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Protein thermostability information is closely linked to commercial production of many biomaterials.
Recent developments have shown that amino acid composition, special sequence patterns and hydrogen
bonds, disulfide bonds, salt bridges and so on are of considerable importance to thermostability. In this
study, we present a system to integrate these various factors that predict protein thermostability. In this
study, the features of proteins in the PGTdb are analyzed. We consider both structure and sequence features
and correlation coefficients are incorporated into the feature selection algorithm. Machine learning algo-
rithms are then used to develop identification systems and performances between the different algorithms
are compared. In this research, two features, (E + F + M + R)/residue and charged/non-charged, are found to
be critical to the thermostability of proteins. Although the sequence and structural models achieve a higher
accuracy, sequence-only models provides sufficient accuracy for sequence-only thermostability prediction.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Protein stability is intimately connected with protein folding
and all proteins have to be folded into their final active state to
be active and stable. In biotechnology, chemical reactions need to
be performed at high temperatures to decrease reaction time.
However, many proteins are not very stable when heated. Research
is needed that helps proteins to remain active and stable at high
temperatures, which will overcome many limitations to their
industrial applications (Huang et al., 2004). There are four thermo-
stability classes of protein, psychrophilic, mesophilic, thermophilic
and hyperthermophilic, separated by denaturation temperature of
20 �C, 50 �C and 80 �C (Vieille & Zeikus, 2001). Current research has
shown that the properties of proteins such as number of ion pairs,
and salt bridges are considerably related to protein thermostability
(Vieille & Zeikus, 2001). Research has shown that single point
mutation, when related to thermostability, may allow thermosta-
bility prediction (Capriotti, Fariselli, & Casadio, 2004; Capriotti,
Fariselli, & Casadio, 2005; Saraboji, Gromiha, & Ponnuswamy,
2006). Instead of analyzing mutant proteins, research is needed
that investigates the global relationships between thermostability,
protein structure and sequence properties.

Recent investigations have shown that features such as amino
acid composition and ion pairs are related to the thermostability.
ll rights reserved.
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However, a general model of how these features are related to
thermostability remains a scientific challenge. Our previous work
(Huang et al., 2004) has identified a general model relating ther-
mostability and ion pairs. Since structured folding is a complex
question, practically a model of thermostability based on sequence
information would be more useful than one based on other types of
analysis.

Our goal is to develop a predictive model for thermostability
based on sequence and structural features. Given a protein se-
quence/structure, the system aims to classify proteins into three
different thermostability classes: mesophilic, thermophilic and
hyperthermophilic. We aim to achieve high accuracy, sensitivity,
specificity and precision. Higher accuracy may be available if both
specific protein structure and sequence information are available,
but a general model that will accept sequence-only information
is also constructed.
2. Related works

The optimal growth temperature of an organism indicates the
temperature at which the organism’s growth is most rapid. The
prokaryotic Growth Temperature Database (PGTdb1) is a database
of prokaryotic thermostability information. We adapted the thermo-
stability information from the PGTdb for this work. The PDB2 is the
1 http://pgtdb.csie.ncu.edu.tw/.
2 http://www.rcsb.org/pdb/.
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single worldwide repository for the processing and distribution of 3-
D structure data of large molecules including proteins and nucleic
acids (Berman et al., 2000). Protein sequence and structure informa-
tion are collected through the PDB database.

Prediction of protein thermostability based on single mutation
points has shown that prediction of thermostability is possible
(Capriotti et al., 2004, 2005; Farias, van der Linden, Rego, Araujo,
& Bonato, 2004; Saraboji et al., 2006). Previous research (Haney,
Stees, & Konisky, 1999; Vieille & Zeikus, 2001) has shown that
many special properties of proteins are related to protein thermo-
stability. Usually, protein stability is intimately connected with the
protein three-dimensional structure. It is believed that sequence
determines the final folding of protein although three-dimensional
free folding of an arbitrary protein sequence is still a scientific
challenge.

The thermostability of proteins is directly connected to its
structural stability. Thus, the features maintaining the structure
folding are often considered as significant factors in protein ther-
mal stability. It has been demonstrated that there is a relationship
between thermostability and sequence information. Amino acid
composition and intrinsic propensity are thought to play important
roles in thermal stability (Vieille & Zeikus, 2001). For instance, the
protein’s content of hydrophobic amino acids is reasonably related
to its thermal stability. Many mutant rules, such as Trp ? Tyr,
Cys ? Ile, have been proposed to enhance thermostability (Grom-
iha, Oobatake, & Sarai, 1999). In addition to the amino acid compo-
sition, research has also found that there is a relationship between
sequence pattern and optimal growth temperature. The pattern
[EdH] and [EdT] are favored by mesophilic proteins (Liang, Huang,
Ko, & Hwang, 2005). Sometimes sequence analysis can focus on a
special pattern and its corresponding structure. The sequence pat-
tern is transformed into a favored secondary structure by the data-
base records giving a good linear relationship between local
structure and melting temperature (Chan et al., 2004).

There are various structure features that show a relationship
with thermostability. Secondary structure, such as a-helices, and
intrahelical interactions within the protein have been analyzed
and it has been concluded that high a-helical stability is necessary
for protein thermostability (Petukhov, Kil, Kuramitsu, & Lanzov,
1997). Hydrogen bonds, ion pairs, hydrophobic interactions and
disulfide bonds are thought to be the major forces affecting protein
tertiary structure. Hydrogen bonds are non-covalent bonds be-
tween donor and acceptor atoms and have been widely discussed
in protein structure research. Some studies have indicated that
an increase in hydrogen bonds contributes to thermostability
(Vogt, Woell, & Argos, 1997), and that side-chain–side-chain
hydrogen bonding plays the major role in this (Ragone, 2001).
Ion pairs are another feature that has been widely discussed with
respect to thermostability. Researchers have found that �1.1 ions
pairs are lost for every 10 �C fall in thermostability per subunit
(Gianese, Bossa, & Pascarella, 2002). When the distance between
the ion pair is subdivided into <4 Å, 4–6 Å and 6–8 Å, it was found
that the 6–8 Å group seem to play a more significant role in ther-
mostability than the other two (Szilagyi & Zavodszky, 2000). Other
possible properties, such as a hydrophobic core (Haney et al.,
1999), electrostatic interactions and dielectric response (Dominy,
Minoux, & Brooks, 2004), aromatic clusters on protein surface
(Kannan & Vishveshwara, 2000) and B values reported in high-res-
olution X-ray crystal structure (Parthasarathy & Murthy, 2000), are
all considered to be related to thermostability. An important
restriction is that high-resolution and a high-quality structure
are needed to calculate such tertiary structure properties.
Researchers usually utilize homology tools to produce theoretical
protein structures when the real structure is unknown, and then
compare those properties across the different thermostability
classes.
In addition to structural and sequence features, combination of
features may also act as a key to thermostability (Farias et al.,
2004). Research (Farias et al., 2004) has shown that the ratio
between glutamic acid plus lysine and glutamine plus histidine
gives a higher thermostability. This means that combination of
amino acid (E + K)/(Q + H) may be important to protein thermo-
stability.

The above research shows that almost all properties of a protein
are related to the thermostability based on observations that com-
pare homologous protein pairs or several protein mutants. A global
view of how these features are related to thermostability is needed.
In this study, we incorporate several machine learning approach
such as Naïve Bayes (Huang et al., 2004), SVM and neural network
together with k-NN (Baumgartner et al., 2004) into an investiga-
tion of the relationship between protein features and
thermostability.
3. Materials and methods

3.1. System flow

We have developed a data-mining system to analysis the rela-
tionship between protein features and thermostability. The system
builds a model based on given protein features and thermostability
information. The system then takes the inputted protein features
and tries to predict the thermostability of a given protein as one
of three classes, mesophilic, thermophilic and hyperthermophilic.
The system incorporates feature selection to eliminate low-con-
tributing features and incorporates several machine learning ap-
proaches. Fig. 1 shows the system flow.

3.2. Materials

3.2.1. Sampling data
The optimal growth temperature of an organism indicates the

temperature at which the organism’s growth is most rapid. Re-
search on the source organism’s optimal growth temperature can
be used in place of experimental thermostability data when com-
paring proteins. Most proteins of an organism are reasonably ac-
tive and quite stable at the optimal growth temperature of the
organism.

Two databases, PGTdb and PDB, are used in our research. We
identified 5487 proteins for which there are both optimal growth
temperature information in PGTdb and structural information in
PDB. Fig. 2 show the data distribution for these proteins with re-
spect to the temperature.

In total, there are 41 different optimal temperatures for the pro-
teins. Fig. 2 shows that the number of proteins with an optimal
temperature of 37 �C is far more than others. Most studied pro-
karyotic organisms are mesophilic and therefore over-sampling
at this temperature in the PGTdb is not unexpected. As a result,
the distribution is unbalanced and therefore any prediction will fo-
cus on proteins with an optimal temperature of 37 �C, In other
words, a prediction model that predicts every protein to have an
optimum temperature of 37 �C will achieve high accuracy, but will
fail to reach the goal of linking features and thermostability. In or-
der to balance the temperature difference sample size, we carried
out a Z-test to pick the temperatures that contain significantly
more proteins then other temperatures. There were seven temper-
atures that exceeded the Z-test limit, which indicated a barrier of
125 proteins. We select 125 proteins randomly by computer from
each of these seven temperatures to balance the data. As a result,
1810 proteins from different temperatures form our sample data-
set. The dataset consists of 878 mesophilic, 580 thermophilic and
352 hyperthermophilic proteins.



Fig. 1. System flow.

3 NBC (http://www.cs.pdx.edu/~timm/dm/nbc.html).
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3.2.2. Candidate features
Several candidate features are considered to be globally related

to the thermostability of proteins. We categorize these features
into four categories as follows.

(A) Primary structure: amino acid composition of the protein
sequence.

(B) Secondary structure: the amount of helix structure found
within the protein and the number of atoms making up
the helices.

(C) Tertiary structure: Ion pairs, hydrogen bonds, disulfide bonds
and accessible surface area (ASA).

(D) Extended properties: Normalize the value obtained from (A),
(B) and (C) above and the ratio of various other features such
as polar/nonpolar.
3.2.3. Data generation
Several tools were used to calculate the secondary and tertiary

structural features of each protein as needed. Helix packing pair
(Dalton, Michalopoulos, & Westhead, 2003) was used to calculate
the helix properties of the proteins. HBPLUS v3.0 (McDonald &
Thornton, 1994) was used to calculate the hydrogen bonds in the
proteins using the default parameters and with the distance be-
tween donor and accept atoms set at <3 Å for strong hydrogen
bonds. EDPDB v03c (Matthews, 1995) was used to calculate the
disulfide bonds and the accessible surface areas (ASA) of the pro-
teins using the default parameters. In total, 111 features were cre-
ated for each protein.
3.3. Method

3.3.1. Feature selection
The total number of features was 111. Some features will con-

tribute in only a minor way to the thermostability, but others will
have a major effect. Clearly, not all of these candidate features are
critical related to protein thermostability. Inputting the whole
dataset will therefore result in the data analysis process screening
a lot of noisy information and this will give rise to weak results.
Therefore, we adapted the correlation coefficient method in order
to carry out feature selection. The use of correlation coefficients
is similar to the way they are normally used in statistical (Wacker-
ly & Scheaffer, 1996) and genetic analysis (Baumgartner et al.,
2004). In statistics, correlation coefficients are used to measure-
ment the linear relation between two random variables. Let the
two random variables, X and Y, have n pair elements each. Under
these circumstances, the correlation coefficient (r) between X and
Y is defined as follow:

r ¼
Pn

i¼1ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi � �xÞ2

Pn
i¼1ðyi � �yÞ2

q

where (xi,yi) is the ith pair and �x�y is the mean of X and Y,
respectively.

Here we use correlation coefficients to measure the significance
of features. We calculate the correlation between optimal growth
temperature and each feature. After calculating all absolute values
for the correlation coefficients, we extracted the features with
|r| = 0.3.

3.3.2. Naïve Bayes
Naïve Bayes is a data-mining and machine learning tool base on

the Bayes theorem and assumes that each variable (property) is
independence of each other. Compared with other machine learn-
ing approach, Naïve Bayes usually shows great speed and high
accuracy when analyzing a large dataset. Let c denote a class, x
denote a piece of evidence available to the machine learning algo-
rithm. The conditional probability P(c|x) represents the probability
of class c when evidence x occurs. By Bayes’ rule:

PðcjxÞ ¼ pðc \ xÞ
pðxÞ ¼

pðcÞpðxjcÞ
pðxÞ

where p(x) is the prior probability of evidence x, p(c) is the prior
probability of class c, p(x|c) is the probability of occurence that
the evidence x is found under class c. For each test data with an un-
known class label, we can assign a class label ci which has maxi-
mum P(ci|x). We used the implementation of the Naïve Bayes
classifier (NBC) by Tim Menzies.3

http://www.cs.pdx.edu/~timm/dm/nbc.html


Fig. 2. Distribution of data.
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3.3.3. Decision Tree
Decision Tree is a flow-chart-like tree structure (Han and Kam-

ber, 2005). The topmost node is the root node, each internal node
denotes an attribute test, each branch represents an outcome of
the test, and each leaf node represents classes. In order to classify
an unknown dataset, the attribute values are tested against the
Decision Tree. A path is traced from the root to a leaf node that
holds the class prediction for the test data, Different to Naïve Bayes
and Neural Network, the output model built by Decision Tree is
interpretable and can easily be converted to classification rules.
We use Decision Tree tool C4.54 to training our dataset.

3.3.4. Neural Network
Neural Network is a machine learning approach that was in-

spired by biological nervous systems. Usually, the network consists
of three major layers, input layer, hidden layer, output layer. Each
layer consists of several perceptions unit (nerves), and sometimes
the hidden layer consists of more than one layer when solving a
complex problem.

We use a neural network tool (SNNS5) to design a network using
the standard backpropagation algorithm, 10,000 cycles, learning rate
0.2, weight range [�1,1] and one hidden layer .The amount of units
in input layer is equal to the dimension of feature vector after feature
selection. The number of units in hidden layer is double that of the
input layer.

3.3.5. Model evaluation
An evaluation process is needed to measure the performance of

models created by machine learning approach. We used 10-fold
cross-validation to evaluate the model. Thus, 1810 proteins are
separated into 10 subsets randomly and then each subset is taken
as test data in turn. Four performance indices, accuracy, specificity,
sensitivity and precision, were used during our evaluation. Accu-
4 C4.5 (http://www2.cs.uregina.ca/~hamilton/courses/831/notes/ml/dtrees/c4.5/
tutorial.html).

5 Stuttgart Neural Network Simulator (http://www-ra.informatik.uni-tuebin-
gen.de/SNNS/).
racy is the percentage of all correct decisions made by classifica-
tion algorithm. Sensitivity is the proportion of the data in class A
that is also classified into class C. Specificity represent the propor-
tion of data not in class C that are not classified into class C either.
Precision is the proportion of data predicted in class C that is really
in class A.

For example, each protein in data set has two thermostability
class labels after the K-fold process. One is the protein’s real ther-
mostability class (Creal), and another is the thermostability class
(Cpredict) assigned by the model built by machine learning. If we fo-
cus on thermostability class mesophilic, then there is a subset la-
beled REAL that is made up of proteins whose Creal = mesophilic.
After the K-fold process, another subset os produced labeled PRE-
DICT, which consists of protein whose Cpredict = mesophilic. Let
the four subsets TP, FP, TN and FN refer to True Positive, False Po-
sitive, True Negative, and False Negative, respectively, then

TP is consists of proteins whose both Creal and Cpredict are
mesophilic.
FP is consists of proteins whose Cpredict = mesophilic, but Creal is
not mesophilic.
TN is consists of proteins whose neither Creal nor Cpredict are
mesophilic.
FN is consists of proteins whose Creal = mesophilic, but Cpredict is
not mesophilic.
REAL is the union of TP and FN.
PREDICT is the union of FP and TP

Then the four performance indices are as follows:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

Sensitivity ¼ TP
TPþ FN

Specificivity ¼ TN
TNþ FP

Precision ¼ TP
TPþ FP

http://www2.cs.uregina.ca/~hamilton/courses/831/notes/ml/dtrees/c4.5/tutorial.html
http://www2.cs.uregina.ca/~hamilton/courses/831/notes/ml/dtrees/c4.5/tutorial.html
http://www-ra.informatik.uni-tuebingen.de/SNNS/
http://www-ra.informatik.uni-tuebingen.de/SNNS/


Table 1
Top 20 features with the highest correlation coefficients.

Feature Correlation coefficient

Glutamate (E)/residue 0.561
Charged/non-charged 0.496
Non-charged/residue 0.496
Charged/residue 0.489
Basic/residue 0.458
(E + F + M + R)/residue 0.437
Lysine (K)/residue 0.421
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To minimize the bias within such a random process, we re-
peated the above procedure one hundred times and used the aver-
age of the 100 results to measure our system.

Fig. 3 show the training and predicting processes. A model was
created using a machine learning approach. The model contains
several interpretable or non-interpretable rules depend on the
training algorithm. From a given feature set for a protein, the mod-
el will calculate the thermostability class of protein following these
rules.
Glutamine (Q)/residue 0.404
Threonine (T)/residue 0.388
Acidic/residue 0.363
Isoleucine (I)/residue 0.350
Glutamate (E) 0.328
Serine (S)/residue 0.325
Asparagine (N)/residue 0.286
Lysine (K) 0.285
Alanine (A)/residue 0.282
Glutamine (Q) 0.280
Ion pair (GLU_ARG_24) 0.330
Ion pair (GLU_HIS_24) 0.370
Ion pair (GLU_LYS_24) 0.380
4. Results

4.1. Correlation coefficient

We considered the 111 proteins features and the correlation
coefficients showed that some feature only contributed in a minor
way to thermostability. Table 1 shows the top 20 sequence features
and their correlation coefficients. A full table of all correlation coef-
ficients is given in the Appendix.

For this study, we selected a correlation coefficient threshold of
0.3, which gave a subset of eleven sequence features and three
structural features. The sequence features were made up of gluta-
mate (E)/residue, charged/non-charged, charged/residue, basic/
residue, (E + F + M + R)/residue, lysine (K)/residue, glutamine (Q)/
residue, threonine (T)/residue, acidic/residue, isoleucine (I)/residue
and serine (S)/residue. The structural features consisted of the
three strong ion pair formed by glutamate/arginine, glutamate/his-
tidine and glutamate/lysine.

4.2. Cross validation result

4.2.1. Three test cases
For this study, we designed three test cases to examine the

models built by machine learning. We constructed three datasets
that divided proteins into different temperature types, MT, TH
and MTH. The MT dataset divided the protein thermostability by
50 �C. Using this division, we tried to identify the difference be-
Fig. 3. Training and pred
tween mesophilic proteins and thermophilic proteins in the MT
dataset. Thus, hyperthermophilic proteins are treated as thermo-
philic proteins in the MT dataset. Similarly, the TH dataset divided
the protein thermostability by 80 �C and mesophilic proteins are
treated as thermophilic proteins in the TH dataset. In the MTH
dataset, the data is divided into three classes by 50 �C and by
80 �C and we attempted to identify all three different thermosta-
bility classes during the same process.

4.2.2. Comparing the three machine learning approaches
Table 2 show the accuracy results for mesophilicity based on

the eleven features. This table reveals that the Decision Tree and
Neural Network approaches gave better performance than Naïve
Bayes. Overall, Decision Tree gave the highest performance overall
because Neural Network gave a significantly poorer performance
with class TH.
icting system flow.



Table 2
Accuracy results based on the 11 sequence-only features.

Classifier MT TH MTH

Naïve Bayes 0.76 0.78 0.77
Decision Tree 0.87 0.84 0.85
Neural Network 0.88 0.75 0.81

Table 3
Accuracy results based on all 14 features.

Classifier MT TH MTH

Naïve Bayes 0.76 0.78 0.75
Decision Tree 0.87 0.84 0.86
Neural Network 0.85 0.82 0.74

Table 5
Detailed results for the four indices based on all 14 features using the MT dataset.

Mesophilic Thermophilic

AVG. (%) STD. AVG. (%) STD.

Accuracy 86.8 0.005 86.8 0.005
Sensitivity 85.8 0.007 87.7 0.010
Specificity 87.7 0.010 85.8 0.007
Precision 87.5 0.009 86.1 0.006

Table 6
Detailed results for the four indices based on 11 features using the TH dataset.

Thermophilic Hyperthermophilic

AVG. (%) STD. AVG. (%) STD.

Accuracy 84.3 0.016 84.3 0.016
Sensitivity 81.1 0.024 87.6 0.018
Specificity 87.6 0.018 81.1 0.024
Precision 86.8 0.018 82.3 0.019

Table 7
Detailed results for the four indices based on all 14 features using the TH dataset.

Thermophilic Hyperthermophilic

AVG. (%) STD. AVG. (%) STD.

Accuracy 83.5 0.016 83.5 0.016
Sensitivity 80.5 0.021 86.5 0.019
Specificity 86.5 0.019 80.5 0.021
Precision 85.6 0.019 81.7 0.017

Table 8
Detailed results for the four indices based on 11 features using the MTH dataset.

Mesophilic Thermophilic Hyperthermophilic

AVG. (%) STD. AVG. (%) STD. AVG. (%) STD.

Accuracy 87.0 0.0066 83.6 0.0075 89.3 0.0056
Sensitivity 87.3 0.0090 73.1 0.0144 73.2 0.0181
Specificity 86.8 0.0086 88.5 0.0084 93.2 0.0057
Precision 86.2 0.0080 75.0 0.0143 72.2 0.0171

Table 9
Detailed results for the four indices based on all 14 features for the MTH dataset.

Mesophilic Thermophilic Hyperthermophilic

AVG. (%) STD. AVG. (%) STD. AVG. (%) STD.

Accuracy 87.7 0.006 81.2 0.007 89.6 0.006
Sensitivity 85.2 0.009 75.8 0.015 69.7 0.023
Specificity 90.0 0.007 83.7 0.010 94.3 0.006
Precision 88.9 0.007 68.9 0.013 74.5 0.020
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Table 3 show the accuracy result for mesophilicity based on all
14 sequence and structural features. Again, like the results shown
in Table 2, Decision Tree gave the best result overall.

4.3. Decision Tree detailed results

In the above section, Decision Tree gave good performance and
the accuracy was generally better than 84%. In order to analyze the
stability of the model, we repeat the cross-validation process 100
times and calculate the mean value and standard deviation of these
100 results.

Using the MT database, we can see from Table 4 that the mean
values (AVG.) and standard deviations (STD.) for the four perfor-
mance indices based on 100 results using 11 features. Firstly, accu-
racy, sensitivity, specificity and precision for mesophilicity and
thermophilicity are all higher than 86%. Secondly, the standard
deviations of all indices are 0.01 or lower. This means that our pre-
diction system built by Decision Tree is both stable and gives good
performance.

The features were then increased to 14 and Table 5 shows the
mean values and standard deviations for the four performance
indices based on 100 results. Compared to Table 4, the result still
show good performance, which is all better than 85%.

For the TH dataset, the same format results are show in Tables 6
and 7. For 11 features system, all these indices are higher than 81%
and the standard deviations are all lower than 0.024; thus the per-
formance and stability are still good. For the 14 features system, all
the indices are higher than 80% and the standard deviations are all
lower than 0.021.

The same approach was used for the MTH dataset and Table 8
shows the results for the 11 features system, while Table 9 shows
the results for the 14 features system. For 11 features, only preci-
sion for thermophilicity (65.0%), sensitivity for hyperthermophilic-
ity (63.0%) and precision for hyperthermophilicity (69.4%) are
lower than 70%. For mesophilicity, all four indices are better than
83%, while specificity for hyperthermophilicity is even higher than
93%. The standard deviations for the indices for three of the ther-
mostability classes are all lower than 0.03. For 14 features, only
precision in thermophilicity (68.9%) and sensitivity in hyperther-
mophilicity (69.7%) are lower than 70%, and all indices have im-
proved compared with 11 features. Thus, based on standard
Table 4
Detailed results for the four indices based on 11 features using the MT dataset.

Mesophilicity Thermophilicity

AVG. (%) STD. AVG. (%) STD.

Accuracy 87.3 0.005 87.3 0.005
Sensitivity 86.1 0.008 88.5 0.010
Specificity 88.5 0.010 86.1 0.008
Precision 88.2 0.009 86.4 0.007
deviation and error classification, we can say that our model shows
stable performance under cross-validation.

In addition to these four indices, we also carried out a special
test to evaluate the model’s consistency comparing the model cre-
ated by the MT dataset and that created by the TH dataset. For each
protein, we use both models to predict the thermostability. Incon-
sistencies between the models may occur if the MT model specifies
a protein is mesophilic while the TH model specifies it is hyper-
thermophilic. We calculate the percentage of proteins that show
such inconsistency. Using two random models, the result should
be an average of inconsistency of 25%. The output inconsistencies
based on 11 features and 14 features were 1.8% and 1.6%, respec-
tively. This meant that the models created by MT and TH datasets
showed a low level of inconsistency.



Table 10
New protein sequence dataset prediction results.

Index MT TH MTH

Accuracy 0.67 0.74 0.68
Sensitivity 0.56 0.82 0.54
Specificity 0.77 0.51 0.80
Precision 0.68 0.82 0.70

Appendix A

All features and their correlation coefficients.

Features Correlation coefficient

Alanine (A) �0.117
Arginine (R) 0.171
Asparagine (N) �0.197
Aspartic acid (D) �0.126
Cysteine (C) �0.009
Glutamic acid (E) 0.328
Glutamine (Q) �0.280
Glycine (G) �0.082
Histidine (H) �0.049
Isoleucine (I) 0.177
Leucine (L) 0.101
Lysine (K) 0.285
Methionine (M) �0.042
Phenylalanine (F) �0.013
Proline (P) �0.002
Serine (S) �0.181
Threonine (T) �0.216
Tryptophan (W) �0.195
Tyrosine (Y) �0.049
Valine (V) 0.139
Length 0.014
Acidic 0.161
Basic 0.218
Polar �0.001
Non-polar 0.032
Cyclic �0.057
Acyclic 0.030
Aliphatic 0.037
Aromatic �0.075
Hydrophobic 0.032
Hydrophobic (+G) 0.014
Hydrophilic �0.001
Charged 0.193
Non-charged �0.056
Alanine (A)/residue �0.282
Arginine (R)/residue 0.246
Asparagine (N)/residue �0.286
Aspartic acid (D)/residue �0.233
Cysteine (C)/residue 0.003
Glutamic acid (E)/residue 0.561
Glutamine (Q)/residue �0.404
Glycine (G)/residue �0.183
Histidine (H)/residue �0.092
Isoleucine (I)/residue 0.350
Leucine (L)/residue 0.158
Lysine (K)/residue 0.421
Methionine (M)/residue �0.040
Phenylalanine (F)/residue �0.022
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4.4. Prediction results

Here we applied new protein datasets to our model. First, 11415
proteins were downloaded from SWISS-Pro via PGTdb. Among
these, there were 9959 proteins with an optimal growth tempera-
ture lower than 50 �C, 869 proteins with one between 50 �C and
80 �C and 990 proteins with one higher than 80 �C. In order to
make this test fair, we also used sampling of this data set. After
sampling, the new dataset consisted of a total of 2943 proteins
made up of 1377 mesophilic, 752 thermophilic and 814 hyper-
thermophilic proteins.

Table 10 shows the performance result. These proteins had only
sequence information available and therefore the structural fea-
tures aspect of the analysis could not be applied. This dataset is
made up of many difference sequences, and the results showed a
lower performance index than with the previously used dataset,
especially that including structural information. The model based
on the TH dataset showed highest sensitivity, which suggests that
the TH model is better at detecting hyperthermophilic proteins.

5. Discussion and conclusions

A large amount of useful thermostability data on protein was
obtained from PGTdb (Huang et al., 2004) and thermostability pre-
diction based on this data was carried out. Several important fea-
tures need to be highlighted from this research and the
comparison of the various different machine learning techniques.
Important structural and sequence features are highlighted. Those
features with a higher correlation coefficient absolute values are
important not only to our prediction but will also be useful to pro-
tein engineering. After comparing the difference methods, Decision
Tree showed the best performance. Four performance indices,
accuracy, sensitivity, specificity and precision were obtained for
each dataset and overall high accuracy was achieved. The predic-
tion results from the test data made up of 2943 protein from
SWISS-Prot showed that an accuracy of better then 67% could be
obtained when doing real predictions.

The sequence and structure features together gave a better per-
formance than sequence features alone, which confirms previous
studies, which have shown that structural feature contribute to ther-
mostability. The sequence and structural model increased not only
the four indices of accuracy, sensitivity, specificity and precision,
but also reduced their standard deviations. Thus the sequence and
structural model gives higher stability than the sequence alone
model.

Two non-standard features were used in our research.
(E + F + M + R)/residue and charged/non-charged get high linear
correlation coefficients with optimal growth temperature. In Far-
ias’s research (Farias et al., 2004), a special ratio (E + K)/(Q + H)
was also considered a significant factor when distinguishing ther-
mophilic and mesophilic proteins. In our research, charged amino
acids consisted of aspartic acid, glutamic acid, lysine, arginine
and histidine. Non-charged amino acids are the remaining 15 ami-
no acids. Although the biological significance of these two features
has not been mentioned in previous research, the features
(E + F + M + R)/residue and charged/non-charged were important
factors in this work and need to be consider as new key features
when studying protein thermostability.

Our final prediction system is based on Decision Tree. Decision
Tree is an interpretable machine learning approach, which means
that the output from Decision Tree consists of many explicable
rules. Thus, hundreds of such rules were made available by this re-
search. Each rule shows a series of conditions for determining pro-
tein thermostability. Future works will be related to how to use
these rules to alter protein thermostability and this has been
initiated.
(continued on next page)



Appendix A (continued)

Features Correlation coefficient

Proline (P)/residue �0.027
Serine (S)/residue �0.325
Threonine (T)/residue �0.388
Tryptophan (W)/residue �0.235
Tyrosine (Y)/residue �0.121
Valine (V)/residue 0.249
Acidic/residue 0.363
Basic/residue 0.458
Polar/residue �0.087
Non-polar/residue 0.087
Cyclic/residue �0.185
Acyclic/residue 0.185
Aliphatic/residue 0.081
Aromatic/residue �0.195
Hydrophobic/residue 0.087
Hydrophobic (+G)/residue 0.004
Hydrophilic/residue �0.087
Charged/residue 0.489
Non-charged/residue �0.489
Acidic/basic �0.109
Basic/acidic 0.124
Polar/nonpolar �0.121
Nonpolar/polar 0.052
Cyclic/acyclic �0.171
Acyclic/cyclic 0.188
Charged/non-charged 0.496
Non-charged/charged �0.393
Hydrophobic/hydrophilic 0.052
Hydrophilic/hydrophobic �0.121
Hydrophobic (+G)/hydrophilic 0.012
Hydrophilic/hydrophobic (+G) �0.074
(E + F + M + R)/residue 0.437
ASA 0.029
Disulfide bond 0.017
Hydrogen bond �0.038
Strong hydrogen bond �0.019
Hydrogen bond/residue �0.034
Strong hydrogen bond/residue �0.015
Helix 0.034
Atom in helix 0.063
Helix/residue 0.050
Atom in helix/residue 0.091
Ion pair (ASP_ARG_24) 0.013
Ion pair (ASP_HIS_24) 0.025
Ion pair (ASP_LYS_24) �0.008
Ion pair (GLU_ARG_24) 0.330
Ion pair (GLU_HIS_24) 0.370
Ion pair (GLU_LYS_24) 0.380
All ion pair_24 0.224
Ion pair (ASP_ARG_46) 0.233
Ion pair (ASP_HIS_46) 0.245
Ion pair (ASP_LYS_46) �0.067
Ion pair (GLU_ARG_46) �0.201
Ion pair (GLU_HIS_46) �0.174
Ion pair (GLU_LYS_46) 0.033
All ion pair_46 0.082
Ion pair (ASP_ARG_68) 0.064
Ion pair (ASP_HIS_68) �0.042
Ion pair (ASP_LYS_68) �0.057
Ion pair (GLU_ARG_68) �0.035
Ion pair (GLU_HIS_68) 0.181
Ion pair (GLU_LYS_68) 0.194
All ion pair_68 0.180
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