

Chapter 3

Fast Prototyping System

In this chapter, we will introduce the development environment. The environment

as shown in Figure 3.1 includes a fast prototyping platform (Aptix® System Explorer)

with several specific modules, a high speed work station, a digital to analog converter

(DAC), an analog to digital converter (ADC), a logic analyzer (LA), an oscilloscope,

and some PCs.

Aptix MP3CF
Platform

DAC module
&

ADC module

Sun Blade 2500
Work Station

Agilent 16702B
Logic Analyzer

High Speed
PC

Oscilloscope

Aptix MP3CF
Platform

DAC module
&

ADC module

Sun Blade 2500
Work Station

Agilent 16702B
Logic Analyzer

High Speed
PC

Oscilloscope

Figure 3.1: Development environment of fast prototyping system

 27

We first give an overview of the Aptix® platform, which includes software and

hardware. Moreover, we will look into those modules installed on the platform as

shown in Figure 3.2. There are mainly FPGA modules and a DSP evaluation module

(EVM) which share the major task of implementation. In particular, we will show how

they communicate with each other on the platform. In addition to FPGA and DSP, USB

module is also an important part for providing USB 2.0 interface between the PC and

Aptix® platform. The main devices beside the platform are ADC and DAC, which can

make the development system more close to a real communication system. Finally, we

will introduce the debugging tools.

DSP C6701
Module

USB 2.0
Module

FPGA VirtexE
2000-8W

FPGA VirtexE
2000-12W

FPGA Virtex2
6000-8W

DSP C6701
Module

USB 2.0
Module

FPGA VirtexE
2000-8W

FPGA VirtexE
2000-12W

FPGA Virtex2
6000-8W

Figure 3.2: Modules installed on Aptix MP3CF platform

3.1 Aptix® System Explorer

Under the trend of System on Chip (SoC) and the concept of time-to-market,

Aptix® Corporation has developed a series of fast prototyping system named MPx,

which provides a total solution of real-time verification and integration for industry and

high-performance functional simulation for application specific integrated circuit

(ASIC) designer so as to achieve the goal of time-to-market. In our laboratory, we

 28

choose Aptix® System Explorer MP3CF as our fast prototyping system. Combining

MP3CF with an LA through Ethernet, we can build up a complete hardware fast

prototyping system, where we can easily develop the adaptive 4x4 MIMO-OFDM

system and conveniently verify our design in FPGA and DSP.

The Aptix® MP3CF System ExplorerTM contains two parts, hardware platform

called MP3CF FPCB and software called Explorer, on which we will give more

introduction in later subsections.

3.1.1 Hardware: MP3CF Platform

 Aptix® MP3CF Platform consists of several functional units, such as the onboard

micro-controller, the clock generator, some re-programmable inter-connect chips called

field programmable interconnect components (FPIC), the main motherboard called

field programmable circuit board (FPCB), and some flexible input/output (I/O) buses

[26] as illustrated in Figure 3.3.

Free Hole Region

Free Hole Region

Three FPIC’s

Clock Modules

Micro-Controller

FPCB

I/O

I/O

I/O

I/OI/O

I/O

I/O

I/O

Free Hole Region

Free Hole Region

Three FPIC’s

Clock Modules

Micro-Controller

FPCB

I/O

I/O

I/O

I/OI/O

I/O

I/O

I/O

Free Hole Region

Free Hole Region

Three FPIC’s

Clock Modules

Micro-Controller

FPCB

I/O

I/O

I/O

I/OI/O

I/O

I/O

I/O

Figure 3.3: Aptix® MP3CF platform

Micro-controller mainly takes charge of the operation of the whole platform, such

as the control of booting sequence and storing or loading the design of circuit through

flash memory; Clock generator provides system clock, and supports eight different

 29

clock sources from outside; FPIC is responsible for the inter-connect of all modules;

FPCB is the place where modules can be installed; I/O bus is the bridge between

Aptix® platform and devices outside.

FPCB and FPIC are two major core techniques of Aptix® MP3CF platform.

Actually, FPCB is a large programmable circuit board containing 3520 freeholes. Each

freehole can accept a pin and connect to the FPIC chip which is a programmable

routing chip. Each freehole can be routed by FPIC when several modules are working.

There are three FPIC chips located on the center of Aptix® MP3CF, and each contains

1024 I/O pins and defines the way to route among all freeholes so that each module can

communicate bi-directionally.

Freeholes can be divided into three categories. The first one is special pins, which

supply modules with the power and clock. The second one is I/O pins, which provide

the connection between modules onboard or devices outside. The last one is swappable

pins, which satisfy the specification of transistor-transistor logic (TTL) voltage level

and become the interface between modules to connect with each other.

 Aptix® MP3CF is powerful and capable of easy expansion and high integration. It

not only supports modules produced by Xilinx Corporation and Altera Corporation, but

also those fitting the definition of freehole pins. By the right definition, we can install

modules developed by other companies on Aptix® MP3CF through an adapter. For

example, we developed a DSP C6701 EVM by using the core chip TMS320C6701 DSP

of Taxas Instruments (TI) and also a CYPRESS USB 2.0 module by using the core chip

of CYPRESS CY7C68013, both of them being not the products from Xilinx or Altera.

Therefore, by the usage of the adapter, we can integrate different modules on Aptix®

MP3CF and make the system more flexible and powerful.

3.1.2 Software: Explorer

The software (called Explorer) provides an easy-to-use, consistent user interface

which displays commands through a series of pull-down menus. The main design flow

is described as follows and illustrated in Figure 3.4.

 30

 (1) Import Design into Explorer

Explorer needs to be informed about the

netlist files that we are using in the design

including Top-level netlist, Component

netlist, and Pinmap file. Top-level netlist is

an electronic design interchange format

(EDIF) file containing connectivity

information between the different

components that will be mounted on the

MP3CF FPCB. Component netlists are

EDIF files containing major design

information in each component. All EDIF

files can be generated by electronic design

automation (EDA) tools that can support

synthesis, such as Xilinx Foundation we

adopt. Finally, we have to identify the

Pinmap file used in the design to assign packages, pi

those parts.

(2) Setup FPCB Parameters

Explorer can support several different FPCBs.

FPCB we are using to develop.

(3) Assign Power and Ground

Some physical parameters of the design need to b

ground nets.

(4) Place Parts on Board

We need to place our design components in th

coordinate system. There will be a Board view w

component onto the right place of FPCB by drag

desired place with a mouse.

(5) Compile Design

Import Netlist

Setup FPCB
Parameters

FF
LL
OO
WW

EE
XX
PP
LL
OO
RR
EE
RR

Import Pin Map

Assign Power
and Ground

Place Parts
On Board

Compile Design

Setup
Communication

Program FPCB
and Logic Analyzer

Import Netlist

Setup FPCB
Parameters

FF
LL
OO
WW

EE
XX
PP
LL
OO
RR
EE
RR

Import Pin Map

Assign Power
and Ground

Place Parts
On Board

Compile Design

Setup
Communication

Program FPCB
and Logic Analyzer

 31
Figure 3.4: Explorer flow

ns, and other information to

We need to specify which

e set up, such as power and

eir correct positions on the

indow helping us move a

ging the component to the

The compilation process first maps the FPCB and then maps the existing I/O,

clock, bus and FPGA nets to MP3CF hardware. Using the result of FPCB

mapping, compilation continues with FPGA place-and-route which will run for

all FPGAs in the design. Once the FPGA place and route has been completed

successfully, compilation conducts the FPCB routing. The FPCB router routes

the FPICs with all nets in the design mapped to the FPGAs. In general,

place-and-route is the most time-consuming process of all.

(6) Setup Communication

In this process, we need to do some configurations about communication to

program the board and devices. For hardware (FPCB board), we need to specify

communication method, address for the method, and whether the flash is to be

programmed or not when downloading. For debug (LA), we need to identify

communication method, address for the method, and which probing pod of the

LA is to be connected with.

(7) Program FPCB and LA

Finally, we can download our design onto FPCB and probing information to

the LA, and start to verify our system design.

3.2 FPGA Module

In our fast-prototyping system, we use several FPGA modules mounted on Aptix®

MP3CF platform to implement our communication system. In the following

sub-sections, we will give an overview of our FPGA modules. Then we will show the

design flow of FPGA.

3.2.1 FPGA Overview

The demand for more complex programmable hardware is constantly growing to

meet the formidable industry requirement. The major categories of programmable

hardware are programmable logic device (PLD) and FPGA. A PLD consists of

 32

micro-cells and a central inter-connection logic. Typical PLD applications are “glue

logic” for connecting other ASICs. On the other hand, FPGAs consist of even more

complex logic block on one chip. Typical applications are central control units (CPU)

and DSPs up to very complex SoC design. Therefore, we adopt some FPGA modules to

realize our communication system. Generally, FPGA can be categorized into three

types by its structure:

1. Look-up-table (LUT): Xilinx, Altera, AT&T

2. Multiplexer: Actel, Quicklogic

3. Transistor array: Cross point

If we focus on its programming architecture, there are two major types:

1. SRAM: Xilinx, Altera, AT&T, Atmel

2. Anti-fuse: Actel, Cypress, Quicklogic

Static random access memory (SRAM) type has a merit of being able to program

repeatedly while Anti-fuse type has the feature of one time programmable (OTP).

Anti-fuse type can offer security for design but cannot be modified further.

Compared to ASIC, FPGA has lower performance apparently, especially on power

consumption and maximum supportable speed. However, as the technique of

semiconductor industry grows, FPGA becomes more and more competitive to ASIC.

Actually, FPGA has more integration ability and flexibility than ASIC, and undoubtedly,

is the best candidate component for a fast-prototyping system.

3.2.2 FPGA Design Flow

In our design, we choose Xilinx Foundation software as the development tool for

the first half of the design flow. The second half is done on a workstation with Explorer.

Figure 3.5 is the main FPGA design flow and later we will give more information about

the flow.

(1) Design Entry

In general, EDA tools are needed to develop register transfer level (RTL)

 33

codes by appropriate methodologies. In Xilinx Foundation, it supports three

methods: HDL (hardware description language) Editor, Schematic Flow, and

FSM (finite state machine) Editor. HDL Editor allows us to edit source files

directly like VHDL (very high speed integrated circuit hardware description

language) [27]-[30] and Verilog [31], which are the most common HDLs in use

today. Schematic Flow is another choice to create our source files by drawing

the scheme with underlying HDL macros. FSM Editor allows us to edit by

timing state diagram, which is suitable for realization controller, such as

memory access controller.

FPGA FPGA FPGA

FPGA Prototyping Modules

FPGAFPGA FPGAFPGA FPGAFPGA

FPGA Prototyping Modules

System Explorer

4. Implementation
P&RMapping

Download

3. Synthesis
2. Simulation

Xilinx Foundation
1. Design Entry

System Explorer

4. Implementation
P&RMapping

Download

3. Synthesis
2. Simulation

Xilinx Foundation
1. Design Entry

3. Synthesis
2. Simulation

Xilinx Foundation
1. Design Entry

Figure 3.5: FPGA design flow

 (2) Synthesis

After completing editing RTL source files, we need to translate them into

gate level called netlist files, which only contains information of logic gates and

inter-connections. Although, there are many EDA tools proficient in synthesis,

such as Synopsys and Sinplicity, we choose to use Xilinx Foundation for

synthesis for the sake of convenience.

(3) Simulation

Design verification is an important aspect of each project design. Before

 34

implementing our circuit in the target device, it is a good idea to simulate and

verify the circuit. The most common verifications are functional simulation and

timing simulation.

A. Functional Simulation

Functional simulation can be done after the schematic has been entered or a

HDL file has been created and synthesized. Functional simulation gives

information about the logic operation of the circuit, but it does not provide

any information about timing delays.

B. Timing Simulation

The timing simulation will give us detailed information about the time it

takes for a signal to pass from one gate to the other (gate delay) and gives

information on the circuit’s worst-case conditions. The total delay of a

complete circuit will depend on the number of gates the signal sees and on

the way the gates have been placed in the FPGA.

(4) Implementation

The implementation is typically done after the design has been verified by

functional simulation. The implementation tools will translate the netlist

(schematic, HDL), place and route the design in the target device and generate a

bitstream that can be downloaded into the device.

(5) Download to Aptix® Explorer MP3CF

After the process of implementation, we can download our design into

hardware platform. To verify that signals are really working properly in circuit,

we can use the LA to debug. Once the result does not match what we expect, we

need to come back to modify our design and go through the whole design flow

again. That is to say, iterative tests are required until we obtain the results we

want.

 35

3.3 ‘C6701 DSP EVM

Digital signal processors, such as TMS320 family of processors, are used in a

wide range of applications, from communications and controls to image and speech

processing. They are found in cellular phones, fax/modems, disk drivers, radio, and so

on. Texas Instrument recently introduced the TM320C6x processor, based on the

very-long-instruction-word (VLIW) architecture. This newer architecture supports

features that facilitate the development of efficient high-level language compilers. The

TMS320C67x DSPs are the floating-point DSP family in the TMS320C6000E DSP

platform. We choose TMS320C6701 as our core chip on DSP EVM to implement our

adaptive 4x4 MIMO OFDM system. Later, we will give an overview of the core chip

on DSP EVM. Then we will introduce the architecture of EVM. Finally, we will show

the design flow about DSP.

3.3.1 TMS320C6701 DSP Overview

In the following sub-section, we will introduce the architecture of the core chip,

TMS320C6701 DSP, which can be divided into three parts, including a CPU, memories,

and peripheral components [32][33].

3.3.1.1 ‘C6701 DSP CPU

TMS3206701 DSP consists of eight independent functional units divided into two

data paths A and B, as shown in Figure 3.6. Each path has the following units:

1. .M unit: dedicated for multiply operations; providing two 16-bit variables to

multiply and the output is 32-bit.

2. .L unit: performing a general set of arithmetic, logical functions, such as AND,

OR, and NOT.

3. .S unit: performing branch and bit manipulation functions.

4. .D unit: responsible for all data transfer between the register files and the

memory, and providing either linear- or circular-addressing.

 36

Each functional unit can read directly from or write directly to the register file

within its own path. Each path includes a set of sixteen 32-bit registers, A0 through A15

and B0 through B15. Units ending in 1 write to register file A, and units ending in 2

write to register file B.

The ‘C67x CPU executes all TMS320C62xTM DSP fixed-point instructions. In

addition to the ‘C62x DSP fixed-point instructions, the six out of eight functional units

(.L1, .M1, .D1, .D2, .M2, and .L2) also execute floating-point instructions.

Figure 3.6: Architecture of TMS320C6701 DSP

3.3.1.2 ‘C6701 DSP Memory

‘C67x DSP uses 32-bit for addressing, which the memory can theoretically be

accessed to a range of 4 Gbytes. The arrangement of memory can be shown in Figure

3.7, including 64 Kbytes internal program memory, 64 Kbytes internal data memory,

and 52 Mbytes external memory, and still some remaining memory for the control of

peripherals. Later, we will give more information about internal memories.

 37

16M x 8
External RAM

4M x 8
External RAM

64K x 8 Internal Prog. RAM

On-chip Peripherals

16M x 8
External RAM

16M x 8
External RAM

64K x 8 Internal Data RAM

Byte Address
0000_0000

0180_0000

0140_0000

0100_0000

0200_0000

0300_0000

8000_0000 = reserved

16M x 8
External RAM

4M x 8
External RAM

16M x 8
External RAM

16M x 8
External RAM

64K x 8 Internal Data RAM

Range 0, 2, 3

• Async (SRAM, ROM, etc)
• Sync (SBSRAM, SDRAM)

Range 1

• Only Async SBSRAM
• Used by Boot Loader

Internal Block

• Prog = RAM or cache
• Data = 8/16/32 - bit R/W
• Mem–mapped Perip

= reserved

16M x 8
External RAM

4M x 8
External RAM

64K x 8 Internal Prog. RAM

On-chip Peripherals

16M x 8
External RAM

16M x 8
External RAM

64K x 8 Internal Data RAM

Byte Address
0000_0000

0180_0000

0140_0000

0100_0000

0200_0000

0300_0000

8000_0000 = reserved

16M x 8
External RAM

4M x 8
External RAM

16M x 8
External RAM

16M x 8
External RAM

64K x 8 Internal Data RAM

Range 0, 2, 3

• Async (SRAM, ROM, etc)
• Sync (SBSRAM, SDRAM)

Range 1

• Only Async SBSRAM
• Used by Boot Loader

Internal Block

• Prog = RAM or cache
• Data = 8/16/32 - bit R/W
• Mem–mapped Perip

= reserved

Figure 3.7: Memory mapping of TMS320C6701 DSP

(1) Internal Program Memory

The memory modes are decided by program memory controller (PMEMC),

and the possible modes are as follows.

A. Cache Mode

In cache mode, all internal program memory is used as cache, and direct

memory access (DMA) controller cannot access the memory.

B. Mapped Mode

In mapped mode, memory operation map mode can further divided into Map

0 and Map 1. When defined as Map 0, address from 0x01400000h to

0x140FFFFh are used for program memory; when defined as Map 1, address

from 0x00000000h to 0x0000FFFFh are used for program memory. In

mapped mode, both CPU and DMA controller can access any address of the

 38

memory. If the CPU and DMA attempt to access the same block of momory

at the same time, then the DMA is stalled until the CPU completes its

accesses to that block. After the CPU access is complete, the DMA is allowed

to access the memory.

(2) Internal Data Memory

The internal data memory is controlled by data memory controller (DMEMC).

The 64 Kbytes of internal data random access memory (RAM) are organized as

two blocks of 32 Kbytes. Both blocks are organized as eight 2 K banks of 16-bit

half-words. Both the CPU and DMA controller can still simultaneously access

data that resides in different banks within the same block without performance

penalty.

3.3.1.3 ‘C6701 DSP Peripherals

The main peripheral components of ‘C67x DSP include DMA controller, host port

interface (HPI), interrupt selector, and external memory interface (EMIF), which are

summarized as follows.

 (1) Direct Memory Access Controller:

The DMA controller transfers data between address ranges in the memory

map without intervention by the CPU. The DMA controller has four

programmable channels for DMA operation. In addition, a fifth (auxiliary)

channel allows the DMA controller to service requests from the HPI.

(2) Host Port Interface:

As shown in Figure 3.8, the HPI is a parallel port through which a host

processor can directly access the CPU’s memory space. Connectivity to the

CPU’s memory space is provided through the DMA/EDMA (Enhanced DMA)

controller. Both the host and the CPU can access the HPI control register (HPIC).

The host can access the HPI address (HPIA) register, the HPI data (HPID)

register, and the HPIC by using the external data and interface control signals.

 39

Figure 3.8: Host port interface of TMS320C6701 DSP

(3) Interrupt Selector:

The C6000 peripheral set has up to 32 interrupt sources. The CPU however

has 12 interrupts available for use. The interrupt selector allows you to choose

and prioritize which 12 of the 32 your system needs to use. The interrupt

selector also allows you to effectively change the polarity of external interrupt

inputs. There are three types of interrupts and they are differentiated by their

priorities which are listed as follows [34].

A. RESET

The reset interrupt has the highest priority and corresponds to the RESET

signal.

B. Non-maskable Interrupts (NMI)

The nonmaskable interrupt is the interrupt of second highest priority and

corresponds to the NMI signal.

C. Maskable Interrupts

The lowest priority interrupts are interrupts 4–15. They correspond to the

INT4–INT15 signals.

 40

(4) External Memory Interface:

The external memory interfaces of the ‘C6701 support a glueless interface to

a variety of external devices, including:

A. Pipelined synchronous-burst SRAM (SBSRAM)

B. Synchronous dynamic random access memory (SDRAM)

C. Asynchronous devices, including SRAM, read-only memory (ROM), and

first in, first out (FIFO)

D. An external shared-memory device

The EMIF signals of the ‘C6701 are shown in Figure 3.9. The ‘C6701

provides separate clock and control signals for the SBSRAM and SDRAM

interface. Asynchronous interface is supported on all CE spaces, but CE1 is used

for asynchronous interface only.

Figure 3.9: External memory interface of TMS320C6701 DSP

 41

3.3.2 ‘C6701 DSP EVM Architecture

‘C6701 DSP EVM shown in Figure 3.10 is developed to integrate with other

modules on Aptix® platform so that we can come to the realization of an adaptive 4x4

MIMO-OFDM system. The EVM is applicable for Aptix® MPx series platform; it uses

TMS320C6701 DSP as its core chip. The system clock is 132 MHz, and can be

upgraded up to 167 MHz. Owing to having eight functional units in CPU, the DSP can

perform 1056 mega floating-point operations per second (MFLOPS).

Figure 3.10: ‘C6701 DSP EVM

The architecture of ‘C6701 DSP EVM is shown in Figure 3.11, including

TMS320C6701 DSP, flash memory, SBSRAM, universal asynchronous

receiver/transmitter (UART), joint test action group (JTAG), and other interface circuits

like transceiver and complex programmable logic device (CPLD). Later, we will give

more information to what have not been mentioned.

(1) Flash Memory:

It is a nonvolatile read-only memory that is electronically erasable and

programmable, and it has a capacity of 128 Kbytes. When completing our

development, we can program the design into the flash memory. On the other

hand, when we reset the DSP, it will automatically load the design from flash

memory into internal program memory.

 42

(2) SBSRAM:

SBSRAM works on the frequency of 132 MHz and has a capacity of 512

Kbytes. There are two working modes determine what it is used for, called Map

0 and Map 1. When Map 0 mode is set, it plays the role of program memory.

When Map 1 mode is set, it is taken as general memory.

(3) JTAG and UART:

Both of them are interfaces of data transmission. JTAG is an interface

compliant with IEEE 1149.1 standard interface, and it also connects with

Innovate Integration Code Hammer PCI interface on PC to load the program

from the software, Code Composer Studio (CCS). We can even stop the program

and catch the values in memory through JTAG while debugging; UART is the

other choice to connect with PC through RS-232 port.

 (4) Other Interface Circuit:

CPLD offers four control signals to handle the connection with FPGA or

other modules.

TMS320C
6701

Floating
DSP

SBSRAM

Transceiver

Flash UART

Control
(CPLD)

JTAG

Figure 3.11: Architecture of ‘C6701 DSP EVM

Buffer

/

CE0 CE1

CE3

CE2

External
Control
Signal

External
Data Bus

PC

32

PC

TMS320C
6701

Floating
DSP

SBSRAM

Transceiver

Flash UART

Control
(CPLD)

JTAG

Buffer

/

CE0 CE1

CE3

CE2

External
Control
Signal

External
Data Bus

PC

32

PC

 43

3.3.3 DSP Design Flow

The Code Composer Studio (CCS) [35] provides an integrated development

environment (IDE) to incorporate the software tools. CCS includes tools for code

generation, such as a C compiler, an assembler, and a linker. It also has graphical

capabilities and supports real-time debugging, which enables us to develop our design

efficiently. The DSP design flow with CCS can be separated into the following parts.

(1) Create Project:

First of all, we need to create a project, and add the necessary files for

building the project. The most important files are source files, which can either

be C source files (.c) or assembly source file (.asm). Then we also need Linker

Command File (.cmd) and a run-time support library file (.lib). Last, we may

need some header files (.h) to be included.

(2) Code Generation and Options:

Various options are associated with code generation tools, such as C compiler

and linker. We can set up Compiler Option and Linker Option to do further

configuration if we need, or we can just use the default setting in most cases.

(3) Building and Running the project:

After finishing code generation, we can build and run the project. In this

process, it compiles and assembles all C files using c16x and assembles the

assembly files using asm6x. The resulting object files are then linked with

run-time library support file using lnk6x. This generates an executable file that

can be loaded into ‘C6701 processor and run. Then, we can load the program

after a build.

(4) Monitoring the Watch Window:

Before monitoring the watch window, we need to verify that the processor is

still running. After that, monitoring watch window allows us to change the value

of a parameter or to monitor a variable we desire. Through monitoring, we can

do debugging and regressive test until it works as we expect.

 44

(5) Correcting Program Errors:

Once an error occurs, the error message will be listed and being a link

directly to the line where the error occurs. After making the appropriate

correction, we have to build, load, and run the program again to verify our

results.

3.4 Communication Between FPGA and DSP

Having introduced FPGA and DSP EVM in the previous two sections, we will

further give some ideas about the communication mechanism between them. Due to the

discrepancy of working frequency, we need to define the timing specification of DSP

while it connects with other modules, so that we can transmit or receive data without

any errors. In DSP EVM, data transmission is not handled directly by DSP CPU, but

taken charge by the four pieces of front processing board (from board 1 to board 4) as

shown in Figure 3.12.

Board 1

Board 2

Board 3

Board 4

ADDR[3:0]
Data[31:0]

OE0
OE1

STRBN0
RDY0
RD/WR0
EXTINT0
STRBN1
RDY1
RD/WR1
EXTINT1
STRBN2
RDY2
RD/WR2
EXTINT2
STRBN3
RDY3
RD/WR3
EXTINT3

‘C6701 EVM

to PC's
RS232

XDS510
emulator

Board 1

Board 2

Board 3

Board 4

ADDR[3:0]
Data[31:0]

OE0
OE1

STRBN0
RDY0
RD/WR0
EXTINT0
STRBN1
RDY1
RD/WR1
EXTINT1
STRBN2
RDY2
RD/WR2
EXTINT2
STRBN3
RDY3
RD/WR3
EXTINT3

‘C6701 EVM

to PC's
RS232

XDS510
emulator

Figure 3.12: ‘C6701 DSP EVM and its outer components

 45

EXTINT0-EXTINT3 are interrupt signals, which is mapped to interrupt INT4-INT7

of DSP CPU and can be requested to perform corresponding interrupts by other

modules on Aptix® platform. In our design, whenever DSP is requested to work, we

trigger EXTINT0-EXTINT3 signals from FPGA module, which force DSP to perform

the required task, and then transfer data back at the suitable time. Therefore, the goal of

data transmission is achieved.

The timing diagram for DSP EVM to receive data from the outer module like FPGA

is defined as in Figure 3.13. The duration of DSP clock is the reciprocal of the working

frequency (duration tclk = 1/132 MHz). When STRBN0/1/2/3 is on the falling edge and

RD/WR0/1/2/3 is on high level, it means that the front processing components are in the

receiving state. Before the time t4 earlier than STRBN0/1/2/3 coming back to high level,

we must maintain the databus to be stable so that we can store data according the

address at this moment.

On the contrary, if we need to transfer data to FPGA module from DSP EVM, the

writing timing diagram can be followed in Figure 3.14. When both STRBN0/1/2/3 and

RD/WR0/1/2/3 are on the falling edge, we can obtain the correct data at the time 1 tclk

after STRBN/0/1/2/3 is on the falling edge. The correct data can maintain a time-span t2

on the databus, and then the databus will return to a state of high-impedance. The

followings are the parameters mentioned above or shown in Figures.

1. tclk: is the duration of a DSP clock. tclk = 1/132 MHz while working on the

frequency of 132 MHz.

2. t1: is the time-span from the time that address line is ready to the falling edge

of STRBN0/1/2/3.

3. t2: is the time-span for DSP to receive data.

4. t3: is the time-span from the falling edge of STRBN0/1/2/3 to the time that

address line is ready

5. t4: is the time that has to maintain the data on the databus.

6. t5: is the time-span that DSP can recognize Ready signal.

7. 10ns: is the minimum propagation delay time caused by CPLD component.

 46

t2
STRBN0/1/2/3

RD/WR0/1/2/3

ADDR[3:0]

OEN0/1

RDY0/1/2/3

Zero wait delay Wait delay

t1

Data[31:0]

DSPCLK

tclk

t2+n*1/tclk

t5

Setup=2 Strobe=4 Hold
=1

Setup=2 Strobe=4 Hold
=1

Not ready

t3
t4

Ready to sample

Ready to sample

t2
STRBN0/1/2/3

RD/WR0/1/2/3

ADDR[3:0]

OEN0/1

RDY0/1/2/3

Zero wait delay Wait delay

t1

Data[31:0]

DSPCLK

tclk

t2+n*1/tclk

t5

Setup=2 Strobe=4 Hold
=1

Setup=2 Strobe=4 Hold
=1

Not ready

t3
t4

Ready to sample

Ready to sample

t2
STRBN0/1/2/3

RD/WR0/1/2/3

ADDR[3:0]

OEN0/1

RDY0/1/2/3

Zero wait delay Wait delay

t1

Data[31:0]

DSPCLK

tclk

t2+n*1/tclk

t5

Setup=2 Strobe=4 Hold
=1

Setup=2 Strobe=4 Hold
=1

Not ready

t3
t4

Ready to sample

Ready to sample

Figure 3.13: Read state timing diagram of ‘C6701 DSP EVM

t2
STRBN0/1/2/3

RD/WR0/1/2/3

ADDR[3:0]

OEN0/1

RDY0/1/2/3

Zero wait delay Wait delay

Data[31:0]

t2+n*1/tclk

Ready sample

Ready sample

t5

Not ready

10ns(max)

DSPCLK

tclk Setup=2 Strobe=4 Hold
=1

Setup=2 Strobe=4 Hold
=1

t2
STRBN0/1/2/3

RD/WR0/1/2/3

ADDR[3:0]

OEN0/1

RDY0/1/2/3

Zero wait delay Wait delay

Data[31:0]

t2+n*1/tclk

Ready sample

Ready sample

t5

Not ready

10ns(max)

t2
STRBN0/1/2/3

RD/WR0/1/2/3

ADDR[3:0]

OEN0/1

RDY0/1/2/3

Zero wait delay Wait delay

Data[31:0]

t2+n*1/tclk

Ready sample

Ready sample

t5

Not ready

10ns(max)

DSPCLK

tclk Setup=2 Strobe=4 Hold
=1

Setup=2 Strobe=4 Hold
=1tclk Setup=2 Strobe=4 Hold

=1
Setup=2 Strobe=4 Hold

=1

Figure 3.14: Write state timing diagram of ‘C6701 DSP EVM

 47

3.5 USB 2.0 Module

USB 2.0 Module uses CYPRESS CY7C68013 [36] as its core chip as shown in

Figure 3.15, which includes a 24 MHz 8051 and a 4 Kbytes FIFO. The maximum data

rate can be up to 480 Mbps. The FIFO provides the interface between USB 2.0 module

and C6701 EVM. Figure 3.16 shows a diagram of the USB 2.0 module and its

neighborhood. Through USB 2.0 module, we can transfer data, which comes from PC

and will come to USB FIFO first, to DSP EVM. Also, USB 2.0 module can transmit

data coming from DSP EVM to PC. We can connect PC with a web camera to generate

video stream as our data source.

Figure 3.15: USB 2.0 module

DSPEVM
Module

FPGA

USB

PC Terminal

Cable

Figure 3.16: USB 2.0 module and its neighborhood

Web-Cam

USB

Aptix MP3CF

DSPEVM
Module

FPGA

USB

PC Terminal

Cable

USB

Aptix MP3CF

Web-Cam

 48

There are four transmission type supports by USB 2.0 module as follows:

1. Bulk: It guarantees the correctness of data transmission, but not the time spent.

The typical application is used for burst data, such as PC sending printing data

to a printer.

2. Isochronous: It guarantees the time spent, but not the correctness of data

transmission. The typical application is used for transmission of image or voice

files.

3. Control: It is used for the control of enumeration and device.

4. Interrupt: The typical application is used for expected poll time like the

mouse event.

The USB 2.0 module uses only a 16-bit databus while the databus used in DSP

EVM modules is 32-bit. Owing to the mismatch of databus, we need to assign the

databus in USB 2.0 module to a 16-bit databus counting from the least significant bit

(LSB) in DSP EVM, so that we can perform data transmission correctly.

In fact, USB 2.0 module provides an interface between PC and Aptix® MP3CF

platform. In PC, we use the software called EZ USB Control Panel to control the file

transmission between PC and USB 2.0 module. We use the endpoint 2 pipe to send data

to USB 2.0 module; on the other hand, we use the endpoint 6 pipe to receive data from

USB 2.0 module. Both of them are using Bulk type that has been mentioned above, as

shown in Table 3.1.

Table 3.1: USB 2.0 module pipe mapping table

 10 OUT

10 IN

9 OUT

9 IN

8 OUT

8 IN

En

6 OUT

dpoint

64

64

64

64

64

64

64

2

ISO

ISO

ISO

ISO

ISO

ISO

BULK

Type

64

64

64

64

64

16

64

1

0

0

0

0

0

0

64

Max Packet Size (bytes)

0

Alternate Setting

16160BULK6 IN

16160BULK4 OUT

16160BULK4 IN

16160BULK2 OUT

256160BULK2 IN

256160INT1 IN

64640CTL0

Max Packet Size (bytes)

210

Alternate Setting

TypeEndpoint

10 OUT

10 IN

9 OUT

9 IN

8 OUT

8 IN

En

6 OUT

dpoint

64

64

64

64

64

64

64

2

ISO

ISO

ISO

ISO

ISO

ISO

BULK

Type

64

64

64

64

64

16

64

1

0

0

0

0

0

0

64

Max Packet Size (bytes)

0

Alternate Setting

16160BULK6 IN

16160BULK4 OUT

16160BULK4 IN

16160BULK2 OUT

256160BULK2 IN

256160INT1 IN

64640CTL0

Max Packet Size (bytes)

210

Alternate Setting

TypeEndpoint

 49

3.6 DAC and ADC Modules
In our adaptive 4x4 MIMO-OFDM system, we use the dedicated DAC and ADC

modules to do the conversion between digital and analog signals as illustrated in Figure

3.17. The major components of each module include eight DAC/ADC chips, clock

source, four databuses, and eight I/O ports, and are descript as follows.

1. DAC/ADC Chips: DAS825E and ADC900u are used as core chip

respectively.

2. Clock Source: It can be setup by the combination of JP1, JP2, and JP10

jumpers.

3. Databus: Through the configuration of virtual pins in Aptix® Explorer, databus

can receive and sent signals from and to FPGA modules by specific cables.

In addition, the output of DAC contains eight resistors numbered from R219 to

R226. When DAC is connected to ADC, we need to use 0.1 Ω resistors. But if we

attempt to connect with the instrument that has 50 Ω input resistant, we must change

resistors to 50 Ω to avoid the impedance mismatch problem, which will make signals

decay.

ADC

Specific Cables

DAC

Transmitter 1~4

Receiver 1~4

ADC

Specific Cables

DAC

Transmitter 1~4

Receiver 1~4

Figure 3.17: DAC and ADC modules
 50

3.7 Debugging Tools

As an old saying goes, “What is a workman without his tools.” In our fast

prototyping system, we do have some useful tools for debugging as follows.

1. Logic Analyzer: We use Agilent 16702B LA to perform the major task of

debugging. There are two modules installed on it. One is 16522A Pattern

Generator Module, and the other is 16711A Measurement Module. The former

is mainly used for generating desired signals, such as the reset signal or some

selection signals for model selection; the latter is used for probing signals in

FPGA on Aptix® MP3CF platform by connecting specific pods to the slots on

Aptix®.

2. Oscilloscope: It is usually used when transmitted signals are prepared by

FPGA and sent to the DAC module by specific cables. Therefore, we can verify

the waveform shown in the oscilloscope. For OFDM signals following IEEE

802.11a, we may expect to see the waveform containing preambles in the form

of square wave in the head part and OFDM symbols follow behind those

preambles.

3.8 Summary

In this chapter, we try to give a picture of the employed fast prototyping system.

First, we introduce the Aptix® System Explorer platform. Then we give an overview on

those modules installed on Aptix® platform, including FPGA module and ‘C6701 DSP

EVM, and explain how they communicate with each other. In addition, USB2.0 module

and ADC/DAC modules are also introduced. Further, we introduce the ADC and DAC

modules which are in the form of dedicated boards. Finally, we give an overview of the

debugging tools.

 51

