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Abstract—This study presents an adaptive neural fuzzy net-
work (ANFN) controller based on a modified differential evolution
(MODE) for solving control problems. The proposed ANFN con-
troller adopts a functional link neural network as the consequent
part of the fuzzy rules. Thus, the consequent part of the ANFN
controller is a nonlinear combination of input variables. The pro-
posed MODE learning algorithm adopts an evolutionary learning
method to optimize the controller parameters. For design optimiza-
tion, a new criterion is introduced. A hardware-in-the loop control
technique is developed and applied to the designed ANFN con-
troller using the MODE learning algorithm. The proposed ANFN
controller with the MODE learning algorithm (ANFN-MODE) is
used in two practical applications—the planetary-train-type in-
verted pendulum system and the magnetic levitation system. The
experiment is developed in a real-time visual simulation envi-
ronment. Experimental results of this study have demonstrated
the robustness and effectiveness of the proposed ANFN-MODE
controller.

Index Terms—Differential evolution (DE), magnetic levita-
tion system, neural fuzzy networks, planetary-train-type inverted
pendulum.

1. INTRODUCTION

ANY control techniques used for designing control sys-
M tem are based on measured signals to estimate an un-
known plant. However, a plant model of a physical system that
is to be controlled is usually very complex and difficult. Adap-
tive control [1]-[8] is a model-free controller that can be used to
control nonlinear systems. Most of the adaptive controllers in-
volve certain types of function approximator from input/output
experiments. Generally, the basic objective of adaptive control
is to maintain consistent performance of a control system in
the presence of the designed parameters. However, traditional
adaptive control theory only deals with the systems by known
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dynamic structures, not unknown parameters. Furthermore, tra-
ditional adaptive controllers cannot make use of human experi-
ence, which is usually expressed in linguistic terms.

Neural fuzzy networks [9]-[16] have become a popular re-
search topic. They bring the low-level learning and computa-
tional power of neural networks to fuzzy systems and bring the
high-level human-like thinking and reasoning of fuzzy systems
to neural networks. In a typical Takagi—Sugeno—Kang (TSK)
type neural fuzzy network [13]-[15], which is a linear poly-
nomial of input variables, the model output is approximated
locally by the rule hyperplanes. However, the traditional TSK-
type neural fuzzy network does not take full advantage of the
mapping capabilities that may be offered by the consequent
part. Therefore, we adopted an adaptive neural fuzzy network
(ANFN) controller, which is based on our previous research [16]
and combines a fuzzy system with a functional link neural net-
work (FLNN) [17]. The consequent part of the fuzzy rules that
corresponds to an FLNN comprises the functional expansion of
input variables.

Training of the parameters is the main problem in designing
a neural fuzzy network. Backpropagation (BP) training is com-
monly adopted to solve this problem. It is a powerful training
technique that can be applied to networks with a forward struc-
ture. Since the steepest descent approach is used in BP training
to minimize the error function, the algorithms may reach the lo-
cal minima very quickly and never find the global solution. The
aforementioned disadvantages lead to suboptimal performance,
even with a favorable neural fuzzy network topology. Therefore,
technologies that can be used to train the system parameters and
find the global solution while optimizing the overall structure
are required. Recently, genetic fuzzy systems [18]-[22] have
received increasing attention mainly because they combine the
approximate reasoning method of fuzzy systems with the learn-
ing capabilities of evolutionary algorithms. However, the search
is extremely time-consuming, which is one of the basic disad-
vantages of all genetic algorithms (GAs). Although the conver-
gence in some special cases can be improved by hybridizing
GAs with some local search algorithms, it is achieved at the
expense of the versatility and simplicity of the algorithm. Sim-
ilar to GAs, differential evolution (DE) has emerged as a robust
numerical optimization algorithm and has been successfully ap-
plied to solve various difficult optimization problems [23]-[25].
Basically, DE is fast, easy to use, and not only astonishingly
simple, but also performs extremely well in a wide variety
of test problems. The basic strategy employs the difference
of two randomly selected individuals as the source of random
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Fig. 1.

Structure of the proposed ANFN controller.

variations for a third individual. However, DE usually explores
too many search points before locating the global optimum. In
addition, although DE is particularly simple to work with, hav-
ing only a few control parameters, the choice of these parameters
is often critical for the performance of DE [26].

This study proposes a modified differential evolution
(MODE) for an ANFN (ANFN-MODE). The proposed MODE
learning algorithm has two crucial ideas. First, MODE adopts
a method to effectively search between the best-so-far individ-
ual and randomly chosen individuals, and employs an adaptive
parameter to adjust the scaling factor of the traditional DE algo-
rithm. Second, MODE also provides a cluster-based mutation
scheme, which maintains useful diversity in the population to in-
crease the search capability. The cluster-based mutation scheme
prevents the MODE from being trapped in local optima of the
search space. The population is clustered with similar features
but that are unable to breed with individuals outside their cluster.
Hence, for each cluster, the best individual will be reserved and
other individuals will be suitably mutated to the next generation.

The rest of this paper is organized as follows. Section II
presents the structure of the ANFN. Next, Section III presents
the MODE. The experimental results of two practical appli-
cations are described in Section IV. Section V analyzes the
stability of ANFN-MODE. Section VI gives conclusions.

II. STRUCTURE OF THE ANFN CONTROLLER

This section describes the ANFN controller [16], which uses
a nonlinear combination of input variables (FLNN) [17]. Each
fuzzy rule corresponds to an output of FLNN, comprising a
functional link. Fig. 1 presents the structure of the proposed
ANEN controller.

The ANFN controller realizes a fuzzy if-then rule in the
following form:

Rulej: IF JA?l is Alj and [iQ is AZj
and Zy is Ay

andii is Aij

M
THEN §; = ) wi;jén
k=1

=wij¢1 +waido + -+ warjdm (D

where Z; and g; are the input and local output variables, respec-
tively, A;; is the linguistic term of the precondition part with
Gaussian membership function, N is the number of input vari-
ables, wy,; is the link weight of the local output, ¢y, is the basis
trigonometric function of input variables, M is the number of
basis function, and Rule-j is the jth fuzzy rule.

The operation functions of the nodes in each layer of the
ANFN controller are now described. In the following descrip-
tion, u(") denotes the output of a node in the Ith layer.

No computation is performed in layer 1. Each node in this
layer only transmits input values to the next layer directly:

V) =z, @3]

Each fuzzy set A;; is described here by a Gaussian member-
ship function. Therefore, the calculated membership value in

layer 2 is
(1) 2
w; — My
uEJQ) = exp <_w> (3)

o3

where m;; and o0;; are the mean and variance of the Gaussian
membership function, respectively, of the jth term of the ¢th
input variable &;.

Nodes in layer 3 receive 1-D membership degrees of the
associated rule from the nodes of a set in layer 2. Here, the
product operator described before is adopted to perform the
precondition part of the fuzzy rules. As a result, the output
function of each inference node is

u? =]Jw} @)

where the [, uf? term of a rule node represents the firing
strength of its corresponding rule.

Nodes in layer 4 are called consequent nodes. The input to a
node in layer 4 is the output from layer 3, and the other inputs

are calculated from an FLNN. For such a node,
M
4
uE ) = u§3> Zwkj¢k &)
k=1

where wy; is the corresponding link weight of FLNN and ¢, is
the functional expansion of input variables. The functional ex-
pansion uses a trigonometric polynomial basis function, given
by [1,d1,sin(r &), cos(m 1), &9, sin(w L2 ), cos(m &), £122]
for 2-D input variables. Therefore, M is the number of basis
functions, M = 3 x N + 2, where N is the number of input
variables. Moreover, the output nodes of FLNN depend on the
number of fuzzy rules of the ANFN controller.
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Fig. 2. Coding ANFN controller into an individual in the proposed MODE.

The output node in layer 5 integrates all of the actions rec-
ommended by layers 3 and 4 and acts as a defuzzifier with

W (Zi\il wqubk)

(
— J
y=u" ==k 3) R 3
Z]’:l “; ) Zj:l “; )
R (3),
72;’:1“2)%’ 6
=k 0 ©)

where R is the number of fuzzy rules and y is the output of the
ANFN controller. As described before, the number of tuning
parameters for the ANFN controller is known to be (2 x N +
(3x N +2) x P) x R,where N, R, and P denote the number
of inputs, existing rules, and outputs, respectively.

III. MODE FOR THE ANFN CONTROLLER

This section describes a MODE for the ANFN controller.
The MODE learning algorithm consists of four major phases—
the initialization phase, the evaluation phase, the reproduction
phase, and the cluster-based mutation phase. First, the initializa-
tion phase creates an initial population. Second, the evaluation
phase evaluates the performance of each individual using an
objective function. Third, the reproduction phase generates new
individuals and select survivors to advance to the next phase.
Fourth, the cluster-based mutation phase ensures diversity and
prevents a population from converging to a suboptimal solution.
The whole learning process is described step-by-step shortly.

A. Initialization Phase

1) Coding Step: The foremost step in MODE is the coding
of the neural fuzzy network into an individual. Fig. 2 shows
an example of the coding of parameters of the neural fuzzy
network into an individual, where ¢ and j represent the ith input
variable and the jth rule, respectively. In this study, a Gaussian
membership function is used with variables that represent the
mean and variance of the membership function. Fig. 2 represents
the neural fuzzy network given by (1), where m;; and o;; are
the mean and variance of a Gaussian membership function,
respectively, and wy,; represents the corresponding link weight
of the consequent part that is connected to the jth rule node.
In this study, a real number represents the position of each
individual.

2) Create Initial Population: Before the MODE learning al-
gorithm is applied, every individual x; ;, must be created ran-
domly in the range [0, 1], where ¢ = 1,2, ..., PS represents the
ith individual for each generation g and PS denotes the popula-
tion size.

TABLE 1

PARAMETER SETTINGS BEFORE TRAINING
Parameter Value
Population Size 50
Maximum Number of Generation |2000
Crossover Rate 0.9
Coding Type Real Number

1
Fig. 3. A physical model geometry of the planetary train-type inverted

pendulum.

B. Evaluation Phase

In this study, we adopt a fitness function (i.e., objective func-
tion) to evaluate the performance of each individual. The fitness
function is defined as follows:

1
fitness = 7

14 \/(1/Nt) SN (g — )

where y;; represents the model output of the kth data, y; the
desired output of the kth data, and /V; the number of the training
data.

C. Reproduction Phase

1) Parent Choice: Each individual in the current generation
is allowed to breed through mating with other randomly se-
lected individuals from the population. Specifically, for each
individual x; 4, ¢ = 1,2,..., PS, where g denotes the current
generation, three other random individuals, z, 4, z,, 4, and
Zry.q, are selected from the population such that r, 73, and
ry € {1,2,...,PS} and ¢ # r; # ry # r3. This way, a parent
pool of four individuals is formed to produce an offspring.

2) Offspring Generation: After choosing the parents,
MODE applies a differential operation to generate a mutated
individual v; 4 according to the following equation:

Ui,g = xrl N + (1 - F)(xrg,g - x'r;;,g) + F(xbcst - Z'M ,g)
®)
where F', commonly known as the scaling factor, is defined
as g/G to control the rate at which the population evolves,
g denotes the current generation, GG is the maximum num-
ber of generations, and x}.st 1S the best-so-far individual (i.e.,
Thest keeps best fitness value up to now in the population). To
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Fig. 4.

complement the differential operation search strategy, the
MODE uses a crossover operation, often referred to as discrete
recombination, in which the mutated individual v; , is mated
with x; , and generates the offspring u; 4. The elements of an
individual u; 4 are inherited from z; , and v; 4, which are deter-
mined by a parameter called crossover probability (CR € [0, 1]),
as follows:

if Rand(d) < CR

if Rand(d) > CR ©)

Uig.g = vid,ga
19 Tid,g»

where d = 1,2,..., D denotes the dth element of individual
vectors. Rand(d) € [0, 1] is the dth evaluation of a random num-
ber generator.

3) Survivor Selection: MODE applies selection pressure
only when selecting survivors. A knockout competition is played
between each individual z; 4 and its offspring u; 4, and the win-
ner is selected deterministically based on objective function
values and is then promoted to the next phase. Moreover, the
best individual also reserves to the next generation.

D. Cluster-Based Mutation Phase

To prevent the MODE from being trapped in the local optima
of the search space (i.e., problems in which there are a number
of points that are better than all their neighboring solutions, but
do not have as good a fitness as the globally optimal solution),
we adopt a cluster-based mutation scheme, which maintains
diversity in the population to increase the search capability. We
use an easy and fast self-cluster algorithm (SCA) [27] to cluster
the population. Each cluster can be viewed as a subspace with
similar biological features in the environment that can support
different types of life, i.e., these similar individuals of each
cluster direct the search toward the same local optima. Then,
for each cluster, the best individual will be reserved and other
individuals will be suitably mutated to the next generation.

A convex mutation operation is applied in this study. The
basic concept of a convex mutation is derived from the convex
set theory [28], [29]. Two elements in a single individual are
randomly chosen to execute the mutation of a convex combina-
tion. The method is designed to enhance fine-tuning capabilities
and generate high diversity of individuals to avoid early conver-
gence. For a given © = (21,%a,...,Zd-1,Td,Ld+1,---+TD)s
if the element z, is randomly selected, the resulting offspring
isx = (v1,22,...,2/4-1,24,%), 1, ..., 2p). The two new el-
ements ), , and z, , are

r
| pendulum angle | ]

| command | Planetary Train pendu]um angle
| Controller D/Ap——Driver Type Inverted >

I I Pendulum

' [

' |

' [

|

| A/D : Encoder

' [
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Control block diagram for the planetary train-type inverted pendulum system.

Fig. 5.

The experimental planetary train-type inverted pendulum system.

xy = (1 =)y, +yry,, and

zy = 1=z, +vz (10)

where  is a random number in [0, 1].

IV. EXPERIMENTAL RESULTS

This experiment discusses the use of a real-time digital con-
trol environment with a hardware-in-the-loop (HIL) control ap-
plication. We configure a real-time visual simulation (VisSim)
environment, including an RT-DAC4/PCI motion control card
and HIL systems to demonstrate the performance of the ANFN-
MODE controller for practical control applications. VisSim is
a Windows-based program for the modeling and simulation of
complex nonlinear dynamic systems. VisSim combines an in-
tuitive drag and drop block diagram interface with a powerful
simulation engine. We can generate a VisSim diagram using
a customizable ANSI C code directly. In this study, we ap-
plied the ANFN-MODE controller to the planetary-train-type
inverted pendulum system and the magnetic levitation system
in the VisSim. The experiment compares the performance with
that of the ANFN-MODE controller, the ANFN-DE controller,
and the ANFN-GA controller. Table I presents the parameter
settings before training, which are used in the three computer
simulations for the MODE. In the DE, the population size is set
to 50, the maximum number of generation is set to 2000, and
the crossover rate is set to 0.9. In the GA, the population size is
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Fig. 6. (a)—(d) Final regulation performance of the ANFN-MODE controller, PID controller, ANFN-DE controller, and ANFN-GA controller. (¢) Scaling curves

of the ANFN-MODE controller and PID controller between the 1.5th second and the 3.5th second.
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set to 50, the maximum number of generation is set to 2000, the
crossover rate is set to 0.5, and the mutation rate is set to 0.3.

A. Control of the Planetary-Train-Type Inverted
Pendulum System

In order to predict the dynamic behavior of a system from
given input command and initial conditions of the system, it is
necessary to make a mathematical model of the planetary-train-
type inverted pendulum system [30]. The dynamic behavior
of the system is helpful in sizing the actuator, choosing the
amplifier power, designing the details of the mechanisms, and
tuning the controller by computer simulation. To clarify the
kinematic and dynamic relations, three major movable parts, the
center gear, the planetary gear, and the pendulum, are depicted
in Fig. 3.

The kinematic relations of the three components can be allot-
ted to two mutual movements as follows. First, we assume the
pendulum to be stationary (90 = 0). The ratio of the movements
of the planetary gear to the center gear is then
0 N

]

: 11
05 Ny 1 an

where 6, and 6, are the angles of the center gear and the plane-
tary gear, respectively; N; and N, are the numbers of the tooth
of the center gear and the planetary gear, respectively; r; and
ro are the radii of the center gear and the planetary gear; the dot
denotes the time derivative; and 9’1 refers to the angular velocity
of the planetary gear in this case. Thus,

0, = ebs. (12)

Second, we assume the center gear to be stationary (92 =0),
and allow the pendulum and planetary gear to turn. The velocity

of the planetary gear center can then be expressed as
v=(r +r2)6"g. (13)

_This velocity lets the angular velocity of the planetary gear
(#7) in this case be

=L g (14)
™ A
Combining (13) and (14), we obtain
by =6+ 0
— ey + T2, (15)
1

For the purpose of obtaining the relations between the input
motor torque Ty, the output responses of the pendulum 6, and
the center gear 6, we will use Lagrangian mechanics. Using
this method can ensure that we analyze the mechanism in a
systematic approach. It starts with the findings of kinetic energy
and potential energy of each movable part:

1 .
K2:§I20§
P2:0

TABLE 11
COMPARISON OF PERFORMANCE OF VARIOUS CONTROLLERS TO CONTROL OF
THE PLANETARY TRAIN-TYPE INVERTED PENDULUM SYSTEM WITH A 0.1 s
SAMPLING RATE

ANFN-MODE PID ANFN-DE ANFN-GA
Controller Controller Controller Controller
SAE, SAE, 4 SAE, SAE, 4 SAE, SAE, 4 SAE, SAE, 4
Case 1| 33.3549 | 68.5454 | 34.0881 | 73.3770 | 33.4316 | 69.1548 | 33.5696 | 69.7101
Case 2| 33.6101 | 72.3521 | 34.4442 | 80.4085 | 33.7968 | 72.9001 | 33.8245 | 73.3907
1 . 1.
2 2
K1 = *ml[(’/’l +’/‘2)90} +*1191
2 2
Py =myg(r1 +1m2) cosby
1/1 .
K 0— = *molQ 92
2\3 0
1
Py = mgg§ cos Gy (16)

where K, K1, and K are the kinetic energies of the center gear,
the planetary gear, and the pendulum, respectively; P, P;, and
Py are the potential energies of the center gear, the planetary
gear, and the pendulum, respectively; I and I; are the moments
of inertia of the center gear and the planetary gear, respectively;
m1 and my are the masses of the planetary gear and the pendu-
lum, respectively; and [ is the length of the pendulum.
Substituting (15) into (16), we obtain Lagrangian as follows:

L= K-Y'P

1 1 :
= [2777,1 (7”1 + 7”2)2 + 6m0l2:| 08

1 . 7‘1+7’2' 2 1 V)
=TI 0 0 —150
+21<€2+ " 0) +222

1
_ [ml (r1+79) + Qm[)] gcosfy. 17

Because 6y and 6, are two independent variables, we regard
them as generalized coordinates. Using Lagrange’s equation,
two of the dynamic equations are derived as follows:

4oLy o
@i \ o6, ) ~ 90,
9 o r + 1o .
:(6 11+IQ)92+6< . >Ile()
1
oo (3L> _ oL
" dt \og,) 06

ritr’ SRR S
_ Il—|—m1(’l“1+’l“2) —|—§m0l 0

Ty =

(18)

1

T+ T - 1 .
+e( lr 2) 1,0y — [ml(rl —|—7“2)—|—2m0] g sin 6.
1

19)
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Fig. 7. (a)—(d) Tracking of the ANFN-MODE controller, PID controller, ANFN-DE controller, and ANFN-GA controller, respectively, for a square wave with
amplitude £0.02 and frequency 0.5 Hz. (e) Tracking curves of the ANFN-MODE controller and PID controller between the fourth second and the eighth second.
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In (19), there is no external torque applied in the pendulum,
so we assign zero to the variable 7.

In this study, the proposed control structure is shown in
Fig. 4. The applied encoder is used to sense the angle of the
pendulum and then to translate the signal as a feedback sig-
nal. The pendulum angle is controlled by a motor torque until
the pendulum is balanceable. To validate the usefulness of the
proposed control system under different reference trajectories,
two cases, including the set point command (i.e., the stick angle
command is equal to zero) and the periodic square command
(i.e., the stick angle command is equal to the square wave) are
used in this experiment.

This study compares the ANFN-MODE controller to the PID
controller, the ANFN-DE controller, and the ANFN-GA con-
troller. Each of these controllers is applied to the planetary-
train-type inverted pendulum system. The PID controller is im-
plemented as follows:

t

d
e(r)dr + Kd—e

t) = Kye(t) + K;
u(t) = Kye(t) + K. | -

(20)
where u(t) is the control output and the error e(t) is defined as
desired value - measured value of the quantity being controlled.
The control gains K, = 830, K; = 0, and Ky = 0.3284 are de-
signed with a laboratory manual by our extensive experiments.
The training patterns of the ANFN model are generated using
the various PID controllers with different control gains.

Fig. 5 shows an experimental planetary-train-type inverted
pendulum system test used to validate the experiment results.
The performance measures include the set points regulation
(case 1) and the square command tracking capability (case 2)
of the controllers. In case 1, the proposed system is controlled
to follow the set points, which is equal to zero. Fig. 6(a)—(d)
presents the regulation performance of the ANFN-MODE con-
troller, the PID controller, the ANFN-DE controller, and the
ANFN-GA controller. Fig. 6(e) plots the scaling curves of the
ANFN-MODE controller and the PID controller between the
1.5th second and the 3.5th second. To test their regulation per-
formance, two performance indexes, the sum of absolute error
(SAE) for the pendulum angle and the pendulum speed, are
defined by

SAEy, = > |65 — 6|

gref 9’0(

@1
where 96Cf and 6 are the referred pendulum angle and the actual
pendulum angle, respectively, and G.{ff and 6, are the referred
pendulum speed and the actual pendulum speed, respectively.
The SAEy, and SAE; of the experimental results are presented
in Table II.

In case 2, the tracking capability of the proposed system is
tested using a square wave with amplitude +0.02 and frequency
0.5 Hz. Fig. 7(a)-(d) presents the regulation performance of
the ANFN-MODE controller, the PID controller, the ANFN-
DE controller, and the ANFN-GA controller. Fig. 7(e) plots
the scaling curves of the ANFN-MODE controller and the PID
controller between the fourth second and the eighth second. A
summary of the experimental results are presented in Table II.

and SAE()U = Z

TABLE III
PERFORMANCE COMPARISON OF VARIOUS EXISTING CONTROLLERS
Lin and Chin
Our method | Huang et al. [31]
[12]

SAE a SAE 4 SAE a SAE 4 SAE o SAE 4
Case 1| 33.3549 | 68.5454 | 33.6172 | 70.2862 | 33.7316 | 71.8263
Case 2| 33.6101 | 72.3521 | 33.9441 | 74.2963 | 34.0529 | 75.0147

Fig. 8. Sphere and coil arrangement of the magnetic levitation system.

As presented in Table II, the proposed ANFN-MODE controller
outperforms the other controllers.

Recently, Huang ef al. [31] developed an intelligent neu-
ral sliding controller for planetary-train-type inverted pendulum
system. The control methodology is based on the sliding mode
control. The switching function in the normal control law is re-
placed with a bipolar sigmoid function. A fuzzy neural network
is used to identify the pendulum dynamics. Adaptive tuning law
is derived. The bipolar sigmoid function is thus adjusted ac-
cording to the result of the identification process. We redid the
same experiment to follow the set points equal to zero. In our
experiment, compared with their method [31] that took about
2.5 s to reach and stay on the destination point, our method only
took 2 s. To test their regulation performance, the experimental
results are shown in Table III. As presented in Table III, the pro-
posed ANFN-MODE controller has a better performance than
the other controllers in tracking capability.

B. Control of the Magnetic Levitation System

In order to construct a physical model of the behavior of the
magnetic levitation system [32], it is necessary to make some
statements about the system and also some simplifying assump-
tions. The physical model of the sphere and coil of the magnetic
levitation system is shown in Fig. 8. The applied control is volt-
age, which is converted into a current within the mechanical
unit. The current passes through an electromagnet that creates
the corresponding magnetic field in its vicinity. The sphere is
placed along the vertical axis of the electromagnet.

Using the fundamental principle of dynamics, the behavior
of the ferromagnetic ball is given by the following electrome-
chanical equation:

2
m(lej =mg — Fp(z,1i)
where m is the mass of the levitated ball, g denotes the accel-
eration due to gravity, = is the distance of the ball from the
electromagnet, ¢ is the current across the electromagnet, and
Fp (z,1) is the magnetic control force.

(22)
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Fig. 9. Control block diagram for the magnetic levitation system.
Fig. 10. Experimental magnetic levitation system.

The effect of the magnetic field from the electromagnetic is to
introduce a magnetic dipole in the sphere, which itself becomes
magnetized. The force acting on the sphere is then composed
of gravity and the magnetic force acting on the induced dipole.
The magnetic field at a distance of = from the end of the coil
may be calculated from the Biot—Savart law. This states that
the magnetic field produced by a small segment of wire, dS,
carrying a current [ is given by
wo IdS xr

dB = 47

g (23)
where p is the permeability of free space and dS x r is the
vector product of dS and r.

We are interested in the field along the axis of the coil. Consid-
eration of symmetry shows that the magnetic field perpendicular
to the axis is zero. To evaluate the integral in (23), we position
the current carrying element dS to lie horizontally on the top of
the coil and specify it by its unit vector components; similarly,
we specify the vector r by its unit vector components. Then we
have

dS =dS[010] and r=r[sin 00 cos 0. (24)

In (23), the vector product of dS and r from (24) is given by
dS x r = dSr|cos 6 0 sin 6]. (25)

Now, from considerations of symmetry, the field component
perpendicular to the coil axis must be zero on the axis. This is
the sin # component in (25). Also

the radius of the coil R = r cos 6. (26)

Detector

Hence, from (23), (25), and (26), the magnetic field compo-
nent dB, along the axis is given by

Id
dB, = po TS R and = (R + 222 @)
dr 3
Hence, integrating (27) round a single loop gives
B _ w 127 R?
" 4 (R? 4 22)3/2
IR?
S N S L— (28)

2 (R? + 332)3/2 :

To evaluate the field due to the many turns along the axis of
the coil, let n be the number of turns per meter and let L (in
meters) be its length. Now, we sum all the contributions from
all the turns of the coils, as shown in Fig. 8. When (28) is used,
the total axial field from all the turns of the coil becomes

nIR? [*+1 dx
Brotal = al / THo 1 oN3/3" 29)
2 x (R +a?)¥
Integrating (29) by parts gives
B B ponl R? X+L
Total — 2 RQ(RZ T (X —|—L)2)1/2
X
- R(R? +X2)1/2]' (30)
We can rewrite (30) as
B(x) = K1 IG(X). 3D

The force on the ball due to the field is proportional to the in-
duced dipole strength and the field strength. The induced dipole
strength is itself proportional to the field strength, and hence,
the upward force on the ball due to the field B is given by

Fp = K1 Ko I*(G(X) — G(X +6X)). (32)

Therefore,
Fp ~ —K3I6XG (X) (33)

where G'(X) denotes the derivation and § X is the dipole sepa-
ration. On the assumption that the poles are located at the center
of the mass of each hemisphere of the ball, 6 X is small com-
pared to L and R and may be taken as a constant. Therefore,
(33) becomes

Fp ~ KI*G (X). (34)
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Fig. 11. (a)—(d) Experimental results of the ANFN-MODE controller, PID controller, ANFN-DE controller, and ANFN-GA controller due to the periodic

sinusoidal command for the reference and actual positions, tracking error, and control effort.

In this study, the proposed control structure is shown in
Fig. 9. The applied photodetector is used to detect the posi-
tion of the levitated object and then to translate the signal as
feedback signal.

In this experiment, the proposed ANFN-MODE controller is
compared to the PID controller, the ANFN-DE controller, and
the ANFN-GA controller. Each of the controllers is applied to
control the magnetic levitation system. As given in the previous
section, the PID controller with K, = 1.7, K; = 0, and K; =
0.031 is designed. Fig. 10 shows an experimental magnetic
levitation system that is tested to validate the experiment results.
In the following four cases, the ANFN-MODE controller is
demonstrated to have outperformed the other controllers.

The first case and the second case are used to verify the track-
ing capability of the controllers. In the first case, the reference
signal is given by a sinusoidal wave with amplitude 0.5 and
frequency 0.2 Hz, and in the second case, the reference signal is
presented by a square wave with amplitude 0.5 and frequency
0.2 Hz. The final experimental results of the ANFN-MODE

controller, the PID controller, the ANFN-DE controller, and the
ANFN-GA controller are shown in Figs. 11(a)—(d) and 12(a)—
(d). To evaluate their performance, a performance index, the
SAE, is defined by

SAEp = Z |pref —p (35)
where P™f and P are the reference trajectory and the ac-
tual position of the simulated system, respectively. In the first
case, the SAEp values of the ANFN-MODE controller, the
PID controller, the ANFN-DE controller, and the ANFN-GA
controller are, respectively, 12.9002, 27.7017, 13.9169, and
15.1572, which are given in the second row of Table III. In the
second case, the SAEp values of the ANFN-MODE controller,
the PID controller, the ANFN-DE controller, and the ANFN-
GA controller are, respectively, 48.4033, 85.7310, 50.7233, and
53.5194, which are given in the third row of Table I'V. The pro-
posed ANFN-MODE controller has a smaller SAEp value than
the other controllers.
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Fig. 12. (a)—(d) Experimental results of the ANFN-MODE controller, PID controller, ANFN-DE controller, and ANFN-GA controller due to the periodic square

command for reference and actual positions, tracking error, and control effort.

TABLE IV
COMPARISON OF PERFORMANCE OF VARIOUS CONTROLLERS TO CONTROL OF A MAGNETIC LEVITATION SYSTEM WITH A 0.1 S SAMPLING RATE
ANFN-MODE PID ANFN-DE ANFN-GA
SAE, =Y |P7 - P

Controller Controller Controller Controller

Tracking sinusoidal wave 12.9002 27.70017 13.9169 15.1572

Tracking square wave 48.4033 85.7310 50.7233 53.5194

Influence of Impulse Noise 9.2709 12.7345 10.1515 10.8771

Effect of Change in Plant
7.9469 24.0004 11.0672 14.0844
Dynamics

The third experiment is performed to demonstrate the noise-
rejection ability of the four controllers when some unknown
impulse noise is imposed on the process. One impulse noise
value, —8 mm, is added to the plant output at the seventh sec-
ond. A set point of 2.5 mm is adopted in this experimental
case. The ANFN-MODE controller can recover from the dis-

turbance quickly after the occurrence of the impulse noise, as
shown in Fig. 13(a). Fig. 13(b)—(d) presents the behaviors of
the other three controllers under the influence of impulse noise.
The SAEp values of the ANFN-MODE controller, the PID con-
troller, the ANFN-DE controller, and the ANFN-GA controller
are, respectively, 9.2709, 12.7345, 10.1515, and 10.8777, which
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(a)—(d) Behavior of the ANFN-MODE controller, PID controller, ANFN-DE controller, and ANFN-GA controller under impulse noise in a magnetic

levitation system for the reference and actual positions, tracking error, and control effort.

are shown in the fourth row of Table III. The ANFN-MODE
controller performs quite well.

One common characteristic of many industrial control pro-
cesses is that their parameters tend to change in an unpredictable
way. The signal 0.6u(t — 0.005) is added to the plant input
between the 7th second and the 15th second in the fourth ex-
periment to test the robustness of the four controllers. A set
point of 2.5 mm is adopted in this fourth experiment. Fig.
14(a)—(d) presents the behaviors of the ANFN-MODE con-
troller, the PID controller, the ANFN-DE controller, and the
ANFN-GA controller when the plant dynamics change. The
SAEp values of the ANFN-MODE controller, the PID con-
troller, the ANFN-DE controller, and the ANFN-GA controller
are, respectively, 7.6136, 24.0004, 11.0672, and 14.0844, which
are shown in the fifth row of Table IV. The results present
the favorable control and disturbance rejection capabilities of
the trained ANFN-MODE controller in the magnetic levitation
system.

V. STABILITY ANALYSIS OF ANFN-MODE
Consider the nth-order nonlinear system (Fig. 15) that can be
expressed in the canonical form

" = . 7x<"’1>) + bu

(36)

where f is an unknown continuous function, b is the control gain
(for simplicity, b = 1 is taken in the subsequent development),
and v € R, y € RN are input and output of the plant, respec-
tively. We assume that the state vectorx = (1, 2o, ..., 2,)"
(z,&,...,2""D)T € R" is available for measurement. The
control objective is to force the plant state vector y to follow
a specified desired trajectory ¢ under the constraint that all
signals involved must be bounded.

Defining the tracking error vector e = y — 3¢, the problem
is thus to obtain a feedback control law, u = uy + u,, where
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levitation system for reference and actual positions, tracking error, and control effort.

uy and u, are control output of the ANFN controller and the
supervisor, respectively.

The global stability of the control system is a basic require-

ment for solving nonlinear control problems. Because general
evolution algorithm has come characteristic of random search,
some search points may cause learning process unstable. In
this paper, the supervisor u,(t) is designed (Fig. 15) to guar-
antee global stable of the closed-loop system in the sense
that the error state variables must be uniformly bounded, i.e.,
le(t)] < M < oo for all ¢ > 0, where M is a design parameter
specified by the designer.

[)L(n—l)’ (n —

Let an error metric be s(t) =ATe(t) with AT =
DAm=2) 1] € R". The question s(t) = 0 de-

fines a time-varying hyperplane in 8" on which the tracking
error vector decays exponentially to zero. The time derivative
of the error metric can be rewritten as

8(t) = —y(t) + Aye(t) — (1)) + u(t)

(37

(a)—(d) Behavior of the ANFN-MODE controller, PID controller, ANFN-DE controller, and ANFN-GA controller when a change occurs in the magnetic
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Overall scheme of stable ANFN-MODE.

Fig. 15.

where

AT = 0,20 (n —

DA (n—1)A] € R
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Considering V = (1/2)s?(t) as the Lyapunov function can-
didate, we have [33]

V(t) = s(t)3(1)
= s(t) [~y (1) + Aye(t) — f(2(t) +up () +us(t)]
< s(t) [~y (8) + Aye(t) — [f(@(O)] +ur () +us(B)]

(38)

If condition | f(z(t))| < F (F > 01is a constant) is assumed,
then the supervisory us(t) may be constructed as follows:

us(t) = ks [~kas(t) +y" (t) — Ay e(t)—sgn(s(t) F—uy (t)]

(39)
where kq > 0 is a constant; k; = 1if |e(t)] > M and ks = 0 if
le(t)| < M.Because all terms in (39) can be determined, the su-
pervisory control u, (t) of (39) can be implemented, substituting
(39) into (38) and considering the k; = 1 case, we have

V(t) < s(t) [=kas(t) + | f(z(t))] — sgn(s(t)) - F]
< —kas®(t) = ()] [F = £ (z(1))]]

< —kqgs*(t) < 0. (40)

Therefore, using the supervisory u(t) of (39), we always
have V (t) — 0, i.e., s(t) — 0, which, in turn, implies |e(t)| <
M.

VI. CONCLUSION

This study proposes an ANFN-MODE for nonlinear system
control. The ANFN-MODE controller adopts a nonlinear com-
bination of input variables to the consequent part of fuzzy rules
and uses a MODE to optimize the system parameters. We ap-
plied the ANFN-MODE controller to the planetary-train-type
inverted pendulum system and the magnetic levitation system
in the VisSim. The experimental results demonstrate that the
ANFN-MODE controller obtains a smaller SAE value than the
generally used ANFN-DE, ANFN-GA, and PID controllers for
solving nonlinear control problems.
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