

grouped by sequence-size and are listed in ascending order of supports. The 

interactive sequence discovery is described below. For convenience, we list the results 

of the four example queries in Table 5-3. 
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Table 5-2. The supports of all sequences in an example database 

Sequence Support Sequence Support 
<(a)> 0.90 <(a,b)> 0.80 
<(b)> 0.82 <(a)(c)> 0.70 
<(c)> 0.75 <(a)(e)> 0.60 
<(e)> 0.62 <(b)(b)> 0.55 
<(d)> 0.40 <(a)(b)> 0.53 

<(a,c)(e)> 0.40 <(c)(e)> 0.51 
<(a)(c)(e)> 0.30 <(a,c)> 0.45 
<(c)(b,e)> 0.27 <(c)(b)> 0.30 
<(a,c)(b)> 0.18 <(b,e)> 0.29 
<(a)(b,e)> 0.12 <(b)(c)> 0.20 

<(a,c)(b,e)> 0.10 <(a)(d)> 0.10 
<*> Less than 0.10 

Note: <*> represents the sequence whose support < 0.1, e.g. <(6)>.sup = 0.08. 

Table 5-3. User specified minimum supports and the resultant sequential patterns 

Query The minsup value and  
the set of all sequential patterns

Frequent k-sequences and new 
k-sequences 

S1[0.7] = {<(a)>, <(b)>, <(c)>}. 
S2[0.7] = {<(a,b)>, <(a)(c)>}. First 

minsup = 0.7,  
S[0.7] = S1[0.7] ∪ S2[0.7] ∪

S3[0.7] ∪ S4[0.7]. S3[0.7] = S4[0.7] = ∅. 
S1[0.4] = S1[0.7] ∪ N1[0.4],  
N1[0.4] = {<(e)>, <(d)>}. 
S2[0.4] = S2[0.7] ∪ N2[0.4], 
N2[0.4] = {<(a)(e)>, <(b)(b)>, 

<(a)(b)>,<(c)(e)>, <(a,c)>}. 
S3[0.4] = {<(a,c)(e)>}. 

Second 
minsup = 0.4,  
S[0.4] = S1[0.4] ∪ S2[0.4] ∪

S3[0.4] ∪ S4[0.4]. 

S4[0.4] = ∅. 
S1[0.1] = S1[0.4] ∪ S1[0.1], 
N1[0.1] = ∅. 
S2[0.1] = S2[0.4] ∪ N2[0.1], 
N2[0.1]={<(c)(b)>, <(b,e)>, <(b)(c)>, 

<(a)(d)>}. 
S3[0.1] = S3[0.4] ∪ N3[0.1], 
S3[0.1]={<(a)(c)(e)>, <(c)(b,e)>, 

<(a,c)(b)>, <(a)(b,e)>}. 

Third 
minsup = 0.1,  
S[0.1] = S1[0.1] ∪ S2[0.1] ∪ 
        S3[0.1] ∪ S4[0.1]. 

S4[0.1] = {<(a,c)(b,e)>}. 

Final 

minsup = 0.3,  
S[0.3] = S[0.1] − {x|x ∈ S[0.1] ∧ x.sup < 0.3}  
     = {<(a)>, <(b)>, <(c)>, <(d)>, <(e)>, <(a,b)>, <(a)(c)>, <(a)(e)>, 

<(b)(b)>, <(a)(b)>, <(c)(e)>, <(a,c)>, <(c)(b)>, <(a,c)(e)>, 
<(a)(c)(e)>}. 

At first, the user specified 0.7 as the minsup and mined the database. Only five 
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patterns were found so that the user decided to discover more patterns. The second 

query with a smaller minsup (minsup = 0.4) found out more patterns (total 13 patterns) 

than the first discovery. Running the third time of the mining algorithm, 22 patterns in 

total were returned for the third trial with minsup = 0.1. Finally, the user located all 

sequential patterns whose supports are at least 0.3 by the fourth execution. The overall 

response time for the interactive process is the total time spent for the four rounds of 

execution. Although the result of the final mining could be obtained by retrieving 

qualified patterns after the third query, current approaches generally re-execute the 

mining algorithm without utilizing previous results. On the contrary, Example 5-2 

shows that the knowledge base helps to reduce the time for the last three example 

queries. That is, the total response time is reduced.                     � 

Example 5-2: Interactive sequence discovery using discovered patterns. The 

example database is the same as in Example 5-1. The process for the same four 

queries is as follows.  

 There was no advantage for the first mining with an empty knowledge base. A 

knowledge base (abbreviated KB) containing patterns whose supports are at least 0.7 

was built after the first query. For the second trial, patterns in the KB, such as <(b)> or 

<(a)(c)>, need not be counted again since they are still frequent with respect to 

minsup = 0.4. Only the newly generated candidates, such as <(a)(e)> or <(d)(e)>, 

were counted against the sequence database. After the second query, the KB has more 

information by accumulating the new patterns such as <(c)(e)>. Similarly, the support 

counting of patterns kept in the KB were eliminated in the third mining. The 

employment of the KB can accelerate the support counting process by reducing the 

number of candidates. The KB contains all the patterns whose supports are at least 0.1 

after the third query. At last, no counting is necessary since S[0.3] can be directly 

extracted from the KB without any database access. The response time for every query 
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is reduced by the use of a knowledge base, except for the first query requiring the 

same execution time, and consequently the overall response time is reduced. � 

Therefore, we propose the KISP mining algorithm to effectively utilize the 

discovered knowledge for interactive sequence discovery. In fact, the knowledge base 

built by KISP keeps not only the supports of sequential patterns, but also the supports 

of all candidates generated in prior minings. The fast response time of interactive 

sequence discovery is achieved by the use of the knowledge base, which is 

incrementally built by accumulating the information obtained in the mining processes. 

5.3 Related Work 

Few researches are directly related to interactive sequence discovery. In Section 5.3.1, 

we review some algorithms for sequential pattern mining. Section 5.3.2 presents 

related approaches for interactive pattern discovery. 

5.3.1. Algorithms for sequential pattern mining 

The AprioriAll [6] is the first algorithm dealing with sequential pattern discovery [6, 

48, 89]. AprioriAll splits sequential pattern mining into three phases: itemset phase, 

transformation phase, and sequence phase. The itemset phase uses Apriori to find all 

frequent itemsets. The database is transformed by replacing each transaction by the 

set of all frequent itemsets contained in the transaction in the transformation phase. In 

the third phase, AprioriAll makes multiple passes over the database to generate 

candidates and to count the supports of candidates. In subsequent work, the same 

authors proposed the GSP (Generalized Sequential Pattern) algorithm that 

outperforms AprioriAll [80]. Both algorithms use the similar techniques for candidate 

generation and support counting, as described in the following.  

GSP algorithm makes multiple passes over the database and finds out frequent 
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k-sequences at k-th database scanning. In each pass, every data sequence is examined 

to update the support counts of the candidates contained in this sequence. Initially, 

each item is a candidate 1-sequence for the first pass. Frequent 1-sequences are 

determined after checking all the data sequences in the database. In succeeding passes, 

frequent (k−1)-sequences are self-joined to generate candidate k-sequences. Again, the 

supports of these candidate sequences are counted by examining all data sequences, 

and then those candidates having minimum supports become frequent sequences. This 

process terminates when there is no candidate sequences any more. In the following, 

we further describe two essential sub-processes in GSP, the candidate generation and 

the support counting. 

Candidate generation: Let Sk[minsup] denote the set of all frequent k-sequences and 

Xk[minsup] denote the set of all candidate k-sequences with respect to minsup. GSP 

generates Xk[minsup] by two steps. The first step joins Sk-1[minsup] with Sk-1[minsup] 

and obtains a superset of the final Xk[minsup]. Those candidates having any 

(k-1)-subsequence which is not in Sk-1[minsup] are deleted in the second step. In the 

first step, we join a sequence x with another sequence y if the subsequence obtained 

by dropping the first item of x is the same as the subsequence obtained by dropping 

the last item of y. The resultant candidate from this join is the sequence x extended 

with the last item of y. The added item becomes the last element (of the candidate) if 

the last item of y itself is an element. Otherwise, the added item becomes the last item 

of the last element (of the candidate). For example, the candidate <(a)(c)(e)> is 

generated by joining <(a)(c)> with <(c)(e)>, and the candidate <(a)(c,e)> is generated 

by joining <(a)(c)> with <(c,e)>. Besides, the Xk[minsup] produced from this 

procedure is a superset of Sk[minsup] as proved in [80]. That is, Xk[minsup] ⊇ 

Sk[minsup]. 

Specifically note that for candidate 2-sequences, the generation of X2[minsup] is 
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described by the formula: X2[minsup] = {<(x1, x2)>| ∀x1, ∀x2 ∈ S1[minsup], x1 ≠ x2} ∪ 

{<(x1)(x2)>| ∀x1, ∀x2 ∈ S1[minsup]}. Take the database in Table 5-2 for instance, 

S1[0.8]={<(a)>,<(b)>}, so that X2[0.8]={<(a,b)>, <(a)(a)>, <(a)(b)>, <(b)(a)>, 

<(b)(b)>}.  

Support counting: GSP adopts a hash-tree structure [7, 80] for storing candidates to 

reduce the number of candidates that need to be checked for each data sequence. 

Candidates would be placed in the same leaf if their leading items, starting from the 

first item, were hashed to the same node. The next item is used for hashing when an 

interior node, instead of a leaf node, is reached [80]. The candidates required for 

checking against a data sequence are located in leaves reached by applying the 

hashing procedure on each item of the data sequence [80]. The support of the 

candidate is incremented by one if it is contained in the data sequence. 

The SPADE (Sequential PAttern Discovery using Equivalence classes) algorithm 

finds out sequential patterns using vertical database layout and join-operations [98]. 

Vertical database layout transforms data sequences into item-oriented lists. For 

example, the transformation of a sequence <(a,c)(e)> with sequence id = C310 would 

generate an entry (C310, a) in the list of item ‘a’, an entry (C310, a) in the list of item 

‘c’, and an entry (C310, e) in the list of item ‘e’. The lists are joined to form a 

sequence lattice, in which SPADE searches and discovers the patterns [98].  

 Recently, the FreeSpan (Frequent pattern-projected Sequential Pattern Mining) 

algorithm was proposed to mine sequential patterns by a database projection 

technique [29]. FreeSpan first finds the frequent items after scanning the database 

once. The sequence database is then projected, according to the frequent items, into 

several smaller databases. Finally, all sequential patterns are found by recursively 

growing subsequence fragments in each projected database. Based on the similar 

projection technique, PrefixSpan (Prefix-projected Sequential pattern mining) 
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algorithm [67] efficiently mines the complete set of patterns employing a 

divide-and-conquer strategy with the PatternGrowth methodology.  

However, as mentioned above, all these algorithms re-execute the mining 

procedure every time a new minsup is specified during the interactive process. 

Therefore, the response time would be longer for subsequent queries with smaller 

minsup values with all these algorithms. 

5.3.2 Algorithms for interactive pattern discovery 

The objective of interactive pattern discovery is to reduce the response time for users’ 

online queries. In general, the discovery of frequent patterns in large databases is 

categorized into association discovery and sequence discovery. The problem of 

interactive association discovery, also called online association generation, was 

addressed in [3]. The method in [3] preprocesses the data in the transactional database, 

and stores frequent itemsets in an adjacency lattice. Each vertex in the adjacency 

lattice is labeled with the support of the corresponding itemset. A directed edge in the 

lattice links from a ‘parent’ itemset to one of its ‘child’ itemsets. An itemset Y is a 

‘child’ of itemset X if Y can be obtained from X by dropping a single item from X. 

Online repeated queries about association rules are answered by graph theoretic 

searching on the lattice.  

Similarly, a knowledge cache storing the discovered frequent itemsets and the 

non-frequent itemsets is used for interactive discovery of association rules [54]. It is 

indicated that their benefit replacement algorithm using B+-tree to store cache buckets 

is the best caching algorithm [54].  

Although on-line association discovery is close to our problem, the aim of these 

approaches [3, 30, 54, 63] is to interactively find frequent itemsets rather than 

frequent sequences. Sequence discovery is more complicated than association 
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discovery because with n frequent items, the total number of candidates in pass k is 
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sequence discovery. One related work of interactive sequence mining is described 

below.  

The SPADE algorithm [98] was extended into the ISM (Incremental Sequence 

Mining) algorithm for incremental sequence mining and interactive sequence mining 

[64]. All queries are performed on a pre-processed in-memory data structure, the 

Increment Sequence Lattice (ISL). Therefore, a ‘small enough’ minsup must be 

selected in advance to mine all patterns by executing SPADE and save the results in 

the ISL. Nevertheless, if a query involves a support smaller than the pre-selected 

minsup, another (more) lengthy mining process must be performed to generate 

another new ISL sufficient for the new query. Moreover, the ISM might encounter 

memory problem if the number of the potentially frequent patterns is too large [64].  

Without any assumption on the possible values of minsup, our algorithm aims to 

reduce the response time for each query for sequential patterns in a large database. In 

the proposed algorithm, subsequent mining is assisted with the information 

accumulated from prior mining processes and an efficient interactive sequence 

discovery is achieved. 

5.4 The Proposed Algorithm for Interactive Discovery of Sequential 

Patterns 

The proposed KISP algorithm is described in Section 5.4.1. The algorithm speeds up 

the mining process by eliminating the counting efforts required for those candidates 

already existing in the knowledge base. Two optimizations are proposed for further 

improvements. In Section 5.4.2, the generation of the remaining ‘new’ candidates is 
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optimized by direct computation. Enabled by candidate reduction and assisted by the 

information in the knowledge base, the optimization by current support counting is 

depicted in Section 5.4.3. Section 5.4.4 presents the manipulation of the knowledge 

base. Section 5.4.5 discusses the mining efficiency and space utilization with a large 

knowledge base. 

5.4.1 The KISP (Knowledge base assisted Incremental Sequential Pattern) mining 

algorithm 

Fig. 5-1 outlines the proposed Basic KISP algorithm for interactive discovery of 

sequential patterns. We adopt the GSP algorithm as the basis for constructing the 

knowledge base assisted mining algorithm. KISP uses similar procedures of candidate 

generation and support counting as used in GSP. Nevertheless, KISP speeds up 

support counting by reducing considerable amounts of candidates. It reduces the 

number of database passes by concurrent counting of variable-sized candidates. 

Consequently, KISP makes a significant performance improvement for interactive 

discovery.  

During the interactive process, the knowledge base (denoted by KB) is empty 

only in the very first mining. Once KISP is executed, the information about the 

supports of counted candidates would be inserted into KB. The KB.sup is the minsup 

used when KB is constructed or expanded. Although KISP would degenerate into the 

GSP algorithm with an empty KB, KISP will enrich KB from every counting effort in 

later minings. The details are given below. 

 In the beginning, KB contains no information since no mining has been 

performed. KISP works similar to GSP for the very first mining. Initially every item 

in the database is a candidate 1-sequence. The fundamental KB is built, only once, by 

a simple scan over the database to count the supports of candidate 1-sequences (line 



 99

1). After that, the supports of all candidate 1-sequences are included in KB, and 

S[minsup] contains the frequent 1-sequences (line 2). Sine the supports of candidates 

having size other than one is unavailable from KB at the time being, no candidate 

counting can be spared by KISP. At the end of this mining, KB would collect the 

supports of all the candidates in each pass (line 13), and KB.sup is the minsup 

designated for this mining (line 19). 

Algorithm  KISP (DB, KB, minsup)
Input: DB = the database of data sequences; minsup = user specified minimum support ;
    KB = knowledge base having the supports of all the candidates in prior minings
Output : S[minsup] = sequential patterns with respect to minsup; KB = (new) knowledge base

// Let x.sup be the support of a candidate x , Xk[minsup] be the set of candidate k-sequence in DB with
// respect to minsup, and KB.sup be the smallest minsup used in the construction of KB
1)  if KB = φ then KB = {x and x.sup, ∀ x ∈ X1} ;
2)  S[minsup] = {x| x∈KB ∧ x.sup ≥ minsup} ; // obtain valid sequential patterns from knowledge base
3)  if  minsup < KB.sup  then // mine new patterns and accumulate new knowledge
4)     k = 2 ;
5)     generate Xk [minsup] from the frequent (k-1)-sequences in S[minsup] ;
6)     Xk'= Xk [minsup] - {x| x ∈ KB} ; // eliminate those candidate k-sequences in KB
7)     while Xk' ≠ φ do // there exists candidate k-sequences, obtains their supports
8)        for each data sequence ds in database DB do
9)           for each candidate x ∈ Xk' do
10)             increase the support of x if x is contained in ds ;
11)         endfor
12)      endfor
13)      KB = KB ∪ {x and x.sup, ∀ x ∈ Xk'} ; // collect new candidates and their supports
14)      S[minsup] = S[minsup] ∪ {x | x.sup ≥ minsup ∧  x ∈ Xk'} ; // collect new patterns from Xk'
15)      k = k+1 ;
16)      generate Xk [minsup] from the frequent (k-1)-sequences in S[minsup] ; 
17)      Xk'= Xk [minsup] - {x| x ∈ KB} ; // the reduced set eliminates candidate k-sequences in KB
18)   endwhile
19)   KB.sup = minsup ; // update the smallest minsup of KB
20)endif

 

Fig. 5-1. Proposed Algorithm Basic KISP 

Note that in KB besides the sequential patterns we also keep the supports of all 

candidates regardless of their values for two reasons. First, several currently 

non-frequent candidates might turn out to be frequent when a smaller minsup is 

specified in subsequent queries. We can immediately obtain these patterns from KB 

without any database access. Second, to find out the true patterns, the mining process 
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generally counts a large number of candidates although they are eventually rejected. 

We can get rid of the ‘useless counting’ for the ‘commonly non-frequent’ candidates if 

their supports were kept. For example, those candidates ever counted with the support 

value of zero would not be inserted into the candidate hash-tree afterward. 

Consequently, a faster counting is enabled due to the smaller hash-tree of the reduced 

set of candidates. 

  For subsequent queries, KB is not empty. Assume that the user specifies minsup 

to KISP with a non-empty KB. KB now contains the supports of all the generated 

candidates while mining with KB.sup as the support threshold. Since the supports of 

all the candidates in KB are available, whether new counting is required or not 

depends on the values of minsup and KB.sup. If the minsup is greater than KB.sup, we 

simply search in KB for patterns whose supports satisfy the new minsup, and return all 

patterns in S[minsup] (line 2). KB and KB.sup stay intact since no counting is 

performed. In this case, the employment of KB eliminates the need of re-mining 

completely in comparison with GSP. Tremendous gains in performance can be 

resulted from direct retrieval of valid patterns without re-counting the huge database. 

In fact, KISP would output all the valid patterns in constant time independent of the 

database size when KB.sup is less than the user specified minsup. On the contrary, 

other re-mining based algorithms such as GSP need to re-scan the database. 

 In case the minsup is less than KB.sup, we have to mine the database for new 

patterns that are not in KB. The fundamental difference between KISP and GSP is that 

KISP only needs to count the supports of the ‘new’ candidates by sparing the counting 

of the candidates already existing in KB (line 6 and line 17). Even the modest 

technique spares the counting of a substantial amount of candidates, as confirmed by 

our experiments. Take the number of candidates in pass 2 for example. Assume that in 

query Qi, there are 100 frequent 1-sequences so that (100*100)+(100*99)/2 = 14950 
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candidate 2-sequences are generated and counted in pass 2. Assume that the number 

of frequent 1-sequences is 110 for query Qi+1. In pass 2 of Qi+1, GSP must count in 

total (110*110)+(110*109)/2 = 18095 candidates, while KISP counts only 

(18095-14950)= 3145 candidates. In each pass of a query, we first generate the 

candidates and then remove those existing in KB. Next, we expand KB with the 

support of every new candidate for reuse in future mining processes (line 13). The 

sequential patterns are collected (line 14). Finally, KB.sup is replaced by the new 

minsup since the counting base is changed (line 19). Thereafter, KISP uses KB to 

answer all queries whose minsup are greater than or equal to KB.sup. The ‘new 

pattern’ mining part (line 3 through line 20), which is also the part of new information 

acquisition step, of the procedure is activated again only when minsup < KB.sup 

occurs in subsequent queries. 

 In fact, instead of generating all candidates and then removing the counted ones 

(line 5 then line 6, and line 16 then line 17), the optimized KISP directly generates the 

new candidates requiring counting with the assistance of KB, as presented in Section 

5.4.2. In the following context, KISP stands for the optimized KISP. 

5.4.2 New-candidate generation by direct computation 

The first optimization in KISP is the direct generation of new candidates. In GSP, the 

joining-then-pruning procedure generates the set of required candidate k-sequences in 

pass k. KISP further removes the candidates existing in KB from the set before 

counting. The remaining candidates are referred to as new-candidates in KISP. The 

candidates to be removed from counting are those generated by the self-join of the 

frequent (k-1)-sequences in Sk-1[KB.sup]. Therefore, any formation of the 

new-candidates must involve one of the new frequent (k-1)-sequences. These 

new-candidates can be directly generated as follows. 
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Let Xk[minsup] be the set of candidate k-sequences, Sk[minsup] be the set of 

frequent k-sequences, and Xk' be the reduced set of candidate k-sequence, i.e. the 

new-candidates in pass k. We use Nk[minsup] to designate the new frequent 

k-sequences (due to minsup) in contrast to the frequent k-sequences in KB. Recall that 

KISP mines the database for new patterns only when minsup < KB.sup. Hence, 

Sk[minsup] = Sk[KB.sup] ∪ Nk[minsup]. The Xk' is the union of the two sets; one 

obtained from joining the frequent (k-1)-sequences in KB with the new frequent 

(k-1)-sequences, the other is obtained from self-joining the new frequent 

(k-1)-sequences. Theorem 5-1 derives the Xk'.  

Theorem 5-1. Xk' = (Sk-1[KB.sup] ⊗ Nk-1[minsup]) ∪ (Nk-1[minsup] ⊗ Nk-1[minsup]), 

where “⊗” represents the join operation described in Section 3.1. 

Proof. Xk[minsup] = Sk-1[minsup] ⊗ Sk-1[minsup],  

1) Xk[minsup] = (Sk-1[KB.sup] ∪ Nk-1[minsup]) ⊗ (Sk-1[KB.sup] ∪ Nk-1[minsup]). 

2) Xk[minsup] = (Sk-1[KB.sup] ⊗ Sk-1[KB.sup]) ∪ (Sk-1[KB.sup] ⊗ Nk-1[minsup]) ∪  

(Nk-1[minsup] ⊗ Sk-1[KB.sup]) ∪ (Nk-1[minsup] ⊗ Nk-1[minsup]). 

3) Xk[minsup] = Xk[KB.sup] ∪ (Sk-1[KB.sup] ⊗ Nk-1[minsup]) ∪ (Nk-1[minsup] ⊗  

Nk-1[minsup]) due to Xk[KB.sup] = Sk-1[KB.sup] ⊗ Sk-1[KB.sup] and Nk-1[minsup] ⊗  

Sk-1[KB.sup] = Sk-1[KB.sup] ⊗ Nk-1[minsup]. 

4) By definition Xk' = Xk[minsup] − Xk[KB.sup], so Xk' = (Sk-1[KB.sup] ⊗ Nk-1[minsup]) 

∪ (Nk-1[minsup] ⊗ Nk-1[minsup]) since Xk[KB.sup] ∩ [(Sk-1[KB.sup] ⊗ Nk-1[minsup]) 

∪ (Nk-1[minsup] ⊗ Nk-1[minsup])]=∅.                   � 

The direct generation of new-candidates eliminates the searching and the 

removing of candidates in KB, and speeds up the mining process. Example 5-3 

contrasts the number of candidates requiring support counting in GSP and in KISP. It 

also shows that KISP might generate very few candidates even for a low minsup. The 

counting effort of each mining incrementally expands KB so that KISP is gradually 



 103

enhanced with greater candidate reduction capability during the interactive process.  

Example 5-3: Number of candidates generated by GSP, and by KISP. The 

database and the queries are the same as in Example 5-1. Assume that the set of items 

Ψ = {a, b, c, d, e, f}. Table 5-4 tabulates the candidates generated by GSP and those 

generated by KISP. 

Table 5-4. Candidates generated by GSP and by KISP 

Candidate k-sequences Query GSP KISP 
X1[0.7] = {<(a)>, <(b)>, <(c)>, <(d)>, 

<(e)>, <(f)>} 
Number of candidates in X1[0.7] = 6 

The same as in GSP First 
(minsup 
= 0.7) X2[0.7] = S1[0.7] ⊗ S1[0.7] 

Number of candidates in X2[0.7] = 12 The same as in GSP 

X1[0.4] = X1[0.7]  
Number of candidates in X1[0.4] = 6 0 

X2[0.4] = S1[0.4] ⊗ S1[0.4] 
Number of candidates in X2[0.4] = 35

Χ2' = (S1[0.7] ⊗ N1[0.4]) ∪
(N1[0.4]) ⊗ N1[0.4]) 

Number of candidates in Χ2' = 23

Second 
(minsup 
= 0.4) 

X3[0.4] = S2[0.4] ⊗ S2[0.4] 
Number of candidates in X3[0.4] = 5 

Χ3' = (S2[0.7] ⊗ N2[0.4]) ∪
(N2[0.4]) ⊗ N2[0.4]) 

Number of candidates in Χ3' = 5 
X1[0.1] = Χ1[0.7] 
Number of candidates in X1[0.1] = 6 0 

X2[0.1] = X2[0.4] 
Number of candidates in X2[0.1] = 35
(Note: S1[0.1] = S1[0.4]) 

Χ2' = (S1[0.4] ⊗ N1[0.1]) ∪
(N1[0.1]) ⊗ N1[0.1]) 

Number of candidates in Χ2' = 0 
X3[0.1] = S2[0.1] ⊗ S2[0.1] 
Number of candidates in Χ3[0.1] = 14
(Note: after 4 candidates pruned)  

Χ3' = (S2[0.4] ⊗ N2[0.1]) ∪
(N2[0.1]) ⊗ N2[0.1]) 

Number of candidates in Χ3' = 9 
(Note: after 4 candidates pruned) 

Third 
(minsup 
= 0.1) 

X4[0.1] = S3[0.1] ⊗ S3[0.1] 
Number of candidates in Χ4[0.1] = 1 

Χ4' = (S3[0.4] ⊗ N3[0.1]) ∪
(N3[0.1]) ⊗ N3[0.1]) 

Number of candidates in Χ4' = 1 
X1[0.3] = X1[0.4] 
Number of candidates in X1[0.3] = 6 0 

X2[0.3] = X2[0.4] 
Number of candidates in X2[0.3] = 35
(Note: S1[0.3] = S1[0.4]) 

0 
Final 

(minsup 
= 0.3) 

X3[0.3] = S2[0.3] ⊗ S2[0.3] 
Number of candidates in Χ3[0.3] = 8 0 

(a) Candidates generated by GSP. GSP generates 6+12 = 18 candidates for the 
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first query. For the second and the third query, there are 46(6+35+5) and 

56(6+35+14+1) candidates requiring support counting by GSP, respectively. 

Note that four candidates are pruned before counting in the third mining. For 

instance, candidate <(a, b, e)> is pruned because it contains a non-frequent 

subsequence <(a, e)>. As described in Example 5-1, in total 49 candidates 

still need support counting by GSP for the final query without a knowledge 

base. 

(b) Candidates generated by KISP. For the first query, KISP generates the same 

number of candidates as in GSP since KB is empty. For the remaining queries, 

KB already has the supports of the entire candidate 1-sequences so that no 

candidate 1-sequence is generated. As shown in Table 5-4, KISP generates 

only 28 candidates for minsup = 0.4. Moreover, only 10 candidates are 

generated for minsup = 0.1. Finally, no candidate is generated for the last 

query since all the desired patterns are available from KB.  � 

 With the assistance of KB, KISP directly generates fewer candidates for support 

counting in comparison with GSP. The capability of candidate reduction becomes 

more powerful as the minimum support threshold getting smaller gradually. In GSP, 

the number of candidates is proportional to the value of minsup, while the number of 

new-candidates is not necessarily proportional to minsup in KISP. KISP might have 

only very few new-candidates at a very low minsup value since the information 

gathered from each mining during the interactive process all contribute to the 

candidate reduction. In each pass, the number of candidates inserted into the hash-tree 

is smaller. Therefore, KISP is enabled to accommodate more candidates, even 

candidates of different size, in the same hash-tree during the same pass of database 

scanning. The improved counting technique and the placement of variable sized 

candidates are described in Section 5.4.3. 
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5.4.3 Concurrent support counting and the placement of variable sized candidates 

The second optimization in KISP is the technique of concurrent support counting. 

Being a multi-pass based instead of a memory-based mining algorithm, without 

optimization, the number of database passes required in KISP (also in GSP) is equal 

to the size of the longest pattern. Concerning mining efficiency, reducing the number 

of database scanning is thus as important as minimizing the search space of 

candidates. Concurrent support counting is used to achieve database-pass reduction 

while preserving the completeness of pattern discovery. Specifically, we can reduce 

the number of database accesses if we count not only the supports of candidate 

k-sequences but also that of length longer than k in pass k. An intuitive way is to 

generate candidates of all sizes simultaneously. Nevertheless, the support counting 

would be slowed down if the space for storing candidates exceeds the memory limit 

so that the candidates have to be fetched from the disk rather than the memory. 

Therefore, the available memory restricts the generation of all sized candidates at the 

same time. 

In general, KISP counts the supports of candidate k-sequences in pass k. One 

situation is that the available memory is not enough for the generation of candidate 

k-sequences. For example, the number of candidate 2-sequences might be huge for the 

very first mining. Analogous to GSP, if the set of frequent (k-1)-sequences, i.e. 

Sk-1[KB.sup] and Nk-1[minsup], cannot fit into the memory, the reduced candidate set 

Xk' is generated by the relational merge-join technique without pruning [80]. If the 

memory can completely hold Sk-1[KB.sup] and Nk-1[minsup], but not the entire Xk', 

then KISP generates as many candidates of the Xk' as possible. The supports of these 

candidates are counted and are written out to disk. This procedure is repeated until all 

the candidates are processed.  
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On the contrary, the Xk' is more likely to occupy just a small part of the memory 

at pass k as illustrated in Section 5.4.2. In KISP, we maximize memory utilization to 

reduce the number of database passes by inserting as many candidates as possible into 

the same hash-tree. We continuously generate the candidates of longer size until the 

memory space is nearly full. All the candidates of the same size are inserted in a batch 

at the same time. With the information about Sk-1[KB.sup] and the Nk-1[minsup], KISP 

can estimate the number of new-candidates, which indicates the space required. 

Therefore, we can place variable-sized candidates in the same hash-tree and 

concurrently count the supports against the data sequences in the same database pass. 

This technique reduces the total number of database scanning. The estimation 

procedure and the placement of variable-sized candidates that enables concurrent 

counting are described in the following. 

Considering the number of candidates generated in each pass, the number of 

candidates in X2' is greater than that in other Xk' because none in the candidate 

superset of size two can be pruned. Every frequent 1-sequence must join with other 

frequent 1-sequence since the subsequence of any frequent 1-sequence is an empty 

sequence. For candidates of Xk' where k > 2, some frequent (k-1)-sequences are not 

joined if their subsequences do not match. Assume the number of patterns in 

S1[KB.sup] is p and the number of patterns in N1[minsup] is q. The number of 

new-candidates in pass 2 is [3(p+q)2-(p+q)]/2-(3p2-p)/2 = 3pq+(3q2-q)/2. This formula 

can be applied to roughly estimate the maximum number of candidates in other passes. 

Whenever there is room for the next set of candidates (of longer size), KISP 

continuously generates and inserts the candidates into the same hash-tree. Thus, KISP 

can generate as many candidates as possible in the same pass. 

Originally, the hash-tree in GSP is designed to store the same sized candidates in 

the leaves. The leaf where a candidate should be placed in is the leaf reached by 
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consecutive hashing on the items of the candidate. Since the GSP-generated 

candidates are of the same size in the same hash-tree, the item for hashing is always 

available while determining the branch to be followed. Nonetheless, the 

accommodation of variable sized candidates in the same hash-tree might have the 

problem of having no item for hashing. For example, inserting a candidate 4-sequence 

might cause the re-distribution of an overflowed node, while the re-distribution might 

need to hash on the fourth item of a candidate 3-sequence in the node. We modify the 

hashing procedure slightly to store the same prefixed candidates, despite their sizes, in 

the same leaf. In case there is no item for hashing any more, the candidate is stored in 

one of the descendent leaves (due to the splitting of the overflowed leaf). We select 

the leaf having the fewest number of candidates stored to maximize memory 

utilization. Since candidates of different size are stored in the same hash-tree, we can 

check the variable sized candidates against a data sequence at the same time. 

Therefore, the concurrent support counting minimizes the number of database passes 

required in KISP. 

Note that a similar technique named pass bundling is described for association 

mining in [53]. However, pass bundling statically sets a limit to determine whether 

the generation should be continued or not, while KISP dynamically estimates and 

computes the available memory for maximum utilization. The next section will 

describe the structure and the manipulation of the knowledge base, which is the key to 

facilitate the above stated improvements. 

5.4.4 Manipulation of the knowledge base 

The knowledge base is essential to the proposed algorithm since it is the groundwork 

for all improvements. Thus, the knowledge base should be manipulated effectively to 

supply necessary information. We store the knowledge base in disk so that KISP is 
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independent of the main memory size. The information about the candidate supports 

in KB helps to eliminate all database access. The candidate information also enables 

direct new-candidate generation and concurrent support counting. In addition, the 

knowledge base is incrementally increased as new support information is acquired. 

Therefore, the knowledge base should provide fast access to the counting information 

of patterns, carry quick estimation of required candidate storage, and be able to 

expand incrementally. Fig. 5-2 shows the logical structure of the knowledge base 

designed based on these requirements.  

 A knowledge base is composed of a minimal KB.sup, and one or more KB 

heads. The minimal KB.sup is the smallest KB.sup among all the KB.sups in the KB 

heads. We create a KB head to store the newly acquired information only when the 

‘new pattern’ mining part of KISP is executed (i.e. when the user-specified minsup is 

less than the minimal KB.sup). A KB head comprises a KB.sup, the number of 

pattern-support heads (ps_heads), the pattern-support heads, and the position of 

next KB head. The KB.sup indicates the minsup used while adding this head. The 

number of ps_heads indicates the total number of pattern-support heads in this KB 

head. The pattern-support heads summarizes the pattern-support tables, which 

contain the information of all patterns and their supports as described below. The 

position of next KB head links the next KB head so that the knowledge base can 

‘grow’ incrementally. 

The details of pattern information are collected in the pattern-support tables 

after mining. We group all the same sized patterns in the same table so that the pattern 

information of desired size can be directly found through the position of 

pattern-support in the corresponding ps_head. The ps_head also contains a summary 

of the size of the patterns, the total number of counted candidates (of that size), 

and the total number of non-zero patterns. The total number of counted candidates  
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Fig. 5-2. Structure of the knowledge base 

and the total number of non-zero patterns are used for estimating the number of 

new-candidates. During the interactive process, KISP can obtain effectively the full 

pattern information of certain size by accessing the pattern-support table (of that 

size) in every KB head. The position of pattern-support, in the ps_head within a 

KB head, indicates the location of the pattern-support table.  

 Fig. 5-3 shows the pattern-support table. Note that we keep only the patterns 

with non-zero support value to minimize the total size of each pattern-support table. 

The supports of patterns (of the same size) are stored in support-descending order in 

the structure. The descending ordered patterns eases the searching of valid patterns on 

answering an online query. Sorting pattern-supports before writing to the disk might 

increase the response time if the number of candidates is very huge. An option to 

eliminate support sorting is writing the supports in the order of hash-tree traversal. 

Even when the pattern supports are directly stored without sorting, searching within 

the knowledge base is still more efficient than re-mining.  
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Fig. 5-3. Structure of a pattern-support table 
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Fig. 5-4. The knowledge base after the second query in Example 5-1 

 Fig. 5-4 illustrates a sample knowledge base, showing the incrementally 

expanded support information after the second query in Example 5-1. In this figure, 

the minimal KB.sup and the position of next KB head are changed, and a new KB 

head is built by the second mining. The minimal KB.sup is changed from 0.7 to 0.4. 

The position of next KB head in the left-hand-side (built after the first mining) are 

changed to indicate the position of the new knowledge base (for KB.sup = 0.4). For 

instance, the supports of all size-2 patterns can be easily found by path (a), and path (b) 

then (c). The second KB head also shows that only 10 non-zero patterns out of the 23 
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counted size-2 candidates are stored after mining with minsup = 0.4. 

5.4.5 Mining efficiency and space utilization with a large knowledge base 

Given a very low KB.sup value, one might concern that the space used by KB could 

be so large that KISP might not sustain the high level of performance. Although KB 

may increase as a result of accumulating more pattern information, KISP still could 

efficiently answer the interactive query request with new minsup. We analyze the 

overall performance affected when KB is getting very large below. 

KISP retrieves two kinds of data from KB, the KB heads and the stored patterns 

with associated supports (i.e. pattern-support tables). Relatively small space is 

required by a KB head for recording merely pattern summaries. Accessing these 

linked KB heads is so easy and there is no influence. The performance could be 

affected only by the reading of the pattern-support tables. However, the reading is 

confined to qualified patterns only, instead of every pattern, in the tables. KISP may 

sustain the good performance by skipping a large number of unqualified patterns in 

KB, even if the KB is large.  

The pattern-support tables are utilized to assist KISP in either directly answering 

a query (when KB.sup ≤ minsup) or generating the ‘new candidates’ by Theorem 5-1 

in Section 5.4.2 (when KB.sup > minsup). In both circumstances, not every pattern 

needs to be scanned. Given a support-descending ordered table, when the first pattern 

whose support is smaller than minsup is encountered, we stop reading the rest of the 

patterns in that table. Such an operation is also used in retrieving Sk-1[KB.sup] for 

new-candidate generation. Thus, by sparing the reading of many unqualified patterns, 

KISP may effectively retrieve the desired patterns and outperform the re-mining based 

approaches. In fact, KISP would output all the valid patterns in constant time 

independent of the database size when KB.sup ≤ minsup. Note that when patterns are 
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stored in the hash-tree traversal order initially, we may re-arrange the tables in 

support-descending order, periodically or after several KB heads are generated. 

Therefore, the overall performance affected due to a large KB is quite limited.  

We now examine the space utilization of KB, which comprises KB heads and the 

pattern-support tables. When the requested new query with KB.sup > minsup invokes 

new pattern generation in the interactive mining, one and only one KB head will be 

added to KB. Otherwise, KB stays intact because KISP simply responds by retrieving 

patterns from KB. The total number of KB heads hence is the total number of 

‘new-pattern’ generation triggered. As described in Section 5.4.4, a KB head contains 

KB.sup, the position of next KB head, the number of ps_heads, and the ps_heads. A 

major portion of KB is the ps_heads, i.e. the pattern-support tables. The others need 

only negligible space. The size of a pattern-support table is proportional to the number 

of stored patterns where a pattern takes typically 19 to 22 bytes according to our 

experiments (details in Table 5-6, Section 5.5.1). The size of KB, as a consequence, 

might be larger than that of the original database. Appropriate compression on the 

pattern-support tables, being collections of the same sized patterns, could be 

employed to reduce the storage consumption for better storage utilization. 

Nevertheless, how compression would affect the performance needs further 

investigations. 

5.5 Performance Evaluation 

In order to assess the performance of the KISP algorithm, we conducted 

comprehensive experiments. All experiments were performed with an 866 MHz 

Pentium-III PC having 1024MB memory, running the Windows NT. In these 

experiments, the databases are composed of synthetic data. Please refer to Section 

3.5.1 for the method used to generate these data. The performance of interactive 
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sequence discovery using the KISP and the GSP algorithms are compared in Section 

5.5.1. Results of scale-up experiments are presented in Section 5.5.2. Table 5-5 lists 

the datasets used in the experiments. A dataset created with |C| = α, |T| = β, |S| =χ, and 

|I| =δ is denoted by the notation Cα.Tβ.Sχ.Ιδ. For instance, the Origin dataset is 

denoted by C10.T2.5.S4.Ι1.25. The last four datasets are used for scalability tests in 

Section 5.5.2. 

Table 5-5. Datasets used in the experiments 

Name |DB| |C| |T| |S| |I| N NS NI Size (MB)

Origin 100K 10 2.5 4 1.25 10,000 2500 25,000 18.8 
NItem 100K 10 2.5 4 1.25 5,000 2500 25,000 18.8 
SNpat 100K 10 2.5 4 1.25 10,000 5000 25,000 18.8 
LNpat 100K 10 2.5 4 1.25 10,000 2500 12,500 18.8 
Slen 100K 20 2.5 4 1.25 10,000 2500 25,000 28.4 
Tlen 100K 10 5 4 1.25 10,000 2500 25,000 28.0 

SPLen 100K 10 2.5 8 1.25 10,000 2500 25,000 20.0 
LPLen 100K 10 2.5 4 2.5 10,000 2500 25,000 18.5 

DB250k 250K 10 2.5 4 1.25 10,000 2500 25,000 46.9 
DB500k 500K 10 2.5 4 1.25 10,000 2500 25,000 94.0 
DB750k 750K 10 2.5 4 1.25 10,000 2500 25,000 140.9 
DB1000k 1000K 10 2.5 4 1.25 10,000 2500 25,000 187.9 

5.5.1 Comparisons of KISP and GSP 

Extensive experiments were performed to compare the execution times of KISP and 

GSP. The effect of using knowledge base without concurrent support counting 

optimization is studied first. The interactive discovery comprises five consecutive 

queries, with minsup values varying from 2.5% down to 0.5%.  

Fig. 5-5 compares the relative performance of KISP and GSP on the Origin 

dataset with respect to various minsups. The total number of candidates and the total 

number of database scanning required for each query in GSP are also shown in the 

bottom of Fig. 5-5. The number of passes is the same in GSP and in KISP without 
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concurrent support counting. The total execution time with KISP and GSP are 6652 

and 8028 seconds, respectively. As to individual mining, KISP is faster than GSP for 

the last two queries with smaller minsup since considerable amount of candidates 

were eliminated. Fig. 5-5 also depicts the ratios of the number of candidates in GSP to 

those in KISP. Since the mining time reduced from the size-1 patterns in KB is very 

little in comparison with the pattern-outputting time increased, the overhead of KISP 

accounted for this phenomenon in the first three queries with larger minsup. In the 

first three queries, KISP runs slower than GSP due to the extra time spent for writing 

pattern information to KB being relatively larger than the time saved for the reduction 

in candidates. For instance, the mining stopped after pass two for the second query. 

Not much time was saved by the assistance of KB since the size-1 patterns occupied 

77% of the reduced candidates.  

Keeping the number of customers and the distribution of customer database the 

same, the series of queries were applied on the datasets NItem, LNpat, SNpat, SPLen, 

and LPLen to evaluate the impact of different sequence space for sampling. Similar 

results were obtained as shown in Fig. 5-6. The total execution time ratios of KISP to 

GSP are 67%, 74%, 97%, 89%, and 93%, respectively for the datasets NItem, LNpat, 

SNpat, SPLen, and LPLen. Due to the rush increase of qualified frequent 1-sequences 

which incurred the mass production of new candidates in the third query, the 

performance drops for minsup = 1% in Fig. 5-6. Note that for dataset SNpat, the sizes 

of the longest patterns are respectively 2, 2, 2, 3, and 5 for the five queries. Therefore, 

the reduction of total execution time is not apparent since the KB manifests much 

effect on candidate reduction only for the last two queries. 
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Fig. 5-5. Relative execution time and number of candidates on dataset Origin 
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Fig. 5-6. Relative mining performance on datasets of various distributions 
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Fig. 5-7. Relative performance on datasets with longer customer sequences 



 116

Table 5-6. Number of candidates for the Slen dataset 

Pass number Number of 
candidates 1 2 3 4 5 6 7 8 

GSP GSP GSP terminated 2.5% KISP 10000 78547 terminated 
GSP 10000 259376 1 terminated 2% KISP 0 180829 1 terminated 
GSP 10000 2534350 463 105 8 terminated 1% KISP 0 2274974 462 105 8 terminated 
GSP 10000 4550975 2045 413 80 6 terminated0.75% KISP 0 2016625 1582 308 72 6 terminated
GSP 10000 7673835 7986 2800 1339 430 63 3

Minsup 
value 

0.5% KISP 0 3122860 5941 2387 1259 424 63 3

Next, the distributions of customer sequences were changed. The Slen dataset 

increases the average sequence size of customers (from 10 to 20), and the Tlen dataset 

increases the average transaction size of customers (from 2.5 to 5). In general, both 

changes would allowthe databases to have more (and longer) sequential patterns with 

respect to the above minsup values. As indicated in Fig. 5-7, KISP runs faster than 

GSP for each individual mining except for the very first mining. KISP benefits from 

the accumulated information so that the individual discovery could be accelerated. 

Take minsup = 0.75% for example, the execution time ratio of GSP to KISP is 2.9 

times for dataset Tlen. The time saved by KISP resulted from the reduced number of 

candidates. In contrast, GSP generated three times the number of candidates. 

Additionally, the total execution time ratios of KISP to GSP are 54% for dataset Slen, 

and 48% for dataset Tlen. To illustrate the accumulating power of KB, the number of 

candidates in each pass generated by GSP and by KISP for the Slen dataset are 

enumerated in Table 5-6. 

KISP exhibits excellent mining capability for query intensive applications, as 

demonstrated in Fig. 5-8. The average execution time (also the time required for 

posterior queries) decreases as the number of queries increased. That is, users might 

have shorter response time in each query by decreasing minsup value gradually to 
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reach the desirable minsup value, which generates the desired patterns. Similar results 

were obtained for the same series of queries applying on datasets Slen and Tlen.  

Note: Series of minsup values
 3: (2.5%, 1.5%, 0.5%) 
 5: (2.5%, 2%, 1.5%, 1%, 0.5%)  
 6: (2.5%, 2.1%, 1.7%, 1.3%, 0.9%, 0.5%)
11: (2.5%, 2.3%, 2.1%, 1.9%, 1.7%, 1.5%, 1.3%, 1.1%, 0.9%, 0.7%, 0.5%)

Number of Queries vs. Average Execution Time

400

800

1200

1600

2000

2400

3 5 6 11No. of queries

A
ve

ra
ge

 e
xe

. t
im

e 
(s

ec
.)

Origin
NItem
LNpat
SNpat
SPLen
LPLen

dataset

 

Fig. 5-8. Average execution time vs. number of queries 

All the preceding experiments were performed without optimization by 

concurrent support counting so that the number of database passes is the same in 

GSP and in KISP. Table 5-7 illustrates the number of database scanning reduced by 

concurrent support counting, and the reduced execution times for all the datasets with 

respect to minsup = 0.5% and KB.sup = 0.75%. The first pass for support counting of 

candidate 1-sequences is not required for all minings in KISP in comparison with GSP. 

In general, the number of size-2 candidates is so many that the concurrent 

optimization is effective from the second pass of database scanning (which counts 

candidates of size-3 and above). However, most scans were combined in pass two so 

that the total number of passes and the total execution times were reduced.     

Table 5-7. Effects of concurrent support counting 

minsup = 0.5% Origin NItem LNpat SNpat SPLen LPLen Slen Tlen

Reduced execution time (sec.) 29 39 40 4 8 5 94 157

Reduced number of passes 5 5 5 3 5 3 6 8 
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When users need to find the appropriate set of patterns by reducing the number of 

sequential patterns found in a query, the next specified minsup would be greater than 

the counting base of KB (KB.sup). KISP is faster than all the other re-mining based 

algorithms for such queries since the answer set is already in KB. In the next 

experiment, all KB.sups of the KBs were 0.5%, and 100 minsups ranging from 0.5% 

to 2.5% were randomly selected. As shown in Table 5-8, the mining results are all 

available in very short time for all datasets. For most queries, the execution time of 

KISP is several orders of magnitude faster than GSP, which always re-mines from 

scratch. 

However, one drawback of KISP is that the size of KB might be larger than the 

size of the original database, due to the space increased for storing supports. The size 

of KB is proportional to the number of patterns existing in KB. The maximum sizes of 

KB are also shown in Table 5-8. Table 5-9 shows that, in worst case, KB might need as 

much as five times the space of the sequence database for low KB.sup 

Table 5-8. Execution time of KISP when KB.sup ≤ minsup 

Exe. Time (sec.) Origin Slen Tlen SPLen LPLen 

Minimum 0 4 10 0 0 

Maximum 22 29 13 14 16 

Average 4.3 11.8 10.8 5.1 4.4 

Table 5-9. Space used by KB with respect to KB.sup (dataset Slen) 

KB.sup 2% 1% 0.5% 

Worst case size of KB (MByte) 5.6 51.7 140.9 

Number of patterns stored 269377 2544926 7696456 

Average cost of a pattern (Byte) 21.9 21.3 19.2 

5.5.2 Scale-up experiments 

To assess the scalability of the proposed algorithm, several experiments were 

conducted. Since the basic construct of KISP is similar to that of GSP, similar scalable 



 119

results could be expected. In the scale-up experiments, the total number of customers 

was increased from 100K to 1000K and other parameters were the same as the Origin 

dataset. Again, KISP were faster than GSP for all the datasets. The execution times 

were normalized with respect to the time for 100,000 customers here. Fig. 5-9 shows 

that the execution time of KISP increases linearly as the database size increases, 

which demonstrates good scalability of KISP. 
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Fig. 5-9. Linear scalability of the database size 

5.6 Summary 

In this chapter, we propose an efficient knowledge base assisted mining algorithm for 

interactive discovery of sequential patterns. For online queries, manual tuning on 

mining parameters such as the minimum support is inevitable since no one can predict 

the best parameter and the corresponding outcome. A result driven discovery requires 

many times of repeated mining in an interactive process. A fast mining algorithm that 

always re-mines from scratch is not good enough for interactive query in practice. 

Knowledge obtained from each mining should be utilized to accelerate the entire 

process. 

 The proposed KISP algorithm constructs a knowledge base for minimizing the 

total response time for online queries. Neither database access nor counting is 
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required if the query result is a subset of patterns in the knowledge base. In case some 

resultant patterns are new to the knowledge base, we speed up the mining process by 

the assistance of the knowledge base. The proposed approach directly generates only 

the new candidates which are not counted before, concurrently counts variable sized 

candidates in the same database scanning, and incrementally expand the knowledge 

base by every counting effort for future queries. The knowledge base keeps the 

patterns grouped by the size to provide fast access to pattern information. The 

experiments performed shows that the proposed approach is faster than GSP by 

several orders of magnitude, with good linear scalability. 
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Chapter 6 Algorithm IncSP for Incremental Discovery of 

Sequential Patterns 

6.1 Overview 

Sequential pattern discovery, which finds frequent temporal patterns in databases, is 

an important issue in data mining originated from retailing databases with broad 

applications [6, 29, 64, 75, 80, 99]. The discovery problem is difficult considering the 

numerous combinations of potential sequences, not to mention the re-mining required 

when databases are updated or changed. Therefore, it is essential to investigate 

efficient algorithms for sequential pattern mining and effective approaches for 

sequential pattern updating.  

A sequential pattern is a relatively frequent sequence of transactions, where each 

transaction is a set of items (called itemset). For example, one might purchase a PC 

and then purchase a printer later. After some time, he or she could possibly buy some 

printing software and a scanner. If there exists a sufficient number of customers in the 

transactional database who have the purchasing sequence of PC, printer, printing 

software and scanner, then such a frequent sequence is a sequential pattern. In general, 

each customer record in the transactional database is an itemset associated with the 

transaction time and a customer-id [6]. Records having the same customer-id are 

sorted by ascending transaction time into a data sequence before mining. The 

objective of the discovery is to find out all sequential patterns from these data 

sequences.  

A sequential pattern is a sequence having support greater than or equal to a 

minimum threshold, called the minimum support. The support of a sequence is the 
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percentage of data sequences containing the sequence. Note that the support 

calculation is different in the mining of association rules [5, 18, 58] and sequential 

patterns [6, 80]. The former is transaction-based, while the latter is sequence-based. 

Suppose that a customer has two transactions buying the same item. In association 

discovery, the customer “contributes” to the support count of that item by two, 

whereas it counts only once in the support counting in sequential pattern mining.  

The discovery of sequential patterns is more difficult than association discovery 

because the patterns are formed not only by combinations of items but also by 

permutations of itemsets. For example, given 50 possible items in a sequence database, 

the number of potential patterns is 50*50+C(50,2) regarding two items, and 50*50*50 

+ 50*C(50,2)*2 + C(50,3) regarding three items (formed by 1-1-1, 1-2, 2-1, and 3), ..., 

etc. Most current approaches assume that the sequence database is static and focus on 

speeding up the time-consuming mining process. In practice, databases are not static 

and are usually appended with new data sequences, conducted by either existing or 

new customers. The appending might invalidate some existing patterns whose 

supports become insufficient with respect to the currently updated database, or might 

create some new patterns due to the increased supports. Hence, we need an effective 

approach for keeping patterns up-to-dated.  

However, not much work has been done on the maintenance of sequential patterns 

in large databases. Many algorithms deal with the mining of association rules [5, 58], 

the mining of sequential patterns [6, 29, 67, 80, 93, 99], and parallel mining of 

sequential patterns [75]. Some algorithms discover frequent episodes in a single long 

sequence [46]. Nevertheless, when there are changes in the database, all these 

approaches have to re-mine the whole updated database. The re-mining demands 

more time than the previous mining process since the appending increases the size of 

the database.  
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Although there are some incremental techniques for updating association rules 

[18, 19, 40, 87], few research has been done on the updating of sequential patterns, 

which is quite different. Association discovery is transaction-based; thus, none of the 

new transactions appended is related to the old transactions in the original database. 

Sequential pattern mining is sequence-based; thus, the two data sequences, one in the 

newly appended database and the other in the original database, must be merged into 

a data sequence if their customer-ids are the same. However, the sequence merging 

will corrupt previous support count information so that either FUP or FUP2 [19] 

algorithm could not be directly extended for the maintenance of sequential patterns.  

One work dealing with incremental sequence mining for vertical database is the 

ISM (Incremental Sequence Mining) algorithm [64]. Sequence databases of vertical 

layout comprise a list of (cid, timestamp) pairs for each of all the items. In order to 

update the supports and enumerate frequent sequences, ISM maintains “maximally 

frequent sequences” and “minimally infrequent sequences” (called negative border). 

However, the problem with ISM is that the size of negative border (i.e. the number of 

potentially frequent sequences) might be too large to be processed in memory. Besides, 

the size of extra space for transformed vertical lists might be several times the size of 

the original sequence database.  

This chapter presents an efficient incremental updating algorithm for up-to-date 

maintenance of sequential patterns after a nontrivial number of data sequences are 

appended to the sequence database. Assume that the minimum support keeps the same. 

Instead of re-mining the whole database for pattern discovery, the proposed algorithm 

utilizes the knowledge of previously computed frequent sequences. We merge data 

sequences implicitly, generate fewer but more promising candidates, and separately 

count supports with respect to the original database and the newly appended database. 

The supports of old patterns are updated by merging new data sequences implicitly 
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into the original database. Since the data sequences of old customers are processed 

already, efficient counting over the data sequences of new customers further optimizes 

the pattern updating process. 

The rest of the chapter is organized as follows. Section 6.2 describes the problem 

of sequential pattern mining and addresses the issue of incremental update. In Section 

6.3, we review some previous algorithms of sequence mining. Section 6.4 presents 

our proposed approach for the updating of sequential patterns after databases are 

changed. Comparative results of the experiments by comprehensive synthetic data 

sets are depicted in Section 6.5. Section 6.6 concludes this chapter. 

6.2 Problem Statement 

In Section 6.2.1, we formally describe the problem of sequential pattern mining and 

the terminology used in this chapter. The issue of incremental update is presented in 

Section 6.2.2. Section 6.2.3 demonstrates the changes of sequential patterns due to 

database update.  

6.2.1 Sequential pattern mining 

A sequence s, denoted by <e1e2…en>, is an ordered set of n elements where each 

element ei is an itemset. An itemset, denoted by (x1, x2,…, xq), is a nonempty set of q 

items, where each item xj is represented by a literal. Without loss of generality, we 

assume the items in an element are in lexicographic order. The size of sequence s, 

written as |s|, is the total number of items in all the elements in s. Sequence s is a 

k-sequence if |s| = k. For example, <(e)(b)(a)>, <(a,b)(a)>, and <(c)(e,f)> are all 

3-sequences. A sequence s = <e1e2…en> is a subsequence of another sequence s' = 

<e1'e2'…em'> if there exist 1 ≤ i1< i2 < …< in ≤ m such that e1 ⊆e i1', e2 ⊆e i2', …, and en 

⊆e in'. Sequence s'  contains sequence s if s is a subsequence of s'. For example, 
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<(b)(a,e)> is a subsequence of <(b,d)(c)(a,c,e)>. 

 Each sequence in the sequence database DB is referred to as a data sequence. 

Each data sequence is associated with a customer-id (abbreviated as cid). The number 

of data sequences in DB is denoted by |DB|. The support of sequence s, denoted by 

s.sup, is the number of data sequences containing s divided by the total number of 

data sequences in DB. The minsup is the user specified minimum support threshold. A 

sequence s is a frequent sequence, or called sequential pattern, if s.sup ≥ minsup. 

Given the minsup and the sequence database DB, the problem of sequential pattern 

mining is to discover the set of all sequential patterns, denoted by SDB. 

6.2.2 Incremental update of sequential patterns 

In practice, the sequence database will be updated with new transactions after the 

pattern mining process. Possible updating includes transaction appending, deletions, 

and modifications. With respect to the same minsup, the incremental update problem 

aims to find out the new set of all sequential patterns after database updating without 

re-mining the whole database. First, we describe the issue of incremental updating by 

taking the transaction appending as an illustrating example. Transaction modification 

can be accomplished by transaction deletion and appending. 

The original database DB is appended with a few data sequences after some time. 

The increment database db is referred to as the set of these newly appended data 

sequences. The cids of the data sequences in db may already exist in DB. The whole 

database combining all the data sequences from the original database DB and the 

increment database db is referred to as the updated database UD. Let the support 

count of a sequence s in DB be DB
counts . A sequence s is a frequent sequence in UD if 

UD
counts  ≥ minsup × |UD|, where UD

counts  is the support count of s in UD. Although UD is  
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(a) Obtain SUD by re-executing mining algorithm on UD
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(b) Obtain SUD by incremental updating with SDB
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Fig. 6-1. Incremental update versus re-mining 

the union of DB and db, |UD| is not necessarily equal to |DB| plus |db|. If there are 

|old| cids appearing both in DB and db, then the number of ‘new’ customers is |new| = 

|db|−|old|. Thus |UD| = |DB|+|db|−|old| due to sequence merging. When all cids in db 

are different from those in DB, |old| (the number of ‘old’ customers) is zero. On the 

contrary, |old| equals |db| in case all cids in db exist in DB. Let db
counts  be the increase 

in support count of sequence s due to db. Whether sequence s in UD is frequent or not 

depends on UD
counts , with respect to the same minsup and |UD|.  

Most approaches re-execute mining algorithms over all data sequences in UD to  
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Table 6-1. Notations used 

x1, x2, …, xq Items. 
(x1, x2, …, xq) A q-itemset, each xi is an item. 
s = <e1e2…en> A sequence with n element. 
e1, e2, …, en Elements (of a sequence). Each ei is an itemset.  
minsup The minimum support specified by the user. 
UD The updated database. 
DB The original database. 
db The increment database. 

|UD|, |DB|, |db| The total number of data sequences in UD, DB, and db
respectively. 

|old| The total number of data sequences of ‘old’ customers in 
db. 

|new| The total number of data sequences of ‘new’ customers in 
db. 

SDB, SUD The set of all sequential patterns in DB and UD
respectively. 

DB
counts , 

UD
counts  

The support counts of candidate sequence s in DB and UD
respectively. 

db
counts  

The increase in support count of candidate sequence s due 
to db. 

Sk The set of all frequent k-sequences, see Section 6.3.1. 
Χk The set of all candidate k-sequences, see Section 6.3.1. 
Χk ' The reduced set of candidate k-sequences, see Section 6.4. 

DB
kS  The set of frequent k-sequences in DB, see Section 6.4.2. 

Χκ(DB) The set of candidates in Χκ that are also in 
DB
kS , see 

Section 6.4. 
Χκ(DB)' Χκ(DB)' = Xk − Χκ(DB), see Section 6.4. 

dsUD,  dsDB,  dsdb 
A data sequence in UD, DB, and db respectively, see 
Section 6.4.1. 

dsDB∪ dsdb An implicitly merged data sequence, see Section 6.4.1. 

UDDB Data sequences in UD whose cids appearing in DB only, see 
Section 6.4.4. 

UDdb 
Data sequences in UD whose cids appearing in db only, see 
see Section 6.4.1. 

UDDd 
Data sequences in UD whose cids are in both DB and db, 
see Section 6.4.1. 

 

obtain UD
counts  and discover UDS , as shown in Fig. 6-1(a). However, we can effectively 

calculate UD
counts  utilizing the support count of each sequential pattern s in SDB. Fig. 

6-1(b) shows that we discover UDS  through incremental update on SDB
 after implicit 
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merging. Table 6-1 summarizes the notations used in this chapter. 

6.2.3 Changes of sequential patterns due to database update 

Consider an example database DB with 6 data sequences as shown in Fig. 6-2. 

Assume that minsup = 33%, i.e., minimum support count being 2. The sequential 

patterns in DB are <(a)>, <(b)>, <(c)>, <(d)>, <(a,b)>, <(a)(d)>, <(b)(b)>, and 

<(c)(a)>. Note that <(f)>, though appeared twice in the same data sequence C6, is not 

frequent because its support count is one. 

 Data Sequence (dsDB) 
C1 <(a)(d)> 
C2 <(b)(c,e)(a,b)> 
C3 <(a,b)(b,d)> 
C4 <(d)(c)(a)> 
C5 <(a)> 
C6 <(g)(b,f,g)> 

Fig. 6-2. The original database DB example, |DB| = 6 

Fig. 6-3(a) shows the data sequences in the increment database db after some 

updates from new customers only. The updated database UD is shown in Fig. 6-3(b). 

Corresponding to the nine data sequences and with the same minsup, the support 

count of a frequent sequence must be three or larger. The support counts of previous 

sequential patterns <(c)>, <(a)(d)>, and <(c)(a)> are less than three, and are no longer 

frequent due to the database updates. While <(e)>, <(b)(e)>, and <(b,d)> become new 

patterns because they have minimum supports now. 

In the cases of updates when the new sequences are from old customers, i.e., the cids 

of the new sequences appear in the original database. These data sequences must be 

appended to the old data sequences of the same customers in DB. Assume that two 

customers, cid=C4 and cid=C8, bought item ‘h’ afterward. The data sequences for 

cid=C4 and cid=C8 now become <(d)(c)(a)(h)> and <(b,d)(e)(h)>, respectively. Fig. 

6-4 shows the example of an increment database having data sequences from both old 
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and new customers. In this example, |old| = 4, |new| = 3, and |db| = 7 where records in 

shadow are old customers. Fig. 6-5 presents the resulting data sequences in UD. After 

invalidating the patterns <(e)>, <(b)(b)>, <(b)(e)>, and <(a,b)>, the up-to-date 

sequential patterns are <(a)>, <(b)>, <(d)>, <(f)>, <(b,d)>, <(b,f)> and <(a)(d)>, for 

the given minsup 33%. 

(a) new customers only, |db|=3.

Cid

C8
C9

C7 <(b,d)>
<(b,d)(e)>
<(a,b)(e)(b,f)>

Data Sequence (dsdb)

Cid

C2
C3

C1 <(a)(d)>
<(b)(c,e)(a,b)>
<(a,b)(b,d)>

Data Sequence (dsUD)

C5
C6

C4 <(d)(c)(a)>
<(a)>
<(f)(b,f,g) >

C8
C9

C7 <(b,d)>
<(b,d)(e)>
<(a,b)(e)(b,f)>

(b) the updated database, |UD|=9.
 

Fig. 6-3. Data sequences in the increment database and the updated database (a) db 

with new customers only (b) the updated database UD 

6.3 Related Work 

In Section 6.3.1, we review some algorithms for discovering sequential patterns. 

Section 6.3.2 presents related approaches for incremental pattern updating. 

6.3.1 Algorithms for discovering sequential patterns 

The Apriori algorithm discovers association rules [5], while the AprioriAll algorithm 

deals with the problem of sequential pattern mining [6]. AprioriAll splits sequential 

pattern mining into three phases, itemset phase, transformation phase, and sequence 

phase. The itemset phase uses Apriori to find all frequent itemsets. The database is 

transformed, with each transaction being replaced by the set of all frequent itemsets 

contained in the transaction, in the transformation phase. In the third phase, AprioriAll 
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makes multiple passes over the database to generate candidates and to count the 

supports of candidates. In subsequent work, the same authors proposed the GSP 

(Generalized Sequential Pattern) algorithm that outperforms AprioriAll [80]. Both 

algorithms use the similar techniques for candidate generation and support counting, 

as described in the following. 

Cid Data Sequence (dsdb) 
C2 <(d)> 
C4 <(h)> 
C5 <(a,d)> 
C8 <(h)> 
C10 <(b,d,f,h)> 
C11 <(a)(g)> 
C12 <(b,f)(g)> 

Fig. 6-4. Data sequences of old and new customers in db 

Cid Data Sequence (dsUD)
C1 <(a)(d)> 
C2 <(b)(c,e)(a,b)(d)> 
C3 <(a,b)(b,d)> 
C4 <(d)(c)(a)(h)> 
C5 <(a)(a,d)> 
C6 <(f)(b,f,g)> 
C7 <(b,d)> 
C8 <(b,d)(e)(h)> 
C9 <(a,b)(e)(b,f)> 
C10 <(b,d,f,h)> 
C11 <(a)(g)> 
C12 <(b,f)(g)> 

Fig. 6-5. Merged data sequences in the updated database UD 

The GSP algorithm makes multiple passes over the database and finds out 

frequent k-sequences at k-th database scanning. In each pass, every data sequence is 

examined to update the support counts of the candidates contained in this sequence. 

Initially, each item is a candidate 1-sequence for the first pass. Frequent 1-sequences 

are determined after checking all the data sequences in the database. In succeeding 

passes, frequent (k−1)-sequences are self-joined to generate candidate k-sequences. 

Again, the supports of these candidate sequences are counted by examining all data 
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sequences, and then those candidates having minimum supports become frequent 

sequences. This process terminates when there is no candidate sequence any more. In 

the following, we further depict two essential sub-processes in GSP, the candidate 

generation and the support counting. 

Candidate generation: Let Sk denote the set of all frequent k-sequences, and Xk 

denote the set of all candidate k-sequences. GSP generates Xk by two steps. The first 

step joins Sk-1 with Sk-1 and obtains a superset of the final Xk. Those candidates in the 

superset having any (k-1)-subsequence which is not in Sk-1 are deleted in the second 

step. In the first step, a (k-1)-sequence s1 = <e1e2…en-1en> is joined with another 

(k-1)-sequence s2 = <e1’e2’…en’ > if s1  = s2 , where s1  is the (k-2)-sequence of 

s1 dropping the first item of e1 and s2  is the (k-2)-sequence of s2 dropping the last 

item of en’. The generated candidate k-sequence s3 is <e1e2…en-1enen’ > if en’ is a 

1-itemset. Otherwise, s3 is <e1e2…en-1en’ >. For example, the candidate 5-sequence 

<(a,b)(c,e)(f)> is generated by joining <(a,b)(c,e)> with <(b)(c,e)(f)>, and the 

candidate <(a,b)(c,e,f)> is generated by joining <(a,b)(c,e)> with <(b)(c,e,f)>. In 

addition, the Xk produced from this procedure is a superset of Sk as proved in [80]. 

That is, Xk ⊇ Sk. 

Support counting: GSP adopts a hash-tree structure [5, 80] for storing candidates to 

reduce the number of candidates that need to be checked for each data sequence. 

Candidates would be placed in the same leaf if their leading items, starting from the 

first item, were hashed to the same node. The next item is used for hashing when an 

interior node, instead of a leaf node, is reached [80]. The candidates required for 

checking against a data sequence are located in leaves reached by applying the 

hashing procedure on each item of the data sequence [80]. The support of the 

candidate is incremented by one if it is contained in the data sequence. 

In addition, the SPADE (Sequential PAttern Discovery using Equivalence classes) 
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algorithm finds out sequential patterns using vertical database layout and 

join-operations [99]. Vertical database layout transforms customer sequences into 

items’ id-lists. The id-list of an item is a list of (cid, timestamp) pairs indicating the 

occurring timestamps of the item in that customer-id. The list pairs are joined to form 

a sequence lattice, in which SPADE searches and discovers the patterns [99].  

 Recently, the FreeSpan (Frequent pattern-projected Sequential Pattern Mining) 

algorithm was proposed to mine sequential patterns by a database projection 

technique [29]. FreeSpan first finds the frequent items after scanning the database 

once. The sequence database is then projected, according to the frequent items, into 

several smaller intermediate databases. Finally, all sequential patterns are found by 

recursively growing subsequence fragments in each database. Based on the similar 

projection technique, the authors proposed the PrefixSpan (Prefix-projected 

Sequential pattern mining) algorithm [67].  

 Nevertheless, all these algorithms have to re-mine the database after the database 

is appended with new data sequences. Next, we introduce some approaches for 

updating patterns without re-mining. 

6.3.2 Approaches for incremental pattern updating 

A work for incremental sequential pattern updating was proposed in [90]. The 

approach uses a dynamic suffix tree structure for incremental mining in a single long 

sequence. However, the focus of research here is on multiple sequences of itemsets, 

instead of a single long sequence of items. 

Based on the SPADE algorithm, the ISM (Incremental Sequence Mining) 

algorithm was proposed for incremental sequence mining [64]. An Increment 

Sequence Lattice consisting of both frequent sequences and the nearly frequent ones 

(called negative border) is built to prune the search space for potential new patterns. 
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However, the ISM might encounter memory problem if the number of the potentially 

frequent patterns is too large [64]. Besides, computation is required to transform the 

sequence database into vertical layout, which also requires additional storage several 

times the original database. 

In order to avoid re-mining from scratch with respect to database updates with 

both old and new customers, we propose a pattern updating approach that 

incrementally mines sequential patterns by utilizing the discovered knowledge. 

Section 6.4 gives the details of the proposed algorithm. 

6.4 The Proposed Algorithm 

In sequence mining, frequent patterns are those candidates whose supports are greater 

than or equal to the minimum support. In order to obtain the supports, every data 

sequence in the database is examined, and the support of each candidate contained in 

that data sequence is incremented by one. For pattern updating after database update, 

the database DB was already mined and the supports of the frequent patterns with 

respect to DB are known. Intuitively, the number of data sequences need to be 

examined in current updating with database UD seems to be |UD|. However, we can 

utilize the prior knowledge to improve the overall updating efficiency. Therefore, we 

propose the IncSP (Incremental Sequential Pattern Upate) algorithm to speed up the 

incremental updating problem. Fig. 6-6 depicts the architecture of a single pass in the 

IncSP algorithm. In brief, IncSP incrementally updates and discovers the sequential 

patterns through effective implicit merging, early candidate pruning, and efficient 

separate counting. 
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∀ data sequence dsdb ∈ db

Filtered Χk'

Sk = {s| s ∈ Χk ∧         ≥ minsup × |UD|}UD
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Counting
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Generate Χk

: separate counting
: candidate pruning: previous knowledge
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: operation

 
Fig. 6-6. The architecture of the k-th pass in IncSP 

The data sequence of a customer in DB and the sequence with same cid in db 

must be merged into the customer’s data sequence in UD. If all such sequences are 

merged explicitly, we have to re-mine and re-count the supports of the candidates 

contained in the resultant customer sequences from scratch. Hence, IncSP deals with 

the required sequence merging implicitly for incremental pattern updating, which is 

described in Section 6.4.1.  

IncSP further speeds up the support counting by partitioning the candidates into 

two sets. The candidates with respect to DB which were also frequent patterns before 

updating are placed into set Χκ(DB), and the remaining candidates are placed into set 

Χκ(DB)'. After the partitioning, the supports of the candidates in Χκ(DB) can be 

incremented and updated simply by scanning over the increment database db. During 

the same scanning, we also calculate the increment supports of the candidates in 

Χκ(DB)' with respect to db. Since the supports of the candidates in Χκ(DB)' are not 

available (only the supports of frequent patterns in DB are kept in prior mining over 

DB), we need to compute their supports against the data sequences in DB. The 
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number of candidates need to be checked is reduced to the size of set Χκ(DB)' instead 

of the full set Xk. Thus, IncSP divides the counting procedure into separate processes 

to efficiently count the supports of candidates with respect to DB and db. We show 

that the support of a candidate is the sum of the two support counts after the two 

counting processes in Lemma 6-1 (in Section 6.4.2). 

 Moreover, some candidates in Χκ(DB)' can be pruned earlier before the actual 

counting over the data sequences in DB. By partitioning the set of candidates into 

Χκ(DB) and Χκ(DB)', we know that all the candidates in Χκ(DB)' are not frequent patterns 

with respect to DB. If the support of a candidate in Χκ(DB)' with respect to db is 

smaller than the proportion minsup × (|UD|−|DB|), the candidate cannot possibly 

become a frequent pattern in UD. Such unqualifying candidates are pruned and only 

the more promising candidates go through the actual support counting over DB. 

Lemma 6-2 (in Section 6.4.2) shows this property. This early pruning further reduces 

the number of candidates required to be counted against the data sequences in DB. 

The reduced set of candidates is referred to as Χκ'. 

 In essence, IncSP generates candidates and examines data sequences to 

determine frequent patterns in multiple passes. As shown in Fig. 6-6, IncSP reduces 

the size of Xk into Χκ' and updates the supports of patterns in SDB by simply checking 

the increment database db, which is usually smaller than the original database DB. In 

addition, the separate counting technique enables IncSP to accumulate candidates’ 

supports quickly because only the new candidates, whose supports are unavailable 

from SDB, need to be checked against DB. The complete IncSP algorithm and the 

separate counting are described in Section 6.4.2. Section 6.4.3 further illustrates other 

updating operations such as modifications and deletions. In Section 6.4.4, we provide 

the proof of lemmas used in Section 6.4. 
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6.4.1 Implicit merging of data sequences with same cids 

For the discovery of sequential patterns, transactions coming from the same customer, 

either in DB or in db, are parts of the unique data sequence corresponding to that 

customer in UD. Given a customer having one data sequence in DB and another 

sequence in db, the proper data sequence for the customer (in UD) is the merged 

sequence of the two. Since the transaction times in db are later than those in DB, the 

merging appends the data sequences in db to the sequences in DB. Nevertheless, such 

“explicit merging” might invalidate SDB because the data sequence of the customer 

becomes a longer sequence. Some patterns in SDB, which are not contained in the data 

sequence before merging, might become contained in the now longer data sequence 

so that the support counts of these patterns become larger. In order to effectively keep 

the patterns in SDB up-to-date, IncSP implicitly merges data sequences of the same 

customers and delays the actual action of merging until pattern updating completes. 

Assume that an explicit merging must merge dsDB with dsdb into dsUD, where dsDB, 

dsdb, and dsUD represent the data sequences in DB, db, and UD respectively. In each 

pass, the mining process needs to count the supports of candidate sequences against 

dsUD. The “implicit merging” in IncSP employs dsDB and dsdb as if dsUD is produced 

during mining process. We will describe how “implicit merging” updates the supports 

of sequential patterns in SDB, and how “implicit merging” counts the supports of 

candidates contained in the implicitly merged data sequence, represented by dsDB ∪ 

dsdb.  

The “implicit merging” updates the supports of sequential patterns in SDB 

according to dsDB
 and dsdb. This updating involves only the newly generated 

(candidate) k-sequences in the k-th pass, which are contained in dsUD but not in dsDB, 

since dsDB
 had already engaged in the discovery of SDB. We refer to these candidate 



 137

k-sequences as the new k-sequences. As indicated in Fig. 6-6, when dsdb is checked in 

Support Counting (I), only the supports of such new k-sequences must be counted. If 

this new k-sequence is also a sequential pattern in SDB, we update the support count of 

the sequence in SDB. Otherwise, supports of new k-sequences which are not in SDB, 

being initialized to zero before counting, are incremented by one for this data 

sequence (dsDB ∪ dsdb). In this way, IncSP correctly maintains SDB with the new 

k-sequences and counts supports with respect to dsdb during Support Counting (I).  

Example 1: Implicit merging for support updating in pass-1. Take customers in 

Fig. 6-5 for example, the DB is shown in Fig. 6-3(b) and the db is shown in Fig. 6-4. 

The customer with cid=C2 has the two sequences, dsDB =<(b)(c,e)(a,b)> and dsdb 

=<(d)>. During pass 1, <(d)> DB
count  is increased by one due to the implicit merging 

with dsdb and dsDB (of C2). Note that implicit merging for the customer with cid=C5 

whose dsDB =<(a)> and dsdb =<(a,d)> contains only the new 1-sequence <(d)> because 

<(a)> was already counted when we examined dsDB
 to produce SDB. Eventually, the 

support count <(d)> DB
count  is increased by two considering the two implicitly merged 

sequences of C2 and C5. Similarly, the support count of candidate <(h)> DB
count  is two 

after the implicit merging on customer sequences whose cid=C4 and cid=C8. � 

6.4.2 The IncSP (Incremental Sequential Pattern Upate) algorithm 

The implicit merging technique preserves the correctness of supports of the 

patterns and enables IncSP to count the supports in DB and db separately for pattern 

updating. Fig. 6-7 lists the proposed IncSP algorithm and Fig. 6-8 depicts the two 

separate sub-processes of support counting in the IncSP algorithm. Through separate 

counting, we do not have to check the full candidate set Xk against all data sequences 

from db and DB. Only the (usually) smaller db must take all the candidates in Xk into  
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1)  /* Init ially, each item is a candidate 1-sequence */
2)  Χ1 = set of candidate 1-sequences;
3)  k = 1 ; /* Start from pass 1 */
4)  repeat /* Find frequent k-sequences in the k-th pass */
5)      for each s ∈ Χk do           =         = 0 ; /* In itialize counters */
6)      Read        ; /*        = {frequent k-sequences in DB} */
7)      Check sequences in db by Support Counting (I) ; /* See Fig. 6-8 */
8)      /* Prune candidates: (1) counted in         (2) insufficient “new” counts */
9) Χk' = Χk−{s |s ∈ }−{s | < minsup × (|UD|− |DB |)} ; 
10)    Check sequences in DB by Support Counting (II) ;/* See Fig. 6-8 */
11)    /* Frequent k-sequences in UD found */
12) Sk = {s | s ∈ Χk ∧ +          ≥ minsup × |UD|} ;
13)    k = k + 1; 
14)    Generate Ck with Sk-1 ; /* Generate candidates for next pass */
15) until no more candidates
16) Answer SUD = ∪k Sk ; 

DB
kS

db
counts

DB
counts

DB
kS

DB
kS db

counts

DB
counts

db
counts

DB
kS

 

Fig. 6-7. Algorithm IncSP 

Support Counting (I):
 /* Updating “old” supports and counting candidates against data sequences in db */
1)   for each data sequence dsdb in db do
2)      if cid of dsdb is not found in DB then /* dsdb is a new customer’s sequence */
3)         /* Increment          by 1 if s is contained in dsdb */
4)         for each s ∈ Χk ∧ s ⊆ dsdb do          ++ ;
5)      endif
6)      if cid of dsdb is found in DB then /* dsdb should be appended to dsDB */
7)         for each s ∈ Χk ∧ s ⊆ (dsDB ∪ dsdb ) do /* Implicit merging and counting */
8)            /* Increment          by 1 if s is contained in dsdb but not in dsDB */
9)            if s⊄ dsDB then          ++ ;
10)       endfor
11)    endif
12) endfor

db
counts

Support Counting (II):
 /* Counting “new” candidates against data sequences in DB */
1)   for each data sequence dsDB in DB do
2)       /* Increment          by 1 if s is contained in dsDB */
3)       for each s ∈ Χk' ∧ s ⊆ dsDB do          ++ ; /* Χk' is the reduced candidate set */
4)   endfor

DB
counts

db
counts

db
counts

db
counts

DB
counts

 

Fig. 6-8. The separate counting procedure 
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consideration for support updating. Furthermore, we can prune previous patterns and 

leave fewer but more promising candidates in Χκ' before applying the data sequences 

in DB for support counting. 

The IncSP algorithm generates candidates and computes the supports for pattern 

updating in multiple passes. In each pass, we initialize the two support counts of each 

candidate in UD to zero, and read the support count of each frequent k-sequence s in 

DB to DB
counts . We then accumulate the increases in support count of candidates with 

respect to the sequences in db by Support Counting (I). Before Support Counting (II) 

starts, candidates which are frequent in DB but cannot be frequent in UD according to 

Lemma 6-4 are filtered out. The full candidate set Xk is reduced into the set Χκ'. Next, 

the Support Counting (II) calculates the support counts of these promising candidates 

with respect to the sequences in DB. As indicated in Lemma 6-1, the support count of 

any candidate k-sequence is the sum of the two counts obtained after the two counting 

processes. Consequently, we can discover the set of frequent k-sequences Sk by 

validating the sum of the two counts of every candidate. The Sk is used to generate the 

complete candidate set for the next pass, employing the similar candidate generation 

procedure in GSP. The above process is iterated until no more candidates. 

We need to show that IncSP updates the supports and discovers frequent patterns 

correctly. Several properties used in the IncSP algorithm are described as follows. The 

details of the proof of the lemmas are included in Appendix. 

Lemma 6-1. The support count of any candidate k-sequence s in UD is equal to DB
counts  

+ db
counts . 

Lemma 6-2. A candidate sequence s, which is not frequent in DB, is a frequent 

sequence in UD only if db
counts  ≥ minsup × (|UD|−|DB|). 
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Lemma 6-3. The separate counting procedure (in Fig. 6-8) completely counts the 

supports of candidate k-sequences against all data sequences in UD. 

Lemma 6-4. The candidates required for checking against the data sequences in DB 

in Support Counting (II) is the set Χκ', where Χκ' = Xk −{s| s∈ DB
kS } − {s| db

counts < 

minsup× (|UD|−|DB|)}. 

Theorem 6-1. IncSP updates the supports and discovers frequent patterns correctly. 

Proof: In IncSP, we use the candidate generation procedure analogous to GSP to 

produce the complete set of candidates in Xk. By Lemma 6-3, the separate counting 

procedure completely counts the supports of candidate k-sequences against all data 

sequences in UD. Lemma 6-1 determines frequent patterns in UD and the updated 

supports. Therefore, IncSP correctly maintains sequential patterns. � 

Example 2: Sequential pattern updating using IncSP. The data sequences in the 

original database DB is shown in Fig. 6-3(b). The minsup is 33%. SDB is listed in 

Table 6-2. The increment database db is shown in Fig. 6-4. IncSP discovers SUD as 

follows. 

Pass 1: 

1) Generate candidates for pass 1, Χ1 = {<(a)>, <(b)>, …, <(h)>}. 

2) Initialize the two counts of each candidate in Χ1 to zero, and read DBS1 . 

After Support Counting (I), the increases in support count are listed in Part (b) of 

Table 6-2. Note that for customer with cid=C5, the increase in support count of <(a)> 

is not changed. Now |UD| = 12 and |DB| = 9. Since DB
1S ={<(a)>,<(b)>,<(d)>,<(e)>} 

and the increase in support count of <(c)> are less than 33% × (|UD|−|DB|), the 

reduced set Χ1' is {<(f)>,<(g)>,<(h)>}. 
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Table 6-2. Sequences and support counts for Example 2 

Part (a): SDB Part (b): Pass 1 Part (c): Pass 2 Part (d): SUD 

DB
counts   Support Counting (I) 

db
counts   

Support Counting (I) 
db
counts  

UD
counts  

<(a)> 6 <(a)> 1 <(a)(a)> 1 <(a)> 7 

<(b)> 6 <(b)> 2 <(a)(d)> 2 <(b)> 8 

<(d)> 5 <(d)> 3 <(b)(d)> 1 <(d)> 8 

<(e)> 3 <(f)> 2 <(b,d)> 1 <(f)> 4 

<(b)(b)> 3 <(g)> 2 <(b,f)> 2 <(a)(d)> 4 

<(b)(e)> 3 <(h)> 3 <(d,f)> 1 <(b,d)> 4 

<(a,b)> 3 <(c)> 0 <(a,d)> 1 <(b,f)> 4 

<(b,d)> 3 <(e)> 0 Others 0 

Support Counting (II) 
DB
counts  

Support Counting (II) 
DB
counts  

<(f)> 2 <(a)(d)> 2 

<(g)> 1 <(b)(d)> 1 

<(h)> 0 <(b,f)> 2 

<(a)(a)> 0 

<(a,d)> 0 

 

 

<(d,f)> 0 

 

3) After Support Counting (II), the DB
counts  of <(f)> and <(g)> are 2 and 1 respectively. 

The minimum support count is 4 in UD.IncSP obtains the updated frequent 

1-sequences, which are <(a)>, <(b)>, <(d)>, and <(f)>. Total 22 candidate 

2-sequences are generated with the four frequent 1-sequences. 

Pass 2: 

4) We read DBS2  after initializing the two support counts of all candidate 

2-sequences. Note that the DB
counts  of <(b)(e)> is useless because <(b)(e)> is not a 

candidate in UD in this pass.  

5) We list the result of Support Counting (I) in Part (c) of Table 6-2. The increases in 
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support count of some candidates, such as <(a,f)> or <(d)(f)>, are all zero and are 

not listed. 

6) Again, we compute the Χ2' so that the candidates need to be checked against the 

data sequences in DB are <(a)(a)>, <(a)(d)>, <(a,d)>, <(b)(d)>, <(b,f)>, and 

<(d,f)>. We filter out 16 candidates (13 candidates with insufficient “support 

increases” and 3 candidates in DBS2 ) before Support Counting (II) starts. 

7) The DB
counts  of <(a)(d)>, <(b)(d)>, and <(b,f)> are 2, 1, and 2 respectively after 

Support Counting (II). IncSP then sums up the counts ( DB
counts  and db

counts ) to obtain 

the updated frequent 2-sequences. Finally, IncSP terminates since no candidate 

3-sequence is generated. Part (d) of Table 6-2 lists the sequential patterns and their 

support counts in UD.� 

In comparison with GSP, IncSP updates supports of sequential patterns in SDB by 

scanning data sequences in db only. New sequential patterns, which are not in DB, are 

generated from fewer candidate sequences comparing with previous methods. The 

support increases of new candidates are checked in advance and leave the most 

promising candidates for Support Counting (II) against data sequences in DB. Every 

candidate in the reduced set is then checked against DB to see if it is frequent in UD. 

On the contrary, GSP takes every candidate and counts over all data sequences in the 

updated database. Consequently, IncSP is much faster than GSP as shown in the 

experimental results. 

6.4.3 Pattern maintenance on transaction deletion and modification 

Common operations on constantly updated databases include not only appending, but 

also deletions and modifications. Deleting transactions from a data sequence changes 

the sequence; thereby changing the supports of patterns contained in this sequence. 
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The supports of the discovered patterns might decrease but no new patterns would 

occur. We check patterns in SDB against these data sequences. Assume that a data 

sequence ds is changed to ds' due to deletion. The ds' is an empty sequence when all 

transactions in ds are deleted. If a frequent sequence s is contained in ds but not in ds', 

DB
counts  is decreased by one. The resulting sequential patterns in the updated database 

are those patterns still having minimum supports. 

A transaction modification can be accomplished by deleting the old transaction 

and then inserting the new transaction. In IncSP, we delete the original data sequence 

from the original database, create a new sequence comprising the substituted 

transaction(s), and then append the new sequence to the increment database. 

6.4.4 Proof of lemmas 

We provide the proof of lemmas used in Section 6.4. As noted in Table 6-1, DB
counts  is 

the support count of candidate sequence s in DB, and db
counts  denotes the increase in 

support count of candidate sequence s due to db. The candidate k-sequences in UD is 

partitioned into Χκ(DB) and Χκ(DB)'. That is, Xk = Χκ(DB) ∪ Χκ(DB)', where Χκ(DB) = {s| 

s ∈ Xk ∧ s ∈ DB
kS } and Χκ(DB)' = Xk − Χκ(DB). The data sequences in UD could be 

partitioned into three sets: sequences with cids appearing in DB only, sequences with 

cids appearing in db only, and sequences with cids occurring in both DB and db. The 

cid of a data sequence ds is represented by ds.cid. Let UD = UDDB ∪ UDdb ∪ UDDd, 

where UDDB = {ds| ds ∈ DB ∧ ds ∉ db}, UDdb = {ds| ds ∈ db ∧ ds ∉ DB}, and UDDd 

= {ds| ds = ds1 + ds2, ds1 ∈ DB ∧ ds2 ∈ db ∧ ds1.cid = ds2.cid }. 

Lemma 6-1. The support count of any candidate k-sequence s in UD is equal to DB
counts  

+ db
counts .  
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Proof: The support count of s in UD is the support count of s in DB, plus the count 

increase due to the data sequences in db. That is DB
counts  + db

counts  by definition.   � 

Lemma 6-2. A candidate sequence s, which is not frequent in DB, is a frequent 

sequence in UD only if db
counts  ≥ minsup × (|UD|−|DB|). 

Proof: Since s ∉ SDB, we have DB
counts  < minsup × |DB|. If db

counts  < minsup 

× (|UD|−|DB|), then DB
counts  + db

counts  < minsup × |UD|. That is, s ∉ SUD.      � 

Lemma 6-3. The separate counting procedure (in Fig. 6-8) completely counts the 

supports of candidate k-sequences against all data sequences in UD. 

Proof: Considering a data sequence ds in UD and a candidate k-sequence s ∈ Xk,  

(i) For each candidate k-sequence s contained in ds where ds ∈ UDdb: The support 

count increase (due to ds) is accumulated in db
counts , by line 4 of Support Counting 

(I) in Fig. 6-8. 

(ii) For each candidate k-sequence s contained in ds where ds ∈ UDDB: (a) If s ∈ 

Χκ(DB), no counting is required since s had been counted while discovering SDB. 

The support count of s in DB is read in DB
counts  by line 6 in Fig. 6-7. (b) If s ∈ 

Χκ(DB)', DB
counts  accumulates the support count of s, by line 3 of Support Counting 

(II) in Fig. 6-8. Note that in this counting, we reduce Χκ(DB)' to Χκ' by Lemma 

6-4. 

(iii)For each candidate k-sequence s contained in ds where ds ∈ UDDd: Now ds is 

formed by appending dsdb to dsDB. (a) If s ⊄ dsDB, i.e., dsDB of the ds does not 

contain s. We accumulate the increase in db
counts , by line 9 of Support Counting (I) 

in Fig. 6-8. (b) If s ⊆ dsDB ∧ s ∈ Χκ(DB), similar to (ii)-(a), the support count is 

already read in DB
counts  so that no counting is required. (c) If s ⊆ dsDB ∧ s ∈ Χκ(DB)', 
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similar to (ii)-(b), we calculate DB
counts  by line 3 of Support Counting (II) in Fig. 

6-8. Again, Χκ(DB)' is reduced to Χκ' by Lemma 6-4 here. 

The separate counting considers all the data sequences in UD as described here. 

Next, we show that the supports of all candidates are calculated. By Lemma 6-1, the 

support count of s in UD is the sum of DB
counts  and db

counts . 

(iv) For any candidate s in Χκ(DB): The DB
counts  is from (ii)-(a) and (iii)-(b), and the 

db
counts  is accumulated by (i) and (iii)-(a). 

(v) For any candidate s in Χκ(DB)': The DB
counts  is counted by (ii)-(b) and (iii)-(c), and 

the db
counts  is counted by (i) and (iii)-(a). The separate counting is complete.  � 

Lemma 6-4. The candidates required for checking against the data sequences in DB 

in Support Counting (II) is the set Χκ', where Χκ' = Xk − {s| s ∈ DB
kS } − {s| db

counts  < 

minsup × (|UD|−|DB|)}. 

Proof: Since UD = UDDB ∪ UDdb ∪ UDDd and UDdb contains no data sequence in DB, 

the data sequences concerned are in UDDB and UDDd. Considering a candidate s,  

(i) If s ∈ DB
kS : For any data sequence ds ∈ UDDB or ds ∈ UDDd ∧ s ⊆ dsDB, s was 

counted while discovering DB
kS . For ds ∈ UDDd ∧ s ⊄ dsDB, the increase in 

support count db
counts  is accumulated by line 9 of Support Counting (I). Therefore, 

in Support Counting (II), we can exclude any candidate s which is also in DB
kS . 

(ii) If s ∉ DB
kS : After Support Counting (I), the db

counts  now contains the support count 

counted for data sequence ds, where ds ∈ UDdb or ds ∈ UDDd ∧ s ⊄ dsDB. By 

Lemma 6-2, if the db
counts  is less than minsup × (|UD|−|DB|), this candidate s 
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cannot be frequent in UD. Therefore, such candidate s could be filtered out. 

(iii)By (i) and (ii), we have Χκ' = Xk − {s| s ∈ DB
kS } − {s| db

counts  < minsup × 

(|UD|−|DB|)}. �  

6.5 Experimental Results 

In order to assess the performance of the IncSP algorithm, we conducted 

comprehensive experiments using an 866 MHz Pentium-III PC with 1024MB memory. 

In these experiments, the databases are composed of synthetic data. The method used 

to generate these data is described in Section 6.5.1. Section 6.5.2 compares the 

performance and resource consumption of algorithms GSP, ISM and IncSP. Results of 

scale-up experiments are presented in Section 6.5.3. Section 6.5.4 discusses the 

memory requirements of these algorithms. 

6.5.1 Synthetic data generation 

Updating the original database DB with the increment database db was modeled by 

generating the update database UD, then partitioning UD into DB and db. Synthetic 

transactions covering various data characteristics were generated by the well-known 

method in [6]. As to the details of generating synthetic data, please refer to Section 

3.5.1. Since all sequences were generated from the same statistical patterns, it might 

model real updates very well.  

At first, total |UD| data sequences were created as UD. Three parameters are used 

to partition UD for simulating different updating scenarios. Parameter Rinc, called 

increment ratio, decides the size of db. Total |db| = |UD| × Rinc sequences were 

randomly picked from UD into db. The remaining |UD|−|db| sequences would be 

placed in DB. The comeback ratio Rcb determines the number of “old” customers in 

db. Total |old| = |db| × Rcb sequences were randomly chosen from these |db| sequences 
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as “old” customer sequences, which were to be split further. The splitting of a data 

sequence is to simulate that some transactions were conducted formerly (thus in DB), 

while the remaining transactions were newly appended. The splitting was controlled 

by the third parameter Rf, the former ratio. If a sequence with total |dsUD| transactions 

was to split, we placed the leading |dsDB| = |dsUD| × Rf transactions in DB and the 

remaining |dsUD|−|dsDB| transactions in db. For example, a UD with Rinc = 20%, Rcb = 

30%, and Rf = 40% means that 20% of sequences in UD come from db, 30% of the 

sequences in db have cids occurring in DB, and that for each “old” customer, 40% of 

his/her transactions were conducted before current pattern updating. Note that the 

calculation is integer-based with ‘ceiling’ function. E.g. |dsUD| = 4, |dsDB| = ⎡4*40%⎤ = 

2. Table 6-3 summarizes the symbols and the parameters used in the experiments. A 

database generated with these parameters is described as follows. The updated 

database has |UD| customer sequences, each customer has |C| transactions on average, 

and each transaction has average |T| items. A table of total NI PFIs and a table of total 

NS PFSs were generated before picking items for the transactions of customer 

sequences. On average, a PFS has |S| transactions and a PFI has |I| items. The total 

number of possible items for all PFIs is N. All datasets used here were generated by 

setting 
Scrupµ  and 

Icrupµ  to 0.75, 
Scrupσ  and 

Icrupσ  to 0.1, 
Scorrµ  and 

Icorrµ  

to 0.25, NS = 5000, NI = 25000. Two values of N (1000 and 10000) were used. A 

dataset created with |C| = α, |T| = β, |S| =χ, and |I| =δ is denoted by the notation 

Cα.Tβ.Sχ.Ιδ. 

6.5.2 Comparisons of IncSP and GSP 

To realize the performance improvements of IncSP, we first compare the efficiency of 

incremental updating with that of re-mining from scratch, and then contrast that with 

other incremental mining approaches. The well-known GSP algorithm [80], which is 
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Table 6-3. Parameters used in the experiments 

Parameter Description Value 
|UD| Number of data sequences in database UD 10K, 100K, 250K, 

500K, 750K, 1000K 
|C| Average size (number of transactions) per 

customer 
10, 20 

|T| Average size (number of items) per transaction 2.5, 5 
|S| Average size of potentially sequential patterns 4, 8 
|I| Average size of potentially frequent itemsets 1.25, 2.5 
N Number of possible items 1000, 10000 
NI Number of potentially frequent itemsets 25000 
NS Number of possible sequential patterns 5000 
ΓS The table of potentially frequent sequences (PFSs)

 
ΓI The table of potentially frequent itemsets (PFIs)

 
corrS Correlation level (sequence), exponentially 

distributed  Scorrµ =0.25 

crupS Corruption level (sequence), normally distributed 
Scrupµ =0.75, 

Scrupσ =0.1 

corrI Correlation level (itemset), exponentially 
distributed  Icorrµ =0.25 

crupI Corruption level (itemset), normally distributed 
Icrupµ =0.75, 

Icrupσ =0.1 

Rinc Ratio of increment database db to updated 
database UD 

1%, 2%, 5%, 8%, 10%, 
20%, 30%, …, 90% 

Rcb Ratio of comeback customers to all customers in 
increment database db 

0%, 10%, 25%, 50%, 
75%, 100% 

Rf Ratio of former transactions to all transactions 
for each “old” customer 

10%, 20%, …, 90% 

a re-mining based algorithm, is used as the basis for comparison. The PrefixSpan 

algorithm [67] mines patterns by recursively projecting data sequences to smaller 

intermediate databases. Starting from prefix-items (the frequent items), sequential 

patterns are found by recursively growing subsequence fragments in each 

intermediate database. Except re-mining, mechanisms of modifying PrefixSpan to 

solve incremental updating is not found in the literature. Since it demands a totally 

different framework to handle the sequence projection of the original database and the 

increment database, the PrefixSpan is not included in the experiments. The ISM 

algorithm [64], which is the incremental mining version of the SPADE algorithm [99], 
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deals with database update using databases of vertical layout. We pre-processed the 

databases for ISM into vertical layout and the pre-processing time is not counted in 

the following context. 

Extensive experiments were performed to compare the execution times of GSP, 

ISM, and IncSP with respect to critical factors that reflect the performance of 

incremental updating, including minsup, increment ratio, comeback ratio, and former 

ratio. We set Rinc=10%, Rcb=50%, and Rf=80% to model common database updating 

scenarios. The dataset has 20000 sequences (|UD| = 20K, 3.8MB), generated with 

|C|=10, |T|=2.5, |S|=4, |I|=1.25. 

The effect on performance with various minsups was evaluated first. Re-mining is 

less efficient than incremental updating, as indicated in Fig. 6-9. In the experiments, 

both ISM and IncSP are faster than GSP for all values of minimum supports. Fig. 

6-9(a) shows that ISM is faster than IncSP when the number of items (N) is 1000 and 

minsup ≤ 1%. When N is 10000, IncSP outperforms ISM for all values of minsup, as 

shown in Fig. 6-9(b). The total execution time is longer for all the three algorithms for 

smaller minsup value, which allows more patterns to pass the frequent threshold. GSP 

suffers from the explosive growth of the number of candidates and the re-counting of 

supports for each pattern. For example, when minsup is 1% and N = 10000, the 

number of candidate 2-sequences in GSP is 532526 and that of ‘new’ candidate 

2-sequences in IncSP is 59. Only 59 candidate 2-sequences required counting over the 

data sequences in UD. The other candidate 2-sequences are updated, rather than 

re-counted, against the 2000 sequences in UD (UD*10%). 
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(a) N = 1000 
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(b) N = 10000 

Fig. 6-9. Total execution times over various minsup 

Comparing Fig. 6-9(a) with Fig. 6-9(b), it indicates that ISM is more efficient 

with a smaller N. ISM keeps all frequent sequences, as well as the maximally potential 

frequent sequences (negative borders), in memory. Take minsup = 0.75% for example. 

The number of frequent sequences is 701 for N = 1000 and 1017 for N = 10000, 

respectively. Accordingly, the size of negative borders of size two is 736751 and 

1550925, respectively. Those turn-into-frequent patterns that were in negative borders 

before database updating must intersect with the complete set of frequent patterns. 

Consequently, with a smaller minsup like 0.75%, the larger N provides more possible 
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items to pass the frequent threshold so that the total execution is less efficient in ISM. 

Instead of frequent-pattern intersection, IncSP deals with candidates separately, the 

explosively increased frequent items (because of the larger N) affect the efficiency of 

the pattern updating less. This also accounts for the performance gaps between IncSP 

and ISM, no matter how increment ratio, comeback ratio or former ratio changes. 

The results of varying increment ratio from 1% to 50% are shown in Fig. 6-10. 

The minsup is fixed at 2%. In general, IncSP gains less at higher increment ratio 

because larger increment ratio means more sequences appearing in db and causes 

more pattern updatings. As indicated in Fig. 6-10, the smaller the increment database 

db is, the more time on the discovery IncSP could save.  
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Fig. 6-10. Total execution times over various incremental ratios 

IncSP is still faster than GSP even when increment ratio is 50%. When increment 

ratio becomes much larger, say over 60%, IncSP is slower than GSP. Clearly, when 

most of the frequent sequences in DB turn out to be invalid in UD, the information 

used by IncSP in pattern updating might become useless. When the size of the 

increment database becomes larger than the size of the original database, i.e. the 



 152

database has accumulated dramatic change and not incremental change any more, 

re-mining might be a better choice for the total new sequence database. 

The impact of the comeback ratio is presented in Fig. 6-11. IncSP updates 

patterns more efficiently than GSP and ISM for all the comeback ratios. High 

comeback ratio means that there are many ‘old’ customers in the increment database. 

Consequently, the speedup ratio decreases as the comeback ratio increases because 

more sequence merging is required. Fig. 6-11 shows that IncSP was efficient with 

implicit merging, even when the comeback ratio was increased to 100%, i.e., all the 

sequences in the increment database must be merged. 

Fig. 6-12 depicts the performance comparisons concerning former ratios. It can 

be seen from the figure that IncSP was constantly about 6.5 times faster than GSP 

over various former ratios, ranging from 10% to 90%. 
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Fig. 6-11. Total execution times over various comeback ratios 
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Fig. 6-12. Total execution times over various former ratios 
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Fig. 6-13. Linear scalability of the database size 
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Fig. 6-14. Maximum required memory with respect to various minsup 
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6.5.3 Scale-up experiments 

To assess the scalability of our algorithm, several experiments of large databases were 

conducted. Since the basic construct of IncSP is similar to that of GSP, similar 

scalable results could be expected. In the scale-up experiments, the total number of 

customers was increased from 100K (18.8MB) to 1000K (187.9MB), with fixed 

parameters C10.T2.5.S4.I1.25, N = 10000, Rinc = 10%, Rcb = 50%, and Rf = 80%.  

Again, IncSP are faster than GSP for all the datasets. The execution times were 

normalized with respect to the execution time for 100K customers here. Fig. 6-13 

shows that the execution time of IncSP increases linearly as the database size 

increases, which demonstrates good scalability of IncSP. 

6.5.4 Memory requirements 

Although IncSP uses separate counting to speed up mining, it generates candidates 

and then performs counting by multiple database scanning, like GSP. The pattern 

updating process in IncSP reads in the previous discovered patterns and stores them 

into a hash-tree for fast support updating. Therefore, the maximum size of memory 

required for both GSP and IncSP is determined by the space required to store the 

candidates. A smaller minsup often generates a large number of candidates, thereby 

demanding a larger memory space.  

 In contrast, ISM applies item-intersection in each class for new pattern discovery, 

assuming that all frequent sequences as well as potentially frequent sequences are 

stored in a lattice in memory. Storing every possible frequent sequence costs a huge 

memory space, not to mention those required for lattice links. For instance, the size of 

negative borders of size two is over 1.5 million with N = 10000 (minsup = 0.75%) in 

the experiment of Fig. 6-9(b). As shown in Fig. 6-14, the required memory for IncSP 

is smaller than that of ISM. More memory is required in vertical approaches like 
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SPADE. 

6.6 Summary 

The problem of sequential pattern mining is much more complicated than association 

discovery due to sequence permutation. Validity of discovered patterns may change 

and new patterns may emerge after updates on databases. In order to keep the 

sequential patterns current and up-to-dated, re-execution of the mining algorithm on 

the whole database updated is required. However, it takes more time than required in 

prior mining because of the additional data sequences appended. Therefore, we 

proposed the IncSP algorithm utilizing previously discovered knowledge to solve the 

maintenance problem efficiently by incremental updating without re-mining from 

scratch. The performance improvements result from effective implicit merging, early 

candidate pruning, and efficient separate counting. 

Implicit merging ensures that IncSP employs correctly combined data sequences 

while preserving previous knowledge useful for incremental updating. Candidate 

pruning after updating pattern supports against the increment database further 

accelerates the whole process, since fewer but more promising candidates are 

generated by just checking counts in the increment database. Eventually, efficient 

support counting of promising candidates over the original database accomplishes the 

discovery of new patterns. IncSP both updates the supports of existing patterns and 

finds out new patterns for the updated database. The simulation performed shows that 

the proposed incremental updating mechanism is several times faster than re-mining 

using the GSP algorithm, with respect to various data characteristics or data 

combinations. IncSP outperforms GSP with regard to different ratios of the increment 

database to the original database except when the increment database becomes larger 

than the original database. It means that it has been long time since last database 
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maintenance and most of the patterns become obsolete. In such a case, re-mining with 

new minsup over the whole database would be more appropriate since the original 

minsup might not be suitable for current database any more.   

The IncSP algorithm currently solves the pattern updating problems using 

previously specified minimum support. Further researches could be extended to the 

problems of dynamically varying minimum supports. Generalized sequential pattern 

problems [80], such as patterns with is-a hierarchy or with sliding-time window 

property, are also worthy of further investigation since different constraints induce 

diversified maintenance difficulties. In addition to the maintenance problem, 

constantly updated database generally create a pattern-changing history, indicating 

changes of sequential patterns at different time. It is challenging to extend the 

proposed algorithm to exploring the pattern changing history for trend prediction. 
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Chapter 7 Conclusions and Future Work 

7.1 Contributions 

The objective of this thesis is to investigate efficient and scalable algorithms for 

mining frequent patterns in large databases. The algorithms proposed in this thesis 

include: 

 LexMiner: A fast algorithm for mining frequent itemsets in association rule 

mining 

 MEMISP: An efficient algorithm for mining sequential patterns in databases of 

any size, using only two passes of database scanning at most 

 DELISP: A divide-and-conquer method for mining sequential patterns with 

time constraints including minimum gap, maximum gap, and sliding windows 

 KISP: An interactive algorithm that reduce the total response time  

 IncSP: An incremental algorithm for updating sequential patterns after a 

non-trivial updates of the large database. 

All the proposed algorithms are verified by experiments of mining large datasets of 

various characteristics. In the experiments comprising comprehensive comparisons, 

the proposed algorithms outperform several related algorithms, and they all show 

excellent linear scalability with respect to the size of the databases. 

7.2 Future work 

With the mining capabilities of the proposed algorithms, there are several interesting 

extensions on frequent pattern mining, as listed below. 

 The discovery of sequential patterns with time constraints by memory 

indexing 



 158

The proposed algorithm for sequence mining with constraints in this thesis, 

though outperforms the other mining algorithms, requires the creation of 

intermediate sub-databases. The accumulated size of the sub-databases 

might be several times bigger than that of the original database. The memory 

indexing approach is efficient for the discovery of common sequential 

patterns without the need of generating any sub-databases. It is worthy of 

study on extending the memory indexing approach for efficient mining of 

generalized sequential patterns. 

 Maximal frequent sequence mining 

Most sequence mining algorithms aim to find out the set of all frequent 

sequences. In some applications, we only need to discover those frequent 

sequences that have no super-sequences. For example, given the longest 

frequent sequences <(e)(f)> and <(b,c)(a,d)>, the users also learn that all 

their sub-sequences (like <(e)>, <(f)>, <(b,c)>, <(a)>, <(b,c)(d)>, etc.) are 

frequent. Once we have the maximal frequent sequences, we may start 

classifying data sequences according to the longest common elements. The 

lengthy process for mining the complete set of the frequent sequences is no 

longer needed. 

 Integration with database management systems 

Given the success of the proposed algorithms, a seamless integration with 

the database management system is necessary. The benefits for end-users 

will be maximized only if the trivial process of selecting target data, 

transforming data, and mining data is integrated as one of the query 

functions of the database management system. However, such an integration 

requires not only extensions on data manipulation languages but also 

effective indexing and accessing mechanisms coupled with the system. It is 
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challenging to integrate the mining algorithms with the database 

management systems. 
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