poad
N

BRI N -

B LILEL A

B+ # X

B 2 F 2 B B R BB R B A 4R K 3R Aok

Efficient Algorithms for Assoeciation Rule Mining and

Sequential Pattern Mining

G AR N
ST RIS S 2

2 RBA AL+ =% +— A

BHE

(3w)
ABMEPBEM A HANE BT TBAE BT A2E A

Atz BEEg — Z23EUT L Sz

WX A L AR BB IR R B B S R i AR R

1.MPE) & (IR E &

AANBEFEZHMAEHZBIXEXEH BFPAEERBEREHALEE ¢#42
HgEHFS REBZERAABLZRE T4 5 R RiR ~ 55
PRV AP ~ o RBEACE S EH X T HG A TR ERES -
WXARAMESERLEMAERT FEHOMBEZ— > FHLEXEH
W% RS BN o GRS XUE:)

2.MRB & CIRRE &
AANBRZFMAEMZGXEXEMN BT HUF NI CELGZIBEER
AABELREZH ALEREZBNUELEE T EEH > ALK
) BIRHLAREE T 0 FRIIRBE TR > R AR— AR -

LA N R BIAGT LR HE R R GE - AT HA IS B M
FTHEA] o ARRIZHEPT B 208k ~ ER - BARPMAEAIR A &I - LR
BRRE] E XM RAE > RAARTREMH

BEHML T EBEE

MRAERL 2k . 8517815
(RELH)

BERE 92411 H 1448

LARBEFANEZZETEPOPEIINETLAZIREA -

QBRME—BE > MR XA B ERAEATIRFSFHERMER T
Ny ©

3.ABMECHRESS £4 17 10 B EFNANEFEREA G (RHEHEN
BEMAER) BEETH -

4RERBHFXRAEE L4 854.19 5BB4%hF % 712 35H#pE

R 2 B B R B] S A KB B O vk
Efficient Algorithms for Association Rule Mining and
Sequential Pattern Mining

REOR A AT

BEHK T T AL

Student : Ming-Yen Lin

Advisor : Dr. Suh-Yin Lee

B i

e

% &

A Dissertation
Submitted to Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Philosophy
in

Computer Science and Information Engineering
November 2003

Hsinchu, Taiwan, Republic of China

TEREALF=F+—A

RV A AER
&N\ LRI
%}ingihi-é @»gﬁz%

$*§E :é(::;ﬂ I ﬁ ’,% ** EH -—‘6— g

- 4B

i,

PR3 sm X A 20 2 B 0t A B b R A - AR K B Ry iR AN E A

*$¥@$éaﬁ?gmq
PHER /;x WAL P
§ 4129
o AL

F R A %ﬁﬂ 7%

TEREA A+T=F +— Atw A

Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.
Date: Nov. 14, 2003
We have carefully read the dissertation entitled Efficient Algorithms for
Association Rule Mining and Sequential Pattern Mining submitted by

Ming-Yen Lin in partial fulfillment of the requirements of the degree of
Doctor of Philosophy and recommend its acceptance.

i Lo f@ Al =

Aoy 04,
//%%@gy <ij>//>w7ﬁ/@_

V//?//Z__) %%2

Thesis Advisor: % h%n,bé,/k .
Chairman: A'/l\/ Z/&A/ %WJ
/ / /

‘m
Sk
H\

43
(\x

2 bR SRR R 2 G e R SN AR 2

b=

ZREAFFRIAER

&

fge it R rGenf R T AR BT Y] PR it (T 2 g Y

=
o
=

)

= N

JFls

v i

(&
(=i
c\%

J}:E'E_Fx#i‘:lﬁ”%i%’ﬁ‘ 1o vx gl %,,FT m%.ﬂ’zﬁﬂ}

m
-r:\«
h,\

R

AI LY e e RS TS Y R RS el 3L
PR S 5o B8 o AR, O G ook Sl AR 2 A

B FEE 22 o

BA O AR A LexMiner Ji B 2 245 A R AR R P oo 50
é’u“,f hash-tree ¥ ¥ e 4 R 0P Pl Bho 5 2 2 7 535 P f R IE P oD
prefix-order #iux o LexMiner :&— # 1% 35 p J chF & B 48 3 8 3000 s 4y
BHEBFEZ? PP EL —FH B e Z2VRERA R o

FRHBERSEAG Y TS - B A PR - BreRE R
2o fE MEMISP 1% THPBE 31 | nfrd kP 5B 5 A 35 « % 7
AN EHRAFR L) OMEMISP B 5 EZHRARFTHES v & TF 2l iEw o
MEMISP it 8 @ 2 2 en® 4 a3 A4 Vi -+ 2 A2 fphend B
B o

FE 3 EFRUFOBREES e KRBT ZEFHERHRTE 7 Ut gk
H ot 2 5 Apriori 78 ¥ 0 #4001 K 3F 5 A7 § KT pattern-growth
SR UG i L 4F B A o Fpt o A 4k 0 DELISP JF 8 % 0 % pattern-growth

2% > 1% divide-and-conquer % 0 B & FUFAEF TR BB 0 [ooeF

hz & BB R 2 F B
ORI R A A R BT B AR e e R

REF 2 AR hF BEFER iy £ 8 o A Atk KISP w8 % 11

w
w =k
NS
N

w

4y

PR TEALY HE T R AR] e F L S P R

B 0 A R 50 enE B AL R R TR R 8 e

o
T\
N
34
R
e
b4
=i

PR LATRE IRED 5 DR RN RRAATIRS T AL AL o A T
FOINCSP 2 2 4 F AT R A KB AFF BRI EATHES - A PEEEI N LA
BERTH R S G oo A B ik MBS RN e AT e

AR A R R SRR TR L R A o A P g R R
PoRBERT MY ER RHED SRR RPEEOTHE > AP R g
FEF L oA HTHERAPT R BAAPHFELE T RS 225 @

'k}_% ;LD };‘; 4 o

il

Efficient Algorithms for Association Rule Mining and

Sequential Pattern Mining

Student: Ming-Yen Lin Advisor: Prof. Suh-Yin Lee
Department of Computer Science and Information Engineering

National Chiao Tung University

Abstract

Tremendous amount of data being collected is increasing speedily by computerized
applications around the world. Hidden in the‘vast data, the valuable information is
attracting researchers of multiple disciplmes to'study effective approaches to derive
useful knowledge from within.Z/Among various data mining objectives, the mining of
frequent patterns has been the focus of knowledge discovery in databases. This thesis
aims to investigate efficient algorithms for mining frequent patterns including
association rules and sequential patterns.

We propose the LexMiner algorithm to deal with frequent item-set discovery for
association rules. To alleviate the drawbacks of hash-tree placement of candidates,
some algorithms store candidate patterns according to prefix-order of itemsets.
LexMiner utilizes the lexicographic features and lexicographic comparisons to further
speed up the kernel operation of mining algorithms.

A memory indexing approach called MEMISP is proposed for fast sequential
pattern mining using a find-then-index technique. MEMISP mines databases of any
size, with respect to any support threshold, in just two passes of database scanning.

MEMISP outperforms other algorithms in that neither candidate patterns nor

il

intermediate databases are generated.

Mining sequential patterns with time constraints, such as time gaps and sliding
time-window, may reinforce the accuracy of mining results. However, the capabilities
to mine the time-constrained patterns were previously available only within Apriori
framework. Recent studies indicate that pattern-growth methodology could speed up
sequence mining. We integrate the constraints into a divide-and-conquer strategy of
sub-database projection and propose the pattern-growth based DELISP algorithm,
which outperforms other algorithms in mining time-constrained sequential patterns.

In practice, knowledge discovery is an iterative process. Thus, reducing the
response time during user interactions for the desired outcome is crucial. The
proposed KISP algorithm utilizes the knowledge acquired from individual mining
process, accumulates the counting information‘to facilitate efficient counting of
patterns, and accelerates the whele.interactive.sequence mining process.

Current approaches for sequential‘pattern-mining usually assume that the mining
is performed with respect to a static sequence database. However, databases are not
static due to update so that the discovered patterns might become invalid and new
patterns could be created. Instead of re-mining from scratch, the proposed IncSP
algorithm solves the incremental update problem through effective implicit merging
and efficient separate counting over appended sequences. Patterns found in prior
stages are incrementally updated rather than re-mining.

Comprehensive experiments have been conducted to assess the performance of
the proposed algorithms. The empirical results show that these algorithms outperform
state-of-the-art algorithms with respect to various mining parameters and datasets of
different characteristics. The scale-up experiments also verify that our algorithms

successfully mine frequent patterns with good linear scalability.

v

i

S ZR2BRPANA AP F o AN IT 5 E ~ P BRARN R ARDNGE
o BERARBIGKR B AL BEDER o AR LI Y o 15 LR chdts
%%ﬁwﬁ’ﬁﬁﬁéﬁﬂﬁiﬁi%é°gﬁ&me§&§’¢?{?%%
E B ETER ELIZFEEF 0 0 FooFAl o & B PFT TEF L g 0
Bgf st F i Ie g “1rm§ﬁz&$’;o‘ggmﬁﬁ%§] ‘F‘@}éﬁl’f’#iig’%},&*“m °

Blher Rt R - st 22 3mEir AAH- e kY
NegEy A R w B LFLOE Y Hip A R > K % AT BAR R &
AT R AE LA E 2 N & dp T G LR SRR R E
‘«ﬁrz\»},é,;,%i’f’

dRRHTI rREAR AR RELIENFEATESR AT T A
RRER R BB FY X REBEF S MAEEF - maFEF S 3
REFY BEHPEFLEGAA N ARES DL L AARAEE S 2
FR L MAERATE s S 2 2T T ER i S L R
FEAfRORAHYLHRL B r FLRANAAF T OB B Y LB

FTREOAFHZOEE - WEEF bls g dig P AR T
WA R RS S P S ARG D S o R R S K gy 1
iﬁﬁuipfu@ﬁﬁg’ﬁWﬁ§Fi$ﬂﬁo

@A RFC) D B BRSNS 4 e e g e
BLEFOEF o - B4R Y@ D WERRALFERR
ammﬁﬁﬁoﬂﬁﬁﬁﬁ@ﬁ’ﬁﬁ?13;$¥’ﬂ$wﬁm%ﬁ’§zg
34PN o BB RA A IE L B A s A 02 H B L WA iR

o o
/,',

L
- R

PRt

2] SN ﬂ—\«\‘ TR

F_*

AEF NG RET AL ARA rﬁf\ﬁ&mﬁ‘kié\mﬂ %
5% o g AU RPBEIIFE TR EARBAEELE EAGRI Gl
SEFEA AT FEF LML RE R ETI R LE e gy
EAREAN I - b

, 2 Y

BR BN B o gt et § BN R > KRN an

W he o JRBA R E R

Contents

#2 e et
AN o 1] 1 - (o) A 11

(040] 0] =] 1] ST V|

LIST OF TABIES......eee e e nreas IX
(TS o) 1o [N] LTSRS OP X
Chapter 1 INTrOAUCTION.oiii e e 1
1.1 BaCKGIOUNAviiiiiieiiie ettt ettt et sree e veeesnseeeaneeens 1
1.2 Motivations and Research ObjectiVes..........cccvieeiiieeiiieeiiecieeeee e 4
1.3 Organization of this ThesiScccciiiiiiiiiiieeeeeeeee e 6
Chapter 2 Algorithm LexMiner for Association Rule Mining..........cccoccoeceviieenns 8
2.1 OVEIVIEW ..iieiiie ettt eetite ettt e e e et e e et e e s eteeesabeessaeeesaeeensaeesnsaaesssaeenssaeesseeesseeas 8
2.2 Problem Statementcccuviieiiieeiie ettt 11
2.3 Related WOTK......cooiiiieiiieciiecie st meseae e e eree et e et eeaaeeetaeeeaeeessaaeessseeesnsaeeens 11
2.4 The Proposed Methodi e e e e 14
2.4.1 LexTree: a lexicographically ordered tre€cccccevvvevveveiieeseeie s 17
2.4.2 Fast support counting by lexicographic cOmparisons...........c.cceeevevveivennnns 19
2.4.3 Candidate generation by 1eafJOININGcccvveveiiieiice e 24

2.5 Performance Evaluation..../ .. e cciitisiee et 25
2.5.1 Generation of synthetic data. . 25
2.5.2 Total execution times of various algorithmsc.cccccvevviiviieic e 26
2.5.3 Scale-Up EXPEIIMENTSccuieieiieseeie e e e sre e e nres 29

2.6 SUMIMATY ..eeeieiiiieeeeiiieeeeeitee e e eieee e e et eeeeseteeeeesnsteeeessbaeeesasssaeesenssseeesssseeeesnnsens 30
Chapter 3 Algorithm MEMISP for Sequential Pattern Miningccccceeeenene 33
R B @ 7S o7 1o USROS 33
3.2 Problem Statement...........cueeeciieiiiieeiieeee e e 36
3.3 Related WOTK.....oooeiiieiee et 37
3.4 The Proposed Methodccouieiiiiiiiiieiiieeeeeee e 39
3.4.1 Mining sequential patterns by MEMISP: an example.........ccccccveveveinnnnnn 39
3.4.2 The MEMISP algorithmcccoiioiiiiesiee e 43
3.4.3 Dealing with extra-large databases by database partitioning.................. 45
3.4.4 Differences between MEMISP and PrefixSpan...........ccccocvevevieiesicsinnnnnns 46
3.4.5 IMPIEMENTALION ISSUBS......cvveiveeeeeiesieeieseesie e seeste et e e steenae e e nae s 48

3.5 Performance Evaluation............cccccueieiiiieiiieciieececeeee e 49
3.5.1 Generation of experimental data............cccccvevviieiiieie i 49
3.5.2 Execution times of GSP, PrefixSpan, and MEMISP algorithms 52

vi

3.5.3 Scale-Up eXPEriMENTSccceiieieeieseese e se e e e neennes 55

3.0 DISCUSSION ...eeiuvvieeitieeiieeeiieeeteeesteeesteeessteeesseeessseeesseeesseessseeessseeessseeensseesnssens 56
R TR 1101 0 T 1 PSPPI 58
Chapter 4 Algorithm DELISP for Sequential Pattern Mining with Time
(O] 0] 1 = 1] | £ J RS RU PR 60
4.1 OVEIVIEW ..eeeutiieeiiieeeieeeeiteesieeesteeessbeeessseeessseeassaesnsseessssaessssaensseeenssaeensseesssseeanns 60
4.2 Problem StatemeENtc.cceecuieeiiieiiiieeiieeeeiieeeseeeeveeeteeesteeesaeeesbeeeereeeenaeeenns 63
4.3 Related WOTK.......oooiiiieiie ettt 65
4.4 DELISP: Delimited Sequential Pattern Mining...........ccceeevveeeieeeniieesiieeenneeenns 67
4.4.1 Terminology used in DELISPcccccoviii i 67
4.4.2 Mining time-constrained sequential patterns by DELISP: an example71
4.4.3 The DELISP algorithmcccooiiiiieiice e 76
4.5 Experimental RESUILSccceiviiiiiiiieiiiece et 77
4.5.1 Execution times of GSP and DELISP algorithms...........c.cccccocevvvevviiciienne. 79
4.5.2 Scale up experiments on database SiZ€...........cccovververerieereereseese e 83
4.6 DISCUSSIONvvieiiieeeiiieeeieeeeiteeeeite e et e e steeesteeessbeeessseeesseeesseesnsseessseeessseeensseesnnns 84
4.7 SUMMATY ..ovveeeeiiieeeeieeee e B e e 85
Chapter 5 Algorithm KISP for Interactive Discovery of Sequential Patterns87
I G175 o7 151 R S powe = = [87
5.2 Problem Statement o .o st oiiees i deageeeeeeeeeeeteeeeaeeesaeeeebeeennaeeeanes 89
5.3 Related WOTK.....coovviiiie it mesims e b it s e et e eeaveeeenseeeenaeeessseeenssaeensseeennnes 93
5.3.1. Algorithms for sequential pattern miningccccoeevivereiievcese e 93
5.3.2 Algorithms for interactive pattern diSCOVEIYcevviververesieeseesie e 96
5.4 The Proposed Algorithm for Interactive Discovery of Sequential Patterns....... 97
5.4.1 The KISP (Knowledge base assisted Incremental Sequential Pattern)
MINING @lgOTTtNM......ooiie e 98
5.4.2 New-candidate generation by direct computation............ccccceevvveriernnene. 101
5.4.3 Concurrent support counting and the placement of variable sized
CANGIAALES ... bbb 105
5.4.4 Manipulation of the knowledge basecccccevevievireiecese e, 107
5.4.5 Mining efficiency and space utilization with a large knowledge base...... 111
5.5 Performance Evaluation..........ccccoccuieeiiiieiiiieiiicceeeeeeee e 112
5.5.1 Comparisons of KISP and GSPcccccceiiiii i 113
5.5.2 Scale-Up eXPEriMENtSc.eiveiiieieiie e ee et see e sre e nne e 118
5.6 SUMIMATY ..oniiiiieeeiiieee ettt e et ee e ettt e e et eeeesabteeesessaeeesensseeesansneeessnnnens 119
Chapter 6 Algorithm IncSP for Incremental Discovery of Sequential Patterns 121
0.1 OVETVICWveiiiiieeeiiieeeiee et e ettt e e tteeetaeeetaeestaeeestaeeessaeessseeessseeasseeesseesnsseennns 121
6.2 Problem Statementcc.eeeiiieiiiieeiiiecee e e 124

vii

6.2.1 Sequential pattern MiNINGccoceviverieie e 124

6.2.2 Incremental update of sequential patterns..........cccceovevevieriv s 125
6.2.3 Changes of sequential patterns due to database update.............c.cc.cue..... 128

6.3 Related WOTK......cccuiiiiiiieciee ettt e e e e enes 129
6.3.1 Algorithms for discovering sequential patterns...........cccccevvveververvcenne. 129
6.3.2 Approaches for incremental pattern updatingccccevvevevivevenceeciveiene 132

6.4 The Proposed AlOTithimc.cceoiiiiiiiieiieeeeee e 133
6.4.1 Implicit merging of data sequences with same Cids.........c.cccccvvevverernenne. 136
6.4.2 The IncSP (Incremental Sequential Pattern Upate) algorithm................. 137
6.4.3 Pattern maintenance on transaction deletion and modification............... 142
6.4.4 Proof Of IEBMMAScooiiiiiiie s 143

6.5 Experimental RESUILSc..ooociieiiiiiiiieeece e 146
6.5.1 Synthetic data generationcccocveveiieiiene s 146
6.5.2 Comparisons of INCSP and GSPcccccvevveieiie e 147
6.5.3 Scale-Up EXPEFIMENTScveiieieeiesee e enes 154
6.5.4 MemOry FeQUITEMENTScoiverieeiesiesieeiesee e eee e e e e e e ee e e sre e enes 154

6.6 SUMMATY ..oooevvieeeeiiieee e B i e e e 155
Chapter 7 Conclusions and FUtUre WOrK. ...l .o 157
/8 B O35 5 101015023 - FU R S pow = 157
7.2 FULUTE WOTKviiiiiiieiiis et ee et sesne s ambaaanes e s eaatesseesnsseensseeessseeennseeensseesnseesnnes 157
References.......ccooveeevveecvvcenneee . 00 R EL - ettt 160
Vit oo TR L, 172

viii

List of Tables

Table 2-1. NOtations USEcc.eveeriieriiiieiieieeieseee ettt 12
Table 2-2. Itemset grouping by prefixed ItemSc.eeveeeiiieriierienieeieeeeee e 16
Table 2-3. Parameters used in the eXperiments...........cceeveeerreerieeiiieneeenieeneeeieeseeeenne 26
Table 3-1. Example sequence database DB and the sequential patterns...................... 37
Table 3-2. Parameters used in the eXperiments..........ccceeveeeieerieeiiienieenieeneeeiee e 51

Table 4-1. Example sequence database DB and the time-constrained sequential

PALLETIIS ...ttt ettt etee et ettt e et e e et e e st e e e teeeenteeesnsaeensseeenssaeensseeenseeenseeennseeensneeanns 65
Table 4-2. The projected sub-sequences in the ~ -DB sub-databases 73
Table 4-3. Parameters used in the eXperiments..........cccvevveeeieerieeciienieenieeneeeieeeeeeenne 79
Table 5-1. Notations USEdeoo it it e 90
Table 5-2. The supports of all sequences in an example database..............ccceeeeveenneenn. 91

Table 5-3. User specified minimum supports and the resultant sequential patterns....91

Table 5-4. Candidates generated by GSP and by KISPcccoooviiiiiiiiiiiiciiees 103
Table 5-5. Datasets used in the eXperiments............cceeueeiieenieeriierieeiieeie e 113
Table 5-6. Number of candidates for the Slen datasetccccevveverininininieenens 116
Table 5-7. Effects of concurrent Support COUNtING.........ceeveeveereeeiiieniieiienieeieeeeean 117
Table 5-8. Execution time of KISP when KB.SUP < MINSUPc.ccoveeveeviieieereereenenne. 118
Table 5-9. Space used by KB with respect to KB.sup (dataset Slen) 118
Table 6-1. NOtations USEc.cccoveiiriiriirininieiteiet ettt 127
Table 6-2. Sequences and support counts for Example 2ccccoeeviniiniiienicnenne 141
Table 6-3. Parameters used in the eXperiments.cc.eecverveerieenieenieenieereeeveeenns 148

X

List of Figures

Fig. 1-1. The process of knowledge discovery in databases [S]........cccceeevrevierieeneenen. 2
Fig. 2-1. Example itemsets stored in @ LEXTIEEcceeiiiiiiiiiiieiieeeeecee e 10
Fig. 2-2. Example candidate itemsets stored in a hash-tree...........cccoeevvevieeciienieennn. 13
Fig. 2-3. Algorithm LEXMINETccveiviiiieiieiieieeeteetese ettt 15

Fig. 2-4. Construction of a LexTree by inserting 3-itemsets: insert (a)(a,c,d) (b)(a,c,j)
(c)(a,c,k) (d)(a,d,j) (e)(a,j,0) after (a,d,k) and (a,d,o0) inserted (f)(c,d,g) ...ceveeuvenneen. 18
Fig. 2-5. Procedure Find_and_INCrement..............cccoovvieiiiieneeieeeeeeeeeee e 22

Fig. 2-6. Execution times of various algorithms on the dataset having short patterns 27

Fig. 2-7. Performance comparisons of execution time over various supports............. 28
Fig. 2-8. Execution results of differenit ordering.la.........ccooveverviriininniniiniicneees 29
Fig. 2-9. Linear scalability of the database S1ZC i ..octeveeniieiieniieiiecieeieeie e, 30
Fig. 3-1. Some index sets and the in-memory DB 41
Fig. 3-2. Algorithm MEMISP...... .00 e cciiionit et 44
Fig. 3-3. Partition the database and discover patterns for extra-large databases.......... 45
Fig. 3-4. Total execution times with respect to various Minsup values 53
Fig. 3-5. Comparisons of execution times on dataset C20-T2.5-S4-11.25 53
Fig. 3-6. Comparisons of execution times on dataset C10-T5-S4-11.25 54
Fig. 3-7. Comparisons of execution times on dataset C10-T2.5-S8-11.25 54
Fig. 3-8. Comparisons of execution times on dataset C10-T2.5-S4-12.5 54
Fig. 3-9. Comparisons of execution times on dataset C10-T7.5-S4-15ccccee. 55
Fig. 3-10. Linear scalability of MEMISP vs. PrefixSpan...........ccccccoevveviiiieniecieceennens 56
Fig. 4-1. Example of the sequence containment relationshipcccceeveeviiiiieneen. 64

Fig. 4-2. Accessible elements from itemset | in ds with tag-list [sti:ets, staiety, ...,

Fig. 4-3. The projected elements of dS with respect to ..oooveveierierienereceeeeeneen, 70

Fig. 4-4. Eliminating items having smaller lexicographic order from projection

(LM 4-2) ...ttt et et e et e et e e et e et e e e nbeeenbaeenaee s 70
Fig. 4-5. Algorithm DELISPcoooiiii e 75
Fig. 4-6. Effect of the MINQAP CONSIIAINTceevvieiiieieiicie et 80
Fig. 4-7. Effect of the maxgap ConStraintccoeeeeeiiierireiiienieeieeree e 81
Fig. 4-8. Effect of the SWIN CONSIIAINt........c.ccceevuieiiieieiieieceeie et 81
Fig. 4-9. Total execution time on datasets of various characteristicsc.ccceeueenv. 82
Fig. 4-10. Linear scalability of DELISPcccooiiiiiiiiieeeeeeeee e 83
Fig. 5-1. Proposed Algorithm Basic KISPccccooiiiiiiiiee e 99
Fig. 5-2. Structure of the knowledge baseccceeviieiiieniieiiieniiceee e 109
Fig. 5-3. Structure of a pattern-support table......oila...cooiiniiiiniiniiieeceeeene 110
Fig. 5-4. The knowledge base after.the second-query m Example 5-1...................... 110
Fig. 5-5. Relative execution time andinumber-of candidates on dataset Origin........ 115
Fig. 5-6. Relative mining performance on datasets of various distributions.............. 115
Fig. 5-7. Relative performance on datasets with longer customer sequences 115
Fig. 5-8. Average execution time vs. numMber of QUETIEScevvveeerieeerieeerieeeeneenn 117
Fig. 5-9. Linear scalability of the database SiZe..........cccceeveeniiieiiieniiiiiieiiieeee 119
Fig. 6-1. Incremental update Versus re-miningcccceeeeveereeerieenieesreenveesneesneennns 126
Fig. 6-2. The original database DB example, [DB| =6ccccceeiirriiiiieniieiieeienee 128

Fig. 6-3. Data sequences in the increment database and the updated database (a) db

with new customers only (b) the updated database UDcccoviiiiiiniecnnnnn. 129
Fig. 6-4. Data sequences of old and new customers in db.............c.occoeiiiiniinnnnn, 130
Fig. 6-5. Merged data sequences in the updated database UDcccceevieenennee. 130
Fig. 6-6. The architecture of the k-th pass in INCSP...........cccocovevieiiiiiiiiciiceeee, 134
Fig. 6-7. AIgorithm INCSPccoiiiiiiii e 138

Fig
Fig
Fig
Fig
Fig
Fig

Fig

. 6-8. The separate counting procedure..........c.ecverveerreereeerreeneneenne
. 6-9. Total execution times over various MiNSUPcc.ccvveveereennen.
. 6-10. Total execution times over various incremental ratios..........
. 6-11. Total execution times over various comeback ratios.............
. 6-12. Total execution times over various former ratios..................
. 6-13. Linear scalability of the database size...........ccccevvirriennennne.

. 6-14. Maximum required memory with respect to various minsup

Xii

Chapter 1 Introduction

Recent developments in computing and automation technologies have resulted in
computerizing business and scientific applications in diverse areas. Turing the huge
amounts of accumulated data into knowledge is attracting researchers in various
domains including databases, machine learning, statistics, and so on. From the
perspectives of database researchers, the emphasis is on discovering useful patterns
hidden within the large data sets. Hence, a central issue for knowledge discovery in
databases, also the focus of this thesis, is to develop efficient and scalable mining

algorithms as integrated tools for database management systems.
1.1 Background

Data mining, which is also referred to as kngwledge discovery in databases, has been
recognized as the process of extracting non-trivial, implicit, previously unknown, and
potentially useful information from data in databases [8, 15, 88]. The database used in
the mining process generally contains large amounts of data collected by
computerized applications. For example, bar-code readers in retail stores, digital
sensors in scientific experiments, and other automation tools in engineering often
generate tremendous data into databases in a very fast speed. Not to mention the
natively computing-centric environments like Web access logs in Internet applications.
These databases thus serve as rich and reliable sources for knowledge generation and
verification. Meanwhile, the large databases present challenges for -effective
approaches for knowledge discovery.

The discovered knowledge can be used in many ways in corresponding
applications. For example, identifying the frequently appeared sets of items in a retail

database can be used to improve the decision making of merchandise placement or

sales promotion. Discovering patterns of customer browsing and purchasing (from
either customer records or Web traversals) may assist the modeling of user behaviors
for customer retention or personalized services. Given the desired databases, whether
relational, transactional, spatial, temporal, or multimedia ones, we may obtain useful
information after the knowledge discovery process if appropriate mining techniques
are used. A typical process of knowledge discovery in databases is illustrated in Fig.

1-1.

X

Evaluation *

<

Mi niny'
Patterns
Data _
Selection
/ Task-

A relevant
Cleaning !

Knowledge

Data
4 Warehouse

Databases

B e e

Fig. 1-1. The process of knowledge discovery in databases [5]

Having the databases, relevant prior knowledge, and the goals of the application
domain, the target data set is created by selecting the data required. The data cleaning
in Fig. 1-1 may removes those ‘dirty‘ data, e.g. data with incomplete fields, missing
or wrong values, in the preprocessing stage. The ‘clean’ data is then reduced and/or
transformed so that the data is represented by the useful features and actionable
dimensions. To find the patterns of interest, the users perform the required mining
functions, which include summarization/generalization of data characteristics,

classification/clustering of data for future prediction, association finding for data

correlation, trend and evolution analysis, etc. The discovered patterns are evaluated
and presented as knowledge. The process may iterate and contain certain loops
between any two steps.

Of all the mining functions in the knowledge discovering process, frequent
pattern mining is to find out the frequently occurred patterns. The measure of frequent
patterns is a user-specified threshold that indicates the minimum occurring frequency
of the pattern. We may categorize recent studies in frequent pattern mining into the
discovery of association rules and the discovery of sequential patterns. Association
discovery finds closely correlated sets so that the presence of some elements in a
frequent set will imply the presence of the remaining elements (in the same set).
Sequential pattern discovery finds temporal associations so that not only closely
correlated sets but also their relationships in time are uncovered.

Finding all the frequent patterns from . the huge data sets is a very
time-consuming task. Although theifrequeney, of a pattern can be determined by
scanning the database once, the elements of the pattern cannot be known in advance.
Take association discovery for example. Given 100 distinct items in the database, the
total number of potentially frequent sets is C(100, 1) + C(100, 2) + C(100, 3) + ... +
C(100, 99) + C(100, 100), where C(m, n) represents the combinations to choose n
items from m distinct items. The total number of potential patterns is too huge so that
validating all the potential patterns in a single database scanning could be impossible.
Thus, it is desirable to design efficient algorithms for frequent pattern mining.

In addition, the mining algorithm must be scalable to handle databases of huge
size. While the response time may be tolerable for an algorithm to check thousands of
potential patterns against a small database having thousands of records, it could be
intolerable against a database having millions of records. Similarly, an algorithm that

assumes the database has maximum 100 elements might fail to mine any database

3

having more than 100 elements. In the mining of frequent patterns in database context,
the number of elements and the size of the database could be very large. Any
improper assumptions on database or main memory could possibly produce an

impractical algorithm that works well for small problems only.

1.2 Motivations and Research Objectives

Although there has been a large number of algorithms designed for frequent pattern
mining, investigating efficient and scalable algorithms is still very challenging. We
first give an overview of the problems, and then describe the motivations and the
research objectives of this proposal.

In association rule mining, each record in the database is a set of items (called
itemset). To generate a rule that associate an itémset X with the itemset Y, the first
step is to find all the frequent itemsets, 1.€.'the itemsets whose occurring frequency is
above the user-specified minimum ' threshold. The second step then uses the
discovered frequent itemsets and theit frequency.to produce all the association rules.
In general, most studies in association rule mining generate potential patterns (called
candidates) and count their frequency in the database to determine the frequent ones.
Non-frequent candidates are pruned before counting to reduce the search space, using
the property that any candidate having non-frequent sub-sets cannot be frequent.
However, not all the properties of itemsets are utilized in the mining process, e.g. the
lexicographic property in itemsets. This thesis studies the features presented in
itemsets and designs an efficient algorithm to speed up the efficiency of association
rule mining.

Previous studies in frequent pattern mining focused on association discovery the
most. Nevertheless, sequential pattern mining is even more challenging. In sequential

pattern mining, the database is composed of records of data sequences, where each

4

data sequence is an ordered list of itemsets. The itemsets in a data sequence need not
be distinct. The aim is to discover all the frequent sub-sequences in the sequence
database.

Considering a sequential pattern having three items, the constitution of the pattern
could be a list of: (1) three elements where each element is an item (2) two elements
where the first element has one item and the second has two items (3) two elements
where the first element has two items and the second has one item (4) one element
that has three distinct items. Given the same number of possible items in the itemset
database and the sequence database, the potential sequential patterns having three
items greatly outnumber the potential itemsets having three items. The total number
of candidates, which contains more than patterns having three items, increases
exponentially as the number of possible item eéreases. Searching in the larger and
more complex sequence database with the enormous number of candidates demands
highly efficient mining algorithms.

Therefore, this thesis investigatés..an approach that utilizes main memory for
indexing sequences and proposes an efficient algorithm for sequential pattern mining.

Common sequence mining considers no constraints for the time-gaps between
adjacent elements of a pattern, thereby introducing some uninteresting patterns at
times. For example, without specifying the maximum time gap (between adjacent
elements), one may discover an example pattern such as “many customers bought
LCD-projector after purchasing Laser-pointer.” Nevertheless, the pattern could be
insignificant if the time interval between the two elements is too long such as over
years. Typical time constraints include minimum gap, maximum gap, and sliding
time-window [80]. In this thesis, we will look into the time-constraint problem and
propose an approach that integrates these constraints into a divide-and-conquer

strategy for the discovery of sequential patterns with time constraints.

5

In practice, the mining process is iterative and interactive. The measure of
frequent patterns is dependent on the user-specified threshold. Consequently, different
thresholds generate different outcomes. Once the mining result is unsatisfactory, the
user might try another threshold. Thus, the interactive, time-consuming process
usually repeats several times. To reduce the total response time required, an approach
employing previous mining results to speed up the whole interactive mining process
is investigated in this thesis.

Current approaches for sequential pattern mining usually assume that the mining
is performed in a static sequence database. However, databases are not static due to
update so that the discovered patterns might become invalid and new patterns could
be created. In addition to higher complexity, the maintenance of sequential patterns is
more challenging than that of association rules owing to sequence merging. Sequence
merging, which is unique in- sequence databases, requires the appended new
sequences to be merged with the existing-ones if their customer ids are the same.
Re-mining of the whole databas¢+appears.to be inevitable since the information
collected in previous discovery will be corrupted by sequence merging. Instead of
re-mining, we propose an algorithm that solves the maintenance problem through

effective merging for incremental pattern updating in this thesis.

1.3 Organization of this Thesis

This rest of the thesis is organized as follows. We describe efficient algorithms for
mining association rules in Chapter 2. Fast algorithms for mining sequential patterns
are delineated in Chapter 3. Chapter 4 addresses the problem of mining sequential
patterns with time constraints and presents related algorithms. The algorithms for
interactive sequence mining are introduced in Chapter 5. Chapter 6 extends the

sequence mining algorithms over static databases into that over incremental databases.

6

Finally, Chapter 7 concludes this thesis.

Chapter 2 Algorithm LexMiner for Association Rule Mining

2.1 Overview

Association rule mining has been one of the focusing researches in data mining [4, 5,
9, 14, 22, 28, 31, 37, 58, 95, 101]. The problem is originated from a large
transactional database, in which each transaction is a set of items (named itemset)
purchased by a customer [4]. The result of the mining discovers relationships between
itemsets (called association rules), which can be used for inferring buying patterns of
customers, placement of sales items, and so on in many applications.

An association rule X=Y means that the occurrence of itemset X would imply the
occurrence of itemset Y. A transaction' T'is said to contain X if and only if X < T. The
support of itemset X is the nuniber of transactions containing X divided by the total
number of transactions in the database. Each rule is associated with two attributes,
support and confidence. The support of the rule'is defined as the support of the
itemset XUY, and the confidence is defined as the support of XUY divided by the
support of X. Association discovery aims to find out all association rules with support
and confidence greater than the user-specified minimum thresholds.

The discovery usually takes two steps, discovering frequent itemsets and
generating rules. Frequent itemsets are those itemsets whose supports are greater than
the specified minimum support. Since the desired rules can be easily generated after
having the supports of itemsets, the overall performance is dominated by the step of
frequent itemset discovering. This issue has been the focus in previous researches [1,
7,28, 32, 43, 49, 50, 61, 74, 85, 100]. The objective of this chapter is to improve the
performance of frequent itemset discovering by fully utilizing the lexicographic

property of itemsets.

Most algorithms for frequent itemset finding nearly are variations of the Apriori
algorithm [5]. Apriori generated potential frequent itemsets (called candidates), stored
candidates in a hash-tree, and then located the candidates required for support
counting against each transaction. Nevertheless, the hash-tree may introduce
‘irrelevant’ comparisons while counting because the hashing may possibly place
candidates with different prefixed items in the same leaf. Some implementations
stored candidates in a prefix tree, such as the SEAR algorithm [53]. By storing
candidates according to the lexicographic order of items, the prefix tree alleviates
some drawbacks of hashing.

The lexicographic property of itemsets [1, 2, 12] had also been used in some
algorithms. For example, the TreeProjection algorithm [1] generated candidates by
lexicographic extensions, instead of by join operations as in Apriori. The transactions
were then projected onto each node of the ordered ecandidate tree. Lexicographically
extending the candidate itemsets were-also-used.in the Max-Miner algorithm [12] and
the DepthFirst algorithm [2] for+discovering ‘maximal patterns, i.e. the longest
frequent itemsets.

However, the lexicographic property is not fully utilized. In all the mining
algorithms, each transaction has to perform itemset matching, which checks whether
the transaction contains all the items in a candidate, with every located candidate. In
general, all the items in each transaction are sorted in dictionary order after a light
pre-processing. The lexicographic property in transactions can work with the property
in candidates to accelerate itemset matching. In the proposed LexMiner algorithm, we
break the itemset matching into a series of item matching (named lexicographic
comparisons), in addition to storing candidates into a lexicographic tree of items
(named LexTree). We refer k-itemset to an itemset with k items. The LexMiner

algorithm optimizes the discovery of frequent 1l-itemsets and 2-itemsets by array

9

counting, and speeds up the kernel operation, itemset matching, to discover the
frequent k-itemsets (k > 2).

The proposed LexTree is an ordinary trie of k-itemsets, where each node
represents an item in an itemset and common items in itemsets share the same nodes.
An example LexTree is shown in Fig. 2-1 (The detail structure of the LexTree is given
in Section 2.3.1). LexMiner counts the supports efficiently by lexicographic
comparisons between transactions and candidates. Each lexicographic comparison
effectively obtains the group of promising candidates and prunes the group of
irrelevant candidates. Therefore, the support counting is accelerated due to the

reduction in the matching required for every transaction, in every database scanning.

The set = {(a, c, d), (a, ¢,), (a,c, k), (a,d,j), (a,d, k),
(a’ d’ O)’ (a3 j’ 0)7 (C9 d’ g)’ (C’ d’ J)’ (C’ d’ k)’ (C’ g’ k)’
(C’ g’ t)’ (C3 k’ t)’ (d9 g’ J)’ (de’ 0)9 (g’ k’ t)}

(a) The set of all 3-itemsets

Ic Nb Nc d
. 2 N '&
1] Ng 2
L1 > j:
o | L] i
#| ={ it =it i |/} #
Nm Nn Nr Ns Nt Nv Ny
@ :support [A:null link Na, Nb, ..., Ny : nodes’ names

(b) The 3-itemset LexTree

Fig. 2-1. Example itemsets stored in a LexTree
The generation of candidates even benefits from the LexTree structure. In
Apriori-like algorithms, the superset of candidate k-itemsets were generated by
self-joining frequent (k-1)-itemsets with common prefix (k-2) items, and then pruning
those having non-frequent (k-1)-subsets. Common implementations usually store

frequent (k-1)-itemsets in a hash table to assist fast pruning. Consequently, either a

10

traversal over the entire hash table or a pre-sorting of frequent (k-1)-itemsets is
required in the join operation. On the other hand, LexMiner generates candidates
faster without any table searching or sorting since itemsets having common prefixed
(k-2) items are already linked by the leaf-pointers.

In this chapter, we present a scalable mining algorithm for the discovery of
association rules. The extensive experiments on well-known synthetic data show that
our algorithm outperformed Apriori, TreeProjection and FP-growth algorithms.
Scale-up experiments also promise the linear scalability with the number of
transactions. The rest of the chapter is organized as follows. Section 2.2 introduces the
problem. Section 2.3 reviews the related work. The proposed algorithm and the new
data structure are described in Section 2.4. Comparative results of the experiments are

shown in Section 2.5. Section 2.6 sammarizes this'chapter.

2.2 Problem Statement

Let ¥= {iy, Iy, ..., In} be a set of literals, called items. A transaction T with m items is
denoted by T = {X1, X2, ..., Xm}, such that T — ¥. Items within an itemset are kept in
lexicographic order. A k-itemset is represented by (X1, X2, ..., Xk), Where X; < Xz < ...<
Xk. Given the database D of transactions and the user specified minimum support
minsup, the mining of frequent itemsets is to find out all the itemsets having support

greater than minsup. Table 2-1 summarizes the notations used in this chapter

2.3 Related Work

Level-wised algorithms like Apriori discover frequent k-itemsets in k-th pass of
database scanning by generating candidate k-itemsets and identifying the frequent
ones. Key factors of mining performance thus are determined by the number of

database scans, the number of transactions needed to be processed in a pass, the

11

number of candidates generated in a pass, and the efficiency of support counting.

Table 2-1. Notations used

D The database of transactions
T A transaction, T = {X1, X2, ..., Xp, -5 Xm}
x1, X2, ..., Xk Items
X, Y k-itemsets, X = (X1, X2, ..., Xk), Y = (Y1, Y2, .-, Yk)
X.support The support of itemset X
minsup The minimum support specified by the user
Ck The set of candidate k-itemsets, see Section 2.4
Lk The set of frequent k-itemsets, see Section 2.4
Fck The candidate k-itemset LexTree, see Section 2.4
I, The frequent k-itemset LexTree, see Section 2.4
olm The parttial transaction of T, pTm_ {Xp, Xp+1, --v» Xm},
see Section 2.4.2
k
oTm The k-subsets of me, see Section 2.4.2

For the reduction of database scans, DIC (Dynamic Itemset Counting) algorithm
starts counting just the 1-itemséts_and then quickly-adds counters of 2-itemsets, ...,
and of k-itemsets, provided that all its-subsets-have-been determined being frequent
[14]. Partition algorithm generates.all the candidates by memory-sized partitions of
the database [73]. Besides, DLG (Direct Large itemset Generation) algorithm uses
large bit vectors for transformation and traversal to reduce database scans [86].
Sampling approaches can effectively reduce the number of database passes too [93].

For the reduction of transactions to be processed in a pass, AprioriTid algorithm
replaces itemsets in a transaction T by potentially frequent k-itemsets present in T [7].
DHP (Dynamic Hashing with Pruning) algorithm substantially minimizes the number
of transactions by applying a hashing scheme, which also eliminates some candidates
in advance [58].

For fast support counting, Apriori stores candidates in a hash-tree, where each
interior node contains a hash table and each leaf contains a list of candidates.

Candidates are placed by hashing on consecutive items in the candidate until a leaf is

12

reached. Inserting a candidate to a leaf without empty entry introduces a
leaf-to-interior conversion and a re-distribution of the candidates. As an example, Fig.
2-2 shows the hash-tree of candidate itemsets in Fig. 2-1(a).

The TreeProjection algorithm [1] generates candidates into a lexicographical tree
of itemsets. After the transaction projecting (i.e. intersecting all transactions with each
node), the supports are obtained by matrix counting. Similar lexicographic extensions
are also used in the Max-Miner [12] and the DepthFirst [2] algorithms to find the
maximal itemsets. Note that these algorithms typically generate more candidates than

Apriori does since the pruning is no longer suitable.

0
(C, d, g) (C, k, t) (aa c, d) (a= d’ .]) (ga k: t)
(c,d,j) (a,c, k)| |(a,d k)
(c, d, k) (a,c,]) | |(ad0)
(c,g k) (a,], 0)
(c,gt) d, g7

(1) hash function=(x - ‘a’ +1)M OD 3
o (2) branches in each interior = 3
E : interior node (3) entries in each leaf = 5
I:I - leaf node E -empty leaf [___1:overflown leaf

(b) The hash-tree of candidate 3-itemsets
Fig. 2-2. Example candidate itemsets stored in a hash-tree
The FP-growth discovers frequent patterns without generating candidates in
advance [28]. The database is first compressed into an in-memory data structure
called FP-tree (Frequent Pattern tree). Frequent patterns are then derived by
“growing” patterns incrementally on the FP-tree by a partitioning-based,
divide-and-conquer method [28]. Based on the similar concept, the CLOSET
algorithm finds out the closed frequent itemsets [66], and the H-mine algorithm

projects transactions to a hyper-link structure for frequent itemset discovering [65].

13

In addition, some ‘vertical’ algorithms, such as Eclat (Equivalence class and
bottom-up), speed up the discovery by lattice-traversal with vertical database layout,
which associates each candidate with transaction-id lists [74, 101]. Such scheme is
also extended to mine closed frequent itemsets in the CHARM algorithm [100].

To summarize, level-wised mining approaches are generally more scalable than
other approaches with respect to the database size. Projection-based algorithms like
TreeProjection might suffer from memory shortage (for keeping transaction sets in
each node) and it is costly to project volumes of transactions. Algorithms using the
pattern-growth framework like FP-growth might be limited by the available memory
since transactions are compressed into the main memory. Besides, FP-growth might
not compress well to achieve good performance with a non-dense database [19].
Given a ‘horizontal’ database, vertical approaches have to transform the horizontal
layout into vertical. The storage for storing.item-oriented transaction lists will also
cost too much for a very large-database.-Therefore, the Apriori framework still has

competitive advantage in scalable association-mining.

2.4 The Proposed Method

Fig. 2-3 lists the proposed LexMiner algorithm using the LexTree to speed up the
kernel operations in frequent itemset discovering. In brief, the LexMiner finds out
frequent 1-itemsets and 2-itemsets by an optimized counting technique. The frequent
k-itemsets (kK > 2) are discovered by fast support counting through efficient
lexicographic comparisons, and rapid candidate generation through effective leaf
joining, enabled by prefixed itemset grouping with the LexTree.

Using a one-dimensional array of counters of all items is the fastest way to
compute frequent 1-itemsets since every item is a potentially frequent 1-itemset. Let

Cxk be the set of candidate k-itemsets and L the set of frequent k-itemsets. The C; is

14

generated by joining L; with Lj. Since all the subsets of C;are frequent, none of the
candidate in C; can be deleted before counting. We use a two-dimensional array of
counters to store the supports of candidates in C,. In order to minimize the required
storage, we map items in L to contiguous integers and the non-frequent items to zero.
A two-level for-loop over each transaction accomplishes the efficient counting and

determines L.

L, = {frequent 1-itemsets} ;
if L, # & then
C,=L;xL;; //storedin a2-dimensional array
for each transaction T € D do
for each 2-subset X of T do if (X € C,) X.support++ ;
end
L= {X e C,| X.ssupport > minsup} ;
end
for (k=3; L, ,#J,k++) do
Construct L, into a frequent LexTree, /7, , // LexTree construction — see Section 2.4.1
Generate C, from /7| , to a candidate LexTree, /7, // Candidate generation — see Section 2.4.3
for each transaction T € D do
Find_and_increment(T , /"¢,) // Fast support counting— see Section 2.4.2
end
L= {X e C, | X.support> minsup} ;
end
Answer=U, L,;

Fig. 2-3. Algorithm LexMiner

The fact that frequent itemsets usually have common items inspires the concept
of prefixed itemset grouping, which sorts itemsets into groups according to the same
prefixed items. For example, assume that L3 is the set of frequent 3-itemsets as listed
in Fig. 2-1(a). Since we generate C4 by joining those frequent 3-itemsets having the
same prefixed 2 items. If we perform the prefixed itemset grouping as shown in Table
2-2, the C4 would be simplified into self-joining over the same group. We use LexTree
to group the same prefixed itemsets under the same node. The leaf-linked
(k-1)-itemsets would have the same prefixed (k-2) items. Therefore, a rapid candidate
generation is achieved through effective leaf joining in the LexTree of the frequent
itemsets. For example, candidates (a, ¢, d, j), (a, ¢, d, k), (a, c, j, k) are easily obtained

by leaf joining on nodes Nh, Ni, and Nj of the LexTree in Fig. 2-1(b). The construction
15

of LexTree is described in Section 3.1.

Prefixed itemset grouping also provides a quick way to identify the promising
group of candidates in support counting. Assume that we are updating the supports of
Cs in Table 2-2, i.e. candidate LexTree in Fig. 2-1(b), with transaction T = {c, d, g,],
k}. By a simple item comparison of ‘¢’ (first item of the transaction T) and ‘a’ (the
item of node Na), we may skip all the candidates in Group 1 (also Groups 2 and 3)
since ‘C’ # ‘@’. On the other hand, since the result of item comparison of ‘C’ (first item
of the transaction T) and ‘c’ (the item of node Nb) is equal, we proceed the
comparison on the second item to find which candidate is eventually contained in T.
In the LexTree of candidate itemsets, the itemsets are grouped and linked by the items
of each level. Therefore, we can speed up the support counting by a series of efficient
item matching, called lexicographic comparisons. We present the details of
lexicographic comparisons in Section 2.4.2.

Table 2-2. [temsét grouping by prefixed items

Itemsets

(a,c,d), (a,¢,)),(a, ¢, k)
(a, d,j), (a, d, k), (a,d, 0)
(a,), 0)

(C7 d’ g)’ (C9 d’ j)’ (C9 d’ k)
(c, 8, k), (c, g t)

(c, k, t)

(d, g])

(d, J, 0)

(g k1)

Note: Group the itemsets in Fig. 2-1(a) according
to the first and then the second item

Q
=)
S
=
IS

O |0 |Q| N[N |[WIN|—

In short, starting from pass three and beyond, three major steps are performed in

the LexMiner algorithm. At first, frequent (k-1)-itemsets are stored in lexicographic

order into a frequent LexTree, denoted by I', . Candidate k-itemsets are then

generated and stored into a candidate LexTree, denoted by I . Finally, all the

16

candidates in each transaction can be efficiently found by lexicographic comparisons.

The following sections give the details of these procedures.
2.4.1 LexTree: a lexicographically ordered tree

LexTree is a compact, trie-like tree structure for hierarchically storing itemsets.

LexTree groups itemsets by same prefixed items and stores itemsets in dictionary

order (lexicographic order). We use X <Y to denote that itemset X precedes itemset Y

in lexicographic order. The item in Y that determines X < is called the pivot item of

Y. For example, (a, b, f) < (b, ¢, d) and (a, b, ¢) < (a, b, e), where items in boldface are

the pivot items. We insert itemsets in Ci (Li) to a candidate LexTree (frequent LexTree)

one by one in lexicographic order. The LexTree corresponding to the itemsets in Fig.

2-1(a) is shown in Fig. 2-1(b). The definition-of LexTree is given below.

Definition 2-1. A LexTree is a tree such-that:

(1) A leaf node comprises three fields, the item identifier (abbreviated as ID), the
sibling pointer (abbreviated as-sibling), and the support counter (abbreviated
as support).

(i) An internal node comprises three fields, ID, sibling, and the next pointer
(abbreviated as next).

(iii) Nodes linked through the sibling pointer are of the same depth. The depth of a
node is (d+1), if the node is linked by the next pointer of another node whose
depth is d.

(iv) The Root is a pointer, which points to the first node of the tree. For
convenience, the node pointed by the Root is called the Root node. The depth
of the Root node is 1.

(v) A k-itemset (X1, X, ..., Xk) in a LexTree is represented by a group of nodes at

depth 1, 2, ..., k. In this group, the ID of the node at depth d is X4 and the

17

support of the leaf node is the support of this itemset. 0

Various fields of a node Nd are referred to by symbols Nd.ID, Nd.sibling, Nd.next,
and Nd.support. The ID of the Root node is Root.ID, for instance.

Auxiliary Last pointers are used to ease the fast construction of LexTree. A
k-itemset LexTree has k Last pointers, where each Last points to the last node in that
level (depth) of the tree. We use Last[K] to denote the node pointed by the Last pointer
at level k. Hence, the latest k-itemset inserted can be described by (Last[1].ID,
Last[2].1D, ..., Last[k].ID).

An example, which shows the construction of LexTree by inserting the ordered
3-itemsets in Fig. 2-1(a) is illustrated in Fig. 2-4. Note that the Root pointer is not
shown in Figures 2-4(b) to 2-4(e). One can see that starting from the pivot item of the
current itemset (we are inserting), a series of new nodes are allocated and the

corresponding Last pointers ares-moved.

Root Last[1]
A

X

LastQ] "
AL Lastf2)Lasi3)

Last[2]

] L] [o] [o]

L] ol /] [#]/
®

@ :support [A:nulllink Na,Ng, Nk :nodes’s name

Fig. 2-4. Construction of a LexTree by inserting 3-itemsets: insert (a)(a,c,d) (b)(a,c,j)

(c)(a,c,k) (d)(a,d,j) (e)(a,j,0) after (a,d,k) and (a,d,o) inserted (f)(c,d,g)

By inserting itemsets to LexTree in lexicographic order, we can group itemsets

18

by the same prefixed items. In addition, the LexTree is compact since common items
share the same nodes. Take itemsets (a, C, d), (a, C, j) and (&, ¢, k) in Fig. 2-4(f) for
example. They share the same two nodes, Na and Ng. Similarly, itemsets (a, d, j), (a,
d, k), (a, d, 0) share the same two nodes, Na and Nk. When we take the above six
itemsets into consideration, node Na is shared by these itemsets. In other words, node
Na groups the itemsets with the same prefixed item ‘a’; nodes Na and Ng group the
itemsets with the same prefixed items ‘a’ and ‘c’; also itemsets with the same prefixed

items ‘a’ and ‘d’ are grouped by nodes Na and NK.
2.4.2 Fast support counting by lexicographic comparisons

For every transaction in the database, the supports of those candidates contained in the
transaction must be updated. Accordingly;.during pass K, all the K-subsets of a
transaction are compared with eandidates i Cy. Without structuring candidates on
item basis like LexTree, commeon implementations processed the kernel operation on
an itemset matching basis. In general;sall the items’ in each transaction are sorted in
lexicographic order after a light pre-processing. Therefore, we may utilize the
lexicographic property (in transactions and in LexTree) to break itemset matching into
lexicographic comparisons. We describe the lexicographic comparison and the total
number of comparisons below.

LexMiner minimizes the number of Kk-subsets (of a transaction) required
matching by generating only those promising k-subsets. Promising K-subsets are
composed of a heading item X; and some partial transaction that generates the
(k-1)-subsets. The definition of partial transaction is given in Definition 2-2 below.
The heading item x; must appear in the first level of the candidate LexTree to make the
k-subset promising. Similarly, the partial transaction only generates promising

(k-1)-subsets having a heading item X; that appears in the second level of the candidate

19

LexTree.

Definition 2-2. Given a transaction T = {Xy, X, ..., Xm}, the partial transaction Ty, is
the set of ordered items from item Xp to item Xmin T. That is, ;Tm = {Xi| Xi € T,p<i <
m}. o

FOI’ example,]_Tm = {Xl, XZ, ooy Xm}, 4Tm = {X4, X5,..., Xm}, m-]_Tm = {Xm.l, Xm}, and me =
{Xm}. The partial transaction ,Ty, is an empty set if p > m. Let an'§ be the k-subsets

of a partial transaction pTm = {Xp, Xp+1, ..., Xm}. We have Theorem 2-1.

m-k+1
Theorem 2-1. The k-subsets of a transaction T are 1Tn|§ = Y {X} x i+1Tn|§_l .
i=1

Proof. We have ;T2 ={X;} U {Xo} UA U {Xp}=1{X}U T 1.
Also (T2 ={x;} x ,TE U ,T2, and™ T3S = {Xqlkx ;T2 U LTS,
S k k-1 k
0 1Ty ={X1} x Ty " U 5T ~— Formula 2-1
. k k-1 k
Similarly, T, ={X5} x 3T~ W gl " — Formula 2-2

So 1Trﬁ ={Xq} X 2Trﬁ_l U {Xo} x 3Tn|§_1) 3Tn|§ by substitution using Formula 2-2.

m—-k+1

Finally, the formula 1Tn|§ = Y{x} x; +1Tn|f,_1 U m—k +2Tn|f| is obtained by iterative
i=1

substitution of the last item. Sine the last item, _,,,T.X is an empty set, the theorem

is proved. O

LexMiner uses Theorem 2-1 to eliminate the generation of many impossible
k-subsets of a transaction. Since candidates are grouped by the same prefixed items in
LexTree, if some item Xj, where 1 < i < m-k+1, is not found in the first level of the
candidate LexTree, no K-subsets comprising X; as the first item are generated for

comparison. Again, whether a partial transaction should generate (k-1)-subsets or not

20

is determined by the existence of some item X; where i+1 < j < m. If item X;j cannot be
found in the second level of the sub-tree headed by the matched X;, these (K-1)-subsets
are excluded. In this way, by comparisons between ordered items in the transaction

and the nodes in the candidate LexTree level by level, those candidates contained in a

transaction are found. For example, while updating the supports of I'c, in Fig. 2-1(b)

with transaction T; = {g, k, t, ¢’, k’}, the 3-subsets of T; having Kk or t as the heading
items as well as 3-subsets {g, t, ¢’}, {g, t, K’} and {g, C’, K’} never engage in the
computation.

Support counting in LexMiner is accomplished by breaking the searching of
candidates to lexicographic comparisons of sub-items, and then incrementing the
supports of matched candidates, as outlined in Fig. 2-5. Whenever a candidate is
found, its support is added by.one. Two pointers, a transaction pointer tp and a

candidate pointer cp, are employed to assist fast matching. Let tp move along T and

cp walk through I'c . Once tpror €p-reaches the'end of the corresponding list or

structure, the finding stops. In each pass, starting from the first item of the transaction
and the root of candidate tree, fast support counting is accomplished by the
Find_and_Increment procedure.

Assume that we are comparing the g-th item of a transaction T = {Xi, ..., Xm}
with a node Np at level p, where 1 < p <k-1 and 1 < g < m. The matched prefix (p-1)
items can be described by (N1.ID, Na.1D, ..., Np.1.ID) if we reach Np via node N; at
level i, 1 <i < p-1. The Xq is the g-th item of T and Np.ID is the item of node Np.

If Xq < Np.ID, we advance tp (transaction pointer) so that all the k-subsets of T
having prefix (N1.ID, N2.1D, ..., Np.1.ID, Xq) are pruned. If X, > Np.ID, we advance cp

(candidate pointer) to eliminate the comparisons of those nodes reached via Np.next.

21

Procedure Find_and Increment(tp, cp)
// input: tp points to the head of a list, cp points to anode in /¢,
// let item[tp] denote the item pointed by tp
if cp= leaf then
while (not end_of the list) and (cp # null)

if item[tp] <cp.ID then tp++ ; // advance tp
else if item[tp] > cp.ID then cp = cp.sibling ; // advance cp
else // matched candidate found
cp.support++ ; // increment the support
tp++; // advance tp
cp = cp.sibling ; // advance cp
end while

else //cpis an interal node */
if item[tp] < cp.ID then
tp++; // advance tp
Find and Increment(tp, cp) ;
else if item[tp] > cp.ID then
cp = cp.sibling ; // advance cp
Find and Increment(tp, cp) ;
else // matched
Find and Increment(tp+1, cp.sibling) ;
Find and Increment(tp+1, cp.next) ;
End Procedure

Fig. 2-5. Procedure Find_and_Increment

If X4 = Np.ID, it means that candidates with’same prefixed p items are found in
the sub-list {Xy, ..., Xq} of T. Finding candidates whose p-th item is greater than Np.ID
can be done by comparing the-sub-list {Xgq+1=-..., Xm} with the sub-tree headed by
Np.sibling. Next, we recursively apply.Find_and_Increment on the sub-list {Xq+1, ...,
Xm} and Np.next, which links the remaining (k-p) items of candidate k-itemsets with
same prefixed p items, for further sub-item comparisons. When p is (k-1), it turns out
to be a fast ordered list-matching between the sub-list {Xq+1, ..., Xm}, and the list made
of leaf Np.next and the (Np.next).sibling linked leaves.

Through eliminating impossible itemsets at each level, the number of
comparisons is minimized in LexMiner. Moreover, the supports are efficiently
updated for transactions containing many candidate K-itemsets, as demonstrated in
Example 2-1. The notation <T.x, Nd.ID: v> means that the item ‘X’ in a transaction T
is compared with v, the value of Nd.ID.

Example 2-1. Updating the supports of candidate 3-itemsets in T= {c, d, g,], k} is

illustrated. In the beginning, cp points to the Root node Na.
22

1) <T.c, Na.ID:a>, advance cp to Nb through sibling.

2) <T.c, Nb.ID:c> matched. We first apply Find_and_Increment on cp.sibling to see

whether there is any candidate in the sub-list, {d, g,], k}, then apply on cp.next to

match the second and the third items of candidates having 3 as the first item.

3) Apply Find_and_Increment on {d, g, j, k} and Nb.sibling: <T.d, Nc.ID:d>, is

matched. Again, Find_and_Increment is applied on {g, j, k} with Nc.sibling and

on {g, j, k} with Nc.next.

(a)

(b)

Apply Find_and_Increment on {g, j, k} and Nc.sibling: The matched <T.g,
Nd.ID:g> induces two findings, on {j, k} with Nd.sibling and on {j, k} with
Nd.next. The former stops due to the null sibling pointer. The latter, though
<T .k, Ne.ID:k> matches, stops since the end of the list is reached.

Apply Find_and_Increment on {g, J, K} and Nc.next: The matched <T.g,
Nx.ID:g> recursively <€alls the procedure on {j, k} with Nx.sibling and on {j,
k} with Nx.next. The former eventually stops after reaching the end of the
list. The latter finds “the.leaf Nywith ID the same as T, and
incrementsNy.support by one. It means that the support of candidate (d, g, j)

1s incremented.

4) Apply Find_and_Increment on {d, g, j, k} and Nb.next: The matched <T.d,

Ng.ID:d> induces two findings on {g, j, k} with Ng.sibling and on {g, j, k}with

Ng.next.

(a)

(b)

Apply Find_and_Increment on {g, j, k} with Ng.sibling: This procedure
with <T.g, Nu.ID:g> eventually will increment Nv.support by one. That is,
(¢, g, k) will be updated.

Apply Find_and_Increment on {g, j, k} with Ng.next: Since Nr is a leaf
node, it turns out to be a fast ordered list-matching between {g, j, k} and the

list made of Nr.ID, Ns.ID and Nt.ID. The supports of (c, d, g), (c, d, j), and
23

(c, d, k) are incremented and the process is terminated at last. 0
As shown in this example, grouping candidates under LexTree enables fast
list-matching at each level. In fact, the itemset matching in other algorithms, whether
they explored lexicographic property or not, is broken down to a series of item
matching in LexMiner. Efficient candidates matching by lexicographic comparisons
and immediate increment of supports make LexMiner a faster approach for support

counting.
2.4.3 Candidate generation by leaf joining

The Apriori generates Cy in three steps, collecting Ly; by traversing candidate
hash-tree, self-joining itemsets in Ly.; having same prefixed (k-2) items, and pruning
those having any (k-1)-subset that is netinsky;. Most approaches like Apriori collect
L1 in a hash table for fast searching in the pruning step. Nevertheless, a complete
traversal over the hash table to find common prefixed (k-2) itemsets in the joining step
is unavoidable. Such an inefficiency isaemoved by leaf-join in LexMiner.

In LexMiner, the frequent Ly; LexTree is obtained by a traversal on a candidate
Ci1 LexTree with a removal of leaves having insufficient supports. The
traversal-with-removal results in a frequent Ly.; LexTree. In LexTree, all (k-1)-itemsets
with the same prefixed (k-2) items are grouped together and are linked through the
sibling pointers. Candidates are efficiently produced by making self-joins with these
sibling-linked leaves. Before placing a newly generated candidate C in the new
candidate Cy LexTree, we search in frequent Ly.; LexTree for the existence of all the
(k-1)-subsets of C. If any of the searches fails, C is pruned. The search utilizes the
similar technique used in fast support counting. Therefore, LexMiner generates the
same number of candidates as Apriori does, in a faster speed. Note that some

approaches exploring the lexicographic property, like TreeProjection, often generate a

24

slightly larger number of candidates [1].

2.5 Performance Evaluation

In order to evaluate the performance of the proposed algorithm, we conducted
extensive experiments using an 866 MHz Pentium-III PC with 1024MB-memory
running Windows NT. The databases are synthetic datasets of various characteristics.
The method used to generate these datasets is described in Section 2.5.1. Section 2.5.2
compares the results of executions by various algorithms. Results on some scale-up

experiments are presented in Section 2.5.3.
2.5.1 Generation of synthetic data

The synthetic data were generated by ‘the well-known method in [5]. For
completeness, we briefly review: thel méthod here. The datasets mimic the real world
transactions. The total number.of possible items for-all transactions is |[N|. The total
number of transactions in the database D is |D|. |[T|1s the average number of items in
transactions. The size of each transaction is picked from a Poisson distribution with
mean equal to [T|. The generation of transactions and the generation of potentially
frequent itemsets (abbreviated as PFls) are described in the following.

Each PFI comprises randomly picked items from the |N| items. L is the set of
PFls and its size is |L|. The size of each PFIl is determined following a Poisson
distribution with mean equal to |l|. In order to model that there are common items in
frequent itemsets, subsequent itemsets in L are related. In subsequent PFls, a fraction
of items are chosen from the previous PFI, the other items are picked at random. The
fraction corr, called correlation level, is decided by an exponentially distributed
random variable with mean equal to ,, . Items in the very first PFIl are randomly

chosen.

25

To model that all the items in a frequent itemset do not always jointly appear,
each transaction consists of a series of fractions of PFls [5]. Each PFl in L is assigned
a weight, which corresponds to the probability that this itemset will be picked. Each
weight is exponentially distributed and then normalized in such a way that the sum of
all the weights is equal to one. In addition, each PFI is associated with a corruption
level (abbreviated as crup). When adding items from a PFI to a transaction, an item is

dropped as long as a uniformly distributed random number between 0 and 1 is less

than crup. The crup is a normally distributed random variable with mean /¢, and

variance oy -

The parameters used in the experiments are summarized in Table 2-3. All
datasets used here are generated from 1000 items ([N|=1000), and the number of PFls
is 5000 (|L[=5000). Like most studiesin-association rule mining, the fcryp s Teryp >

and .o are set to 0.5, 0.1, and 0.5, respectively.

Table 2-3. Parameters used in the experiments

Parameter Description Value
|D| Number of transactions in database D 100K~10000K
IN| Number of possible items 1000
T| Average number of items of transactions 10, 15, 18, 25
L] Number of potentially frequent itemsets 5000
|| Average size of potentially frequent itemsets |2, 6, 10, 12, 18

2.5.2 Total execution times of various algorithms

Extensive experiments were performed to realize the performance improvements of
LexMiner. We implemented algorithms including FP-growth [28] and TreeProjection
[1], and used a well-known version of Apriori, “GNU Lesser General Public License”

available at http://fuzzy.cs.uni-magdeburg.de/~borgelt/, for comparisons. Algorithms

26

such as Max-Miner [12], DepthFirst [2], CHARM [100], and CLOSET [65] were not
implemented since they discover only the sub-set, instead of the complete set, of
frequent itemsets.

The TreeProjection we implemented is a memory-based version of the
techniques reported in [1]. The cache-blocking technique to overcome extra disk I/O
(when memory cannot hold large matrices) was not implemented since the
lexicographic tree, all the matrices, and all the projected transaction sets can fit into
the 1024MB memory in the experiments.

We first evaluated the effect of various minsups for datasets having a typical
value of 100,000 transactions. The notation Ta-1Dy means that the dataset is created
with [T| = ¢, |l] = £, and |D| = »x 1000. The experiments started from the combination
of (average size of transactions):|T|=10 and (average size of potentially frequent
itemsets) |I|=2. When |T| and |1| are.small, all the ftequent itemsets can be found in few
passes since most transactions comprise-few-items and most frequent itemsets have
few items. As shown in Fig. 2-6, there«is not much difference among these algorithms
for minsup over 1.25%. The array-counting technique, especially in the pass 2

optimization, makes LexMiner faster than all the other algorithms for short patterns.

T10-12-D100
30
X
_ar K
S 24 r —
R 21 —— Apriori .
[<5) . . -
E 18} — —A— — TreeProjection X
5 15| - - -X- - - FP-growth -
§ 12 ——— LexMiner _A
3 9 _‘,
s 6l &
2
S w
0 T 1 | |
minsup (%) 2.5 225 2 175 15 125 1 075 05 0.25

Fig. 2-6. Execution times of various algorithms on the dataset having short patterns

27

T15-16-D100
80 f
70
g 60 & —— Apriori X
@/ - . P
o — —A— — TreeProjection -
£ 50 | s
= ---X- - - FP-growth X
S 40t —&— LexMiner
pl
3 L
5 0 A
=R /
= -
10 | . A — —h
0 L * * * *~—0— Q——r-*——‘/
minsuyp (%)2.5 225 2 175 15 125 1 075 25
(a) dataset T15-16-D100
T15-112-D100
80
70 | X
§ 60 | —— Apriori ""
- — —A— — TreeProjection K
E S0 - - -X- - - FP-growth ’,'x
S 40 | —— LexMiner 4 A
5 /
S 30t
i
£ 20
'_
10
0
minsup (%)2.5 225 2 175 15 125 1 075 05 025

(b) dataset T15-112-D100

T18-16-D100

200 A

180 :/
‘g 160 | —=®— Apriori -
= 140 | — —A— — TreeProjection X Il
£ 120 | - - -X- - - FP-growth]
§ 100 ——— LexMiner : ,l
3 80
x
L 60
]
S 40

20

0 > .
minsup (%)2.5 2.25 2 175 15 125 1 075 05 025

(c) dataset T18-16-D100

Fig. 2-7. Performance comparisons of execution time over various supports

Next, various combinations of parameters |T| and |lI| were used to generate other

28

datasets. The combinations of |T| and |l| in these experiments are T15-16, T15-112, and
T18-16. All the three datasets have frequent itemsets size bigger than two even with
large minsup values. The relative performance among these algorithms is shown in
Fig. 2-7. It can be seen from the figure that LexMiner outperforms the others over
various minimum supports. The performance improvement is resulted from the fast
item-matching, especially in lower levels when minsup was smaller than 0.75%.

Fig. 2-8 shows the performance of constructing LexTree using three ordering of
items, support-ascending, support-descending, and lexicographic order. The tree
constructed using support-ascending order is bushier (having more nodes) than the
others. The effect of fast list-matching in leaves thus benefits support-ascending order
the most. In the experiment, transactions in the dataset were not re-ordered so that
item re-ordering (to cope with ;Support ascending/descending ordered nodes) is
required for each transaction, i every pass.-Therefore, the performance gap is not

clear until minsup is 0.25%, with the'dense-dataset T25-118.

T25-118-D100
250
§ 200 r —&—— LexMiner A
Tg’ !
= 150 - - -8 - - Support-Ascending /
= | |
S iy
3 100 ¢ — —A— — Support-Descending o
&
S 50 f
o
'_
ol —
minsup %6R.5 225 2 175 15 125 1 075 05 025

Fig. 2-8. Execution results of different ordering
2.5.3 Scale-up experiments

To assess the scalability of our algorithm, several experiments were conducted. Fig.

29

2-9 shows that the execution time of LexMiner increases linearly as the database size
increases, ranging from 100K to 10 million. The [T| and the || were fixed to see how
execution time changes as the database size increases. Different minsups yield similar
and consistent results. Fig. 2-9 displays the result of minsup = 0.5%, which exhibits

good linearity in scale-up.

T15-110, minsup = 0.5%
25
~20
g
g 15
<
310
=
o
o5 |
0 L L L L L L L L L
100 200 300 400 500 600 700 800 900 1000
Number of transactions ('000)
(a) ID| = 100,000 to 1,000,000
T15-110, minsup = 0.5%
250
200.0
200
2
5150 —
o
3100
fc;
e
a) L
O L
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of transactions ('000)
(b) |ID| = 1,000,000 to 10,000,000
Fig. 2-9. Linear scalability of the database size
2.6 Summary

The huge amount of data and the complicated interrelationships between data

30

bring about new challenges in the mining of undiscovered knowledge from large
databases. Various algorithms have been developed for the discovery of association
rules. However, the ordered property embedded in the transactions has never been
fully utilized in existing mining algorithms. Therefore, we take into account the
lexicographic nature of data and propose a novel approach for scalable mining of
association rules. The proposed approach effectively places itemsets in a LexTree
structure and discovers frequent itemsets efficiently by the LexMiner algorithm.

The LexTree structure provides a hierarchical ordering mechanism for storing
candidate itemsets and frequent itemsets, and enables fast support counting and rapid
candidate generation. In the LexTree, an itemset is uniquely represented by a
sequential combination of nodes, one node in each level, in the tree. Itemsets having
the same prefixed items share the same internal nodes and are grouped by these nodes.
Due to sharing, the space used.by the candidate LexTree is very compact in
comparison with methods using hash-tree,-which usually allocate additional storage
while constructing hash tables. Due to.grouping, we can generate candidates more
rapidly from the frequent LexTree since no traversal is needed like those using hash
tables for the storage of frequent itemsets.

In addition, the proposed LexMiner algorithm uses the LexTree to achieve fast
support counting. Our focus is to investigate mechanisms to improve the most
time-taking kernel operation of finding candidates in transactions, since the
candidate-finding procedure is repeatedly executed for every transaction in every pass.
LexMiner exploits the orderly placed candidates, breaks the finding into lexicographic
comparisons to speed up the matching of candidates and prune the impossible
candidates by hierarchical comparisons in each level. The intrinsically ordered
transactions and the hierarchically ordered candidates together improve the matching

efficiency. The speeding up of kernel computation is the key to performance

31

improvement. The comprehensive experiments also demonstrate that LexMiner
coupled with LexTree is efficient and exhibits good scalability.

In addition to the discovery of association rules, the problem of sequential
pattern mining generalizes the discovery of association rules to relationships of
itemsets over time. The ordering property still holds for items in these transactions. It
is worthy of further investigation on the mining of sequential patterns, which is

explored in Chapter 3.

32

Chapter 3 Algorithm MEMISP for Sequential Pattern Mining

3.1 Overview

Frequent itemset mining, as discussed in Chapter 2, is extensively studied in data
mining. A more complicated issue in data mining is the discovery of sequential
patterns, which finds frequent sub-sequences in a sequence database. For example, in
the transactional database of an electronic store, each record may correspond to a
sequence of a customer’s transactions ordered by transaction time. An example
sequential pattern might be that customers typically bought PC and printer, followed
by the purchase of scanner and graphics software, and then digital camera. The
mining technique is applicable to many applications, including the analysis of Web
traversal patterns, telecommunication alarms, DNA sequences, to name a few.

Sequential pattern mining ‘s more difficult than’association rule mining because
the patterns are formed not only by combinations of items but also by permutations of
item-sets. Enormous patterns can be formed as the length of a sequence is not limited
and the items in a sequence are not necessarily distinct. Let the size of a sequence be
the total number of items in that sequence. Given 100 possible items in a sequence
database, the number of potential patterns of size two is 100*100 + (100%*99)/2, that
of size three is 100*100*100 + 100*[(100*99)/2]*2 + (100*99*98)/(2*3), and so on.
Owing to the challenge of exponential possible combinations, improving the
efficiency of sequential pattern mining has been the focus of recent research in data
mining [6, 11, 13, 25, 29, 38, 39, 42, 46, 47, 48, 55, 67, 72, 96, 98, 99].

In general, we may categorize the mining approaches into the generate-and-test
framework and the pattern-growth one, for sequence databases of horizontal layout.
Typifying the former approaches [6, 51, 80], the GSP (Generalized Sequential Pattern)

33

algorithm [80] generates potential patterns (called candidates), scans each data
sequence in the database to compute the frequencies of candidates (called supports),
and then identifies candidates having enough supports as sequential patterns. The
sequential patterns in current database pass become seeds for generating candidates in
the next pass. This generate-and-test process is repeated until no more new candidates
are generated. When candidates cannot fit in memory in a batch, GSP re-scans the
database to test the remaining candidates that have not been loaded into memory.
Consequently, GSP scans at least k times of the on-disk database if the maximum size
of the discovered patterns is K, which incurs high cost of disk reading. Despite that
GSP was good at candidate pruning, the number of candidates is still very huge that
might impair the mining efficiency.

The PrefixSpan (Prefix-projeeted Sequential pattern mining) algorithm [67],
representing the pattern-growth- methodology [29, 67, 70], finds the frequent items
after scanning the sequence database.once.—Ihe,database is then projected, according
to the frequent items, into several smaller. databases. Finally, the complete set of
sequential patterns is found by recursively growing subsequence fragments in each
projected database. Two optimizations for minimizing disk projections were described
in [67]. The bi-level projection technique, dealing with huge databases, scans each
data sequence twice in the (projected) database so that fewer and smaller projected
databases are generated. The pseudo-projection technique, avoiding physical
projections, maintains the sequence-postfix of each data sequence in a projection by a
pointer-offset pair. However, according to [67], maximum mining performance can be
achieved only when the database size is reduced to the size accommodable by the
main memory by employing pseudo-projection after using bi-level optimization.
Although PrefixSpan successfully discovered patterns employing the

divide-and-conquer strategy, the cost of disk I/O might be high due to the creation and
34

processing of the projected sub-databases.

Besides the horizontal layout, the sequence database can be transformed into a
vertical format consisting of items’ id-lists [11, 64, 98]. The id-list of an item is a list
of (sequence-id, timestamp) pairs indicating the occurring timestamps of the item in
that sequence. Searching in the lattice formed by id-list intersections, the SPADE
(Sequential PAttern Discovery using Equivalence classes) algorithm [98] completed
the mining in three passes of database scanning. Nevertheless, additional computation
time is required to transform a database of horizontal layout to vertical format, which
also requires additional storage space several times larger than that of the original
sequence database.

With rapid cost down and the evidence of the increase in installed memory size,
many small or medium sized databases will fit ite the main memory. For example, a
platform with 256MB memory-may hold a database with one million sequences of
total size 189MB. Pattern mining ipé€rformed, directly in memory now becomes
possible. However, current approaches.discover the patterns either through multiple
scans of the database or by iterative database projections, thereby requiring abundant
disk operations. The mining efficiency could be improved if the excessive disk /O is
reduced by enhancing memory utilization in the discovering process.

Therefore, we propose a memory-indexing approach for fast discovery of
sequential patterns, called MEMISP (MEMory Indexing for Sequential Pattern
mining). The features of the MEMISP approach lie in no candidate generation, no
database projection, and high CPU and memory utilization. MEMISP reads data
sequences into memory in the first pass, which is the sole pass, of database scanning.
Through index advancement within an index set comprising pointers and position
indices to data sequences, MEMISP discovers patterns by a recursive

finding-then-indexing technique. When the database is too large to fit into the main

35

memory, we still can mine patterns efficiently in two database scans by running
MEMISP with a partition-and-validation technique discussed in Section 3.4.3. The
conducted experiments show that MEMISP runs faster than both GSP and PrefixSpan
algorithms, whether the main memory can accommodate the database or not.

The rest of the chapter is organized as follows. The problem is formulated in
Section 3.2 and related work is reviewed in Section 3.3. Section 3.4 presents the
MEMISP algorithm. The experimental results of mining memory-accommodable
databases and extra-large databases are described in Section 3.5. We discuss the

performance factors of MEMISP in Section 3.6 and conclude the study in Section 3.7.

3.2 Problem Statement

A sequence s, denoted by <eje,..:8r>, 1s an ordered set of n elements where each
element e; is an itemset. An itemset, denoted by (X1, X2,..., Xq), is @ nonempty set of (
items, where each item x; is represented by a literal. ‘Without loss of generality, items
in an element are assumed in lexicographic order. The size of sequence S, written as 3|,
is the total number of items in all the elements in S. Sequence S is a k-sequence if || =
k. For example, <(a)(c)(a)>, <(a,c)(a)>, and <(b)(a,e)> are all 3-sequences. A
sequence S = <ei€...e,> is a subsequence of another sequence s' = <ej'e;'...en"™ if
there exist 1 < 1< i< ...< iy <msuch thate; c e;',e; cej,), ..., and e, C ;.
Sequence s' contains sequence S if S is a subsequence of s'. For example,
<(b,c)(c)(a,c,e)> contains <(b)(a,e)>.

Each sequence in the sequence database DB is referred to as a data sequence.
The support of sequence s, denoted by s.sup, is the number of data sequences
containing S divided by the total number of data sequences in DB. The minsup is the
user specified minimum support threshold. A sequence s is a frequent sequence, or

called sequential pattern, if s.sup > minsup. Given the minsup and the sequence

36

database DB, the problem of sequential pattern mining is to discover the set of all
sequential patterns.

An example database DB having 6 data sequences is listed in the first column in
Table 3-1. Take the data sequence C6 for instance. It has three elements (i.e. three
itemsets), the first having items b and ¢, the second having item ¢, and the third
having items a, € and e. The support of <(b)(a)> is 4/6 since all the data sequences,
except C2 and C3, contain <(b)(a)>. The <(a,d)(a)> is a subsequence of both C1 and
C4, thus <(a,d)(a)>.sup = 2/6. Given minsup = 50%, <(b)(a)> is a sequential pattern
while <(a,d)(a)> is not. The set of all sequential patterns is shown in the second
column in Table 3-1.

Table 3-1. Example sequence database DB and the sequential patterns

Sequence Sequential'patterns (Minsup=50%)

C1:<(a,d)(b,c)(a,e)> <(a)>9 <(a)(a) =l <(a)(b)>a <(a,c)>, <(a,c)(a)>, <(a:e)>=

_ <(b)>; <(b)(@)>, <(b)(a,c)>, <(b)(e)>, <(b,c)>, <(b,c)(a)>,

Com@ENbD>) e <boE). <b.d)>
C3=<@ DM () ()@ <(eXa.e) <(c)b)>, <(c)(e)>,
Cd=<(a,b,c,d)(@)(b)> |<(d)>;=(d)(@)>; <(d)(b)> <(d)(c)>,
C5=<(b,c,d)(a,c,e)(a)> |<(e)>
C6=<(b,c)(c)(a,c,e)>

3.3 Related Work

The problem of sequential pattern mining is first described and solved in [6] with the
AprioriAll algorithm. In subsequent work, the same authors proposed the GSP
algorithm [80] that outperforms AprioriAll. The GSP algorithm makes multiple passes
over the database and finds frequent k-sequences at k-th database scanning. Initially,
each item is a candidate 1-sequence for the first pass. Frequent 1l-sequences are
determined after checking all the data sequences in the database. In succeeding passes,
frequent (k—1)-sequences are self-joined to generate candidate k-sequences, and then

any candidate k-sequence having a non-frequent sub-sequence is deleted. Again, the

37

supports of candidate k-sequences are counted by examining all data sequences, and
then those candidates having minimum supports become frequent sequences. This
process terminates when there is no candidate sequence any more. Owing to the
generate-and-test nature, the number of candidates often dominates the overall mining
time. However, the total number of candidates increases exponentially as the minsup
decreases, even with effective pruning techniques. The PSP (Prefix Sequential Pattern)
algorithm [51] is similar to GSP, except that the placement of candidates is improved
by prefix tree arrangement to speed up the discovery.

The FreeSpan (Frequent pattern-projected Sequential Pattern Mining) algorithm
was proposed to mine sequential patterns by a database projection technique [29].
FreeSpan first finds the frequent items after scanning the database once. The sequence
database is then projected, according to the frequent items, into several smaller
databases. Finally, all sequential’ patterns+ are found by recursively growing
subsequence fragments in each-database.-Based on the similar projection technique,
the authors proposed the PrefixSpan. algorithm [67]. PrefixSpan outperforms
FreeSpan in that only effective postfixes are projected. The bi-level and
pseudo-projection techniques further enhance PrefixSpan to project fewer
sub-databases. However, the total size of the projected databases might be several
times larger than the size of the original database.

In addition, the SPADE algorithm finds sequential patterns using vertical database
layout and join-operations [98]. Vertical database layout transforms data sequences
into items’ id-lists. The id-list of an item is a list of (Sequence-id, timestamp) pairs
indicating the occurring timestamps of the item in that sequence-id. The list pairs are
joined to form a sequence lattice, in which SPADE searches and discovers the patterns
[98]. Nevertheless, transforming the naturally horizontal database into vertical

demands more space than the original since a sequence-id is repeated in several items’

38

id-lists. The gain by vertical approach might diminish owing to the additional space
and transforming time required while mining large databases.

In order to boost the mining performance, memory utilization should be increased
to minimize disk operations, especially when dealing the ever-increasing sequence

databases. Therefore, we propose the MEMISP algorithm, as described next.

3.4 The Proposed Method

In this section, the proposed method for sequential pattern mining, named MEMISP,
is described. MEMISP uses a recursive find-then-index strategy to discover all the
sequential patterns from in-memory data sequences. MEMISP first reads all the data
sequences into memory and counts the supports of 1-sequences (i.e. sequences having
only one item). Next, an index setfor each frequent 1-sequence is constructed and
then frequent sequences are found using the'data sequences indicated by the index set.
The algorithm is illustrated by mining an example database in Section 3.4.1. Section
3.4.2 presents the algorithm. The*procedure for*dealing with extra-large databases
beyond main memory space is described in Section 3.4.3. Section 3.4.4 discusses the
differences between MEMISP and PrefixSpan. Some implementation issues are

discussed in Section 3.4.5.
3.4.1 Mining sequential patterns by MEMISP: an example

Definition 3-1(Type-1 pattern, type-2 pattern, stem, P-pat) Given a pattern p and a
frequent item X in the sequence database DB, o’ is a type-1 pattern if it can be formed
by appending the itemset (X) as a new element to p, and is a type-2 pattern by
extending the last element of p with x. The frequent item X is called the stem-item
(abbreviated as stem) of the sequential pattern p’ and p is the prefix pattern

(abbreviated as P-pat) of p’.

39

For example, given a pattern <(a)> and the frequent item b, we have the type-1
pattern <(a)(b)> by appending (b) to <(a)> and the type-2 pattern <(a,b)> by
extending <(a)> with b. The <(a)> is the P-pat and the b is the stem of both <(a)(b)>
and <(a,b)>. As to a type-2 pattern <(c)(a,d)>, its P-pat is <(c)(a)> and its stem is d.
Note that the null sequence, denoted by <>, is the P-pat of any frequent 1-sequence.
Clearly, any frequent K-sequence is either a type-1 pattern or a type-2 pattern of a
frequent (k-1)-sequence.

Example 3-1: Given minsup = 50% and the DB in Table 3-1. MEMISP mines the
patterns by the following steps.
Step 1. Read DB into memory and find frequent 1-sequences. We accumulate the
count of every item while reading data sequences from DB into memory. The
in-memory DB is referred to as MDB hereafter:.Hence, we have frequent items a
(count=5 for appearing in 5 data.sequences-Cl, C3, C4, C5, C6), b (count=6), C
(count=6), d (count=5), and e (count=3).-All-these frequent items are stems of the
type-1 patterns with respect to the P-pat. = <>.L.oop steps 2 and 3 on each stem to
find all the sequential patterns.
Step 2. Output the sequential pattern p formed by current P-pat and stem x, and
construct the index set p-idx. We output a sequential pattern p generated by current
P-pat and stem X. Next, we allocate a (ptr_ds, pos) pair for each data sequence ds in
MDB if and only if ds contains X, where ptr_ds is a pointer to ds and pos is the first
occurring position of X in ds. The set of these (ptr_ds, pos) pairs is called index set
p-idx.
Take stem x = a for example. Now, the P-pat is <>. We output the type-1
sequential pattern p = <(a)> and construct the index set <(a)>-idx as shown in Fig.
3-1-(1). For instance, the pos is 1 for Cl=<(a,d)(b,c)(a,e)> and 4 for

C6=<(b,c)(c)(a,c,e)>.
40

(1) <(a)>-idx (4) <(a,c)>-idx (7) <(b)>-idx
1 | o <(a,d)(b,c)(a,e)> <(a,d)(b,c)(a,e)> | |3 |e* <(a,d)(b,c)(a,e)>
1 el | <(d:8)(c,D)(b,d)> 5 [l | <@e)cDHb.d> |[5 |eip <(dg)(c.Db.d)>
[Tel | “@ONDEb)> 3 el | “@O@DMb>][5 | e <(ac)d)(D(D)>
7 <(a,b,c,d)(a)(b)> 2 <@b,cd)(@b)> |5 i <(ab.cd)(@)b)>
= <(bc.d)@ce)a)>| [0 <(bc.d)(@c.e)@)> | [] To17 <(b.c.d)(ac.e)(a)>
alllay <(b,C)(C)(a,C,C)> 5.\'* <(b,C)(C)(a,C,e)> 1 ./' <(b,c)(c)(a,c,e)>
(2) <(a)(2)>-idx (5)<@c)@>-idx
<(a,d)(b,c)(a,e)> <(a,d)(b,c)(a,e)>
5 <(dg)(c,h)(b.d)> <(d,g)(c,f)(b,d)>
5 [| <@ONDDDb)> <(a,c)(d)(H)(b)>
* <(a,b,c,d)(a)(b)> 5 |+ <(a,b,c,d)(a)(b)>
> <(b,c,d)(a,c,e)(@)> o » <(b,c,d)(a,c.e)(a)>
<(b,c)(c)(a,c,e)> <(b,c)(c)(a,c,e)>
(3) <(a)(b)>-idx (6) <(a,e)>-idx
<(a,d)(b,c)(a,e)> __________________________ A <(a,d)(b,c)(a,e)>
3 <(d,g)(C,f}(b,d)> <(d,g)(C,f)(b,d)> E - index-set
[5 [«17 <@c)d)(f)(b)> <(ac)d)Hby> |
6 ot <(a,b,c,d)(a)(b)> <(a,b,c,d)(a)(b)> : MDB
b <(b,c,d)(a,c,e)(a)> {1 <(b,c,d)(a,c,e)(a)> (the in-memory DB)
<(b,c)(c)(a,c,e)> <(b,c)(c)(a,c,e)>

Fig. 3-1. Some index sets-and the in-memory DB
Step 3. Use index set p-idx and:MDB to find stems with respect to P-pat = p. Any
sequential pattern having current pattern pas its P-pat will be identified in this step.
Now, the ptr_ds of each (ptr_ds, pos) pair in p-idX points to a data sequence ds that
contains p. Any item appearing after the pos position in ds could be a potential stem
(with respect to p). Thus, for every ds existing in p-idX, we increase the count of such
item (item appearing after the pos in ds) by one, and then identify the stems having
sufficient support counts.
Let us continue with <(a)>-idx. The pos of the (ptr_ds, pos) pointing to C1 is
1. Only those items occurring after position 1 in C1 need counting. We increase
the count of potential stem d (for potential type-2 pattern <(a,d)>) by one (also
potential stem e for <(a,e)>). We also increase the count of potential stem b (also
C, a, and e) for potential type-1 pattern <(a)(b)> (<(a)(c)>, <(a)(a)>, and
<(a)(e)>) by one. Analogously, items occurring after position 1, 1, 4, 4 for data
sequences C3, C4, C5, and C6 are counted, respectively. After validating the

41

support counts, we obtain stems a, b of type-1 patterns and stems c, e of type-2
patterns with respect to P-pat = <(a)>. Steps 2 and 3 will be recursively applied
on the stems a, b, ¢, and e with P-pat = <(a)>. We proceed the mining with stem a
and P-pat = <(a)> as follows.

Applying step 2 generates and outputs the sequential pattern p = <(a)(a)>.
Again, a new (ptr_ds, pos) pair for a data sequence ds will be inserted into p-idx
(<(a)(a)>-idx) if and only if ds contains p. While constructing <(a)(a)>-idx, we
simply check the data sequences indicated by current index set, i.e. <(a)>-idx,
rather than in MDB. Assume that a pair (ptr_ds, pos) in <(a)>-idx points to ds.
The search for the occurring position of stem a (with respect to P-pat = <(a)>)
starts from position pos+1 in ds. Item a occurs at 5 in C1 and in C4, and at 7 in C5.
No entry is created for C3 and C6 since item.a cannot be found after position 1
and 4, respectively. Hence, -we. have the new index set <(a)(a)>-idx as shown in
Fig. 3-1-(2). Note that current index set-is—-pushed’ for later mining before the new
index set becomes active.

Applying step 3 with <(a)(a)>-idx and MDB, no stems can form sequential
patterns further. Therefore, this mining stops and the previous index set, i.c.
<(a)>-idx, is popped. The mining goes on with stem b. The creation and mining
of <(a)(b)>-idx outputs pattern <(a)(b)> but finds no more patterns. Next, the
<(a,c)>-idx is constructed. The result of applying step 2 with <(a,c)>-idx
generates <(a,c)> and discovers next stem a. Thus, <(a,c)>-idx is ‘pushed’ and the
<(a,c)(a)>-idx is created.

After the mining with <(a,c)(a)>-idx, which stops with nothing found but
outputs the pattern <(a,c)(a)>, the pattern <(a,e)> is generated while mining with
<(a,e)>-idx. All the subsequent find-then-index processes regarding stem a with

P-pat = <> now finish.

42

By collecting the patterns found in the above process, MEMISP efficiently discovers

all the sequential patterns.
3.4.2 The MEMISP algorithm

The central idea of MEMISP is to utilize the memory for both data sequences and
indices in the mining process. A memory size of 256MB is very common in nowadays
computer installation, which can accommodate a sequence database having one
million sequences of size 189MB as indicated in our experiments. Processing
sequences in-memory is more efficient than disk-based processing, either multiple
scans or iterative projections. MEMISP scans only one pass over the database, which
reads data sequences into memory, in the whole mining process. Starting from
sequential patterns of size one, MEMISP:then discovers all the frequent sequences of
larger size recursively by searching the set of in-memory data sequences having
common sub-sequences. Fig. 3-2 outlines the proposed MEMISP algorithm.

In order to speed up mining by focused search, we construct a set grouping the
data sequences to check. A data sequence ds participates in the finding of pattern p’
only when ds contains the P-pat (prefix-pattern) p of pattern p’. Consequently, for
each ds containing p, we create a pointer ptr_ds pointing to ds in the set for exploring
patterns p’ having P-pat p. The set is denoted by p-idx. For each data sequence ds
pointed in the p-idx, we associate ptr_ds with a position index pos indicating where
(in ds) should we begin to find the potential stems. That is, p-idx is the set of (ptr_ds,
pos) pairs for discovering patterns whose P-pat = p.

Take the data sequence C6=<(b,c)(c)(a,c,e)> in memory for instance. We may
find <(b)> occurring at position 1, <(b,c)> occurring at composite position (1, 2), and
<(b,c)(a)> occurring at composite position (1, 2, 4). Assume that items b, ¢, and a are

frequent. While mining patterns having P-pat <(b)>, we include C6 in the index set

43

Algorithm MEMISP

Input: DB = a sequence database; minsup = minimum support.
Output: the set of all sequential patterns.
Method:
1. Scan DB into MDB (the in-memory DB), find the set of all frequent items.
2. For each frequent item X,
(1) form the sequential pattern p = <(x)> and output p.
(ii) call IndexSet(x, <>, MDB) to construct the index set p-idx.
(iii) call Mine(p, p-idx) to mine patterns with index set p-idx.

Subroutine IndexSet(x, p, range-set)

Parameters: x = a stem-item; p = a (P-pat) pattern; range-set = the set of data
sequences for indexing. /* If range-set is an index set, each data sequence for
indexing is pointed by the ptr_ds of the (ptr_ds, pos) entry in the index set */

Output: index set p'-idx, where o' denotes the pattern formed by stem-item X and
P-pat p.

Method:

1. For each data sequence ds in range-set,
(1) if range-set = MDB then start-pos = 0; othetwise start-pos = pos.
(i1) starting from position«(Start-pos+1)in ds,
if the stem-item X is first found-at-pesition pos in ds, insert a (ptr_ds, pos)
pair to the index set p-idx, where ptr_.ds points to ds.
2. Return index set p'-idx.

Subroutine Mine(p, p-idx)
Parameter: p= a pattern; p-idx = an index set.
Method:
For each data sequence ds pointed by the ptr_ds of an entry (ptr_ds, pos) in p-idx,
(i) starting from position (pos+1) to |ds| in ds, increase the support count of each
potential stem X by one.
2. Find the set of stems X having enough support count to form a sequential pattern.
3. For each stem X,
(1) form the sequential pattern o' with P-pat p and stem X, output po'.
(ii) call IndexSet(x, p, p-idx) to construct the index set p'-idx.
(iii) call Mine(p', p'-idx) to mine patterns with index set p'-idx.

Fig. 3-2. Algorithm MEMISP

with pos=1, suggesting that only items appearing after position 1 in C6 should engage

in the mining. Similarly, C6 will be included in the index set for patterns having P-pat

44

<(b,c)> with pos=2, P-pat <(b,c)(a)> with pos=4. As the discovered P-pat becomes
longer, the index set will contain fewer data sequences to process. Moreover, the
number of items in each data sequence remaining to be processed becomes fewer.
Through recursive finding-then-indexing, the proposed MEMISP algorithm efficiently

discovers sequential patterns.
3.4.3 Dealing with extra-large databases by database partitioning

With more and more memory installed, many databases will fit into the main memory
without difficulty. Still, some databases might be too large for the main memory to
accommodate in a batch. In this case, the sequential patterns are discovered by a

partition-and-validation technique, as shown in Fig. 3-3.

DB

apply MEMISP to find frequent

sequences in each partition _
first scan T T ﬁ’ C=UF,1<i<p

F, F, R F, F,is saved on disk

compute supports of the patte
inC

DB: the sequence database

D;: a partition of DB which fits in memory
F,: set of frequent sequences in partition D,
C: set of potential patterns, C=UF;, 1 <i<p

—5 True patterns found

second scan

Fig. 3-3. Partition the database and discover patterns for extra-large databases

The extra-large database DB is partitioned so that each partition can be handled
in main memory by MEMISP. The number of partitions is minimized by reading as
many data sequences into main memory as possible to constitute a partition. The set

of potential patterns in DB is obtained by collecting the discovered patterns after

45

running MEMISP on these partitions. The true patterns can be identified with only one
extra database pass through support counting against the data sequences in DB one at
a time. Therefore, we may employ MEMISP to mine databases of any size, of any
minimum support, in two passes of database scanning.

In comparison with other approaches, MEMISP minimizes the total number of
complete database passes to two without requiring any additional storage space.
SPADE needs to scan the database three times and demands disk storage for the
transformed vertical database. GSP repeats at least k times to discover the frequent
k-sequences. PrefixSpan often creates and processes the projected databases that

amount to several times the original database size.
3.4.4 Differences between MEMISP and PrefixSpan

The PrefixSpan algorithm propesed in [67] can~be optimized with bi-level and
pseudo-projection techniques. Pseudo-projection technique avoids redundant pieces of
postfixes projected when the database/projected database can be held in main memory.
PrefixSpan and MEMISP do differ, although'the two algorithms both utilize memory
for fast computation. The differences are illustrated in the following two cases: (1)
when the database can be held in main memory (2) when the database cannot be held
in main memory.

When the database can be held in main memory, the two algorithms find the
patterns in a similar, but still different way. Both algorithms load the database into
memory, but disagree with the processing of in-memory sequences. PrefixSpan
algorithm removes in-frequent items and greatly shrinks projected sequences. The
example 3 in [67] clearly demonstrates such projections so that item g is not projected
in Table 2 of [67]. Pseudo-projection maintains the sequence-postfix of each data

sequence in memory by a pointer-offset pair. The detailed implementation of

46

PrefixSpan with the pseudo-projection technique is not available in the literature. To
sustain the spirit of PrefixSpan, in-frequent items are to be removed when
pseudo-projection is applied. For the in-memory sequences, removing in-frequent
items could be done, for example, by copying only frequent items in postfixes or
masking out the in-frequent items. Therefore, besides the index tables, an intermediate
in-memory working database must be generated to present the physically projected
sub-database in each iteration. No matter what the implementation is, the postfixes
(sequences) require rearrangements.

MEMISP algorithm removes no items from the in-memory sequences. No
intermediate in-memory database generation and no rearrangement of sequences are
required at all. Single sole in-memory sequence database as originally loaded is used
throughout the whole process. We'shift the index.without modifying any in-memory
sequence to skip the in-frequent-items in each.teration. Indeed, the (ds_ptr, pos) index
pairs in MEMISP function similarly—as—the (pointer, offset) index pairs in
PrefixSpan+pseudo projection for'sequence-processing. We believe that fast index
advancement eliminate the need to process the in-frequent items.

When the database cannot be held in main memory, MEMISP is totally different
from PrefixSpan. PrefixSpan, either with pseudo-projection or not, now generates and
scans sub-databases that might amount to several times the original database size.
Even with bi-level projection technique, PrefixSpan still might suffer from low
support value for generating many projected sub-databases before pseudo-projection
could help. With respect to any support value, MEMISP scans the database only twice,
and no more, without generating any intermediate databases.

Bi-level projection is proposed to reduce the number and the size of projected
databases, at the cost of doubled scanning to fill the S-matrix (see Lemma 3.3 [67]).

Dealing extra-large databases with bi-level projection means that the entire database

47

is scanned at least twice at first. Next, if each projected database could be luckily fit
into the memory, pseudo-projection can be applied. This gives the fewest scans, which
is more than twice in total, PrefixSpan can do. Otherwise, re-applying bi-level
projection could result in the total number of scans to be far more than two.

MEMISP partitions the extra-large database to several sub-databases; each
sub-database can be fit into the memory. The first scan, which mines each
sub-database independently by MEMISP, identifies the potential candidates. The
second scan verifies whether a candidate has sufficient support to be frequent.
MEMISP never scans the database, no matter how large the database is, more than
twice for any value of support. In addition, MEMISP never generates any intermediate
database during the mining process. The partition-based approach is used in [73] for
association rule mining. However,y MEMISP 1s the first algorithm that successfully

adapts the partitioning technique to.the mining of sequential patterns in the literature.
3.4.5 Implementation issues

In common implementations, a data sequence is usually represented as a linked list of
itemsets in memory. Such a structure might be suitable for algorithms that access a
single data sequence for support counting at a time. In order to facilitate fast index
construction and speed up searching from specific position (in a data sequence),
MEMISP uses variable-length arrays to hold the data sequences in memory. Data
sequence C1 = <(a,d)(b,c)(a,e)>, for instance, is coded as the array =[a, d, $, b, c, $, a,
e, $], where $ indicates the end of an element. Therefore, both data sequences and
index sets benefit from the array representation for the reduced storage space.
Efficient searching from specific position of a data sequence is also achieved.

When mining databases that require partitioning, a percentage of main memory

(like 5%) must be reserved for holding variables, index sets, etc. In order to signal that

48

main memory cannot accept data sequence any more, the amount of available
physical memory is checked periodically while reading the database. Once free
memory space is below the predefined percentage, MEMISP starts mining the
memory partition and the remaining data sequences will be handled in subsequent

reading.

3.5 Performance Evaluation

Extensive experiments were conducted to assess the performance of the MEMISP
algorithm. The experiments used an 866 MHz Pentium-III PC with 256MB memory
running the Windows NT. Like most studies on sequential pattern mining [6, 11, 13,
29, 51, 67, 98], the synthetic datasets for these experiments were generated using the
conventional procedure described®in [6]. We'.briefly review the generation of
experimental data in Section 3.5.1. Section'3.5.2 compares the results of mining by
GSP, PrefixSpan, and MEMISP algorithms, To justify that MEMISP handles large

databases as well, scale-up experiments are preseénted in Section 3.5.3.
3.5.1 Generation of experimental data

The procedure described in [6] models retailing environment, where each customer
purchases a sequence of itemsets. Such a sequence is referred to as a potentially
frequent sequence (abbreviated as PFS). Still, some customers might buy only some
of the items from a PFS. A customer’s data sequence may consist of items from
several PFSs. The PFSs are composed of potentially frequent itemsets (abbreviated as
PFIs). A table of total N; PFIs (denoted by /1) and a table of total Ns PFSs (denoted
by 7s) were generated before picking items for the transactions of customer
sequences.

Table 3-2 summarizes the symbols and the parameters used in the experiments.

49

The procedure of data sequence generation [6] is reviewed here, first the generation of
PFls and PFSs, and then the customer sequences. The number of itemsets in a PFS is
generated by picking from a Poisson distribution with mean equal to |S|. The itemsets
in a PFS are picked from table /7. In order to model that there are common itemsets in
frequent sequences, subsequent PFSs in /s are related. In the subsequent PFS, a
fraction of itemsets are chosen from the previous PFS and the other itemsets are

picked at random from 7;. The fraction corrs, called correlation level, is decided by

an exponentially distributed random variable with mean equal to z¢ory, . Itemsets in

the first PFS in /5 are randomly picked. The generations of PFI and 7/ are analogous

to the generations of PFS and 7, with parameters N items, mean |l|, correlation level

corryand mean oy, correspondingly.

Customer sequences are geherated as follows. The number of transactions for the
next customer and the average:size of transactions for this customer are determined
first. The size of the customer’s data sequence is picked from a Poisson distribution
with mean equal to |C|. The average size of the transactions is picked from a Poisson
distribution with mean equal to |T|. Items are then assigned to the transactions of the
customer. Each customer is assigned a series of PFSs from table /.

The assignment of PFSs is based on the weights of PFSs. The weight of the PFS,
representing the probability that this PFS will be chosen, is exponentially distributed
and then normalized in such a way that the sum of all the weights is equal to one.
Since all the itemsets in a PFS are not always bought together, each sequence in /5 is
assigned a corruption level crups. When selecting itemsets from a PFS to a customer
sequence, an itemset is dropped as long as a uniformly distributed random number

between 0 and 1 is less than crups. The crups is a normally distributed random

variable with mean ¢ p . and variance o¢pp - The assignment of PFIs (from /1) to

50

Table 3-2. Parameters used in the experiments

Parameter Description Value
. 200K, 500K, 1000K,
IDB| [Number of data sequences in database DB 10000K
Cl Average size (number of transactions) per 10,20
customer
| Average size (number of items) per transaction |2.5, 5
S| Average size of potentially sequential patterns |4, 8
|| Average size of potentially frequent itemsets 1.25,2.5
N, Number of potentially frequent itemsets 25000
Ns Number of possible sequential patterns 5000
N Number of possible items 10000
I3 The table of potentially frequent sequences (PFSs)
L The table of potentially frequent itemsets (PFls)
corrs |Correlation level (sequence), exponentially P —0.25
distributed cors
crups Corruption level . (sequence)s:. hormally|#crups =0.75,
distributed Ocrups =0-1
corr, C.orr.elation level = (itemset); exponentially Heorr, =025
distributed
Herup =0.75,
. . b . |
Crupi |Corruption level (itemset), normally distributed
Ocrup, =0.1
a PFS is processed analogously with parameters crupy , mean pgnp and

variance ogyyp, ~ correspondingly.

All datasets used here were generated by setting N = 10000, Ns = 5000, N, =

25000. A dataset created with |C| = o, |T| = S, |S| = z, and |l| = ¢ is denoted by the

notation Ca-TS-Sy-16. In addition, pieryp, and peryp were both set to 0.75,

Ocrups and ocpyp, were both set to 0.1. The eqr and e, were both set to

0.25.

51

3.5.2 Execution times of GSP, PrefixSpan, and MEMISP algorithms

The total execution times of sequence mining with various minsup values by
algorithms GSP, PrefixSpan, and MEMISP using horizontal layout are compared in
the experiments. The PrefixSpan was implemented without further optimizations like
pseudo-projection or bi-level projection. The SPADE algorithm was not implemented
in the comparison because additional storage space and computation time are required
to transform the database to vertical format.

Dataset C10-T2.5-S4-11.25 having 200,000 data sequences (37.6MB) was used
in the first experiment. Fig. 3-4 shows that the total execution times of the three
algorithms are nearly the same for minsup = 2% and 1.5% because only few (less than
200) patterns have enough supports. Besides, the discovered patterns were all short
patterns of size one. Howevery the perfermance gaps become clear as minsup
decreases. In the experiment, MEMISP and PrefixSpan are faster than GSP for all
minsup values. MEMISP outperforms PrefixSpan about 13%~38% for low minsup.

Next, the characteristics of datasets are changed. The results of execution on
dataset C20-T2.5-S4-11.25 (|DB|=200K, 76.3MB) is shown in Fig. 3-5. The total
execution time of running GSP was too long to be shown in Fig. 3-5 and in the
subsequent figures. With respect to the same minsups, the doubled |C| generated
longer data sequences and produced more patterns, thereby requiring more execution
time. The total execution time of running PrefixSpan is about 1.2 to 3.3 times of
running MEMISP. The efficiency of PrefixSpan was slowed down by fast growth of
the projected databases. For example, PrefixSpan processed total 4.9 times, and 21
times the size of DB when minsup = 2% and misup = 0.75%, respectively. The results
of execution by changing |T| from 2.5 to 5, |S| from 4 to &, and |l| from 1.25 to 2.5

have the similar effects. Fig. 3-6, 3-7, and 3-8 display that MEMISP outperforms

52

PrefixSpan. Fig. 3-9 shows that the performance of running with a bigger |T| and a
bigger |l| (|T|=7.5, |l|=5) is consistent with previous experiments. The performance
gain resulted from in-memory processing of the MEMISP algorithm. In summary,

MEMISP is faster than PrefixSpan, ranging from 1.2 to 3.3 times, for various data

characteristics.
C10-T2.5-S4-11.25, |DB [=200K
1500 N =
— N . | —e—MEMISP
o 1250 = .
2 \ | —-m —PrefixSpan
> 1000 |- N | s csp
T -
o N
> AN
o 500 AN
=
S 250
=
0
minsup (%) 0.25 0.5 0.75 1 1.5 2

Fig. 3-4. Total execution times with respect to various minsup values

C20-T2.5-S4-11.25, |DB [=200K
8000

7000 | S
6000 RN —— MEMISP

5000 - — -m — PrefixSpan
4000
3000 |
2000 |
1000 |

0
minsup (%) 0.25 0.5 0.75 1 1.5 2

Total exe. time (sec.)

Fig. 3-5. Comparisons of execution times on dataset C20-T2.5-S4-11.25

53

Total exe. time (sec.)

8000
7000
6000
5000
4000
3000
2000
1000

0

minsup (%)

C20-T5-S4-11.25, |DB|=200K

AN —e— MEMISP

— & — PrefixSpan

0.25

0.5 0.75 1 1.5 2

Fig. 3-6. Comparisons of execution times on dataset C10-T5-S4-11.25

Total exe. time (sec.)

minsup (%)

9000

8000
7000
6000

5000 |
4000 |

3000

2000
1000

0

C20-T2.5-S8-11.25, |DB |=200K

\ —— MEMISP

= — -8 — PrefixSpan

0.25

0.5 0.75 1 1.5 2

Fig. 3-7. Comparisons of execution times on dataset C10-T2.5-S8-11.25

Total exe. time (sec.)

minsup (%)

9000 |

8000
7000
6000

5000
4000

3000

2000

1000
0

C20-T2.5-S4-12.5, |DB|=200K

n
\
\
\ —e— MEMISP
AN — = — PrefixSpan
\
\
. m__
-
\\‘ \\i\
0.25 0.5 0.75 1 15 2

Fig. 3-8. Comparisons of execution times on dataset C10-T2.5-S4-12.5

54

C20-T7.5-S4 -5, DB [=200K

16000 \

14000 \

N —&— MEMISP
12000 N . 1
10000 \ —-—m--PrefixSpan | |
8000 |
6000
4000
2000 |

0
minsup (%) 0.5 0.75 1 L5 2

Total exe. time (sec.)

Fig. 3-9. Comparisons of execution times on dataset C10-T7.5-S4-15
3.5.3 Scale-up experiments

The maximum size of the datasetsinrused. in Section 3.5.2 is 76.3MB, the
C20-T2.5-S4-11.25 dataset with 200,000 sequences. Consequently, all the data
sequences can fit into the 256MB main memory. The performance of MEMISP is very
stable even when minsup is very.low for large databases, if the database can fit into
memory. Given minsup = 0.25%, MEMISP can perform well in processing one
million data sequences of total size 189MB with a 256MB main memory in the
experiments. Nevertheless, just for the mining of 100K sequences with minsup =
0.5%, GSP scanned the database 4 times to test the 4.4 million candidates in pass two
(more passes to go), and PrefixSpan generated sub-databases which amounts to 9.6
times the size of the original database.

In order to justify the scalability of MEMISP, the next experiments increased the
number of data sequences, from 1000K to 10,000K with C10-T2.5-S4-11.25. In Fig.
3-10, the total execution times are normalized with respect to the execution time for
|DB| = 1000K. The size of the dataset having 1000K sequences was 189MB so that

MEMISP discovered patterns in a single pass without partitioning. Other datasets

55

were mined by the partition-and-validation technique as described in Section 3.4.3.
For example, the dataset of |DB| = 10,000K of size 1.8GB was mined by 10 partitions.
Given minsup = 0.75% with 10 million sequences, GSP could not complete the
mining in a reasonable time. PrefixSpan created the projected databases of size to the
amount of 11.4 times the original database size. Though Fig. 3-10 shows that both
PrefixSpan and MEMISP are linearly scalable with the number of data sequences, but

MEMISP has better scalability.

C10-T2.5-S4-11.25, minsup =0.75%

19

17 —+— MEMISP -
215 _ o
g 13 —m — PrefixSpan =’
=
(]
(0]
s
o
B
B
o
~

1 2 3 4 5 6 7 8 9 10
|IDB | (million sequences)

Fig. 3-10. Linear scalability of MEMISP vs. PrefixSpan

3.6 Discussion

We summarize the factors contributing to the efficiency of the proposed MEMISP
algorithm by comparing with the well-known GSP and PrefixSpan algorithms.

e One pass database scanning. MEMISP reads the original database only once,

except for extra-large databases described in Section 3.4.3. In the experiments,

a database with one million data sequences can fit into a platform with 256MB

memory so that the database was scanned only once by MEMISP in the

mining. However, GSP must read the database at least k times, assuming that

56

the maximum size of the discovered patterns is k. PrefixSpan reads one pass
over the original database, and then writes and reads once for each projected
sub-database. In some cases such as low minsup, the total size of
sub-databases might be several times larger than the size of the original
database.

No candidate generation. MEMISP discovers patterns directly from data
sequences in-memory by index advancement. In contrast to GSP, MEMISP
generates no candidates so that the time in candidate generation and testing are
saved. Moreover, MEMISP works well even with small memory since the
unknown sized (and often huge) space for candidate storage is unnecessary.

No database projection. The pure and simple index advancing in MEMISP
creates no new databases so that the intetmediate storage, which PrefixSpan
needs, is not needed here. Note that MEMISP-and PrefixSpan will have similar
performance in mining @ .memory-accommodable database if the
pseudo-projection technique[67].is used.in PrefixSpan. However, according to
[67], pseudo-projection is not efficient if it is used for disk-based accessing,
and should be employed after bi-level optimization [67] having reduced the
database size to the main memory accommodable size.

Focused search and effective indexing. MEMISP considers those data
sequences indicated by current index set only instead of searching every data
sequence in the database. Furthermore, each position index keeps moving
forward along a data sequence as the discovered pattern gets longer.
Consequently, fewer and fewer items in a data sequence need to be considered
as a prefix pattern getting longer.

Compact index storage. MEMISP requires very compact storage for the

index sets. In an index set, the maximum number of indices required equals to

57

the number of data sequences, no matter how small the minsup value is.
Assume that the database has m million sequences. In a 4-byte addressing
mode, MEMISP demands maximum (4+4)*m MB for an index set. The
required total memory would be less than k*(8*m) MB for discovering the
frequent k-sequences with respect to any minsup value. Nevertheless, the
memory requirement for storing candidates in GSP can hardly be estimated
without giving the minsup. Similarly, the total size of the projected databases
in PrefixSpan increases as the minsup decreases.

e High CPU and memory utilization. PrefixSpan needs only little memory
space during the mining process. It solved the mining problem successfully by
sub-database searching, though, with possible CPU idle while projecting
sub-databases. MEMISP, by contrast, uses all the available memory and

maximizes CPU utilization.without extra disk-operations.

3.7 Summary

Speeding up the discovery of sequential patterns has been the focus of data mining
research. In this chapter, we present a memory indexing approach for fast discovery of
sequential patterns, called MEMISP. MEMISP mines the set of all sequential patterns
without generating candidates or sub-databases. The performance study exhibits that
MEMISP is more efficient than both GSP and PrefixSpan algorithms, and has good
linear scalability even for very low minimum supports. Moreover, MEMISP may
estimate the total memory required, which is independent of the specified minsup.
MEMISP scans the database at most twice with the partition-and-validation technique
even for extra large databases so that the slow disk I/O is minimized. The compact
indexing and the effective find-then-index technique together makes MEMISP a

promising approach for fast discovery of sequential patterns in sequence databases of

58

any size, even with small memory and low minsup.

In addition to sequential pattern mining, the technique could be extended to the
discovery of maximum patterns [2], constrained/generalized sequential patterns [80],
multi-dimensional patterns [70], and incremental sequence discovery after database
updating [102]. It is also interesting to integrate the proposed index sets with database

systems for efficient queries.

59

Chapter 4 Algorithm DELISP for Sequential Pattern Mining

with Time Constraints

4.1 Overview

The discovery of sequential patterns is a complicated issue in data mining [6, 11, 25,
47, 72, 80, 89, 98], as described in Chapter 3. A typical example is a retail database
where each record corresponds to a customer’s purchasing sequence, called data
sequence. A data sequence is composed of all the customer’s transactions ordered by
transaction time. Each transaction is represented by a set of literals indicating the set
of items (called itemset) purchased in the transaction. The objective is to find all the
frequent sub-sequences (called seguential-patterns)‘in the sequence database.

An example sequential pattern might be that 30% customers bought PC and
printer, followed by the purchase of-scanner-and graphics-software, and then digital
camera. Such a pattern, denoted by <(PC, printer)(scanner,
graphics-software)(digital camera)>, has three elements where each element is an
itemset. Although the issue is motivated by the retail industry, the mining technique is
applicable to domains bearing sequence characteristics, including the analysis of Web
traversal patterns, medical treatments, natural disasters, DNA sequences, and so forth
[6, 70, 92].

Sequential pattern mining [67, 70, 98] is more complex than association rule
mining [14, 84] because the patterns are formed not only by combinations of items
but also by permutations of itemsets. The number of potential sequences is by far

larger than that of potential itemsets. Given 100 possible items in the database, the

100 [100

total number of possible itemsets is Z
[

j= 2'% Let the size of a sequence be the
i=0

60

total number of items in that sequence. The number of potential sequences of size K is
Zk:(lf)OJg(l_OOjkfz [I_OOJA kii]fim (I_OOJ . The total number of potential
i\ h s\ h Jio Uk =l I

sequences, accumulating from size one to size 100 and more, could be enormous.

The issue of mining sequential patterns with time constraints was first addressed
in [80]. Three time constraints including minimum gap, maximum gap and sliding
time-window are specified to enhance conventional sequence discovery. For example,
without time constraints, one may find a pattern <(b, d, e)(a, f)>. However, the pattern
could be insignificant if the time interval between (b, d, e) and (a, f) is too long. Such
patterns could be filtered out if the maximum gap constraint is specified.

Analogously, one might discover the pattern <(b, d, e)(a, g)> from many data
sequences consisting of itemset (&, ¢) occurring one day after the occurrence of
itemset (b, d, e). Nonetheless, such.a pattern.is a.false pattern in discovering weekly
patterns, i.e. the minimum gap of 7 days.-In-ether words, the sale of (b, d, &) might not
trigger the sale of (a, g) in next week. Therefore, time constraints including maximum
gap and minimum gap should be incorporated in the mining to reinforce the accuracy
and significance of mining results.

Moreover, conventional definition of an element of a sequential pattern is too
rigid for some applications. Essentially, a data sequence is defined to support a pattern
if each element of the pattern is contained in an individual transaction of the data
sequence. However, the user may not care whether the items in an element (of the
pattern) come from a single transaction or from adjoining transactions of a data
sequence if the adjoining transactions occur close in time (within a specified time
interval). The specified interval is named sliding time-window [80]. For instance,
given a sliding time-window of 5, a data sequence < ,(a, d) t,(b) ty(c)> can support

the pattern <(a, b, d)(c)> if the difference between time t; and time t; is no greater

61

than 5. Adding sliding time-window constraint to relax the definition of an element
will broaden the applications of sequential patterns.

Although there are many algorithms dealing with sequential pattern mining [6,
51, 55, 98], few handle the mining with the addition of time constraints. The GSP
(Generalized Sequential Pattern) algorithm proposed in [80] is the first algorithm that
discovers sequential patterns with time constraints within Apriori framework. GSP
solves the problem by generating and testing candidate patterns in multiple database
scans. Candidate patterns having any non-frequent sub-sequence are pruned before
testing to reduce the search space. Still, the number of candidates might be huge [67].
Furthermore, in order to check whether a data sequence contains a certain candidate,
GSP transforms each data sequence into items’ transaction-time lists. The
transformation speeds up time-constraint related. testing but introduces overheads
during each database scanning.

Recent studies indicate that pattern-growth ~methodology could speed up
sequence mining. Despite many+ studies..on “sequential pattern mining within
pattern-growth methodology [29, 67, 68, 69, 70], no algorithm fully functionally
equivalent to GSP on time constraint issues has been proposed so far. Especially,
solving the sliding time-window constraint can be hardly found in the literature
(except in the GSP context). In this chapter, we propose a new algorithm called
DELISP (Delimited Sequential Pattern) for handling all three time constraints on
sequential patterns, introduced in the context of GSP, within the pattern-growth
framework. DELISP solves the problem by recursively growing valid patterns in
projected sub-databases generated by sub-sequence projection. To accelerate mining
by reducing the size of sub-sequences, the constraints are integrated in the projection
to delimit the counting and growing of sequences. In DELISP, the bounded projection

technique eliminates invalid sub-sequence projections caused by unqualified

62

maximum/minimum gaps, the windowed projection technique reduces redundant
projections for adjacent elements satisfying the sliding window constraint, and the
delimited growth technique grows only the patterns satisfying constraints. The
conducted experiments show that DELISP outperforms the GSP algorithm. The
scale-up experiments also indicate that DELISP has good linear scalability with the
number of data sequences.

The rest of the chapter is organized as follows. We formulate the problem in
Section 4.2 and review some related work in Section 4.3. Section 4.4 presents the
DELISP algorithm. The experimental evaluation is described in Section 4.5. We
discuss the performance improving factors in Section 4.6. Section 4.7 summarizes this

chapter.
4.2 Problem Statement

Let ¥= {1, o, ..., on} be a set of literals, called items. An itemset | = (B, 2, ..., By)
is a nonempty set of ¢ items such that |l — ¥. Asequence s, denoted by <eje;...ey>, is
an ordered list of w elements where each element e; is an itemset. Without loss of
generality, we assume the items in an element are in lexicographic order. The size of a
sequence S, written as |3], is the total number of items in all the elements in S.
Sequence s is a k-sequence if |s| = k. For example, <(a)(c)(a)>, <(a,c)(a)>, and
<(b)(a,e)> are all 3-sequences.

The sequence database DB contains |DB| data sequences. A data sequence ds
having a unique identifier sid is represented by sid/<(€1’ 1,82’ ... t.€n’>, Where element
e’ occurred at time ti, t; < t; < ...< t,. Four parameters are specified to mine the
database DB: (1) minsup (minimum support) (2) mingap (Minimum time gap) (3)
maxgap (maximum time gap) and (4) swin (sliding time-window). Given minsup, the

three constraints mingap, maxgap, swin, and the database DB, the problem is to

63

discover the set of all time-constrained sequential patterns, i.e. sequential patterns
satistying the three time constraints.

A sequence S is a time-constrained sequential pattern if s.sup > minsup, where
s.sup is the support of the sequence S and minsup is the user specified minimum
support threshold. The support of s is the number of data sequences containing s
divided by |DB|. A data sequence ds = sid/<tle1’ £,827... . 0> contains a sequence S =
<eiey...ew> if there exist integers Iy, Ug, Io, Uz, ..., Iy, uyand L <l Sup <l <up <..<

lw < Uw < n such that the four conditions hold: (1) &i c ()’ U ..U ’), 1 <i<w(2)
1 |

ty -t Sswin, 1<i<w@)t, -t <maxgap,2<i<w(4)t -t, >mingap,2<i<
U; i U; i-1 i Ui

w. Assume that tj, mingap, maxgap, and swin are all positive integers, mingap and
swin can be zero, and mingap < maxgap. Fig.4-1 visualizes how a data sequence ds

may contain the sequence S.

elements in e,i_l’ e”i-l, e'i, e“i’
ds ——® oo ° >
elements in €i1S e C
S (e,i_l’u... v, eui_l’) (e,i V. ve,)
timestamp = ! M i
I I

A |

— < swin —
“>mingap

« < maxgap

—v

sequence S = <e,e,...e,> is contained in data sequence
ds=sid/<.e;’ e, ... e, if all the items in e; can be found

1 2 n
in the element formed by combining elements between e,i’ and eui’ ,

where 1 <i <w, and the constraints Swin, mingap, maxgap are satisfied.
Fig. 4-1. Example of the sequence containment relationship
An example database DB is shown in the first column in Table 4-1. The data
sequence C1/<i(c)ss(b,f)> has two elements (itemsets), one having a single item C

occurring at time 1 and the other having items b and f occurring at time 35. Given

64

Table 4-1. Example sequence database DB and the time-constrained sequential

patterns
Sequence Time-constrained
sequential patterns Sequential patterns
Cl/<i(e)ss(b,H> (minsup = 40%, mingap =|(minsup=40%)
2, maxgap = 30, swin=2

@@ <@de<@, <@@> <@0),
C3/= D@D L™ S (e <@, @D, <

<(b,H>, <(b)H> <(c)>,<(b)(d)> <(b) D> <(c)>,

C4/<x(a)a(d)30(H)33(a)s1(H)> <(dy>, <(f> <(c)(b)>, <(c)(H)>, <(d)>,
<(d)(a)>, <(d)(b)>,
C5/<i(a,b,e)s(e)7()s(d)o(b)> <(d)(H)>, <(H)>

mingap = 2, maxgap = 30, swin = 2, C1 contains <(c)> and <(b,f)>, but it does not
contain either <(c)(b)> or <(c)(f)> since 35-1 > maxgap. Similarly, C2/<;(b)s(d)>
does not contain <(b)(d)> since 4-2 is not greater than mingap. Sequence <(a)(b)> is
contained in C3/<i(a,d)s(c)s(c)s(B)ss(a,£)>_and €5/<i(a,b,e)s(e):(f)s(d)e(b)> so that
<(a)(b)>.sup = 2/5. With the specified swin, C4/<,(a)s(d);o(f)s3(a)s:(f)> may contain
<(a,d)> (4-2 < 2) and C5 may contain'<(bjd;f)>1(9-7 < 2). Given minsup = 40%, both
<(a)(b)> and <(a,d)> are time-constrained-sequential patterns while <(b,d,f)> is not.
The set of all time-constrained sequential patterns is listed in the second column in
Table 4-1. Note that the mining of sequential patterns without time constraints, shown
in the third column in Table 4-1, is a special case with mingap = 0, maxgap = o, and

swin = 0 here.

4.3 Related Work

Much research has been focused in sequence mining without time constraints of
mingap, maxgap and swin [6, 29, 67, 75, 98]. The GSP algorithm is the first algorithm
that handles the time constrains in sequential patterns [80]. Based on the Apriori
framework [6], the patterns are found in multiple database passes. In every database

scan, each data sequence is transformed into items’ time-lists for fast finding of

65

certain element with a time tag. Since the start-time and end-time of an element (may
comprise several transactions) must be considered, GSP defines ‘contiguous
sub-sequence’ for candidate generation, and move between ‘forward phase’ and
‘backward phase’ for checking whether a data sequence contains a certain candidate
[80].

A general pattern-growth framework was presented in [69] for constraint-based
sequential pattern mining. From the application point of view, seven categories of
constrains including item, length, super-pattern, aggregate, regular expression,
duration, and gap constraints were covered. Among these constraints, duration and
gap constraints are tightly coupled with the support counting process because they
confine how a data sequence contains a pattern. Orthogonally classifying constraints
by their roles in mining, monotonic, anti-monetonic, and succinct constraints were
characterized and the prefix-monotone constraint.was introduced. The prefix-growth
framework which pushes prefix-monotone-constraints into PrefixSpan was also
proposed in [69]. However, with+ respect to' time constraints, prefix-growth only
mentioned maxgap and mingap time constraints (though duration constraint was
addressed) with no implementation details, and sliding time-window was not
considered at all.

The cSPADE algorithm [97] extends the vertical mining algorithm SPADE [98] to
deal with time constraints. Vertical mining approaches [11, 97, 98] discovers
sequential patterns using join-operations and vertical database layout, where data
sequences are transformed into items’ (sequence-id, time-id) lists. The CSPADE
algorithm checks mingap and maxgap while doing temporal joins. Nevertheless, the
huge sets of frequent 2-sequences must be preserved to generate the required classes
for the maxgap constraint [97]. While it is possible for CSPADE to handle constraints

like maximum/minimum gaps by expanding the id-lists and augmenting the

66

join-operations with temporal information [97], it does not appear feasible to
incorporate the sliding time-window. The sliding time-window constraint was not
mentioned in CSPADE.

A different kind of time constraints, discovering patterns that involve multiple time
granularities, was addressed in [13]. Simple or complex event structures, which are
episodes [47, 42] with time interval restrictions similar to mingap/maxgap constraints,
are discovered by the introduced timed automaton with granularities [13].
Nevertheless, we are interested in the discovery of time-constrained sequential

patterns forming by itemsets.
4.4 DELISP: Delimited Sequential Pattern Mining

In this section, we describe the«proposed pattern-growth mechanism for mining
time-constrained sequential patterns, called DELISP. The main idea is efficiently
‘finding’ the frequent items, and: then effectively ‘growing’ potential patterns in the
sub-databases constructed by projecting sub-sequences corresponding to the frequent
items. We also project the time-tags into the sub-databases to generate patterns
satisfying the time constraints. However, DELISP projects fewer but complete
combinations by windowed and bounded projections, and grows potential patterns
effectively by delimited growth. Section 4.4.1 introduces the terminology used in
DELISP. In Section 4.4.2, we demonstrate the method by mining an example database.
Section 4.4.3 describes the proposed algorithm. For convenience, we refer to a data

sequence ds = Sid/<tlel’ 82" ... 1,8n”> as ds in the following context.
4.4.1 Terminology used in DELISP

Definition 4-1 (Frequent item) An item X is called a frequent item in a sequence

database DB if the support of 1-sequence <(X)> is greater than or equal to minsup.

67

Definition 4-2 (Stem, type-1 growth, type-2 growth, prefix) Given a sequential
pattern p and a frequent item X in the sequence database DB, X is called the stem-item
(abbreviated as stem) of the sequential pattern p’ if p’ can be formed by (1) appending
(x) as a new element to p or (2) extending the last element of p with x. The formation
of p’ is a type-1 growth if it is formed by appending (X), and a type-2 growth if it is
formed by extending with x. The prefix pattern (abbreviated as prefix) of p’ is p.

For example, given <(a)> and the frequent item b, we may have the type-1

growth <(a)(b)> by appending (b) to <(a)> and the type-2 growth <(a,b)> by
extending <(a)> with b. The <(a)> is the prefix and the b is the stem of both <(a)(b)>
and <(a,b)>. As to a type-2 growth <(c)(a,d)>, its prefix is <(c¢)(a)> and its stem is d.
Note that the null sequence, denoted by <>, is the prefix of any frequent 1-sequence.
Definition 4-3 (start-time, end-time, tag-list) The timestamp indicating the
occurrence of itemset | in ds «s ynarked in-the prejected database. If itemset | is
contained in a single element €4 in_ds, the start-time (abbreviated as st) and
end-time (abbreviated as et) pair st:et'is.marked as ts: ts. If | is contained in e5’ s’
U...ue,; (in ds), st:et is marked as ts: t.. We refer to the list of all the st:et pairs as
the tag-list of | in ds. The tag-list is denoted by [sti:ets, sta:ety, ..., sti:ety] where stj <
etj for 1 <i <K, stj < stj+; and etj < etj+1 for 1 <i<k-1.
Definition 4-4 (Accessible) Let the tag-list of itemset | in ds be [sti:ets, sty:ety, ...,
sty:etc]. An element e, is accessible from | in ds if its timestamp t; satisfies: (1) etj -
swin < t, < stj + swin, where i € {1, 2, ..., k} or (2) etj + mingap < t, < stj + maxgap,
where i € {1, 2, ..., k} or (3) t, + mingap < t; < t, + maxgap where t, is the timestamp
of an accessible element ey’ from | in ds.

Fig. 4-2 demonstrates the three accessible circumstances. For example, the
tag-list of itemset (c) in C1/<j(c)ss(b,f)> is [1:1], that of (b) in C1 is [35:35]. The

tag-list of (a) in C3/<y(a,d)s(c)e(c)s(b)ss(a,f)> is [1:1, 35:35], that in
68

C4/<y(a)a(d)z0()zs(a)si1()> is [2:2, 33:33], and that in C5/<3(a,b,e)s(e)7(f)s(d)e(b)> is
[1:1]. With respect to (a,d), the tag-list in C3 is [1:1] and that in C4 is [2:4]. The 35(b,f)
in C1 is not accessible from ;(c) if maxgap = 30. Considering ;(a,d) in C3, elements
5(¢), 6(c), s(b) are accessible with mingap = 2 and maxgap = 30. Additionally, 35(a,f) is
also accessible because it is accessible via g(b) for 8+2 < 35 < 8+30, or via s(c) then
s(b).

Note that when an accessible element is extended by condition (1) in Definition
4-4, the extension is checked on not violating mingap or maxgap constraints with
respect to the previous itemset of | (in the pattern), denoted by I, The checking is to
ensure that itemset |, having timestamps satisfying the mingap/maxgap constraint
with |, does not violate the gap constraint after the type-2 extension. Such a checking
requires projecting st:et of |, the détail of which 1s.not shown in the following context

for clearer illustration.

Lemma 4-1. Let ds contain the non-null prefix-p =<e;e,...e,>. Given the tag-list of €,
in ds, a frequent item X in an element €;” in dS can be a stem only if €5’ is accessible

from ey in ds.

Lemma 4-1 is based on the fact that a valid ‘growth’ must satisfy time constraints.
Hence, we may prevent the inaccessible elements from projection to speed up the
growing process, as shown in Fig. 4-3. We further reduce projections by eliminating
items in an accessible element from projection using Lemma 4-2, as depicted in Fig.

4-4,

69

accessible elements
A

r swin N
1) applying swin constraint
- (resulting in two sets)
st; et; SWiIn
N J

Y
accessible elements

applying mingap/maxgap

maxga
st. et Y

constraint

mingap accessible elements

maxgap

applying mingap/maxgap
constraint on another

b

accessible element e’

mingap accessible elements (having timestamp t)

Fig. 4-2. Accessible elements from itemset | in ds with tag-list [sty:ety, sto:ety, ..

sty:etk]

inaccessible elements are eliminated from projection

ds contains p = <e; W

€ p==== pmmmmmme—e—eo
ds

rm————-— ’ N
p ! M 1 ' ' 1

— oo —o—® °
H_J %(_J

only accessible elements are projected

Fig. 4-3. The projected elements of ds with respect to p

pP=<€;...6,>, €=

s €= (+ons X) € I—

any X' in an accessible element e,’ is eliminated from projection if X' < X

o

r swin
ds

sty

et swin

N

O ——

Fig. 4-4. Eliminating items having smaller lexicographic order from projection

(Lemma 4-2)

Lemma 4-2. Let the last element in prefix p be e, the last item in e, be X, and the

tag-list of e, in ds be [sty:ety, stoety, ..

., St:ety]. Any item X “in an accessible element

€a’” cannot be a stem if (1) X"< X and (2) t,€a’ is accessible from p by satisfying et; -

swin < t; < et;.

70

Lemma 4-2 is based on the fact that items are in lexicographic order within
elements. Any item to be used as a stem for the type-2 growth having prefix o should
have an order greater than the order of the last item in p. Thus, any small-ordered X’
(located in taea’, ety - Swin < t, < et;) need not be projected.

Note that all the items in an accessible element taea’ having et; <tz < st; + swin
are projected even their lexicographical orders precede that of the last item in prefix p.
These items can be stems for potential type-1 growth (prefix p) and cannot be

eliminated from projection.
4.4.2 Mining time-constrained sequential patterns by DELISP: an example

All the time-constrained sequential patterns are found by growing frequent sequences
from size one to the maximum size. Erequent items in DB can be determined after
scanning DB once. We then use:each frequent itemras a stem with prefix <> to form
the set of all frequent 1-sequences. The sub-sequences satisfying the constraints are
then projected into related sub-databases for furthetr ‘growing’. The stems of type-1
and type-2 growth can be determined by scanning the sub-databases once. Recursively,
the time-constraint integrated projection and growing techniques are applied to
discover the frequent 2-sequences, 3-sequences, etc.

Example 1: Given minsup=40%, mingap=2, maxgap=30, swin=2, and the DB as
shown in Table 4-1, DELISP mines the patterns by the following steps.

Step 1. Find frequent items. By scanning DB once, we have frequent items a (count
= 3 for appearing in 3 data sequences C3, C4 and C5), b (count = 4), ¢ (count =2), d
(count =4), and f (count = 4). Non-frequent item e is omitted from mining afterward.
The five items are stems of type-1 growth having prefix <>.

Step 2. Project corresponding sub-sequences to sub-databases. Considering the

time-constrained sequential patterns having prefix p = <(x)>, each can be found in the

71

sub-database (named p-DB) generated by projecting all the data sequences having
item X in DB. While projecting a data sequence ds into p-DB, we omit the
non-frequent items, those inaccessible elements (using Lemma 4-1), and those
‘lexicographically smaller’ items (using Lemma 4-2).

We tabulate the sub-databases <(a)>-DB, <(b)>-DB, <(c)>-DB, <(d)>-DB,
and <(f)>-DB in part 1 of Table 4-2. Take <(a)>-DB for instance. The tag-lists of
(a) in C3, C4, and C5 are exemplified in Section 4.4.1. The ;(d) in C3 is
accessible and is projected with respect to st:et = 1:1. Elements s(c), ¢(c), and g(b)
in C3 are projected since they are all accessible (1+2 <5 < 1+30, 3 <6 <31, and
3 < 8 £ 31). The 35(a,f) in C3 is also projected with respect to st:et = 35:35.
Similarly, we project the accessible elements 4(d), 30(f), 33(2), and ¢;(f) in C4. For
C5, element 4(f), s(d), and o(b) are projected, and (b), instead of (a,b,e), is
projected after dropping non-fiequent item € and item a (by Lemma 4-2).

Note that the tag-list-of (b) 1n-C3-is,[8:8], so ¢(c) in C3 is projected into
<(b)>-DB since 8-2 < 6 < 8+2, The 3s(a,f) in C1 does not appear in <(c)>-DB
because it is inaccessible from [1:1] (35 > 1+30), hence the tag-list and the entire
sub-sequence of C1 are eliminated. Similarly, C2 is removed from <(d)>-DB. In
addition, the ,(a) in C4 is not projected into <(d)>-DB using Lemma 4-2 (a < d).
However, the 7(f) in C5 must be included in <(d)>-DB because it is accessible
from [8:8].

Step 3. Mine each sub-database for the subsets of time-constrained sequential
patterns. In each sub-database, we grow the patterns in each sequence according to
the time constraints, and determine which pattern is a valid time-constrained
sequential pattern. Assume that we are growing patterns from prefix p whose last
element is €p and the tag-list of e, in ds is [styzety, staety, ..., stcety]. The stems of

potential type-1 growth come from the accessible e, whose timestamp t; satisfying et;

72

Table 4-2. The projected sub-sequences in the p-DB sub-databases

p-DB Projected sub-sequences
Part 1: sub-databases of DB
<(a)>-DB C3/[1:1,35:35]/<1(d)s(c)s(c)s(b)ss(a,f)>;
C4/[2:2,33:33]/<4(d)30(f)33(a)s1(H)>; C5/[1:1]/<1(b)7(f)s(d)e(b)>
<(b)>-DB CI1/[35:35]/<35(f)>; C2/[2:2]/<4(d)>; C3/[8:8]/<¢(c)3s(a,f)>;
C5/[1:1,9:91/<(f)s(d)e(b)>
<(c)>-DB C3/[5:5,6:6]/<¢(c)s(b)ss(a,f)>
<(d)>-DB C3/[1:1])/<s(c)e(c)s(b)3s(a,f)>; C4/[4:4]/<30(D33(a)61(H)>;
C5/[8:8]/<s(f)o(b)>
<(f)>-DB C4/[30:30,61:61]/<33(a)e1(£)>; C5/[7:7]/<s(d)o(b)>
Part 2: sub-databases of <(a)>-DB
<(a)(b)>-DB C3/[8:8]/<35()>
<(a)(f)>-DB C5/[7:7]/<s(d)s(b)>
<(a,d)>-DB C3/[1:1]/<s(b)3s(f)>; C4/[2:4]/<30(f) 61(f)>
Part 3: sub-databases of <(b)>-DB
<(b)(H)>-DB C5/[7:7]/<s(d)o(b)>
<(b,d)>-DB None
<(b,f)>-DB None
Note: the notation ‘st:et’ prior to a data sequence denotes the start-time and the
end-time of the data sequence with respect to g projection.

+ mingap < t; < stj + maxgap, where i € {1,2, ..., k}. The stems of potential type-2
growth come from the accessible &,” satisfying-et; - Swin < t, < stj + swin, where i € {1,
2, ..., k}. We may obtain the occurrence-eounts (i.e. supports) of stems after scanning
p-DB once. Recursively, we then generate the corresponding p’—DB (having prefix p)
for each stem having sufficient support count.
We mine <(a)>-DB as follows. Potential stems of type-1 growth in C3
(tag-list [1:1:,35:35]) are ¢ and b since s(c) and g(b) are accessible within (1 + 2,
1 + 30]. In C4 (tag-list [2:2, 33:33]), f and a are potential stems of type-1 growth
since the accessible ranges are (2 + 2, 2 + 30] and (33 + 2, 33 + 30]. Similarly, f,
d, and b are potential stems of type-1 growth in C5. Thus, b (count = 2) and f
(count = 2) are the valid stems of type-1 growth in <(a)>-DB.
Potential stems of type-2 growth in C3 (tag-list [1:1,35:35]) are d (within

[1-2, 1+2]) and f (within [35-2, 35+2]), and that in C4 is d (within [2-2, 2+2]),

73

and that in C5 is b (within [1-2, 142]). Therefore, d is the valid stem of type-2
growth in <(a)>-DB. Consequently, the time-constrained sequential patterns are
<(a)(b)> (count = 2), <(a)(f)> (count = 2), and <(a,d)> (count = 2) by mining
<(a)>-DB.
Step 4. Find all patterns by applying step 2 and step 3 on the sub-databases
recursively. Considering the time-constrained sequential patterns having prefix p =
<(a)(b)>, each can be found in the sub-database (named <(a)(b)>-DB) generated by
projecting all the data sequences having (b) in <(a)>-DB. Again, we eliminate the
non-frequent items, those inaccessible elements (using Lemma 4-1), and those
‘lexicographically smaller’ items (using Lemma 4-2).

Next, we apply step 2 to project the sub-sequences in <(a)>-DB further into
sub-databases <(a)(b)>-DB,.*<(a)(f)>-DB; .and <(a,d)>-DB. The projected
sub-databases of <(a)>-DB .are shown in. part 2 of Table 4-2. Similarly,
inaccessible elements and non-frequent-items (with respect to <(a)>-DB) are not
projected. The <(a)(b)>-DB is constructed by projecting the tag-list of (b) and the
accessible elements in each sub-sequence as follows. In <(a)>-DB of Table 4-2,
the tag-list of (b) in C3 is [8:8], that in C5 is [9:9]. Only C3/8:8/<35(f)> is
projected since there is no accessible element in C5. Neither type-1 nor type-2
growth in the <(a)(b)>-DB finds any pattern so the growth is stopped. The
<(a)(f)>-DB contains only one sequence after projection so that the growth in
<(a)(f)>-DB is also stopped. Again, constructing <(a,d)>-DB is accomplished by
projecting tag-lists of (a,d) and the accessible elements. We project C3 as
1:1/<g(b)ss(f)> instead of 1:1/<s(c)s(c)s(b)ss(a,f)> by removing non-frequent
items a and €. Growing pattern in <(a,d)>-DB is stopped without forming any
pattern. The mining with sub-databases of <(a)>-DB thus terminates.

We then recursively apply the steps on <(b)>-DB for patterns having prefix <(b)>,
74

Algorithm DELISP
Input: DB = a sequence database; minsup = minimum support; mingap = minimum
time gap; maxgap = maximum time gap; swin = sliding time-window.
Output: the set of all time-constrained sequential patterns.
Method:
1. Scan DB once, find the set of all frequent items.
2. For each frequent item X,
(a) form a time-constrained sequential pattern p = <(X)> and output p.
(b) call ProjectDB(p, DB) to construct sub-database p-DB.
(c) call Mine(p-DB).
Subroutine ProjectDB(p, Db)
Parameters: p = pattern; Db = the sub-database.
Output: the sub-database p-DB.
Method:
1. For each data sequence ds = sid/<,€1,€2’... 1 .€n"> in Db,

(a) record the tag-list [sty:et;, stp:ety, ..., stiety] of p in ds, where each stj:et;
marks the start-time:end-time of the last element of p in ds.

(b) (Bounded-projection) mark the list of accessible elements in ds. /* See
Definition 4-4 (accessible) in Section 4.4.1 */

(c) (Windowed-projection) drop item X”in an accessible element e,” where et;
- swin < t; < ety and X< x. Theritem X is the last item in e, € p = <e1€5...€p
>. /* Use Lemma 4-2 in Section 4.4.1 %/

(d) if the list of accessible elements 1s not.empty, drop the non-frequent items in
ds and project Sid/[sty:ety, Sta:eta, ...5 Sti:ety]/< the list of accessible elements
> to p-DB.

Subroutine Mine(p-DB)
Parameter: p-DB = the sub-database.
Output: time-constrained sequential‘patterns having prefix p.
Method:
1. For each data sequence ds = sid/[st;:ety, sta:ety, ..., stk:etk]/<tlel’ 82"+ 1,8n"> in
p-DB,

(a) for each element €;” with timestamp t; in ds, insert the items in €;’

(1) to the stem set of potential type-1 growth if etitmingap < t; < stjtmaxgap
where j € {1, 2, ..., k}. (Delimited-growth/type-1)

(i) to the stem set of potential type-2 growth if etj-swin < t; < stj+swin
where j € {1, 2, ..., k}. (Delimited-growth/type-2)

(b) for each stem in the two sets, increase its support count by one.

2. Find the frequent items in the two sets by comparing the supports with minsup.
3. For each frequent item X in the two sets,

(a) form a time-constrained sequential pattern p’ (prefix p and stem X) and

output p’.

(b) call ProjectDB(p’, p-DB) to construct sub-database p’-DB.

(c) call Mine(o’-DB).

Fig. 4-5. Algorithm DELISP
on <(c)>-DB for patterns having prefix <(c)>, ..., and on <(f)>-DB for patterns having

prefix <(f)>. By collecting the patterns found in the above process, DELISP efficiently
75

discovers all the sequential patterns satisfying the time constraints.
4.4.3 The DELISP algorithm

Fig. 4-5 presents the proposed DELISP algorithm. Analogous to PrefixSpan algorithm,
DELISP decomposes the mining problem by recursively growing patterns, one item
longer than the current patterns, in the projected sub-databases. However, the
potential items used to grow are subjected to mingap and maxgap constraints, called
de-limited growth. Therefore, we perform type-1 growth with items in each element
t,6a” within range (eti + mingap < ta < stj + maxgap), where i € {1, 2, ..., k}, and
type-2 growth with items in each element taea’ within range (etj - swin <t < stj +
swin), where i € {1, 2, ..., k}. The [sty:ety, sto:ety, ..., sti:ety] is the tag-list of element
ep € prefix <eie;...ep> in ds. On projectingssub-databases, we avoid the bi-directional
growth by imposing the item-order in the type-2 growth. We always add a new item
(in ep) whose order is lexicographically larger than the order of the existing items for
type-2 growth. Considering an example element (b,.d, ¢) formed by combining t,(d, €)
and tz(b), i.e. |ty- t] < swin. When the time t; is earlier than time t;, (b, d, ¢) will be
discovered in the projected <(b)>-DB since t; < t, + swin. In case t; <t, (d, ¢) will be
kept in <(b)>-DB since it is accessible for t, - swin < t;. We refer to such projection as
windowed-projection.

Theorem 4-1. Algorithm DELSIP discovers the set of all time-constrained sequential
patterns.

Proof. Obviously, DELISP discovers the set of all frequent 1-sequences in step 1.
Clearly, a frequent k-sequence is formed by either a type-1 growth or a type-2 growth
from a frequent (k-1)-sequence. Thus, the set of all time-constrained sequential
patterns can be obtained by type-1 and type-2 growth, from size one to the maximum

size. Any item to be used as a stem must come from an accessible element; otherwise,

76

the corresponding growth would violate either swin or mingap/maxgap constraint. In
Subroutine ProjectDB, by Lemma 4-1 and Lemma 4-2, those inaccessible items need
not be projected so they are eliminated. Subroutine Mine counts the supports of
time-constraint satisfied items for type-1 and type-2 growth, respectively. By
recursively applying ProjectDB and Mine, DELISP discovers the set of all

time-constrained sequential patterns. —J

4.5 Experimental Results

Extensive experiments were conducted to assess the performance of the DELISP
algorithm. We compared the total execution times of DELISP and GSP [80] by
varying the parameters of mingap, maxgap,.and swin. The scalability of the algorithm
was also evaluated over different'database sizés. The experiments were performed on
an 866 MHz Pentium-II1 PC with 1024MB memory running the Windows NT.

The PrefixSpan [67] does ‘not handle-the time constraints and therefore is not
considered. However, note that for gap ‘constraints (mingap and maxgap) PrefixSpan
could be applied with an extra pattern counting step. In the step, patterns discovered
without time constraints can be verified in an extra scan of the whole database.
Nevertheless, such an extension cannot be applied for sliding time-window. The
prefix-growth [69] gives no implementation details of gap constraints and no
descriptions on sliding time-window, so that prefix-growth is not compared in our
experiments.

The cSPADE algorithm [97], though accepts the minimum and maximum gap
constraints, was not implemented in the comparison because it uses vertical database
layout. Additional storage space and computation time are required to transform the

natively horizontal databases into vertical. In addition, the swin constraint is not

77

handled in cSPADE. Revision of cCSPADE to handle swin constraint is not trivial. One
possible implementation is to incorporate sliding time-window by incrementing the
support for each distinct window in the vertical representation. Nevertheless, the join
operation has to be extended, beyond temporal and equality join, to allow ‘window
join’. For example, joining the id-list of item X with that of item Yy, even their
timestamps are not equal, now might generate itemset (X, Y) if the time difference is
no greater than swin. Such an extension could generate many combinations that turn
out to be rejected after invoking another round of validating mingap and/or maxgap.
The structure of the id-list also needs to be expanded to indicate the timestamps of
previous elements to enable the counting of validating mingap gap.

Like most studies on sequential pattern mining [6, 29, 67, 98, 102], synthetic
datasets were used and were generated using the procedure described in [80] for these
experiments. The transaction IBDs were used to represent the transaction times. As to
the details of generating synthetic data,-please refer to Section 3.5.1. The datasets
mimic the real world transactions by using various parameters. Table 4-3 shows the
meaning and the values of the parameters used in the experiments. A dataset generated
with [C| =10, |T| = 2.5, |S| =4, |I| = 1.25 is denoted by C10-T2.5-S4-11.25. It indicates
that, in average, each customer has 10 transactions, each transaction has 2.5 items,
sequences are generated from a sample having 4 transactions per pattern, and 1.25
items per transaction. The sample was generated with 1000 possible items, 5000
possible sequential patterns, and 25000 possible frequent itemsets. In Section 4.5.1,
experimental results on varying the minsup, mingap, maxgap, and swin, and the
results on various datasets are described. Section 4.5.2 shows the results of the

experiments on scaling up the database size.

78

Table 4-3. Parameters used in the experiments

Parameter Description Value
[DB| [Number of data sequences in database DB éggg: 1588112’ 400K,
|C] Average size (number of transactions) per customer |10, 15
IT| Average size (number of items) per transaction 25,5
S| Average size of potentially sequential patterns 4,8
[Average size of potentially frequent itemsets 1.25,2.5

4.5.1 Execution times of GSP and DELISP algorithms

First, we report the results on dataset C10-T2.5-S4-11.25 having 100,000 sequences.
The execution times of GSP and DELISP in mining time-constrained sequential
patterns are compared. In these experiments, DELISP is about 3 times faster than
GSP.Various values of minsup, mingap,; maxgap, and swin are used. Note that the
mining of sequential patterns without timie| constraints is a special case with mingap =
0, maxgap = oo, and swin = O-here. The results of varying minsup (2%, 1.5%, 1%,
0.75%, 0.5%) are consistent. ‘We "set the-minsup to 0.75% and focus on the
comparisons of varying time constraints‘in‘the following.

The result of varying mingap with fixed maxgap and fixed swin is shown in Fig.
4-6. When mingap = 0, maxgap = o, and swin = 0, the resulting patterns are the same
as common sequential pattern discovery without time constraints. As mingap
increases, the number of qualified patterns existing in data sequences decreases, and
thereby the total execution time decreases. The total execution time of GSP is 2.8
(mingap = 0) up to 3.3 (mingap = 8) times than that of DELISP. It shows that DELISP
removes more inaccessible elements with larger mingap.

Fixing both mingap and swin to zero, Fig. 4-7 shows the result of varying
maxgap. The number of time-constrained sequential patterns will decrease when the

maxgap value increases, since larger maxgap restricts more data sequences to contain

79

certain patterns. In Fig. 4-7, the line depicting the execution time of GSP starts to fall
steeply at maxgap = 4, because the sample sequences have 4 transactions (|S| = 4) in
average. Note that GSP runs slightly faster without constraints (673 seconds) than
with maxgap = 12 since most checks eventually are useless and introduce overheads.
DELISP consistently outperforms GSP, from 2.9 (maxgap = 12) down to 1.4 (maxgap
= 1) times, in the experiments.

Next, the swin was varied from 0 up to 4 without setting mingap and maxgap
constraints. The swin allows adjoining transactions to combine either way to form an
element so that each data sequence may contain more patterns. Consequently, more
execution time is required with the increased swin. When swin = 0, it took GSP 673
seconds and DELISP 238 seconds, respectively, for the discovery. To mine the
additional patterns appeared with swin = 1, GSP spent 815 seconds and DELISP spent
272 seconds. Fig. 4-8 displays- the 'effect on performance when constraint swin is
increased. Both algorithms scale upiwith-the-increased swin, DELISP performs the

better.

C10-T2.5-S4-11.25, |IDB| = 100K, minsup = 0.75%

800
~ 700 - —e— DELISP
Z 600 TR ---m--- GSP
% 500 - max. time gap = no constraint Teea
2 400 sliding time-window = 0
=
3 300
o
5 200 | '\‘\,\‘\‘
o
& 100

0

0 1 2 4 8

Minimum time gap

Fig. 4-6. Effect of the mingap constraint

80

C10-T2.5-S4-11.25, |DB| = 100K, minsup = 0.75%

800
3700 o N
\% 600 -_.‘\ —Q—DELISI’
'g s00 | min. time gap = 0 -..m .. GSP
= sliding time-window = 0 m
o 400 « . T
= Note: * means no constraint .
g 300 | m..,
5 3 o *
& 200 | e, =
s
S 100 |
0
* 12 8 4 2 1
Maximum gap

Fig. 4-7. Effect of the maxgap constraint

C10-T2.5-S4-11.25, DB | =100K, minsup = 0.75%
1400
—~ 1200 +DEL|SP -‘_"__-"'-
e B GSP I
g 1000 |- Lm
=800 b LT
2 a min. time gap =0
g 600 max. time gap = no constraint
»
S 400 f //
<
°
= 200 |
0
0 1 2 3 4
Sliding time window

Fig. 4-8. Effect of the swin constraint

To evaluate the performance with respect to datasets of different characteristics,
the series of experiments were applied on dataset C15-T2.5-S4-11.25 (varying
mingap), C10-T5-S4-11.25 (varying swin), C10-T2.5-S8-11.25 (varying maxgap), and
C10-T2.5-S4-12.5 (varying mingap). The results for sensitivity analysis, displayed in
Fig. 4-9, demonstrate that DELISP algorithm consistently outperforms the GSP
algorithm for various data characteristics.

The effects of varying the three constraints on performance are summarized
below. With respect to mingap constraint, GSP effectively prunes the impossible

candidates utilizing the monotonic property of candidate generation. For instance, if

81

C15-T2.5-84-I1.25, minsup =0.75% 2500 C10-T5-54-11.25, minsup =0.75%
3000 - —e— DELISP
-~ —<+— DELISP £ Eoleeomee
g 2500 m_ e GSp E 2000 =---GSP m
Zz o . _
g 2000 F - E 5o mintime gap=0 =
R= . R = max. time gap = no constraint
g 1500 |- max. time gap =no ~ ...) Ag
‘§ constraint . 2 1000 |
g lo00 | GSlidingwindow =0 % |
o
3 T 500 |
s 500 - 2 500 -
--
O 0 Il L L
0 1 2 4 0 1 2 3 4
Minimum time gap Sliding time window
(a) Increase |C| from 10 to 15, varying mingap (b) Increase [T| from 2.5 to 5, varying swin
C10-T2.5-S8-11.25, minsup =0.75% C10-T2.5-S4-12.5, minsup = 0.75%
700
W LI 800
S 600 = —e— DELISP ~ 700 L B —— DELISP
2 . @ GSP g Sa - GSP
o 500 r *=no constraint <600 e
g min. time gap =0 ‘m % 500 .
5 400 1 liding window =0 - 5 a0 | ey o
g 300 r . Z
5 2 300
%
S0 ey z 00| T,
o o
T 100 | 00 -
0 0
* 12 8 4 2 0 ! 2 4 8
Maximum gap Minimum time gap

(c) Increase |S| from 4 to 8, varying maxgap

(d) Increase |I] from 1.25 to 2.5, varying mingap

Fig. 4-9. Total execution time on datasets of various characteristics

(a)(b) fails to be a candidate due to mingap, then (a)(b)(c) cannot be a candidate.

DELISP utilizes mingap constraint to effectively remove the inaccessible items within

pattern-growth framework. Both DELISP and GSP can effectively handles the mining

with mingap constraint, while DELISP outperforms GSP at least two times faster.

In GSP, there is performance degradation when maxgap or swin specified. With

respect to maxgap constraint, the time for the containment test increases when

maxgap is specified. Besides, the number of candidates increases when maxgap is

used, since we can no longer prune non-contiguous subsequences [80]. The time for

the containment test also increases when swin is specified. In addition, the hash-tree is

less effective in reducing the number of candidates that need to be checked against a

data sequence when the user specifies a larger swin value.

However, DELISP effectively handles all the three constraints by integrating
them in sequence projecting and growing within the pattern-growth framework. Thus,
the performance difference between DELISP and GSP increases when maxgap or

swin increases, as shown in Fig. 4-9.
4.5.2 Scale up experiments on database size

In order to justify the scalability of DELISP, the number of data sequences was
increased from 100K to 1000K with C10-T2.5-S4-11.25. In Fig. 4-10, the total
execution times are normalized with respect to the execution time for |[DB| = 100K. As
indicated in Fig. 4-10, the execution time of DELISP scales up sub-linearly with the
number of data sequences. When |DB|.increases to very large size like 800K or 1000K
and the average number of items;per transaction might be large, the projected
sub-databases increase tremendously, which incurs larger overhead in disk accessing.
In the experiment, the execution‘time ratio scaled up sub-linearly. The execution time
for maxgap = 12 and swin = 1 is 271 seconds, and that for maxgap = 8, swin =2 is
304 seconds. It reflects that relaxing swin has stronger influence than restricting

maxgap on the number of patterns discovered.

s C10-T2.5-S4-11.25, minsup =0.75%
Y
S P 13.3
g 13 L Dm'axgap =12,swin=1, ’ 12.8
3 . mingap = 0 103 10.6
2 [W maxgap = 8, swin= 2,
=7 9 | mingap = 0
.2
s 7
Q 4.9
g s | 4.7
=
% 3 L 21 20
o
7 Lo
100K 200K 400K 800K 1000K
Number of data sequences

Fig. 4-10. Linear scalability of DELISP

&3

4.6 Discussion

We summarize the factors contributing to the efficiency of the proposed DELISP

algorithm, by comparing with the well-known GSP algorithm below.

No candidate generation. DELISP generates no candidates and saves the time
for not only candidate generation but also candidate testing. Moreover, the huge
space required for candidate hash-tree is eliminated entirely. Such an advantage
is shared by all pattern-growth approaches like PrefixSpan or prefix-growth.
Focused search. DELISP projects the accessible elements and grows patterns by
considering only constraint satisfied elements in sub-sequences. We search and
grow longer patterns in the smaller, promising subspace. In contrast, GSP takes
every data sequence (the entire sequence) for support calculation in each pass.
Constraint integration. The maxgap constraint makes candidate reduction less
powerful in GSP since some candidates cannot be pruned in advance. For
instance, given maxgap comstraint, a data sequence which supports candidate
(a)(e)(f) may not contain candidate (a)(f). Thus, GSP suffers from maxgap
constraint as candidate pruning is less restrictive. Nevertheless, DELISP benefits
from the maxgap constraint by incorporating the constraint in growing and
projecting shorter sequences. Some posterior elements of a sequence, once they
are inaccessible, need not be considered because of the maxgap constraint.
Containment checking and sequence shrinking. In each pass, GSP transforms
every data sequence into items’ transaction-time lists, and switches between
alternative phases with excess “pull up” of elements to check whether a data
sequence contains a candidate [8]. For instance, GSP having found (a)(b) in a
data sequence, noticing that adding (c) would violate maxgap, has to "pull-up" (b)

and maybe then (a), considering their later occurrences. Without any

84

transformation, at each recursion, DELISP shrinks a data sequence by removing
non-frequent items, ‘small’ items, and the inaccessible elements. Moreover,
DELISP finds elements incrementally by checking time-valid subsequences only.
The delimited growth technique further assures each growth satisfies the
constraints and makes pattern-growth more efficient.

e DELISP benefits from the properties of pattern-growth approaches for factors
like “no candidate generation” and “focused search”. However, DELISP
eliminates the need for "switching between forward and backward phases" of
GSP by extending concurrently all valid occurrences of the pattern used for
projection. In addition, DELISP preserves the property of growing longer
patterns from prefixes (i.e., avoiding the bi-directional growth) by extending
pattern elements according to lexicographic. order. These core techniques are
specific to DELISP and result in the efficient discovery of time-constrained

sequential patterns.

4.7 Summary

We have presented the DELISP algorithm to provide the full functionality of the
classic GSP algorithm in terms of time constraints. The conducted experiments
confirm that with good scalability, the pattern-growth based DELISP outperforms the
Apriori-based GSP algorithm.

However, pattern-growth based algorithms usually require the intermediate
storage for the projected sub-databases while mining. Sometimes, the total size of the
sub-databases might amount to several times larger than that of the original sequence
database. It is desirable to employ the pseudo-projection and bi-level projection
techniques [67], described in PrefixSpan, in DELISP to minimize disk projections.

Future improvements may include sharing common sub-sequences among

&5

sub-databases, projecting sub-sequences into memory, or extending the memory
indexing approach in Chapter 3 to mine sequential patterns with time constraints. It is
also interesting to extend the approach to deal with other time constraints like overall
time span [97] and various constraints [25, 47, 56, 97] for effective and efficient

sequential pattern mining.

86

Chapter 5 Algorithm KISP for Interactive Discovery of

Sequential Patterns

5.1 Overview

An important issue in data mining is the discovery of sequential patterns, which finds
out temporal associations among items in the sequence database [6, 29, 48, 51, 75, 98].
A classic application of the problem is the market basket analysis whose database
contains purchase records, where each record is an ordered sequence of itemsets (sets
of items) bought by a customer. The mining is to discover the itemsets in future
purchase after certain itemsets were bought. For example, a discovery might find out
a sequential pattern “(a, ¢, d)=b, €) [support=30%]”, which means that 30% of
customers who purchase items a, ¢.and d at the same-time would buy items b and e at
some later time. The technique can be-applied-to various domains such as discovering
the relationships between the symptoms.and certain diseases in medical applications.

In order to find the interesting patterns, a user specifies a minimum support
threshold (abbreviated minsup) for the mining. The result of the mining lists all
patterns, named sequential patterns or frequent sequences, whose supports are greater
than or equal to the minsup. The support of a pattern is the percentage of sequences
(in the database) containing the pattern. In general, we would generate potential
sequential patterns (called candidates), count the occurrence of each candidate, and
then determine the sequential patterns among these candidates.

The mining process is very difficult and time-consuming due to several factors.
First, the formation of a pattern is not limited to single items but itemsets. Second,
neither the number of itemsets in a pattern nor the number of items in an itemset is

known a priori. Third, patterns could be formed by any permutation, of any

87

combination of possible items in the database. Most approaches focused on
minimizing the search space of candidates [6, 80], or on minimizing the required disk
I/O due to the multiple database scanning [75, 98]. Each time a user specifies a
minsup, all these approaches discover the resultant patterns by executing their mining
algorithms with respect to this minsup.

However, a user may specify a minsup value that results in too many or too few
patterns. When the specified minsup is too large, either no patterns or only few
patterns might satisfy the threshold. On the contrary, the user might have difficulty in
distinguishing the interesting patterns from a large number of patterns due to a very
small minsup. Usually, the user must try various minsups until the result is satisfactory.
Nevertheless, most approaches for mining sequential patterns are not designed to deal
with repeated mining under such circumstance. For such interactive sequence
discovery, these approaches consider no priorresults-so that the mining process must
start over again for every newly specified-minsup. However, keeping knowledge
obtained from the time-consuming processis* beneficial to further queries. For
example, the result of mining with minsup = 0.1 could be used to extract the
sequential patterns for minsup = 0.3 without re-examining the sequence database.

Therefore, we propose a novel approach, named KISP (knowledge base assisted
incremental Sequential pattern mining), to improve the efficiency of sequential pattern
discovery with changing supports. Instead of re-mining from scratch for each
discovery, KISP utilizes the knowledge obtained from prior minings, and generates a
knowledge base for further queries about sequential patterns of various minsups.
When the sequential patterns cannot be directly derived from the knowledge base,
KISP incorporates the knowledge base into a fast sequence discovery. The candidates
existing in the knowledge base are spared in the support counting process. In addition,

the knowledge base could be used to support OLAP since the knowledge, sufficient
88

for users’ interests, of current database is accumulated by KISP. The conducted
experiments on synthetic data also show that the proposed algorithm effectively
improves the performance of interactive sequence discovery.

The rest of the chapter is organized as follows. We formulate the problem of
interactive sequential pattern mining in Section 5.2 and review some related
algorithms in Section 5.3. Section 5.4 presents the proposed approach for the
interactive discovery problem. The experimental evaluation is described in Section

5.5. Section 5.6 summarizes this chapter.

5.2 Problem Statement

Table 5-1 summarizes the notations used in this chapter. Let ¥= {1, o, ..., &} be a
set of literals, called items. A set ofiitems is referfed to as an itemset. An itemset | with
m items is denoted by | = (S, B, ..., Bn), such thatl — ¥ A sequence X, denoted by
<a1dy...ar>, is an ordered set of n elements where each element g;is an itemset. The
size of the sequence X, denoted by {X|;.is the total humber of items in all the elements
in X. Sequence X is a k-sequence if |x| = k. For example, <(a)(c)(e)>, <(b)(c,d)>, and
<(a)(b)(a)> are all 3-sequences. A sequence @ = <a;dp...a,> is a subsequence of
another sequence @ = <b;b,...b,> if there exist 1 <i1<i;<...<iy <w such that a;
bi;, @2 < by, ..., and a, < bj,. Sequence @ contains sequence w if @ is a subsequence
of @. For instance, <(b)(e)> is a subsequence of <(d)(b)(a)(c,e)> since (b) < (b) and (e)
c (c,e).

Each customer record in the database DB is referred to as a data sequence, which
is a sequence of purchased itemsets ordered by transaction time. The support of
sequence X, denoted by X.sup, is the number of data sequences containing X divided by
the total number of data sequences in database DB. The minsup is the user specified

minimum support threshold. A sequence X is a frequent sequence if x.sup > minsup.

&9

The sequence X is also called a sequential pattern. Given the minsup and the database
DB, the problem of sequential pattern mining is to discover the set of all sequential
patterns, denoted by S[minsup].

The interactive sequence discovery process is described as follows. Given the
database DB, the user queries with several minsup values interactively, and finds out
the desired set of sequential patterns with respect to the final minsup. The objective of
interactive discovery is to respond to each query quickly and to reduce the overall
mining time for the whole process accordingly.

Table 5-1. Notations used

¥Y={, a, ..., &} |The set of all items.
a1, O, ..., O ﬂl
> e e e ltems.
Pos s P

| =B, Po, ..., fn) |An m-itemset, L ! ¥
X = <a1dy...8p> A sequence: Each a; is an‘itemset.

X.Sup The support of sequence. .
DB The database of data-sequences.
minsup The user specified minimum support.
. The set- of allisequential patterns in DB with respect to
S[minsup] minsup.
. The set of frequent k-sequences with respect to minsup. See
S{minsup] Section 5.3.1.)) P i
. The set of candidate k-sequences with respect to minsup. See
X minsup] Section 5.3.1.
KB The knowledge base. See Section 5.4.1.
The minsup used in the construction of KB. See Section
KB.sup 541
. The set of new frequent k-sequences with respect to minsup.
N[minsup] See Section 5.4.2.
XK' The reduced set of candidate k-sequences. See Section 5.4.2.

Example 5-1: Interactive sequence discovery without knowledge base. Table 5-2
shows the supports of all sequences in an example database. The sequences are
grouped by sequence-size and are listed in ascending order of supports. The
interactive sequence discovery is described below. For convenience, we list the results

of the four example queries in Table 5-3.

90

Table 5-2. The supports of all sequences in an example database

Sequence Support Sequence Support
<(a)> 0.90 <(a,b)> 0.80
<(b)> 0.82 <(a)(c)> 0.70
<(c)> 0.75 <(a)(e)> 0.60
<(e)> 0.62 <(b)(b)> 0.55
<(d)> 0.40 <(a)(b)> 0.53

<(a,c)(e)> 0.40 <(c)(e)> 0.51

<(a)(c)(e)> 0.30 <(a,c)> 0.45

<(c)(b,e)> 0.27 <(c)(b)> 0.30

<(a,c)(b)> 0.18 <(b,e)> 0.29

<(a)(b,e)> 0.12 <(b)(c)> 0.20

<(a,c)(b,e)> 0.10 <(a)(d)> 0.10
<> Less than 0.10

Note: <*> represents the sequence whose support < 0.1, e.g. <(6)>.sup = 0.08.

Table 5-3. User specified minimum supports and the resultant sequential patterns

Query

The minsup value and
the set of all sequential patterns

Frequent k-sequences and new
K-sequences

minsup = 0.7,

54[0.7] = {<(a)>, <(b)>, <(c)>}.

First [S[0.7] = $1[0.7] w $5[0.7] \|S2[0.7)= {<(a,b)>, <(a)(c)>}.
S3[0.7] W S4]0.7]. S3[0.7]1=S4[0.7] = .
$1[0.4] =S,[0.7] U N1[0.4],
N1[0.4] ={<(e)>, <(d)>}.
minsup = 0.4, $5[0.4]=S,[0.7] U N2[0.4],
Second |S[0.4] = $1[0.4] U S3[0:4] UN,[0:4] = {<(a)(e)>, <(b)(b)>,
S3[0.4] L S4[0.4]. <(a)(b)>,<(c)(e)>, <(a,c)>}.
S3[0.4] = {<(a,c)(e)>}.
$4[0.4] = .
$1[0.1] = S1[0.4] U S4[0.1],
N1[0.1] = &.
S5[0.1] = S5[0.4] U N,[0.1],
minsup = 0.1, N[0.1]={<(c)(b)>, <(be)>, <(b)(c)>,
Third [S[0.1]= $1[0.1] U S;[0.1] U <(a)(d)>}.
S$3[0.1] U S4[0.1]. S3[0.1] = S3[0.4] U N3[0.1],
S3[0.1]={<(a)(c)(e)>, <(c)(b,e)>,
<(a,c)(b)>, <(a)(b,e)>}.
S4[0.1] = {<(a,c)(b,e)>}.
minsup = 0.3,
S[0.3]1=S[0.1] — {X|x € S[0.1] A x.sup < 0.3}
Final = {<(@)>, <(b)>, <(c)>, <(d)>, <(e)>, <(a,b)>, <(a)(c)>, <(a)(e)>,

<(b)(b)>, <(a)(b)>, <
<(a)(c)(e)>}.

(c)(e)>, <(a,c)>, <(c)(b)> <(ac)(e)>,

At first, the user specified 0.7 as the minsup and mined the database. Only five

91

patterns were found so that the user decided to discover more patterns. The second
query with a smaller minsup (minsup = 0.4) found out more patterns (total 13 patterns)
than the first discovery. Running the third time of the mining algorithm, 22 patterns in
total were returned for the third trial with minsup = 0.1. Finally, the user located all
sequential patterns whose supports are at least 0.3 by the fourth execution. The overall
response time for the interactive process is the total time spent for the four rounds of
execution. Although the result of the final mining could be obtained by retrieving
qualified patterns after the third query, current approaches generally re-execute the
mining algorithm without utilizing previous results. On the contrary, Example 5-2
shows that the knowledge base helps to reduce the time for the last three example
queries. That is, the total response time is reduced. O
Example 5-2: Interactive sequence discovery. using discovered patterns. The
example database is the same=as.in Example 5-1.-The process for the same four
queries is as follows.

There was no advantage for the first mining with an empty knowledge base. A
knowledge base (abbreviated KB) containing patterns whose supports are at least 0.7
was built after the first query. For the second trial, patterns in the KB, such as <(b)> or
<(a)(c)>, need not be counted again since they are still frequent with respect to
minsup = 0.4. Only the newly generated candidates, such as <(a)(e)> or <(d)(e)>,
were counted against the sequence database. After the second query, the KB has more
information by accumulating the new patterns such as <(c)(e)>. Similarly, the support
counting of patterns kept in the KB were eliminated in the third mining. The
employment of the KB can accelerate the support counting process by reducing the
number of candidates. The KB contains all the patterns whose supports are at least 0.1
after the third query. At last, no counting is necessary since S[0.3] can be directly

extracted from the KB without any database access. The response time for every query

92

is reduced by the use of a knowledge base, except for the first query requiring the
same execution time, and consequently the overall response time is reduced. [
Therefore, we propose the KISP mining algorithm to effectively utilize the
discovered knowledge for interactive sequence discovery. In fact, the knowledge base
built by KISP keeps not only the supports of sequential patterns, but also the supports
of all candidates generated in prior minings. The fast response time of interactive
sequence discovery is achieved by the use of the knowledge base, which is

incrementally built by accumulating the information obtained in the mining processes.

5.3 Related Work

Few researches are directly related to interactive sequence discovery. In Section 5.3.1,
we review some algorithms for séquential pattern mining. Section 5.3.2 presents

related approaches for interactive pattern discovery.
5.3.1. Algorithms for sequential pattern-mining

The AprioriAll [6] is the first algorithm"dealing with sequential pattern discovery [6,
48, 89]. AprioriAll splits sequential pattern mining into three phases: itemset phase,
transformation phase, and sequence phase. The itemset phase uses Apriori to find all
frequent itemsets. The database is transformed by replacing each transaction by the
set of all frequent itemsets contained in the transaction in the transformation phase. In
the third phase, AprioriAll makes multiple passes over the database to generate
candidates and to count the supports of candidates. In subsequent work, the same
authors proposed the GSP (Generalized Sequential Pattern) algorithm that
outperforms AprioriAll [80]. Both algorithms use the similar techniques for candidate
generation and support counting, as described in the following.

GSP algorithm makes multiple passes over the database and finds out frequent

93

k-sequences at k-th database scanning. In each pass, every data sequence is examined
to update the support counts of the candidates contained in this sequence. Initially,
each item is a candidate 1-sequence for the first pass. Frequent 1l-sequences are
determined after checking all the data sequences in the database. In succeeding passes,
frequent (k—1)-sequences are self-joined to generate candidate k-sequences. Again, the
supports of these candidate sequences are counted by examining all data sequences,
and then those candidates having minimum supports become frequent sequences. This
process terminates when there is no candidate sequences any more. In the following,
we further describe two essential sub-processes in GSP, the candidate generation and
the support counting.

Candidate generation: Let Sy[minsup] denote the set of all frequent k-sequences and
Xk[minsup] denote the set of all candidate k-sequences with respect to minsup. GSP
generates Xy[minsup] by two steps..The first step joins Sy.1[minsup] with Sy.1[minsup]
and obtains a superset of the final Xfminsup].- Those candidates having any
(k-1)-subsequence which is not in ‘Sggfminsup] are deleted in the second step. In the
first step, we join a sequence X with another sequence Y if the subsequence obtained
by dropping the first item of X is the same as the subsequence obtained by dropping
the last item of y. The resultant candidate from this join is the sequence X extended
with the last item of y. The added item becomes the last element (of the candidate) if
the last item of'y itself is an element. Otherwise, the added item becomes the last item
of the last element (of the candidate). For example, the candidate <(a)(c)(e)> is
generated by joining <(a)(c)> with <(c)(e)>, and the candidate <(a)(c,e)> is generated
by joining <(a)(c)> with <(c,e)>. Besides, the Xyminsup] produced from this
procedure is a superset of S minsup] as proved in [80]. That is, X [minsup] o
Sy[minsup].

Specifically note that for candidate 2-sequences, the generation of Xs[minsup] is
94

described by the formula: Xp[minsup] = {<(X1, X2)>| VX1, VX2 € Si[minsup], X1 # Xz} U
{<(X)(X2)>| VX1, VX2 € Si[minsup]}. Take the database in Table 5-2 for instance,
$1[0.8]={<(a)>,<(b)>}, so that X,[0.8]={<(a,b)>, <(a)(a)>», <(a)(b)>, <(b)(a)>,
<(b)(b)>}.

Support counting: GSP adopts a hash-tree structure [7, 80] for storing candidates to
reduce the number of candidates that need to be checked for each data sequence.
Candidates would be placed in the same leaf if their leading items, starting from the
first item, were hashed to the same node. The next item is used for hashing when an
interior node, instead of a leaf node, is reached [80]. The candidates required for
checking against a data sequence are located in leaves reached by applying the
hashing procedure on each item of the data sequence [80]. The support of the
candidate is incremented by one ifiit i contained in the data sequence.

The SPADE (Sequential PAttern Discovery using Equivalence classes) algorithm
finds out sequential patterns using vertical-database"layout and join-operations [98].
Vertical database layout transforms-data sequences into item-oriented lists. For
example, the transformation of a sequence <(a,c)(e)> with sequence id = C310 would
generate an entry (C310, a) in the list of item ‘@’, an entry (C310, a) in the list of item
‘c’, and an entry (C310, e) in the list of item ‘e’. The lists are joined to form a
sequence lattice, in which SPADE searches and discovers the patterns [98].

Recently, the FreeSpan (Frequent pattern-projected Sequential Pattern Mining)
algorithm was proposed to mine sequential patterns by a database projection
technique [29]. FreeSpan first finds the frequent items after scanning the database
once. The sequence database is then projected, according to the frequent items, into
several smaller databases. Finally, all sequential patterns are found by recursively
growing subsequence fragments in each projected database. Based on the similar

projection technique, PrefixSpan (Prefix-projected Sequential pattern mining)
95

algorithm [67] efficiently mines the complete set of patterns employing a
divide-and-conquer strategy with the PatternGrowth methodology.

However, as mentioned above, all these algorithms re-execute the mining
procedure every time a new minsup is specified during the interactive process.
Therefore, the response time would be longer for subsequent queries with smaller

minsup values with all these algorithms.
5.3.2 Algorithms for interactive pattern discovery

The objective of interactive pattern discovery is to reduce the response time for users’
online queries. In general, the discovery of frequent patterns in large databases is
categorized into association discovery and sequence discovery. The problem of
interactive association discovery, alsesicalled online association generation, was
addressed in [3]. The method in [3] preprocesses the data in the transactional database,
and stores frequent itemsets in an adjacency lattice. Each vertex in the adjacency
lattice is labeled with the support.of the corresponding itemset. A directed edge in the
lattice links from a ‘parent’ itemset to one of its ‘child’ itemsets. An itemset Y is a
‘child’ of itemset X if Y can be obtained from X by dropping a single item from X.
Online repeated queries about association rules are answered by graph theoretic
searching on the lattice.

Similarly, a knowledge cache storing the discovered frequent itemsets and the
non-frequent itemsets is used for interactive discovery of association rules [54]. It is
indicated that their benefit replacement algorithm using B+-tree to store cache buckets
is the best caching algorithm [54].

Although on-line association discovery is close to our problem, the aim of these
approaches [3, 30, 54, 63] is to interactively find frequent itemsets rather than

frequent sequences. Sequence discovery is more complicated than association

96

discovery because with n frequent items, the total number of candidates in pass K is
N o ' K (n\K=inf n \Kicia (Y kA i

(kj for association discovery and ilz_:l(illzz_ll(izj igz_ll (ig]A ikz_ll [ikj for

sequence discovery. One related work of interactive sequence mining is described

below.

The SPADE algorithm [98] was extended into the ISM (Incremental Sequence
Mining) algorithm for incremental sequence mining and interactive sequence mining
[64]. All queries are performed on a pre-processed in-memory data structure, the
Increment Sequence Lattice (ISL). Therefore, a ‘small enough’ minsup must be
selected in advance to mine all patterns by executing SPADE and save the results in
the ISL. Nevertheless, if a query involves a support smaller than the pre-selected
minsup, another (more) lengthy . mining process must be performed to generate
another new ISL sufficient for-the.new query. Moreover, the ISM might encounter
memory problem if the number of the potentially frequent patterns is too large [64].

Without any assumption on the pessible values of minsup, our algorithm aims to
reduce the response time for each query for sequential patterns in a large database. In
the proposed algorithm, subsequent mining is assisted with the information
accumulated from prior mining processes and an efficient interactive sequence

discovery is achieved.

5.4 The Proposed Algorithm for Interactive Discovery of Sequential

Patterns

The proposed KISP algorithm is described in Section 5.4.1. The algorithm speeds up
the mining process by eliminating the counting efforts required for those candidates
already existing in the knowledge base. Two optimizations are proposed for further

improvements. In Section 5.4.2, the generation of the remaining ‘new’ candidates is

97

optimized by direct computation. Enabled by candidate reduction and assisted by the
information in the knowledge base, the optimization by current support counting is
depicted in Section 5.4.3. Section 5.4.4 presents the manipulation of the knowledge
base. Section 5.4.5 discusses the mining efficiency and space utilization with a large

knowledge base.

5.4.1 The KISP (Knowledge base assisted Incremental Sequential Pattern) mining

algorithm

Fig. 5-1 outlines the proposed Basic KISP algorithm for interactive discovery of
sequential patterns. We adopt the GSP algorithm as the basis for constructing the
knowledge base assisted mining algorithm. KISP uses similar procedures of candidate
generation and support counting as_used:in GSP. Nevertheless, KISP speeds up
support counting by reducing eonsiderable amounts of candidates. It reduces the
number of database passes by concurrent counting of variable-sized candidates.
Consequently, KISP makes a significant performance improvement for interactive
discovery.

During the interactive process, the knowledge base (denoted by KB) is empty
only in the very first mining. Once KISP is executed, the information about the
supports of counted candidates would be inserted into KB. The KB.sup is the minsup
used when KB is constructed or expanded. Although KISP would degenerate into the
GSP algorithm with an empty KB, KISP will enrich KB from every counting effort in
later minings. The details are given below.

In the beginning, KB contains no information since no mining has been
performed. KISP works similar to GSP for the very first mining. Initially every item
in the database is a candidate 1-sequence. The fundamental KB is built, only once, by

a simple scan over the database to count the supports of candidate 1-sequences (line

98

1). After that, the supports of all candidate l-sequences are included in KB, and
S[minsup] contains the frequent 1-sequences (line 2). Sine the supports of candidates
having size other than one is unavailable from KB at the time being, no candidate
counting can be spared by KISP. At the end of this mining, KB would collect the
supports of all the candidates in each pass (line 13), and KB.sup is the minsup

designated for this mining (line 19).

Algorithm KISP (DB, KB, minsup)
Input: DB = the database of data sequences; minsup = user specified minimum support ;
KB = knowledge base having the supports of all the candidates in prior minings
Output : S[minsup] = sequential patterns with respect to minsup; KB = (new) knowledge base

// respect to minsup, and KB.sup be the smallest minsup used in the construction of KB
1) if KB = ¢ then KB = {x and x.sup, ¥V X € X,} ;

3) if minsup < KB.sup then // mine new patterns and accumulate new knowledge
4) k=2,;

5) generate X, [minsup] from the frequent (k-1)-sequences in S[minsup] ;

6) X=X, [minsup] - {x| x € KB} ; // eliminate those candidate k-sequences in KB
7) while X' # ¢ do // there exists candidate k-sequences, obtains their supports

8) for each data sequence ds in database DB do

9) for each candidate x € X' do

10) increase the support of X if X is contained in ds ;
11) endfor

12) endfor

13) KB=KBuU {xandx.sup, V x € X,'} ; // collect new candidates and their supports

14) S[minsup] = S[minsup] W {X | Xx.sup > minsup A x € X,'} ; // collect new patterns from X’
15) k=k+1;

16) generate X, [minsup] from the frequent (k-1)-sequences in S[minsup] ;

17) X=X [minsup] - {x| x € KB} ; // the reduced set eliminates candidate k-sequences in KB
18) endwhile

19) KB.sup = minsup ; // update the smallest minsup of KB

20)endif

// Let x.sup be the support of a candidate X , X,[minsup] be the set of candidate k-sequence in DB with

2) S[minsup] = {X| xeKB A x.sup > minsup} ; // obtain valid sequential patterns from knowledge base

Fig. 5-1. Proposed Algorithm Basic KISP
Note that in KB besides the sequential patterns we also keep the supports of all
candidates regardless of their values for two reasons. First, several currently
non-frequent candidates might turn out to be frequent when a smaller minsup is
specified in subsequent queries. We can immediately obtain these patterns from KB

without any database access. Second, to find out the true patterns, the mining process

99

generally counts a large number of candidates although they are eventually rejected.
We can get rid of the ‘useless counting’ for the ‘commonly non-frequent’ candidates if
their supports were kept. For example, those candidates ever counted with the support
value of zero would not be inserted into the candidate hash-tree afterward.
Consequently, a faster counting is enabled due to the smaller hash-tree of the reduced
set of candidates.

For subsequent queries, KB is not empty. Assume that the user specifies minsup
to KISP with a non-empty KB. KB now contains the supports of all the generated
candidates while mining with KB.sup as the support threshold. Since the supports of
all the candidates in KB are available, whether new counting is required or not
depends on the values of minsup and KB.sup. If the minsup is greater than KB.sup, we
simply search in KB for patterns whose supports satisfy the new minsup, and return all
patterns in S[minsup] (line 2). KB and KB.Sup ‘stay intact since no counting is
performed. In this case, the employment-of-KB eliminates the need of re-mining
completely in comparison with GSP.. Tremendous gains in performance can be
resulted from direct retrieval of valid patterns without re-counting the huge database.
In fact, KISP would output all the valid patterns in constant time independent of the
database size when KB.sup is less than the user specified minsup. On the contrary,
other re-mining based algorithms such as GSP need to re-scan the database.

In case the minsup is less than KB.sup, we have to mine the database for new
patterns that are not in KB. The fundamental difference between KISP and GSP is that
KISP only needs to count the supports of the ‘new’ candidates by sparing the counting
of the candidates already existing in KB (line 6 and line 17). Even the modest
technique spares the counting of a substantial amount of candidates, as confirmed by
our experiments. Take the number of candidates in pass 2 for example. Assume that in

query Qj, there are 100 frequent 1-sequences so that (100*100)+(100*99)/2 = 14950
100

candidate 2-sequences are generated and counted in pass 2. Assume that the number
of frequent 1-sequences is 110 for query Qj+1. In pass 2 of Qj+1, GSP must count in
total (110*110)+(110*109)/2 = 18095 candidates, while KISP counts only
(18095-14950)= 3145 candidates. In each pass of a query, we first generate the
candidates and then remove those existing in KB. Next, we expand KB with the
support of every new candidate for reuse in future mining processes (line 13). The
sequential patterns are collected (line 14). Finally, KB.sup is replaced by the new
minsup since the counting base is changed (line 19). Thereafter, KISP uses KB to
answer all queries whose minsup are greater than or equal to KB.sup. The ‘new
pattern’ mining part (line 3 through line 20), which is also the part of new information
acquisition step, of the procedure is activated again only when minsup < KB.sup
occurs in subsequent queries.

In fact, instead of generating all candidates and-then removing the counted ones
(line 5 then line 6, and line 16 then line 1-7)sthe.optimized KISP directly generates the
new candidates requiring counting with. the assistance of KB, as presented in Section

5.4.2. In the following context, KISP stands for the optimized KISP.
5.4.2 New-candidate generation by direct computation

The first optimization in KISP is the direct generation of new candidates. In GSP, the
joining-then-pruning procedure generates the set of required candidate k-sequences in
pass k. KISP further removes the candidates existing in KB from the set before
counting. The remaining candidates are referred to as new-candidates in KISP. The
candidates to be removed from counting are those generated by the self-join of the
frequent (k-1)-sequences in Syq[KB.sup]. Therefore, any formation of the
new-candidates must involve one of the new frequent (k-1)-sequences. These

new-candidates can be directly generated as follows.

101

Let Xy [minsup] be the set of candidate k-sequences, Sy[minsup] be the set of
frequent k-sequences, and X' be the reduced set of candidate k-sequence, i.e. the
new-candidates in pass K. We use Ng[minsup] to designate the new frequent
k-sequences (due to minsup) in contrast to the frequent k-sequences in KB. Recall that
KISP mines the database for new patterns only when minsup < KB.sup. Hence,
Sy[minsup] = Sk[KB.sup] W Ng[minsup]. The X' is the union of the two sets; one
obtained from joining the frequent (k-1)-sequences in KB with the new frequent
(k-1)-sequences, the other is obtained from self-joining the new frequent
(k-1)-sequences. Theorem 5-1 derives the Xy'.

Theorem 5-1. Xi' = (Sk-1[KB.sup] ® Ni.1[minsup]) W (Nka[minsup] ® Ny.1[minsup]),

where “®” represents the join operation described in Section 3.1.

Proof. Xy[minsup] = Sk-1[minsup] &®:Si:1[minsup],

1) Xy[minsup] = (Sk-1[KB.sup] W-Nia[minsup])y® (Si-z{ KB.sup] U Ni.1[minsup]).

2) Xy[minsup] = (Sk-1[KB.sup] ®-Si.1[KB:SUpPs: (Sk-1] KB.sup] ® Ny.1[minsup]) u
(Nka[minsup] ® S.1[KB.sup]) U (Ngz[minsup] ® Ni.a[minsup]).

3) Xy[minsup] = Xk KB.sup] U (Sk-1[KB.sup] ® Nk.1[minsup]) W (Nk.1[minsup] ®
Nk-1[minsup]) due to Xi[KB.sup] = Sk-1[KB.sup] ® Sk.1[KB.sup] and Nk.1[minsup] ®
Sk-1[KB.sup] = Sk-1[KB.sup] ® Ny.1[minsup].

4) By definition Xy' = X [minsup] — Xx[KB.sup], so X' = (Sk.1[KB.sup] ® Nk.1[minsup])
U (Ng-1[minsup] ® Ny.a[minsup]) since Xy [KB.sup] M [(Sk-1[KB.sup] ® Ni.1[minsup])
U (Nia[minsup] ® Ni.1[minsup])]|=J. 0

The direct generation of new-candidates eliminates the searching and the
removing of candidates in KB, and speeds up the mining process. Example 5-3
contrasts the number of candidates requiring support counting in GSP and in KISP. It
also shows that KISP might generate very few candidates even for a low minsup. The

counting effort of each mining incrementally expands KB so that KISP is gradually
102

enhanced with greater candidate reduction capability during the interactive process.

Example 5-3: Number of candidates generated by GSP, and by KISP. The

database and the queries are the same as in Example 5-1. Assume that the set of items

¥={a,b,c,d,e, f}. Table 5-4 tabulates the candidates generated by GSP and those

generated by KISP.

Table 5-4. Candidates generated by GSP and by KISP

Query Candidate k-sequences
GSP KISP
X1[0.7] = {<(a)>, <(b)>, <(c)>, <(d)>,
First <(e)>, <(f)>} The same as in GSP
(minsup |[Number of candidates in X4[0.7] =6
=0.7) |X[0.7] = $41[0.7] ® S1[0.7 .
Nu[mblr of c[and]idates[in)12[0.7] =12 The same as in GSP
X1[0.4] = X4[0.7] 0
Number of candidates in X;[0.4] =6
Second |X2[0.4] = $:[0.4] ® S;[0:4] A2 = G071 ® NA0AD o
(minsup [Number of candidates'in X,[0:4] =35 (N/[0-4]) ® N/[0.4])
=0.4) Number of candidates in X, = 23
X3[0.4] = $,[0.4] ® 5,[0.4] Az = (4071 ® NAOAD o
Number of candidates in X3[0.4]}.=35 (NA04]) ® NA0.4])
Number of candidates in X5 =5
X1[0.1] = X,[0.7] 0
Number of candidates in X;{0.1]="6
X2[0.1] = X5[0.4] X = (5]04] ® Nj01]) v
Number of candidates in X5[0.1] = 35 (N,[0.1]) ® N,[0.1])
Third (Note: 5,[0.1] = §,[0.4]) Number of candidates in X5 = 0
(minsup X3[0.1] =S,[0.1] ® S[0.1] X7 = (5404] ® Nj0.1]) v
=0.1) Number of candidates in X3[0.1] =14 (N0.1]) ® N0.1])
(Note: after 4 candidates pruned) Number of candidates in X5 =9
(Note: after 4 candidates pruned)
X4[0.1] =S50.1] ® S;4[0.1] X = (S504] ® Nj01]) v
Number of candidates in X 0.1] =1 (N3[0.1]) ® N40.1))
Number of candidates in X/ = 1
X1[0.3] = X1[0.4] 0
Number of candidates in X;[0.3] =6
Final |X2[0.3] =X[0.4]
(minsup |Number of candidates in X5[0.3] = 35 0
=0.3) |(Note: 5,[0.3] =S,[0.4])
X3[0.3] = S,0.3] ® S0.3] 0
Number of candidates in X30.3] =8

(a) Candidates generated by GSP. GSP generates 6+12 = 18 candidates for the

103

first query. For the second and the third query, there are 46(6+35+5) and
56(6+35+14+1) candidates requiring support counting by GSP, respectively.
Note that four candidates are pruned before counting in the third mining. For
instance, candidate <(a, b, €)> is pruned because it contains a non-frequent
subsequence <(a, €)>. As described in Example 5-1, in total 49 candidates
still need support counting by GSP for the final query without a knowledge
base.

(b) Candidates generated by KISP. For the first query, KISP generates the same

number of candidates as in GSP since KB is empty. For the remaining queries,
KB already has the supports of the entire candidate 1-sequences so that no
candidate 1-sequence is generated. As shown in Table 5-4, KISP generates
only 28 candidates for minsup = 0.4. Moreover, only 10 candidates are
generated for minsup = 0.1. Finally,»no candidate is generated for the last
query since all the desired pattérns-are-available from KB. [

With the assistance of KB, KISP directly generates fewer candidates for support
counting in comparison with GSP. The capability of candidate reduction becomes
more powerful as the minimum support threshold getting smaller gradually. In GSP,
the number of candidates is proportional to the value of minsup, while the number of
new-candidates is not necessarily proportional to minsup in KISP. KISP might have
only very few new-candidates at a very low minsup value since the information
gathered from each mining during the interactive process all contribute to the
candidate reduction. In each pass, the number of candidates inserted into the hash-tree
is smaller. Therefore, KISP is enabled to accommodate more candidates, even
candidates of different size, in the same hash-tree during the same pass of database
scanning. The improved counting technique and the placement of variable sized

candidates are described in Section 5.4.3.

104

5.4.3 Concurrent support counting and the placement of variable sized candidates

The second optimization in KISP is the technique of concurrent support counting.
Being a multi-pass based instead of a memory-based mining algorithm, without
optimization, the number of database passes required in KISP (also in GSP) is equal
to the size of the longest pattern. Concerning mining efficiency, reducing the number
of database scanning is thus as important as minimizing the search space of
candidates. Concurrent support counting is used to achieve database-pass reduction
while preserving the completeness of pattern discovery. Specifically, we can reduce
the number of database accesses if we count not only the supports of candidate
k-sequences but also that of length longer than k in pass k. An intuitive way is to
generate candidates of all sizes simultaneously. Nevertheless, the support counting
would be slowed down if the space for storing candidates exceeds the memory limit
so that the candidates have to be fetched from the disk rather than the memory.
Therefore, the available memory: restricts the generation of all sized candidates at the
same time.

In general, KISP counts the supports of candidate k-sequences in pass k. One
situation is that the available memory is not enough for the generation of candidate
k-sequences. For example, the number of candidate 2-sequences might be huge for the
very first mining. Analogous to GSP, if the set of frequent (k-1)-sequences, i.e.
Sk-1[KB.sup] and Ng.1[minsup], cannot fit into the memory, the reduced candidate set
Xi' is generated by the relational merge-join technique without pruning [80]. If the
memory can completely hold Sk1[KB.sup] and Ng.j[minsup], but not the entire Xy,
then KISP generates as many candidates of the Xy' as possible. The supports of these
candidates are counted and are written out to disk. This procedure is repeated until all

the candidates are processed.

105

On the contrary, the X' is more likely to occupy just a small part of the memory
at pass K as illustrated in Section 5.4.2. In KISP, we maximize memory utilization to
reduce the number of database passes by inserting as many candidates as possible into
the same hash-tree. We continuously generate the candidates of longer size until the
memory space is nearly full. All the candidates of the same size are inserted in a batch
at the same time. With the information about Sk;[KB.sup] and the Nk.;[minsup], KISP
can estimate the number of new-candidates, which indicates the space required.
Therefore, we can place variable-sized candidates in the same hash-tree and
concurrently count the supports against the data sequences in the same database pass.
This technique reduces the total number of database scanning. The estimation
procedure and the placement of variable-sized candidates that enables concurrent
counting are described in the following.

Considering the number of candidates generated in each pass, the number of
candidates in X' is greater than that in-other Xi'~because none in the candidate
superset of size two can be pruned: Every frequent 1-sequence must join with other
frequent 1-sequence since the subsequence of any frequent 1l-sequence is an empty
sequence. For candidates of Xi' where k > 2, some frequent (k-1)-sequences are not
joined if their subsequences do not match. Assume the number of patterns in
S1[KB.sup] is p and the number of patterns in Nj[minsup] is . The number of
new-candidates in pass 2 is [3(p+)*-(p+)]/2-(3p*-p)/2 = 3pg+(3G*-q)/2. This formula
can be applied to roughly estimate the maximum number of candidates in other passes.
Whenever there is room for the next set of candidates (of longer size), KISP
continuously generates and inserts the candidates into the same hash-tree. Thus, KISP
can generate as many candidates as possible in the same pass.

Originally, the hash-tree in GSP is designed to store the same sized candidates in

the leaves. The leaf where a candidate should be placed in is the leaf reached by
106

consecutive hashing on the items of the candidate. Since the GSP-generated
candidates are of the same size in the same hash-tree, the item for hashing is always
available while determining the branch to be followed. Nonetheless, the
accommodation of variable sized candidates in the same hash-tree might have the
problem of having no item for hashing. For example, inserting a candidate 4-sequence
might cause the re-distribution of an overflowed node, while the re-distribution might
need to hash on the fourth item of a candidate 3-sequence in the node. We modify the
hashing procedure slightly to store the same prefixed candidates, despite their sizes, in
the same leaf. In case there is no item for hashing any more, the candidate is stored in
one of the descendent leaves (due to the splitting of the overflowed leaf). We select
the leaf having the fewest number of candidates stored to maximize memory
utilization. Since candidates of different size are stored in the same hash-tree, we can
check the variable sized candidates against a.data sequence at the same time.
Therefore, the concurrent suppott counting-minimizes the number of database passes
required in KISP.

Note that a similar technique named pass bundling is described for association
mining in [53]. However, pass bundling statically sets a limit to determine whether
the generation should be continued or not, while KISP dynamically estimates and
computes the available memory for maximum utilization. The next section will
describe the structure and the manipulation of the knowledge base, which is the key to

facilitate the above stated improvements.
5.4.4 Manipulation of the knowledge base

The knowledge base is essential to the proposed algorithm since it is the groundwork
for all improvements. Thus, the knowledge base should be manipulated effectively to

supply necessary information. We store the knowledge base in disk so that KISP is

107

independent of the main memory size. The information about the candidate supports
in KB helps to eliminate all database access. The candidate information also enables
direct new-candidate generation and concurrent support counting. In addition, the
knowledge base is incrementally increased as new support information is acquired.
Therefore, the knowledge base should provide fast access to the counting information
of patterns, carry quick estimation of required candidate storage, and be able to
expand incrementally. Fig. 5-2 shows the logical structure of the knowledge base
designed based on these requirements.

A knowledge base is composed of a minimal KB.sup, and one or more KB
heads. The minimal KB.sup is the smallest KB.sup among all the KB.sups in the KB
heads. We create a KB head to store the newly acquired information only when the
‘new pattern’ mining part of KISP.is executed (i.e. when the user-specified minsup is
less than the minimal KB.sup). A.'KB head: comprises a KB.sup, the number of
pattern-support heads (ps_heads), the-pattern-support heads, and the position of
next KB head. The KB.sup indicates-the minsup used while adding this head. The
number of ps_heads indicates the total number of pattern-support heads in this KB
head. The pattern-support heads summarizes the pattern-support tables, which
contain the information of all patterns and their supports as described below. The
position of next KB head links the next KB head so that the knowledge base can
‘grow’ incrementally.

The details of pattern information are collected in the pattern-support tables
after mining. We group all the same sized patterns in the same table so that the pattern
information of desired size can be directly found through the position of
pattern-support in the corresponding ps_head. The ps_head also contains a summary
of the size of the patterns, the total number of counted candidates (of that size),

and the total number of non-zero patterns. The total number of counted candidates
108

Minimal KB.sup

KB.sup number of ps_heads

size of pattern position of pattern-support

number of counted candidates | number of non-zero patterns

size of pattern position of pattern-support

number of counted candidates | number of non-zero patterns

[eleole)

size of pattern position of pattern-support

number of counted candidates | number of non-zero patterns

position of next KB head

l'_ _j : KB head IZI : ps_head (pattern-support head)
Fig. 5-2. Structure of the knowledge base
and the total number of non-zero patterns are used for estimating the number of
new-candidates. During the interactive process, KISP can obtain effectively the full
pattern information of certain size by accessing the pattern-support table (of that
size) in every KB head. The position-of pattern-support, in the ps_head within a
KB head, indicates the location of the pattern-support table.

Fig. 5-3 shows the pattern-support table. Note that we keep only the patterns
with non-zero support value to minimize the total size of each pattern-support table.
The supports of patterns (of the same size) are stored in support-descending order in
the structure. The descending ordered patterns eases the searching of valid patterns on
answering an online query. Sorting pattern-supports before writing to the disk might
increase the response time if the number of candidates is very huge. An option to
eliminate support sorting is writing the supports in the order of hash-tree traversal.
Even when the pattern supports are directly stored without sorting, searching within

the knowledge base is still more efficient than re-mining.

109

support value of pattern |pattern

support value of pattern |pattern

support value of pattern |pattern

Fig. 5-3. Structure of a pattern-support table

_ R q
LA | 090 <@ : i | 0.60 <(@)e)>
i0.7]2 : 0.82<(b)> | T3 L] 051 <))
|| | i) 0.75 <(c)> »i [23]10 i () [0.29 <(b,e)>
gl 6|6 || | 0-62<(c)> B eemnl 0.10 <(a)(d)>
| e L] 040 <(d)> | i 1 i 0.07 <(a,d)>
i 0.08<(f> | 11513 1j 0.07 <(a,e)>
b | i i| |0.05<wd>
H 1% . < , > :
F=EEL 070 <8)(2)> : 0.03 <Ec’d))>
i ‘ | 0.02 <(c,e)>
: 8§§ zg‘;))((gj : 0.01 <(b)(d)>
] 0.45 <(a,c)> | 1 0.40 <(a,c)(e)>
(b) 03 <()(b)>| 1 o 0.30 <(a)(c)(e)>
i 02 <Ob)o)>| i 0.08 <(a,b)(b)>
! 0.09 <(b,c)> ' ~ .
' 0.07 <(a)@a)>| 1 Incremented by the second mining
! J

% : changed by the second mining

' —~— —— D:end ofKB
Built by the first mining (a), (b)&(c): paths to patterns of size

-

Fig. 5-4. The knowledge base after the second query in Example 5-1

Fig. 5-4 illustrates a sample knowledge base, showing the incrementally
expanded support information after the second query in Example 5-1. In this figure,
the minimal KB.sup and the position of next KB head are changed, and a new KB
head is built by the second mining. The minimal KB.sup is changed from 0.7 to 0.4.
The position of next KB head in the left-hand-side (built after the first mining) are
changed to indicate the position of the new knowledge base (for KB.sup = 0.4). For
instance, the supports of all size-2 patterns can be easily found by path (a), and path (b)

then (c). The second KB head also shows that only 10 non-zero patterns out of the 23

110

counted size-2 candidates are stored after mining with minsup = 0.4.
5.4.5 Mining efficiency and space utilization with a large knowledge base

Given a very low KB.sup value, one might concern that the space used by KB could
be so large that KISP might not sustain the high level of performance. Although KB
may increase as a result of accumulating more pattern information, KISP still could
efficiently answer the interactive query request with new minsup. We analyze the
overall performance affected when KB is getting very large below.

KISP retrieves two kinds of data from KB, the KB heads and the stored patterns
with associated supports (i.e. pattern-support tables). Relatively small space is
required by a KB head for recording merely pattern summaries. Accessing these
linked KB heads is so easy and theresis mo influence. The performance could be
affected only by the reading ofsthe; pattern-support tables. However, the reading is
confined to qualified patterns only, instead of every pattern, in the tables. KISP may
sustain the good performance by. skipping alarge number of unqualified patterns in
KB, even if the KB is large.

The pattern-support tables are utilized to assist KISP in either directly answering
a query (when KB.sup < minsup) or generating the ‘new candidates’ by Theorem 5-1
in Section 5.4.2 (when KB.sup > minsup). In both circumstances, not every pattern
needs to be scanned. Given a support-descending ordered table, when the first pattern
whose support is smaller than minsup is encountered, we stop reading the rest of the
patterns in that table. Such an operation is also used in retrieving Sx.1[KB.sup] for
new-candidate generation. Thus, by sparing the reading of many unqualified patterns,
KISP may effectively retrieve the desired patterns and outperform the re-mining based
approaches. In fact, KISP would output all the valid patterns in constant time

independent of the database size when KB.sup < minsup. Note that when patterns are

111

stored in the hash-tree traversal order initially, we may re-arrange the tables in
support-descending order, periodically or after several KB heads are generated.
Therefore, the overall performance affected due to a large KB is quite limited.

We now examine the space utilization of KB, which comprises KB heads and the
pattern-support tables. When the requested new query with KB.sup > minsup invokes
new pattern generation in the interactive mining, one and only one KB head will be
added to KB. Otherwise, KB stays intact because KISP simply responds by retrieving
patterns from KB. The total number of KB heads hence is the total number of
‘new-pattern’ generation triggered. As described in Section 5.4.4, a KB head contains
KB.sup, the position of next KB head, the number of ps heads, and the ps_heads. A
major portion of KB is the ps heads, i.e. the pattern-support tables. The others need
only negligible space. The size of a'pattern-suppott table is proportional to the number
of stored patterns where a pattern.takes typically 19 to 22 bytes according to our
experiments (details in Table 56, Section.o-5-1). The size of KB, as a consequence,
might be larger than that of the original database. Appropriate compression on the
pattern-support tables, being collections of the same sized patterns, could be
employed to reduce the storage consumption for better storage utilization.
Nevertheless, how compression would affect the performance needs further

investigations.

5.5 Performance Evaluation

In order to assess the performance of the KISP algorithm, we conducted
comprehensive experiments. All experiments were performed with an 866 MHz
Pentium-III PC having 1024MB memory, running the Windows NT. In these
experiments, the databases are composed of synthetic data. Please refer to Section

3.5.1 for the method used to generate these data. The performance of interactive

112

sequence discovery using the KISP and the GSP algorithms are compared in Section
5.5.1. Results of scale-up experiments are presented in Section 5.5.2. Table 5-5 lists
the datasets used in the experiments. A dataset created with |C| = ¢, |T| = £, |S| =y, and
|l =6 is denoted by the notation Ca.TA.Sy.16. For instance, the Origin dataset is
denoted by C10.T2.5.54.11.25. The last four datasets are used for scalability tests in
Section 5.5.2.

Table 5-5. Datasets used in the experiments
Name IDB| | IC| | [T|] | ISI| N N Ns N, | Size (MB)

Origin 100K | 10 | 2.5 1.25 | 10,000 | 2500 | 25,000 18.8
Nltem 100K | 10 | 2.5 1.25 | 5,000 | 2500 | 25,000 18.8
SNpat 100K | 10 | 2.5 1.25 | 10,000 | 5000 | 25,000 18.8
LNpat 100K | 10 | 2.5 1.25 | 10,000 | 2500 | 12,500 18.8
Slen 100K | 20 | 2.5 1.25.| 10,000 | 2500 | 25,000 28.4
Tlen 100K | 10 | 5 1.2577 10,000 | 2500 | 25,000 28.0
SPLen 100K | 10 | 2.5 1251 10,000 | 2500 | 25,000 20.0
LPLen 100K | 10 | 2.5 2.5 (10,0004 2500 | 25,000 18.5
DB250k | 250K | 10 | 2.5 £25110,000-| 2500 | 25,000 46.9
DB500k | 500K | 10 | 2.5 1.251 10,000 | 2500 | 25,000 94.0
DB750k | 750K | 10 | 2.5 1:2571,10,000 | 2500 | 25,000 140.9
DB1000k | 1000K | 10 | 2.5 1.25 | 10,000 | 2500 | 25,000 187.9

B S ol R S S e o)l B S I) S R S S

5.5.1 Comparisons of KISP and GSP

Extensive experiments were performed to compare the execution times of KISP and
GSP. The effect of using knowledge base without concurrent support counting
optimization is studied first. The interactive discovery comprises five consecutive
queries, with minsup values varying from 2.5% down to 0.5%.

Fig. 5-5 compares the relative performance of KISP and GSP on the Origin
dataset with respect to various minsups. The total number of candidates and the total
number of database scanning required for each query in GSP are also shown in the

bottom of Fig. 5-5. The number of passes is the same in GSP and in KISP without

113

concurrent support counting. The total execution time with KISP and GSP are 6652
and 8028 seconds, respectively. As to individual mining, KISP is faster than GSP for
the last two queries with smaller minsup since considerable amount of candidates
were eliminated. Fig. 5-5 also depicts the ratios of the number of candidates in GSP to
those in KISP. Since the mining time reduced from the size-1 patterns in KB is very
little in comparison with the pattern-outputting time increased, the overhead of KISP
accounted for this phenomenon in the first three queries with larger minsup. In the
first three queries, KISP runs slower than GSP due to the extra time spent for writing
pattern information to KB being relatively larger than the time saved for the reduction
in candidates. For instance, the mining stopped after pass two for the second query.
Not much time was saved by the assistance of KB since the size-1 patterns occupied
77% of the reduced candidates.

Keeping the number of customers and the distribution of customer database the
same, the series of queries were-applied.on-the datasets Nltem, LNpat, SNpat, SPLen,
and LPLen to evaluate the impact of different sequence space for sampling. Similar
results were obtained as shown in Fig. 5-6. The total execution time ratios of KISP to
GSP are 67%, 74%, 97%, 89%, and 93%, respectively for the datasets NItem, LNpat,
SNpat, SPLen, and LPLen. Due to the rush increase of qualified frequent 1-sequences
which incurred the mass production of new candidates in the third query, the
performance drops for minsup = 1% in Fig. 5-6. Note that for dataset SNpat, the sizes
of the longest patterns are respectively 2, 2, 2, 3, and 5 for the five queries. Therefore,
the reduction of total execution time is not apparent since the KB manifests much

effect on candidate reduction only for the last two queries.

114

Mining Performance (Origin) C10.T2.5.54.11.25
200% | [Execution time
(GSP/KISP)
180%
—a— # candidates . /\.

160% (GSP/KISP)
_140% F —
%
= 120%
<
% 100% | ./ \/
)
2 80% L
&

60%

40% |

20%

0% L L L L

minsup 2.5% 2% 1% 0.75% 0.50%

#can. (GSP) 13015 33751 839993 1898078 4438725
pass (GSP) 2 2 4 5 7

Fig. 5-5. Relative execution time and number of candidates on dataset Origin

Mining Performance C10.T2.5 .54 .11.25

375%

350%

325% | ;

300% | Y [Nltem (Exe. time)
275% [LNpat (Exe. time)
250% E=——1SNpat (Exe.time)

[SPLen (Exe. time)
225% [——JLPLen (Exe. time)
200% | —a— Nltem (can.)
175% | — s — LNpat (can.)
...e-- SNpat (can.)
SPLen (can.)

.o LPLen (can.)

150% |

Ratio (GSP/KISP)

125% |

100%
75%
50%

25%

0%

minsup 2.5% 2% 1% 0.75% 0.50%

Fig. 5-6. Relative mining performance on datasets of various distributions

Mining Performance

300% T
275% L Slen: C20.T2.5.54.11.25 /I T
250% L Tlen: C10.T5.S4.11.25 ’
225%
200%
175%
150%
125%
100%
75%
50% |-
25%
0%

minsup 2.5% 2% 1% 0.75% 0.50%

Ratio (GSP/KISP)

1 Slen (Exe. time) [Tlen (Exe. time)
—a— Slen (can.) — > —Tlen (can.)

Fig. 5-7. Relative performance on datasets with longer customer sequences

115

Table 5-6. Number of candidates for the Slen dataset

Number of Pass number
candidates 1 2 3 4 5 6 7 8
2 504 GSP |GSP |GSP terminated
5%)
KISP| 10000 78547 terminated
204 GSP| 10000| 259376 1 terminated
KISP 0] 180829 1 terminated
Minsup 1% GSP| 10000| 2534350| 463 105 8 terminated
value KISP 0| 2274974 462 105 8 terminated
0.75% GSP| 10000| 4550975| 2045 413 80 6| terminated
KISP 0| 2016625| 1582 308 72 6| terminated
0.5% GSP| 10000| 7673835| 7986 2800 1339 430 63 3
KISP 0| 3122860| 5941| 2387 1259 424 63 3

Next, the distributions of customer sequences were changed. The Slen dataset
increases the average sequence size of customers (from 10 to 20), and the Tlen dataset
increases the average transaction size of customers (from 2.5 to 5). In general, both
changes would allowthe databases:to have more (and longer) sequential patterns with
respect to the above minsup values. As indicated in; Fig. 5-7, KISP runs faster than
GSP for each individual mining except for-the-very tirst mining. KISP benefits from
the accumulated information so that the individual discovery could be accelerated.
Take minsup = 0.75% for example, the execution time ratio of GSP to KISP is 2.9
times for dataset Tlen. The time saved by KISP resulted from the reduced number of
candidates. In contrast, GSP generated three times the number of candidates.
Additionally, the total execution time ratios of KISP to GSP are 54% for dataset Slen,
and 48% for dataset Tlen. To illustrate the accumulating power of KB, the number of
candidates in each pass generated by GSP and by KISP for the Slen dataset are
enumerated in Table 5-6.

KISP exhibits excellent mining capability for query intensive applications, as
demonstrated in Fig. 5-8. The average execution time (also the time required for
posterior queries) decreases as the number of queries increased. That is, users might

have shorter response time in each query by decreasing minsup value gradually to
116

reach the desirable minsup value, which generates the desired patterns. Similar results

were obtained for the same series of queries applying on datasets Slen and Tlen.

2400

Number of Queries vs. Average Execution Time

dataset

1600

&
2000 <
~

1200

Average exe. time (sec.)

800

—— Origin||
—&— Nitem
A
R
N
—e— [PLen| |

LNpat
SNpat ||
SPLen

400

No. of queries 3

3:(2.5%, 1.5%, 0.5%)

Note: Series of minsup values

5:(2.5%, 2%, 1.5%, 1%, 0.5%)
6: (2.5%, 2.1%, 1.7%, 1.3%, 0.9%, 0.5%)
11: (2.5%, 2.3%, 2.1%, 1.9%, 1.7%, 1.5%, 1.3%, 1.1%, 0.9%, 0.7%, 0.5%)

Fig. 5-8. Average.execution time vs..number of queries

All the preceding experiments were performed without optimization by

concurrent support counting so that.the number of database passes is the same in

GSP and in KISP. Table 5-7 illustrates the number of database scanning reduced by

concurrent support counting, and the reduced execution times for all the datasets with

respect to minsup = 0.5% and KB.sup = 0.75%. The first pass for support counting of

candidate 1-sequences is not required for all minings in KISP in comparison with GSP.

In general, the number of size-2 candidates is so many that the concurrent

optimization is effective from the second pass of database scanning (which counts

candidates of size-3 and above). However, most scans were combined in pass two so

that the total number of passes and the total execution times were reduced.

Table 5-7. Effects of concurrent support counting

minsup = 0.5% Origin [NItem | LNpat| SNpat |SPLen|LPLen|Slen|Tlen
Reduced execution time (sec.)| 29 39 40 4 8 5 94 | 157
Reduced number of passes 5 5 5 3 5 3 6 | 8

117

When users need to find the appropriate set of patterns by reducing the number of
sequential patterns found in a query, the next specified minsup would be greater than
the counting base of KB (KB.sup). KISP is faster than all the other re-mining based
algorithms for such queries since the answer set is already in KB. In the next
experiment, all KB.sups of the KBs were 0.5%, and 100 minsups ranging from 0.5%
to 2.5% were randomly selected. As shown in Table 5-8, the mining results are all
available in very short time for all datasets. For most queries, the execution time of
KISP is several orders of magnitude faster than GSP, which always re-mines from
scratch.

However, one drawback of KISP is that the size of KB might be larger than the
size of the original database, due to the space increased for storing supports. The size
of KB is proportional to the numbet of patterns existing in KB. The maximum sizes of
KB are also shown in Table 5-8 ~Table 5-9 shows that; in worst case, KB might need as
much as five times the space of the séquence-database for low KB.sup

Table 5-8. Execution time.of KISP.-when KB.sup < minsup

Exe. Time (sec.) Origin [Slen [Tlen |SPLen |LPLen

Minimum 0 4 10 0 0

Maximum 22 29 13 14 16

Average 4.3 11.8 [10.8 (5.1 4.4

Table 5-9. Space used by KB with respect to KB.sup (dataset Slen)

KB.sup 2% 1% 0.5%
Worst case size of KB (MByte) (5.6 51.7 140.9
Number of patterns stored 269377 2544926 7696456
Average cost of a pattern (Byte) |21.9 213 19.2

5.5.2 Scale-up experiments

To assess the scalability of the proposed algorithm, several experiments were
conducted. Since the basic construct of KISP is similar to that of GSP, similar scalable

118

results could be expected. In the scale-up experiments, the total number of customers
was increased from 100K to 1000K and other parameters were the same as the Origin
dataset. Again, KISP were faster than GSP for all the datasets. The execution times
were normalized with respect to the time for 100,000 customers here. Fig. 5-9 shows
that the execution time of KISP increases linearly as the database size increases,

which demonstrates good scalability of KISP.

Scale-up Performance of KISP

13.0 | minsup /
—e—2.50%
11.0

Execution time ratio

100K 250K 500K 750K 1000K

Number of customers

Fig. 5-9. Linear scalability of the database size

5.6 Summary

In this chapter, we propose an efficient knowledge base assisted mining algorithm for
interactive discovery of sequential patterns. For online queries, manual tuning on
mining parameters such as the minimum support is inevitable since no one can predict
the best parameter and the corresponding outcome. A result driven discovery requires
many times of repeated mining in an interactive process. A fast mining algorithm that
always re-mines from scratch is not good enough for interactive query in practice.
Knowledge obtained from each mining should be utilized to accelerate the entire
process.

The proposed KISP algorithm constructs a knowledge base for minimizing the

total response time for online queries. Neither database access nor counting is

119

required if the query result is a subset of patterns in the knowledge base. In case some
resultant patterns are new to the knowledge base, we speed up the mining process by
the assistance of the knowledge base. The proposed approach directly generates only
the new candidates which are not counted before, concurrently counts variable sized
candidates in the same database scanning, and incrementally expand the knowledge
base by every counting effort for future queries. The knowledge base keeps the
patterns grouped by the size to provide fast access to pattern information. The
experiments performed shows that the proposed approach is faster than GSP by

several orders of magnitude, with good linear scalability.

120

Chapter 6 Algorithm IncSP for Incremental Discovery of

Sequential Patterns

6.1 Overview

Sequential pattern discovery, which finds frequent temporal patterns in databases, is
an important issue in data mining originated from retailing databases with broad
applications [6, 29, 64, 75, 80, 99]. The discovery problem is difficult considering the
numerous combinations of potential sequences, not to mention the re-mining required
when databases are updated or changed. Therefore, it is essential to investigate
efficient algorithms for sequential pattern .mining and effective approaches for
sequential pattern updating.

A sequential pattern is a relatively frequent sequence of transactions, where each
transaction is a set of items (called itemset)."For.example, one might purchase a PC
and then purchase a printer later. After some'time, he or she could possibly buy some
printing software and a scanner. If there exists a sufficient number of customers in the
transactional database who have the purchasing sequence of PC, printer, printing
software and scanner, then such a frequent sequence is a sequential pattern. In general,
each customer record in the transactional database is an itemset associated with the
transaction time and a customer-id [6]. Records having the same customer-id are
sorted by ascending transaction time into a data sequence before mining. The
objective of the discovery is to find out all sequential patterns from these data
sequences.

A sequential pattern is a sequence having support greater than or equal to a

minimum threshold, called the minimum support. The support of a sequence is the

121

percentage of data sequences containing the sequence. Note that the support
calculation is different in the mining of association rules [5, 18, 58] and sequential
patterns [6, 80]. The former is transaction-based, while the latter is sequence-based.
Suppose that a customer has two transactions buying the same item. In association
discovery, the customer “contributes” to the support count of that item by two,
whereas it counts only once in the support counting in sequential pattern mining.

The discovery of sequential patterns is more difficult than association discovery
because the patterns are formed not only by combinations of items but also by
permutations of itemsets. For example, given 50 possible items in a sequence database,
the number of potential patterns is 50*50+C(50,2) regarding two items, and 50*50*50
+ 50*C(50,2)*2 + C(50,3) regarding three items (formed by 1-1-1, 1-2, 2-1, and 3), ...,
etc. Most current approaches assume that the sequence database is static and focus on
speeding up the time-consuming mining process..In practice, databases are not static
and are usually appended with-new idata-sequences; conducted by either existing or
new customers. The appending ‘might invalidate some existing patterns whose
supports become insufficient with respect to the currently updated database, or might
create some new patterns due to the increased supports. Hence, we need an effective
approach for keeping patterns up-to-dated.

However, not much work has been done on the maintenance of sequential patterns
in large databases. Many algorithms deal with the mining of association rules [5, 58],
the mining of sequential patterns [6, 29, 67, 80, 93, 99], and parallel mining of
sequential patterns [75]. Some algorithms discover frequent episodes in a single long
sequence [46]. Nevertheless, when there are changes in the database, all these
approaches have to re-mine the whole updated database. The re-mining demands
more time than the previous mining process since the appending increases the size of

the database.
122

Although there are some incremental techniques for updating association rules
[18, 19, 40, 87], few research has been done on the updating of sequential patterns,
which is quite different. Association discovery is transaction-based; thus, none of the
new transactions appended is related to the old transactions in the original database.
Sequential pattern mining is sequence-based; thus, the two data sequences, one in the
newly appended database and the other in the original database, must be merged into
a data sequence if their customer-ids are the same. However, the sequence merging
will corrupt previous support count information so that either FUP or FUP2 [19]
algorithm could not be directly extended for the maintenance of sequential patterns.

One work dealing with incremental sequence mining for vertical database is the
ISM (Incremental Sequence Mining) algorithm [64]. Sequence databases of vertical
layout comprise a list of (cid, timestamp) pairs for each of all the items. In order to
update the supports and enumerate frequent-sequences, ISM maintains “maximally
frequent sequences” and “minimallysinfrequent. sequences” (called negative border).
However, the problem with ISM is"that.the size of negative border (i.e. the number of
potentially frequent sequences) might be too large to be processed in memory. Besides,
the size of extra space for transformed vertical lists might be several times the size of
the original sequence database.

This chapter presents an efficient incremental updating algorithm for up-to-date
maintenance of sequential patterns after a nontrivial number of data sequences are
appended to the sequence database. Assume that the minimum support keeps the same.
Instead of re-mining the whole database for pattern discovery, the proposed algorithm
utilizes the knowledge of previously computed frequent sequences. We merge data
sequences implicitly, generate fewer but more promising candidates, and separately
count supports with respect to the original database and the newly appended database.

The supports of old patterns are updated by merging new data sequences implicitly

123

into the original database. Since the data sequences of old customers are processed
already, efficient counting over the data sequences of new customers further optimizes
the pattern updating process.

The rest of the chapter is organized as follows. Section 6.2 describes the problem
of sequential pattern mining and addresses the issue of incremental update. In Section
6.3, we review some previous algorithms of sequence mining. Section 6.4 presents
our proposed approach for the updating of sequential patterns after databases are
changed. Comparative results of the experiments by comprehensive synthetic data

sets are depicted in Section 6.5. Section 6.6 concludes this chapter.

6.2 Problem Statement

In Section 6.2.1, we formally desctibe the problem of sequential pattern mining and
the terminology used in this chapter. The issue of incremental update is presented in
Section 6.2.2. Section 6.2.3 demonstrates the changes of sequential patterns due to

database update.

6.2.1 Sequential pattern mining

A sequence s, denoted by <eie,...e,>, is an ordered set of n elements where each
element e;is an itemset. An itemset, denoted by (X1, Xa,..., Xg), is @ nonempty set of ¢
items, where each item X;is represented by a literal. Without loss of generality, we
assume the items in an element are in lexicographic order. The size of sequence S,
written as [s|, is the total number of items in all the elements in S. Sequence S is a
k-sequence if |s| = k. For example, <(e)(b)(a)>, <(a,b)(a)>, and <(c)(e,f)> are all
3-sequences. A sequence S= <ei€y...e,> is a subsequence of another sequence S'=
<eq'ey...en™ if there exist 1 < i1<i»<...<i, < msuch that e; ce;', e cej,, ..., and e,

ce .. Sequence s' contains sequence S if S is a subsequence of s'. For example,

124

<(b)(a,e)> is a subsequence of <(b,d)(c)(a,c.e)>.

Each sequence in the sequence database DB is referred to as a data sequence.
Each data sequence is associated with a customer-id (abbreviated as cid). The number
of data sequences in DB is denoted by |DB|. The support of sequence S, denoted by
s.sup, is the number of data sequences containing S divided by the total number of
data sequences in DB. The minsup is the user specified minimum support threshold. A
sequence S is a frequent sequence, or called sequential pattern, if s.sup > minsup.
Given the minsup and the sequence database DB, the problem of sequential pattern

mining is to discover the set of all sequential patterns, denoted by S°°.

6.2.2 Incremental update of sequential patterns

In practice, the sequence database will be updated with new transactions after the
pattern mining process. Possible:updating includestransaction appending, deletions,
and modifications. With respect to the same minsup, the incremental update problem
aims to find out the new set of all sequential patterns after database updating without
re-mining the whole database. First, we describe the issue of incremental updating by
taking the transaction appending as an illustrating example. Transaction modification
can be accomplished by transaction deletion and appending.

The original database DB is appended with a few data sequences after some time.
The increment database db is referred to as the set of these newly appended data
sequences. The cids of the data sequences in db may already exist in DB. The whole
database combining all the data sequences from the original database DB and the

increment database db is referred to as the updated database UD. Let the support

DB
count *

count of a sequence S in DB be s A sequence S is a frequent sequence in UD if

ub >
count

S minsup x |UD|, where s, is the support count of s in UD. Although UD is

125

data sequence data sequence

DB °

? o
* Database . ub
datin lold] db is
updating i DBuUdb
Inew| data sequence

Sub

(a) Obtain SYP by re-executing mining algorithm on UD

Implicit
data sequence merging
* DB with db
DB ° ¥
[
Database jold|
updating ' db
[new|

Incremental
update
with
minsup

(b) Obtain SUP by incremental updating with S
Fig. 6-1. Incremental update versus re-mining
the union of DB and db, |UD| is not necessarily equal to |DB| plus |db|. If there are
lold| cids appearing both in DB and db, then the number of ‘new’ customers is |[new| =
|db]—old|. Thus |UD| = |DB|+|db|-old| due to sequence merging. When all cids in db

are different from those in DB, |old| (the number of ‘old’ customers) is zero. On the

db

woune D€ the increase

contrary, |old| equals |db| in case all cids in db exist in DB. Let s
in support count of sequence s due to db. Whether sequence s in UD is frequent or not

uD . i
depends on S, with respect to the same minsup and |UD|.

Most approaches re-execute mining algorithms over all data sequences in UD to

126

Table 6-1. Notations used

X1, X2, ..., Xg

[tems.

(X]_, X2, ..4y Xq)

A g-itemset, each X; is an item.

S =<e1€s...ep>

A sequence with n element.

€1, €y ..., 6 Elements (of a sequence). Each ¢; is an itemset.
minsup The minimum support specified by the user.
ub The updated database.
DB The original database.
db The increment database.
UDI, DB, [db| The to‘Fal number of data sequences in UD, DB, and db
respectively.
old| ;jftl)le total number of data sequences of ‘old’ customers in
The total number of data sequences of ‘new’ customers in
[new] db.
The set of all sequential patterns in DB and UD
Sps, Sup .
respectively.
528 g The support counts of candidate sequence s in DB and UD
) respectively.
g The increase in support count of candidate sequence s due
count tO db.
Sk The set of all fréquent k=sequences, see Section 6.3.1.
Xk The set of all candidate k-Sequences, see Section 6.3.1.
X! The teduced setof candidate k-sequences, see Section 6.4.
S The set of frequentik=sequences in DB, see Section 6.4.2.
DB
Xx(DB) The sect ‘of ‘candidates in Xx that are also in ~k , see
Section 6.4.
Xx(DB)' Xx(DB)' = Xk — Xx(DB), see Section 6.4.
dsup. dsos, dsas ISAeCc:?(‘:i ;T;l.ence in UD, DB, and db respectively, see
dsps dSgp An implicitly merged data sequence, see Section 6.4.1.
UDpg Datg sequences in UD whose cids appearing in DB only, see
Section 6.4.4.
Data sequences in UD whose cids appearing in db only, see
UDap .
see Section 6.4.1.
UDog Data sequences in UD whose cids are in both DB and db,

see Section 6.4.1.

. QUD . - .
obtain S,y and discover S“°, as shown in Fig. 6-1(a). However, we can effectively

up
calculate Sy, utilizing the support count of each sequential pattern S in SPE, Fig.

6-1(b) shows that we discover S° through incremental update on S°° after implicit

127

merging. Table 6-1 summarizes the notations used in this chapter.
6.2.3 Changes of sequential patterns due to database update

Consider an example database DB with 6 data sequences as shown in Fig. 6-2.
Assume that minsup = 33%, i.e., minimum support count being 2. The sequential
patterns in DB are <(a)>, <(b)>, <(c)>, <(d)>, <(a,b)>, <(a)(d)>, <(b)(b)>, and
<(c)(a)>. Note that <(f)>, though appeared twice in the same data sequence C6, is not

frequent because its support count is one.

Data Sequence (ds°°)

Cl | <(a)d)>

C2 | <(b)ce)aby>
C3 | <(ab)b.dy>
C4 | <(d)c)(a)>

C5 | <(>

Co | <(2)bifig)>

Fig. 6-2. The original database. DB example, |DB| = 6

Fig. 6-3(a) shows the data sequences in the increment database db after some
updates from new customers only: The updated database UD is shown in Fig. 6-3(b).
Corresponding to the nine data sequences and with the same minsup, the support
count of a frequent sequence must be three or larger. The support counts of previous
sequential patterns <(c)>, <(a)(d)>, and <(c)(a)> are less than three, and are no longer
frequent due to the database updates. While <(e)>, <(b)(e)>, and <(b,d)> become new

patterns because they have minimum supports now.

In the cases of updates when the new sequences are from old customers, i.e., the cids
of the new sequences appear in the original database. These data sequences must be
appended to the old data sequences of the same customers in DB. Assume that two
customers, Cid=C4 and cid=C8, bought item ‘h’ afterward. The data sequences for
cid=C4 and cid=C8 now become <(d)(c)(a)(h)> and <(b,d)(e¢)(h)>, respectively. Fig.
6-4 shows the example of an increment database having data sequences from both old

128

and new customers. In this example, |old| = 4, |new| = 3, and |db| = 7 where records in
shadow are old customers. Fig. 6-5 presents the resulting data sequences in UD. After
invalidating the patterns <(e)>, <(b)(b)>, <(b)(e)>, and <(a,b)>, the up-to-date
sequential patterns are <(a)>, <(b)>, <(d)>, <(f)>, <(b,d)>, <(b,f)> and <(a)(d)>, for

the given minsup 33%.

Cid |Data Sequence (dsYP)
Cl | <(@@)>
C2 | <(b)(c.0)@p)>

Cid | Data Sequence (dsd?) C3 | <(a,b)(b,d)>

C7 <(b,d)> C4 | <(d)c)(@)y>

C8 | <(b.d)e> C5 | <(a>

C9 | <(ab)e)b.f)> Co | <(Db.fg) >
C7 | <(b.d)>

C8 | <(b,d)(e)>
C9 | <(ab)e)b,H>

(a) new customers only, |[db|=3. (b) the updated database, |[UD|=9.

Fig. 6-3. Data sequences in the increment database and the updated database (a) db

with new customers only (b)-the updated database UD

6.3 Related Work

In Section 6.3.1, we review some algorithms for discovering sequential patterns.

Section 6.3.2 presents related approaches for incremental pattern updating.
6.3.1 Algorithms for discovering sequential patterns

The Apriori algorithm discovers association rules [5], while the AprioriAll algorithm
deals with the problem of sequential pattern mining [6]. AprioriAll splits sequential
pattern mining into three phases, itemset phase, transformation phase, and sequence
phase. The itemset phase uses Apriori to find all frequent itemsets. The database is
transformed, with each transaction being replaced by the set of all frequent itemsets
contained in the transaction, in the transformation phase. In the third phase, AprioriAll

129

makes multiple passes over the database to generate candidates and to count the
supports of candidates. In subsequent work, the same authors proposed the GSP
(Generalized Sequential Pattern) algorithm that outperforms AprioriAll [80]. Both
algorithms use the similar techniques for candidate generation and support counting,

as described in the following.

Cid | Data Sequence (dsdb)

2 | <@>
C4 | <(hy>
C5 | <(ady>
c8 | <>

Cl0| <(b,dfh)>
Cll| <>
Cl2 | <(b,H)(g)>

Fig. 6-4. Data sequences of old and new customers in db

Cid | Data Sequence (dSUD)

Cl <(a)(d)>

C2 <(b)(ese)(a.b)(d)>
C3 | [<@b)b.dy
C4 <(d)(c)(@)(h)>
C5 | .<@)(ad>

C6- | =<(P)b,F0)>
C7 [<(bd)>

C8 <(b,d)(e)(h)>
C9 | <@b)e)b,h>
Cl0| <(b,dfh)>
Cll | <(a)(g)>

Cl2 | <(b.,H(g>

Fig. 6-5. Merged data sequences in the updated database UD

The GSP algorithm makes multiple passes over the database and finds out
frequent k-sequences at k-th database scanning. In each pass, every data sequence is
examined to update the support counts of the candidates contained in this sequence.
Initially, each item is a candidate 1-sequence for the first pass. Frequent 1-sequences
are determined after checking all the data sequences in the database. In succeeding
passes, frequent (k—1)-sequences are self-joined to generate candidate k-sequences.

Again, the supports of these candidate sequences are counted by examining all data

130

sequences, and then those candidates having minimum supports become frequent
sequences. This process terminates when there is no candidate sequence any more. In
the following, we further depict two essential sub-processes in GSP, the candidate
generation and the support counting.

Candidate generation: Let Sx denote the set of all frequent k-sequences, and X
denote the set of all candidate k-sequences. GSP generates Xk by two steps. The first
step joins Sy.; with Sy.; and obtains a superset of the final Xy. Those candidates in the
superset having any (k-1)-subsequence which is not in Sy.; are deleted in the second
step. In the first step, a (k-1)-sequence S1 = <ei€;...ep.1€p> is joined with another
(k-1)-sequence S2 = <ej’e;’...ep’ > if sl = s2, where sl is the (k-2)-sequence of
sl dropping the first item of e; and s2 is the (k-2)-sequence of s2 dropping the last
item of e,’. The generated candidate k-sequence.s3 is <eje;...enienen’ > if €, is a
lI-itemset. Otherwise, S3 is <e1€2..+En-18n° =..For.example, the candidate 5-sequence
<(a,b)(c,e)(f)> is generated by joining-<tasb)(c,e)> with <(b)(c,e)(f)>, and the
candidate <(a,b)(c,e,f)> is generated by joining <(a,b)(c,e)> with <(b)(c,e,f)>. In
addition, the Xy produced from this procedure is a superset of Sy as proved in [80].
That is, Xk © Sk.

Support counting: GSP adopts a hash-tree structure [5, 80] for storing candidates to
reduce the number of candidates that need to be checked for each data sequence.
Candidates would be placed in the same leaf if their leading items, starting from the
first item, were hashed to the same node. The next item is used for hashing when an
interior node, instead of a leaf node, is reached [80]. The candidates required for
checking against a data sequence are located in leaves reached by applying the
hashing procedure on each item of the data sequence [80]. The support of the
candidate is incremented by one if it is contained in the data sequence.

In addition, the SPADE (Sequential PAttern Discovery using Equivalence classes)
131

algorithm finds out sequential patterns using vertical database layout and
join-operations [99]. Vertical database layout transforms customer sequences into
items’ id-lists. The id-list of an item is a list of (cid, timestamp) pairs indicating the
occurring timestamps of the item in that customer-id. The list pairs are joined to form
a sequence lattice, in which SPADE searches and discovers the patterns [99].

Recently, the FreeSpan (Frequent pattern-projected Sequential Pattern Mining)
algorithm was proposed to mine sequential patterns by a database projection
technique [29]. FreeSpan first finds the frequent items after scanning the database
once. The sequence database is then projected, according to the frequent items, into
several smaller intermediate databases. Finally, all sequential patterns are found by
recursively growing subsequence fragments in each database. Based on the similar
projection technique, the authors proposed ‘the PrefixSpan (Prefix-projected
Sequential pattern mining) algorithm [67].

Nevertheless, all these algorithms-have.to-te-mine the database after the database
is appended with new data sequences. Next, we introduce some approaches for

updating patterns without re-mining.
6.3.2 Approaches for incremental pattern updating

A work for incremental sequential pattern updating was proposed in [90]. The
approach uses a dynamic suffix tree structure for incremental mining in a single long
sequence. However, the focus of research here is on multiple sequences of itemsets,
instead of a single long sequence of items.

Based on the SPADE algorithm, the ISM (Incremental Sequence Mining)
algorithm was proposed for incremental sequence mining [64]. An Increment
Sequence Lattice consisting of both frequent sequences and the nearly frequent ones

(called negative border) is built to prune the search space for potential new patterns.

132

However, the ISM might encounter memory problem if the number of the potentially
frequent patterns is too large [64]. Besides, computation is required to transform the
sequence database into vertical layout, which also requires additional storage several
times the original database.

In order to avoid re-mining from scratch with respect to database updates with
both old and new customers, we propose a pattern updating approach that
incrementally mines sequential patterns by utilizing the discovered knowledge.

Section 6.4 gives the details of the proposed algorithm.

6.4 The Proposed Algorithm

In sequence mining, frequent patterns are those candidates whose supports are greater
than or equal to the minimum support. In order to obtain the supports, every data
sequence in the database is examined, and the support of each candidate contained in
that data sequence is incremented by, one. For patterni updating after database update,
the database DB was already mined-and the supports of the frequent patterns with
respect to DB are known. Intuitively, the number of data sequences need to be
examined in current updating with database UD seems to be |UD|. However, we can
utilize the prior knowledge to improve the overall updating efficiency. Therefore, we
propose the IncSP (Incremental Sequential Pattern Upate) algorithm to speed up the
incremental updating problem. Fig. 6-6 depicts the architecture of a single pass in the
INcSP algorithm. In brief, INCSP incrementally updates and discovers the sequential
patterns through effective implicit merging, early candidate pruning, and efficient

separate counting.

133

Read k-sequence s €SPB

Generate X

Support
Counting

S,
'V data sequence ds® e db;

Counting

ety

V data sequence dsPB € DB

Sc=1{s|s € X, A s® >minsup x [UD|}

count —

7 :previous knowledge =& : candidate pruning |:| : operation

[

(") : separate counting : (embedded) implicit merging
Fig. 6-6. The architecture of the k-th pass in IncSP

The data sequence of a custemer in DB and.the sequence with same cid in db
must be merged into the customer’s data sequence m UD. If all such sequences are
merged explicitly, we have to re-mine.and-te-count the supports of the candidates
contained in the resultant customert sequences from scratch. Hence, INCSP deals with
the required sequence merging implicitly for incremental pattern updating, which is
described in Section 6.4.1.

INcSP further speeds up the support counting by partitioning the candidates into
two sets. The candidates with respect to DB which were also frequent patterns before
updating are placed into set Xxpg), and the remaining candidates are placed into set
Xkipe). After the partitioning, the supports of the candidates in Xxkpg) can be
incremented and updated simply by scanning over the increment database db. During
the same scanning, we also calculate the increment supports of the candidates in
Xxipg)' with respect to db. Since the supports of the candidates in Xxpg) are not
available (only the supports of frequent patterns in DB are kept in prior mining over

DB), we need to compute their supports against the data sequences in DB. The

134

number of candidates need to be checked is reduced to the size of set X«kpg) instead
of the full set Xy. Thus, IncSP divides the counting procedure into separate processes
to efficiently count the supports of candidates with respect to DB and db. We show
that the support of a candidate is the sum of the two support counts after the two
counting processes in Lemma 6-1 (in Section 6.4.2).

Moreover, some candidates in Xxpg)' can be pruned earlier before the actual
counting over the data sequences in DB. By partitioning the set of candidates into
Xxpe) and Xkpg)', we know that all the candidates in Xxpg)' are not frequent patterns
with respect to DB. If the support of a candidate in Xxipg)' with respect to db is
smaller than the proportion minsup x (JUD|-|DB|), the candidate cannot possibly
become a frequent pattern in UD. Such unqualifying candidates are pruned and only
the more promising candidates go through the‘actual support counting over DB.
Lemma 6-2 (in Section 6.4.2) shows this property. This early pruning further reduces
the number of candidates required to-be-counted against the data sequences in DB.
The reduced set of candidates is refetred to as X«'.

In essence, INnCSP generates candidates and examines data sequences to
determine frequent patterns in multiple passes. As shown in Fig. 6-6, InCSP reduces
the size of Xy into Xx’' and updates the supports of patterns in S°® by simply checking
the increment database db, which is usually smaller than the original database DB. In
addition, the separate counting technique enables INCSP to accumulate candidates’
supports quickly because only the new candidates, whose supports are unavailable

from SPB

, need to be checked against DB. The complete IncSP algorithm and the
separate counting are described in Section 6.4.2. Section 6.4.3 further illustrates other

updating operations such as modifications and deletions. In Section 6.4.4, we provide

the proof of lemmas used in Section 6.4.

135

6.4.1 Implicit merging of data sequences with same cids

For the discovery of sequential patterns, transactions coming from the same customer,
either in DB or in db, are parts of the unique data sequence corresponding to that
customer in UD. Given a customer having one data sequence in DB and another
sequence in db, the proper data sequence for the customer (in UD) is the merged
sequence of the two. Since the transaction times in db are later than those in DB, the
merging appends the data sequences in db to the sequences in DB. Nevertheless, such
“explicit merging” might invalidate S°® because the data sequence of the customer
becomes a longer sequence. Some patterns in SPB, which are not contained in the data
sequence before merging, might become contained in the now longer data sequence
so that the support counts of these patterns become larger. In order to effectively keep
the patterns in S°° up-to-date, InNGSP implicitly merges data sequences of the same
customers and delays the actual-action of merging until pattern updating completes.
Assume that an explicit merging must merge ds>® with ds® into ds"®, where ds”®,
ds®, and ds"® represent the data sequences in DB, db, and UD respectively. In each
pass, the mining process needs to count the supports of candidate sequences against
dsUP. The “implicit merging” in IncSP employs ds°® and ds® as if ds'® is produced
during mining process. We will describe how “implicit merging” updates the supports
of sequential patterns in S°?, and how “implicit merging” counts the supports of

candidates contained in the implicitly merged data sequence, represented by ds?® U

deb

The “implicit merging” updates the supports of sequential patterns in S°°

according to ds°® and ds®. This updating involves only the newly generated
(candidate) k-sequences in the k-th pass, which are contained in ds”® but not in ds°®,

SDB

since ds”® had already engaged in the discovery of S°®. We refer to these candidate

136

k-sequences as the new k-sequences. As indicated in Fig. 6-6, when ds® is checked in
Support Counting (I), only the supports of such new k-sequences must be counted. If
this new k-sequence is also a sequential pattern in S°°, we update the support count of
the sequence in S°°. Otherwise, supports of new k-sequences which are not in S°°,
being initialized to zero before counting, are incremented by one for this data
sequence (ds®® U ds®). In this way, IncSP correctly maintains S°® with the new
k-sequences and counts supports with respect to ds® during Support Counting (I).

Example 1: Implicit merging for support updating in pass-1. Take customers in
Fig. 6-5 for example, the DB is shown in Fig. 6-3(b) and the db is shown in Fig. 6-4.

The customer with cid=C2 has the two sequences, ds°® =<(b)(c.e)(a,b)> and ds®
=<(d)>. During pass 1, <(d)> Eo'ﬁm is increased by one due to the implicit merging

with ds®™ and ds®® (of C2). Note'that imiplicitimerging for the customer with cid=C5
whose ds”® =<(a)> and ds® =<(a,d)> contains only the new 1-sequence <(d)> because

<(a)> was already counted when we examined ds° to produce SP°. Eventually, the

support count <(d)> g,?mt is increased by two considering the two implicitly merged

sequences of C2 and CS5. Similarly, the support count of candidate <(h)> Eo%m is two

after the implicit merging on customer sequences whose cid=C4 and cid=C8. [
6.4.2 The IncSP (Incremental Sequential Pattern Upate) algorithm

The implicit merging technique preserves the correctness of supports of the
patterns and enables INCSP to count the supports in DB and db separately for pattern
updating. Fig. 6-7 lists the proposed IncSP algorithm and Fig. 6-8 depicts the two
separate sub-processes of support counting in the IncSP algorithm. Through separate
counting, we do not have to check the full candidate set X against all data sequences

from db and DB. Only the (usually) smaller db must take all the candidates in X into

137

1) /* Initially, each item is a candidate 1-sequence */

2) X; =set of candidate 1-sequences;

3) k=1;/* Start frompass 1 */

4) repeat /* Find frequent Ksequences in the K-th pass */

5) foreachs e X,do sc'zl?m = Sg:um =0; /* Initialize counters */

6) Read SEB; /* SkDB= {frequent k-sequences in DB} */

7) Check sequences in db by Support Counting (1) ; /* See Fig. 6-8 */

8) /* Prune candidates: (1) counted in SEB (2) insufficient “new” counts */
9) X=X {sls € SP3—{5| Spg Minsup x (UDI-[DBY)} ;

10) Check sequences in DB by Support Counting (11) ;/* See Fig. 6-8 */
11) /* Frequentk-sequences in UD found */

12) Sc={s|se X A2 +sb
13) k=k+1;

14) Generate Cywith Sy ; ; /* Generate candidates for next pass */

> minsup x UD|} ;

15) until no more candidates
16) Answer SUP =, S, ;

Fig. 6-7. Algorithm IncSP

Support Counting (1):

/* Updating “old” supports and counting candidates against data sequences in db */
1) for each data sequence ds® in db do

2) ifcid of ds® is not found in DB then /* ds% is a new customer’s sequence */

3) /* Increment Seo, by 1 if s is contained in ds® */

4) for each s € X, A s < ds?®do ngum++ ;

5) endif

6) ifcid of ds® is found in DB then /* ds% should be appended to dsPB */

7) for each s € X, A s < (dsPB U ds®) do /* Implicit merging and counting */
8) /* Increment Sg:um by 1 if s is contained in ds® but not in dsP8 */

9) if s dsP® then S0 ++;

10) endfor

11) endif

12) endfor

Support Counting (11):

/* Counting “new” candidates against data sequences in DB */

1) for each data sequence dsPE in DB do

2) /* Increment Scount by 1 if s is contained in dsPB */

3) foreachs e X'AscdsPBdo S;ﬁ’m ++; /* X' is the reduced candidate set */
4) endfor

Fig. 6-8. The separate counting procedure

138

consideration for support updating. Furthermore, we can prune previous patterns and
leave fewer but more promising candidates in X«' before applying the data sequences
in DB for support counting.

The IncSP algorithm generates candidates and computes the supports for pattern
updating in multiple passes. In each pass, we initialize the two support counts of each

candidate in UD to zero, and read the support count of each frequent k-sequence s in

DB to s>

count - We then accumulate the increases in support count of candidates with

respect to the sequences in db by Support Counting (I). Before Support Counting (I1)
starts, candidates which are frequent in DB but cannot be frequent in UD according to
Lemma 6-4 are filtered out. The full candidate set X is reduced into the set Xx'. Next,
the Support Counting (II) calculates the support counts of these promising candidates
with respect to the sequences in DB. As, indicated ih. Lemma 6-1, the support count of
any candidate k-sequence is the-sum of the two counts obtained after the two counting
processes. Consequently, we can. discover-the set of frequent k-sequences Sx by
validating the sum of the two counts of every candidate. The Sy is used to generate the
complete candidate set for the next pass, employing the similar candidate generation
procedure in GSP. The above process is iterated until no more candidates.

We need to show that IncSP updates the supports and discovers frequent patterns
correctly. Several properties used in the InCSP algorithm are described as follows. The

details of the proof of the lemmas are included in Appendix.

DB
count

Lemma 6-1. The support count of any candidate k-sequence s in UD is equal to S

db
count *

+ S
Lemma 6-2. A candidate sequence S, which is not frequent in DB, is a frequent

sequence in UD only if s® > minsup x ((UD|-|DBJ).

count =

139

Lemma 6-3. The separate counting procedure (in Fig. 6-8) completely counts the
supports of candidate k-sequences against all data sequences in UD.

Lemma 6-4. The candidates required for checking against the data sequences in DB

in Support Counting (II) is the set X«', where X&' = Xx—{s| se S>®} — {s| s® <

count
minsupx (JUD|-|DBJ)}.

Theorem 6-1. IncSP updates the supports and discovers frequent patterns correctly.
Proof: In IncSP, we use the candidate generation procedure analogous to GSP to
produce the complete set of candidates in Xy. By Lemma 6-3, the separate counting
procedure completely counts the supports of candidate k-sequences against all data
sequences in UD. Lemma 6-1 determines frequent patterns in UD and the updated
supports. Therefore, INCSP correctly maintains sequential patterns. [

Example 2: Sequential pattern:updating using IncSP. The data sequences in the
original database DB is shown in"Fig. 6-3(b). The minsup is 33%. SP® is listed in
Table 6-2. The increment database db:is shown in-Fig. 6-4. IncSP discovers S“° as

follows.

Pass 1:

1) Generate candidates for pass 1, X; = {<(a)>, <(b)>, ..., <(h)>}.

2) Initialize the two counts of each candidate in Xj to zero, and read S®.

After Support Counting (I), the increases in support count are listed in Part (b) of

Table 6-2. Note that for customer with cid=C5, the increase in support count of <(a)>
is not changed. Now |UD| = 12 and |DB| = 9. Since S{® ={<(a)><(b)>,<(d)>,<(¢)>}

and the increase in support count of <(c)> are less than 33% x (JUD|-|DB|), the

reduced set Xi' is {<(f)>,<(g)>,<(h)>}.

140

Table 6-2. Sequences and support counts for Example 2

Part (a): S*° Part (b): Pass 1 Part (c): Pass 2 Part (d): S°°
Jo8 Support Counting (I) Support Counting (I) o
count g b count
count count
<@s | 6 | <@ | 1 @@= | 1| <@ | 7
<o | 6 | <o> | 2 @@ | 2 | <bp | 8
<@ 5| <@r 5| <o@s | 1 | <@ | 8
<o 3| <o > [<bds | 1| <05 | 3
OO 3 | <@F 2 oD | 2 |<@@>; 4
<b)e>| 3 | <ty 3 <@p> | 1 |<bdp| 4
<@b>: 3 | <> | 0 <@d> | 1 <G> | 4
<bd>i 3 | <> | 0 Others | 0 |
I Support C(I)unting (ID) Support Co{lnting (ID)
Sount Sount
<M | 22 “@d= | 2
<@ o0 ZCIEEH
<(h)> i 0 <(b,f)> i 2
| <@@- | 0
<(a,d)> 0
<(d,H)> 0

3) After Support Counting (II), the s>° of <(f)> and <(g)> are 2 and 1 respectively.

count
The minimum support count is 4 in UD. INCSP obtains the updated frequent
1-sequences, which are <(a)>, <(b)>, <(d)>, and <(f)>. Total 22 candidate
2-sequences are generated with the four frequent 1-sequences.

Pass 2:

4) We read SY® after initializing the two support counts of all candidate

DB
count

2-sequences. Note that the s of <(b)(e)> is useless because <(b)(e)> is not a

candidate in UD in this pass.

5) We list the result of Support Counting (I) in Part (c) of Table 6-2. The increases in
141

support count of some candidates, such as <(a,f)> or <(d)(f)>, are all zero and are
not listed.

6) Again, we compute the Xo' so that the candidates need to be checked against the
data sequences in DB are <(a)(a)>, <(a)(d)>, <(a,d)>, <(b)(d)>, <(b,f)>, and
<(d,f)>. We filter out 16 candidates (13 candidates with insufficient “support

increases” and 3 candidates in S,) before Support Counting (II) starts.

7) The s2°

coun

. of <(a)(d)>, <(b)(d)>, and <(b,f)> are 2, 1, and 2 respectively after

db
count

Support Counting (IT). IncSP then sums up the counts (Soo, and Si,,) to obtain

the updated frequent 2-sequences. Finally, INCSP terminates since no candidate

3-sequence is generated. Part (d) of Table 6-2 lists the sequential patterns and their

support counts in UD.[]
In comparison with GSP, IncSP updates supports of sequential patterns in S°° by
scanning data sequences in db only. New sequential patterns, which are not in DB, are
generated from fewer candidate“sequences comparing with previous methods. The
support increases of new candidates are checked in advance and leave the most
promising candidates for Support Counting (II) against data sequences in DB. Every
candidate in the reduced set is then checked against DB to see if it is frequent in UD.
On the contrary, GSP takes every candidate and counts over all data sequences in the
updated database. Consequently, INCSP is much faster than GSP as shown in the

experimental results.
6.4.3 Pattern maintenance on transaction deletion and modification

Common operations on constantly updated databases include not only appending, but
also deletions and modifications. Deleting transactions from a data sequence changes

the sequence; thereby changing the supports of patterns contained in this sequence.

142

The supports of the discovered patterns might decrease but no new patterns would
occur. We check patterns in S°° against these data sequences. Assume that a data
sequence ds is changed to ds' due to deletion. The ds' is an empty sequence when all

transactions in ds are deleted. If a frequent sequence S is contained in ds but not in ds',

DB
coun

Seount 15 decreased by one. The resulting sequential patterns in the updated database

are those patterns still having minimum supports.

A transaction modification can be accomplished by deleting the old transaction
and then inserting the new transaction. In IncSP, we delete the original data sequence
from the original database, create a new sequence comprising the substituted

transaction(s), and then append the new sequence to the increment database.

6.4.4 Proof of lemmas

DB

We provide the proof of lemmas used in Section 6.4. As noted in Table 6-1, s, is

db

ount denotes the increase in

the support count of candidate sequence S-in.DB,and s

support count of candidate sequence S due to db. The candidate k-sequences in UD is

partitioned into XK(DB) and XK‘(DB)'. That iS, Xk = XK‘(DB) v XK‘(DB)', where XK‘(DB) = {Sl
Se XkA S € SEB} and Xxpe) = X« — X«pp). The data sequences in UD could be

partitioned into three sets: sequences with Cids appearing in DB only, sequences with
cids appearing in db only, and sequences with cids occurring in both DB and db. The
cid of a data sequence ds is represented by ds.cid. Let UD = UDpg U UDg, U UDpy,
where UDpg= {ds| ds € DB A ds ¢ db}, UDg,= {ds| ds € db A ds ¢ DB}, and UDpyqy
= {ds| ds =ds; + dsp, ds; € DB A ds; € db A ds;.cid = ds;.cid }.

DB
count

Lemma 6-1. The support count of any candidate k-sequence s in UD is equal to S

+ Sdb

count *

143

Proof: The support count of s in UD is the support count of s in DB, plus the count

increase due to the data sequences in db. Thatis s2° + s® = by definition. [

Lemma 6-2. A candidate sequence S, which is not frequent in DB, is a frequent

sequence in UD only if s® = >minsup x (UD|-|DBJ).

count =

S8 < minsup x |DB|. If s®

count

, we have s>2° < minsup

count

Proof: Since s ¢

x ([UD|-|DB)), then s+ s® < minsup x |UD|. Thatis,s ¢ S"P. 0

count count

Lemma 6-3. The separate counting procedure (in Fig. 6-8) completely counts the
supports of candidate k-sequences against all data sequences in UD.
Proof: Considering a data sequence ds in UD and a candidate k-sequence S € X,

(i) For each candidate k-sequence S contained in ds where ds € UDgp: The support

db

count increase (due to ds) is,accumulated in, S...,

by line 4 of Support Counting

(1) in Fig. 6-8.
(i1) For each candidate k-sequence s contained inds where ds € UDpg: (a) If s €

Xkipe), no counting is required since S had been counted while discovering P8,

The support count of s in DB is read in s2.. by line 6 in Fig. 6-7. (b) If s €

count

XxoB)'s Senr. accumulates the support count of s, by line 3 of Support Counting

count

(II) in Fig. 6-8. Note that in this counting, we reduce Xxpg)' to Xx' by Lemma
6-4.
(iii)For each candidate k-sequence S contained in ds where ds € UDpg: Now ds is

formed by appending ds™ to ds”®. (a) If s ¢ ds°®, i.e., ds°® of the ds does not

contain S. We accumulate the increase in s, by line 9 of Support Counting (I)

count »

in Fig. 6-8. (b) If sc ds®® A s e Xkipg), similar to (ii)-(a), the support count is

DB

D8 so that no counting is required. (c) If s < ds®® A's € Xxipg)',

already read in S

144

DB

similar to (i1)-(b), we calculate S,

by line 3 of Support Counting (II) in Fig.

6-8. Again, Xxpg)' 1s reduced to Xx' by Lemma 6-4 here.
The separate counting considers all the data sequences in UD as described here.

Next, we show that the supports of all candidates are calculated. By Lemma 6-1, the

DB db
count and Scount :

support count of § in UD is the sum of s

(iv)For any candidate s in Xxpp): The s_o is from (ii)-(a) and (iii)-(b), and the

count

s® is accumulated by (i) and (iii)-(a).

(v) For any candidate s in Xxpg): The s>

count

is counted by (ii)-(b) and (iii)-(c), and

the s®

ount 18 counted by (i) and (iii)-(a). The separate counting is complete. [

Lemma 6-4. The candidates requited for checking against the data sequences in DB

in Support Counting (II) is the Set X&', where' Xa= X — {s|s e S™®} — {s| s>, . <

count
minsup x (JUD|-|DBJ)}.
Proof: Since UD = UDpg U UDgy, U UDpg and UDy, contains no data sequence in DB,

the data sequences concerned are in UDpg and UDpy. Considering a candidate S,

(i) If s €S™®: For any data sequence ds € UDpg or ds € UDpg A s < ds°®, s was

counted while discovering SP®. For ds € UDpg A s & dsP®, the increase in

db

support count S .

is accumulated by line 9 of Support Counting (I). Therefore,

in Support Counting (II), we can exclude any candidate s which is also in S,°.

db
count

(i) If s & S°: After Support Counting (I), the s now contains the support count

counted for data sequence ds, where ds € UDg, or ds € UDpg A S & dsPB. By

Lemma 6-2, if the s& is less than minsup x (JUD|-|DBJ), this candidate s

145

cannot be frequent in UD. Therefore, such candidate s could be filtered out.

(iii)By (i) and (ii), we have X&' = X — {s| s € S} — {s| s® < minsup x

count

(lUDI-DB));}. [
6.5 Experimental Results

In order to assess the performance of the IncSP algorithm, we conducted
comprehensive experiments using an 866 MHz Pentium-III PC with 1024MB memory.
In these experiments, the databases are composed of synthetic data. The method used
to generate these data is described in Section 6.5.1. Section 6.5.2 compares the
performance and resource consumption of algorithms GSP, ISM and IncSP. Results of
scale-up experiments are presented in Section 6.5.3. Section 6.5.4 discusses the

memory requirements of these algorithms:
6.5.1 Synthetic data generation

Updating the original database DB with the increment database db was modeled by
generating the update database UD, then partitioning UD into DB and db. Synthetic
transactions covering various data characteristics were generated by the well-known
method in [6]. As to the details of generating synthetic data, please refer to Section
3.5.1. Since all sequences were generated from the same statistical patterns, it might
model real updates very well.

At first, total |UD| data sequences were created as UD. Three parameters are used
to partition UD for simulating different updating scenarios. Parameter Rjnc, called
increment ratio, decides the size of db. Total |db] = |UD| x Rjpc sequences were
randomly picked from UD into db. The remaining |UD|—|db| sequences would be
placed in DB. The comeback ratio R, determines the number of “old” customers in
db. Total |old] = |db| x Ry sequences were randomly chosen from these |db| sequences

146

as “old” customer sequences, which were to be split further. The splitting of a data
sequence is to simulate that some transactions were conducted formerly (thus in DB),
while the remaining transactions were newly appended. The splitting was controlled
by the third parameter Ry, the former ratio. If a sequence with total |ds""| transactions
was to split, we placed the leading |ds®®| = |ds”°| x Ry transactions in DB and the

remaining |ds”?|—|ds?

| transactions in db. For example, a UD with Rj,c = 20%, Rep =
30%, and Rf = 40% means that 20% of sequences in UD come from db, 30% of the
sequences in db have cids occurring in DB, and that for each “old” customer, 40% of
his/her transactions were conducted before current pattern updating. Note that the
calculation is integer-based with ‘ceiling’ function. E.g. [ds”°| = 4, |ds®®| =[4*40% | =
2. Table 6-3 summarizes the symbols and the parameters used in the experiments. A
database generated with these parameters is described as follows. The updated
database has |UD| customer sequences, each customer has |C| transactions on average,
and each transaction has average |T| items--A-table of total N; PFIs and a table of total
Ns PFSs were generated before "picking .items for the transactions of customer

sequences. On average, a PFS has |S] transactions and a PFI has [l| items. The total

number of possible items for all PFls is N. All datasets used here were generated by

setting fgryp, and feryp, 10 0.75, ocryp, and oy t0 0.1, seor, and fgopy,

to 0.25, Ns = 5000, N; = 25000. Two values of N (1000 and 10000) were used. A
dataset created with |C| = «, [T| = £, |S| =y, and |lI| =6 is denoted by the notation

CaTpSy.lo.
6.5.2 Comparisons of IncSP and GSP

To realize the performance improvements of INCSP, we first compare the efficiency of
incremental updating with that of re-mining from scratch, and then contrast that with

other incremental mining approaches. The well-known GSP algorithm [80], which is

147

Table 6-3. Parameters used in the experiments

Parameter

Description

Value

UD|

Number of data sequences in database UD

10K, 100K, 250K,
500K, 750K, 1000K

IC| Average size (number of transactions) per|10, 20
customer
IT| Average size (number of items) per transaction 2.5, 5
S| Average size of potentially sequential patterns |4, 8
[Average size of potentially frequent itemsets 1.25,2.5
N Number of possible items 1000, 10000
N, Number of potentially frequent itemsets 25000
Ns |Number of possible sequential patterns 5000
I3 |The table of potentially frequent sequences (PFSs)
I |The table of potentially frequent itemsets (PFls)
corrs |Correlation level (sequence), exponentially Heorrg =025
distributed
crups |Corruption level (sequence), normally distributed Herups =0.75,
Ocrups =0-1
corr, |Correlation level (itemset), ;. exponentially Heorr, =0.25
distributed
crup; |Corruption level (itemset); normally distributed Herup, =0.75,
Ocrup, =0.1
Rinc |Ratio of increment 'database-db-. to/ updated|1%, 2%, 5%, 8%, 10%,
database UD 20%, 30%, ..., 90%
Reb Ratio of comeback customers.to-all customers in|0%, 10%, 25%, 50%,
increment database db 75%, 100%
Rs Ratio of former transactions to all transactions|10%, 20%, ..., 90%

for each “old” customer

a re-mining based algorithm, is used as the basis for comparison. The PrefixSpan

algorithm [67] mines patterns by recursively projecting data sequences to smaller

intermediate databases. Starting from prefix-items (the frequent items), sequential

patterns are found by recursively growing subsequence fragments in each

intermediate database. Except re-mining, mechanisms of modifying PrefixSpan to

solve incremental updating is not found in the literature. Since it demands a totally

different framework to handle the sequence projection of the original database and the

increment database, the PrefixSpan is not included in the experiments. The ISM

algorithm [64], which is the incremental mining version of the SPADE algorithm [99],

148

deals with database update using databases of vertical layout. We pre-processed the
databases for ISM into vertical layout and the pre-processing time is not counted in
the following context.

Extensive experiments were performed to compare the execution times of GSP,
ISM, and IncSP with respect to critical factors that reflect the performance of
incremental updating, including minsup, increment ratio, comeback ratio, and former
ratio. We set Rinc=10%, Rp=50%, and R~=80% to model common database updating
scenarios. The dataset has 20000 sequences (JUD| = 20K, 3.8MB), generated with
|IC|=10, [T|=2.5, |S|=4, |1]=1.25.

The effect on performance with various minsups was evaluated first. Re-mining is
less efficient than incremental updating, as indicated in Fig. 6-9. In the experiments,
both ISM and IncSP are faster than GSP for all.values of minimum supports. Fig.
6-9(a) shows that ISM is faster than.1ncSP when the number of items (N) is 1000 and
minsup < 1%. When N is 10000, IncSP-outperforms ISM for all values of minsup, as
shown in Fig. 6-9(b). The total execution time is.longer for all the three algorithms for
smaller minsup value, which allows more patterns to pass the frequent threshold. GSP
suffers from the explosive growth of the number of candidates and the re-counting of
supports for each pattern. For example, when minsup is 1% and N = 10000, the
number of candidate 2-sequences in GSP is 532526 and that of ‘new’ candidate
2-sequences in INCSP is 59. Only 59 candidate 2-sequences required counting over the
data sequences in UD. The other candidate 2-sequences are updated, rather than

re-counted, against the 2000 sequences in UD (UD*10%)).

149

250 C10.T7T2.5.54 .11.25, |UD |= 20K, N =1000
Rinec =10%, R, =50%, Rs =80%
gzoo -
N —m— GSP
g 150 —a—ISM
: —¢—IncSP
% 100 |
m
E /<
0 ‘ | -
minsup 3% 2% 1% 0.75%
(a) N = 1000
400 C10.72.5.S4 .11.25,|UD|= 20K, N = 10000
350 | Rine =10%,R¢, =50%, Rf=80%
3 300
NG —m— GSP
QS) 250 —a—ISM
:- 200 —¢—IncSP
gj 150 |
100 _A
o
0 %X
0 X !
minsup 3% 2% 1% 0.75%
(b) N =10000

Fig. 6-9. Total execution times over various minsup

Comparing Fig. 6-9(a) with Fig. 6-9(b), it indicates that ISM is more efficient
with a smaller N. ISM keeps all frequent sequences, as well as the maximally potential
frequent sequences (negative borders), in memory. Take minsup = 0.75% for example.
The number of frequent sequences is 701 for N = 1000 and 1017 for N = 10000,
respectively. Accordingly, the size of negative borders of size two is 736751 and
1550925, respectively. Those turn-into-frequent patterns that were in negative borders
before database updating must intersect with the complete set of frequent patterns.

Consequently, with a smaller minsup like 0.75%, the larger N provides more possible

150

items to pass the frequent threshold so that the total execution is less efficient in ISM.
Instead of frequent-pattern intersection, INCSP deals with candidates separately, the
explosively increased frequent items (because of the larger N) affect the efficiency of
the pattern updating less. This also accounts for the performance gaps between INCSP
and ISM, no matter how increment ratio, comeback ratio or former ratio changes.

The results of varying increment ratio from 1% to 50% are shown in Fig. 6-10.
The minsup is fixed at 2%. In general, INCSP gains less at higher increment ratio
because larger increment ratio means more sequences appearing in db and causes
more pattern updatings. As indicated in Fig. 6-10, the smaller the increment database

db is, the more time on the discovery IncSP could save.

C10.T2.5.S4 .11.25, |UD | = 20K
11 L Rep =50%, Rs=80%, minsup =2%
% 9 || —m—T(GSP)/T(ISM)
R —a— T(GSP)/T(IncSP)
Q
£l
[}
L
s 5 F
(]
(D]
=
m3 L
1
Rinc 50% 20% 10% 8% 5% 2% 1%

Fig. 6-10. Total execution times over various incremental ratios

INcSP is still faster than GSP even when increment ratio is 50%. When increment
ratio becomes much larger, say over 60%, IncSP is slower than GSP. Clearly, when
most of the frequent sequences in DB turn out to be invalid in UD, the information
used by IncSP in pattern updating might become useless. When the size of the

increment database becomes larger than the size of the original database, i.e. the

151

database has accumulated dramatic change and not incremental change any more,
re-mining might be a better choice for the total new sequence database.

The impact of the comeback ratio is presented in Fig. 6-11. INncSP updates
patterns more efficiently than GSP and ISM for all the comeback ratios. High
comeback ratio means that there are many ‘old’ customers in the increment database.
Consequently, the speedup ratio decreases as the comeback ratio increases because
more sequence merging is required. Fig. 6-11 shows that IncSP was efficient with
implicit merging, even when the comeback ratio was increased to 100%, i.e., all the
sequences in the increment database must be merged.

Fig. 6-12 depicts the performance comparisons concerning former ratios. It can
be seen from the figure that InCSP was constantly about 6.5 times faster than GSP

over various former ratios, rangingfrom 10% to90%.

C10.T2.5.84.11.25, |UD | = 20K
Rine = 10%, Rt = 80%, minsup = 2%

—m— T(GSP)/T(ISM)
—a— T(GSP)/T(IncSP)

Execution Time Ratio

S = N W A N
T
| |

R 10% 25% 50% 75% 100%

Fig. 6-11. Total execution times over various comeback ratios

152

8 C10.7T2.5.54 .11.25 . |UD | = 20K .T(GSP)/T(ISM)

. Rinc = 10%, R, =50%, minsup = 2% O T(GSP)/T(IncSP)
g 71 6.7
& 6.4 6.3 61 | |
o5
k=
Eg4 L
g 2.8 2.8 2.7 2.6 2.5
5
22 —
=%

1 F

0

R 10% 30% 50% 70% 90%

Fig. 6-12. Total execution times over various former ratios

C10.T25.54.11.25 minsup = 0.75%

=
o

9.59
9 Rine = 10%, Rz = 50%, Rr = 80%
28|
7T 771
=6
3 4.79
5571
24
S 3f
=4
2 [
1 -
100,000 250,000 500,000 750,000 1,000,000
|UD|, number of data sequences
Fig. 6-13. Linear scalability of the database size
C10.T2.5.S4.11.25, |UD |= 20K, N = 1000
5500 Rinc = 10%, Ry = 50%, Ry = 80%
=
= 400 mGSP
g OIsM
g 300 A IncSP
k5
2 200
%
minsup 3% 2% 1% 0.75%

Fig. 6-14. Maximum required memory with respect to various minsup

153

6.5.3 Scale-up experiments

To assess the scalability of our algorithm, several experiments of large databases were
conducted. Since the basic construct of INCSP is similar to that of GSP, similar
scalable results could be expected. In the scale-up experiments, the total number of
customers was increased from 100K (18.8MB) to 1000K (187.9MB), with fixed
parameters C10.T2.5.S4.11.25, N = 10000, Rijnc = 10%, Rep = 50%, and Rs = 80%.
Again, IncSP are faster than GSP for all the datasets. The execution times were
normalized with respect to the execution time for 100K customers here. Fig. 6-13
shows that the execution time of INnCSP increases linearly as the database size

increases, which demonstrates good scalability of IncSP.
6.5.4 Memory requirements

Although IncSP uses separate counting to speed up mining, it generates candidates
and then performs counting by multiple database scanning, like GSP. The pattern
updating process in INCSP reads in the previous discovered patterns and stores them
into a hash-tree for fast support updating. Therefore, the maximum size of memory
required for both GSP and IncSP is determined by the space required to store the
candidates. A smaller minsup often generates a large number of candidates, thereby
demanding a larger memory space.

In contrast, ISM applies item-intersection in each class for new pattern discovery,
assuming that all frequent sequences as well as potentially frequent sequences are
stored in a lattice in memory. Storing every possible frequent sequence costs a huge
memory space, not to mention those required for lattice links. For instance, the size of
negative borders of size two is over 1.5 million with N = 10000 (minsup = 0.75%) in
the experiment of Fig. 6-9(b). As shown in Fig. 6-14, the required memory for InCSP

is smaller than that of ISM. More memory is required in vertical approaches like

154

SPADE.

6.6 Summary

The problem of sequential pattern mining is much more complicated than association
discovery due to sequence permutation. Validity of discovered patterns may change
and new patterns may emerge after updates on databases. In order to keep the
sequential patterns current and up-to-dated, re-execution of the mining algorithm on
the whole database updated is required. However, it takes more time than required in
prior mining because of the additional data sequences appended. Therefore, we
proposed the IncSP algorithm utilizing previously discovered knowledge to solve the
maintenance problem efficiently by incremental updating without re-mining from
scratch. The performance improvenients result from effective implicit merging, early
candidate pruning, and efficient'separate counting.

Implicit merging ensures that IncSP-employs correctly combined data sequences
while preserving previous knowledge useful for incremental updating. Candidate
pruning after updating pattern supports against the increment database further
accelerates the whole process, since fewer but more promising candidates are
generated by just checking counts in the increment database. Eventually, efficient
support counting of promising candidates over the original database accomplishes the
discovery of new patterns. INCSP both updates the supports of existing patterns and
finds out new patterns for the updated database. The simulation performed shows that
the proposed incremental updating mechanism is several times faster than re-mining
using the GSP algorithm, with respect to various data characteristics or data
combinations. INCSP outperforms GSP with regard to different ratios of the increment
database to the original database except when the increment database becomes larger

than the original database. It means that it has been long time since last database

155

maintenance and most of the patterns become obsolete. In such a case, re-mining with
new minsup over the whole database would be more appropriate since the original
minsup might not be suitable for current database any more.

The IncSP algorithm currently solves the pattern updating problems using
previously specified minimum support. Further researches could be extended to the
problems of dynamically varying minimum supports. Generalized sequential pattern
problems [80], such as patterns with is-a hierarchy or with sliding-time window
property, are also worthy of further investigation since different constraints induce
diversified maintenance difficulties. In addition to the maintenance problem,
constantly updated database generally create a pattern-changing history, indicating
changes of sequential patterns at different time. It is challenging to extend the

proposed algorithm to exploring thé pattern changing history for trend prediction.

156

Chapter 7 Conclusions and Future Work

7.1 Contributions

The objective of this thesis is to investigate efficient and scalable algorithms for

mining frequent patterns in large databases. The algorithms proposed in this thesis

include:

® LexMiner: A fast algorithm for mining frequent itemsets in association rule
mining

® MEMISP: An efficient algorithm for mining sequential patterns in databases of
any size, using only two passes of database scanning at most

® DELISP: A divide-and-conquér method: for mining sequential patterns with
time constraints including' minimum gap, maximum gap, and sliding windows

® KISP: An interactive algorithm that reduce the:total response time

® IncSP: An incremental dlgorithm for updating sequential patterns after a

non-trivial updates of the large database.

All the proposed algorithms are verified by experiments of mining large datasets of

various characteristics. In the experiments comprising comprehensive comparisons,

the proposed algorithms outperform several related algorithms, and they all show

excellent linear scalability with respect to the size of the databases.

7.2 Future work

With the mining capabilities of the proposed algorithms, there are several interesting

extensions on frequent pattern mining, as listed below.

® The discovery of sequential patterns with time constraints by memory

indexing

157

The proposed algorithm for sequence mining with constraints in this thesis,
though outperforms the other mining algorithms, requires the creation of
intermediate sub-databases. The accumulated size of the sub-databases
might be several times bigger than that of the original database. The memory
indexing approach is efficient for the discovery of common sequential
patterns without the need of generating any sub-databases. It is worthy of
study on extending the memory indexing approach for efficient mining of
generalized sequential patterns.

Maximal frequent sequence mining

Most sequence mining algorithms aim to find out the set of all frequent
sequences. In some applications, we only need to discover those frequent
sequences that have no .Super-sequences. For example, given the longest
frequent sequences <(e)(f)> and <(b,c)(a,d)>, the users also learn that all
their sub-sequences (like <(€)>-~()=5 <(b;c)>, <(a)>, <(b,c)(d)>, etc.) are
frequent. Once we have'the.maximal” frequent sequences, we may start
classifying data sequences according to the longest common elements. The
lengthy process for mining the complete set of the frequent sequences is no
longer needed.

Integration with database management systems

Given the success of the proposed algorithms, a seamless integration with
the database management system is necessary. The benefits for end-users
will be maximized only if the trivial process of selecting target data,
transforming data, and mining data is integrated as one of the query
functions of the database management system. However, such an integration
requires not only extensions on data manipulation languages but also

effective indexing and accessing mechanisms coupled with the system. It is

158

challenging to integrate the mining algorithms with the database

management systems.

159

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

R. C. Agarwal, C. C. Aggarwal, and V.V.V. Prasad, “A Tree Projection Algorithm
for Generation of Frequent Item Sets,” Journal of Parallel and Distributed
Computing, Vol. 61, No. 3, pp. 350-371, 2001.

R. C. Agarwal, C. C. Aggarwal, “Depth First Generation of Long Patterns,”
Proceedings of 2000 ACM International Conference on Knowledge Discovery in
Databases, pp. 108-118, 2000.

C. C. Aggarwal and P. S. Yu, “Online Generation of Association Rules,”
Proceedings of the 14th International Conference on Data Engineering, Orlando,
Florida, USA, pp. 402-411, Feb. 1998.

R. Agrawal, T. Imielinski, A. Swami, “Mining Association Rules between Sets of
Items in Large Databases,”-Proceedings of the 1993 ACM SIGMOD Conference
on Management of Data, Washington‘D.C., pp. 207-216, May 1993.

R. Agrawal, H. Mannila, R.“*Stikant, H. Toivonen, and A. 1. Verkamo, “Fast
Discovery of Association Rules,” Advances in Knowledge Discovery and Data
Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, eds.,
AAAI/MIT Press, pp. 307-328, 1996.

R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proceedings of the 11th
International Conference on Data Engineering, Taipei, Taiwan, pp. 3-14, March
1995.

R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,”
Proceedings of the 20th International Conference on Very Large Data Bases,
Santiago, Chile, pp. 487-499, Sep. 1994.

R. Agrawal, T. Imielinski, and A. Swami, “Database Mining: A Performance
Perspective,” IEEE Transaction on Knowledge and Data Engineering, special

160

issue on Learning & Discovery in Knowledge-Based Databases, Chile, Vol.5, No.
6, pp.914-925, Dec. 1993.

[9] A. Amir, R. Feldman, and R. Kashi, “A New and Versatile Method for
Association Generation,” Information Systems, Vol. 22, No. 6/7, pp. 333-347,
1997.

[I0]N. F. Ayan, A. U. Tansel and E. Arkun, “An Efficient Algorithm to Update Large
Itemsets with Early Pruning,” ACM SIGKDD Intl. Conf. on Knowledge Discovery
in Data and Data Mining, San Diego, California, pp. 287-291, Aug. 1999.

[11]J. Ayres, J. E. Gehrke, T. Yiu, and J. Flannick, “Sequential PAttern Mining Using
Bitmaps,” Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Edmonton, Alberta, Canada, July 2002.

[12]R. J. Bayardo Jr., “Efficiently Mining ‘Long Patterns from Databases,”
Proceedings of the 1998 .ACM-SIGMOD - International Conference on
Management of Data, pp. 85-93,:1998.

[13]C. Bettini, X. S. Wang, and S. Jajodia; “Mining Temporal Relationships with
Multiple Granularities in Time Sequences,” Data Engineering Bulletin, Vol. 21,
pp- 32-38, 1998.

[14]S. Brin, R. Motwani, J. Ullman, and S. Tsur, “Dynamic Itemset Counting and
Implication Rule for Market Basket Data,” Proceedings of the 1997 SIGMOD
Conference on Management of Data, pp. 255-264, 1997.

[I5]M. S. Chen, J. Han, and P. S. Yu, “Data Mining: An Overview from Database
Perspective,” IEEE Transactions on Knowledge and Data Engineering, Vol. 8,
No. 6, pp. 866-883, 1996.

[I6]M. S. Chen, J. S. Park, P. S. Yu, “Efficient Data Mining for Path Traversal
Patterns,” IEEE Transactions on Knowledge and Data Engineering, Vol. 10, No.

2, pp. 209-221, 1998.
161

[17]M. S. Chen, J. S. Park and P. S. Yu, ”Data mining for path traversal patterns in a
web environment,” Proceedings of 16th International Conference on Distributed
Computing Systems, pp. 385-392, May 1996.

[18]D. W. Cheung, J. Han, V. Ng, and C. Y. Wong, “Maintenance of Discovered
Association Rules in Large Databases: An Incremental Updating Technique,”
Proceedings of 12th IEEE International Conference on Data Engineering, pp.
106-114, 1996.

[19]D. W. Cheung, S. D. Lee, and B. Kao, “A general incremental technique for
maintaining discovered association rules,” Proceedings of the 5th International
Conference on Database Systems for Advanced Applications, pp. 185-194, 1997.

[20]R. Cooley, B. Mobasher, and J. Srivastava, “Web Mining Information and
Pattern Discovery on the World Wide Web,” Proceedings of the 1997 IEEE
International Conference on Tools with Artificial-Intelligence, pp. 558-567, 1997.

[21]R. Feldman, Y. Aumann, A. Amit;-and-H. Mannila, “Efficient Algorithms for
Discovering Frequent Sets in ‘Inecremental Databases,” 2nd SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery, May 1997.

[22]J. L. Feng and Y. Feng, “Binary partition based algorithms for mining association
rules,” Proceedings IEEE International Forum on Research and
Technology —Advances in Digital Libraries (ADL'98), pp. 30-34, Apr. 1998.

[23]Y. Fu and J. Han, “Metarule-guided Mining of Association Rules in Relational
Databases,” Proceedings of the 1995 International Workshop on Knowledge
Discovery and Deductive and Object-Oriented Databases, Singapore, Dec. 1995.

[24]T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, ‘“Mining Optimized
Association Rules for Numeric Attributes,” Proceedings of the Fifteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,, pp.

182-191, 1996.
162

[25]M. N. Garofalakis, R. Rastogi, and K. Shim, “SPIRIT: Sequential Pattern Mining
with Regular Expression Constraints,” Proceedings of the 25th International
Conference on Very Large Data Bases, Edinburgh, Scotland, pp. 223-234, 1999.

[26]J. Han, Y. Cai, and N. Cercone, “Data-Driven Discovery of Quantitative Rules in
Relational Databases” IEEE Transactions on Knowledge and Data Engineering,
Vol. 5, No. 1, pp.29-40, 1993.

[27]J. Han, Y. Cai, and N. Cercone, “Knowledge Discovery in Databases: An
Attribute-Oriented Approach,” Proceeding of the 18" VLDB Conference,
pp.547-559, 1992.

[28]J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate
Generation,” Proceedings of the 2000 ACM SIGMOD Conference on
Management of Data, Dallas, Texas, USA, pp.-1-12, May 2000.

[29]J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U, Dayal and M.-C. Hsu, “FreeSpan:
Frequent Pattern-projected -Sequential-Pattern Mining,” Proceedings of the 6th
ACM SIGKDD international”conference .on Knowledge discovery and data
mining, pp. 355-359, 2000.

[30]C. Hidber, “Online Association Rule Mining,” Technical Report
UCB/CSD-98-1004, Department of Electrical Engineering and Computer Science,
University of California at Berkeley, 1998.

[31]J. Hipp, U. Giintzer, and G. Nakhaeizadeh, “Algorithms for Association Rule
Mining — A General Survey and Comparison,” SIGKDD Explorations, Vol. 2,
Issue 1, pp. 58-64, 2000.

[32]M. Houtsma and A. Swami, “Set-Oriented Mining of Association Rules in
Relational Databases,” Int’l Conference on Data Engineering, pp. 25-33, Taipei,
Taiwan, March 1995.

[33]H. Kan, D. W. Cheung, and S. W. Xia, “Efficient parallel mining of association
163

rules on shared-memory multiple-processor machine,” IEEE International
Conference on Intelligent Processing Systems, pp. 1133-1137, Oct. 1997.

[34]K. Koperski and J. Han, “Discovery of Spatial Association Rules in Geographic
Information Databases," SSD, pp. 47-66, 1995.

[35]M. Klemettinen, H. Mannila, P. Ronkainen, and H. Toivonen, “Finding
Interesting Rules from Large Sets of Discovered Association Rules,” 3rd
International Conference on Information and Knowledge Management, pp.
401-407, Nov. 1994.

[36]C. M. Kuok, A. Fu, and M. H. Wong, “Mining Fuzzy Association Rules in
Databases,” SIGMOD Record, pp. 41-46, Mar. 1998.

[37]G. Lee, K.L. Lee and A.L.P. Chen, “Efficient Graph-Based Algorithms for
Discovering and Maintaining .Association Rules in Large Databases,” Knowledge
and Information Systems, Springer-Verlag; Vol.'3; 2001, pp.338-355.

[38]C.-H. Lee, P. S. Yu and M.-S. Chen,~Causality Rules: Exploring the Relationship
between Triggering and Consequential .Events in a Database of Short
Transactions,” Proceedings of the 2nd SIAM International Conference on Data
Mining (SDM-02), April 11-13, 2002, pp. 403-419.

[39]C.-H. Lee, C.-R. Lin and M.-S. Chen, “On Mining General Temporal Association
Rules in a Publication Database,” Proceedings of the First IEEE International
Conference on Data Mining (ICDM-01), Nov. 29 — Dec. 2, 2001.

[40]C.-H. Lee, C.-R. Lin and M.-S. Chen, “Sliding-Window Filtering: An Efficient
Algorithm for Incremental Mining,” Proceedings of the ACM 10th International
Conference on Information and Knowledge Management (CIKM-01), Nov. 5-10,
2001, pp. 263-270.

[41]S. D. Lee, D. Cheung, and B. Kao, "A General Incremental Technique For

Maintaining Discovered Association Rules," Proceedings of the 5th International
164

Conference On Database Systems For Advanced Applications, pp. 185-194,
Melbourne, Australia, Apr. 1997.

[42]C.-R. Lin, C.-H. Yun and M.-S. Chen, “Utilizing Slice Scan and Selective Hash
for Episode Mining,” KDD-01 Workshop on Temporal Data Mining, August
26-29,2001.

[43]J). L. Lin and M. H. Dunham, “Mining association rules: anti-skew algorithms,”
Proceedings 14th International Conference on Data Engineering, Orlando, FL,
USA., pp. 486-493, Feb. 1998.

[44]B. Liu, W. Hsu, and Y. Ma, “Mining Association Rules with Multiple Minimum
Supports,” SIGKDD International Conference on Knowledge Discovery and Data
Mining, Aug. 1999.

[45]D. J. Lubinsky, “Discovery from Databases: A Review of Al and Statistical
Techniques,” [JCAI-89 Workshop on .Knowledge Discovery in Databases,
pp.204-218, Aug. 1989.

[46]H. Mannila, H. Toivonen and A. L Verkamo, “Discovery of Frequent Episodes in
Event Sequences,” Data Mining and Knowledge Discovery, Vol. 1, Issue 3, pp.
259-289, 1997.

[47]1H. Mannila and H. Toivonen, "Discovering Generalized Episodes using Minimal
Occurrences," Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD’96), pp. 146-151, Portland, 1996.

[48]H. Mannila, H. Toivonen, and A. I. Verkamo, "Discovering Frequent Episodes in
Sequences," Proceedings of the First International Conference on Knowledge
Discovery and Data Mining (KDD’95), pp. 210-215, Montreal, Canada, 1995.

[49]H. Mannila, H. Toivonen, and A. I. Verkamo, “Efficient Algorithms for
Discovering Association Rules,” KDD-94: AAAI Workshop on Knowledge

Discovery in Databases, Seattle, Washington, pp.181-192, July 1994.
165

[S0]H. Mannila, H. Toivonen, and A. I. Verkamo, “Improved Methods for Finding
Association Rule,” Report C-1993-65,U. Helsinki 1994.

[51]F. Masseglia, F. Cathala, and P. Poncelet, “The PSP Approach for Mining
Sequential Patterns,” Proceedings of 1998 2nd European Symposium on
Principles of Data Mining and Knowledge Discovery, Vol. 1510, Nantes, France,
pp- 176-184, Sep. 1998.

[52]R. J. Miller, Y. Yang, “Association Rules over Interval Data,” Proceedings ACM
SIGMOD International Conference on Management of Data, pp. 452-461,May
1997.

[53]A. M. Mueller, Fast Sequential and Parallel Algorithm for Association Rule
Mining: A Comparison, Technical report CS-TR-3515, University of Maryland,
1995.

[54]B. Nag, P. M. Deshpande-and D. J. DeWitt, “Using a Knowledge Cache for
Interactive Discovery of Association-Rules;” Proceedings of Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Aug. 1999.

[55]T. Oates, M. D. Schmill, D. Jensen, and P. R. Cohen, “A Family of Algorithms for
Finding Temporal Structure in Data,” Proceedings of the 6th International
Workshop on Al and Statistics, Fort Lauderdale, Florida, pp. 371-378, 1997.

[56]J.-Z. Ouh, P. Wu, and M.-S. Chen, “Constrained Based Sequential Pattern
Mining,” Proceedings of International Workshop on Web Technology, Dec. 4-6,
2001.

[57]1B. Ozden, S. Ramaswamy and A. Silberschatz, “Cyclic Association Rules,”
International Conference on Data Engineering, 1998.

[58]J. S. Park, M. S. Chen, and P. S. Yu, “Using a Hash-Based Method with
Transaction Trimming for Mining Association Rules,” IEEE Transactions on

Knowledge and Data Engineering, Vol. 9, No. 5, pp. 813-825, 1997.
166

[59]J. S. Park, M. S. Chen and P. S. Yu, “Mining Association Rules with Adjustable
Accuracy,” IBM Research Report, 1995.

[60]J. S. Park, P. S. Yu and M. S. Chen, “Mining Association Rules with Adjustable
Accuracy,” Proceedings of ACM International Conference on Information and
Knowledge Management, pp. 151-160, 1997.

[61]J. S. Park, M. S. Chen, and P. S. Yu., “An Effective Hash based Algorithm for
Mining Association Rules,” Proceedings ACM SIGMOD International
Conference on Management of Data, pp. 175-186 ,May 1995.

[62]]. S. Park, M. S. Chen and P. S. Yu, “Efficient Parallel Data Mining for
Association Rules,” Proceedings of 4th International Conf. on Information and
Knowledge Management, pp. 31-36, Baltimore, Maryland, Nov. 1995.

[63]S. Parthasarathy, S. Dwarkadas; and M. Ogthara, “Active Mining in a Distributed
Setting,” Large-Scale Parallel. Data Mining, Lecture Notes in Computer Science
Vol. 1759, Springer- Verlag; pp. 65-82;-2000.

[64]S. Parthasarathy, M. J. Zaki, M. Ogihara; and S. Dwarkadas, “Incremental and
Interactive Sequence Mining,” Proceedings of the 8th International Conference
on Information and Knowledge Management, Kansas, Missouri, USA, pp.
251-258, Nov. 1999.

[65]J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, “H-Mine: Hyper-Structure
Mining of Frequent Patterns in Large Databases,” Proceedings of 2001
International Conference on Data Mining, San Jose, CA, Nov. 2001.

[66]J. Pei, J. Han, and R. Mao, “CLOSET: An Efficient Algorithm for Mining
Frequent Closed Itemsets,” Proceedings of 2000 ACM-SIGMOD International
Workshop on Data Mining and Knowledge Discovery, Dallas, TX, May 2000.

[67]]. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal and M.-C. Hsu, “PrefixSpan: Mining

Sequential Patterns Efficiently by Prefix-projected Pattern Growth,” Proceedings
167

of 2001 International Conference on Data Engineering, pp. 215-224, 2001.

[68]]). Pei and J. Han, “Constrained Frequent Pattern Mining: A Pattern-Growth
View,” SIGKDD Explorations, Vol. 4, Issue 1, pp. 31-39, June 2002.

[69]]. Pei, J. Han, and W. Wang, “Mining Sequential Patterns with Constraints in
Large Databases,” Proceedings of the 11th International Conference on
Information and Knowledge Management, 2002.

[70]H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal, “Multi-Dimensional
Sequential Pattern Mining,” Proceedings of the 10th International Conference on
Information and Knowledge Management, pp. 81-88, 2001.

[71]V. Pudi and J. Haritsa, “Quantifying the Utility of the Past in Mining Large
Databases,” Information Systems, Vol. 25, N. 5, pp. 323-343, Jul. 2000.

[72]P. Rolland, “FIExPat: Flexible'Extraction of Sequential Patterns,” Proceedings of
the IEEE International Conference on Data Mining 2001, pp. 481-488, 2001.
[73]A. Sarasere, E. Omiecinsky; andiS: Navathe, “An Efficient Algorithm for Mining
Association Rules in Large Databases,” Proceedings of the 21st International
Conference on Very Large Data Bases, Zurich, Switzerland, pp. 432-444, 1995.

[74]P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and D. Shah,
“Turbo-charging Vertical Mining of Large Databases,” Proceedings of the 2000
ACM SIGMOD Conference on Management of Data, Dallas, Texas, USA, pp.
22-33, May 2000.

[75]T. Shintani and M. Kitsuregawa, “Mining Algorithms for Sequential Patterns in
Parallel: Hash Based Approach,” Proceedings of the Second Pacific—Asia
Conference on Knowledge Discovery and Data mining, pp. 283-294, 1998.

[76] T. Shintani and M. Kitsuregawa, “Parallel Mining Algorithms for Generalized
Association Rules with Classification Hierarchy,” Proceedings of ACM SIGMOD

Conference, pp. 25-36, 1998.
168

[77]T. Shintani, and M. Kitsuregawa, “Hash based parallel algorithms for mining
association rules,” Proceedings of 4th International Conference on Parallel and
Distributed Information Systems, FL, USA, pp. 19-30, Dec. 1996.

[78]Shrividya, "DELTA: A Fast Algorithm for Incremental Mining of Association
Rules," Project report, Dept. of Computer Science and Automation, Indian
Institute of Science, 1997.

[79] A. Siberschatz and A. Tuzhilin, “On Subjecive Measure of Interestingness in
Knowledge Discovery,” Proc. 1st Int’l Conf. Knowledge Discovery and Data
Mining, pp.275-281, 1995.

[80]R. Srikant and R. Agrawal, “Mining Sequential Patterns: Generalizations and
Performance Improvements,” Proceedings of the 5th International Conference on
Extending Database Technology, Avignon, France, pp. 3-17, 1996. (An extended
version is the IBM Research Report RJ 9994)

[81]R. Srikant, Q. Vu, and R. Agrawal,—Mining Association Rules with Item
Constraints,” Proceedings of the Third International Conference on Knowledge
Discovery and Data Mining(KDD’97), pp. 67-73,1997.

[82]R. Srikant and R. Agrawal, “Mining Quantitative Association Rules in Large
Relational Tables,” Proceedings of the ACM SIGMOD Int’l Conference on
Management of Data, pp. 1-12, 1996.

[83]R. Srikant, R. Agrawal, “Mining Generalized Association Rules,” Proceedings of
the 21th VLDB Conference Zurich, Switzerland, pp. 407-419, 1995.

[84]S. Thomas, S. Sarawagi, "Mining Generalized Association Rules and Sequential
Patterns Using SQL Queries," Proceedings of the 4th International Conference on
Knowledge Discovery and Data Mining (KDD’98), pp. 344-348, 1998.

[85] H. Toivonen, "Discovery of Frequent Patterns in Large Data Collections," Ph.D.

thesis, University of Helsinki, Finland, 1996.
169

[86] H. Toivonen, “Sampling Large Databases for Association Rules,” Proceedings
of the 22nd International Conference on Very Large Data Bases, pp. 134-145,
1996.

[87]P. S. M. Tsai, C. C. Lee, A. L. P. Chen, “An Efficient Approach for Incremental
Association Rule Mining,” Proceedings of the Pacific-Asia Conference on
Knowledge Discovery and Data Mining 1999, pp. 74-83.

[88]S. Tsur, “Data Dredging,” IEEE Data Engineering Bulletin, Vol. 13, No. 4, pp.
58-63, Dec. 1990.

[89] K. Wang, “Discovering Patterns from Large and Dynamic Sequential Data,”
Journal of Intelligent Information Systems, Vol. 9, No. 1, pp. 33-56, 1997.

[90] K. Wang and J. Tan, “Incremental discovery of sequential patterns,”
Proceedings. of Workshop on:Research Issues on Data Mining and Knowledge
Discovery, Montreal, Canada, June 1996.

[91] M. Wojciechowski, “Interactive Constraint-Based Sequential Pattern Mining,”
Proceedings of the 5th East Eurgpean Conference on Advances in Databases and
Information Systems, pp. 169-181, 2001.

[92]P. H. Wu, W. C. Peng, and M. S. Chen, “Mining Sequential Alarm Patterns in a
Telecommunication Database,” Proceedings of VLDB-01 Workshop on Databases
in Telecommunications 2001, pp. 37-51, 2001.

[93]S. J. Yen and A. L. P. Chen, “An Efficient Approach to Discovering Knowledge
from Large Databases,” Proceedings of 4th International Conference on Parallel
and Distributed Information Systems, pp. 8-18, Dec. 1996.

[94]S. J. Yen and A. L. P. Chen, “An efficient data mining technique for discovering
interesting association rules,” Proceedings of Database and Expert Systems
Applications. 8th International Conference (DEXA '97), pp. 664-669, Sep. 1997.

[95]S. J. Yen and A. L. P. Chen, “A Graph-Based Approach for Discovering Various
170

Types of Association Rules,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 13, No. 5, pp.839-845.

[96] M. J. Zaki, "Fast Mining of Sequential Patterns in Very Large Databases,"
Technical Report 668, The University of Rochester, New York, Nov. 1997.

[97] M. J. Zaki, “Sequence Mining in Categorical Domains: Incorporating
Constraints,” Proceedings of the 9th International Conference on Information
and Knowledge Management, Washington D.C., pp. 422-429, 2000.

[98] M. J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent Sequences,”
Machine Learning Journal, Vol. 42, No. 1/2, pp. 31-60, 2001.

[99] M. J. Zaki, “Efficient enumeration of frequent sequences,” Proceedings of the
7th International Conference on Information and Knowledge Management,
Washington, USA, pp. 68-75, Nov.1998.

[100] M. J. Zaki and C. Hsiao, “CHARM: An- Efficient Algorithm for Closed
Association Rule Mining,” RPI Technical-Report-99-10, 1999.

[101] M. J. Zaki, S. Parthasarathy;-M. Ogihara, and W. Li, “New Algorithms for
Fast Discovery of Association Rules,” Proceedings of the 3rd International
Conference on Knowledge Discovery and Data Mining, Newport, California, pp.
283-286, Aug. 1997.

[102] M. Zhang, B. Kao, D. Cheung, and C.-L. Yip, “Efficient Algorithms for
Incremental Update of Frequent Sequences,” Proceedings of the 6th Pacific-Asia

Conference on Knowledge Discovery and Data Mining, pp. 186-197, 2002.

171

Vita

Ming-Yen Lin was born on March 31, 1966 in Kaohsiung, Taiwan, Republic of China.
He received the BS degree in Computer Engineering and the MS degree in Computer
Science and Information Engineering both from National Chiao Tung University,
Taiwan, in 1988 and 1990, respectively. After that time, he was a software engineer, in
charge of system/VGA BIOS of PCs, in Mitac Inc. In 1991, he changed the job and
worked for CTXOPTO Electronics Co. He had completed the design of the
firmware/software of LCD monitors/projectors, established the Internet networking
infrastructure of the company, introduced Oracle Database/Applications and EDI
systems, formulated the ISO9000 management system of MIS department, and
developed new techniques (which becomes an:US patent 6,326,961) for the R&D
department. Later in 1998, he -quitted the job-and served as an adjunct lecturer in
Providence University for one semester.“Starting from 2003, he is an adjunct lecturer
both in Feng Chia University and*Taichung HealthCare and Management University.
He is currently working towards the Ph.D. degree in National Chiao Tung University.
His research interests include data mining, database systems, data stream management

systems, bioinformatics, and semantic Web.

172

