

Chapter 4

System Realization on FPGA and
DSP

Chapter 4 is the major part of this thesis, which is organized as follows. In the first

subsection, we provide some pre-implementation works, such as preamble design for

MIMO structure in MATLAB, interrupt scheduling in DSP, arrangement of data buffer

insertion in FPGA, and hardware partitioning for both DSP and FPGA. Then, we give

our detailed implementation results on DSP and FPGA respectively and chronologically

in the sense of processing a packet. In addition, to achieve the goal of being an adaptive

system, we first show the experimental results under different channel conditions. By

analyzing the data, we try to build up the tables for adaptive mechanism, which makes

the mode selection strategies more complete. Finally, we will provide some simulation

results and prove that under a varying channel condition the system throughput can be

improved significantly by using the strategies we proposed.

4.1 Pre-Implementation Works

Before the implementation of the MIMO-OFDM system, some works are required

to be done in advance. In the algorithm development stage, we have to decide which

algorithm we should adopt, such as preamble design for the MIMO system. After that,

some pre-works for hardware realization are necessary. In DSP, the most important

pre-work is the interrupt scheduling, since the interrupt is a limited resource that we

have to schedule carefully before implementation. Moreover, the arrangement of data

buffer insertion is also required before writing the HDL codes in FPGA. Finally, we

will show the results of hardware partition to give a picture of the whole system.

 52

4.1.1 MATLAB: Preamble Design

Unlike the preambles defined in the IEEE 802.11a standard [10], the system we

implement is a MIMO system, implying that we have to estimate the MIMO channels

which may require more long preambles to perform the task and need an advanced

design to separate the mixed received preambles at the receiver. Therefore, the

transmitted preambles among different transmit antennas have to be designed carefully.

To find out the proper design, we first define received preambles as follows. Z

()= ⊗Z H T p

where is an 1 long preamble row vector with k being the length of long

preamble, is a structure matrix, H is a channel matrix, Z is the

cascaded received vector with size of , and denotes the Kronecker product.

At the receiver, we may multiply a vector to match the mixed preambles

p k×

T 4 4× 4 4×

T

4 k× ⊗
T ⊗T p

() ()()T T T T⊗ = ⊗ ⊗Z T p H T p T p

 ()T T k= ⊗ =H TT pp H

According to some properties of Kronecker product and the fact that is a scalar,

we can finally obtain a scaled channel matrix only if is a scalar. Therefore, the

structure matrix should be designed as an orthogonal matrix. In fact, there are some

common orthogonal matrices, such as identity matrix , or the matrix used for

STBC of four transmit antennas mentioned in Section 2.4.1. To reduce complexity, we

choose identity matrix as our structure matrix as illustrated in Figure. 4.1.

Tpp
TTT

T

4 4× I

I

10 0.8 8 sµ× = 4 sµ

TX1TX1

TX2TX2

TX3TX3

TX4TX4

10 Short Preambles Long
PreambleGI Data 1GI Data NGI

10 Short Preambles Data N+1GILong
PreambleGI Data 2NGI

10 Short Preambles Data 2N+1GILong
PreambleGI Data 3NGI

10 Short Preambles Data 3N+1GILong
PreambleGI Data 4NGI

4 sµ 4 sµ 4 sµ 4 sµ 4 sµ10 0.8 8 sµ× = 4 sµ

TX1TX1

TX2TX2

TX3TX3

TX4TX4

10 Short Preambles Long
PreambleGI Data 1GI Data NGI

10 Short Preambles Data N+1GILong
PreambleGI Data 2NGI

10 Short Preambles Data 2N+1GILong
PreambleGI Data 3NGI

10 Short Preambles Data 3N+1GILong
PreambleGI Data 4NGI

4 sµ 4 sµ 4 sµ 4 sµ 4 sµ10 0.8 8 sµ× = 4 sµ4 sµ

TX1TX1

TX2TX2

TX3TX3

TX4TX4

10 Short Preambles Long
PreambleGI Long
PreambleGI Data 1GI Data 1GI Data NGI Data NGI

10 Short Preambles Data N+1GI Data N+1GILong
PreambleGI Long
PreambleGI Data 2NGI Data 2NGI

10 Short Preambles Data 2N+1GI Data 2N+1GILong
PreambleGI Long
PreambleGI Data 3NGI Data 3NGI

10 Short Preambles Data 3N+1GI Data 3N+1GILong
PreambleGI Long
PreambleGI Data 4NGI Data 4NGI

4 sµ4 sµ 4 sµ4 sµ 4 sµ4 sµ 4 sµ4 sµ 4 sµ4 sµ

Figure 4.1: Frame structure using identity matrix as structure matrix

 53

4.1.2 DSP: Interrupt Scheduling

The type of DSP program can be divided into interrupt-driven program and

polling-based program. With an interrupt-driven program, an interrupt is selected

(usually refers to INT11) once the nearby device triggers. A polling-based program

(non-interrupt driven) continuously polls or tests whether or not data are ready to be

received or transmitted; this is less efficient than the interrupt scheme [37]. Therefore,

we adopt the interrupt scheme to realize our system partitioned in DSP. To select

interrupt INT11, a branch instruction to the interrupt service routine (ISR) located in C

program is placed at the address INT11 in the vector file, vetors_11.asm, so that we can

know which subroutine will be executed once an external interrupt is triggered.

Interrupt scheduling refers to the organization of those limited interrupts used

either for major subroutines or for handshakes of data transfer. Actually, there are four

external interrupts for major subroutines (trigger signals EXT0~3 corresponding to

EXTINT1~4{} subroutines) and four internal interrupts for handshakes of data transfer.

Besides, there are three modules, FPGA, DSP, and USB modules, which communicate

with one another. The finalized schedule result of interrupts is illustrated in Figure 4.2.

As shown in the figure, we use two major subroutines EXTINT2{} and EXTINT1{} as

the transmitter and the receiver respectively in the portion of DSP, and their

corresponding trigger signals from FPGA are EXT1 and EXT0. In the beginning, when

the RST signal which comes from the pattern generator is received, FPGA sends the

signal EXT1 to trigger the subroutine EXITINT2{}, and the system does not start to

process until now. The handshake interrupt *inter3_ptr is used to ask USB module for

image data generated from the web camera on PC as the source data. Then, after the

portion of transmitter in DSP is finished and ready to send the traffic data, *inter2_ptr

is used to handshake with FPGA. After a while, data are processed from the transmitter

in FPGA via DAC and ADC to the receiver in FPGA, and again, EXT0 is sent to trigger

the receiver subroutine EXTINT1{} so as to start the portion of receiver in DSP. Once

the DSP subroutine is triggered, DSP plays an active role to handle all the tasks of

handshaking. Hence, data in FPGA are returned to DSP with the aid of *inter0_ptr.

Since the viterbi decoder is located in FPGA, it is necessary to transfer the data to

 54

FPGA again, and we use the last unused handshake interrupt *inter1_ptr to perform the

task. Finally, we return the decoded data to USB modules by *inter3_ptr, so that we

can compare the unprocessed image source with the processed data received on PC

through the interface of USB 2.0. Note that DSP does not immediately receive the data

right after the process of the Viterbi decoder in FPGA. The decoded data are stored

until the receiver FPGA is returning its data to receiver DSP in the next packet.

Technically, they are imbedded in the unused bits of the databus. By using this skill, a

significant period of time for data transfer can be saved, but it also induces a

one-packet delay of data arrival at the same time.

Transmitter

Receiver

FPGA DSP
Transmitter

ReceiverData Bus

USB

EXTINT1

BDWEN2
STRBN2

BDWEN3
STRBN3

BDWEN0
STRBN0

EXTINT0

BDWEN1
STRBN1

EXTINT2()
{

*intrf3_ptr

*intrf2_ptr
}

Data Bus
EXTINT1()
{

*intrf0_ptr

*intrf1_ptr

*intrf3_ptr
}

BDWEN3
STRBN33

3

2

0

1

RST

Transmitter

Receiver

FPGA DSP
Transmitter

ReceiverData Bus

USB

EXTINT1

BDWEN2
STRBN2

BDWEN3
STRBN3

BDWEN0
STRBN0

EXTINT0

BDWEN1
STRBN1

EXTINT2()
{

*intrf3_ptr

*intrf2_ptr
}

Data Bus
EXTINT1()
{

*intrf0_ptr

*intrf1_ptr

*intrf3_ptr
}

BDWEN3
STRBN33

3

2

0

1

Transmitter

Receiver

FPGA DSP
Transmitter

ReceiverData Bus

USB

EXTINT1EXTINT1EXTINT1

BDWEN2
STRBN2

BDWEN3
STRBN3

BDWEN0
STRBN0

EXTINT0EXTINT0EXTINT0

BDWEN1
STRBN1

EXTINT2()
{

*intrf3_ptr

*intrf2_ptr
}

Data Bus
EXTINT1()
{

*intrf0_ptr

*intrf1_ptr

*intrf3_ptr
}

BDWEN3
STRBN333

33

22

00

11

RST

Figure 4.2: Results of interrupt scheduling

4.1.3 FPGA: Data Buffer Insertion

 The programming concepts in high level language like MATLAB and in hardware

description language like VHDL are quite different. In general, high level language

keeps its temporary data in a form of variables, and simply assigns the stored variable

to another one which is used to be the input of next stage or functions if necessary,

whereas hardware description language may need extra data buffer and related

components to perform the same task.

 As shown in Figure 4.3, we first give an example around IFFT stage in high level

 55

language such as MATLAB. The previous stage generates some output data which are

stored in the variable with a format of vector or array. Then all we need to do is just to

copy the variable to another one and feed it into the following function, IFFT, and in a

while the output is stored again in the variables waiting for the process of next stage. In

other words, the data can be temporarily stored whenever needed in the memory

pre-allocated by the application software, which facilitates us to develop our system.

Previous
stage IFFT Next

stage
Variable
(Array)

Variable
(Array)

Previous
stage IFFT Next

stage
Variable
(Array)

Variable
(Array)

Figure 4.3: Programming concept in high level language

 Unfortunately, the hardware description language does not have such merits.

Instead, some extra memory blocks are needed to keep those data from previous stage

in “mind” until the next stage handles. As illustrated in Figure 4.4, we not only have to

prepare the memory blocks but also the control elements such as address and control

signal generator to perform the same task as in high level language. These memories

are also called buffers, which can further be classified into input data buffers and output

data buffers depending on the place it locates. Since we have no choice but to add those

extra elements, some index-related jobs can be performed in the same time, such as

zero padding, bit reversing, or adding cyclic prefix and so forth. Therefore, it has to be

planned carefully to insert data buffers between any two major adjacent stages in FPGA.

Particularly, when the insertion is combined with the index-related jobs, the generation

of address will become very complicated, which takes us a lot of efforts to implement.

Previous
stage IFFT Next

stage

Memory Memory

(Input Data Buffer) (Output Data Buffer)

Address &
Control

Address &
Control

Previous
stage IFFT Next

stage

Memory Memory

(Input Data Buffer) (Output Data Buffer)

Address &
Control

Address &
ControlMemory Memory

(Input Data Buffer) (Output Data Buffer)

Address &
Control

Address &
Control

Figure 4.4: Programming concept in hardware description language

 56

4.1.4 Overview of Hardware Partition

 Hardware partition is also an important pre-work before implementation. Actually,

some principles can be referred to perform the task of hardware partition, such as the

consideration of implementation complexity, overall fluency, and limited resource,

which we will have a more detailed discussion in Chapter 5. Here, we just show the

result of our partition in Figure 4.5 to give a picture on the whole system.

Coding Inter-
leavingUSB Mapping De-Mux

S/P IFFT P/S MUX/
RRC

Preamble

D/A
module

D/A
module

PC

USB Viterbi
Decoding

De-inter
leaving

De-
mapping

STBC

G-STBC

V-BLAST

S-T Block
decoder

G-S-T Block
secoder

Channle
Estimation

Phase
Estimation

FFT

Time/Frequency
Synchronization

Preamble

RRC

Pilot tones

FPGA

FPGA

DSP

DSP

FPGA

Coding Inter-
leavingUSB Mapping De-Mux

S/P IFFT P/S MUX/
RRC

Preamble

D/A
module

D/A
module

PC

USB Viterbi
Decoding

De-inter
leaving

De-
mapping

STBC

G-STBC

V-BLAST

S-T Block
decoder

G-S-T Block
secoder

Channle
Estimation

Phase
Estimation

FFT

Time/Frequency
Synchronization

Preamble

RRC

Pilot tones

FPGA

FPGA

DSP

DSP

FPGA

Figure 4.5: Partition result of MIMO-OFDM system

4.2 Transmitter on DSP

 As mentioned in Section 4.1.2, a packet is first processed in DSP, and the major

tasks are illustrated in Figure 4.6. Channel data is declared in the form of matrix with a

size of where the number of columns refers to the number of symbols

transmitted in a packet. After the 1/3 rate convolutional encoder as introduced in

Section 2.2.1, each column is extended to 96 bits, and then the inter-leaver block in

32 8×

 57

Section 2.2.2 mixes the data on each column individually keeping the size still .

Next, the mapper tries to combine two bits into a complex symbol. In DSP the

programming of C language does not support the complex data type. Therefore, we

define a simple class containing only two member variables, i and q, referring to real

part and imaginary part respectively so as to simplify our development later. After that,

two adjacent bits in the same column are combined and mapped into a complex number

and stored in the self-defined complex data type, which forms a complex data.

96 8×

48 8×

Encoder Inter-

leaver Mapper MUX
Data

Channel

Group-
Wise

ST-
Block

Coding

FPGAEncoder Inter-
leaver Mapper MUX

Data
Channel

Group-
Wise

ST-
Block

Coding

FPGA

Figure 4.6: Diagram of transmitter in DSP

 The previous part in DSP can be considered the common part of transmitter. The

following space-time encoder is quite different among three methods. V-BLAST do

nothing but branches the complex data source into four branches for

four transmit antennas, implying only two symbols will be transmitted in V-BLAST

mode. In G-STBC mode, owing to performing Alamouti space-time block coding in

each group, each four incoming symbols will provide the data for four transmit

antennas and double the symbols needed to be transmitted. Therefore, each transmit

antenna needs to send four symbols for eight data source symbols defined in a packet.

All the above-mentioned data size is gathered in Table 4.1. Since the process right after

transmitter in DSP is to transfer data to FPGA, which means that the space-time

encoded data has to be replaced by limited bits so as to pass through the databus, STBC

becomes the most complicated mode, not because it has complex computation, but

because it produces floating-valued output such as

48 8× 48 2×

1/ 2± , which takes lots of bits to

represent. Unlike STBC, the other two modes generate only fixed-valued output such

as in either real part or imaginary part. In order to have consistency among three 1±

 58

modes, we figure out this problem by performing a mapping before data transfer. As

shown in Table. 4.2, the mapping skill makes it possible to use only two bits to

represent the data in each I/Q channel on each transmit antenna. Since we have four

transmit antennas and each antenna as two channels, therefore, an amount of 16 bits are

needed to transfer data to FPGA at the same time. Actually, the databus has 32 bits and

is sufficient enough to perform the task.

 The constellation in frequency domain can be shown in Figure 4.7, where (a), (b),

and (c) are the constellation that we impose an AWGN of SNR = 0 dB, 10 dB, 20 dB

respectively on the first transmit antenna, and (d) is the constellation of the first receive

antenna under an flat fading channel with a sample of condition number 10 at SNR =

20 dB. As in the Figures 4.7 (a), (b), and (c), we adopt QPSK as our modulation

scheme, and the constellation disperses more seriously as the SNR increases. In Figure

4.7 (d), since different paths have different scalar, the received constellation looks very

dispersive.

Table 4.1: Collection of data sizes in transmitter DSP

STBC VBLAST GSTBC
Info. Bits 32*6 32*8 32*8

 (1/3) Conv. 96*6 96*8 96*8
Interleaving 96*6 96*8 96*8

Mapping 48*6 48*8 48*8
ST-Coding 3/4 4 2

Ant. 1 48*8 48*2 48*4
Ant. 2 48*8 48*2 48*4
Ant. 3 48*8 48*2 48*4
Ant. 4 48*8 48*2 48*4

Table 4.2: Mapping table for data transfer

 STBC VBLAST GSTBC

+1 01 01 01

-1 11 11 11

1/ 2+ 10 X X

1/ 2− 00 X X

 59

 (a) (b)

 (c) (d)

Figure 4.7: Constellation of the first transmit antenna at (a) SNR = 0 dB (b) SNR = 10

dB (c) SNR = 20 dB, and the constellation of first receive antenna at (d) SNR = 20

under a flat fading channel with a sample of condition number 10

4.3 Transmitter on FPGA

 In this section, we first introduce the circuit design of the whole transmitter. Since

the system is a MIMO system, such that there exists some parallel processing for

individual transmit branch, we may duplicate some common part for each antenna to

save the time of development. At last, the design of the common part in each transmit

branch will be provided in the end of this section.

 60

4.3.1 Circuit Design of Transmitter

 As illustrated in Figure 4.8, the transmitter in DSP transfers the space-time

processed data to the transmitter in FPGA through a 32-bit databus with *inter2_ptr

handshaking signals including BDWEN2 and STRBN2. The first encountered

component in FPGA is the multiplexer named TX_DATA2FPGA_MUX used to

multiplex the information-carried 16 bits from the 32-bit databus whenever BDWEN2

and STRBN2 become low simultaneously. At the same time, each multiplexed signals

are sent to the corresponding component to be processed for each transmitter and

immediately stored in the input data buffers inside with the address generated by

counting the times that STRBN2 falls. This is because every time data transfer that

happens in the direction from DSP to FPGA results in the fall of both handshaking

signals, BDWEN2 and STRBN2, while nothing happens except the fall of BDWEN2 in

the opposite direction. After a series of processing in each transmitter block, from TX1

to TX4, data ready to be transmitted are passed to an eight-channeled DAC which is

prepared for up-conversion to the appropriate RF band if needed. Later, we will give a

more detailed circuit design for each transmit antenna.

2

32

1

STRBN2

DATABUS

TX DSP TX_DATA2FPGA_MUX

TX4
TX3

TX2
TX1

TX1_R

TX1_I

STRBN2

TX1_I

8 Channel D/A

1

2

3

4

5

6

7

8
TX1_Q

TX FPGA

1

BDWEN2 2

3232

11

STRBN2

DATABUS

TX DSP TX_DATA2FPGA_MUX

TX4
TX3

TX2
TX1

TX1_R

TX1_I

STRBN2

TX1_I

8 Channel D/A

1

2

1

2

3

4

3

4

5

6

5

6

7

8

7

8
TX1_Q

TX FPGA

11

BDWEN2

Figure 4.8: Circuit design of transmitter in FPGA

 61

4.3.2 Circuit Design of Each Transmit Branch

 Figure 4.9 shows the circuit design of each transmit antenna, which is mainly

composed of an input data buffer, an IFFT block, an output data buffer, a ROM, a

multiplexer, and two RRC blocks. The other blocks also play an important role in

completing the task. First, the strobe signal STRBN2 with its fall state lasting for

several clocks is trimmed to one clock by block tx_strnc_gen, since the following

tx_data_ctrl block counts the clocks that trimmed STRBN2 lasts as the writing address

of input data buffer D_CH. After collecting all the data, tx_data_ctrl sends a reset

signal to data_ctrl block so as to start the rest circuit up. The data_ctrl mainly performs

the job of assembling OFDM frames including the insertion of pilot tones and zero

tones, and by means of modifying the read address appropriately, this job can be

performed while data are read to next stage. Undoubtedly, IFFT is the most

time-consuming block in the development stage owing to its high complexity. Since

IFFT induces a delay of 26 clocks from the incoming of the last bit to the outgoing of

the first bit in a symbol of 64 bits, we use data_delay and ctrl_delay blocks to adjust

the arrival timing of IFFT output and control signals for writing data to data_buffer

block. Actually, the IFFT we designed is a bit-reversed version of its output, implying

that we have to rearrange the order at the time of writing to data buffer, which

IFFT

Control

Data
Buffer
(RAM)

Delay

Delay

Modify
Data

Data
Buffer
(RAM)Control

Trim
Strobe

MUX
Counter ROM

tx_strnc_gen

tx_data_ctrl D_CH data_ctrl data_delay

ctrl_delay

idft

ram_ctrl

data_buffer

cnt2 P_CH

tx_data_mux

RRC

RRC

tx_rrc_r

tx_rrc_i

TX_I

IFFT

Control

Data
Buffer
(RAM)

Delay

Delay

Modify
Data

Data
Buffer
(RAM)Control

Trim
Strobe

MUX
Counter ROM

tx_strnc_gen

tx_data_ctrl D_CH data_ctrl data_delay

ctrl_delay

idft

ram_ctrl

data_buffer

cnt2 P_CH

tx_data_mux

RRC

RRC

tx_rrc_r

tx_rrc_i

TX_Q

STRBN2

TX_R

TX_I

IFFT

Control

Data
Buffer
(RAM)

Delay

Delay

Modify
Data

Data
Buffer
(RAM)Control

Trim
Strobe

MUX
Counter ROM

tx_strnc_gen

tx_data_ctrl D_CH data_ctrl data_delay

ctrl_delay

idft

ram_ctrl

data_buffer

cnt2 P_CH

tx_data_mux

RRC

RRC

tx_rrc_r

tx_rrc_i

IFFT

Control

Data
Buffer
(RAM)

Delay

Delay

Modify
Data

Data
Buffer
(RAM)Control

Trim
Strobe

MUX
Counter ROM

tx_strnc_gen

tx_data_ctrl D_CH data_ctrl data_delay

ctrl_delay

idft

ram_ctrl

data_buffer

cnt2 P_CH

tx_data_mux

RRC

RRC

tx_rrc_r

tx_rrc_i

TX_I

IFFT

Control

Data
Buffer
(RAM)

Delay

Delay

Modify
Data

Data
Buffer
(RAM)Control

Trim
Strobe

MUX
Counter ROM

tx_strnc_gen

tx_data_ctrl D_CH data_ctrl data_delay

ctrl_delay

idft

ram_ctrl

data_buffer

cnt2 P_CH

tx_data_mux

RRC

RRC

tx_rrc_r

tx_rrc_i

IFFT

Control

Data
Buffer
(RAM)

Delay

Delay

Modify
Data

Data
Buffer
(RAM)Control

Trim
Strobe

MUX
Counter ROM

tx_strnc_gen

tx_data_ctrl D_CH data_ctrl data_delay

ctrl_delay

idft

ram_ctrl

data_buffer

cnt2 P_CH

tx_data_mux

RRC

RRC

tx_rrc_r

tx_rrc_i

TX_Q

STRBN2

TX_R

TX_I

Figure 4.9: Circuit design of each transmit branch

 62

somewhat makes ram_ctrl more complicated. While reading data from data_buffer,

instead of simply increasing the address, we modify the address as illustrated in Figure

4.10 to read out the data with a cyclic prefix attached in the front of each symbol. Then

the preamble data are read from a pre-defined ROM P_CH by a modified counter cnt2

that can read the short preamble ten times and the cyclic-prefixed long preamble four

times. Through the multiplexer tx_data_mux, preamble channels and data channels are

combined together to form a complete OFDM packet. As mentioned in Section 2.2 and

Section 4.1.1, we use the rule of STBC on short preambles and use the identity matrix

as structure matrix on long preambles, which are both performed in the same

multiplexer, tx_data_mux. At last, two RRC blocks are processed for individual I/Q

channels, and then data are transmitted to the corresponding DAC for each transmit

antenna.

Write stage Read stage

Preamble channel

Data

Data channel
CP

Write stage Read stage

Preamble channel

Data

Data channel
CP

Write stage Read stage

Preamble channel

Data

Data channel
CP

Figure 4.10: Address values of ram_ctrl block

4.4 Receiver on FPGA

 At the receiver side, we first give a whole picture of the receiver on FPGA, which

is partitioned into several parts. Among them, the RRC blocks and timing

synchronization block which gives the information of when the packet starts are then

provided. Later, we will give the circuit design of each processing block for two receive

antennas. Finally, the rest components like the multiplexer, output buffers, and Viterbi

decoder will be presented.

 63

4.4.1 Circuit Design of Receiver

 As we can see in Figure 4.11, four pairs of received channels are passed to the

receiver FPGA from an eight-channeled ADC. These data are first fed to eight RRC

blocks to perform waveform shaping, and then the output are matched with short

preambles, delayed and summed, and filtered. By a series of processing, the maximum

output is selected to find out when the packet starts by delaying a fixed time. After that

the signal FRM_STR containing timing information is sent to the major processing

blocks, RX12 and RX34, in a form of enable signal so as to start the following

components up. Each major processing block uses two pairs of RRC-processed signals

as their inputs RX1_I/Q and RX2_I/Q, taking RX12 for example, and combines them

into one pairs RX12_I and RX12_Q as its output. The reason for combining is to reduce

the number of FFT blocks which is the most gates-consuming part of all. By

combination, a total of four parallel FFT processing can be shrunk to two parallel ones

but twice longer data are processed than before, which implies we trade complexity for

efficiency. Then RAM_ENB are used to inform the RX_REST block to enable the inside

output buffer to store the incoming data. Finishing collecting and merging the data

comes from previous stage and the output of VITERBI_DECODER, RX_REST uses

BDWEN0 and STRBN0 to transfer data to receiver DSP whereas the input of

VITERBI_DECODER is fed in previous packet as mentioned in section 4.1.2.

1
3

5
7

2
4

6
8

8 Channel A/D
RX34

RX FPGA

1

BDWEN0
1

STRBN0

1

FRM_STR

RX1_I/Q
RX2_I/Q

8

8

8

1
RAM_ENB

RX12_I

RX12_Q

RX DSP

32

DATABUS

1

2

2DATA_OUT

BDWEN1
STRBN1

RX12
RX_REST

VITERBI_DECODER

RRC & TIMING_SYNC
1

EXTINT1

1
3

5
7

2
4

6
81

3
5

7

2
4

6
8

8 Channel A/D
RX34

RX FPGA

11

BDWEN0
11

STRBN0

11

FRM_STR

RX1_I/Q
RX2_I/Q

88

88

8

11
RAM_ENB

RX12_I

RX12_Q

RX DSP

3232

DATABUS

1

2

2DATA_OUT

BDWEN1
STRBN1

RX12
RX_REST

VITERBI_DECODER

RRC & TIMING_SYNC
11

EXTINT1

Figure 4.11: Circuit design of receiver in FPGA

 64

4.4.2 RRC and Time Synchronization

 Figure 4.12 shows the circuit design of RRC waveform shaping filter and time

synchronization block. Again we use the concept of instantiation in hierarchical design

to save the time of development, as we can see in the left hand side where two major

pieces of identical processing blocks for each two receive antennas are instantiated

from the same design. First, the incoming data which is 10-bits wide from ADC are

truncated to 8 bits and passed to individual RRC blocks. After that, in order to do

two-time downsampling, we use switch blocks to generate clock sources two time

faster than the FPGA clock and perform the job in the followed matched filter MF

which uses the generated clock as its working clock. Then a series of comparison are

processed to find out the maximum absolute value among 16 paths at each time index.

After collecting a data sequence that has the maximum absolute values, it is delayed by

16 clocks and summed up to enhance the peak values by the rx_delay_sum block where

sixteen is the length of a short preamble and is also the expected distance between two

adjacent peaks since they are matched with short preamble in the previous stage. Later,

an FIR filter with response of some repeated {0,0,…,0,1} is applied to rake the values

on each peaks, so that we can obtain a series of ascending values which become

descending after a while as illustrated in Figure 4.13. Thus, we use the block

rx_select_max to find out where the maximum value locates and

generates

Delay
SumModify

Data

data2rrc rx_rrc switch rx_sp_match rx_s_comp

rx_delay_sum
RRC

RRC

MF
MF

SW
MF

MF

CP

CP

RRC

RRC

MF
MF

SW
MF

MF

CP

CP

CP

CP

CP

CP

FIR Select
Max

Delay
Fixed
Time

rx_fir rx_select_max rx_frm_str

1

FRM_STR

8 8

32
64

12
12

12
12

16 16 1

1

1

1

RX1_I/Q

RX2_I/Q

RX3_I/Q

RX4_I/Q

RX1_I/Q

RX2_I/Q

RX3_I/Q

RX4_I/Q
8

Delay
SumModify

Data

data2rrc rx_rrc switch rx_sp_match rx_s_comp

rx_delay_sum
RRC

RRC

MF
MF

SW
MF

MF

CP

CP

RRC

RRC

MF
MF

SW
MF

MF

CP

CP

CP

CP

CP

CP

FIR Select
Max

Delay
Fixed
Time

rx_fir rx_select_max rx_frm_str

11

FRM_STR

88 88

32
64

1212
1212

12
1212

1616 1616 11

11

1

1

RX1_I/Q

RX2_I/Q

RX3_I/Q

RX4_I/Q

RX1_I/Q

RX2_I/Q

RX3_I/Q

RX4_I/Q

RX1_I/Q

RX2_I/Q

RX3_I/Q

RX4_I/Q
8

Figure 4.12: Circuit design of RRC and time synchronization

 65

the following block rx_frm_str is used to delay a fixed number of clocks. The fixed

numbers of clocks can be calculated, since we have the information of the processing

period (clocks) of a packet (frame) and the offset between the frame start and the place

that maximum value would appear. Therefore, the start of the next frame can be

determined simply by delaying a fixed time, “frame time - offset”, after we know the

place that peak value appears. Finally, the timing information is carried by FRM_STR

in a form of enable signal to start up the later circuit, and it also feeds back as an enable

signal of the previous block rx_select_max to avoid selecting maximum values at the

wrong time.

Frame start Next frame start

offset frame time - offset
PeakFrame start Next frame start

offset frame time - offset
Peak

Figure 4.13: Concept of time synchronization method

4.4.3 Group of Two Receive Antennas and Other

Components

 After having the information about the start of frame, as illustrated in Figure 4.14,

the rx_databuf_ctrl can generate the control signals and writing address to

rx_data_buffer in a right time where the writing address is also used to perform the

removal of cyclic prefix and the job of downsampling. Then, before FFT processing,

two branches of data from different receive antennas are merged into one branch by

data2fft_mux in the way of one attached after the other. Therefore, passed in the same

data bus, data from the second antenna will be sent after that from the first antenna,

 66

which can save us a large amount of logic-gates for only one FFT block is required in

each group of two receive antennas. Since the control block rx_databuf_ctrl can expect

when the first output data from FFT will pass through the multiplexer and arrive at

output data buffer ram2dsp, the notifying signal RAM_ENB will be sent at a proper

time. After the block data_mux4 multiplexes the data from two major processing blocks,

RX_12 and RX_34, the merged data are written into output data buffer by the

complicated address that combines bit-reversal, discard of zero tones, and

rearrangement of pilot tones, which is generated by data2dsp_ctrl. In order to let

FFT-processed data and the output of Viterbi decoder travel back by the same databus

simultaneously, we have to store the Viterbi output DATA_OUT in the data buffer

dual_ram whenever the READY_OUT signal triggers the control block dual_ram_ctrl.

Once the FFT-processed data ends its collection, EXTINT1 will be sent to wake up the

receiver interrupt function in DSP so as to start the data transfer from FPGA to DSP

with handshake signals, BDWEN0 and STRBN0. Therefore, the fall of voltage level on

handshake signals will trigger the control block data2dsp_ctrl to read out the data from

both of the RAMs, ram2dsp and dual_ram, and also trigger the multiplexer

data2dsp_mux to combine the data that FFT processes and the output bit stream of

Viterbi decoder. Notice that the job we perform in multiplexer data2dsp_mux is to

merge a 32-bit databus and a 1-bit signal into a 32-bit databus, which implies we have

FFTMUX

Data
Buffer
(RAM)

rx_databuf_ctrl dftrx_data_buffer data2fft_mux

FRM_STR

Data
Buffer
(RAM)

Control

Control

RX1_I/Q

RX2_I/Q

RX3_I/Q

RX4_I/Q

1

8

1
1

8

8
BDWEN0

DATA_OUT

MUX

Data
Buffer
(RAM)

strnc_gen data2dsp_ctrl

DATABUS

Control
Trim

Strobe

data_mux4

MUX

Data
Buffer
(RAM)

Control

ram2dsp

dual_ram_ctrl dual_ram

data2dsp_mux

STRBN0

STRBN0
BDWEN0

8

2

1

32

11

32

32

READY_OUT
1

RX_REST
RX_34

RX_12

RAM_ENB

EXTINT1

FFTMUX

Data
Buffer
(RAM)

rx_databuf_ctrl dftrx_data_buffer data2fft_mux

FRM_STR

Data
Buffer
(RAM)

Control

Control

RX1_I/Q

RX2_I/Q

RX3_I/Q

RX4_I/Q

1

88

1
1

88

88
BDWEN0

DATA_OUT

MUX

Data
Buffer
(RAM)

strnc_gen data2dsp_ctrl

DATABUS

Control
Trim

Strobe

data_mux4

MUX

Data
Buffer
(RAM)

Control

ram2dsp

dual_ram_ctrl dual_ram

data2dsp_mux

STRBN0

STRBN0
BDWEN0

88

22

11

32

1111

3232

3232

READY_OUT
11

RX_REST
RX_34

RX_12

RAM_ENB

EXTINT1

Figure 4.14: Circuit design of RRC and time synchronization

 67

to ignore the source databus one bit out of 32 so that we can further imbed the 1-bit

signal source in it. Undoubtedly, although the step will induce a little drop of

performance, we can save the extra time required to transfer the output of Viterbi

decoder.

 Figure 4.15 is the Viterbi decoder and its related circuits. As mentioned in Section

4.1.2, we adopt handshake signal STRBN1 for DSP to inform FPGA to receive the data

after the process of de-interleaver and waiting for the process of channel decoder,

Viterbi decoder. We can notice that dual-port-RAMs are used here and in the right hand

side of Figure 4.14, which allow multiple reads or writes to occur at the same time,

unlike single-ported RAM which only allows one access at a time. The control block

dual_ram_ctrl1 mainly handles the job of writing data to dual_ram_1024x3 while

dual_ram_ctrl2 mainly performs the task of reading data to Viterbi decoder and

preparing the required control signals for it. After a while, the decoded data

DATA_OUT and notifying signal READY_OUT will be sent to the block dual_ram and

dual_ram_ctrl in the previous figure to be stored and wait for the data transferred from

FPGA to DSP in the next packet. Since the design of Viterbi decoder is an intellectual

property (IP) developed from our laboratory, only the related circuits are shown as in

Figure 4.15.

Data
Buffer
(RAM)

strnc_gen dual_ram_1024x3

READY_OUT

STRBN1 ControlTrim
Strobe

dual_ram_ctrl1

Viterbi
Decoder

decoder

Control

dual_ram_ctrl2

DATABUS
DATA_OUT

1 1 1

10

1

3
1

1

1
32

VITERBI_DECODER

Data
Buffer
(RAM)

strnc_gen dual_ram_1024x3

READY_OUT

STRBN1 ControlTrim
Strobe

dual_ram_ctrl1

Viterbi
Decoder

decoder

Control

dual_ram_ctrl2

DATABUS
DATA_OUT

1 1 1

10

1

3
1

1

1
32

Data
Buffer
(RAM)

strnc_gen dual_ram_1024x3

READY_OUT

STRBN1 ControlTrim
Strobe

dual_ram_ctrl1

Viterbi
Decoder

decoder

Control

dual_ram_ctrl2

DATABUS
DATA_OUT

Data
Buffer
(RAM)

strnc_gen dual_ram_1024x3

READY_OUT

STRBN1 ControlTrim
Strobe

dual_ram_ctrl1

Viterbi
Decoder

decoder

Control

dual_ram_ctrl2

DATABUS
DATA_OUT

11 11 11

10

1

33
11

11

11
3232

VITERBI_DECODER

Figure 4.15: Viterbi decoder and its related circuits

 68

4.5 Receiver on DSP

 The major tasks of receiver in DSP are shown in Figure 4.16. The data received

from FPGA forms a matrix, where 52 is composed of four pilot tones in the

top and 48 data tones in the rest part, and 12 consists of four long preambles and eight

data symbols as illustrated in Figure 4.17. Then a series of estimation which has been

introduced in Chapter 2 are processed including channel estimation, phase estimation,

and frequency estimation with the aids of long preambles and pilot tones provided from

the above-mentioned received matrix. After that, the data are space-time decoded to a

fix-numbered complex symbol according to the mode it adopts at the transmitter, which

is also the most time-consuming stage for its high complexity, and we will give a more

detailed introduction of their decoding algorithms in the following sections. Later, the

de-mapper transforms the data from a complex symbol into two simple bits, and after

52 12×

VBLAST

Group-
Wise

ST-
Block

Decoder

Preamble

Channel
Estimation

Phase
Estimation De-

Mapper

De-
Inter

leaver

Frequency
Estimation

Pilot
Tones

Data
Tones

(Viterbi Decoder)
FPGA

(FFT)
FPGA

VBLAST

Group-
Wise

ST-
Block

Decoder

Preamble

Channel
Estimation

Phase
Estimation De-

Mapper

De-
Inter

leaver

Frequency
Estimation

Pilot
Tones

Data
Tones

(Viterbi Decoder)
FPGA

(FFT)
FPGA

Figure 4.16: Diagram of receiver in DSP

48 Data
Tones

4 Pilot
Tones

4 Long
Preambles

8 Data
Symbols

52

12

48 Data
Tones

4 Pilot
Tones

4 Long
Preambles

8 Data
Symbols

52

12

Figure 4.17: Received data from receiver FPGA

 69

that the de-interleaver is performed to rearrange the data in a specific way. Finally,

because the Viterbi decoder is located in FPGA, we need to transfer data back to FPGA

again to be decoded.

4.5.1 Space-Time Block Decoding

 The decoding procedure of space-time block code for four transmit antennas [17]

is mainly to rearrange the estimated channel matrix in a specific method, and then to

sum up the multiplication results with both the original received signals and the

complex conjugated version. The signal model can be expressed as follows:

*+ =AZ BZ S

where A and B is the rearranged channel matrix estimated at the receiver, is the

received data matrix, and S is the combined result for decision making. The

rearranged channel matrix can be further rewritten as follows:

Z

1 2 3 4
⎡ ⎤= ⎢ ⎥⎣ ⎦A A A A A

1 2 3 4
⎡ ⎤= ⎢ ⎥⎣ ⎦B B B B B

where and are iA iB

*

1 3 4

2 3 4

3 4 3 4

0 ()/2 ()

0 ()/2 ()/2

()/ 2 ()/ 2 0 0

i i i

i i i i i i

i i i i

H H H

H H H

H H H H

⎡ ⎤− − −⎢ ⎥
⎢ ⎥
⎢ ⎥= − −⎢ ⎥
⎢ ⎥+ −⎢ ⎥⎣ ⎦

A
3 4

3 4

/2i iH H

H H

2 3 4 3 4

1 3 4 3 4

1 2 1 2

0 ()/2 ()/2

0 ()/2 ()/2

0 0 ()/ 2 ()/ 2

i i i i i

i i i i i i

i i i i

H H H H H

H H H H H

H H H H

⎡ ⎤− + − +⎢ ⎥
⎢ ⎥
⎢ ⎥= − − + +⎢ ⎥
⎢ ⎥+ −⎢ ⎥⎣ ⎦

B

where is the channel response between ith transmitter and jth receiver obtained

from the channel estimator in the same subcarrier. The received signal can usually

be written in the following form:

ijH

Z

 70

1 2 3 4

T⎡ ⎤= ⎢ ⎥⎣ ⎦Z z z z z

where , and is the ith data received from the jth receiver. 1 2 3 4i i i i i= ⎢ ⎥⎣ ⎦z ijz

1 1 2 2 3 3 4 4

T
z z z z⎡ ⎤

By the above method, we can obtain a combined vector S so that we can

decide whether the decoded data of either real part of imaginary part should be 1 or

 simply by setting the threshold of zero.

3 1×

1−

4.5.2 V-BLAST Decoding
As mentioned in Chapter 2, for the computational complexity is always our major

concern rather than performance, we only use pure nulling method to perform the

decoding at the receiver without incorporating with symbol cancellation which requires

higher complexity and more hardware costs. The pure nulling method can be

summarized as follows.

Assume we can obtain the received signals from four receive antennas and each of

them can be expressed as

,() { () () () ()} n ij
i i i i in H d n H d n H d n H d n e φ= + + +z

We can further combine all of them in a form of matrix as follows

,1

,2

,3

,4

1 111 21 31 41

2 12 22 32 42 2

13 23 33 43 33

14 24 34 44 44

() ()

() ()

()()
()()

n

n

n

n

j

j

j

j

n e d nH H H H

n e H H H H d n

H H H H d nn e
H H H H d nn e

φ

φ

φ

φ

−

−

−

−

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

z

z

z

z

where is the data transmitted from the ith transmitter in nth time slot of a block, ()id n
,n ije φ− is the phase shift affected on ith receive antenna in nth time slot of a block, and

,() n ij
i n e

φ−z means the phase-compensated received data.

Then in order to detect the data, we have to find out the linear combining weight

as shown in the following equation:

 71

,1

,2

,3

,4

11

2 21

3 3

4 4

()()

() ()

() ()
() ()

n

n

n

n

j

j

j

j

n ed n

d n n e

d n n e
d n n e

φ

φ

φ

φ

−

−

−
−

−

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

z

z
W

z

z

where is the linear combining weight. In general, the weight can be obtained by

two kinds of criterion, which are ZF and MMSE. The corresponding solutions are listed

as follows:

W

†
11 21 31 41

12 22 32 42 †

13 23 33 43

14 24 34 44

ZF

H H H H

H H H H

H H H H

H H H H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

W H

†2

1

2
2

2
3

2
4

0 0 0

0 0 0

0 0 0

0 0 0

H H

MMSE

σ

σ

σ

σ

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎪ ⎪⎪ ⎪⎢ ⎥= +⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭

W HH H

where
†
H is the pseudo-inverse of estimated channel matrix, and is the noise

power of ith receive antenna. For MMSE has higher complexity than ZF, we only adopt

the solution according to ZF criterion. In addition, since there is no closed-form for the

matrix inversion of a matrix, we use Gaussian-Jordan Elimination method to

solve the matrix inversion problem in our implementation.

2
iσ

4 4×

4.5.3 G-STBC Decoding

The four transmit antennas in our system are partitioned into two groups, with

each group containing two antennas and transmitting independent data streams encoded

by the Alamouti STBC individually. At the receiver, the decoding scheme of G-STBC

is somewhat like a cascaded version of Alamouti STBC decoding scheme.

 72

The decoding procedure [38] is as follows. We first write the received data in the

 Alamouti G-STBC system as 4 4×

*
1 211 21 31 411,1 1,2

*
2,1 2,2 12 22 32 42 2 1

*3,1 3,2 13 23 33 43 3 4

4,1 4,2 *14 24 34 44
4 3

x xH H H Hr r
r r H H H H x x
r r H H H H x x
r r H H H H x x

⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

where is the received data from the ith receive antenna in jth time slot of a block,

and is the data symbol to be encoded. Then rearranging the signal elements, we can

have the following representation for the received data on the first two receive

antennas.

,i jr

ix

12r

1,1 11 12 13 14
1

* * * * *
1,2 12 11 14 13 2 1,1 1,2def

12
2,1 3 2,1 221 22 23 24

* * * * * 4
2,2 22 21 24 23

r H H H H x
r H H H H x
r xH H H H

xr H H H H

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥− − − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥− ⎢ ⎥⎣ ⎦− −⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦ x
H

T T
r T T ,2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x

where

11 12

1,1 * *
12 11

H H

H H

⎡ ⎤
⎢ ⎥= ⎢ ⎥−⎢ ⎥⎣ ⎦

T
,

13 14

1,2 * *
14 13

H H

H H

⎡ ⎤
⎢ ⎥= ⎢ ⎥−⎢ ⎥⎣ ⎦

T
,

21 22

2,1 * *
22 21

H H

H H

⎡ ⎤
⎢ ⎥= ⎢ ⎥−⎢ ⎥⎣ ⎦

T
,

23 24

2,2 * *
24 23

H H

H H

⎡ ⎤
⎢ ⎥= ⎢ ⎥−⎢ ⎥⎣ ⎦

T

It can be shown that

, , , , , 2, , 1,2,H H
i j i j i j i j i jt i j= = =T T T T I

where and denotes the identity matrix of size 2. On the other hand,

we can also obtain the same representation for the received data on the last two

receive antennas.

, ,det()i j i jt = T 2I

34

12 34

r

 At the receiver, we adopt the zero-forcing interference cancellation (ZFIS) method

to perform the job of decoding. Applying the following linear matrix filtering operation

on and , we have r r

 73

1
2 1,2 2,2

12 121
2,1 1,1 2 2 2

−

−

1 1
⎡ ⎤⎡ ⎤− ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

I T T G
r r

T T I G x

x

1 1

,
1

2 1,2 2,2

34 341
2,1 1,1 2 2 2

−

−

⎡ ⎤⎡ ⎤− ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

I T T G
r r

T T I G x

x

where

1

1
2

x
x
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

x ,
3

2
4

x
x
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

x ,

1
1 1,1 1,2 2,2 2,

−= −G T T T T 1
2 2,2 2,1 1,1 1,2

−= −G T T T T

12 34

1

2

1 ,

The above linear matrix filtering operation has separated the two groups of transmitted

signals completely. ’s are orthogonal matrices that satisfy iG

2, det(), 1,2.H H
i i i i i i ig g i= = = =GG G G I G

Thus, applying the linear matrix filter

1 2

2 2

H

H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G 0

0 G

onto and , we will have the following decision statistics: r r

(12) (34)
1 1

ZFIS (12) (34)
2 2

()

()

g g

g g

⎡ ⎤+⎢ ⎥= ⎢ ⎥
+⎢ ⎥⎣ ⎦

x
x

x

where the and denote the determine of from first two or last two

receive antennas. Notice that we can obtain a diversity gain of 2 which comes from two

groups of antenna shown in the above equation.

(12)
ig

(34)
ig iG

4.6 Experimental Result of Adaptive Mechanism

At mentioned in Section 2.5.3, the adaptive mechanism (i.e. mode selection

scheme) is based on the throughput performance in a form of tables for looking up

under different channel conditions. Before building up the table, the throughput

performance can be obtained by incorporating BER performance over different

condition numbers with transmitted information bits and transmission time, and the

 74

expression is shown as follows:

Successful BitsThroughput (b/s)
TransmissionTime

=

(1-BER)Info. Bits= =(1-BER)ratio
TransmissionTime

where the successful bits can be derived by BER and total transmitted information bits,

and the detailed derivation for the ratio of each mode is shown in Table 4.3. After

introducing the calculation of throughput, we now show the experimental results

simulated with different condition numbers ; they are 10, 20, 30, 40, 50, 100, 200,

400, 1000, and 10

K
5. As shown in Figure 4.18, the STBC has a stable and the lowest

throughput compared with others throughout all the condition numbers, which implies

STBC is the most resistant scheme to channel correlations among all and has the lowest

ratio (maximum throughput) listed in Table 4.3; G-STBC also has a similar behavior to

STBC because these two schemes can offer some diversity gains to combat with the

channel correlations; the performance of VBLAST degrades as the condition number

increases, implying that VBLAST is the most sensitive scheme to channel correlations.

This is because the correlation would make the split of different data streams at the

receiver more difficult. The previously-mentioned ratios (maximum throughput) for

each mode are 5.14, 12, and 9.6 for STBC, VBLAST, and G-STBC, respectively. In

high correlation channels, especially those larger than 1000, we notice that although

Table 4.3: Derivation of the ratio for each mode

STBC VBLAST GSTBC Unit

Data Tones / (TX Ant.*Symbol) 48 48 48 complex

Spactial Streams 1 4 2 no.

ST Code Rate 3/4 1 1 no.

Transmitted Symbols 8 2 4 no.

Info. Bits 288 384 384 real (bit)

Short Preamble NO. 10 10 10 no.

Short Preamble Time 0.8 0.8 0.8 us

Long Preamble NO. 4 4 4 no.

Long Preamble Time 4 4 4 us

Symbol NO./ TX Ant 8 2 4 no.

Symbol Time 4 4 4 us

Transmission Time 56 32 40 us

Ratio 5.142857 12 9.6 Mbps

 75

 (a) (b)

 (c) (d)

(e) (f)

76(g) (h)

 (i) (j)

Figure 4.18: Throughput performances under different channel conditions

(a)K =10 (b)K =20 (c)K =30 (d)K =40 (e) =50 (f) =100 K K

(g)K =200 (h)K =400 (i) =1,000 (j)K =100,000 K

VBLAST has the highest throughput, it saturates at a value of 7.5, which implies errors

occur in almost half the data, while STBC still performs near its maximum throughput,

5.14. Therefore, we will suggest adopting the STBC when detecting a channel with the

channel condition larger than 1000. In low correlation channels, although sometimes

VBLAST has higher throughput than G-STBC, we still adopt G-STBC for the same

reason as in high correlation channels. Further, we organize the previous figures into

Table 4.4 for looking-up-table.

 The selection strategy is summarized as follows

1. Determine the channel condition by calculating the condition number, and

quantize the value to fall into some specific values.

2. According to the channel condition (some specific condition number), we may

look up the corresponding table (Table 4.4) to choose the optimal mode.

Table 4.4: Mode selection table

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10 V

20 V

30 G G G G G G G G G G G G G G G V V V V V V V VBLAST

40 G G G G G G G G G G G G G G G G G V V V V G G-STBC

50 G S STBC

100 G

200 G

400 G

1000 G

>1000 S

 77

Moreover, in order to verify that an adaptive MIMO-OFDM system can performs

better than that without incorporating the adaptive mechanism, we run the following

simulation.

Thirteen random channel samples are imposed on the proposed system under the

SNR of 16 dB, and each channel sample lasts a time-span for the transmission of 100

packets. The receiver can detect what the present condition number is, and quantizes

the value to fit those pre-chosen condition numbers. Then, the corresponding tables are

looked up and the most appropriate space-time mode will be chosen for the target of

maximizing throughput. As shown in Figure 4.19, since high condition numbers,

especially those larger than 1000, are scarcely randomized, the STBC cannot perform

better than other modes resulting in the lowest throughput among all. Note that with the

adaptive mechanism (labeled start marks) the highest throughput under each channel

condition can always be obtained, when compared with those systems which use the

same space-time scheme through all the channels. Thus, the maximum overall

throughput can be obtained.

Figure 4.19: Adaptive performance comparison under SNR=16dB

 78

4.7 Performance Evaluation

By using a web camera, we can catch the real time images continuously as the

data source to verify the realized hardware system. Passing the data through DAC and

ADC directly, we can obtain the pure performance containing only truncation errors

and round-off errors induced during hardware realization. Through a self-developed

application software in PC, we can provide an user interface to demonstrate the real

time transmitted images and the received image, as shown in Figure 4.18. In the center

of this figure, a images set is located. The three columns represent transmit

images, receive images, and errors images (differences between transmitted images and

received images) respectively, whereas the three rows represent the synthesized images

of all antennas, first two antennas, and last two antennas respectively. The real time bit

error rate is also calculated and shown in the right hand side. In our system, as shown in

this figure, we can achieve a pure performance about of bit error rate.

3 3×

34 10−×

Figure 4.20: Performance demonstration interface

 79

4.8 Summary

Chapter 4 mainly describes the implementation results and the performance

evaluations. We first provide some pre-implementation works, such as preamble design

for MIMO structure in MATLAB, interrupt scheduling in DSP, and arrangement of data

buffer insertion in FPGA. Then, we give our detailed implementation results and circuit

designs on DSP and FPGA respectively, and the space-time decoding algorithms are

also included. In addition, to achieve the goal of being an adaptive system, we first

show the experimental results under different channel conditions. By analyzing the data,

we can build up the tables for adaptive mechanism, which makes the mode selection

strategies more complete. Finally, we provide some experimental results with adaptive

mechanism and show that under a varying channel condition the system throughput can

be improved significantly by using the strategies we proposed.

 80

