
 
 
Chapter 4 
 
System Realization on FPGA and 
DSP 

Chapter 4 is the major part of this thesis, which is organized as follows. In the first 

subsection, we provide some pre-implementation works, such as preamble design for 

MIMO structure in MATLAB, interrupt scheduling in DSP, arrangement of data buffer 

insertion in FPGA, and hardware partitioning for both DSP and FPGA. Then, we give 

our detailed implementation results on DSP and FPGA respectively and chronologically 

in the sense of processing a packet. In addition, to achieve the goal of being an adaptive 

system, we first show the experimental results under different channel conditions. By 

analyzing the data, we try to build up the tables for adaptive mechanism, which makes 

the mode selection strategies more complete. Finally, we will provide some simulation 

results and prove that under a varying channel condition the system throughput can be 

improved significantly by using the strategies we proposed. 

4.1  Pre-Implementation Works 

Before the implementation of the MIMO-OFDM system, some works are required 

to be done in advance. In the algorithm development stage, we have to decide which 

algorithm we should adopt, such as preamble design for the MIMO system. After that, 

some pre-works for hardware realization are necessary. In DSP, the most important 

pre-work is the interrupt scheduling, since the interrupt is a limited resource that we 

have to schedule carefully before implementation. Moreover, the arrangement of data 

buffer insertion is also required before writing the HDL codes in FPGA. Finally, we 

will show the results of hardware partition to give a picture of the whole system. 
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4.1.1 MATLAB: Preamble Design 

Unlike the preambles defined in the IEEE 802.11a standard [10], the system we 

implement is a MIMO system, implying that we have to estimate the MIMO channels 

which may require more long preambles to perform the task and need an advanced 

design to separate the mixed received preambles at the receiver. Therefore, the 

transmitted preambles among different transmit antennas have to be designed carefully. 

To find out the proper design, we first define received preambles  as follows. Z

( )= ⊗Z H T p  

where  is an 1  long preamble row vector with k  being the length of long 

preamble,  is a  structure matrix, H  is a  channel matrix, Z  is the 

cascaded received vector with size of , and  denotes the Kronecker product. 

At the receiver, we may multiply a vector  to match the mixed preambles 

p k×

T 4 4× 4 4×

T

4 k× ⊗
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     ( )T T k= ⊗ =H TT pp H

According to some properties of Kronecker product and the fact that  is a scalar, 

we can finally obtain a scaled channel matrix only if  is a scalar. Therefore, the 

structure matrix  should be designed as an orthogonal matrix. In fact, there are some 

common  orthogonal matrices, such as identity matrix , or the matrix used for 

STBC of four transmit antennas mentioned in Section 2.4.1. To reduce complexity, we 

choose identity matrix  as our structure matrix as illustrated in Figure. 4.1. 
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Figure 4.1: Frame structure using identity matrix as structure matrix 
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4.1.2 DSP: Interrupt Scheduling 

The type of DSP program can be divided into interrupt-driven program and 

polling-based program. With an interrupt-driven program, an interrupt is selected 

(usually refers to INT11) once the nearby device triggers. A polling-based program 

(non-interrupt driven) continuously polls or tests whether or not data are ready to be 

received or transmitted; this is less efficient than the interrupt scheme [37]. Therefore, 

we adopt the interrupt scheme to realize our system partitioned in DSP. To select 

interrupt INT11, a branch instruction to the interrupt service routine (ISR) located in C 

program is placed at the address INT11 in the vector file, vetors_11.asm, so that we can 

know which subroutine will be executed once an external interrupt is triggered. 

Interrupt scheduling refers to the organization of those limited interrupts used 

either for major subroutines or for handshakes of data transfer. Actually, there are four 

external interrupts for major subroutines (trigger signals EXT0~3 corresponding to 

EXTINT1~4{} subroutines) and four internal interrupts for handshakes of data transfer. 

Besides, there are three modules, FPGA, DSP, and USB modules, which communicate 

with one another. The finalized schedule result of interrupts is illustrated in Figure 4.2. 

As shown in the figure, we use two major subroutines EXTINT2{} and EXTINT1{} as 

the transmitter and the receiver respectively in the portion of DSP, and their 

corresponding trigger signals from FPGA are EXT1 and EXT0. In the beginning, when 

the RST signal which comes from the pattern generator is received, FPGA sends the 

signal EXT1 to trigger the subroutine EXITINT2{}, and the system does not start to 

process until now. The handshake interrupt *inter3_ptr is used to ask USB module for 

image data generated from the web camera on PC as the source data. Then, after the 

portion of transmitter in DSP is finished and ready to send the traffic data, *inter2_ptr 

is used to handshake with FPGA. After a while, data are processed from the transmitter 

in FPGA via DAC and ADC to the receiver in FPGA, and again, EXT0 is sent to trigger 

the receiver subroutine EXTINT1{} so as to start the portion of receiver in DSP. Once 

the DSP subroutine is triggered, DSP plays an active role to handle all the tasks of 

handshaking. Hence, data in FPGA are returned to DSP with the aid of *inter0_ptr. 

Since the viterbi decoder is located in FPGA, it is necessary to transfer the data to 
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FPGA again, and we use the last unused handshake interrupt *inter1_ptr to perform the 

task. Finally, we return the decoded data to USB modules by *inter3_ptr, so that we 

can compare the unprocessed image source with the processed data received on PC 

through the interface of USB 2.0. Note that DSP does not immediately receive the data 

right after the process of the Viterbi decoder in FPGA. The decoded data are stored 

until the receiver FPGA is returning its data to receiver DSP in the next packet. 

Technically, they are imbedded in the unused bits of the databus. By using this skill, a 

significant period of time for data transfer can be saved, but it also induces a 

one-packet delay of data arrival at the same time. 
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Figure 4.2: Results of interrupt scheduling 

4.1.3 FPGA: Data Buffer Insertion 

 The programming concepts in high level language like MATLAB and in hardware 

description language like VHDL are quite different. In general, high level language 

keeps its temporary data in a form of variables, and simply assigns the stored variable 

to another one which is used to be the input of next stage or functions if necessary, 

whereas hardware description language may need extra data buffer and related 

components to perform the same task. 

 As shown in Figure 4.3, we first give an example around IFFT stage in high level 
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language such as MATLAB. The previous stage generates some output data which are 

stored in the variable with a format of vector or array. Then all we need to do is just to 

copy the variable to another one and feed it into the following function, IFFT, and in a 

while the output is stored again in the variables waiting for the process of next stage. In 

other words, the data can be temporarily stored whenever needed in the memory 

pre-allocated by the application software, which facilitates us to develop our system. 
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Figure 4.3: Programming concept in high level language 

 

 Unfortunately, the hardware description language does not have such merits. 

Instead, some extra memory blocks are needed to keep those data from previous stage 

in “mind” until the next stage handles. As illustrated in Figure 4.4, we not only have to 

prepare the memory blocks but also the control elements such as address and control 

signal generator to perform the same task as in high level language. These memories 

are also called buffers, which can further be classified into input data buffers and output 

data buffers depending on the place it locates. Since we have no choice but to add those 

extra elements, some index-related jobs can be performed in the same time, such as 

zero padding, bit reversing, or adding cyclic prefix and so forth. Therefore, it has to be 

planned carefully to insert data buffers between any two major adjacent stages in FPGA. 

Particularly, when the insertion is combined with the index-related jobs, the generation 

of address will become very complicated, which takes us a lot of efforts to implement. 
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Figure 4.4: Programming concept in hardware description language 
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4.1.4 Overview of Hardware Partition 

 Hardware partition is also an important pre-work before implementation. Actually, 

some principles can be referred to perform the task of hardware partition, such as the 

consideration of implementation complexity, overall fluency, and limited resource, 

which we will have a more detailed discussion in Chapter 5. Here, we just show the 

result of our partition in Figure 4.5 to give a picture on the whole system. 
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Figure 4.5: Partition result of MIMO-OFDM system 

 

4.2 Transmitter on DSP 

 As mentioned in Section 4.1.2, a packet is first processed in DSP, and the major 

tasks are illustrated in Figure 4.6. Channel data is declared in the form of matrix with a 

size of  where the number of columns refers to the number of symbols 

transmitted in a packet. After the 1/3 rate convolutional encoder as introduced in 

Section 2.2.1, each column is extended to 96 bits, and then the inter-leaver block in 

32 8×
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Section 2.2.2 mixes the data on each column individually keeping the size still . 

Next, the mapper tries to combine two bits into a complex symbol. In DSP the 

programming of C language does not support the complex data type. Therefore, we 

define a simple class containing only two member variables, i and q, referring to real 

part and imaginary part respectively so as to simplify our development later. After that, 

two adjacent bits in the same column are combined and mapped into a complex number 

and stored in the self-defined complex data type, which forms a  complex data. 

96 8×

48 8×
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Figure 4.6: Diagram of transmitter in DSP 

 

 The previous part in DSP can be considered the common part of transmitter. The 

following space-time encoder is quite different among three methods. V-BLAST do 

nothing but branches the  complex data source into four  branches for 

four transmit antennas, implying only two symbols will be transmitted in V-BLAST 

mode. In G-STBC mode, owing to performing Alamouti space-time block coding in 

each group, each four incoming symbols will provide the data for four transmit 

antennas and double the symbols needed to be transmitted. Therefore, each transmit 

antenna needs to send four symbols for eight data source symbols defined in a packet. 

All the above-mentioned data size is gathered in Table 4.1. Since the process right after 

transmitter in DSP is to transfer data to FPGA, which means that the space-time 

encoded data has to be replaced by limited bits so as to pass through the databus, STBC 

becomes the most complicated mode, not because it has complex computation, but 

because it produces floating-valued output such as 

48 8× 48 2×

1/ 2± , which takes lots of bits to 

represent. Unlike STBC, the other two modes generate only fixed-valued output such 

as  in either real part or imaginary part. In order to have consistency among three 1±
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modes, we figure out this problem by performing a mapping before data transfer. As 

shown in Table. 4.2, the mapping skill makes it possible to use only two bits to 

represent the data in each I/Q channel on each transmit antenna. Since we have four 

transmit antennas and each antenna as two channels, therefore, an amount of 16 bits are 

needed to transfer data to FPGA at the same time. Actually, the databus has 32 bits and 

is sufficient enough to perform the task. 

 The constellation in frequency domain can be shown in Figure 4.7, where (a), (b), 

and (c) are the constellation that we impose an AWGN of SNR = 0 dB, 10 dB, 20 dB 

respectively on the first transmit antenna, and (d) is the constellation of the first receive 

antenna under an flat fading channel with a sample of condition number 10 at SNR = 

20 dB. As in the Figures 4.7 (a), (b), and (c), we adopt QPSK as our modulation 

scheme, and the constellation disperses more seriously as the SNR increases. In Figure 

4.7 (d), since different paths have different scalar, the received constellation looks very 

dispersive. 

 

Table 4.1: Collection of data sizes in transmitter DSP 

 

 

 

 

 
 
 

STBC VBLAST GSTBC
Info. Bits 32*6 32*8 32*8

 (1/3) Conv. 96*6 96*8 96*8
Interleaving 96*6 96*8 96*8

Mapping 48*6 48*8 48*8
ST-Coding 3/4 4 2

Ant. 1 48*8 48*2 48*4
Ant. 2 48*8 48*2 48*4
Ant. 3 48*8 48*2 48*4
Ant. 4 48*8 48*2 48*4

 

Table 4.2: Mapping table for data transfer 

 STBC VBLAST GSTBC

+1 01 01 01 

-1 11 11 11 

1/ 2+ 10 X X 

1/ 2− 00 X X 
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 (c)                                      (d) 

Figure 4.7: Constellation of the first transmit antenna at (a) SNR = 0 dB (b) SNR = 10 

dB (c) SNR = 20 dB, and the constellation of first receive antenna at (d) SNR = 20 

under a flat fading channel with a sample of condition number 10 

 

4.3  Transmitter on FPGA 

 In this section, we first introduce the circuit design of the whole transmitter. Since 

the system is a MIMO system, such that there exists some parallel processing for 

individual transmit branch, we may duplicate some common part for each antenna to 

save the time of development. At last, the design of the common part in each transmit 

branch will be provided in the end of this section. 
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4.3.1 Circuit Design of Transmitter 

 As illustrated in Figure 4.8, the transmitter in DSP transfers the space-time 

processed data to the transmitter in FPGA through a 32-bit databus with *inter2_ptr 

handshaking signals including BDWEN2 and STRBN2. The first encountered 

component in FPGA is the multiplexer named TX_DATA2FPGA_MUX used to 

multiplex the information-carried 16 bits from the 32-bit databus whenever BDWEN2 

and STRBN2 become low simultaneously. At the same time, each multiplexed signals 

are sent to the corresponding component to be processed for each transmitter and 

immediately stored in the input data buffers inside with the address generated by 

counting the times that STRBN2 falls. This is because every time data transfer that 

happens in the direction from DSP to FPGA results in the fall of both handshaking 

signals, BDWEN2 and STRBN2, while nothing happens except the fall of BDWEN2 in 

the opposite direction. After a series of processing in each transmitter block, from TX1 

to TX4, data ready to be transmitted are passed to an eight-channeled DAC which is 

prepared for up-conversion to the appropriate RF band if needed. Later, we will give a 

more detailed circuit design for each transmit antenna. 
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Figure 4.8: Circuit design of transmitter in FPGA 
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4.3.2 Circuit Design of Each Transmit Branch 

 Figure 4.9 shows the circuit design of each transmit antenna, which is mainly 

composed of an input data buffer, an IFFT block, an output data buffer, a ROM, a 

multiplexer, and two RRC blocks. The other blocks also play an important role in 

completing the task. First, the strobe signal STRBN2 with its fall state lasting for 

several clocks is trimmed to one clock by block tx_strnc_gen, since the following 

tx_data_ctrl block counts the clocks that trimmed STRBN2 lasts as the writing address 

of input data buffer D_CH. After collecting all the data, tx_data_ctrl sends a reset 

signal to data_ctrl block so as to start the rest circuit up. The data_ctrl mainly performs 

the job of assembling OFDM frames including the insertion of pilot tones and zero 

tones, and by means of modifying the read address appropriately, this job can be 

performed while data are read to next stage. Undoubtedly, IFFT is the most 

time-consuming block in the development stage owing to its high complexity. Since 

IFFT induces a delay of 26 clocks from the incoming of the last bit to the outgoing of 

the first bit in a symbol of 64 bits, we use data_delay and ctrl_delay blocks to adjust 

the arrival timing of IFFT output and control signals for writing data to data_buffer 

block. Actually, the IFFT we designed is a bit-reversed version of its output, implying 

that we have to rearrange the order at the time of writing to data buffer, which 
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Figure 4.9: Circuit design of each transmit branch 
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somewhat makes ram_ctrl more complicated. While reading data from data_buffer, 

instead of simply increasing the address, we modify the address as illustrated in Figure 

4.10 to read out the data with a cyclic prefix attached in the front of each symbol. Then 

the preamble data are read from a pre-defined ROM P_CH by a modified counter cnt2 

that can read the short preamble ten times and the cyclic-prefixed long preamble four 

times. Through the multiplexer tx_data_mux, preamble channels and data channels are 

combined together to form a complete OFDM packet. As mentioned in Section 2.2 and 

Section 4.1.1, we use the rule of STBC on short preambles and use the identity matrix 

as structure matrix on long preambles, which are both performed in the same 

multiplexer, tx_data_mux. At last, two RRC blocks are processed for individual I/Q 

channels, and then data are transmitted to the corresponding DAC for each transmit 

antenna. 
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Figure 4.10: Address values of ram_ctrl block 

 

4.4  Receiver on FPGA 

 At the receiver side, we first give a whole picture of the receiver on FPGA, which 

is partitioned into several parts. Among them, the RRC blocks and timing 

synchronization block which gives the information of when the packet starts are then 

provided. Later, we will give the circuit design of each processing block for two receive 

antennas. Finally, the rest components like the multiplexer, output buffers, and Viterbi 

decoder will be presented. 
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4.4.1 Circuit Design of Receiver 

 As we can see in Figure 4.11, four pairs of received channels are passed to the 

receiver FPGA from an eight-channeled ADC. These data are first fed to eight RRC 

blocks to perform waveform shaping, and then the output are matched with short 

preambles, delayed and summed, and filtered. By a series of processing, the maximum 

output is selected to find out when the packet starts by delaying a fixed time. After that 

the signal FRM_STR containing timing information is sent to the major processing 

blocks, RX12 and RX34, in a form of enable signal so as to start the following 

components up. Each major processing block uses two pairs of RRC-processed signals 

as their inputs RX1_I/Q and RX2_I/Q, taking RX12 for example, and combines them 

into one pairs RX12_I and RX12_Q as its output. The reason for combining is to reduce 

the number of FFT blocks which is the most gates-consuming part of all. By 

combination, a total of four parallel FFT processing can be shrunk to two parallel ones 

but twice longer data are processed than before, which implies we trade complexity for 

efficiency. Then RAM_ENB are used to inform the RX_REST block to enable the inside 

output buffer to store the incoming data. Finishing collecting and merging the data 

comes from previous stage and the output of VITERBI_DECODER, RX_REST uses 

BDWEN0 and STRBN0 to transfer data to receiver DSP whereas the input of 

VITERBI_DECODER is fed in previous packet as mentioned in section 4.1.2. 
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Figure 4.11: Circuit design of receiver in FPGA 
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4.4.2 RRC and Time Synchronization 

 Figure 4.12 shows the circuit design of RRC waveform shaping filter and time 

synchronization block. Again we use the concept of instantiation in hierarchical design 

to save the time of development, as we can see in the left hand side where two major 

pieces of identical processing blocks for each two receive antennas are instantiated 

from the same design. First, the incoming data which is 10-bits wide from ADC are 

truncated to 8 bits and passed to individual RRC blocks. After that, in order to do 

two-time downsampling, we use switch blocks to generate clock sources two time 

faster than the FPGA clock and perform the job in the followed matched filter MF 

which uses the generated clock as its working clock. Then a series of comparison are 

processed to find out the maximum absolute value among 16 paths at each time index. 

After collecting a data sequence that has the maximum absolute values, it is delayed by 

16 clocks and summed up to enhance the peak values by the rx_delay_sum block where 

sixteen is the length of a short preamble and is also the expected distance between two 

adjacent peaks since they are matched with short preamble in the previous stage. Later, 

an FIR filter with response of some repeated {0,0,…,0,1} is applied to rake the values 

on each peaks, so that we can obtain a series of ascending values which become 

descending after a while as illustrated in Figure 4.13. Thus, we use the block 

rx_select_max to find out where the maximum value locates and 

 

 

 

 

 

 

generates 

 

Delay
SumModify

Data

data2rrc rx_rrc switch rx_sp_match rx_s_comp

rx_delay_sum
RRC

RRC

MF
MF

SW
MF

MF

CP

CP

RRC

RRC

MF
MF

SW
MF

MF

CP

CP

CP

CP

CP

CP

FIR Select
Max

Delay
Fixed
Time

rx_fir rx_select_max rx_frm_str

1

FRM_STR

8 8

32
64

12
12

12
12

16 16 1

1

1

1

RX1_I/Q

RX2_I/Q

RX3_I/Q

RX4_I/Q

RX1_I/Q

RX2_I/Q

RX3_I/Q

RX4_I/Q
8

Delay
SumModify

Data

data2rrc rx_rrc switch rx_sp_match rx_s_comp

rx_delay_sum
RRC

RRC

MF
MF

SW
MF

MF

CP

CP

RRC

RRC

MF
MF

SW
MF

MF

CP

CP

CP

CP

CP

CP

FIR Select
Max

Delay
Fixed
Time

rx_fir rx_select_max rx_frm_str

11

FRM_STR

88 88

32
64

1212
1212

12
1212

1616 1616 11

11

1

1

RX1_I/Q

RX2_I/Q

RX3_I/Q

RX4_I/Q

RX1_I/Q

RX2_I/Q

RX3_I/Q

RX4_I/Q

RX1_I/Q

RX2_I/Q

RX3_I/Q

RX4_I/Q
8

Figure 4.12: Circuit design of RRC and time synchronization 
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the following block rx_frm_str is used to delay a fixed number of clocks. The fixed 

numbers of clocks can be calculated, since we have the information of the processing 

period (clocks) of a packet (frame) and the offset between the frame start and the place 

that maximum value would appear. Therefore, the start of the next frame can be 

determined simply by delaying a fixed time, “frame time - offset”, after we know the 

place that peak value appears. Finally, the timing information is carried by FRM_STR 

in a form of enable signal to start up the later circuit, and it also feeds back as an enable 

signal of the previous block rx_select_max to avoid selecting maximum values at the 

wrong time. 
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Figure 4.13: Concept of time synchronization method 

 

4.4.3 Group of Two Receive Antennas and Other 

Components 

 After having the information about the start of frame, as illustrated in Figure 4.14, 

the rx_databuf_ctrl can generate the control signals and writing address to 

rx_data_buffer in a right time where the writing address is also used to perform the 

removal of cyclic prefix and the job of downsampling. Then, before FFT processing, 

two branches of data from different receive antennas are merged into one branch by 

data2fft_mux in the way of one attached after the other. Therefore, passed in the same 

data bus, data from the second antenna will be sent after that from the first antenna, 
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which can save us a large amount of logic-gates for only one FFT block is required in 

each group of two receive antennas. Since the control block rx_databuf_ctrl can expect 

when the first output data from FFT will pass through the multiplexer and arrive at 

output data buffer ram2dsp, the notifying signal RAM_ENB will be sent at a proper 

time. After the block data_mux4 multiplexes the data from two major processing blocks, 

RX_12 and RX_34, the merged data are written into output data buffer by the 

complicated address that combines bit-reversal, discard of zero tones, and 

rearrangement of pilot tones, which is generated by data2dsp_ctrl. In order to let 

FFT-processed data and the output of Viterbi decoder travel back by the same databus 

simultaneously, we have to store the Viterbi output DATA_OUT in the data buffer 

dual_ram whenever the READY_OUT signal triggers the control block dual_ram_ctrl. 

Once the FFT-processed data ends its collection, EXTINT1 will be sent to wake up the 

receiver interrupt function in DSP so as to start the data transfer from FPGA to DSP 

with handshake signals, BDWEN0 and STRBN0. Therefore, the fall of voltage level on 

handshake signals will trigger the control block data2dsp_ctrl to read out the data from 

both of the RAMs, ram2dsp and dual_ram, and also trigger the multiplexer 

data2dsp_mux to combine the data that FFT processes and the output bit stream of 

Viterbi decoder. Notice that the job we perform in multiplexer data2dsp_mux is to 

merge a 32-bit databus and a 1-bit signal into a 32-bit databus, which implies we have 
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to ignore the source databus one bit out of 32 so that we can further imbed the 1-bit 

signal source in it. Undoubtedly, although the step will induce a little drop of 

performance, we can save the extra time required to transfer the output of Viterbi 

decoder. 

 Figure 4.15 is the Viterbi decoder and its related circuits. As mentioned in Section 

4.1.2, we adopt handshake signal STRBN1 for DSP to inform FPGA to receive the data 

after the process of de-interleaver and waiting for the process of channel decoder, 

Viterbi decoder. We can notice that dual-port-RAMs are used here and in the right hand 

side of Figure 4.14, which allow multiple reads or writes to occur at the same time, 

unlike single-ported RAM which only allows one access at a time. The control block 

dual_ram_ctrl1 mainly handles the job of writing data to dual_ram_1024x3 while 

dual_ram_ctrl2 mainly performs the task of reading data to Viterbi decoder and 

preparing the required control signals for it. After a while, the decoded data 

DATA_OUT and notifying signal READY_OUT will be sent to the block dual_ram and 

dual_ram_ctrl in the previous figure to be stored and wait for the data transferred from 

FPGA to DSP in the next packet. Since the design of Viterbi decoder is an intellectual 

property (IP) developed from our laboratory, only the related circuits are shown as in 

Figure 4.15. 
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Figure 4.15: Viterbi decoder and its related circuits 
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4.5  Receiver on DSP 

 The major tasks of receiver in DSP are shown in Figure 4.16. The data received 

from FPGA forms a  matrix, where 52 is composed of four pilot tones in the 

top and 48 data tones in the rest part, and 12 consists of four long preambles and eight 

data symbols as illustrated in Figure 4.17. Then a series of estimation which has been 

introduced in Chapter 2 are processed including channel estimation, phase estimation, 

and frequency estimation with the aids of long preambles and pilot tones provided from 

the above-mentioned received matrix. After that, the data are space-time decoded to a 

fix-numbered complex symbol according to the mode it adopts at the transmitter, which 

is also the most time-consuming stage for its high complexity, and we will give a more 

detailed introduction of their decoding algorithms in the following sections. Later, the 

de-mapper transforms the data from a complex symbol into two simple bits, and after 

52 12×
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that the de-interleaver is performed to rearrange the data in a specific way. Finally, 

because the Viterbi decoder is located in FPGA, we need to transfer data back to FPGA 

again to be decoded. 

 

4.5.1 Space-Time Block Decoding 

 The decoding procedure of space-time block code for four transmit antennas [17] 

is mainly to rearrange the estimated channel matrix in a specific method, and then to 

sum up the multiplication results with both the original received signals and the 

complex conjugated version. The signal model can be expressed as follows: 

*+ =AZ BZ S  

where A  and B  is the rearranged channel matrix estimated at the receiver,  is the 

received data matrix, and S  is the combined result for decision making. The 

rearranged channel matrix can be further rewritten as follows: 

Z

1 2 3 4
⎡ ⎤= ⎢ ⎥⎣ ⎦A A A A A  

1 2 3 4
⎡ ⎤= ⎢ ⎥⎣ ⎦B B B B B  

where  and  are iA iB

*

1 3 4

2 3 4

3 4 3 4

0 ( )/2 ( )

0 ( )/2 ( )/2

( )/ 2 ( )/ 2 0 0

i i i

i i i i i i

i i i i

H H H

H H H

H H H H

⎡ ⎤− − −⎢ ⎥
⎢ ⎥
⎢ ⎥= − −⎢ ⎥
⎢ ⎥+ −⎢ ⎥⎣ ⎦

A
3 4

3 4

/2i iH H

H H

2 3 4 3 4

1 3 4 3 4

1 2 1 2

0 ( )/2 ( )/2

0 ( )/2 ( )/2

0 0 ( )/ 2 ( )/ 2

i i i i i

i i i i i i

i i i i

H H H H H

H H H H H

H H H H

⎡ ⎤− + − +⎢ ⎥
⎢ ⎥
⎢ ⎥= − − + +⎢ ⎥
⎢ ⎥+ −⎢ ⎥⎣ ⎦

B  

where  is the channel response between ith transmitter and jth receiver obtained 

from the channel estimator in the same subcarrier. The received signal  can usually 

be written in the following form: 

ijH

Z
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1 2 3 4

T⎡ ⎤= ⎢ ⎥⎣ ⎦Z z z z z
 

where , and  is the ith data received from the jth receiver. 1 2 3 4i i i i i= ⎢ ⎥⎣ ⎦z ijz

1 1 2 2 3 3 4 4

T
z z z z⎡ ⎤

By the above method, we can obtain a  combined vector S  so that we can 

decide whether the decoded data of either real part of imaginary part should be 1 or 

 simply by setting the threshold of zero. 

3 1×

1−

 

4.5.2 V-BLAST Decoding 
As mentioned in Chapter 2, for the computational complexity is always our major 

concern rather than performance, we only use pure nulling method to perform the 

decoding at the receiver without incorporating with symbol cancellation which requires 

higher complexity and more hardware costs. The pure nulling method can be 

summarized as follows. 

Assume we can obtain the received signals from four receive antennas and each of 

them can be expressed as  

,( ) { ( ) ( ) ( ) ( )} n ij
i i i i in H d n H d n H d n H d n e φ= + + +z  

We can further combine all of them in a form of matrix as follows 

,1

,2

,3

,4

1 111 21 31 41

2 12 22 32 42 2

13 23 33 43 33

14 24 34 44 44

( ) ( )

( ) ( )

( )( )
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j
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j

n e d nH H H H

n e H H H H d n
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φ

φ

φ

−

−

−

−

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

z

z

z

z
 

where  is the data transmitted from the ith transmitter in nth time slot of a block, ( )id n
,n ije φ−  is the phase shift affected on ith receive antenna in nth time slot of a block, and 

,( ) n ij
i n e

φ−z  means the phase-compensated received data. 

Then in order to detect the data, we have to find out the linear combining weight 

as shown in the following equation: 
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where  is the linear combining weight. In general, the weight can be obtained by 

two kinds of criterion, which are ZF and MMSE. The corresponding solutions are listed 

as follows: 
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where 
†
H  is the pseudo-inverse of estimated channel matrix, and  is the noise 

power of ith receive antenna. For MMSE has higher complexity than ZF, we only adopt 

the solution according to ZF criterion. In addition, since there is no closed-form for the 

matrix inversion of a  matrix, we use Gaussian-Jordan Elimination method to 

solve the matrix inversion problem in our implementation. 

2
iσ

4 4×

 

4.5.3 G-STBC Decoding 

The four transmit antennas in our system are partitioned into two groups, with 

each group containing two antennas and transmitting independent data streams encoded 

by the Alamouti STBC individually. At the receiver, the decoding scheme of G-STBC 

is somewhat like a cascaded version of Alamouti STBC decoding scheme.  
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The decoding procedure [38] is as follows. We first write the received data in the 

 Alamouti G-STBC system as 4 4×

*
1 211 21 31 411,1 1,2

*
2,1 2,2 12 22 32 42 2 1

*3,1 3,2 13 23 33 43 3 4

4,1 4,2 *14 24 34 44
4 3

x xH H H Hr r
r r H H H H x x
r r H H H H x x
r r H H H H x x

⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦  

where  is the received data from the ith receive antenna in jth time slot of a block, 

and  is the data symbol to be encoded. Then rearranging the signal elements, we can 

have the following representation for the received data  on the first two receive 

antennas. 
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It can be shown that  

, , , , , 2,     , 1,2,H H
i j i j i j i j i jt i j= = =T T T T I  

where  and  denotes the identity matrix of size 2. On the other hand, 

we can also obtain the same representation for the received data  on the last two 

receive antennas. 

, ,det( )i j i jt = T 2I

34

12 34

r

 At the receiver, we adopt the zero-forcing interference cancellation (ZFIS) method 

to perform the job of decoding. Applying the following linear matrix filtering operation 

on  and , we have r r
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The above linear matrix filtering operation has separated the two groups of transmitted 

signals completely. ’s are orthogonal matrices that satisfy iG

2,    det( ),   1,2.H H
i i i i i i ig g i= = = =GG G G I G  

Thus, applying the linear matrix filter 
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onto  and , we will have the following decision statistics: r r
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1 1
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where the  and  denote the determine of  from first two or last two 

receive antennas. Notice that we can obtain a diversity gain of 2 which comes from two 

groups of antenna shown in the above equation. 
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4.6  Experimental Result of Adaptive Mechanism 

At mentioned in Section 2.5.3, the adaptive mechanism (i.e. mode selection 

scheme) is based on the throughput performance in a form of tables for looking up 

under different channel conditions. Before building up the table, the throughput 

performance can be obtained by incorporating BER performance over different 

condition numbers with transmitted information bits and transmission time, and the 
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expression is shown as follows: 

Successful BitsThroughput (b/s)
TransmissionTime

=  

(1-BER)Info. Bits= =(1-BER)ratio
TransmissionTime

 

where the successful bits can be derived by BER and total transmitted information bits, 

and the detailed derivation for the ratio of each mode is shown in Table 4.3. After 

introducing the calculation of throughput, we now show the experimental results 

simulated with different condition numbers ; they are 10, 20, 30, 40, 50, 100, 200, 

400, 1000, and 10

K
5. As shown in Figure 4.18, the STBC has a stable and the lowest 

throughput compared with others throughout all the condition numbers, which implies 

STBC is the most resistant scheme to channel correlations among all and has the lowest 

ratio (maximum throughput) listed in Table 4.3; G-STBC also has a similar behavior to 

STBC because these two schemes can offer some diversity gains to combat with the 

channel correlations; the performance of VBLAST degrades as the condition number 

increases, implying that VBLAST is the most sensitive scheme to channel correlations. 

This is because the correlation would make the split of different data streams at the 

receiver more difficult. The previously-mentioned ratios (maximum throughput) for 

each mode are 5.14, 12, and 9.6 for STBC, VBLAST, and G-STBC, respectively. In 

high correlation channels, especially those larger than 1000, we notice that although 

Table 4.3: Derivation of the ratio for each mode 

 

 

 

 

 

 

STBC VBLAST GSTBC Unit

Data Tones / (TX Ant.*Symbol) 48 48 48 complex

Spactial Streams 1 4 2 no.

ST Code Rate 3/4 1 1 no.

Transmitted Symbols 8 2 4 no.

Info. Bits 288 384 384 real (bit)

Short Preamble NO. 10 10 10 no.

Short Preamble Time 0.8 0.8 0.8 us

Long Preamble NO. 4 4 4 no.

Long Preamble Time 4 4 4 us

Symbol NO./ TX Ant 8 2 4 no.

Symbol Time 4 4 4 us

Transmission Time 56 32 40 us

Ratio 5.142857 12 9.6 Mbps
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Figure 4.18: Throughput performances under different channel conditions 

(a)K =10 (b)K =20 (c)K =30 (d)K =40 (e) =50 (f) =100 K K

(g)K =200 (h)K =400 (i) =1,000 (j)K =100,000 K

VBLAST has the highest throughput, it saturates at a value of 7.5, which implies errors 

occur in almost half the data, while STBC still performs near its maximum throughput, 

5.14. Therefore, we will suggest adopting the STBC when detecting a channel with the 

channel condition larger than 1000. In low correlation channels, although sometimes 

VBLAST has higher throughput than G-STBC, we still adopt G-STBC for the same 

reason as in high correlation channels. Further, we organize the previous figures into 

Table 4.4 for looking-up-table. 

 The selection strategy is summarized as follows 

1. Determine the channel condition by calculating the condition number, and 

quantize the value to fall into some specific values. 

2. According to the channel condition (some specific condition number), we may 

look up the corresponding table (Table 4.4) to choose the optimal mode. 

Table 4.4: Mode selection table 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10 V V V V V V V V V V V V V V V V V V V V V

20 V V V V V V V V V V V V V V V V V V V V V

30 G G G G G G G G G G G G G G G V V V V V V V VBLAST

40 G G G G G G G G G G G G G G G G G V V V V G G-STBC

50 G G G G G G G G G G G G G G G G G G G G G S STBC

100 G G G G G G G G G G G G G G G G G G G G G

200 G G G G G G G G G G G G G G G G G G G G G

400 G G G G G G G G G G G G G G G G G G G G G

1000 G G G G G G G G G G G G G G G G G G G G G

>1000 S S S S S S S S S S S S S S S S S S S S S
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Moreover, in order to verify that an adaptive MIMO-OFDM system can performs 

better than that without incorporating the adaptive mechanism, we run the following 

simulation. 

Thirteen random channel samples are imposed on the proposed system under the 

SNR of 16 dB, and each channel sample lasts a time-span for the transmission of 100 

packets. The receiver can detect what the present condition number is, and quantizes 

the value to fit those pre-chosen condition numbers. Then, the corresponding tables are 

looked up and the most appropriate space-time mode will be chosen for the target of 

maximizing throughput. As shown in Figure 4.19, since high condition numbers, 

especially those larger than 1000, are scarcely randomized, the STBC cannot perform 

better than other modes resulting in the lowest throughput among all. Note that with the 

adaptive mechanism (labeled start marks) the highest throughput under each channel 

condition can always be obtained, when compared with those systems which use the 

same space-time scheme through all the channels. Thus, the maximum overall 

throughput can be obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Adaptive performance comparison under SNR=16dB 
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4.7  Performance Evaluation 

By using a web camera, we can catch the real time images continuously as the 

data source to verify the realized hardware system. Passing the data through DAC and 

ADC directly, we can obtain the pure performance containing only truncation errors 

and round-off errors induced during hardware realization. Through a self-developed 

application software in PC, we can provide an user interface to demonstrate the real 

time transmitted images and the received image, as shown in Figure 4.18. In the center 

of this figure, a  images set is located. The three columns represent transmit 

images, receive images, and errors images (differences between transmitted images and 

received images) respectively, whereas the three rows represent the synthesized images 

of all antennas, first two antennas, and last two antennas respectively. The real time bit 

error rate is also calculated and shown in the right hand side. In our system, as shown in 

this figure, we can achieve a pure performance about  of bit error rate. 

3 3×

34 10−×

 

 

 

 

 

 

 

 

 

 

Figure 4.20: Performance demonstration interface 
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4.8  Summary 

Chapter 4 mainly describes the implementation results and the performance 

evaluations. We first provide some pre-implementation works, such as preamble design 

for MIMO structure in MATLAB, interrupt scheduling in DSP, and arrangement of data 

buffer insertion in FPGA. Then, we give our detailed implementation results and circuit 

designs on DSP and FPGA respectively, and the space-time decoding algorithms are 

also included. In addition, to achieve the goal of being an adaptive system, we first 

show the experimental results under different channel conditions. By analyzing the data, 

we can build up the tables for adaptive mechanism, which makes the mode selection 

strategies more complete. Finally, we provide some experimental results with adaptive 

mechanism and show that under a varying channel condition the system throughput can 

be improved significantly by using the strategies we proposed. 
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