
 
 
Chapter 3 
 
Fast Prototyping System 

 
In this chapter, we will introduce the development environment. The environment 

as shown in Figure 3.1 includes a fast prototyping platform (Aptix® System Explorer) 

with several specific modules, a high speed work station, a digital to analog converter 

(DAC), an analog to digital converter (ADC), a logic analyzer (LA), an oscilloscope, 

and some PCs. 
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Figure 3.1: Development environment of fast prototyping system 
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We first give an overview of the Aptix® platform, which includes software and 

hardware. Moreover, we will look into those modules installed on the platform as 

shown in Figure 3.2. There are mainly FPGA modules and a DSP evaluation module 

(EVM) which share the major task of implementation. In particular, we will show how 

they communicate with each other on the platform. In addition to FPGA and DSP, USB 

module is also an important part for providing USB 2.0 interface between the PC and 

Aptix® platform. The main devices beside the platform are ADC and DAC, which can 

make the development system more close to a real communication system. Finally, we 

will introduce the debugging tools. 
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Figure 3.2: Modules installed on Aptix MP3CF platform 

 
 

3.1  Aptix® System Explorer 

Under the trend of System on Chip (SoC) and the concept of time-to-market, 

Aptix® Corporation has developed a series of fast prototyping system named MPx, 

which provides a total solution of real-time verification and integration for industry and 

high-performance functional simulation for application specific integrated circuit 

(ASIC) designer so as to achieve the goal of time-to-market. In our laboratory, we 
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choose Aptix® System Explorer MP3CF as our fast prototyping system. Combining 

MP3CF with an LA through Ethernet, we can build up a complete hardware fast 

prototyping system, where we can easily develop the adaptive 4x4 MIMO-OFDM 

system and conveniently verify our design in FPGA and DSP.  

The Aptix® MP3CF System ExplorerTM contains two parts, hardware platform 

called MP3CF FPCB and software called Explorer, on which we will give more 

introduction in later subsections. 
 

3.1.1 Hardware: MP3CF Platform 

 Aptix® MP3CF Platform consists of several functional units, such as the onboard 

micro-controller, the clock generator, some re-programmable inter-connect chips called 

field programmable interconnect components (FPIC), the main motherboard called 

field programmable circuit board (FPCB), and some flexible input/output (I/O) buses 

[26] as illustrated in Figure 3.3. 
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Figure 3.3: Aptix® MP3CF platform 
 

Micro-controller mainly takes charge of the operation of the whole platform, such 

as the control of booting sequence and storing or loading the design of circuit through 

flash memory; Clock generator provides system clock, and supports eight different 
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clock sources from outside; FPIC is responsible for the inter-connect of all modules; 

FPCB is the place where modules can be installed; I/O bus is the bridge between 

Aptix® platform and devices outside. 

FPCB and FPIC are two major core techniques of Aptix® MP3CF platform. 

Actually, FPCB is a large programmable circuit board containing 3520 freeholes. Each 

freehole can accept a pin and connect to the FPIC chip which is a programmable 

routing chip. Each freehole can be routed by FPIC when several modules are working. 

There are three FPIC chips located on the center of Aptix® MP3CF, and each contains 

1024 I/O pins and defines the way to route among all freeholes so that each module can 

communicate bi-directionally. 

Freeholes can be divided into three categories. The first one is special pins, which 

supply modules with the power and clock. The second one is I/O pins, which provide 

the connection between modules onboard or devices outside. The last one is swappable 

pins, which satisfy the specification of transistor-transistor logic (TTL) voltage level 

and become the interface between modules to connect with each other. 

 Aptix® MP3CF is powerful and capable of easy expansion and high integration. It 

not only supports modules produced by Xilinx Corporation and Altera Corporation, but 

also those fitting the definition of freehole pins. By the right definition, we can install 

modules developed by other companies on Aptix® MP3CF through an adapter. For 

example, we developed a DSP C6701 EVM by using the core chip TMS320C6701 DSP 

of Taxas Instruments (TI) and also a CYPRESS USB 2.0 module by using the core chip 

of CYPRESS CY7C68013, both of them being not the products from Xilinx or Altera. 

Therefore, by the usage of the adapter, we can integrate different modules on Aptix® 

MP3CF and make the system more flexible and powerful. 
 
 

3.1.2 Software: Explorer 

The software (called Explorer) provides an easy-to-use, consistent user interface 

which displays commands through a series of pull-down menus. The main design flow 

is described as follows and illustrated in Figure 3.4. 
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 (1) Import Design into Explorer 

Explorer needs to be informed about the 

netlist files that we are using in the design 

including Top-level netlist, Component 

netlist, and Pinmap file. Top-level netlist is 

an electronic design interchange format 

(EDIF) file containing connectivity 

information between the different 

components that will be mounted on the 

MP3CF FPCB. Component netlists are 

EDIF files containing major design 

information in each component. All EDIF 

files can be generated by electronic design 

automation (EDA) tools that can support 

synthesis, such as Xilinx Foundation we 

adopt. Finally, we have to identify the 

Pinmap file used in the design to assign packages, pi

those parts. 

(2) Setup FPCB Parameters 

Explorer can support several different FPCBs. 

FPCB we are using to develop. 

(3) Assign Power and Ground 

Some physical parameters of the design need to b

ground nets.  

(4) Place Parts on Board 

We need to place our design components in th

coordinate system. There will be a Board view w

component onto the right place of FPCB by drag

desired place with a mouse. 

(5) Compile Design 
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The compilation process first maps the FPCB and then maps the existing I/O, 

clock, bus and FPGA nets to MP3CF hardware. Using the result of FPCB 

mapping, compilation continues with FPGA place-and-route which will run for 

all FPGAs in the design. Once the FPGA place and route has been completed 

successfully, compilation conducts the FPCB routing. The FPCB router routes 

the FPICs with all nets in the design mapped to the FPGAs. In general, 

place-and-route is the most time-consuming process of all. 

(6) Setup Communication 

In this process, we need to do some configurations about communication to 

program the board and devices. For hardware (FPCB board), we need to specify 

communication method, address for the method, and whether the flash is to be 

programmed or not when downloading. For debug (LA), we need to identify 

communication method, address for the method, and which probing pod of the 

LA is to be connected with. 

(7) Program FPCB and LA 

Finally, we can download our design onto FPCB and probing information to 

the LA, and start to verify our system design. 
 
 

3.2  FPGA Module 

In our fast-prototyping system, we use several FPGA modules mounted on Aptix® 

MP3CF platform to implement our communication system. In the following 

sub-sections, we will give an overview of our FPGA modules. Then we will show the 

design flow of FPGA. 
 

3.2.1 FPGA Overview 

The demand for more complex programmable hardware is constantly growing to 

meet the formidable industry requirement. The major categories of programmable 

hardware are programmable logic device (PLD) and FPGA. A PLD consists of 
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micro-cells and a central inter-connection logic. Typical PLD applications are “glue 

logic” for connecting other ASICs. On the other hand, FPGAs consist of even more 

complex logic block on one chip. Typical applications are central control units (CPU) 

and DSPs up to very complex SoC design. Therefore, we adopt some FPGA modules to 

realize our communication system. Generally, FPGA can be categorized into three 

types by its structure: 

1. Look-up-table (LUT): Xilinx, Altera, AT&T 

2. Multiplexer: Actel, Quicklogic 

3. Transistor array: Cross point 

If we focus on its programming architecture, there are two major types: 

1. SRAM: Xilinx, Altera, AT&T, Atmel 

2. Anti-fuse: Actel, Cypress, Quicklogic 

Static random access memory (SRAM) type has a merit of being able to program 

repeatedly while Anti-fuse type has the feature of one time programmable (OTP). 

Anti-fuse type can offer security for design but cannot be modified further. 

Compared to ASIC, FPGA has lower performance apparently, especially on power 

consumption and maximum supportable speed. However, as the technique of 

semiconductor industry grows, FPGA becomes more and more competitive to ASIC. 

Actually, FPGA has more integration ability and flexibility than ASIC, and undoubtedly, 

is the best candidate component for a fast-prototyping system. 
 

3.2.2 FPGA Design Flow 

In our design, we choose Xilinx Foundation software as the development tool for 

the first half of the design flow. The second half is done on a workstation with Explorer. 

Figure 3.5 is the main FPGA design flow and later we will give more information about 

the flow. 

(1) Design Entry 

In general, EDA tools are needed to develop register transfer level (RTL) 
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codes by appropriate methodologies. In Xilinx Foundation, it supports three 

methods: HDL (hardware description language) Editor, Schematic Flow, and 

FSM (finite state machine) Editor. HDL Editor allows us to edit source files 

directly like VHDL (very high speed integrated circuit hardware description 

language) [27]-[30] and Verilog [31], which are the most common HDLs in use 

today. Schematic Flow is another choice to create our source files by drawing 

the scheme with underlying HDL macros. FSM Editor allows us to edit by 

timing state diagram, which is suitable for realization controller, such as 

memory access controller. 
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Figure 3.5: FPGA design flow 

 (2) Synthesis 

After completing editing RTL source files, we need to translate them into 

gate level called netlist files, which only contains information of logic gates and 

inter-connections. Although, there are many EDA tools proficient in synthesis, 

such as Synopsys and Sinplicity, we choose to use Xilinx Foundation for 

synthesis for the sake of convenience. 

(3) Simulation 

Design verification is an important aspect of each project design. Before 
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implementing our circuit in the target device, it is a good idea to simulate and 

verify the circuit. The most common verifications are functional simulation and 

timing simulation. 

A. Functional Simulation 

Functional simulation can be done after the schematic has been entered or a 

HDL file has been created and synthesized. Functional simulation gives 

information about the logic operation of the circuit, but it does not provide 

any information about timing delays. 

B. Timing Simulation 

The timing simulation will give us detailed information about the time it 

takes for a signal to pass from one gate to the other (gate delay) and gives 

information on the circuit’s worst-case conditions. The total delay of a 

complete circuit will depend on the number of gates the signal sees and on 

the way the gates have been placed in the FPGA.  

(4) Implementation 

The implementation is typically done after the design has been verified by 

functional simulation. The implementation tools will translate the netlist 

(schematic, HDL), place and route the design in the target device and generate a 

bitstream that can be downloaded into the device.  

(5) Download to Aptix® Explorer MP3CF 

After the process of implementation, we can download our design into 

hardware platform. To verify that signals are really working properly in circuit, 

we can use the LA to debug. Once the result does not match what we expect, we 

need to come back to modify our design and go through the whole design flow 

again. That is to say, iterative tests are required until we obtain the results we 

want. 
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3.3  ‘C6701 DSP EVM 

Digital signal processors, such as TMS320 family of processors, are used in a 

wide range of applications, from communications and controls to image and speech 

processing. They are found in cellular phones, fax/modems, disk drivers, radio, and so 

on. Texas Instrument recently introduced the TM320C6x processor, based on the 

very-long-instruction-word (VLIW) architecture. This newer architecture supports 

features that facilitate the development of efficient high-level language compilers. The 

TMS320C67x DSPs are the floating-point DSP family in the TMS320C6000E DSP 

platform. We choose TMS320C6701 as our core chip on DSP EVM to implement our 

adaptive 4x4 MIMO OFDM system. Later, we will give an overview of the core chip 

on DSP EVM. Then we will introduce the architecture of EVM. Finally, we will show 

the design flow about DSP. 
 

3.3.1 TMS320C6701 DSP Overview 

In the following sub-section, we will introduce the architecture of the core chip, 

TMS320C6701 DSP, which can be divided into three parts, including a CPU, memories, 

and peripheral components [32][33]. 
 

3.3.1.1 ‘C6701 DSP CPU 

TMS3206701 DSP consists of eight independent functional units divided into two 

data paths A and B, as shown in Figure 3.6. Each path has the following units:  

1. .M unit: dedicated for multiply operations; providing two 16-bit variables to 

multiply and the output is 32-bit. 

2. .L unit: performing a general set of arithmetic, logical functions, such as AND, 

OR, and NOT. 

3. .S unit: performing branch and bit manipulation functions.  

4. .D unit: responsible for all data transfer between the register files and the 

memory, and providing either linear- or circular-addressing. 
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Each functional unit can read directly from or write directly to the register file 

within its own path. Each path includes a set of sixteen 32-bit registers, A0 through A15 

and B0 through B15. Units ending in 1 write to register file A, and units ending in 2 

write to register file B.  

The ‘C67x CPU executes all TMS320C62xTM DSP fixed-point instructions. In 

addition to the ‘C62x DSP fixed-point instructions, the six out of eight functional units 

(.L1, .M1, .D1, .D2, .M2, and .L2) also execute floating-point instructions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6: Architecture of TMS320C6701 DSP 
 

3.3.1.2 ‘C6701 DSP Memory 

‘C67x DSP uses 32-bit for addressing, which the memory can theoretically be 

accessed to a range of 4 Gbytes. The arrangement of memory can be shown in Figure 

3.7, including 64 Kbytes internal program memory, 64 Kbytes internal data memory, 

and 52 Mbytes external memory, and still some remaining memory for the control of 

peripherals. Later, we will give more information about internal memories. 
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Figure 3.7: Memory mapping of TMS320C6701 DSP 
 

(1) Internal Program Memory 

The memory modes are decided by program memory controller (PMEMC), 

and the possible modes are as follows. 

A. Cache Mode 

In cache mode, all internal program memory is used as cache, and direct 

memory access (DMA) controller cannot access the memory. 

B. Mapped Mode 

In mapped mode, memory operation map mode can further divided into Map 

0 and Map 1. When defined as Map 0, address from 0x01400000h to 

0x140FFFFh are used for program memory; when defined as Map 1, address 

from 0x00000000h to 0x0000FFFFh are used for program memory. In 

mapped mode, both CPU and DMA controller can access any address of the 
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memory. If the CPU and DMA attempt to access the same block of momory 

at the same time, then the DMA is stalled until the CPU completes its 

accesses to that block. After the CPU access is complete, the DMA is allowed 

to access the memory. 

(2) Internal Data Memory 

The internal data memory is controlled by data memory controller (DMEMC). 

The 64 Kbytes of internal data random access memory (RAM) are organized as 

two blocks of 32 Kbytes. Both blocks are organized as eight 2 K banks of 16-bit 

half-words. Both the CPU and DMA controller can still simultaneously access 

data that resides in different banks within the same block without performance 

penalty. 
 

3.3.1.3 ‘C6701 DSP Peripherals 

The main peripheral components of ‘C67x DSP include DMA controller, host port 

interface (HPI), interrupt selector, and external memory interface (EMIF), which are 

summarized as follows. 

 (1) Direct Memory Access Controller: 

The DMA controller transfers data between address ranges in the memory 

map without intervention by the CPU. The DMA controller has four 

programmable channels for DMA operation. In addition, a fifth (auxiliary) 

channel allows the DMA controller to service requests from the HPI. 

(2) Host Port Interface: 

As shown in Figure 3.8, the HPI is a parallel port through which a host 

processor can directly access the CPU’s memory space. Connectivity to the 

CPU’s memory space is provided through the DMA/EDMA (Enhanced DMA) 

controller. Both the host and the CPU can access the HPI control register (HPIC). 

The host can access the HPI address (HPIA) register, the HPI data (HPID) 

register, and the HPIC by using the external data and interface control signals. 
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Figure 3.8: Host port interface of TMS320C6701 DSP 

 

(3) Interrupt Selector: 

The C6000 peripheral set has up to 32 interrupt sources. The CPU however 

has 12 interrupts available for use. The interrupt selector allows you to choose 

and prioritize which 12 of the 32 your system needs to use. The interrupt 

selector also allows you to effectively change the polarity of external interrupt 

inputs. There are three types of interrupts and they are differentiated by their 

priorities which are listed as follows [34]. 

A. RESET 

The reset interrupt has the highest priority and corresponds to the RESET 

signal.  

B. Non-maskable Interrupts (NMI) 

The nonmaskable interrupt is the interrupt of second highest priority and 

corresponds to the NMI signal.  

C. Maskable Interrupts 

The lowest priority interrupts are interrupts 4–15. They correspond to the 

INT4–INT15 signals.  

 40



(4) External Memory Interface: 

The external memory interfaces of the ‘C6701 support a glueless interface to 

a variety of external devices, including: 

A. Pipelined synchronous-burst SRAM (SBSRAM) 

B. Synchronous dynamic random access memory (SDRAM) 

C. Asynchronous devices, including SRAM, read-only memory (ROM), and 

first in, first out (FIFO) 

D. An external shared-memory device 

The EMIF signals of the ‘C6701 are shown in Figure 3.9. The ‘C6701 

provides separate clock and control signals for the SBSRAM and SDRAM 

interface. Asynchronous interface is supported on all CE spaces, but CE1 is used 

for asynchronous interface only. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 3.9: External memory interface of TMS320C6701 DSP 
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3.3.2 ‘C6701 DSP EVM Architecture 

‘C6701 DSP EVM shown in Figure 3.10 is developed to integrate with other 

modules on Aptix® platform so that we can come to the realization of an adaptive 4x4 

MIMO-OFDM system. The EVM is applicable for Aptix® MPx series platform; it uses 

TMS320C6701 DSP as its core chip. The system clock is 132 MHz, and can be 

upgraded up to 167 MHz. Owing to having eight functional units in CPU, the DSP can 

perform 1056 mega floating-point operations per second (MFLOPS). 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.10: ‘C6701 DSP EVM 

 

The architecture of ‘C6701 DSP EVM is shown in Figure 3.11, including 

TMS320C6701 DSP, flash memory, SBSRAM, universal asynchronous 

receiver/transmitter (UART), joint test action group (JTAG), and other interface circuits 

like transceiver and complex programmable logic device (CPLD). Later, we will give 

more information to what have not been mentioned. 

(1) Flash Memory: 

It is a nonvolatile read-only memory that is electronically erasable and 

programmable, and it has a capacity of 128 Kbytes. When completing our 

development, we can program the design into the flash memory. On the other 

hand, when we reset the DSP, it will automatically load the design from flash 

memory into internal program memory.  
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(2) SBSRAM: 

SBSRAM works on the frequency of 132 MHz and has a capacity of 512 

Kbytes. There are two working modes determine what it is used for, called Map 

0 and Map 1. When Map 0 mode is set, it plays the role of program memory. 

When Map 1 mode is set, it is taken as general memory. 

(3) JTAG and UART: 

Both of them are interfaces of data transmission. JTAG is an interface 

compliant with IEEE 1149.1 standard interface, and it also connects with 

Innovate Integration Code Hammer PCI interface on PC to load the program 

from the software, Code Composer Studio (CCS). We can even stop the program 

and catch the values in memory through JTAG while debugging; UART is the 

other choice to connect with PC through RS-232 port. 

 (4) Other Interface Circuit: 

CPLD offers four control signals to handle the connection with FPGA or 

other modules. 
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3.3.3 DSP Design Flow 

The Code Composer Studio (CCS) [35] provides an integrated development 

environment (IDE) to incorporate the software tools. CCS includes tools for code 

generation, such as a C compiler, an assembler, and a linker. It also has graphical 

capabilities and supports real-time debugging, which enables us to develop our design 

efficiently. The DSP design flow with CCS can be separated into the following parts. 

(1) Create Project: 

First of all, we need to create a project, and add the necessary files for 

building the project. The most important files are source files, which can either 

be C source files (.c) or assembly source file (.asm). Then we also need Linker 

Command File (.cmd) and a run-time support library file (.lib). Last, we may 

need some header files (.h) to be included. 

(2) Code Generation and Options: 

Various options are associated with code generation tools, such as C compiler 

and linker. We can set up Compiler Option and Linker Option to do further 

configuration if we need, or we can just use the default setting in most cases. 

(3) Building and Running the project: 

After finishing code generation, we can build and run the project. In this 

process, it compiles and assembles all C files using c16x and assembles the 

assembly files using asm6x. The resulting object files are then linked with 

run-time library support file using lnk6x. This generates an executable file that 

can be loaded into ‘C6701 processor and run. Then, we can load the program 

after a build. 

(4) Monitoring the Watch Window: 

Before monitoring the watch window, we need to verify that the processor is 

still running. After that, monitoring watch window allows us to change the value 

of a parameter or to monitor a variable we desire. Through monitoring, we can 

do debugging and regressive test until it works as we expect. 
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(5) Correcting Program Errors: 

Once an error occurs, the error message will be listed and being a link 

directly to the line where the error occurs. After making the appropriate 

correction, we have to build, load, and run the program again to verify our 

results. 

 

3.4  Communication Between FPGA and DSP 

Having introduced FPGA and DSP EVM in the previous two sections, we will 

further give some ideas about the communication mechanism between them. Due to the 

discrepancy of working frequency, we need to define the timing specification of DSP 

while it connects with other modules, so that we can transmit or receive data without 

any errors. In DSP EVM, data transmission is not handled directly by DSP CPU, but 

taken charge by the four pieces of front processing board (from board 1 to board 4) as 

shown in Figure 3.12. 
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Figure 3.12: ‘C6701 DSP EVM and its outer components 
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EXTINT0-EXTINT3 are interrupt signals, which is mapped to interrupt INT4-INT7 

of DSP CPU and can be requested to perform corresponding interrupts by other 

modules on Aptix® platform. In our design, whenever DSP is requested to work, we 

trigger EXTINT0-EXTINT3 signals from FPGA module, which force DSP to perform 

the required task, and then transfer data back at the suitable time. Therefore, the goal of 

data transmission is achieved. 

The timing diagram for DSP EVM to receive data from the outer module like FPGA 

is defined as in Figure 3.13. The duration of DSP clock is the reciprocal of the working 

frequency (duration tclk = 1/132 MHz). When STRBN0/1/2/3 is on the falling edge and 

RD/WR0/1/2/3 is on high level, it means that the front processing components are in the 

receiving state. Before the time t4 earlier than STRBN0/1/2/3 coming back to high level, 

we must maintain the databus to be stable so that we can store data according the 

address at this moment. 

On the contrary, if we need to transfer data to FPGA module from DSP EVM, the 

writing timing diagram can be followed in Figure 3.14. When both STRBN0/1/2/3 and 

RD/WR0/1/2/3 are on the falling edge, we can obtain the correct data at the time 1 tclk 

after STRBN/0/1/2/3 is on the falling edge. The correct data can maintain a time-span t2 

on the databus, and then the databus will return to a state of high-impedance. The 

followings are the parameters mentioned above or shown in Figures. 

1. tclk: is the duration of a DSP clock. tclk = 1/132 MHz while working on the 

frequency of 132 MHz. 

2. t1: is the time-span from the time that address line is ready to the falling edge 

of STRBN0/1/2/3. 

3. t2: is the time-span for DSP to receive data. 

4. t3: is the time-span from the falling edge of STRBN0/1/2/3 to the time that 

address line is ready 

5. t4: is the time that has to maintain the data on the databus. 

6. t5: is the time-span that DSP can recognize Ready signal. 

7. 10ns: is the minimum propagation delay time caused by CPLD component. 
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Figure 3.13: Read state timing diagram of ‘C6701 DSP EVM 
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Figure 3.14: Write state timing diagram of ‘C6701 DSP EVM 
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3.5  USB 2.0 Module 

USB 2.0 Module uses CYPRESS CY7C68013 [36] as its core chip as shown in 

Figure 3.15, which includes a 24 MHz 8051 and a 4 Kbytes FIFO. The maximum data 

rate can be up to 480 Mbps. The FIFO provides the interface between USB 2.0 module 

and C6701 EVM. Figure 3.16 shows a diagram of the USB 2.0 module and its 

neighborhood. Through USB 2.0 module, we can transfer data, which comes from PC 

and will come to USB FIFO first, to DSP EVM. Also, USB 2.0 module can transmit 

data coming from DSP EVM to PC. We can connect PC with a web camera to generate 

video stream as our data source. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.15: USB 2.0 module 
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There are four transmission type supports by USB 2.0 module as follows: 

1. Bulk: It guarantees the correctness of data transmission, but not the time spent. 

The typical application is used for burst data, such as PC sending printing data 

to a printer. 

2. Isochronous: It guarantees the time spent, but not the correctness of data 

transmission. The typical application is used for transmission of image or voice 

files. 

3. Control: It is used for the control of enumeration and device. 

4. Interrupt: The typical application is used for expected poll time like the 

mouse event. 

The USB 2.0 module uses only a 16-bit databus while the databus used in DSP 

EVM modules is 32-bit. Owing to the mismatch of databus, we need to assign the 

databus in USB 2.0 module to a 16-bit databus counting from the least significant bit 

(LSB) in DSP EVM, so that we can perform data transmission correctly. 

In fact, USB 2.0 module provides an interface between PC and Aptix® MP3CF 

platform. In PC, we use the software called EZ USB Control Panel to control the file 

transmission between PC and USB 2.0 module. We use the endpoint 2 pipe to send data 

to USB 2.0 module; on the other hand, we use the endpoint 6 pipe to receive data from 

USB 2.0 module. Both of them are using Bulk type that has been mentioned above, as 

shown in Table 3.1. 

 
Table 3.1: USB 2.0 module pipe mapping table 
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3.6  DAC and ADC Modules 
In our adaptive 4x4 MIMO-OFDM system, we use the dedicated DAC and ADC 

modules to do the conversion between digital and analog signals as illustrated in Figure 

3.17. The major components of each module include eight DAC/ADC chips, clock 

source, four databuses, and eight I/O ports, and are descript as follows. 

1. DAC/ADC Chips: DAS825E and ADC900u are used as core chip 

respectively. 

2. Clock Source: It can be setup by the combination of JP1, JP2, and JP10 

jumpers. 

3. Databus: Through the configuration of virtual pins in Aptix® Explorer, databus 

can receive and sent signals from and to FPGA modules by specific cables. 

In addition, the output of DAC contains eight resistors numbered from R219 to 

R226. When DAC is connected to ADC, we need to use 0.1 Ω resistors. But if we 

attempt to connect with the instrument that has 50 Ω input resistant, we must change 

resistors to 50 Ω to avoid the impedance mismatch problem, which will make signals 

decay. 
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Figure 3.17: DAC and ADC modules 
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3.7  Debugging Tools 

As an old saying goes, “What is a workman without his tools.” In our fast 

prototyping system, we do have some useful tools for debugging as follows.  

1. Logic Analyzer: We use Agilent 16702B LA to perform the major task of 

debugging. There are two modules installed on it. One is 16522A Pattern 

Generator Module, and the other is 16711A Measurement Module. The former 

is mainly used for generating desired signals, such as the reset signal or some 

selection signals for model selection; the latter is used for probing signals in 

FPGA on Aptix® MP3CF platform by connecting specific pods to the slots on 

Aptix®. 

2. Oscilloscope: It is usually used when transmitted signals are prepared by 

FPGA and sent to the DAC module by specific cables. Therefore, we can verify 

the waveform shown in the oscilloscope. For OFDM signals following IEEE 

802.11a, we may expect to see the waveform containing preambles in the form 

of square wave in the head part and OFDM symbols follow behind those 

preambles. 

 

3.8  Summary 

In this chapter, we try to give a picture of the employed fast prototyping system. 

First, we introduce the Aptix® System Explorer platform. Then we give an overview on 

those modules installed on Aptix® platform, including FPGA module and ‘C6701 DSP 

EVM, and explain how they communicate with each other. In addition, USB2.0 module 

and ADC/DAC modules are also introduced. Further, we introduce the ADC and DAC 

modules which are in the form of dedicated boards. Finally, we give an overview of the 

debugging tools. 
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