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This study presents a new method, namely the multi-plane segmentation approach, for segmenting and
extracting textual objects from various real-life complex document images. The proposed multi-plane
segmentation approach first decomposes the document image into distinct object planes to extract and
separate homogeneous objects including textual regions of interest, non-text objects such as graphics and
pictures, and background textures. This process consists of two stages—localized histogram multilevel
thresholding and multi-plane region matching and assembling. Then a text extraction procedure is applied
on the resultant planes to detect and extract textual objects with different characteristics in the respective
planes. The proposed approach processes document images regionally and adaptively according to their
respective local features. Hence detailed characteristics of the extracted textual objects, particularly small
characters with thin strokes, as well as gradational illuminations of characters, can be well-preserved.
Moreover, this way also allows background objects with uneven, gradational, and sharp variations in con-
trast, illumination, and texture to be handled easily and well. Experimental results on real-life complex
document images demonstrate that the proposed approach is effective in extracting textual objects with
various illuminations, sizes, and font styles from various types of complex document images.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Extraction of textual information from document images provides
many useful applications in document analysis and understanding,
such as optical character recognition, document retrieval, and com-
pression [1,2]. To-date, many techniques were presented for extract-
ing textual objects from monochromatic document images [3–6]. In
recent years, advances in multimedia publishing and printing tech-
nology have led to an increasing number of real-life documents
in which stylistic character strings are printed with pictorial, tex-
tured, and decorated objects and colorful, varied background com-
ponents. However, most of current approaches cannot work well for
extracting textual objects from real-life complex document images.
Compared to monochromatic document images, text extraction in
complex document images brings many difficulties associated with
the complexity of background images, variety, and shading of charac-
ter illuminations, the superimposing of characters with illustrations
and pictures, as well as other decorated background components.
As a result, there is an increasing demand for a system that is able
to read and extract the textual information printed on pictorial and
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textured regions in both colored images as well as monochromatic
main text regions.

Several newly developed global thresholding methods are useful
in separating textual objects from non-uniform illuminated doc-
ument images. Liu and Srihari [7] proposed a method based on
texture features of character patterns, while Cheriet et al. [8] pre-
sented a recursive thresholding algorithm extended from Otsu's
optimal criterion [9]. These methods are performed by classify-
ing pixels in the original image as foreground objects (particularly
textual objects of interest) or as background ones according to
their gray intensities in a global view, and are attractive because
of computational simplicity. However, binary images obtained by
global thresholding techniques are subject to noise and distortion,
especially because of uneven illumination and the spreading ef-
fect caused by the image scanner. To solve the above-mentioned
issues, Solihin and Leedham's integral ratio approaches [10] pro-
vided a new class of histogram-based thresholding techniques
which classify pixels into three classes: foreground, background,
and a fuzzy region between two basic classes. In Ref. [11], Parker
proposed a local gray intensity gradient thresholding technique
which is effective for extracting textual objects in badly illumi-
nated document images. Because this method is based on the
assumption of binary document images, its application is limited
to extracting character objects from backgrounds no more complex
than monotonically changing illuminations. A local and adaptive
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binarization method was presented by Ohya et al. [12]. This
method divides the original image into blocks of specific size, de-
termines an optimal threshold associated with each block to be
applied on its center pixel, and uses interpolation for determin-
ing pixel-wise thresholds. It can effectively extract textual objects
from images with complex backgrounds on condition that the il-
luminations are very bright compared with those of the textual
objects.

Some other methods support a different viewpoint for extracting
texts by modeling the features of textual objects and backgrounds.
Kamel and Zhao [13] proposed the logical level technique to uti-
lize local linearity features of character strokes, while Venkateswarlu
and Boyle's average clustering algorithm [14] utilizes local statisti-
cal features of textual objects. These methods apply symmetric lo-
cal windows with a pre-specified size, and several pre-determined
thresholds of prior knowledge on the local features, and so that char-
acters with stroke widths that are substantially thinner or thicker
than the assumed stroke width, or characters in varying illumina-
tion contrasts with backgrounds may not be appropriately extracted.
To deal with these problems, Yang and Yan [15] presented an adap-
tive logical method (ALM) which applies the concepts of Liu and
Srihari's run-length histogram [7] on sectored image regions, to pro-
vide an effective scheme for automatically adjusting the size of the
local window and logical thresholding level. Ye et al.'s hybrid ex-
traction method [16] integrates global thresholding, local thresh-
olding, and the double-edge stroke feature extraction techniques to
extract textual objects from document images with different com-
plexities. The double-edge technique is useful in separating charac-
ters whose stroke widths are within a specified size from uneven
backgrounds. Some recently presented methods [17,18] utilized the
sub-image concepts to deal with the extraction of textual objects
under different illumination contrasts with backgrounds. Dawoud
and Kamel's [17] proposed a multi-model sub-image thresholding
method that considers a document image as a collection of pre-
determined regions, i.e. sub-images, and then textual objects con-
tained in each sub-image are segmented using statistical models of
the gray-intensity and stroke-run features. In Amin and Wu's multi-
stage thresholding approach [18] Otsu's global thresholding method
is firstly applied, and then a connected-component labeling process
is applied on the thresholded image to determine the sub-images
of interest, and these sub-images then undergo another threshold-
ing process to extract textual objects. The extraction performance
of the above two methods relies principally on the adequate deter-
mination of sub-image regions. Thus, in case of the textual objects
overlapping on pictorial or textured backgrounds of poor and vary-
ing contrasts, suitable sub-images are hard to determine to obtain
satisfactory extraction results.

Since most textual objects show sharp and distinctive edge fea-
tures, methods based on edge information [19–22] have been de-
veloped. Such methods utilize an edge detection operator to extract
the edge features of textual objects, and then use these features
to extract texts from document images. Wu et al.'s textfinder sys-
tem [20] uses nine second-order Gaussian derivative filters to ob-
tain edge-feature vectors of each pixel at three different scales,
and applies the K-means algorithm on these edge-feature vectors
to identify corresponding textual pixels. Hasan and Karam [21] in-
troduced a method that utilizes a morphological edge extraction
scheme, and applies morphological dilation and erosion operations
on the extracted closure edges to locate textual regions. Edge in-
formation can also be treated as a measure for detecting the exis-
tence of textual objects in a specific region. In Pietikainen and Okun's
work [22], edge features extracted by the Sobel operator are divided
into non-overlapping blocks, and then these blocks are classified
as text or non-text according to their corresponding values of the
edge features. Such edge-based methods are capable of extracting
textual objects in different homogeneous illuminations from graphic

backgrounds. However, when the textual objects are adjoined or
touched with graphical objects, texture patterns, or backgrounds
with sharply varying contours, edge-feature vectors of non-text ob-
jects with similar characteristics may also be identified as textual
ones, and thus the characters in extracted textual regions are blurred
by those non-text objects. Moreover, when textual objects do not
have sufficient contrasts with non-text objects or backgrounds to
form sufficiently strong edge features, such textual objects cannot
be easily extracted with edge-based methods.

In recent years, several color-segmentation-based methods for
text extraction from color document images have been proposed.
Zhong et al. [23] proposed two methods and a hybrid approach
for locating texts in color images, such as in CD jackets and book
covers. The first method utilizes a histogram-based color clustering
process to obtain connected-components with uniform colors, and
then several heuristic rules are applied to classify them as textual
or non-textual objects. The second method locates textual regions
based on their distinctive spatial variance. To detect textual regions
more effectively, bothmethods are combined into a hybrid approach.
Although the spatial variance method still suffers from the draw-
backs of the edge-based methods mentioned previously, the color
connected-component method moderately compensates for these
drawbacks. However, this approach still cannot provide acceptable
results when the illuminations or colors of characters in large textual
regions are shaded. Several recent techniques utilize color clustering
or quantization approaches to determine the prototype colors of doc-
uments so as to facilitate the detection of character objects in these
separated color planes. In Jain and Yu's work [24], a color document
is decomposed into a set of foreground images in the RGB color space
using a bit-dropping quantization and the single-link color cluster-
ing algorithm. Strouthopoulos et al.'s adaptive color reduction tech-
nique [25] utilizes an unsupervised neural network classifier and a
tree-search procedure to determine prototype colors. Some alterna-
tive color spaces are also adopted to determine prototype colors for
finding textual objects of interest. Yang and Ozawa [26] make use
of the HSI color space to segment homogenous color regions to ex-
tract bibliographic information from book covers, while Hase et al.
[27] apply a histogram-based approach to select prototype colors
on the CIE Lab color space to obtain textual regions. However, most
of the aforementioned methods have difficulties in extracting texts
which are embedded in complex backgrounds or that touch other
pictorial and graphical objects. This is because the prototype col-
ors are determined in a global view, so that appropriate prototype
colors cannot be easily selected to distinguish textual objects from
those touched pictorial objects and complex backgrounds without
sufficient contrasts. Furthermore, such problems also limit the reli-
ability of such methods in handling unevenly illuminated document
images.

In brief, extracting texts from complex document images involves
several difficulties. These difficulties arise from the following prop-
erties of complex documents: (1) character strings in complex doc-
ument images may have different illuminations, sizes, font styles,
and may be overlapped with various background objects with un-
even, gradational, and sharp variations in contrast, illumination, and
texture, such as illustrations, photographs, pictures or other back-
ground textures and (2) these documents may comprise small char-
acters with very thin strokes as well as large characters with thick
strokes, and may be influenced by image shading. An approach for
extracting black texts from such complex backgrounds to facilitate
compression of document images has been proposed in our previous
work [28].

In this study, we propose an effective method, namely the multi-
plane segmentation approach, for segmenting and extracting textual
objects of interest from these complex document images, and resolv-
ing the above issues associated with the complexity of their back-
grounds. The proposed multi-plane segmentation approach first
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decomposes the document image into distinct object planes to ex-
tract and separate homogeneous objects including textual regions of
interest, non-text objects such as graphics and pictures, and back-
ground textures. This process consists of two stages—localized his-
togram multilevel thresholding and multi-plane region matching and
assembling. Then a text extraction procedure is applied on the re-
sultant planes to detect and extract textual objects with different
characteristics in the respective planes. The proposed approach pro-
cesses document images regionally and adaptively by means of their
local features. This way allows detailed characteristics of the ex-
tracted textual objects to be well-preserved, especially the small
characters with thin strokes, as well as characters in gradational
and shaded illumination contrasts. Thus, textual objects adjoined or
touched with pictorial objects and backgrounds with uneven, grada-
tional, and sharp variations in contrast, illumination, and texture can
be handled easily and well. Experimental results demonstrate that
the proposed approach is capable of extracting textual objects with
different illuminations, sizes, and font styles from different types of
complex document images. As compared with other existing tech-
niques, our proposed approach exhibits feasible and effective perfor-
mance on text extraction from various real-life complex document
images.

2. Overview of the proposed approach

The proposed multi-plane segmentation approach decomposes
the document image into separate object planes by applying the two
processing stages: automatic localized histogram multilevel thresh-
olding, and multi-plane region matching and assembling. The flow
diagram of the proposed approach is illustrated in Fig. 1. In the
first stage, the original image is firstly sectored into non-overlapping
“localized block regions”, denoted by �i,j, then distinct objects em-
bedded in block regions are decomposed into separate “sub-block
regions (SRs)” by applying the localized histogram multilevel thresh-
olding process, as illustrated in Figs. 2–4. Afterward, in the sec-
ond stage, the multi-plane region matching and assembling process,
which adopts both the localized spatial dissimilarity relation and the
global feature information, is applied to perceptually classify and ar-
range the obtained SRs to compose a set of homogeneous “object
planes”, denoted by Pq, especially textual regions of interest. This
proposed multi-plane region matching and assembling process is
conducted by recursively applying the following three phases—the
initial plane selection phase, the matching phase, and the plane con-
struction phase, as depicted in Fig. 6. Consequently, homogeneous
objects including textual regions of interest, non-text objects such
as graphics and pictures, and background textures are extracted and
separated into distinct object planes. The text extraction process is
then performed on the resultant planes to extract the textual objects
with different characteristics in the respective planes, as shown in
Fig. 7. The important symbols utilized for the presentation of the
proposed approach are depicted in Table 1.

The following sections will accordingly describe the detailed
stages of the proposed approach, and are organized as follows. In
Sections 3 and 4, the two stages of the proposed multi-plane seg-
mentation approach, the localized histogram multilevel threshold-
ing procedure, and the multi-plane region matching and assembling
process, are, respectively, presented. Then, a simple text extrac-
tion procedure is described in Section 5. Next, Section 6 illustrates
parameter adaptation and comparative performance evaluation
results. Finally, the conclusions of this study are stated in Section 7.

3. Localized histogram multilevel thresholding

For complex document images with textual objects in differ-
ent illuminations, sizes, and font styles, and printed on varying or

Fig. 1. Block diagram of the proposed multi-plane segmentation approach.

Fig. 2. A 1929×1019 original complex document image.
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inhomogeneous background objects with uneven, gradational, and
sharp variations in contrast, illumination, and texture, such as illus-
trations, photographs, pictures or other background patterns, a crit-
ical difficulty arises that no global segmentation techniques could

Fig. 3. Sectored regions of the illumination image Y obtained from the original
image in Fig. 2.

Fig. 4. Example of the results by the localized multilevel thresholding procedure, and the resultant SF values of �i2,j1 , �i1,j2 , and �i2,j2 after the thresholding procedure are
0.931, 0.961, and 0.96, respectively: (a) part of the partitioned block regions of the image “Calibre” in Fig. 3, where the block regions enclosed by yellow ink are employed
for the following examples of the localized multilevel thresholding procedure, (b) the upper-left block region, �i1,j1 , SFb = 0.577, and �� = 8.81, (c) SRi1,j1,0 derived from
�i1,j1 , which is a homogenous block region, (d) the upper-right block region �i2,j1 , SFb = 0.931, and �� = 22.8, (e) SRi2,j1,0 derived from �i2,j1 , (f) SRi2,j1,1 derived from �i2,j1 ,
(g) the bottom-left block region �i1,j2 , SFb = 0.804, and �� = 42.3, (h) SRi1,j2,0 derived from �i1,j2 , (i) SRi1,j2,1 derived from �i1,j2 , (j) SRi1,j2,2 derived from �i1,j2 , (k) SRi1,j2,3

derived from �i1,j2 , (l) bottom-right block region �i2,j2 , SFb = 0.835, and �� = 46.6, (m) SRi2,j2,0 derived from �i2,j2 , (n) SRi2,j2,1 derived from �i2,j2 , (o) SRi2,j2,2 derived from
�i2,j2 , and (p) SRi2,j2,3 derived from �i2,j2 .

Fig. 5. Types of touching boundaries of the two 4-adjacent SRs: (a) vertical boundary
and (b) horizontal boundary.
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Fig. 6. An example of the test image, “Calibre”, and the object planes obtained by the multi-plane segmentation (image size = 1929×1019): (a) object plane P0, (b) object
plane P1, (c) object plane P2, (d) object plane P3, (e) object plane P4, (f) object plane P5, and (g) object plane P6.

work well for such kinds of document images. This is because when
the regions of interesting textual objects consisted of multiple col-
ors or gray intensities are undersized as compared with those of
the touched pictorial objects and complex backgrounds with in-
distinct contrasts, these textual objects cannot be discriminated in
a global view of statistical features. A typical example with these
characteristics is shown in Fig. 2. This sample image consists of
three different colored textual regions printed on a varying and
shaded background. Moreover, the black characters are superim-
posed on the white characters. By observing some localized regions,
the statistical features of the textual objects, pictorial objects, and
backgrounds could be much more distinguishable. Therefore, re-
gional and adaptive analysis approach for the localized statistical
features can provide detailed characteristics of the textual objects
of interest to be well-extracted for later document processing. In
this section, we will introduce a simple and effective localized seg-
mentation approach as the first stage of the multi-plane segmenta-

tion process for extracting textual objects from complex document
images.

The multi-plane segmentation process, if necessary, begins by ap-
plying a color-to-grayscale transformation on the RGB components
of image pixels in a color document image, to obtain its illumination
image Y. After the color transformation is performed, the illumina-
tion image Y still retain the texture features of the original color
image, as pointed out in Ref. [20], and thus the character strokes in
their original color are still well-preserved. Then the obtained illu-
mination image Y will be sectored into non-overlapping localized
block regions �i,j with a given size MH×MV, as shown in Fig. 3. To fa-
cilitate analysis in the following stage, the objects of interest must be
extracted from these localized block regions into separate SRs, each
of which contains objects with homogeneous features. Toward this
goal, the discriminant criterion is useful for measuring separability
among the decomposed regions with different objects. Its applica-
tion on bi-level global thresholding to extract foreground objects
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from the background was first presented by Otsu [9]. This method
is ranked as the most effective bi-level threshold selection method
[29,30]. However, when the number of desired thresholds increases,
the computation needed to obtain the optimal threshold values is
substantially increased and the search to achieve the optimal value
of the criterion function is particularly exhaustive.

Hence, an efficient multilevel thresholding technique is needed
to automatically determine the suitable number of thresholds to
segment the block region into different decomposed object regions.
By using the properties of discriminant analysis, we have proposed
an automatic multilevel global thresholding technique for image

Fig. 7. Examples of the text location and extraction process: (a) example of per-
forming X-cut on connected-components in the binary plane BP4 of Fig. 6(g), (b)
example of performing Y-cut on the top connected-component group, which is the
first group among five groups obtained from X-cut procedure on BP4, (c) the re-
sultant candidate text-lines obtained by the XY-cut spatial clustering process, and
(d) the resultant text plane obtained by performing text extraction process on all
object planes derived from Fig. 2.

Table 1
List of important symbols of the proposed approach.

Symbol Description

�i,j Localized block region, which represents one of the non-overlapping block regions sectored from the original image, and the superscript
(i,j) denotes its location index

SRi,j,k , SRi′ ,j′ ,k′
q Sub-block region, which is derived from �i,j after applying the localized histogram multilevel thresholding process; the additional

superscript k means it is k-th SRs derived from �i,j , and when the subscript q is assigned, it means that this SR has belonged to an
existent object plane Pq

Pq Object plane, which is formed by a set of homogeneous SRs after performing the multi-plane region matching and assembling process,
and the subscript q represents its order of creation

segmentation [31]. This technique extends and applies the concept
of discriminant criterion on analyzing the separability among the
gray levels in the image. It can automatically determine the suitable
number of thresholds, and utilizes a fast recursive selection strategy
to select the optimal thresholds to segment the image into separate
objects with similar features in a computationally frugal way. Based
on this effective technique, we will introduce a localized histogram
multilevel thresholding process to decompose distinct objects with
homogeneous features in localized block regions into separate SRs.
This process is described in the following subsections.

3.1. Statistical features and recursive partition concepts of localized
regions

Let fg denote the observed frequencies (histogram) of gray inten-
sities of pixels in a localized block region �i,j with a given gray in-
tensity g, and thus the total amount of pixels in �i,j can be given by
N = f0+f1+ . . . +fU−1, where U is the number of gray intensities in the
histogram. Hence, the normalized probability of one pixel having a
given gray intensity can be computed as,

Pg = fg
N
, where Pg �0, and

U−1∑
g=0

Pg = 1 (1)

In order to segment textual objects, foreground objects and back-
ground components from a given localized region �i,j, pixels in �i,j

should be partitioned into a suitable number of classes. For multi-
level thresholding, with n thresholds to partition the pixels in the
region �i,j into n+1 classes, gray intensities of pixels in �i,j are seg-
mented by applying a threshold set T , which is composed of n thresh-
olds, where T = {tk|k = 1, . . . ,n}. These classes are represented by
C0 = {0, 1, . . . , t1}, . . .Ck = {tk + 1, tk + 2, . . . , tk+1}, . . . ,Cn = {tn + 1, tn +
2, . . . ,U−1}. Then the statistical features associated with a given pixel
class Ck, including the cumulative probability, the mean, and the
standard deviation, denoted by wk, �k, and �2

k , respectively, can be
computed as

wk =
tk+1∑

g=tk+1

Pg , �k =
∑tk+1

g=tk+1gPg

wk
, and

�2
k =

∑tk+1
g=tk+1Pg(g − �k)

2

wk
(2)

Based on the above-mentioned statistical features of pixels in the
region �i,j, the between-class variance, denoted by vBC , an effective
criterion for evaluating segmentation results, can be obtained for
measuring the separability among all classes, and is expressed as

vBC(T) =
n∑

k=0

wk(�k − ��)
2, where �� =

U−1∑
g=0

gPg (3)

where �� is the overall mean of the gray intensities in �i,j. Then
the within-class variance and total variance, denoted by vWC and
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�2
�, respectively, of all segmented classes of gray intensities are, re-

spectively, computed as

vWC(T) =
n∑

k=0

wk�
2
k , �2

� =
U−1∑
g=0

(g − ��)
2Pg (4)

Here, a dummy threshold t0=0 is utilized for the sake of convenience
in simplifying the expression of equation terms.

The aforementioned criterion functions can be considered as
a measure of separability among all existing classes decomposed
from the original region �i,j. We utilize this concept as a criterion
of automatic segmentation of objects in a region, denoted by the
“separability factor”—SF in this study, which is defined as

SF= vBC(T)
�2

�
= 1 − vWC(T)

�2
�

(5)

where �2
� serves as the normalization factor in this equation. The

SF value represents the separability measure among all existing
classes, and lies within the range SF ∈ [0, 1]; the lower bound is
approached when the region �i,j comprises a uniform gray intensity,
while the upper bound is achieved when the region �i,j consists
of exactly n+1 gray intensities. The objective is to maximize the
SF value so as to optimize the segmentation result. This concept
is supported by the property that �2

� is equivalent to the sum of
vBC and vWC . By observing the terms comprising vWC(T), if the gray
intensities of the pixels belonging to most existing classes are widely
distributed, i.e. the contribution values of their class variances �2

k are
large, then the value of the corresponding SF measure becomes
low. Accordingly, when SF approximates 1.0, all resultant classes
of gray intensities Ck (k = 0, . . . ,n), which are decomposed from the
original region �i,j, are ideally and completely separated.

Therefore, based on this efficient discriminant criterion, an au-
tomatic multilevel thresholding can be applied for recursively seg-
menting the block region �i,j into different objects of homogeneous
illuminations, regardless of the number of objects and image com-
plexity of the region �i,j. It can be performed until theSFmeasure
is large enough to show that the appropriate discrepancy among the
resultant classes has been obtained. Through these aforementioned
properties, this objective can be achieved by minimizing the total
within-class variance vWC(T). This can be achieved by the scheme
that selects the class with the maximal contribution (wk�2

k) to the
total within-class variance for performing the bi-class partition pro-
cedure in each recursion. Thus, the SF measure will most rapidly
reach the maximal increment to satisfy sufficient separability among
the resultant classes of pixels. As a result, objects with homogeneous
gray intensities will be well-separated.

The class having the maximal contribution of within-class vari-
ance wk�2

k is denoted by Cp, and it comprises a subset interval of
gray intensities represented by Cp : {tp + 1, tp + 2, . . . , tp+1}. Then a
simple effective bi-class partition procedure, as described in Ref. [31],
is performed on each determined Cp in each recursion until the sep-
arability among all classes becomes satisfactory, i.e. the condition
where theSFmeasure approximates a sufficiently large value. The
class Cp will be divided into two classes Cp0 and Cp1 by applying the
optimal threshold t∗S determined by the localized histogram based
selection procedure as described in Ref. [31]. The resultant classes
Cp0 and Cp1 comprise the subsets of gray intensities derived from
Cp and can be represented as: Cp0 : {tp + 1, tp + 2, . . . , t∗S} and Cp1 :
{t∗S + 1, t∗S + 2, . . . , tp+1}. The threshold values determined by this re-
cursive selection strategy is ensured to achieve maximum separation
on the resultant segmented classes of gray intensities, and hence
satisfactory segmentation results of objects can be accomplished by
means of the smallest amount of thresholding levels.

Furthermore, if a region �i,j is comprised of a set of pixels with
homogeneous gray intensities, most of them are parts of a large
homogeneous background region, and thus it is unnecessary to be
partitioned to avoid the redundant segmentation for saving the com-
putation costs. For example, Fig. 4(b) is the block region with such
characteristics. Therefore, before performing the first partition pro-
cedure on the region �i,j, an investigation of the homogeneity of �i,j

should be conducted in advance to avoid such redundant segmenta-
tion. This condition can be determined by evaluating the following
two statistical features: (1) the bi-class SF measure, denoted as
SFb, which is the SF value obtained by performing the initial
bi-class partition procedure on the region �i,j, i.e. the SF value as-
sociated with the determined threshold t∗S and (2) the standard de-
viation, ��, of the gray intensities of the pixels in the entire region
�i,j. According to the aforementioned properties, theSFb value re-
flects the separability of the statistical distribution of gray intensities
of pixels in the entire region �i,j, and the lower the SFb value is,
the more indistinct or uniform the distribution is. The standard de-
viation �� represents whether the distribution of gray intensities in
�i,j is widely dispersed or narrowly aggregated. Therefore, a region
�i,j is determined to be a homogeneous region that comprises a set
of homogeneous pixels of a uniform object or parts thereof if both
the SFb and �� features reveal low values. On the other hand, if
SFb is small but �� is large, the region �i,j may consist of many
indistinct object regions with low separability, and should still un-
dergo a recursive partition process to separate all objects. Based on
the above-mentioned phenomenon, a region �i,j can be recognized
as a homogeneous region if the following homogeneity condition is
satisfied:

SFb��h0, and �� ��h1 (6)

where �h0 and �h1 are pre-defined thresholds. If a region �i,j is recog-
nized as a homogeneous region, then it does not need to undergo the
partition process and hence keeps its pixels of homogeneous objects
unchanged to be processed by the next stage.

3.2. Recursive partition process of localized regions

Based on the above-mentioned concepts, the localized automatic
multilevel thresholding process is performed by the following recur-
sive steps:

Step 1: To begin, the illumination image Y with size Wimg×Himg is
divided into localized block regions�i,j with the given sizeMH×MV, as
shown in Fig. 3. Here (i,j) are the location indices, and i=0, . . . ,NH and
j=0, . . . ,NV , where NH=(

⌈
Wimg

/
MH

⌉−1) and NV =(
⌈
Himg

/
MV

⌉−1),
which represent the numbers of divided block regions per row and
per column, respectively.

Step 2: For each block region �i,j, compute the histogram of pixels
in �i,j, and then determine its associated standard deviation—�i,j

� and
the bi-class separability measure SFb; initially, there is only one

class C
i,j
0 ; let q represent the present amount of classes, and thus set

q = 1. If the homogeneity condition, i.e. Eq. (6), is satisfied, then skip
the localized thresholding process for this region �i,j and go to step
7; else perform the following steps.

Step 3: Currently, q classes exist, having been decomposed from
�i,j. Compute the class probability wi,j

k , the class mean �i,j
k , and the

standard deviation �i,j
k , of each existing class C

i,j
k of gray intensities

decomposed from �i,j, where k denotes the index of the present
classes and k = 0, . . . ,q−1.

Step 4: From all classes C
i,j
k , determine the class C

i,j
p which has

the maximal contribution (wi,j
k �i,j2

k ) of the total within-class variance
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vi,jWC of �i,j, to be partitioned in the next step in order to achieve the
maximal increment of SF.

Step 5: Partition Ci,j
p : {ti,jp + 1, ti,jp + 2, . . . , ti,jp+1} into two classes

Ci,j
p0 : {ti,jp + 1, ti,jp + 2, . . . , ti,j∗S } and Ci,j

p1 : {ti,j∗S + 1, ti,j∗S + 2, . . . , ti,jp+1},
using the optimal threshold ti,j∗S determined by the bi-class parti-
tion procedure. Consequently, the gray intensities of the region �i,j

are partitioned into q+1 classes, Ci,j
0 , . . . ,C

i,j
p0,C

i,j
p1, . . . ,C

i,j
q−1 and then let

q = q+1 update the record of the current class amount.
Step 6: Compute the SF value of all currently obtained classes

using Eq. (5), if the objective condition, SF��SF , is satisfied, then
perform the following Step 7; otherwise, go back to Step 3 to conduct
further partition process on the obtained classes.

Step 7: Classify the pixels of the block region �i,j into separate
SRs, SRi,j,0, SRi,j,1, . . . , SRi,j,q−1 corresponding to the partitioned classes
of gray intensities, Ci,j

0 , C
i,j
1 , . . .C

i,j
q−1, respectively, where the notation

SRi,j,k represents the k-th SR decomposed from the region �i,j. Con-
sequently, we obtain

q−1⋃
k=0

SRi,j,k = �i,j and SRi,j,k1
⋂

k1 � k2

SRi,j,k2 = �

Then, finish the localized thresholding process on �i,j and go back
to Step 2 and repeat Steps 2–6 to recursively partition the remain-
ing block regions; if all block regions have been processed, go to
Step 8.

Step 8: Terminate the segmentation process and deliver all ob-
tained SRs of the corresponding block regions.

Here the separability measure threshold �SF is a pre-defined
threshold to determine whether the segmented objects in the block
regions are sufficiently separated to satisfy the objective condition.
From our experimental analysis on the block regions containing
textual objects in the test images, most of them achieve satisfactory
segmentation results of homogeneous objects when their resultant
SF values exceed 0.92 after performing the segmentation proce-
dure, and some other complemental experimental analysis described
in Ref. [31] also shows similar consequences. Therefore, the value of
�SF is determined as 0.92 to yield satisfactory segmentation results
on the block regions. As for the thresholds �h0 and �h1 utilized in the
homogeneity condition, we can also determine the suitable values of
them by the similar way. By observing the non-textual background
regions containing pixels in homogeneous gray intensities, their as-
sociatedSFb features mostly reflect small values of below 0.6, and
are also accompanied with the corresponding �� standard deviation
features that are below 11. Therefore, the values of the thresholds
�h0 and �h1 are chosen as 0.6 and 11, respectively, to appropriately
detect non-textual homogeneous block regions before performing
the thresholding process, and thus some unnecessary segmenta-
tions that produce redundant SRs can be efficiently avoided for
saving computation costs of the localized multilevel thresholding
and the following multi-plane region matching and assembling
process.

With regard to the size parameters MH ×MV of each block region,
in order for the localized thresholding process to be more adaptive
on the steep gradation situation, and to extract the foreground ob-
jects in greater detail, smaller sized block regions are desirable. In
this way the small objects can be more clearly segmented, but at
the cost of greater computation so as to yield the final results when
performing the subsequent multi-plane region matching and assem-
bling process. Therefore, suitable larger values of MH and MV should
be chosen to moderately localize and accommodate the features of
the allowable character size, and so that the contained textual ob-
jects in the images can be clearly segmented. Therefore, given an
input document image, MH and MV should also be automatically de-
termined with respect to its scanning resolution RES (pixels per inch)

by applying a size mapping parameter �d, and can be obtained by

MH = MV = �d · RES (7)

Based on the analysis of typical characteristics of character sizes
as described in Ref. [32] and the practice that typical resolutions for
scanning most real-life document images may range from 200 to
600dpi, the value of �d is reasonably determined as 0.4 according
to the typical allowable character sizes with respect to the scanning
resolutions RES. In this way, the size of each block region is deter-
mined as about 10× 10mm2 in different scanning resolutions, such
as MH = MV = 80, MH = MV = 120, and MH = MV = 240 in 200, 300,
and 600dpi scanning resolutions, respectively. These parameters are
determined by conducting experiments involving numerous real-life
document samples with various characteristics in our experimen-
tal set, so that nearly all foreground and textual objects in various
document images can be appropriately separated in the preliminary
experiments.

We utilize Fig. 4 as an example of performing the localized
automatic multilevel thresholding procedure on several block re-
gions. Here Fig. 4(a) is part of the sectored sample image in Fig. 3.
Figs. 4(b), (d), (g), and (l), show the four adjacent block regions,
�i1,J1 ,�i2,J1 ,�i1,J2 , and �i2,J2 , their corresponding SFb and �� val-
ues, for illustrating the localized thresholding procedure. Here Fig.
4(b) is a homogenous block region, and is properly detected by the
homogenous conditions, and therefore its pixels are kept intact in
Fig. 4(c). Figs. 4(d), (g), and (l), are the block regions comprised of
multiple homogeneous objects. After the localized histogram multi-
level thresholding procedure has been performed, different objects
in these localized regions are distinctly segmented into separate
SRs from darkest to lightest, and their corresponding resultant SF
values also approach to be close to 1.0, as shown in Figs. 4(e), (f),
(h)–(k), and (m)–(p), respectively.

4. Multi-plane region matching and assembling process

Having decomposed all localized block regions into several
separate classes of pixels by the localized multilevel thresholding
procedure, various objects embedded or superimposed in different
background objects and textures are, respectively, separated into
relevant SRs. Then we need a methodology for grouping them into
meaningful objects, especially textual objects of interest, for fur-
ther extraction process. Nowadays, concepts of grouping pixels
into meaningful regions are widely applied in region-based im-
age segmentation [33,34]. Nevertheless, contemporary pixel-based
image segmentation techniques cannot work well for the purpose
of segmenting textual objects in complex document images. More
commonly, performing pixel-based region segmentation on textual
objects may cause extracted printed characters to be fragmented
and falsely connected or occluded by non-text pictorial objects or
background textures. Moreover, this way suffers heavy computa-
tional costs when applied to real-life document images scanned
with 200–600dpi resolutions.

Therefore, there is a need to develop an effective segmentation
approach that will deal with regions instead of pixels, to offer a
considerable reduction in computational complexity and provide ap-
propriate preservation to the structural characteristics of extracted
textual objects, particularly those of small characters with thin
strokes. In this section, we present a multi-plane region matching
and assembling method, which adopts both the localized spatial
dissimilarity relation and the global feature information, to percep-
tually classify and assemble these obtained SRs to compose a set
of object planes (Pq) of homogeneous features, especially textual
regions of interest. This proposed multi-plane region matching and
assembling process is conducted by recursively performing the fol-
lowing three phases—the initial plane selection phase, the matching
phase, and the plane construction phase, as illustrated in Fig. 1.
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4.1. Overview and basic definitions

To facilitate the matching and assembling process of the SRs ob-
tained from the previous procedure, several concepts and definitions
on statistical and spatial features for the SRs are introduced in this
subsection. First, given the localized multilevel thresholding process
to segment the NH × NV block regions of the original image into r
SRs, a hypothetical “Pool” is adopted for initially collecting these ob-
tained SRs and representing that they are still unclassified into any
object planes. Then, the concept 4-adjacent refers to the situation in
which each SR has four sides that border the top, the bottom, the
left or the right boundary of its adjoining SRs. The SRs which are
comprised of objects with homogeneous features are assembled to
form an object plane Pq. An object plane Pq represents a set of
matching SRs, and for each pair of SRs in Pq, there are some finite
chains of SRs that connect them so that each successive pair of SRs is
4-adjacent.

Furthermore, each SR may comprise several connected object re-
gions of pixels decomposed from its associated block region �i,j. Thus
the pixels that belong to the object regions of a certain SR are said
to be object pixels of this SR, while other pixels in this SR are non-
object pixels. The set of the object pixels in an SR indexed at (i, j, k) is
defined as follows:

OP(SRi,j,k) = {g(SRi,j,k, x, y)|The pixel at (x, y)

is an object pixel in SRi,j,k}
where g(SRi,j,k, x, y) is the gray intensity of the pixel at location
(x, y) in SRi,j,k, and the range of x is within [0,MH − 1] and y is
within [0,MV − 1]. As well as the total number of object pixels
in SRi,j,k, i.e. the amount of object pixels in OP(SRi,j,k), is repre-
sented by Nop(SRi,j,k). Then, a mean feature �(SRi,j,k) is also accord-
ingly obtained for each of these SRs. Here �(SRi,j,k) is the mean
of gray intensities of object pixels comprised by SRi,j,k, and is
equivalent to �i,j

k obtained in the localized multilevel thresholding
process.

Accordingly, given the unclassified SRs in the Pool, the initial plane
selection phase is firstly performed on these unclassified SRs to de-
termine a representative set of seed SRs {SR∗

m, m = 0 : N − 1}, and
then initially setting up N initial object planes {Pm : m= 0 : N − 1}
based on these selected seed SRs. Afterward, the matching phase will
be subsequently performed on the rest of unclassified SRs in the Pool
and these initial planes, to determine the association and belonging-
ness of these SRs with the existent object planes. For the unclassi-
fied SRs having perceptibly distinct features with currently existing
planes, the plane construction phase will then be conducted to cre-
ate and initialize an appropriate new plane for assembling SRs with
such features into this new plane to form another homogeneous ob-
ject region in the subsequent matching phase recursion. After the
first pass of multi-plane region matching and assembling process
has been performed, the matching phase and the plane construction
phase will be recursively performed in turns on the rest of unclas-
sified SRs in the Pool and emerging planes, until each SR has been
classified and associated with a particular plane, and the Pool is even-
tually cleared. As a result, the whole illumination image Y will be
segmented into a set of separate object planes {Pq : q=0 : L−1}, each
of which consists of homogenous objects with connected and similar
features, such as textual regions of interest, non-text objects such as
graphics and pictures, and background textures. Consequently, we
will obtain,

L−1⋃
q=0

Pq = Y, with Pq1

⋂
q1 � q2

Pq2 = �

where L is the number of the resultant planes obtained. In the fol-
lowing subsections, we will, respectively, describe the detailed ele-

ments of the proposed multi-plane region matching and assembling
process.

4.2. Initial plane selection phase

In this initial processing phase, determining the number and
approximate location of the significant clusters of SRs in the Pool
can facilitate the speed and accurateness of the final convergence
of the multi-plane region matching and assembling process. For
this purpose, the subtractive, and mountain clustering technique
[35,36] is applied to determine the SRs with the most prominent
and representative gray intensity features from the Pool set. As a
result, the SRs being selected as the seeds by the mountain clus-
tering process will be adopted to establish a set of initial object
planes for clustering those SRs having homogeneous features with
them.

The mountain method is a fast, one-pass algorithm, which uti-
lizes the density of features to determine the most representative
feature points as the approximate cluster centers. Here we employ
themean features associated with SRs, i.e. �(SR), as the feature points
employed in the mountain clustering process. To facilitate the de-
scription of the mountain clustering process, the region dissimilarity
measure, denoted by DRM, between each pair of the two SRs, SRi,j,k

and SRi
′ ,j′ ,k′

, is defined as

DRM(SRi,j,k, SRi
′ ,j′ ,k′

) = ||�(SRi,j,k) − �(SRi
′ ,j′ ,k′

)|| (8)

The range of the DRM is within [0, 255]. The lower the computed
value of DRM, the stronger the similarity among two SRs. Then, the
initial mountain function at an SR is computed as

M(SRi,j,k) =
∑

∀SRi,j,k∈Pool
e−�·DRM(SRi,j,k ,SRi

′ ,j′ ,k′ ) (9)

where � is a positive constant. It is obvious from Eq. (9) that an SR
that can attract more SRs having similar features to it will obtain a
high value in the mountain function. The mountain can be viewed as
a measure of the density of SRs in the vicinity of the gray intensity
feature space. Therefore, it is reasonable to choose SRs with the most
significant mountain values as representative seeds to create an ob-
ject plane. Let M∗

m denote the maximal value of the m-th mountain
function, and SR∗

m denote the SR whose mountain value is M∗
m. They

are determined by

M∗
m = Mm(SR∗

m) = max
∀SRi,j,k∈Pool

[Mm(SRi
′ ,j′ ,k′

)] (10)

First, by applying Eqs. (9) and (10) on all the SRs in the Pool, we
can obtain the first (and highest) mountain M∗

0, and its associated
representative SR, SR∗

0. Then SR∗
0 will be selected as the first seed of

the first initial plane. After performing the first iteration of mountain
clustering, the following representative seeded SRs can be accord-
ingly determined by, respectively, destructing the mountains. This
is because the SRs whose gray intensity features are close to previ-
ously determined seeded SRs have influential effects on the values of
the subsequent mountain functions, and thus it is necessary to elim-
inate these effects of the identified seeded SRs before determining
the follow-up seeded SRs. Toward this purpose, the updating equa-
tion of the mountain function, after eliminating the last (m−1)-th
seeded SR−SR∗

m−1, is computed by

Mm(SRi
′ ,j′ ,k′

) = Mm−1(SRi
′ ,j′ ,k′

) − M∗
m−1e

−�·DRM(SRi,j,k ,SR∗
m−1) (11)

where the parameter � determines the neighborhood radius that
provides measurable reductions in the updated mountain function.
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Accordingly, through recursively performing the discount process
of the mountain function given by Eq. (11), new suitable seeded
SRs can be determined in the same manner, until the level of the
current maximal M∗

m−1 falls bellow a certain level compared to that
of the first maximal mountain M∗

0. The terminative criterion of this
procedure is defined as

(M∗
m−1/M

∗
0) <� (12)

where � is a positive constant less 1. Here the parameters are selected
as � = 5.4, � = 1.5 and � = 0.45 as suggested by Pal and Chakraborty
[37]. Consequently, this process converges to the determination of
resultant N seeded SRs: {SR∗

m, m=0 : N−1}, and they are utilized to
establish N initial object planes {Pm : m= 0 : N − 1} for performing
the following matching phase.

4.3. Matching phase

Having a set of existent object planes from the initial processing
phase or previous iterations of the assembling process, then an ef-
ficient methodology to associate and assemble the unclassified SRs
remained in the Pool with these object planes is necessary to pro-
duce appropriate segmentation results of textual objects. Toward
this goal, we present a matching process for these unclassified SRs
to, respectively, evaluate their mutual connectedness and similar-
ity associated with the already existing planes, and to determine its
best belonging plane.

4.3.1. Matching grades
To effectively determine the best belonging plane of an unclas-

sified SR, we employ a hybrid methodology, named the matching
grade evaluation, for evaluating the mutual connectedness and simi-
larity between them. This hybrid evaluation methodology considers
both local pair-wise and global information provide by SRs and ex-
isting planes based on two forms of matching grades, the single-link
matching grade, and the centroid-link matching grade. The single-link
matching grade is performed by examining the degree of local dis-
connectedness between a pair of two neighboring SRs, an unclas-
sified SR and its neighboring classified SRs already have belonging
planes; while the centroid-link matching grade is adopted for as-
sessing the degree of global dissimilarity between an unclassified
SR and an already existing plane. Then the two matching grades are
combined to provide an effective hybrid criterion to determine the
best belonging plane for this unclassified SR among all the existing
planes.

During one given matching phase recursion, if an unclassified
SR can find its best belonging plane after examining their mutual
matching grade, then this SR is classified and assembled into this
best belonging plane and removed from the Pool afterward; oth-
erwise, if there is no suitable matching plane for an unclassified
SR at this time, then this SR will remain unclassified in the Pool.
Since new potential object planes will be created in the following
recursion of the plane constructing phase, SRs remaining unclassi-
fied in the current matching phase recursion will be re-analyzed
in subsequent recursions until their best matching planes are
determined.

The single-link matching grade is utilized to examine the degree
of disconnectedness between an unclassified SR in the Pool, SRi,j,k,
and an already existent plane Pq in a local manner. It is determined
by applying a connectedness measure on SRi,j,k and its 4-adjacent SRs
which have already belonged to an existent plane Pq, denoted by

SRi
′ ,j′ ,k′
q , where the subscript q represents that SRi

′ ,j′ ,k′
q belongs to the

q-th planePq. To effectively evaluate the single-link matching grade,
twomeasures for evaluating discontinuity and dissimilarity between
a pair of two 4-adjacent SRs—the side-match measure and the region

dissimilarity measure, i.e. DRM as computed using Eq. (8), are em-
ployed. Then both DSM and DRM measures are jointly considered to
determine the single-link matching grade of a pair of 4-adjacent SRs.

The side-match measure, denoted by DSM, which examines the
degree of disconnectedness of the touching boundary between SRi,j,k

and SRi
′ ,j′ ,k′
q , is described as follows. Given such pair of two SRs are 4-

adjacent, theymay have one of the two types of touching boundaries:
(1) a vertical touching boundarymutually shared by two horizontally
adjacent SRs, as shown in Fig. 5(a) or (2) a horizontal boundary shared
by two vertically adjacent SRs, as shown in Fig. 5(b).

First, given a pair of two horizontally adjacent SRs—SRi,j,k on the
left and SRi

′ ,j′ ,k′
q on the right, the gray intensities of pixels on the

rightmost side of SRi,j,k and the leftmost side of SRi
′ ,j′ ,k′
q can be de-

scribed as: g(SRi,j,k,MH − 1, y) and g(SRi
′ ,j′ ,k′
q , 0, y), respectively. Then

the sets of object pixels on the rightmost side and the leftmost side
of a given SR, denoted by RS(SRi,j,k) and LS(SRi,j,k), respectively, are
defined as follows:

RS(SRi,j,k) = {g(SRi,j,k,MH − 1, y)|g(SRi,j,k,MH − 1, y)

∈ OP(SRi,j,k), and 0�y�MV − 1} and

LS(SRi,j,k) = {g(SRi,j,k, 0, y)|g(SRi,j,k, 0, y) ∈ OP(SRi,j,k),

and 0�y�MV − 1}

To facilitate the following descriptions of the side-match features,
the denotations of SRi,j,k and SRi

′ ,j′ ,k′
q are simplified as SRl and SRr ,

respectively. The vertical touching boundary of SRl and SRr , denoted
as VB(SRl, SRr), is represented by a set of side connections formed
by pairs of object pixels that are symmetrically connected on their
associated rightmost and leftmost sides, and is defined as follows:

VB(SRl, SRr) = {(g(SRl,MH − 1, y), g(SRr , 0, y))|g(SRl,MH − 1, y)

∈ RS(SRl), and g(SRr , 0, y) ∈ LS(SRr)}

Similarly, in the case that SRi,j,k and SRi
′ ,j′ ,k′
q are vertically adjacent

(suppose that SRi,j,k is on the top and SRi
′ ,j′ ,k′
q is on the bottom, and

their denotations are also simplified as SRt and SRb, respectively),
their horizontal touching boundary can be represented as

HB(SRt , SRb) = {(g(SRt , x,Mv − 1), g(SRb, x, 0))|g(SRt , x,Mv − 1)

∈ BS(SRt), and g(SRb, x, 0) ∈ TS(SRb)}

where BS(SRt) and TS(SRb) represent the bottommost side and the
topmost side of SRt and SRb, respectively, and are defined as

BS(SRi,j,k) = {g(SRi,j,k, x,Mv − 1)|g(SRi,j,k, x,Mv − 1)

∈ OP(SRi,j,k), and 0�x�MH − 1} and

TS(SRi,j,k) = {g(SRi,j,k, x, 0)|g(SRi,j,k, x, 0)
∈ OP(SRi,j,k), and 0�x�MH − 1}

Also, the number of side connections of the touching boundary,
i.e. the amount of connected pixel pairs in VB(SRi1,j1,k1 , SRi2,j2,k2 ) or
HB(SRi1,j1,k1 , SRi2,j2,k2 ), should also be considered for normalizing the
disconnectedness measure of the two 4-adjacent SRs, and is denoted
by Nsc(SRi1,j1,k1 , SRi2,j2,k2 ).
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Therefore, the horizontal and vertical types of the side-match
measures of a pair of two 4-adjacent SRs, denoted by Dh

SM and Dv
SM ,

respectively, can be computed as

Dh
SM(SR

l, SRr)

=
∑

(g(SRl ,MH−1,y),g(SRr ,0,y))∈VB(SRl ,SRr )||g(SRl,MH − 1, y) − g(SRr , 0, y)||
Nsc(SRl, SRr)

and

Dv
SM(SR

t , SRb)

=
∑

(g(SRt ,x,Mv−1),g(SRb ,x,0))∈HB(SRt ,SRb)||g(SRt , x,Mv − 1) − g(SRb, x, 0)||
Nsc(SRt , SRb)

(13)

Accordingly, the side-match measure of SRi,j,k and SRi
′ ,j′ ,k′
q can be ob-

tained by

DSM(SRi,j,k, SRi
′ ,j′ ,k′
q )

=
{
Dh
SM(SRl, SRr) SRi,j,k and SRi

′ ,j′ ,k′
q are horizontally adjacent

Dv
SM(SRt , SRb) SRi,j,k and SRi

′ ,j′ ,k′
q are vertically adjacent

(14)

The range of DSM values is within [0, 255]. If the DSM value of two
4-adjacent SRs is sufficiently low, then these two SRs are homoge-
neous with each other, and thus they should belong to the same
plane.

Accordingly, the DSM measure can reflect the disconnectedness
of two 4-adjacent SRs, and the DRM value, as obtained by Eq. (8), and
assesses the dissimilarity between them. The single-link matching
grade, denoted by ms, evaluates both the degree of disconnected-
ness and dissimilarity of the two 4-adjacent SRs by considering the
dominant effect of their associated DSM and DRM values, and is de-
termined by

ms(SRi,j,k, SR
i′ ,j′ ,k′
q )

= max(DSM(SRi,j,k, SRi
′ ,j′ ,k′
q ), DRM(SRi,j,k, SRi

′ ,j′ ,k′
q ))

max(�(SRi,j,k) + �(SRi
′ ,j′ ,k′
q ), 1)

(15)

where �(SRi,j,k) is the standard deviation of gray intensities of all
object pixels associated with SRi,j,k, and is equivalent to �i,j

k obtained
in the localized histogram multilevel thresholding process. Here the
denominator term max(�(SRi,j,k)+ �(SRi

′ ,j′ ,k′
q ), 1) in Eq. (15) serves as

the normalization factor.
Next, the centroid-link matching grade, which evaluates the de-

gree of dissimilarity between SRi,j,k and an already existing planePq

in a global manner, is given as follows. Let �(Pq) and �2(Pq) denote
the mean and variance of the existing plane Pq, respectively, and
they are given by

�(Pq) =
∑

SRi
′ ,j′ ,k′
q ∈Pq

Nop(SR
i′ ,j′ ,k′
q ) · �(SRi′ ,j′ ,k′

q )

Nop(Pq)
(16)

and

�2(Pq) =
∑

SRi
′ ,j′ ,k′
q ∈Pq

Nop(SR
i′ ,j′ ,k′
q ) · ||�(SRi′ ,j′ ,k′

q ) − �(Pq)||2

Nop(Pq)
(17)

where Nop(Pq) denotes the amount of pixels in Pq, and is given by

Nop(Pq) =
∑

SRi
′ ,j′ ,k′
q ∈q

Nop(SR
i′ ,j′ ,k′
q ) (18)

Accordingly, the centroid-link matching grade of SRi,j,k and Pq can
be computed by

mc(SRi,j,k,Pq) = ||�(SRi,j,k) − �(Pq)||
max(�(SRi,j,k) + �(Pq), 1)

(19)

If SRi,j,k is finally determined to be merged into the plane Pq, then
the mean �(Pq) and variance �2(Pq) of Pq should be updated after
taking in SRi,j,k. The new mean and variance of Pq are, respectively,
computed by

�(Pnew
q ) = (Nop(P

prev
q ) · �(Pprev

q ) + Nop(SRi,j,k) · �(SRi,j,k))
(Nop(P

prev
q ) + Nop(SRi,j,k))

(20)

and

�2(Pnew
q ) = [Nop(P

prev
q ) · �2(Pprev

q ) + Nop(SRi,j,k) · ||�(SRi,j,k) − �(Pnew
q )||2 + Nop(P

prev
q ) · ||�(Pnew

q ) − �(Pprev
q )||2]

(Nop(P
prev
q ) + Nop(SRi,j,k))

(21)

where Pnew
q denotes the newly expanded plane Pq, while Pprev

q

denotes the previous one; and �(Pnew
q ) and s2(Pnew

q ) represent the
updated mean and variance of Pq, respectively, while �(Pprev

q ) and
�2(Pprev

q ) represent the previous ones.
Both of the above-mentionedmatching grades are then combined

to form a composite matching grade, denoted by M(SRi,j,k,Pq), to
complimentarily assess the degree of disconnectedness and dissimi-
larity of an unclassified SR and an already existing plane in both local
pair-wise and global manners. Consequently, this composite match-
ing grade can provide a more effective criterion for determining the
best belonging plane for each of the unclassified SRs. In each recur-
sion of the matching phase, each of the unclassified SRs, i.e. SRi,j,k in
the Pool, is analyzed by evaluating the composite matching grade of
SRi,j,k associated with each of its neighboring existent planes Pq, to
seek for the best matching plane into which SRi,j,k should belong.

Since the evaluating process of the composite matching grades
of SRi,j,k is performed on its neighboring planes, a plane Pq must
have at least one of its own SRs 4-adjacent to SRi,j,k, to compete
for the belongingness of SRi,j,k. To facilitate the computation of the
composite matching grade of SRi,j,k and a plane Pq, the processing
set AS(SRi,j,k,Pq) is utilized to store the SRqs which belong toPq and
4-adjacent to SRi,j,k as well, and is defined by

AS(SRi,j,k,Pq) = {SRi′ ,j′ ,k′
q ∈ Pq|SRi

′ ,j′ ,k′
q is 4-adjacent to SRi,j,k}

Then the composite matching gradeM of SRi,j,k associated with the
plane Pq, which reveals how well SRi,j,k matches with Pq, can be
determined by

M(SRi,j,k,Pq) = wc(mc(SRi,j,k,Pq))

+ ws

⎛
⎝ min

∀SRi′ ,j′ ,k′q ∈AS(SRi,j,k ,Pq)
ms(SRi,j,k, SR

i′ ,j′ ,k′
q )

⎞
⎠ (22)

where wc and ws are the weighting factors to control the weighted
contributions of the centroid-linkage and single-linkage strengths of
the compositematching grade, respectively, andwc+ws=1. By apply-
ing theweighting factorswc andws in the compositematching grade,
the centroid-linkage and single-linkage can be combined for taking
advantage of their related strengths. Because textual regions mostly
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reveal obvious spatial connectedness, we reasonably strengthen the
single-linkage weight of the composite matching grade, and thus
the values of the weighting factors are chosen as wc = 0.45 and
ws = 0.55, respectively. Besides, if SRi,j,k has no neighboring SRqs in
Pq, i.e. AS(SRi,j,k,Pq) = �, then Pq is excluded from the considera-
tion for matching with SRi,j,k, that is, the evaluation process of their
composite matching grade is skipped.

4.3.2. Determination of the best belonging plane
As a result, the best candidate belonging plane for SRi,j,k, i.e. the

plane having the lowest composite matching grade associated with
SRi,j,k among all existing planes, denoted by Pm, can be determined
by

M(SRi,j,k,Pm) = min
∀Pq

M(SRi,j,k,Pq) (23)

If the determined value ofM(SRi,j,k,Pm) is too large, SRi,j,k is not likely
to have sufficient connectedness and similarity toPm. The following
matching criterion is applied to check whether the currently selected
candidate planePm and SRi,j,k are sufficiently matched, and then the
suitability of SRi,j,k for belonging toPm can be determined well. This
matching criterion is defined as follows:

M(SRi,j,k,Pm)��m (24)

where �m is a predefined threshold which represents the acceptable
tolerance of dissimilarity for SRi,j,k to be grouped intoPm. Thematch-
ing criterion has a moderate effect on the number of resultant object
planes, and the value choice of �m=1.5 is experimentally determined
to obtain sufficiently distinct planes and avoid excessive splitting of
planes. This selected value of �m infers that the dissimilarity fea-
ture between SRi,j,k and Pm should not exceed approximately three
times of their average standard deviation, i.e. (�(SRi,j,k) + �(Pq))/2.
This choice is motivated by the assumption that all the pixels in
SRi,j,k andPm are independent and normally distributed, over 99% of
the homogenous gray intensity features are distributed within three
standard deviations of the mean. Besides, Chebyshev's theorem as-
surances that 88.9% of the gray intensity features are within three
standard deviations of the mean, regardless of the distribution.

After the above-mentioned determination process, if SRi,j,k and
its associated Pm can satisfy the matching criterion, then SRi,j,k is
merged into Pm, and removed from the Pool. Otherwise, if the
matching criterion cannot be satisfied, this reflects that SRi,j,k is dis-
tinct from all its existent adjoining planes, and there is no appro-
priate belonging plane for SRi,j,k during this current matching phase
recursion. Therefore, SRi,j,k will remain in the Pool, until its suitable
matching plane emerges or it begins its own object plane in the fol-
lowing recursions of the plane construction phase. After a belonging
determination has been made for SRi,j,k, the matching process is in
turn applied on the subsequent unclassified SRs in the Pool, until all
the rest unclassified SRs have been processed one time in the current
matching phase recursion.

4.4. Plane construction phase

After one given matching phase recursion has been performed,
if there are unclassified SRs remaining and the Pool is not drained
as well, these unclassified SRs need to be analyzed to determine
whether it is necessary to establish a new object plane to assemble
the SRs with such features into this new plane to form another ho-
mogeneous object region. Toward this goal, it is reasonable to find
an SR having sufficient distinctive features and obviously different
features compared to any existent planes, to start a new meaningful
object plane. Therefore, in the next matching phase recursion, the

follow-up unclassified SRs having homogeneous features with this
newly created plane can be successively assembled. Since textual
regions and homogeneous objects may contain several connected
regions, the plane construction phase will determine whether to
(1) create and initialize a new plane by selecting the unclassified
SR having “farthest” features from all existing planes as an initial
seed or (2) expand one suitably selected existent plane by merging
one unclassified SR having “closest” features to this plane, to avoid
unnecessary split of homogeneous object regions. The determination
is made according to the analysis of the gray intensity and spatial
location features described in the following subsection.

4.4.1. Gray intensity and spatial location features of unclassified SRs
and existent object planes

The dissimilarity between one unclassified SR, which is not ad-
joined to any one of the currently existing planes in the previous
matching phase recursion, and a certain object plane Pq, can be
determined by their associated centroid-link matching grade, as
computed by Eq. (19). Then the plane having the shortest feature
distance to SRi,j,k in gray intensity among all already existing planes,
i.e. the plane has the least value of the centroid-link matching grade
associated with SRi,j,k, denoted by PS(SRi,j,k), can be obtained by

mc(SRi,j,k,PS(SRi,j,k)) = min
∀Pq

(mc(SRi,j,k,Pq)) (25)

Here mc(SRi,j,k,PS(SRi,j,k)) also represents the measure of the least
dissimilarity between SRi,j,k and all already existing planes. If SRi,j,k

can find a plane PS(SRi,j,k) having sufficiently low dissimilarity as-
sociated with SRi,j,k in gray intensity, and they are also locatively
closed as well, then this condition reveals that SRi,j,k is sufficiently
homogeneous with PS(SRi,j,k), even if it is not currently 4-adjacent
to PS(SRi,j,k). This situation should be resolved by detecting and ex-
panding an existent plane having sufficient closing distances in fea-
tures of gray intensity and spatial location to some unclassified SRs,
and then this selected plane can take in such unclassified SRs in the
subsequent matching phase recursion.

For the purpose of dealing with the above-mentioned situation,
the locative distance between SRi,j,k and a plane Pq, denoted as
DE(SRi,j,k,Pq), is computed by the Euclidean distance between SRi,j,k

and its closest SRq among all SRqs associated with the plane Pq; and
is determined as

DE(SRi,j,k, Pq) = min
∀SRq∈Pq

De(SRi,j,k, SR
i′ ,j′ ,k′
q ) (26)

where

De(SRi,j,k, SR
i′ ,′j,k′
q ) =

√
(i − i′)2 + (j − j′)2) (27)

If SRi,j,k and its PS(SRi,j,k) are homogeneous in gray intensity and
also locatively close to each other, i.e. both mc(SRi,j,k,PS(SRi,j,k)) and
DE(SRi,j,k,PS(SRi,j,k)) values are sufficiently low, then SRi,j,k should join
the planePS(SRi,j,k), rather than establish a new separate plane, so as
to prevent a large textual region or homogeneous object to be split
into multiple planes. Otherwise, if no such planes are found, a new
plane should be created to aggregate those SRs with distinct features.

In order to guarantee that the newly created plane contains dis-
tinct features with the current existent planes, a scheme for select-
ing a suitable SR as the representative seed for constructing a new
plane is given as follows:

mc(SRNP ,PS(SRNP)) = max
∀SRi,j,k∈Pool

mc(SRi,j,k,PS(SRi,j,k)) (28)

In this way, this determined seed SR, denoted by SRNP , is the
one having most dissimilar features in gray intensity to any already
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existing planes, and thus SRNP will begin its own new plane to ag-
gregate those SRs whose features are distinct from other existing
planes but homogenous with SRNP .

4.4.2. Determination process of new plane construction
By means of the definitions given above, the plane construction

phase is performed according to the following steps:
Step 1: First, the unclassified SRs having sufficiently low

mc(SRi,j,k,PS(SRi,j,k)) values are selected into the set SRS through the
following operation:

SRS = {SRi,j,k ∈ Pool|mc(SRi,j,k,PS(SRi,j,k))��S} (29)

where �S is a predefined threshold for determining whether one SR
is sufficiently homogeneous with any one of existing planes. If none
of the unclassified SRs can satisfy the above condition to be selected
into SRS , i.e. SRS = �, then go directly to Step 3 to construct a new
plane; otherwise, perform the following Step 2.

Step 2: The set SRS now contains the SRs being significantly homo-
geneous with some already existing planes, but are not 4-adjacent
with them, and thus remain unclassified in the previous matching
phase recursion. The SR being locatively nearest to its associated
PS(SRi,j,k), denoted by SRP , should be determined as

DE(SRP ,PS(SRP)) = min
∀SRi,j,k∈SRSI

DE(SRi,j,k,PS(SRi,j,k)) (30)

If SRP and its associatedPS(SRi,j,k) are sufficiently close to each other,
i.e. the condition DE (SRP ,PS(SRP)) ��L is satisfied, then SRP is de-
termined to be merged with PS(SRi,j,k) to enlarge its influential area
on nearby SRs, and proceeds to Step 4. Otherwise, perform Step 3 to
create a new plane.

Step 3: The SRNP , the SR most dissimilar to any currently existing
planes, is determined by using Eq. (28). Thus, SRNP is employed as a
seeded SR to create a new plane Pnew, and then continues to Step 4.

Step 4: Finish the plane construction phase, and then conduct the
next matching phase recursion.

The threshold �S utilized in Eq. (29) moderately influences the
number of resultant planes. If the value of �S is low, then some ho-
mogeneous textual regions may still be disjoined planes and the
number of resultant planes cannot be efficiently reduced, although
its influence on text extraction results is insignificant, the increased
number of resultant planes will cost more recursions of text ex-
traction process for extracting texts in these planes. Conversely, if
the value is too large, although the number of resultant planes and
overall computational costs can be reduced, the text extraction per-
formancemay be affected because some textual regionsmay be over-
merged with some other non-textual regions. Reasonably, �S should
be tighter than the value of the matching criterion parameter �m (in
Eq. (24)), to ensure that the determined SRP is sufficiently homo-
geneous with its associated PS(SRi,j,k), and thus the inappropriate
expansion of object planes, which may cause some inhomogeneous
regions to be absorbed in the subsequent matching phase recursions,
can also be avoided. Thus PS(SRi,j,k) can appropriately attract homo-
geneous SRs near the extended influential area which are benefited
from participation with SRP . Therefore, in our experiments, the value
of �S is chosen as �S = 0.8 · �m. In general, text-lines or text-blocks
usually occupy a perceptible area of the image, and thus their width
or height should be in appreciable proportion to those of the whole
image. Hence, �L =min(NH ,NV )/4 is used for experiments, where NH
and NV are the numbers of block regions per row and per column,
respectively.

Consequently, for the unclassified SRs having obviously different
features with currently existent planes and left in Pool after the
previous matching phase recursion, the plane construction phase
will be conducted to obtain a suitable determination for creating

an appropriate new object plane or expand one suitably selected
existent plane. Thus, in the subsequent matching phase recursion,
the follow-up unclassified SRs owning such features associated with
this newly created plane can be successively assembled into a whole
textual region or a homogeneous object.

4.5. Overall processing

Fig. 6 shows an example of processing results of the sample image
in Fig. 2 by the proposed multi-plane segmentation process. In the
sample image of Fig. 2, three different colored textual regions were
printed on a varying and shaded background, and moreover, the
black characters are superimposed on the bright characters. Then,
having the SRs obtained from the localized multilevel thresholding
procedure as illustrated in Fig. 4, the regionmatching and assembling
process is then applied on these obtained SRs. This process begins
by applying the initial plane selection phase on these SRs, and five
representative seed SRs, {SR∗

m, m = 0 : 4}, are selected to create the
resultant planes P0 − P4, which are the resultant planes shown
in Figs. 6(a)–(e). Then the other SRs in the Pool are analyzed and
assembled by recursively performing the matching phase and the
plane construction phase, to associate them with the initial planes
P0 − P4 and the subsequent emerging planes. As a result, seven
major resultant object planes P0 − P6 (while those insignificant
planes are discarded) are obtained after completing the multi-plane
segmentation process, as depicted in Figs. 6(a)–(g). Within these
object planes, the planes P1, P3, and P4 in Figs. 6(b), (d), and (e),
respectively, contain textual objects of interest.

Accordingly, the homogeneous objects in which all textual ob-
jects and background textures are segmented into several separate
object planes can be efficiently analyzed in detail. By observing these
obtained planes, we can see that three textual regions with differ-
ent characteristics are distinctly separated. Thus, extraction of tex-
tual objects from each binarized plane in which textual objects are
well-separated can be easily performed by some contemporarily de-
veloped text extraction techniques. The following section describes
a simple procedure for locating and extracting textual objects from
these resultant object planes.

5. Text extraction

Having performed the multi-plane segmentation process, the
entire image is decomposed into various object planes. Each object
plane may consist of various considerable objects, such as textual
regions, graphical and pictorial objects, background textures or
other objects. Here each individual object planePq will be binarized
by setting its object pixels to black, and setting other non-object
pixels to white, and hence a “binarized plane”, denoted as BPq,
is created corresponding to each plane Pq. The text location and
extraction process will be performed on each individual binary
plane BPq to obtain the textual objects of interest. To obtain the
character-like components from each binary plane BPq, a fast
connected-component extraction technique [38] is first carried out
to locate the connected-components of the black pixels in BPq.
These connected-components may represent the character compo-
nents, graphical and pictorial objects, or background textures. By
extracting the connected-components, the location and dimension
of each connected-component are obtained as well. The location
and dimension of a connected-component are represented by the
bounding box enclosing it.

In this study, based on the concepts of the recursive XY-cut tech-
niques for connected-component projections [39,40], we adopt a re-
cursive XY-cut spatial clustering process for grouping the connected-
components into meaningful sets in each of the binarized planes.
We are interested in looking for horizontal text-lines, and hence the
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XY-cut spatial clustering process is conducted to cluster the
connected-components into several sets in horizontal direction. A
resultant set of connected-components may comprise a character
string, a larger graphical object, or a group of isolated background
components inside the character strings. Each of these connected-
component sets, denoted as CS, is then processed by the text iden-
tification process to determine whether they are actual text-lines.

Fig. 7 depicts the text extraction process. As shown in Fig. 7(a), for
the corresponding connected-components of characters in the binary
planeBP4 (corresponding to the planeP4 in Fig. 6(e)), there are five
resultant CSs obtained after the X-cut procedure is performed. The Y-
cut procedure is in turn performed on these five CSs. For instance, as
shown in Fig. 7(b), the Y-cut procedure is performed on the CS at the
top of the five CSs obtained from the X-cut procedure, and then one
resultant CS is obtained. This is because the connected-components
in Fig. 7(b) are all close to each other, and hence are clustered into a
single resultant CS. After the XY-cut connected-component clustering
process on a binary plane is completed, several final CSs are obtained,
representing candidates of actual text-lines, as shown in Fig. 7(c).
Accordingly, the CSs associated with the remaining binary planes are
also obtained after the XY-cut process is in turn performed on all
binary planes.

The text identification process is then conducted to distinguish
whether each one of these obtained CSs comprises actual text-lines
or non-text objects. Before distinguishing and extracting text-lines,
we first identify halftone pictorial objects and background regions
using normalized correlation features [41]. For each one of these CSs,
its associated normalized correlation features are computed on the
bounding box region covered by its contained components. If the
normalized correlation features of one CS meet the discrimination
rules of halftone pictorial objects as suggested in Ref. [41], then it is
determined to be a pictorial object or a background region.

After pictorial objects and background regions are identified and
eliminated, the text identification is then performed on the rest
of CSs. If a CS actually comprises a text-line, it may have the fol-
lowing distinguishing characteristics: (1) its contained connected-
components should be, respectively, aligned, and the number of
them should also be in proportion to the width of the CS and (2)
the contained object pixels in the enclosing region of this CS show
distinctive spatial variation. For the first characteristic, the identifi-
cation strategies of the statistical features of connected-components
[24] can be applied to each of the CSs. The second characteristic can
be determined by applying the discrimination rules of transition fea-
tures on the object pixels contained in each of the CSs [42]. Both are
independent of font types, lengths and sizes of text strings. Accord-
ingly, a CS can be identified as an actual text-line if it satisfies both
of the above characteristics.

Based on the above-mentioned concepts, the text identification
process employs the following determination rules R1 −R5 for iden-
tifying whether one CS consists of a text-line or non-text objects. A
CS is identified as a real text-line if all of the following decision rules
are satisfied. First, the ratio of the width W and the height H of the
enclosing bounding box of a CS should satisfy the size-ratio condition

R1 : W(CS)/H(CS)��r (31)

where the threshold �r on the size-ratio condition is selected as 2.0
to suitably reflect the rectangular-shaped appearance of a text-line.
The number of contained connected-components Ncc of a CS should
satisfy the condition,

R2 : �n1 · (W(CS)/H(CS))�Ncc(CS)

��n2 · (W(CS)/H(CS)) and Ncc(CS) > �n3 (32)

where the values of �n1, �n2 and �n3 are chosen as 0.5, 8.0, and 3,
respectively, according to our analysis of typical arrangement and
quantity characteristics of the characters in a text-line. Then the

ratio of the total area of the bounding boxes of contained connected-
components of a CS to the area of its enclosing box should meet the
condition,

R3 : �a1�

∑
Ci∈CSA(Ci)

W(CS) · H(CS) ��a2 (33)

where Ci is the i-th connected-component contained by the CS, and
A(Ci) is the area of the bounding box of Ci; and the thresholds �a1
and �a2 are, respectively, determined as 0.5 and 0.95, to reveal the
alignment property of the characters appearing in a text-line. Then
the identification rules based on the statistical features of the con-
tained pixels of the CS are introduced as follows. Considering that
“0” represents object pixels and “1” background pixels, the number
of transition pixels Tp in the enclosing box of the CS is determined
by computing the number of “0” to “1” and “1” to “0” transitions.
Hence the horizontal transition pixel ratio of the CS must satisfy the
condition

R4 : �t1�Tp(CS)/NCol(CS)��t2 (34)

where NCol is the number of the column lines in which the object
pixels are present; the values of �t1 and �t2 are chosen as 1.2 and
3.6, respectively, which reflect typical pixel transition features of
character strokes. In addition, the density of object pixels in the CS
should also satisfy the condition

R4 : �d1�

∑
Ci∈CSOp(Ci)

W(CS) · H(CS) ��d2 (35)

where Op(Ci) is the number of object pixels of the i-th connected-
component of the CS; and the thresholds �d1 and �d2 are set as 0.3
and 0.8, respectively, to reveal the typical occupation characteristic
of pixels contained in a text-line.

The above-mentioned discrimination rules and parameters are
obtained by analyzing many experimental results of processing doc-
ument images having text strings with various types, lengths and
sizes, and can yield good performance in most general cases. After
the text location and identification process has been accordingly ap-
plied on all binarized object planes, the text-lines extracted from
these planes are then composed into a resultant textual plane, as
shown in Fig. 7(d).

6. Experimental results

In this section, the performance of the proposed multi-plane
approach is evaluated and compared to several other well-known
text extraction techniques, namely Jain and Yu's color-quantization-
based method [24], and Pietikainen and Okun's edge-based method
[22]. Two test databases of totally 65 real-life complex document
images, the first test database consists of 28 English document
images, and the second one comprises of 37 Chinese and mixed-
Chinese/English document images, are employed for experiments
on performance evaluation of text extraction. These test images in-
clude a variety of book covers, book, and magazine pages, advertise-
ments, and other real-life documents at the scanning resolution of
200–600dpi. These images are comprised of textual objects in var-
ious colors or illuminations, font styles, and sizes, including sparse
and dense textual regions, adjoined or overlapped with pictorial,
watermarked, textured, shaded, or uneven illuminated objects and
background regions.

6.1. Parameter adaptation

Prior to conduct the text extraction performance evaluation of
the proposed approach on the test database, some important param-
eters utilized in the multi-plane segmentation process should be an-
alyzed and adapted. For this purpose, we will investigate the effect
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Table 2
Segmentation accuracy rates with varying �SF values.

Threshold �SF 0.84 0.86 0.88 0.9 0.92 0.94 0.96
Accuracy rate (%) 85.1 89.6 92.1 97.9 99.6 97.1 84.6

of these parameters by the experiments of varying one parameter
for performance evaluation at a time.

6.1.1. Determination of thresholds for the localized multilevel
thresholding

First, to investigate the effect of the threshold settings on the seg-
mentation performance of the localized histogrammultilevel thresh-
olding process, a measure that evaluates the segmentation accuracy
of the SRs obtained from block regions which comprise of textual
objects of interest rather than the overall text extraction results. For
this purpose, the segmentation accuracy rate is computed by manu-
ally counting the number of expected SRs comprising textual objects,
and the number of adequately segmented SRs comprising textual
objects in the test images, respectively, and is defined as

Accuracy rate = No. of correctly segmented textual SRs
No. of expected textual SRs

(36)

Since we have already observed that satisfactory segmentation re-
sults of homogeneous objects are mostly obtained when their resul-
tant SF values exceed 0.92 according to the experimental analysis
described in our previous study [31], and thus the experiments for
evaluating suitable values of the threshold �SF can be conducted
based on this phenomenon. Table 2 depicts the segmentation accu-
racy rate as �SF is varied from 0.84 to 0.96 when the size parameters
MH and MV of block regions are set according to Eq. (7). As can be
seen from Table 2, the segmentation accuracy rate is significantly
decreased when the value of �SF is below 0.86 due to growing under-
segmented SRs, while the accuracy rate is again decayed when �SF
is above 0.94 owing to increasing over-segmented SRs. Thus, we can
find that the best segmentation performance can be obtained when
adopting �SF = 0.92.

Moreover, the thresholds of the homogeneity condition in
Eq. (6), �h0 and �h1, are adopted for avoiding the redundant segmen-
tation on the non-textual homogeneous block regions because the
associated SF and �� values of such block regions are usually sig-
nificantly lower than those of the block regions containing textual
objects. Therefore, an effective selection for the values of �h0 and �h1
should be relatively small and sparse enough not to miss the needed
segmentation on textual regions, and yet also moderately large and
dense enough to ensure that the unnecessary segmentations on
non-textual regions can be sufficiently avoided for saving the com-
putation costs on the localized multilevel thresholding procedure
and the following multi-plane region matching and assembling pro-
cess. This study finds that choosing the values of �h0 and �h1 to be
0.6 and 11, respectively, is efficient for detecting non-textual block
regions.

6.1.2. Evaluation of block region size
To examine the effect of the size mapping parameter �d and the

associated size MH × MV of each block region on the text extraction
performance (Eq. (7)), an experiment that evaluating the recall rates
of the text extraction results under varying values of �d is conducted.
The recall rate of the text extraction results is defined as,

Recall rate = No. of correctly extracted characters
No. of actual characters

(37)

Here the recall rate is determined by manually counting the num-
ber of total actual characters of the document image, and the
number of total correctly extracted characters in the test images,
respectively.

Table 3
Text extraction recall rates and average computing times with varying �d values.

Size mapping parameter �d 0.25 0.3 0.35 0.4 0.45 0.5 0.55
Recall rate (%) 99.1 99.3 99.2 99.2 98.4 97.2 95.7
Average processing
time (s)

7.98 3.86 2.09 1.2 0.86 0.55 0.41

Table 4
Text extraction recall rates and average computing times with varying �m values.

Matching criterion
parameter �m

0.9 1.1 1.3 1.5 1.7 1.9 2.1

Recall rate (%) 95.7 98.0 98.9 99.2 98.8 98.3 96.8
Average processing
time (s)

3.61 3.39 3.15 2.67 2.5 2.09 1.71

Although the use of small block regions can extract the tex-
tual objects in greater detail and provide more adaptiveness on the
steep gradation situation during the localized thresholding process
to achieve higher text extraction capability of various complex im-
ages, if the block region size MH × MV is too small, the increasing
number of SRs will result in considerably higher computation costs
on the localized thresholding process and the multi-plane region
matching and assembling process. In contrast, if the block region size
is too large, the errors in text extraction results will grow because
some detailed information of textual objects may not be clearly seg-
mented during the localized thresholding process. Therefore, deter-
mining the appropriate block region size with a suitable value of �d
is a trade-off between the accuracy of text extraction and the com-
putation costs. According to the aforementioned analysis of typical
characteristics of character sizes in the real-life document images,
the experiment of evaluating the effect of different block region size
is conducted by varying the value of �d on the test images scanned
by different typical resolution of 200–600dpi. The results of text ex-
traction recall rates and average computing times as �d being var-
ied from 0.25 to 0.55 are depicted in Table 3. As can be seen from
Table 3, while a higher recall rate tendency is observed with the
smaller block regions, the best selection for both text extraction per-
formance and computation costs can be obtained by using �d = 0.4.

6.1.3. Selection of parameters for the multi-plane region matching and
assembling process

In this subsection, the appropriate settings of the parameters (�m,
�S, and �L) are analyzed for determining the most appropriate set-
tings for the multi-plane region matching and assembling process.
Since the parameters �S and �L for the plane construction have no
significant effect on the text extraction performance, the effect of
the matching criterion parameter �m for the matching phase should
be mainly evaluated in this experiment. For this purpose, the in-
fluences of the parameters �S and �L are firstly disabled by setting
their values to be 0 and 1, respectively, that is, the unclassified SRs
having diverse features with any neighboring existent planes will
always start new planes in each recursion of the multi-plane region
matching and assembling process. Then, the effect of the matching
criterion parameter �m is evaluated by analyzing the recall rates of
text extraction results (Eq. (37)) and average computing times under
varying values of �m.

Table 4 shows the results of extraction recall rates as �m is varied
from 0.9 to 2.1. From Table 4, we can observe that the text extrac-
tion accuracy is gradually decayed when the value of �m is below the
optimal one, as more textual regions are spilt into some superfluous
object planes; while the text extraction accuracy is again decreased
when the value of �m is above the optimal one, as more differ-
ent textual regions are over-grouped into the same object planes.
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Fig. 8. Representative color images of Fig. 2 after performing Jain and Yu's method: (a) representative color image 1, (b) representative color image 2, (c) representative
color image 3, and (d) representative color image 4.

Fig. 9. Text extraction results of Fig. 2 by Jain and Yu's method and Pietikainen and Okun's method: (a) text extraction results by Jain and Yu's method and (b) text extraction
results by Pietikainen and Okun's method.

Fig. 10. Original images of the test images 2 and 3: (a) test image 2 (size: 2333×3153) and (b) test image 3 (size: 2405×3207).

Therefore, while the lesser computation time is observed with the
larger value of �m because of the lesser amount of resultant planes,
the best selection for both text extraction performance and compu-
tation costs can be obtained with �m = 1.5.

The parameters �S and �L utilized in the plane construction phase
are mainly adopted for avoiding the redundant separation of ob-
ject planes and thus reducing the necessary recursions of text ex-
traction process on obtaining textual objects in these planes for
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Fig. 11. Decomposed object planes of Fig. 10(a) after performing the proposed multi-plane segmentation: (a) decomposed object plane 1, (b) decomposed object plane 2, (c)
decomposed object plane 3, (d) decomposed object plane 4, (e) decomposed object plane 5, (f) decomposed object plane 6, (g) decomposed object plane 7, (h) decomposed
object plane 8, and (i) decomposed object plane 9.

saving the computation costs. Variations in the values of the pa-
rameters �S and �L do not significantly affect the text extraction
results, except when they are so large that more textual regions be-
ing over-merged with some other non-textual regions. Therefore,
an effective selection for the values of �S and �L should be moder-
ately capacious and large enough to keep most homogeneous tex-
tual regions in the same planes to ensure fast processing, yet also
reasonably tight and small enough to avoid text extraction errors
due to textual regions being over-merged with non-textual regions.

Based on various experiments with the test images, the current
study find that �S = 0.8 · �m with �L = min(NH ,NV )/4 can sufficiently
save the number of object planes for performing text extraction re-
cursion and ensure the satisfactory text extraction accuracy. By us-
ing these settings of �S and �L for the plane construction phase,
about 60% of the computation cost for the entire process is saved,
that is, the average computation time is reduced from 2.67 s to
about 1.2 s when the previously determined optimal parameters are
applied.
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Fig. 12. Representative color images of Fig. 10(a) after performing Jain and Yu's method: (a) representative color image 1, (b) representative color image 2, (c) representative
color image 3, (d) representative color image 4, (e) representative color image 5, and (f) representative color image 6.

Fig. 13. Text extraction results of Fig. 10(a) by the proposed approach, Jain and Yu's method, and Pietikainen and Okun's method: (a) text extraction results by the proposed
approach, (b) text extraction results by Jain and Yu's method, and (c) text extraction results by Pietikainen and Okun's method.

6.2. Performance evaluation

For the performance evaluation experiments on text extraction,
the parameters for the proposed approach are set according to the
optimal results determined in the previous sections. The proposed

approach is implemented on a 2.4GHz Pentium-IV personal com-
puter using C++ programming language. The computation time spent
on processing an input document image depends on the size and
complexity of the image. Most of the computation time is spent
on the multi-plane region matching and assembling process. For a
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Fig. 14. Decomposed object planes of Fig. 10(b) after performing the proposed multi-plane segmentation: (a) decomposed object plane 1, (b) decomposed object plane 2,
(c) decomposed object plane 3, (d) decomposed object plane 4, and (e) decomposed object plane 5.

typical A4-sized document page scanned at 300dpi resolution, the
average image size is 2408 pixels by 3260 pixels, with an average of
1.24 s processing time.

The comparative experiments are firstly conducted on the afore-
mentioned sample image of Fig. 2. Figs. 8 and 9 show the processing
results and text extraction results produced by Jain and Yu's color-
quantization-based method [24], and Pietikainen and Okun's edge-
based method [22]. Here the text extraction results of Pietikainen
and Okun's method depicted in Fig. 9(b) and the later figures are
converted into masked images where the black mask was adopted
to display the non-text regions. As a comparative experiment of doc-
ument image decomposition, the decomposition results depicted in
Figs. 8(a)–(d) are four representative color images after performing
Jain and Yu's color quantizationmethod [24]. As can be seen from the
second representative color image in Fig. 8(b), the caption characters
superimposed on the shaded background are blurred and cannot be
appropriately separated. Furthermore, as shown in Fig. 8(d), the bot-
tom text-line “what now?” is occluded in the fourth representative
color image by reason of the insufficient contrast for color quantiza-
tion process. As a result, these two textual regions are missed in the
resultant text extraction results, as shown in Fig. 9(a). As seen from
Fig. 9(b), Pietikainen and Okun's method extracts most characters of
the body text, but caption characters are fragmented and characters
string “what now?” are also lost due to the low contrast with the
background.

Figs. 10(a) and (b) are two typical test images of A4 full-size com-
plex scanning documents. The test image shown in Fig. 10(a) con-

tains background objects with sharp illumination variations across
textual regions, and some of these also possess similar colors and
illuminations to those characters touched with them, so that their
illuminations are influenced and have gradational variations due
to the scanning process; while the test image in Fig. 10(b) has
a large portion of the main body text printed on a large shaded
and textured background region, and thus the contrast between
the characters and this textured background region is extremely
degraded.

Figs. 11 and 12 depict the decomposition results of Fig. 10(a)
produced by the proposed multi-plane approach and Jain and Yu's
color-quantization-based method, respectively. As shown in Figs.
11(a)–(h), the proposed approach clearly segments the homoge-
nous objects into respective object planes. These planes comprise
the textual objects of interest including the large bright characters
near the gray boundary blocks in Figs. 11(b) and (e), the characters
“SIEMENS” below the man in black in Fig. 11(c), the white main body
text close to the mobile phone's shell in Fig. 11(d), and the rest of
small characters in Figs. 11(g) and (h). Comparatively, textual ob-
jects of the caption and the main body text in Figs. 12(b), (e), and
(f) of the representative color images decomposed by Jain and Yu's
method are visibly fragmented or blurred with pictorial objects due
to the influence of those background objects during the color quan-
tization process. Figs. 13(a)–(c) illustrate the text extraction results
of Fig. 10(a) by the proposed approach, Jain and Yu's method, and
Pietikainen and Okun's method. As shown in Fig. 13(a), the text ex-
traction results from the proposed approach demonstrate that the
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Fig. 15. Representative color images of Fig. 10(b) after performing Jain and Yu's method: (a) representative color image 1, (b) representative color image 2, (c) representative
color image 3, (d) representative color image 4, (e) representative color image 5, (f) representative color image 6, and (g) representative color image 7.

Fig. 16. Text extraction results of Fig. 10(b) by the proposed approach, Jain and Yu's method, and Pietikainen and Okun's method: (a) text extraction results by the proposed
approach, (b) text extraction results by Jain and Yu's method, and (c) text extraction results by Pietikainen and Okun's method.

majority of the textual objects are successfully extracted from the
sharply varying backgrounds. By comparison, as shown in Fig. 13(b),
Jain and Yu's method is unsuccessful in extracting the large caption
characters and many characters from the main body of text by rea-
son of the above-mentioned unsatisfactory decomposition results of
the color quantization process. Pietikainen and Okun's method ex-
tracts most textual objects except some broken large characters and
several missed small characters, as shown in Fig. 13(c); however,
several pictorial objects with sharp contours are also identified as
textual objects, and the characters in extracted textual regions are
blurred.

In the test image in Fig. 10(b), the textual regions of interest are
the caption characters “you see” on the top-left, the main body of
text on the right, and the white characters “technology perfectly”
on the bottom-left. Figs. 14–16 illustrate the decomposition and text
extraction results on the test image in Fig. 10(b) obtained by the pro-
posed approach, Jain and Yu's method, and Pietikainen and Okun's
method, respectively. As shown in Fig. 14(b), the proposed approach
correctly separates the main body of text printed on shaded and
textured background regions in highly degraded contrasts. By com-
parison, textual regions of the main body of text in Fig. 15(a) of the
representative color image obtained by Jain and Yu's method are
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Fig. 17. Original images of the test images 4–6: (a) test image 4 (size: 2864×3658), (b) test image 5 (size: 2427×3166), and (c) test image 6 (size: 2469×3535).

Fig. 18. Text extraction results of Fig. 17(a) by the proposed approach, Jain and Yu's method, and Pietikainen and Okun's method: (a) binarized text extraction results by
the proposed approach, (b) binarized text extraction results by Jain and Yu's method, and (c) text extraction results by Pietikainen and Okun's method.

Fig. 19. Text extraction results of Fig. 17(b) by the proposed approach, Jain and Yu's method, and Pietikainen and Okun's method: (a) binarized text extraction results by
the proposed approach, (b) binarized text extraction results by Jain and Yu's method, and (c) text extraction results by Pietikainen and Okun's method.

smeared with the background regions. Accordingly, as can be seen
from Fig. 16(a), the characters in three different textual regions are
successfully extracted by the proposed approach; whereas bothwork
of Jain and Yu, and Pietikainen and Okun perform not so well on ex-

tracting textual objects from the shaded and textured backgrounds
in degraded contrasts, as shown in Figs. 16(b) and (c), respectively.

Figs. 17(a)–(c) are three test images with several notable
characteristics. The test image in Fig. 17(a) has multiple-colored
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Fig. 20. Text extraction results of Fig. 17(c) by the proposed approach, Jain and Yu's method, and Pietikainen and Okun's method: (a) binarized text extraction results by
the proposed approach, (b) binarized text extraction results by Jain and Yu's method, and (c) text extraction results by Pietikainen and Okun's method.

Table 5
Experimental data of Jain and Yu's method and our approach on the English test
database.

Method Recall rate (%) Precision rate (%)

Jain and Yu's method 85.1 98.7
Our approach 99.4 99.6

Table 6
Experimental data of Jain and Yu's method and our approach on the Chinese test
database.

Method Recall rate (%) Precision rate (%)

Jain and Yu's method 82.1 95.2
Our approach 99.2 99.4

text-lines printed on several shaded background regions in indis-
tinct contrasts, while the test images in Figs. 17(b) and (c) comprise
textual regions overlapped with numerous character-like objects
with similar contrasts and textural features to those of actual tex-
tual objects. To facilitate the visual observation of bright characters,
the text extraction results of Jain and Yu's method and the pro-
posed approach in Figs. 18(a) and (b), 19(a) and (b), and 20(a)
and (b) are illustrated in the binarized form. Figs. 18(a), 19(a), and
20(a) exhibit that the proposed approach correctly segments and
extracts the textual objects with different sizes, types, and colors
under various difficulties associated with the complexity of back-
ground images. As shown in Figs. 18(b), 19(b), and 20(b) Jain and
Yu's method could not perform well on extracting several text-lines
of interest, and some extracted textual regions are also blurred or
degraded. As illustrated in Figs. 18(c), 19(c), and 20(c), Pietikainen
and Okun's method can extract most textual objects, but several
shaded textual objects such as the caption characters “to the Real
Essay” in Fig. 18(c) are still missed, and many background textures
and contoured objects are also identified as textual objects, and so
that many extracted textual regions are blotted by these spurious
detections.

To perform the quantitative evaluation of text extraction perfor-
mance, two evaluation criteria, including the above-mentioned re-
call rate (as described in Eq. (37)), and the precision rate as defined

in Eq. (38), which are commonly used for evaluating performance in
information retrieval, are adopted.

Precision rate = No. of correctly extracted characters
No. of extracted character-like components

(38)

Similar to the above-mentioned definition of the recall rate, the
precision rate for text extraction results is obtained by manually
counting the number of total extracted character-like connected-
components and the correctly extracted characters from the doc-
ument image, respectively. The experiments of quantitative evalu-
ation were performed on our English and Chinese test databases,
the English test database contains 28 English document images with
totaling 20,391 visible characters, while the Chinese test database
contains 37 Chinese and mixed-Chinese/English document images
with totaling 19,635 visible characters. From the text extraction
viewpoint, the recall rate reveals the percentage of correctly ex-
tracted characters as opposed to all actual characters within each
processed document image, while the precision rate represents the
percentage of correctly extracted characters as opposed to all ex-
tracted character-like connected-components. Since these quantita-
tive evaluation criteria are performed on the extracted connected-
components, the results of Pietikainen and Okun's method are inap-
propriate for evaluation using these criteria, and were not involved
in the quantitative evaluation.

Tables 5 and 6, respectively, depict the results of quantitative
evaluation on the English and Chinese test databases of Jain and Yu's
method and the proposed approach. As for the computation timing
issue, the average computing times of the Jain and Yu's method and
the proposed approach on processing an A4-sized document image
with 300dpi scanned resolution are 0.88 and 1.24 s using the above-
mentioned platform, respectively. Therefore, by Tables 5 and 6, and
the computational timings, it is observed that although the proposed
approach costs a little computing time, the proposed approach can
provide better text extraction performance as compared to that of
Jain and Yu's method.

Figs. 21–26 show several further examples of the proposed ap-
proach on extracting English and Chinese textual objects from com-
plex document images. Although a few non-text components with
character-like characteristics are detected as textual objects, and a
few small punctuation marks are missed because of their small sizes
and non-alignment with other characters contained in text-lines, the
overwhelming majority of the textual objects are correctly obtained.
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Fig. 21. Results of test image 7 (size: 1829×2330): (a) original image and (b) text extraction results by the proposed approach.

Fig. 22. Results of test image 8 (size: 3147×4536): (a) original image and (b) text extraction results by the proposed approach.

By observing the results obtained, even if textual objects comprised
of various illuminations, sizes, font types, and styles, are overlapped
with pictorial objects and backgroundswith uneven, gradational, and
sharp variations in contrast, illumination, and texture, almost all the
textual objects are effectively detected and extracted by the proposed
approach.

7. Conclusions

A new technique for segmenting and extracting textual objects
from real-life complex document images is presented in this study.
The proposed approach first segregates textual regions, non-text ob-
jects such as graphics and pictures, and background textures from

the document image by decomposing it into distinct object planes.
This decomposition process consists of two stages: automatic lo-
calized histogram multilevel thresholding and multi-plane region
matching and assembling. The first stage applies the localized his-
togram multilevel thresholding procedure to discriminate different
textual objects, non-textual objects, and background components
in each block region into separate SRs. In the second stage, the
multi-plane regionmatching and assembling process organizes these
obtained SRs into object planes according to their respective fea-
tures. A text extraction procedure is then applied to the resultant
planes to extract textual objects with different characteristics in
the corresponding planes. The document image is processed region-
ally and adaptively according to its local features, and thus detailed
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Fig. 23. Results of test image 9 (size: 1859×2437): (a) original image and (b) text extraction results by the proposed approach.

Fig. 24. Results of test image 10 (size: 1344×1792): (a) original image and (b) text extraction results by the proposed approach.

characteristics of extracted textual objects can be well-preserved,
especially small characters with thin strokes. It also allows textual
objects that touch graphical and pictorial background objects with
uneven, gradational, and sharp variations in contrast, illumination,
and texture to be well-handled. When applied to real-life complex
document images, the proposed approach exhibits its robustness in
extracting horizontal textual objects of various illuminations, sizes,
and font styles from complex backgrounds. From the experimen-
tal results and comparisons to other existing works, the proposed
approach demonstrates its effectiveness and advantages for most
real-life complex document images. However, the text extraction
method of the current study could just accommodate some small
skews of scanned document images and text lines. Therefore, in the

further studies, the text extraction method can be improved by inte-
grating an effective skew estimation and correction technique, such
as the effective techniques presented in Refs. [27,43–45], to effi-
ciently handle skewed document images and text lines with different
orientations.
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Fig. 25. Results of test image 11 (size: 2309×2829): (a) original image and (b) text extraction results by the proposed approach.

Fig. 26. Results of test image 12 (size: 2469×3535): (a) original image and (b) binarized text extraction results by the proposed method.
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