
 
 
Chapter 5 
 
Some Useful Experiences 

 After discussing the implementation of the whole system, we hope that we can 

provide some useful experiences for those who would like to build up a similar system. 

In this chapter, we first introduce how to do system level evaluation before 

implementation. Then, since there are more than one hardware modules sharing the 

tasks of the whole system, we will provide some principles for the job of hardware 

partition. Later, in such a system equipped with FPGA and DSP modules, there may 

exist some implementation tips in the stage of development, and all of them will be 

provided. Finally, we will give a complete example about replacing the DFT (discrete 

time Fourier transform) component to FFT to show how they are carried out. 
 

5.1  System Level Evaluation 

In general, digital signal processing algorithms are becoming so complex that 

developers have little choice but to use a specialized modeling language like MATLAB 

to develop their intellectual properties. In particular, using such high level language 

offers the advantage of being able to use the analysis capabilities built inside, such as 

the “plot” function, or many of other built-in functions that facilitates us to roughly 

evaluate the performance before hardware implementation. 

The system level evaluation mainly refers to the pre-evaluation of performance for 

some undecided algorithms in the same block, or the compatibility problem for the 

existence of each space-time mode working under the same system. Some competitive 

candidates of algorithms may not be considered due to their high computational 

complexity though they may have better performance than the other ones; and such 
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system performance evaluations can easily be done in high level language. The 

compatibility among three modes is also an important issue of system level evaluation 

in our implementation. Since three kinds of modes require different sizes of variables, 

which imply to different size of memory in hardware realization, we need to find out a 

solution that can support all three modes. For STBC mode, owing to the 3/4 code rate, 

it extends the original data symbols to a number of 4/3 times; the other two modes will 

not extend the number of symbols, but reduce to 1/2 and 1/4 times instead, since there 

are different ways, which depends on the number of data streams, for four transmit 

antennas to transmit symbols. In order to be compatible among the three modes, we 

find that 12 information symbols may be a good choice since it is the least common 

multiple of 3, 2, and 4. It means that the encoded symbols in each transmit antenna 

become 16, 3, and 6, for STBC, V-BLAST, and G-STBC respectively as shown in the 

upper part of Table 5.1, which implies that the processing time will be dominated by 

the 16 encoded symbols of STBC mode even though there are only 3 encoded symbols 

needed to process in the V-BLAST mode. This is because FPGA is designed for the 

mode that has the maximum number of encoded symbols to be processed. Therefore, to 

avoid dominating in STBC mode, we choose another factor 8 as our best choice though 

it induces slight difference in the generation of data source; the related result is shown 

in the lower part of Table 5.1. 

Table 5.1: System level evaluation of data sizes among three modes 

STBC VBLAST GSTBC
Info. Sym. 12 12 12
ST-Coding 3/4 1/4 2/1

Ant. 1 16 3 6
Ant. 2 16 3 6
Ant. 3 16 3 6
Ant. 4 16 3 6

Info. Sym. 6 8 8
ST-Coding 3/4 1/4 2/1

Ant. 1 8 2 4
Ant. 2 8 2 4
Ant. 3 8 2 4
Ant. 4 8 2 4
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5.2  Hardware Partition 

If we have more than one programmable module to share the tasks of the whole 

system, we need to do the job of hardware partition. In our situation, there are some 

FPGA modules and a DSP module that can be programmed to realize our 

communication system. To find out the best way of partition, we provide some useful 

principles as follows; they are complexity, resource, and fluency, as shown in the 

Figure 5.1. In the figure, we first take a look at the complexity. Complexity refers to the 

intrinsic features of modules themselves, such as the support of floating-point 

expressions in DSP module and the only supported expression of fixed point in FPGA 

modules. The support of floating points implies that we can implement more 

complicated algorithms on DSP module with less effort than on FPGA modules, but it 

also implies that the efficiency is usually lower than fixed-point expression, since 

floating point expression requires a good compiler to translate C codes to assembly 

language so as to execute on DSP processor, while the fix-point expressions of FPGA 

are the real actions directly mapped to the circuit. Secondly, the resource is also an 

important issue to be considered. Since each of FPGA modules has limited number of 

programmable logic gates, we need to predict whether such a degree of complexity can 
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be implemented or not. DSP module also has some restrictions on its numbers of 

interrupts and memories, implying that we cannot partition too many jobs on it though 

it is easier to implement. Finally, the fluency is also an important issue and the number 

of data transfer from one module to the other kind of module can reflect the degree. In 

the view of processing a packet, the more interfaces between two different modules, the 

more time will be consumed on data transfer, and it will results in less efficiency. The 

final version of our partition can be shown in Figure 5.2. The original number of 

interfaces between DSP and FPGA modules is only 2 in a packet processing cycle, 

which quite satisfies the principle of fluency. However, we finally decide to move 

Viterbi decoder from DSP to FPGA for its improvement on efficiency, and thus it 

induces another two interfaces before and after it. As far as complexity is concerned, 

we plan to realize the space-time coding and decoding which are the most complicated 

components of all in the field of DSP module. 
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Figure 5.2: Partition of MIMO-OFDM system 
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5.3  Some Implementation Tips 

The field of hardware implementation is highly empirical, meeting that the 

accumulation of useful knowledge and experiences is very important. Here we provide 

some useful implementation tips during the implementation of FPGA and DSP. At the 

end of this section, we will give an example about replacing FFT component to DFT 

component to share the experiences of implementation. 

5.3.1  On FPGA Implementation 

1. With the top-down design concept, FPGA is usually built up by several 

elementary components. Based on those components, some larger or more 

complicated components can be constructed. Therefore, we need to verify 

each elementary component carefully with the aid of functional simulation 

provided from EDA tools before directly verifying the whole blocks whenever 

we build up a new functional block. 

2. Sometimes, to ensure that the elementary components in a huge block of 

circuit function correctly, like a whole FPGA module, we can link the major 

I/O of each elementary block to the top level design, so that we can check 

which component functions incorrectly once some unexpected results happen.  

3. As shown in Table 5.2 [13], in FPGA design, the multiplier always consumes 

much more logic gates than the adder, which implies that we prefer using a 

series of adders instead of multiplier if not too many of adders are required to 

handle the same job. Once we have no choice but to use the multiplier, we 

have to lower the width of bus as much as possible to save logic gates. 

 

Table 5.2: Comparison of the logic gate count between adder and multiplier 

 Adder Multiplier
4 bits 68 245
8 bits 157 927

16 bits 317 3563
32 bits 637 13875
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4. RAM is also a gate-consuming component in FPGA design, which is usually 

used as a data buffer. To avoid the waste of logic gates, the size of RAM has 

to be designed carefully, but on the other hand, it implies that the size of RAM 

cannot be scaled and varied easily with input data that have different sizes. 

5. During the design of FPGA, we realize that there is no short cut for debugging 

except for confirming each block step by step. There are too many times we 

try to skip over the routine and boring jobs for checking each of blocks step 

by step, but it always wastes us much more time than the one we check step 

by step. Therefore, we have to verify each of the related blocks step by step 

without skipping over whenever a unexpected result occur, or much more 

time will be wasted. 

 

5.3.2 On DSP Implementation 

1. Both C language and Assembly language can be used for the development of 

DSP. Although C is more friendly than Assembly, C has poorer efficiency than 

Assembly on execution time since C will be compiled to Assembly finally by 

a non-optimal compiler. Therefore, we can try to program with Assembly if 

possible, but if it is too difficult, we may develop the main algorithms in C 

language and then fine tune the programs using Assembly to improve the 

performance as much as possible [39][40]. 

2. The execution time of DSP highly depends on the data type declared in 

programs. The operation based on floating point variables which requires 

more than 64 bits to store performs poorest, since it involves with large 

amount of calculation. Therefore, we should try to use integer type variables 

as much as possible. In integer type, it can be further divided into short 

integer type and long integer type where they occupied the memory 16 bits 

and 32 bits, respectively. As the same concept mentioned before, once we can 

perform the same job with shorter variables, we should not declare longer 

variable so as to avoid the increase on execute time or the waste on memory. 
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3. Sometimes if the accuracy is our major concern, we may use a larger variable 

than normal to save the result. For example, when two 16-bit short integers 

are multiplied together, we may lose the accuracy if the output is too large. In 

this case, we should use a 32-bit long integer to store. 

4. The declaration of global variable or local variable is also another important 

issue. There are mainly three suitable time to declare a variable as a global 

one. First, if the utility rate of a variable is high, we may consider using global 

type since it can reduce the I/O declaration among functions. Second, if the 

I/O for an function have the format of array, global variable could be a good 

choice to figure out the problem of data passing among functions with the 

format of array variables. Third, if some variables need to be watched to 

facilitate the task of debugging during execution, we should declare it as 

global type, since only global variable can be watched in memory watching 

window. Although global variables are useful, too much global variable will 

run out of memory and fail the building process. 

5. Interrupt driven programming scheme requires us to program the interrupt 

subroutine in advance. To save more memory, we can abstract common 

functions into the global functions so that each interrupt subroutine can access. 

The major advantage of functional-oriented programming skill is to save the 

memory and to decrease the code size of interrupt subroutines for the 

inaccessible problem while the code size is too large. 

6. We, like many other developers, use a specialized modeling language such as 

MATLAB to develop and verify our system in advance, and re-implement our 

algorithms using C language in DSP, where DSP can be taken as a simple 

version of MATLAB programs because many algorithms may be further 

simplified in DSP. Therefore, since we have the complete system in MATLAB 

where can provide friendly graphic user interface (GUI), inside mathematical 

functions, and large memories, it can be utilized to be a comparison system of 

DSP program during debugging. By using this skill, DSP can be programmed 

more easily and the debugging time can be much shortened. 
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5.4  Example: From DFT to FFT 

Background: 

Assume we are now in the middle stage of development. In the transmitter side of 

DSP, we have constructed the complete transmitter algorithms. In the transmitter 

side of FPGA, we have built up a complete algorithms mentioned before except 

that the IDFT block is implemented with IDFT algorithms. In receiver side of 

FPGA, we have also finished the development of timing synchronization 

algorithms and the DFT block with DFT algorithms. In receiver side of DSP, we 

can receive the signal from receiver FPGA only and the rest receiver processing 

have not been constructed. 

Long-term Target: 

Assume only one IP, FFT block, is available in FPGA. Our long-term target is to 

replace the IDFT block with the IFFT block, and replace the DFT block with the 

FFT block. 

IP Description: 

IDFT (DFT): 

Type: Bit-reversed output (No need to do bit reversal) 

Input data bus: 8 bits 

Output data bus: 8 bits 

Delay time between the first input and the first output: 69 clocks 

FFT: 

Type: Non Bit-reversed output (Need to do bit reversal) 

Input data bus: 20 bits 

Output data bus: 20 bits 

Delay time between the first input and the first output: 90 clocks 

————————————————————————————————— 

 Experiment 1: 

Since we have only an IP of FFT block, we need to realize the IFFT component by 

ourselves. 
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 Process 1: 

Owing to the existence of a relationship between the FFT algorithm and the IFFT 

algorithm, we can create an IFFT component through some adequate modification 

on the FFT component. Therefore, we first try to derive the relationship between 

IFFT and FFT. The algorithms of FFT and IFFT can be expressed as follows: 
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By proper derivation from IFFT algorithm we can find the structure of FFT 

algorithm imbedded as shown in the following expression: 
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It implies that the output of IFFT can simply be obtained by multiplying a scalar N 

with the complex-conjugated output of FFT that has a complex-conjugated input, 

and it can be summarized as follows: 

**IFFT(in) FFT(in )N ⎡ ⎤= ⎣ ⎦  

After obtaining the information of their relationship, now we can modify the FFT 

component to an IFFT component, and the circuit is shown in Figure 5.3. 
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Figure 5.3: Circuit design of IFFT implemented by FFT 

 Result 1: 

After building the block of IFFT, we can start to deal with the problem of 

truncation from a 20-bit output databus to an 8-bit output databus. 
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————————————————————————————————— 

 Experiment 2: 

 Try to fit the new 20-bit I/O databus into the old 8-bit I/O databus. 

 Process 2: 

In order to determine where the old 8-bit databus locates in the new 20-bit one, we 

first build up an adaptive mechanism for bit truncation of the output from 20 bits 

to 8 bits for two target components, whereas only the skill of zero padding to 20 

bits is required at their input side. The control bits of adaptive mechanism are sent 

by pattern generator, where an 8-bit pattern is supported. Among them, one bit is 

used for reset signal; four are used for FFT, and three are used for IFFT. The 

mapping between control bits and truncation range are listed in Tables 5.3 and 5.4, 

respectively. 

Table 5.3: Mapping table of control bits for output truncation of IFFT 

 

 

 

 

 

 

Ctrl. Bits Truncation 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000 10 downto 3
001 11 downto 4
010 12 downto 5
011 13 downto 6
100 14 downto 7
101 15 downto 8
110 16 downto 9
111 17 downto 10

 

Table 5.4: Mapping table of control bits for output truncation of FFT 

 

 

 

 

 

 

Ctrl. Bits Truncation 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0000 7 downto 0
0001 8 downto 1
0010 9 downto 2
0011 10 downto 3
0100 11 downto 4
0101 12 downto 5
0110 13 downto 6
0111 14 downto 7
1000 15 downto 8
1001 16 downto 9
1010 17 downto 10
1011 18 downto 11
1100 19 downto 12
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 Result 2: 

After trying all the combinations of adaptive truncation, we find that no 

combination can result in an expected output after passing through IFFT and FFT 

components. After a while, we finally realize that we need to do bit-reversal first 

for both the outputs of IFFT and FFT blocks. No wonder we cannot obtain the 

correct result. 

————————————————————————————————— 

 Experiment 3: 

Do bit-reversal for both the outputs of IFFT and FFT blocks. 

 Process 3: 

In the output data buffer of IFFT, the bit-reversed writing address can be simply 

generated by the control block ram_ctrl as shown in Figure 5.4 (a), since there are 

no other tasks which are jointly considered during the address generation. On the 

contrary, address generation in the output data buffer of FFT is so complicated that 

we have to use a pre-written ROM to store the final address in the control block 

data2dsp_ctrl as shown in Figure 5.4 (b), since bit-reversal, remove of zero tones, 

and rearrangement of pilot tones are jointly considered. The tasks of zero tone 

removal and pilot tone arrangement is illustrated in Figures 5.5 (a) and 5.5 (b). 
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 (b) FFT components and its output data buffer 
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Figure 5.5: (a) Data before zero tone removal and pilot tone rearrangement 

(b) Data after zero tone removal and pilot tone rearrangement 

 

Table 5.5: Comparison between normal (NM) and bit-reversed (BR) order 

 

 

 

 

 

 

 

NM Special bits Z P P Z Z Z Z Z

NM Order 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

NM Address 4 4 5 6 7 8 9 0 10 11 12 13 14 15 16 17 18 19 20 21 22 1 23 24 25 26 27 28 28 28 28 28

BR Address 18 18 18 37 10 30 25 45 7 22 22 41 14 33 48 48 5 20 20 39 12 32 27 46 9 28 23 43 16 35 50 50

BR Order 0 32 16 48 8 40 24 56 4 36 20 52 12 44 28 60 2 34 18 50 10 42 26 58 6 38 22 54 14 46 30 62

BR Special bits Z Z Z Z Z

NM Special bits Z Z Z Z Z Z P P

NM Order 32 33 34 35 36 37 38 39 40 41 42 43 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

NM Address 28 28 28 28 28 28 28 29 30 31 32 2 3 34 35 36 37 38 39 40 41 42 43 44 45 3 46 47 48 49 50 51

BR Address 4 19 19 38 11 31 26 3 8 1 1 42 5 34 49 49 6 21 21 40 13 2 47 47 0 29 24 44 17 36 51 51

BR Order 1 33 17 49 9 41 25 57 5 37 21 53 13 45 29 61 3 35 19 51 11 43 27 59 7 39 23 55 15 47 31 63

BR Special bits Z P Z P Z Z P Z P Z

44

3

1

 

As illustrated in Figure 5.5 (a), the indices zero, and from 27 to 39 denote zero 

tones, while the indices 7, 21, 42, and 57 represent pilot tones. After the removal 

and rearrangement, we discard the data on zero tone by using the same address for 

that on data tone, resulting in the coverage by latter data, and we also rearrange the 

pilot tones to the most front part of the data as depicted in Figure 5.5 (b). 

Moreover, the complicated address is listed in the row of bit-reversed (BR) 

address in Table 5.5. As illustrated in the above table, the bit-reversed special bits 

are dispersed so that the BR address is difficult to generate due to the disorder of 

index when compared with the generation of somehow ordered normal (NM) 

address. 

 Result 3: 
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Although the generation of address is checked again and again, the expected 

results are still not found. We finally realized that the delay time between IDFT 

and IFFT, or DFT and FFT is different and it results in the incorrect receiving for 

the IFFT or FFT blocks. Therefore, we need to adjust the blocks that control the 

arrival time of data or control signals. 

————————————————————————————————— 

 Experiment 4: 

Adjust the delay controlling blocks to achieve the correct receiving of IFFT (FFT) 

blocks. 

 Process 4: 

As illustrated in Figure 5.6, the first part shows the old relationship among original 

coming data (DATA), control signals (CTRL), and the active period of IDFT (or 

DFT) block. To align the data signal with the rising edge of active period and align 

the control signals with the falling edge of active period, we adopt two delay 

blocks as shown in Figure 5.4 (a) to achieve the goal, and the signal after delayed 

is shown in the second part in Figure 5.6, where the alignment of both 

DATA_Delay and CTRL_Delay perform well. After replacing DFT to FFT, since 

the delay times (active period) are different, an incorrect result due to no 

alignment between control signal and the falling edge of FFT active period will be 

obtained, as we can see in the third part. Through the analysis, we can correct the 

error receive timing by simply delaying another 21 clocks in ctrl_delay block, and 

the final result with correct timing can be seen in the fourth part. 
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Figure 5.6: Process of adjusting the delay of control signal 
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we previously have an IDFT/DFT imbedded system that works properly, we can 

take the IDFT and DFT blocks as two black boxes and replace them with 

equivalent blocks. We believe that if we can create an equivalent block especially 

in the scalar factor, the replacement can be processed without any problem with 

regard to the reduction of the carried information. Therefore, our next experiment 

is trying to find out the same black boxes for both IDFT and DFT blocks. 
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 Result 4: 

After the adjustment, the data values out of FFT at the receiver side still do not 

match the expected values. Checking again and again, we still cannot obtain the 

expected values. To stop meaningless checking for each of the places we doubt, 

we decide to build up another project in FPGA where there are only a pair of IFFT 

and FFT, some data buffers, and related control blocks, to verify whether we can 

obtain the same signals or not if we pass the data through IFFT first and FFT 

secondly. By the way, we can also observe the truncation behavior in a purer 

environment instead of in a complicated one. 

————————————————————————————————— 

 Experiment 5: 

Build up a new project to verify whether we can obtain the same signals if we pass 

the data through IFFT first and FFT secondly. 

 Process 5: 

The circuit design of the testing project is depicted in Figure 5.7, including a 

central controller, a ROM-embedded data generation block, an IFFT/FFT pair, and 

two following data buffers. The central controller is the major part that controls 

the timing when each block should be turned on or off. 
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Figure 5.7: Circuit design of the testing project 

 Result 5: 

By functional simulation, we find that the output data, OUT_R and OUT_I cannot 

match with the input data generated from the pre-written ROM in Figure 5.7. 

According the result, we may guest that maybe the FFT component is not exactly 

the same as the FFT function in MATLAB and there may exist a scalar difference 
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between them. Once there is a scalar , the output of passing through IFFT and 

FFT may become , resulting in the mismatch between the input and output and 

the difficulty to recognize the existence of the scalar  for the data represented 

in a binary form is not so straightforward. Therefore, our next experiment is to 

find out the scalars of both DFT and FFT blocks respectively when compared with 

the FFT function built in MATLAB. 

k
2k

2k

————————————————————————————————— 

 Experiment 6: 

Find out the scalars exist in both DFT block and FFT block compared with FFT 

function built in MATLAB. 

 Process 6: 

Simulating the truncation mechanism in MATLAB is necessary so that a closer 

environment can be created. There are two typical truncation situations, truncation 

that happens at tail and at head, as illustrated in Figure 5.8 and labeled “1” and “2” 

respectively. The left hand side shows two truncation cases in hardware, and the 

right hand side shows the corresponding expressions used to simulate in 

MATLAB. By comparing the output of DFT and IFT built in previous experiment 

with the truncated version of DFT and IFFT simulated in MATLAB, we can start 

to find out the relation ship between them. 
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Figure 5.8: Truncation behavior of IFFT (FFT) block 
 

 Result 6: 

By fixing the input data of DFT and FFT blocks in hardware, and the input of 

truncated version of FFT function in MATLAB, we can finally obtain a 

relationship among them as shown in Figure 5.9. The results inspire us that since 
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separate it into two terms, 1/8 and 1/1.646, where 1/8 can be realized by right 

shifting (R.S.) 3 bits in hardware, as illustrated in Figure 5.10 (b). 
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(b) 

DFT Block

FFT X 1/8

New FFT Block

FFT X 1.646 X 0.6075 R.S.
3 bits

DFT Block

FFT X 1/8

DFT Block

FFT X 1/8

New FFT Block

FFT X 1.646 X 0.6075 R.S.
3 bits

Figure 5.10: (a) Adjusted new IFFT block (b) Adjusted new FFT block 

 Result 7: 

After adjust the previous IFFT block by adding a scalar at its output, we can 

obtain the same value as we expected at the outer output of IFFT block. As done in 

FFT block, the previous FFT block is also modified by putting a scalar at its 

output, but unfortunately the results do not seem to match what we expected. 

Therefore, our next experiment is trying to figure out why we cannot obtain the 

expected value. 

————————————————————————————————— 

 Experiment 8: 

Figure out the reason that causes the output of FFT block to mismatch the results 

we expected. 

 Process 8: 

So far, we can obtain the same value of FFT input in the receiver side of FPGA 

compared with in MATLAB, but we cannot obtain the expected value after the 

FFT block. Therefore, we try to analysis the range of input data to ensure that all 

 97



the input data fall into the safe range and the information within will not be 

truncated after FFT processing. Fortunately, we find that there are some input 

values like 44 or  which may be too large to pass the FFT block without 

saturation. To make sure if the values 44 and  are too large or not, a small 

trial in MATLAB is processed and the command is expressed as follows 

28−

28−

fft([45*ones(1,32)-29*ones(1,32)])  

The result of this trial shows that the output may range from  to 1506 and 

we can not express the output by using only 8 bits, which implies the occurrence 

of saturation and truncation. A general saturation example is shown in Figure 5.11. 

If we have too large input values, the inner output of FFT may become so large 

that some values cannot be stored, which results in the saturation on outer output. 

To avoid this situation, we have to scale down the input. As illustrated in upper 

part of Figure 5.12, we move the right-shifting block at the output to the input side, 

since the action of right shifting 3 bits is equivalent to scaling down by a factor of 

8. By this method, the whole FFT block can experience still the same scalar and 

achieve the goal of saturation avoidance almost, but the results show that 

saturation still happens on a few larger inputs. To further reduce the situation, we 

right shift one more bit at input side, and we add a 1-bit-left-shifting block to 

compensate. The final version is shown in the lower part of Figure 5.12. 

1506−

 Result 8: 

After the modification for the avoidance of saturation, we eventually obtain the 

correct value as we expected in the output of FFT block, which also achieves the 

long-term target, replacing the IDFT (DFT) blocks with IFFT (FFT) blocks 

 

 

 

 

 

 

 

Figure 5.11: Saturation example of FFT block 
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Figure 5.12: Modification for the avoidance of saturation 

 

5.5  Summary 

In this chapter, we provide some useful experiences for those who would like to 

build up such a similar prototype system. We first give an overview of how to do 

system level evaluation before implementation. Then, the job of hardware partition is 

also introduced since we have more than one hardware modules to share the whole 

tasks. Moreover, during the implementation, some precious experiences and tips are 

provided both in FPGA realization and DSP realization, respectively. In the end of this 

chapter, we give a detailed example on replacing DFT (IDFT) components to FFT 

(IFFT) components by means of showing a series of arising problems and the 

corresponding solutions. 
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