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Speaker verification is usually formulated as a statistical hypothesis testing problem and solved by
a log-likelihood ratio (LLR) test. A speaker verification system’s performance is highly dependent on
modeling the target speaker’s voice (the null hypothesis) and characterizing non-target speakers’ voices
(the alternative hypothesis). However, since the alternative hypothesis involves unknown impostors, it
is usually difficult to characterize a priori. In this paper, we propose a framework to better characterize
the alternative hypothesis with the goal of optimally distinguishing the target speaker from impostors.
The proposed framework is built on a weighted arithmetic combination (WAC) or a weighted geometric
combination (WGC) of useful information extracted from a set of pre-trained background models. The
parameters associated with WAC or WGC are then optimized using two discriminative training methods,
namely, the minimum verification error (MVE) training method and the proposed evolutionary MVE
(EMVE) training method, such that both the false acceptance probability and the false rejection probabil-
ity are minimized. Our experiment results show that the proposed framework outperforms conventional
LLR-based approaches.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

most popular. Specifically, each hypothesis is represented by a set of
probability-related parameters through a training process, and the

In many practical pattern recognition applications, it is necessary
to make a binary decision, such as “yes/no” or “accept/reject”, with
respect to an uncertain hypothesis that can only be validated through
its observable consequences. In a statistical framework, the problem
is generally formulated as a test that involves a null hypothesis, Hy,
and an alternative hypothesis, Hi, regarding some measurement L( - )
for a given observation X:

Hp : L(X)>0 1)
Hy : L(X)<0,

where 0 is the decision threshold. A number of measurements have
been investigated for various applications, with the log-likelihood
ratio (LLR) measure combined with parametric modeling being the
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probability of generating a given observation X is then evaluated for
the parameter set of each hypothesis. The LLR test is expressed as

p(X|Ho) { > 0 accept Hy @)

L(X) = log p(X|H1) | <0  accept Hp (i.e., reject Hp),

where p(X|H;), i =0 or 1, is the probability of observation X under
hypothesis H;. The hypotheses Hy and H; can be represented by
parametric models such as Gaussian mixture models (GMMs) [1,2],
which are usually denoted as 4 (the null hypothesis model or target
model) and 4 (the alternative hypothesis model or anti-model).
However, in most applications, the alternative hypothesis model
is usually ill-defined and difficult to characterize a priori. For ex-
ample, in speaker verification [3-7], the problem of determining if
a speaker is who he or she claims to be is normally formulated as
follows: given an unknown utterance U, determine whether

Hp : U is from the target speaker, or
H; : Uis not from the target speaker.

Though Hy can be modeled straightforwardly using speech utter-
ances from the target speaker, H; does not involve any specific
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speaker, and hence lacks explicit data for modeling. Thus, a number
of approaches have been proposed to better characterize H;. One
popular approach pools all the speech data from a large number of
background speakers and trains a single speaker-independent model
Q, called the world model or the universal background model (UBM)
[2]. During a test, the LLR measure that an unknown utterance U was
spoken by the claimed speaker can be evaluated by

Lugm(U) = log p(U|A) — log p(U|€2), 3)

where 1 is the target speaker model trained using speech from
the claimed speaker. The larger the value of Lygy(U), the more
likely it is that the utterance U was spoken by the claimed speaker.
Due to the good generalization ability of the UBM, Lygm(U) (usu-
ally called the GMM-UBM method [2]) is considered as a current
state-of-the-art solution to the text-independent speaker verification
problem.

Instead of using a single model, an alternative approach is to
train a set of models {41, 42,..., Ag} using speech from several rep-
resentative speakers, called a cohort [9], which simulates potential
impostors. This leads to the following possible LLR measures, where
the alternative hypothesis can be characterized by:

(i) the likelihood of the most competitive cohort model [10], i.e.,

Lmax(U) = log p(U|A) — max_logp(U|A;), (4)
1<i<B
(ii) the arithmetic mean of the likelihoods of the B cohort models
[1], i.e.,
1B
Lari(U) =log p(U|A) — log 1 & ;p(UW) . (5)
(iii) the geometric mean of the likelihoods of the B cohort models
[10], i.e.,
1B
Loeo(U) =logp(UIL) — 5 > log p(UIh;). (6)

i=1

In a well-known score normalization method called T-norm [12,13],
Lceo(U) is divided by the standard deviation of the log-likelihoods of
the B cohort models.

The approaches in Egs. (3)-(6), which have been proposed to
characterize Hy, can be expressed collectively in the following gen-
eral form [2]:

p(UIR) = P(p(UIM1), p(UIA2) ..., (UIAN)), (7)

where ¥( - ) denotes a certain function of the likelihoods computed
for a set of so-called background models {1, 43, ..., An}. For exam-
ple, if the background model set is generated from a cohort, letting
Y(-) be the maximum function yields Lyax(U), while the arith-
metic mean yields La(U), and the geometric mean yields Lgeo(U).
When Y(-) is an identity function, N=1, and 4, =Q, Eq. (7)
yields LUBM(U)-

However, there is no theoretical evidence to indicate which
method of characterizing Hy is optimal, and the selection of ¥Y( - ) is
usually application and training data dependent. More specifically,
a simple function, such as the arithmetic mean, the maximum, or
the geometric mean, is a heuristic that does not involve any op-
timization process. Thus, the resulting system is far from optimal
in terms of verification accuracy. Although the GMM-UBM method
is a current state-of-the-art solution to the text-independent

speaker verification problem, there is no optimization process of
characterizing H; to support its discriminability. To handle this prob-
lem more effectively, it is necessary to design a trainable mecha-
nism for ¥( - ). We therefore propose a framework that characterizes
the alternative hypothesis by exploiting information available from
background models, such that the utterances of the impostors can
be more effectively distinguished from those of the target speaker.
The framework is built on either a weighted geometric combination
(WGC) or a weighted arithmetic combination (WAC) of the likeli-
hoods computed for background models. In contrast to the geometric
mean in Lgeo(U) or the arithmetic mean in La(U), both of which are
independent of the system training, our combination scheme treats
the background models unequally according to how close each indi-
vidual is to the target speaker model, and quantifies the unequal na-
ture of the background models by a set of weights optimized in the
training phase. The optimization is carried out with the minimum
verification error (MVE) criterion [14,15], which minimizes both the
false acceptance probability and the false rejection probability. Since
the characterization of the alternative hypothesis is closely related
to the verification accuracy, the resulting system is expected to be
more effective and robust than those of conventional methods.

The concept of MVE training stems from minimum classification
error (MCE) training [21-24], where the former could be a special
case of the latter when the classes to be distinguished are binary.
Although MVE training has been extensively studied in the literature
[14-20], most studies focus on better estimating the parameters of
the target model. In contrast, we try to improve the characterization
of the alternative hypothesis by applying MVE training to optimize
the parameters associated with the combinations of the likelihoods
from a set of background models. Traditionally, MVE training has
been realized by the gradient descent algorithms, e.g., the general-
ized probability descent (GPD) [14], but the approach only guaran-
tees to converge to a local optimum. To overcome such a limitation,
we propose a new MVE training method, called evolutionary MVE
(EMVE) training, for learning the parameters associated with WAC-
and WGC-based LLR measures based on a genetic algorithm (GA)
[25]. It has been shown in many applications that GA-based op-
timization is superior to gradient-based optimization, because of
GA’s global scope and parallel searching power. To facilitate the
EMVE training, we designed a new mutation operator, called the
one-step gradient descent operator (GDO), for the genetic algo-
rithm. The results of speaker verification experiments conducted
on the Extended M2VTS Database (XM2VTSDB) [29] demonstrate
that the proposed methods outperform conventional LLR-based
approaches.

The remainder of this paper is organized as follows. Section 2
presents the proposed methods for characterizing the alternative
hypothesis. Sections 3 and 4 describe, respectively, the gradient-
based MVE training and the EMVE training used to optimize
our methods. Section 5 contains the experiment results. Then, in
Section 6, we present our conclusions.

2. Characterization of the alternative hypothesis

To characterize the alternative hypothesis, we generate a set of
background models using data that does not belong to the target
speaker. Instead of using the heuristic arithmetic mean or geometric
mean, our goal is to design a function ¥( - ) that optimally exploits
the information available from background models. In this section,
we present our approach, which is based on either the weighted
arithmetic combination (WAC) or the weighted geometric combina-
tion (WGC) of the useful information available. Moreover, the LLR
measure based on WAC or WGC can be viewed as a generalized and
trainable version of Lygm(U), Lmax(U), Lari(U) or Lgeo(U).
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2.1. The weighted arithmetic combination (WAC)

First, we define the function ¥( - ) in Eq. (7) based on the weighted
arithmetic combination as

N
PUIE) = P(p(ULA ), ..o P(ULZN)) = 3 Wi (U1, 8)
i=1

where w; is the weight of the likelihood p(U|4;) subject to Zf’zlw,:].
This function assigns different weights to N background models to
indicate their individual contribution to the alternative hypothesis.
Suppose all the N background models are Gaussian mixture models
(GMMs); then, Eq. (8) can be viewed as a mixture of Gaussian mixture
density functions. From this perspective, the alternative hypothesis
model A can be viewed as a GMM with two layers of mixture weights,
where one layer represents each background model and the other
represents the combination of background models.

2.2. The weighted geometric combination (WGC)

Alternatively, we can define the function ¥( - ) in Eq. (7) from the
perspective of the weighted geometric combination as

N

P(UZ) = P(P(UIZ1), ... p(ULAn)) = [T pCUIA)™. (9)
i=1

Similar to the weighted arithmetic combination, Eq. (9) considers
the individual contribution of a background model to the alterna-
tive hypothesis by assigning a weight to each likelihood value. One
additional advantage of WGC is that it avoids the problem where
p(UX) — 0. The problem can arise with the heuristic geometric
mean because some values of the likelihood may be rather small
when the background models /; are irrelevant to an input utterance
U, i.e., p(U]2;)—0. However, if a weight is attached to each back-
ground model, ¥( - ) defined in Eq. (9) should be less sensitive to
a tiny value of the likelihood; hence, it should be more robust and
reliable than the heuristic geometric mean.

2.3. Relation to conventional LLR measures

We observe that Eqs. (8) and (9) are equivalent to the arith-
metic mean and the geometric mean, respectively, when w; = 1/N,
i=1,2,...,N; in other words, all the background models are assumed
to contribute equally. It is also clear that both Egs. (8) and (9)
will degenerate to a maximum function if we set w;- =1, where
i’ = argmax; < i< ~p(Ulk), and wi =0, Vi# i". Furthermore, the
LLR measure based on Eq. (8) or (9) will degenerate to Lygm(U) in
Eq. (3) if only a UBM Q is used as the background model. Thus, both
WAC- and WGC-based LLR measures can be viewed as generalized
and trainable versions of Lygm(U), Lvax(U), Lari(U) or Lgeo(U).

In the WAC method, we refer to the alternative hypothesis model
/. defined in Eq. (8) as a 2-layer GMM (GMM2), since it involves both
inner and outer mixture weights. GMM2 differs from the UBM € in
that it characterizes the relationship between individual background
models through the outer mixture weights, rather than simply pool-
ing all the available data and training a single background model rep-
resented by a GMM. Note that the inner and outer mixture weights
are trained by different algorithms. Specifically, the inner mixture
weights are estimated using the standard expectation-maximization
(EM) algorithm [31], while the outer mixture weights are estimated
using MVE training or evolutionary MVE (EMVE) training, which
we discuss in Section 3 and Section 4, respectively. In other words,
GMM?2 integrates the Bayesian learning and discriminative training
algorithms. The objective is to optimize the LLR measure by consid-
ering the null hypothesis and the alternative hypothesis jointly.

2.4. Background model selection

In general, the more speakers that are used as background models,
the better the characterization of the alternative hypothesis will be.
However, it has been found [1,9-13] that using a set of pre-selected
representative models usually makes the system more effective and
efficient than using the entire collection of available speakers. For
this reason, we present two approaches for selecting background
models to strengthen our WAC- and WGC-based LLR measures.

2.4.1. Combining cohort models and the world model

Our first approach selects B+1 background models, comprised of
B cohort models used in Lyax(U), Lari(U), and Lgeo(U), and one world
model used in Lygm(U), for WAC in Eq. (8) and WGC in Eq. (9).
Depending on the definition of a cohort, we consider two commonly-
used methods [1]. One selects the B closest speaker models {Acst1,
Acst2, ..., Acstg} for each target speaker; and the other selects the B/2
closest speaker models {/cst1, Acst2, --- Acstpj2 ), Plus the BJ2 farthest
speaker models {Afst1, Afsta, ... AfstBj2 ), fOr each target speaker. Here,
the degree of closeness is measured in terms of the pairwise distance
defined in [1]:

p(Uil4;) p(Ujl4)
p(Uil %) p(Ujl4)’

where /; and /; are speaker models trained using the i-th speaker’s
utterances U; and the j-th speaker’s utterances Uj, respectively. As
a result, each target speaker has a sequence of background models,
{Q, Acst1y Aest2r - AcstB} OF {€2, ;Lcstlw-'-icstB/Zv Mfstls wver /lfstB/Z}v for
Eq. (7).

d(Z;, /) =log + log (10)

2.4.2. Combining multiple types of anti-models

As shown in Egs. (3)-(6), various types of anti-models have been
studied for conventional LLR measures. However, none of the LLR
measures developed thus far has proved to be absolutely superior to
any other. Usually, Lygm(U) tends to be weak in rejecting impostors
with voices similar to the target speaker’s voice, while Lyax(U) is
prone to falsely rejecting a target speaker; Layi(U) and Lgeo(U) are
between these two extremes. The advantages and disadvantages of
different LLR measures motivate us to combine them into a unified
LLR measure because of the complementary information that each
anti-model can contribute.

Consider K different LLR measures L;(U), each with an anti-model

Zi,i=1,2,...,K.If we treat each anti-model /; as a background model,
Eq. (7) can be rewritten as,
p(UIZ) = ¥(p(UI21), p(U122) ... P(UI Zi))- (11

Using WAC or WGC to realize Eq. (11), we can form a trainable
version of the conventional LLR measures in Eqgs. (3)-(6), where each

anti-model J;, i = 1,... 4, is computed, respectively, by

p(UI41) =p(U|Q), (12)

p(U72) = max_ p(U|%), (13)

1<i<B
_ 18

P(U|/13)=§§P(Ulii)- (14)

and
5 1/B

p(Ul4) = (Hp(uw)) : (15)
i=1

As aresult, for Eq. (7), each target speaker has the following sequence

of background models, {11, 43, 43, 14}. We denote systems that com-
bine multiple anti-models as hybrid anti-model systems.
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3. Gradient-based MVE training

After representing ¥( - ) as a trainable combination of likelihoods,
the task becomes a matter of solving the associated weights. To
obtain an optimal set of weights, we propose using MVE training
[14,15].

The concept of MVE training stems from MCE training, where
the former could be a special case of the latter when the classes to
be distinguished are binary. To be specific, consider a set of class
discriminant functions g;(U), i =0,1,...,M—1. The misclassification
measure in the MCE method [21] is defined as

1/n
di(U) = ~g(U) + log [ﬁ > exp[gj(um} : (16)
Ji#i

where 7 is a positive number. If M =2, =1, and

(U) = {log p(U|;,) ifi=0 (a7

log p(U|1A) ifi=1,

then d;(U) is reduced to the mis-verification measure defined in the
MVE method:

do(U)=-L(U) ifUeH
d(U) = o(U) (U) ! € Ho (18)
di(U)=LU) ifUeH;,
where L(U) is the LLR in Eq. (2). We further express L(U) as the
following equivalent test

0 accept Hp

accept Hy, (19)

LU) = log p(U:) - log ptui) - 0f 2
so that the decision threshold 0 can also be included in the optimiza-
tion process. Then, the mis-verification measure is converted into a
value between 0 and 1 using a sigmoid function

1

U = 1 axp=a - o)

(20)
where a is a slope of the sigmoid function s( - ).

Next, we define the loss of each hypothesis as the average of the
mis-verification measures of the training samples

b= Y s(dU)), (21)

! UeH;

where [y denotes the loss associated with false rejection errors, I;
denotes the loss associated with false acceptance errors, and Ny and
N;p are the numbers of utterances from true speakers and impostors,
respectively. Finally, we define the overall expected loss as

D =xply + X141, (22)

where x¢ and x; indicate which type of error is of greater concern
in a practical application.

Accordingly, our goal is to find the weights w; in Egs. (8) and (9)
such that Eq. (22) can be minimized. This can be achieved by using
the gradient descent algorithm [14]. To ensure that the weights sat-
isfy Zf\i 1w;=1, we solve w; by means of an intermediate parameter
oj, where
wi = 15xp(o<,~) (23)

>_j1 exp(ey)

which is similar to the strategy used in [21]. Parameter o; is itera-
tively optimized using
(1) _ (o 0D

o =0 — &5 - (24)
1

where ¢ is the step size, and

oD GIA GI4}

O =X05 0oy T X5y, 0oy
_ O 0 od oL 0 od 0L
03 'dd oL Doy " "'0s "dd O By

ZXO'NLO ) {a.s(_L(U))[l—s( LU - < ;ﬁ)}

UeHp
0o ¥ faswopn - swont- 5] (25)
X Ny ‘ - R
U€H1
where
oL oL aw] oL
do Z (aw] B > (a_ ‘]Z]Wfaw,) (26)
If WAC is used, then
o _ -0 log iwp (Ul4) 7(UM') (27)
ow; — dw; ) SLwipuly)
If WGC is used, then
o -2 ,
T = (ijlog p(UAJ)) = —log p(U|4). (28)
1
The threshold 0 in Eq. (19) can be estimated using
(t+1) _ o) 0D
0V =0"—¢ 50 (29)
where
_ ol & 2 oL oh B ad oL
a0 "as '9d 3L 30 TN S ad AL a0
—Xo- o Z a-s(~LU)[1 - s(~L(U))]
UEHD
Z a-s(LUNIT = s(LU))]- (30)
M UcHs
In our implementation, the overall expected loss is set as
D = Cpiss x o x PTarget + Cratseatarm * £1 x (1 — PTarget)- (31)

Eq. (31) simulates the detection cost function (DCF) [8]

Cper = Ciiss X Piss < PTarget + Craisealarm % PralseAlarm
x (1 - PTarget)- (32)

where Cyiss denotes the cost of the miss (false rejection) error;
Craisealarm denotes the cost of the false alarm (false acceptance) er-
ror; Ppjiss ~ lg is the miss (false rejection) probability; Prgiseaiarm =~ 1
is the false alarm (false acceptance) probability; and Prgrg is the a
priori probability of the target speaker.

4. Evolutionary MVE training

As the gradient descent approach may converge to an inferior
local optimum, we propose an evolutionary MVE (EMVE) training
method that uses a genetic algorithm (GA) to train the weights w; and
the threshold 6 in WAC- and WGC-based LLR measures. It has been
shown in many applications that GA-based optimization is superior
to gradient-based optimization, because of GA’s global scope and
parallel searching power.

Genetic algorithms belong to a particular class of evolutionary al-
gorithms inspired by the process of natural evolution [25]. As shown
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Parent selection

> Parents

Initialization

Crossover

Population
Mutation
A
Termination A\
- - Offspring
Survivor selection

Fig. 1. The general scheme of a GA.

in Fig. 1, the operators involved in the evolutionary process are: en-
coding, parent selection, crossover, mutation, and survivor selection.
GAs maintain a population of candidate solutions and perform paral-
lel searches in the search space via the evolution of these candidate
solutions.

To accommodate GA to EMVE training, the fitness function of
GA is set as the reciprocal of the overall expected loss D defined in
Eq. (22), where xo = CpissxPrarget and X1 = Crgiseatarm>(1—Prarget). The
details of the GA operations in EMVE training are described in the
following.

(1) Encoding: Each chromosome is a string {1, o3,...,0n, 0} of
length N+1, which is the concatenation of all intermediate parame-
ters o; in Eq. (23) and the threshold 6 in Eq. (19). Chromosomes are
initialized by randomly assigning a real value to each gene.

(2) Parent selection: Five chromosomes are randomly selected
from the population with replacement, and the one with the best
fitness value (i.e., with the smallest overall expected loss) is selected
as a parent. The procedure is repeated iteratively until a pre-defined
number (which is the same as the population size in this study) of
parents is selected. This is known as tournament selection [25].

(3) Crossover: We use the N-point crossover [25] in this work.
Two chromosomes are randomly selected from the parent population
with replacement. The chromosomes can interchange each pair of
their genes in the same positions according to a crossover probabi-
lity pc.

(4) Mutation: In most cases, the function of the mutation operator
is to change the allele of the gene randomly in the chromosomes. For
example, while mutating a gene of a chromosome, we can simply
draw a number from a normal distribution at random, and add it
to the allele of the gene. However, the method does not guarantee
that the fitness will improve steadily. We therefore designed a new
mutation operator, called the one-step gradient descent operator
(GDO). The concept of the GDO is similar to that of the one-step
K-means operator (KMO) [26-28], which guarantees to improve the
fitness function after mutation by performing one iteration of the
K-means algorithm.

The GDO performs one gradient descent iteration to update the
parameters ¢, i = 1, 2,...,N as follows:

oD
Id

o = of _g%, (33)
where of® and oc:?’d are, respectively, the parameter «; in a chro-
mosome after and before mutation; ¢ is the step size ; and 0D/0w;
is computed by Eq. (25). Similarly, the GDO for the threshold 0 is
computed by

oD

new _ pold YU
0" =0 SR

(34)

a

0.26 T T T T T T

—& WGC_MVE_w_80c
0.24p e WGC_MVE_w_25c_25f -
Sk, —#— WGC_EMVE_w_50c
022 18 --.k“'-l— WEC_EMVE_w_50c_withoutGDO i
. -8 WGC_EMVE w 25c_25f

02t ‘-Ek 4 —— WGC_EMVE_w_25c_25f withoutGDO ||
o
=)
= 0.18]
T ;
2 016
g
2
= 014
S

0.12

0.1

0.08

0.06

number of generations or iterations
ones B —&- WAC_MVE_w_50c i
WAC_MVE_w_25¢c_25(
—— WAC_EMVYE_w_50c

009 - -5 WAC_EMVE_w_25c_25f |
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@
=
=
=
5
3

number of generations or iterations

Fig. 2. The learning curves of gradient-based MVE and EMVE for the “Evaluation”
subset in Configuration II. (a) WGC methods and (b) WAC methods.

where 0" and 0°d are, respectively, the threshold 0 in a chromo-
some after and before mutation; and 0D/00 is computed by Eq. (30).

(5) Survivor selection: We adopt the generational model [25] in
which the whole population is replaced by its offspring.

The process of fitness evaluation, parent selection, crossover, mu-
tation, and survivor selection is repeated following the principle of
survival of the fittest to produce better approximations of the op-
timal solution. Accordingly, it is hoped that the verification errors
will decrease from generation to generation. When the maximum
number of generations is reached, the best chromosome in the final
population is taken as the solution of the weights.

As the proposed EMVE training method searches for the solution
in a global manner, it is expected that its computational complex-
ity is higher than that of the gradient-based MVE training. Assume
that the population size of GA is P, while the numbers of iterations
(or generations) of gradient-based MVE training and EMVE training
are kq and k», respectively. The computational complexity of EMVE
training is about Pk;/k; times that of gradient-based MVE training.
In our experiments (as shown in Fig. 2), the number of generations
required for the convergence of EMVE training is roughly equal to
the number of iterations required for the convergence of gradient-
based MVE training; hence, the EMVE training roughly requires P
times consumption of the gradient-based MVE training.
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5. Experiments

We evaluated the proposed approaches via speaker verification
experiments conducted on speech data extracted from the Extended
M2VTS Database (XM2VTSDB) [29]. The first set of experiments fol-
lowed Configuration Il of XM2VTSDB, as defined in [30]. The second
set of experiments followed a configuration that was modified from
Configuration I of XM2VTSDB to conform to NIST speaker recogni-
tion evaluation (NIST SRE) [6-8].

In the experiments, the population size of the GA was set to
50, the maximum number of generations was set to 100, and the
crossover probability pc was set to 0.5 for the EMVE training; the
gradient-based MVE training for the WAC and WGC methods was
initialized with an equal weight, w;, and the threshold 6 was set to
0. For the DCF in Eq. (32), the costs Cyiss and Crgjsealarm Were both set
to 1, and the a priori probability Prgrgee Was set to 0.5. This special
case of DCF is known as the half total error rate (HTER) [32]. All the
experiments were conducted on a 3.2 GHz Intel Pentium IV computer
with 1.5 GB of RAM, running Windows XP.

5.1. Evaluation based on Configuration II

In accordance with Configuration Il of XM2VTSDB, the database
was divided into three subsets: “Training”, “Evaluation®”, and “Test”.
We used the “Training” subset to build each target speaker’s model
and the background models. The “Evaluation” subset was used to
optimize the weights w; in Eq. (8) or (9), along with the thresh-
old 0. Then, the speaker verification performance was evaluated on
the “Test” subset. As shown in Table 1, a total of 293 speakers in
the database were divided into 199 clients (target speakers), 25
“evaluation impostors”, and 69 “Test impostors”. Each speaker par-
ticipated in four recording sessions at about one-month intervals,
and each recording session consisted of two shots. In each shot, the
speaker was prompted to utter three sentences:

(a)“0123456789".
(b) “5069281374".
(c) “Joe took father’s green shoe bench out”.

Each utterance, sampled at 32 kHz, was converted into a stream
of 24-order feature vectors by a 32-ms Hamming-windowed frame
with 10-ms shifts; and each vector consisted of 12 Mel-scale fre-
quency cepstral coefficients [31] and their first time derivatives.

We used 12 (2x2x3) utterances/client from sessions 1 and 2 to
train each client model, represented by a GMM with 64 mixture
components. For each client, we used the utterances of the other 198
clients in sessions 1 and 2 to generate the world model, represented
by a GMM with 512 mixture components. We then chose B speakers
from those 198 clients as the cohort. In the experiments, B was set to
50, and each cohort model was also represented by a GMM with 64
mixture components. Table 2 summarizes all the parametric models
used in each system.

To optimize the weights, w;, and the threshold, 0, we used 6 ut-
terances/client from session 3 and 24 (4x2x3) utterances/evaluation-
impostor over the four sessions, which yielded 1,194 (6x199) client
samples and 119,400 (24x25x199) impostor samples. To speed up
the gradient-based MVE and EMVE training processes, only 2,250
impostor samples randomly selected from the total of 119,400
samples were used. In the performance evaluation, we tested 6
utterances/client in session 4 and 24 utterances/test-impostor over

4 This is usually called the “Development” set by the speech recognition com-
munity. We use “Evaluation” in accordance with the configuration of XM2VTSDB.

> We omitted two speakers (ID numbers 313 and 342) because of partial data
corruption.

Table 1
Configuration 11 of XM2VTSDB [30]
Session Shot 199 clients 25 impostors 69 impostors
1 1

2 L

Trainin

2 1 g

2 .

Evaluation Test

3 1 .

> Evaluation
4 1

2 Test
Table 2

A summary of the parametric models used in each system

System Ho H;

a 64-mixture a 512-mixture B 64-mixture

client GMM world model cohort GMMs
LUBM \/ \/
Lyiax v v
Lasi Vi i
LGeo \/ \/
WGC v v v
WAC v v v

the four sessions, which involved 1,194 (6x199) client trials and
329,544 (24x69x199) impostor trials.

5.1.1. Experiment results

First, we compared the learning ability of gradient-based MVE
training and EMVE training in the proposed WGC- and WAC-based
LLR measures. The background models comprised either (i) the world
model and the 50 closest cohort models (“w_50c”), or (ii) the world
model and the 25 closest cohort models, plus the 25 farthest cohort
models (“w_25c_25f"). The WGC- and WAC-based LLR systems were
implemented in four ways:

(a) using gradient-based MVE training and “w_50c” (“WGC_MVE_
w_50c”; “WAC_MVE_w_50c"),

(b) using gradient-based MVE training and “w_25c_25f" (“WGC_
MVE_w_25c_25f"; “WAC_MVE_w_25c_25f"),

(c) using EMVE training and “w_50c” (“WGC_EMVE_w_50c”;
“WAC_EMVE_w_50c”), and

(d) using EMVE training and “w_25c_25f" (“WGC_EMVE_w_
25c_25f"; “WAC_EMVE_w_25c_25f").

Figs. 2(a) and (b) show the learning curves of different MVE
training methods for WGC and WAC on the “Evaluation” sub-
set, respectively, where “WGC_EMVE_w_50c_withoutGDO” and
“WGC_EMVE_w_25c_25f withoutGDO” denote the EMVE training
algorithms that use the conventional mutation operator, which
changes the allele of the gene in a chromosome at random, while
the others are based on the GDO mutation. From Fig. 2, we observe
that the GDO-based EMVE training method reduces the overall ex-
pected loss more effectively and steadily than the EMVE training
method without GDO and the gradient-based MVE training method.

For the performance comparison, we used the following LLR sys-
tems as our baselines:

) Lugm(U) (“Lubm”),

) Lmax(U) with the 50 closest cohort models (“Lmax_50c”),

) Lgeo(U) with the 50 closest cohort models (“Lgeo_50c”),

) Lgeo(U) with the 25 closest cohort models and the 25 farthest
cohort models (“Lgeo_25c_25f"),

(e) Lari(U) with the 50 closest cohort models (“Lari_50c”), and
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Fig. 3. DET curves for the “Test” subset in Configuration II. (a) Geometric mean
versus WGC and (b) arithmetic mean versus WAC.

(f) Las(U) with the 25 closest cohort models and the 25 farthest
cohort models (“Lari_25c_25f").

Fig. 3 shows the detection error tradeoff (DET) curves [34] ob-
tained by evaluating the above systems using the “Test” subset,
where Fig. 3(a) compares the WGC-based approach and the geo-
metric mean approach, while Fig. 3(b) compares the WAC-based
approach and the arithmetic mean approach. From the figure,
we observe that all the WGC-based LLR systems outperform
the baseline LLR systems “Lubm”, “Lmax_50c”, “Lgeo_50c”, and
“Lgeo_25c_25f", while all the WAC-based LLR systems outperform
the baseline LLR systems “Lubm”, “Lari_50c”, and “Lari_25c_25f".
From Fig. 3(a), we observe that “Lgeo_25c_25f" yields the poorest
performance. This is because the heuristic geometric mean can
produce some singular scores if any cohort model /; is poorly
matched with the input utterance U, i.e., p(U|4;) —0. In contrast,
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Fig. 4. Hybrid anti-model systems versus all baselines: DET curves for the “Test”
subset in Configuration II.

the results show that the WGC-based LLR systems sidestep this
problem with the aid of the weighted strategy. Figs. 3(a) and (b)
also show that “WGC_EMVE_w_50c”, “WGC_EMVE_w_25c_25f",
and “WAC_EMVE_w_25c_25f" outperform “WGC_MVE_w_50c”,
“WGC_MVE_w_25c_25f", and “WAC_MVE_w_25c_25f", respec-
tively. However, there is no significant difference between
“WAC_MVE_w_50c” and “WAC_EMVE_w_50c”.

In addition to the above systems, we also evaluated the WAC-
and WGC-based LLR measures using the hybrid anti-model defined
in Eq. (11). The hybrid anti-model comprised five conventional anti-
models extracted from “Lubm”, “Lmax_50c”, “Lgeo_50c”, “Lari_50c”,
and “Lari_25c_25f". Note that the anti-model of “Lgeo_25c_25f" was
not included because of its poor performance. The hybrid anti-model
systems were implemented in the following ways:

(a) using WAC and gradient-based MVE training (“WAC_MVE_5anti”),
(b) using WGC and gradient-based MVE training (“WGC_MVE_5anti”),
(c) using WAC and EMVE training (“WAC_EMVE_5anti”), and

(d) using WGC and EMVE training (“WGC_EMVE_5anti”).

Fig. 4 compares the performance of the hybrid anti-model systems
with all the baselines systems, evaluated on the “Test” subset in DET
curves. Clearly, all the hybrid anti-model systems using either WAC
or WGC methods outperform any baseline LLR system with a single
anti-model.

5.1.2. Discussion

Table 3 summarizes the above experiment results in terms of the
DCF, which reflects the performance at a specific operating point
on the DET curve. For each baseline system, the value of the de-
cision threshold 6 was carefully tuned to minimize the DCF in the
“Evaluation” subset, and then applied to the “Test” subset. However,
the decision thresholds of the proposed WAC- and WGC-based LLR
measures were optimized automatically using the “Evaluation” sub-
set, and then applied to the “Test” subset.

Several conclusions can be drawn from Table 3. First, all the pro-
posed WAC- and WGC-based LLR systems with either the hybrid
anti-model or the background model set (the world model plus a



1358 Y.-H. Chao et al. / Pattern Recognition 42 (2009) 1351 - 1360

cohort) outperform all the baseline LLR systems. Second, the per-
formances of the proposed systems using the background model set
are slightly better than those achieved using the hybrid anti-model.
Third, the performances of the WAC- and WGC-based LLR systems
are similar. Fourth, EMVE training is better than MVE training. Among
the systems, “WGC_EMVE_w_50c¢” achieves the best performance
with a 15.93% relative improvement in terms of the DCF for the
“Test” subset, compared to the best baseline system “Lari_25c_25f".

5.2. Evaluation based on the NIST SRE-like configuration

To conform to NIST SRE [6-8], we conducted another series of
experiments on XM2VTSDB, which was re-configured as shown
Table 4. The 293 speakers in XM2VTSDB were divided into 100
clients (target speakers), 100 background speakers, 24 “development
impostors”, and 69 “test impostors”. As shown in the table, the
“Development” set comprised two subsets: “Development training”
and “Development test”. In the “Development training” subset, we
pooled the utterances of 100 background speakers from sessions
1 and 2 to build a world model (UBM), represented by a GMM
with 512 mixture components. For each background speaker, we
used 12 (2x2x3) utterances/background-speaker from sessions 1
and 2 to generate his/her model. The cohort for each background
speaker was selected from the other 99 background speakers. In
the “Development test” subset, to estimate the weights w; and the
threshold 0, we used 12 (2x2x3) utterances/background-speaker

Table 3
DCFs for the “Evaluation” and “Test” subsets in Configuration II

System Min DCF for “Evaluation” DCF for “Test”
Lubm 0.0651 0.0545
Lmax_50c 0.0762 0.0575
Lari_50c 0.0677 0.0526
Lari_25c_25f 0.0587 0.0496
Lgeo_50c 0.0749 0.0542
WGC_MVE_w_50c 0.0576 0.0450
WGC_EMVE_w_50c 0.0488 0.0417
WGC_MVE_w_25c_25f 0.0633 0.0478
WGC_EMVE_w_25c_25f 0.0493 0.0429
WAC_MVE_w_50c 0.0576 0.0460
WAC_EMVE_w_50c 0.0571 0.0443
WAC_MVE_w_25c_25f 0.0573 0.0462
WAC_EMVE_w_25c_25f 0.0543 0.0444
WGC_MVE_5anti 0.0588 0.0475
WGC_EMVE_5anti 0.0568 0.0460
WAC_MVE_5anti 0.0634 0.0480
WAC_EMVE_5anti 0.0597 0.0469

Table 4
The NIST SRE-like configuration of XM2VTSDB

from sessions 3 and 4 as well as 24 (4x2x3) utterances/development-
impostor over the four sessions. This yielded 1,200 (12x100) client
samples and 57,600 (24x24x100) impostor samples. To speed up the
gradient-based MVE and EMVE training processes, only 5,760 im-
postor samples randomly selected from the total of 57,600 samples
were used.

For each client (target speaker), we used 12 (2x2x3) utter-
ances/client from sessions 1 and 2 to generate the client GMM. The
cohort models for each client were selected from the GMMs of
the 100 background speakers in the “Development training” subset.
The parametric models used in each system were the same as those
in Table 2. In addition, we implemented two current state-of-the-art
systems in the text-independent speaker verification task, namely
T-norm [12] and “Lubm_MAP”. “Lubm_MAP” is based on the UBM-
MAP adaptation method [2]; each client model with 512 mixture
Gaussian components was adapted from the UBM via the maximum
a posteriori (MAP) estimation [33] according to the speaker’s 12
(2x2x3) “Training” utterances from sessions 1 and 2.

In the performance evaluation, we tested 12 (2x2x3) utter-
ances/client from sessions 3 and 4, and 24 (4x2x3) utterances/test-
impostor over the four sessions, which involved 1,200 (12x100)
client trials and 165,600 (24x69x100) impostor trials, respectively.

5.2.1. Experiment results

As in Section 5.1, we implemented four WGC-based LLR systems:
“WGC_MVE_w_50c”, “WGC_EMVE_w_50c”, “WGC_MVE_w_25c_25f",
and “WGC_EMVE_w_25c_25f"; four WAC-based LLR systems:
“WAC_MVE_w_50c”, “WAC_EMVE_w_50c”, “WAC_MVE_w_25c_25f",
and “WAC_EMVE_w_25c_25f"; and four hybrid anti-model systems:
“WAC_MVE_5anti”, “WAC_EMVE_5anti”, “WGC_MVE_5anti”, and
“WGC_EMVE_5anti”. For the performance comparison, we used
five conventional LLR systems: “Lubm”, “Lmax_50c”, “Lgeo_50c”,
“Lari_50c”, and “Lari_25c_25f", plus two state-of-the-art systems:
“Lubm_MAP” and the T-norm system with the 50 closest cohort
models (“Tnorm_50c”), as our baselines.

Since the experiment results in Section 5.1 show that the per-
formance of the proposed WGC- and WAC-based LLR systems using
EMVE training is better than that of the systems using gradient-
based MVE training, Fig. 5 only compares the performance of the
proposed WGC- and WAC-based LLR systems using EMVE training
with two state-of-the-art systems and two best baseline systems
in Section 5.1, namely “Lubm” and “Lari_25c_25f", evaluated on the
“Test” subset in DET curves. From the figure, we observe that all the
proposed WGC- and WAC-based LLR systems using EMVE training
outperform “Lubm_MAP”, “Tnorm_50c”, “Lubm”, and “Lari_25c_25f".
Interestingly, the baseline system “Lubm” outperforms “Lubm_MAP”,
which is widely recognized as a state-of-the-art method for the text-
independent speaker verification task. This may be because the train-
ing and test utterances in XM2VTSDB have the same content.

Table 5 summarizes the experiment results for all systems in
terms of the DCF. For each baseline system, the decision threshold

Session Shot 100 clients

100 background speakers

24 impostors 69 impostors

1

2 Training (client models)

Development training (UBM, a cohort)

w
N = (o= Nf= o=

Test Development test (w; and 0)

Development test (w; and 0) Test
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0 was tuned to minimize the DCF on the “Development test” sub-
set, and then applied to the “Test” subset. The decision thresholds
of the proposed methods were optimized automatically using the
“Development test” subset, and then applied to the “Test” sub-
set. From Table 5, it is clear that all the proposed WGC- and
WAC-based LLR systems using either gradient-based MVE train-
ing or EMVE training outperform all the conventional LLR systems
“Lubm”, “Lmax_50c”, “Lgeo_50c”, “Lari_50c”, and “Lari_25c_25f", and
two state-of-the-art systems “Lubm_MAP” and “Tnorm_50c”. The
DCFs for the “Test” subset demonstrate that “WGC_EMVE_w_50c”
achieved a 13.01% relative improvement over “Tnorm_50c”—the
best baseline system.
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Fig. 5. DET curves for the “Test” subset in the NIST SRE-like configuration.

Table 5

We also evaluated the training and verification time of the above
systems. In the offline training phase, in addition to training 100
background speaker models and a UBM, the proposed WAC and WGC
methods need to train the weight w;. From the fourth column of
Table 5, we observe that the EMVE training is slower than the
gradient-based MVE training and the training time of WGC is slightly
faster than that of WAC. The computational cost in gradient-based
MVE or EMVE training mainly comes from the calculation of the like-
lihoods of each training utterance with respect to the background
speaker models and the UBM and the selection of the cohort models
for each background speaker. The fifth column of Table 5 shows the
training time for enrolling a new target speaker. “Lubm_MAP” and
“Lubm” need less enrollment time than the other systems because
they need not select the cohort models for the new target speaker.
The last column of Table 5 shows the verification time for an input
test utterance. The average duration of the test utterances is around
1.55s. As expected, “Lubm_MAP” is the fastest method, since only one
background model (i.e., UBM) is involved and the fast scoring scheme
[2] is used. Although the proposed systems are slightly slower than
the baseline systems because both the cohort models and the UBM
are involved, they are still capable of supporting a real-time response.

6. Conclusion

We have proposed a framework to improve the characteri-
zation of the alternative hypothesis for speaker verification. The
framework is built on either a weighted arithmetic combination
(WAC) or a weighted geometric combination (WGC) of useful in-
formation extracted from a set of pre-trained background models.
The parameters associated with WAC or WGC are then optimized
using minimum verification error (MVE) criterion, such that both
the false acceptance probability and the false rejection probability
are minimized. In addition to applying the conventional gradient-
based MVE training method to this problem, we also proposed
an evolutionary MVE (EMVE) training scheme to further reduce
the verification errors. The results of our speaker verification ex-
periments demonstrate that the proposed systems achieve higher
verification accuracy than conventional LLR-based approaches. Al-
though they need more training time than conventional LLR-based

DCFs for the “Development test” and “Test” subsets, together with the running time evaluation in the NIST SRE-like configuration

System Min DCF for DCF for “Test” Training time for the weights Training time for enrolling Verification time for an
“Development test” w; in WAC/WGC (offline) a target speaker (s) input test utterance (s)
Lubm_MAP 0.0704 0.0601 5.79 0.08
Lubm 0.0575 0.0573 7.87 0.12
Tnorm_50c 0.0607 0.0569 27.46 0.75
Lmax_50c 0.0732 0.0734 27.46 0.75
Lari_50c 0.0653 0.0600 27.46 0.75
Lari_25c_25f 0.0611 0.0588 27.46 0.75
Lgeo_50c 0.0758 0.0692 27.46 0.75
WGC_MVE_w_50c 0.0578 0.0529 3h 06 min 22.31s 27.46 0.86
WGC_EMVE_w_50c 0.0479 0.0495 3h 22min 15.38s 27.46 0.86
WGC_MVE_w_25c_25f 0.0610 0.0570 3h 06 min 22.31s 27.46 0.86
WGC_EMVE_w_25c_25f  0.0485 0.0509 3h 22min 15.40s 27.46 0.86
WAC_MVE_w_50c 0.0575 0.0546 3h 06 min 25.09s 27.46 0.86
WAC_EMVE_w_50c¢ 0.0556 0.0533 3h 24min 50.14s 27.46 0.86
WAC_MVE_w_25c_25f 0.0564 0.0549 3h 06 min 25.09s 27.46 0.86
WAC_EMVE_w_25c_25f  0.0543 0.0527 3h 24min 50.15s 27.46 0.86
WGC_MVE_5anti 0.0583 0.0541 3h 06 min 15.58s 27.46 0.86
WGC_EMVE_5anti 0.0576 0.0514 3h 09min 54.53s 27.46 0.86
WAC_MVE_5anti 0.0610 0.0556 3h 06min 15.72s 27.46 0.86
WAC_EMVE_5anti 0.0587 0.0566 3h 10min 15.70s 27.46 0.86
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approaches in the offline training phase, the increase of the training
time for enrolling a new target speaker or the verification time for
an input test utterance is negligible. The proposed systems are still
capable of supporting a real-time response. It is worth noting that al-
though we only consider the speaker verification problem in this pa-
per, the proposed framework is not limited to this application. It can
be applied to other types of data and hypothesis testing problems.
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