

Chapter 5

Some Useful Experiences

 After discussing the implementation of the whole system, we hope that we can

provide some useful experiences for those who would like to build up a similar system.

In this chapter, we first introduce how to do system level evaluation before

implementation. Then, since there are more than one hardware modules sharing the

tasks of the whole system, we will provide some principles for the job of hardware

partition. Later, in such a system equipped with FPGA and DSP modules, there may

exist some implementation tips in the stage of development, and all of them will be

provided. Finally, we will give a complete example about replacing the DFT (discrete

time Fourier transform) component to FFT to show how they are carried out.

5.1 System Level Evaluation

In general, digital signal processing algorithms are becoming so complex that

developers have little choice but to use a specialized modeling language like MATLAB

to develop their intellectual properties. In particular, using such high level language

offers the advantage of being able to use the analysis capabilities built inside, such as

the “plot” function, or many of other built-in functions that facilitates us to roughly

evaluate the performance before hardware implementation.

The system level evaluation mainly refers to the pre-evaluation of performance for

some undecided algorithms in the same block, or the compatibility problem for the

existence of each space-time mode working under the same system. Some competitive

candidates of algorithms may not be considered due to their high computational

complexity though they may have better performance than the other ones; and such

 81

system performance evaluations can easily be done in high level language. The

compatibility among three modes is also an important issue of system level evaluation

in our implementation. Since three kinds of modes require different sizes of variables,

which imply to different size of memory in hardware realization, we need to find out a

solution that can support all three modes. For STBC mode, owing to the 3/4 code rate,

it extends the original data symbols to a number of 4/3 times; the other two modes will

not extend the number of symbols, but reduce to 1/2 and 1/4 times instead, since there

are different ways, which depends on the number of data streams, for four transmit

antennas to transmit symbols. In order to be compatible among the three modes, we

find that 12 information symbols may be a good choice since it is the least common

multiple of 3, 2, and 4. It means that the encoded symbols in each transmit antenna

become 16, 3, and 6, for STBC, V-BLAST, and G-STBC respectively as shown in the

upper part of Table 5.1, which implies that the processing time will be dominated by

the 16 encoded symbols of STBC mode even though there are only 3 encoded symbols

needed to process in the V-BLAST mode. This is because FPGA is designed for the

mode that has the maximum number of encoded symbols to be processed. Therefore, to

avoid dominating in STBC mode, we choose another factor 8 as our best choice though

it induces slight difference in the generation of data source; the related result is shown

in the lower part of Table 5.1.

Table 5.1: System level evaluation of data sizes among three modes

STBC VBLAST GSTBC
Info. Sym. 12 12 12
ST-Coding 3/4 1/4 2/1

Ant. 1 16 3 6
Ant. 2 16 3 6
Ant. 3 16 3 6
Ant. 4 16 3 6

Info. Sym. 6 8 8
ST-Coding 3/4 1/4 2/1

Ant. 1 8 2 4
Ant. 2 8 2 4
Ant. 3 8 2 4
Ant. 4 8 2 4

 82

5.2 Hardware Partition

If we have more than one programmable module to share the tasks of the whole

system, we need to do the job of hardware partition. In our situation, there are some

FPGA modules and a DSP module that can be programmed to realize our

communication system. To find out the best way of partition, we provide some useful

principles as follows; they are complexity, resource, and fluency, as shown in the

Figure 5.1. In the figure, we first take a look at the complexity. Complexity refers to the

intrinsic features of modules themselves, such as the support of floating-point

expressions in DSP module and the only supported expression of fixed point in FPGA

modules. The support of floating points implies that we can implement more

complicated algorithms on DSP module with less effort than on FPGA modules, but it

also implies that the efficiency is usually lower than fixed-point expression, since

floating point expression requires a good compiler to translate C codes to assembly

language so as to execute on DSP processor, while the fix-point expressions of FPGA

are the real actions directly mapped to the circuit. Secondly, the resource is also an

important issue to be considered. Since each of FPGA modules has limited number of

programmable logic gates, we need to predict whether such a degree of complexity can

Resource allocation
Logic gate on FPGA
Interrupt on DSP
Memory on DSP

Reduce data transfer
Waste processing time

Easy to switch
Common part

Modules’ features
DSP : Floating point
FPGA : Fixed point

Complexity

Fluency Resource

Resource allocation
Logic gate on FPGA
Interrupt on DSP
Memory on DSP

Reduce data transfer
Waste processing time

Easy to switch
Common part

Modules’ features
DSP : Floating point
FPGA : Fixed point

Complexity

Fluency Resource

Figure 5.1: Some principles of hardware partition

 83

be implemented or not. DSP module also has some restrictions on its numbers of

interrupts and memories, implying that we cannot partition too many jobs on it though

it is easier to implement. Finally, the fluency is also an important issue and the number

of data transfer from one module to the other kind of module can reflect the degree. In

the view of processing a packet, the more interfaces between two different modules, the

more time will be consumed on data transfer, and it will results in less efficiency. The

final version of our partition can be shown in Figure 5.2. The original number of

interfaces between DSP and FPGA modules is only 2 in a packet processing cycle,

which quite satisfies the principle of fluency. However, we finally decide to move

Viterbi decoder from DSP to FPGA for its improvement on efficiency, and thus it

induces another two interfaces before and after it. As far as complexity is concerned,

we plan to realize the space-time coding and decoding which are the most complicated

components of all in the field of DSP module.

Coding Inter-
leavingUSB Mapping De-Mux

S/P IFFT P/S MUX/
RRC

Preamble

D/A
module

D/A
module

PC

USB Viterbi
Decoding

De-inter
leaving

De-
mapping

STBC

G-STBC

V-BLAST

S-T Block
decoder

G-S-T Block
secoder

Channle
Estimation

Phase
Estimation

FFT

Time/Frequency
Synchronization

Preamble

RRC

Pilot tones

FPGA

FPGA

DSP

DSP

FPGA

Coding Inter-
leavingUSB Mapping De-Mux

S/P IFFT P/S MUX/
RRC

Preamble

D/A
module

D/A
module

PC

USB Viterbi
Decoding

De-inter
leaving

De-
mapping

STBC

G-STBC

V-BLAST

S-T Block
decoder

G-S-T Block
secoder

Channle
Estimation

Phase
Estimation

FFT

Time/Frequency
Synchronization

Preamble

RRC

Pilot tones

FPGA

FPGA

DSP

DSP

FPGA

Figure 5.2: Partition of MIMO-OFDM system

 84

5.3 Some Implementation Tips

The field of hardware implementation is highly empirical, meeting that the

accumulation of useful knowledge and experiences is very important. Here we provide

some useful implementation tips during the implementation of FPGA and DSP. At the

end of this section, we will give an example about replacing FFT component to DFT

component to share the experiences of implementation.

5.3.1 On FPGA Implementation

1. With the top-down design concept, FPGA is usually built up by several

elementary components. Based on those components, some larger or more

complicated components can be constructed. Therefore, we need to verify

each elementary component carefully with the aid of functional simulation

provided from EDA tools before directly verifying the whole blocks whenever

we build up a new functional block.

2. Sometimes, to ensure that the elementary components in a huge block of

circuit function correctly, like a whole FPGA module, we can link the major

I/O of each elementary block to the top level design, so that we can check

which component functions incorrectly once some unexpected results happen.

3. As shown in Table 5.2 [13], in FPGA design, the multiplier always consumes

much more logic gates than the adder, which implies that we prefer using a

series of adders instead of multiplier if not too many of adders are required to

handle the same job. Once we have no choice but to use the multiplier, we

have to lower the width of bus as much as possible to save logic gates.

Table 5.2: Comparison of the logic gate count between adder and multiplier

 Adder Multiplier
4 bits 68 245
8 bits 157 927

16 bits 317 3563
32 bits 637 13875

 85

4. RAM is also a gate-consuming component in FPGA design, which is usually

used as a data buffer. To avoid the waste of logic gates, the size of RAM has

to be designed carefully, but on the other hand, it implies that the size of RAM

cannot be scaled and varied easily with input data that have different sizes.

5. During the design of FPGA, we realize that there is no short cut for debugging

except for confirming each block step by step. There are too many times we

try to skip over the routine and boring jobs for checking each of blocks step

by step, but it always wastes us much more time than the one we check step

by step. Therefore, we have to verify each of the related blocks step by step

without skipping over whenever a unexpected result occur, or much more

time will be wasted.

5.3.2 On DSP Implementation

1. Both C language and Assembly language can be used for the development of

DSP. Although C is more friendly than Assembly, C has poorer efficiency than

Assembly on execution time since C will be compiled to Assembly finally by

a non-optimal compiler. Therefore, we can try to program with Assembly if

possible, but if it is too difficult, we may develop the main algorithms in C

language and then fine tune the programs using Assembly to improve the

performance as much as possible [39][40].

2. The execution time of DSP highly depends on the data type declared in

programs. The operation based on floating point variables which requires

more than 64 bits to store performs poorest, since it involves with large

amount of calculation. Therefore, we should try to use integer type variables

as much as possible. In integer type, it can be further divided into short

integer type and long integer type where they occupied the memory 16 bits

and 32 bits, respectively. As the same concept mentioned before, once we can

perform the same job with shorter variables, we should not declare longer

variable so as to avoid the increase on execute time or the waste on memory.

 86

3. Sometimes if the accuracy is our major concern, we may use a larger variable

than normal to save the result. For example, when two 16-bit short integers

are multiplied together, we may lose the accuracy if the output is too large. In

this case, we should use a 32-bit long integer to store.

4. The declaration of global variable or local variable is also another important

issue. There are mainly three suitable time to declare a variable as a global

one. First, if the utility rate of a variable is high, we may consider using global

type since it can reduce the I/O declaration among functions. Second, if the

I/O for an function have the format of array, global variable could be a good

choice to figure out the problem of data passing among functions with the

format of array variables. Third, if some variables need to be watched to

facilitate the task of debugging during execution, we should declare it as

global type, since only global variable can be watched in memory watching

window. Although global variables are useful, too much global variable will

run out of memory and fail the building process.

5. Interrupt driven programming scheme requires us to program the interrupt

subroutine in advance. To save more memory, we can abstract common

functions into the global functions so that each interrupt subroutine can access.

The major advantage of functional-oriented programming skill is to save the

memory and to decrease the code size of interrupt subroutines for the

inaccessible problem while the code size is too large.

6. We, like many other developers, use a specialized modeling language such as

MATLAB to develop and verify our system in advance, and re-implement our

algorithms using C language in DSP, where DSP can be taken as a simple

version of MATLAB programs because many algorithms may be further

simplified in DSP. Therefore, since we have the complete system in MATLAB

where can provide friendly graphic user interface (GUI), inside mathematical

functions, and large memories, it can be utilized to be a comparison system of

DSP program during debugging. By using this skill, DSP can be programmed

more easily and the debugging time can be much shortened.

 87

5.4 Example: From DFT to FFT

Background:

Assume we are now in the middle stage of development. In the transmitter side of

DSP, we have constructed the complete transmitter algorithms. In the transmitter

side of FPGA, we have built up a complete algorithms mentioned before except

that the IDFT block is implemented with IDFT algorithms. In receiver side of

FPGA, we have also finished the development of timing synchronization

algorithms and the DFT block with DFT algorithms. In receiver side of DSP, we

can receive the signal from receiver FPGA only and the rest receiver processing

have not been constructed.

Long-term Target:

Assume only one IP, FFT block, is available in FPGA. Our long-term target is to

replace the IDFT block with the IFFT block, and replace the DFT block with the

FFT block.

IP Description:

IDFT (DFT):

Type: Bit-reversed output (No need to do bit reversal)

Input data bus: 8 bits

Output data bus: 8 bits

Delay time between the first input and the first output: 69 clocks

FFT:

Type: Non Bit-reversed output (Need to do bit reversal)

Input data bus: 20 bits

Output data bus: 20 bits

Delay time between the first input and the first output: 90 clocks

—————————————————————————————————

 Experiment 1:

Since we have only an IP of FFT block, we need to realize the IFFT component by

ourselves.

 88

 Process 1:

Owing to the existence of a relationship between the FFT algorithm and the IFFT

algorithm, we can create an IFFT component through some adequate modification

on the FFT component. Therefore, we first try to derive the relationship between

IFFT and FFT. The algorithms of FFT and IFFT can be expressed as follows:

FFT:
1

0

() ()
N

nk

n

K k x nW
−

=

=∑

IFFT:
1

0

1() ()
N

nk

k

x n X k W
N

−
−

=

= ∑ where
2j
NW e
π−

= .

By proper derivation from IFFT algorithm we can find the structure of FFT

algorithm imbedded as shown in the following expression:

*1 1
*

0 0

1() () ()
N N

nk nk

n n

X k x nW N x nW
N

− −
−

= =

⎡ ⎤
⎢ ⎥= = ⎢ ⎥⎣ ⎦

∑ ∑

It implies that the output of IFFT can simply be obtained by multiplying a scalar N

with the complex-conjugated output of FFT that has a complex-conjugated input,

and it can be summarized as follows:

**IFFT(in) FFT(in)N ⎡ ⎤= ⎣ ⎦

After obtaining the information of their relationship, now we can modify the FFT

component to an IFFT component, and the circuit is shown in Figure 5.3.

FFT

Left
shift
6 bits
(x64)

2’s
Compliment

2’s
Compliment

IN_R

IN_I

OUT_R

OUT_I

IFFT

FFT

Left
shift
6 bits
(x64)

2’s
Compliment

2’s
Compliment

IN_R

IN_I

OUT_R

OUT_I

IFFT

Figure 5.3: Circuit design of IFFT implemented by FFT

 Result 1:

After building the block of IFFT, we can start to deal with the problem of

truncation from a 20-bit output databus to an 8-bit output databus.

 89

—————————————————————————————————

 Experiment 2:

 Try to fit the new 20-bit I/O databus into the old 8-bit I/O databus.

 Process 2:

In order to determine where the old 8-bit databus locates in the new 20-bit one, we

first build up an adaptive mechanism for bit truncation of the output from 20 bits

to 8 bits for two target components, whereas only the skill of zero padding to 20

bits is required at their input side. The control bits of adaptive mechanism are sent

by pattern generator, where an 8-bit pattern is supported. Among them, one bit is

used for reset signal; four are used for FFT, and three are used for IFFT. The

mapping between control bits and truncation range are listed in Tables 5.3 and 5.4,

respectively.

Table 5.3: Mapping table of control bits for output truncation of IFFT

Ctrl. Bits Truncation 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000 10 downto 3
001 11 downto 4
010 12 downto 5
011 13 downto 6
100 14 downto 7
101 15 downto 8
110 16 downto 9
111 17 downto 10

Table 5.4: Mapping table of control bits for output truncation of FFT

Ctrl. Bits Truncation 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0000 7 downto 0
0001 8 downto 1
0010 9 downto 2
0011 10 downto 3
0100 11 downto 4
0101 12 downto 5
0110 13 downto 6
0111 14 downto 7
1000 15 downto 8
1001 16 downto 9
1010 17 downto 10
1011 18 downto 11
1100 19 downto 12

 90

 Result 2:

After trying all the combinations of adaptive truncation, we find that no

combination can result in an expected output after passing through IFFT and FFT

components. After a while, we finally realize that we need to do bit-reversal first

for both the outputs of IFFT and FFT blocks. No wonder we cannot obtain the

correct result.

—————————————————————————————————

 Experiment 3:

Do bit-reversal for both the outputs of IFFT and FFT blocks.

 Process 3:

In the output data buffer of IFFT, the bit-reversed writing address can be simply

generated by the control block ram_ctrl as shown in Figure 5.4 (a), since there are

no other tasks which are jointly considered during the address generation. On the

contrary, address generation in the output data buffer of FFT is so complicated that

we have to use a pre-written ROM to store the final address in the control block

data2dsp_ctrl as shown in Figure 5.4 (b), since bit-reversal, remove of zero tones,

and rearrangement of pilot tones are jointly considered. The tasks of zero tone

removal and pilot tone arrangement is illustrated in Figures 5.5 (a) and 5.5 (b).

 (a) (b)

FFT

dft

8 MUX

Data
Buffer
(RAM)

data2dsp_ctrl

Control

data_mux4 ram2dsp

8

32

ROM

32

FFT

dft

88 MUX

Data
Buffer
(RAM)

data2dsp_ctrl

Control

data_mux4 ram2dsp

88

3232

ROM

3232

IFFT

Control

Data
Buffer
(RAM)

Delay

Delay

data_delay

ctrl_delay

idft

ram_ctrl

data_buffer

IFFT

Control

Data
Buffer
(RAM)

Delay

Delay

data_delay

ctrl_delay

idft

ram_ctrl

data_buffer

Figure 5.4: (a) IFFT component and its output data buffer

 (b) FFT components and its output data buffer

 91

6 13 5 5 13 6

 0 7 21 42 571 6 10 20 22 2627 3940 41 43 56 58 63

(a)

 0 3 4 51

4 48

(b)

Figure 5.5: (a) Data before zero tone removal and pilot tone rearrangement

(b) Data after zero tone removal and pilot tone rearrangement

Table 5.5: Comparison between normal (NM) and bit-reversed (BR) order

NM Special bits Z P P Z Z Z Z Z

NM Order 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

NM Address 4 4 5 6 7 8 9 0 10 11 12 13 14 15 16 17 18 19 20 21 22 1 23 24 25 26 27 28 28 28 28 28

BR Address 18 18 18 37 10 30 25 45 7 22 22 41 14 33 48 48 5 20 20 39 12 32 27 46 9 28 23 43 16 35 50 50

BR Order 0 32 16 48 8 40 24 56 4 36 20 52 12 44 28 60 2 34 18 50 10 42 26 58 6 38 22 54 14 46 30 62

BR Special bits Z Z Z Z Z

NM Special bits Z Z Z Z Z Z P P

NM Order 32 33 34 35 36 37 38 39 40 41 42 43 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

NM Address 28 28 28 28 28 28 28 29 30 31 32 2 3 34 35 36 37 38 39 40 41 42 43 44 45 3 46 47 48 49 50 51

BR Address 4 19 19 38 11 31 26 3 8 1 1 42 5 34 49 49 6 21 21 40 13 2 47 47 0 29 24 44 17 36 51 51

BR Order 1 33 17 49 9 41 25 57 5 37 21 53 13 45 29 61 3 35 19 51 11 43 27 59 7 39 23 55 15 47 31 63

BR Special bits Z P Z P Z Z P Z P Z

44

3

1

As illustrated in Figure 5.5 (a), the indices zero, and from 27 to 39 denote zero

tones, while the indices 7, 21, 42, and 57 represent pilot tones. After the removal

and rearrangement, we discard the data on zero tone by using the same address for

that on data tone, resulting in the coverage by latter data, and we also rearrange the

pilot tones to the most front part of the data as depicted in Figure 5.5 (b).

Moreover, the complicated address is listed in the row of bit-reversed (BR)

address in Table 5.5. As illustrated in the above table, the bit-reversed special bits

are dispersed so that the BR address is difficult to generate due to the disorder of

index when compared with the generation of somehow ordered normal (NM)

address.

 Result 3:

 92

Although the generation of address is checked again and again, the expected

results are still not found. We finally realized that the delay time between IDFT

and IFFT, or DFT and FFT is different and it results in the incorrect receiving for

the IFFT or FFT blocks. Therefore, we need to adjust the blocks that control the

arrival time of data or control signals.

—————————————————————————————————

 Experiment 4:

Adjust the delay controlling blocks to achieve the correct receiving of IFFT (FFT)

blocks.

 Process 4:

As illustrated in Figure 5.6, the first part shows the old relationship among original

coming data (DATA), control signals (CTRL), and the active period of IDFT (or

DFT) block. To align the data signal with the rising edge of active period and align

the control signals with the falling edge of active period, we adopt two delay

blocks as shown in Figure 5.4 (a) to achieve the goal, and the signal after delayed

is shown in the second part in Figure 5.6, where the alignment of both

DATA_Delay and CTRL_Delay perform well. After replacing DFT to FFT, since

the delay times (active period) are different, an incorrect result due to no

alignment between control signal and the falling edge of FFT active period will be

obtained, as we can see in the third part. Through the analysis, we can correct the

error receive timing by simply delaying another 21 clocks in ctrl_delay block, and

the final result with correct timing can be seen in the fourth part.

DATA

CTRL

IDFT(DFT)_Active

3 clks

72 clks

69 clks

DATA_Delay

CTRL_Delay

IDFT(DFT)_Active

69 clks

DATA_Delay

CTRL_Delay

IFFT(FFT)_Active

90 clks

ERROR

21 clks

1 2

3

DATA_Delay

CTRL_Delay

IFFT(FFT)_Active

90 clks4

DATA

CTRL

IDFT(DFT)_Active

3 clks

72 clks

69 clks

DATA_Delay

CTRL_Delay

IDFT(DFT)_Active

69 clks

DATA_Delay

CTRL_Delay

IFFT(FFT)_Active

90 clks

ERROR

21 clks

1 2

3

DATA_Delay

CTRL_Delay

IFFT(FFT)_Active

90 clks4

Figure 5.6: Process of adjusting the delay of control signal

 93

we previously have an IDFT/DFT imbedded system that works properly, we can

take the IDFT and DFT blocks as two black boxes and replace them with

equivalent blocks. We believe that if we can create an equivalent block especially

in the scalar factor, the replacement can be processed without any problem with

regard to the reduction of the carried information. Therefore, our next experiment

is trying to find out the same black boxes for both IDFT and DFT blocks.

IFFT Block

IFFT X 64
X 1.646 Trun.

FFT Block

FFT X 1.646 Trun.

IFFT Block

IFFT X 64
X 1.646 Trun.

FFT Block

FFT X 1.646 Trun.

(

IDFT

IFFT X 3

IDFT

IFFT X 3

IDFT

IFFT X 3

(

Figure 5.9: Relation

(a) IDFT block

——————————

 Experiment 7:

Find out equivalent bla

 Process 7:

From the results of the

DFT and IDFT blocks

the scalar of IFFT (FFT

as IDFT block is conc

output, we have to mul

where the value 0.29

Figure 5.10 (a). On the

output scalar can orig

a) (

Block

0.77 Trun.

DFT

FFT X

Block

0.77 Trun.

Block

0.77 Trun.

DFT

FFT X

DFT

FFT X

c)

ship between MATLAB function

 (b) IFFT block (c) DFT block (d

—————————————

ck boxes for both DFT and IDFT

 previous experiment, the equiv

can simply be obtained by a furt

) block to be the same as that of

erned, since it has a scalar 30

tiply an additional scalar 0.292 a

2 can be obtained by 30.7

 other hand, when DFT block is

inally be calculated by (1

7 /(

/ 8)

96
b)

Block

1/8 Trun.

Block

1/8 Trun.

Block

1/8 Trun.
(

a

.

t

d)

 IFFT (FFT) with

) FFT block

——————————

 blocks.

lent black boxes for both

her analysis and adjusting

IDFT (DFT) block. As far

77 between its input and

 the output of IFFT block,

 as shown in

 concerned, the additional

, and we further

64 * 1.646)

/1.646

 Result 4:

After the adjustment, the data values out of FFT at the receiver side still do not

match the expected values. Checking again and again, we still cannot obtain the

expected values. To stop meaningless checking for each of the places we doubt,

we decide to build up another project in FPGA where there are only a pair of IFFT

and FFT, some data buffers, and related control blocks, to verify whether we can

obtain the same signals or not if we pass the data through IFFT first and FFT

secondly. By the way, we can also observe the truncation behavior in a purer

environment instead of in a complicated one.

—————————————————————————————————

 Experiment 5:

Build up a new project to verify whether we can obtain the same signals if we pass

the data through IFFT first and FFT secondly.

 Process 5:

The circuit design of the testing project is depicted in Figure 5.7, including a

central controller, a ROM-embedded data generation block, an IFFT/FFT pair, and

two following data buffers. The central controller is the major part that controls

the timing when each block should be turned on or off.

FFT

Data
Generator Data

Buffer
(RAM)

OUT_R
OUT_IROM

Central
Controller

1

8 8IFFT
Data
Buffer
(RAM)

888

1

1

1 1

FFT

Data
Generator Data

Buffer
(RAM)

OUT_R
OUT_IROM

Central
Controller

1

8 8IFFT
Data
Buffer
(RAM)

888

1

1

1 1

Figure 5.7: Circuit design of the testing project

 Result 5:

By functional simulation, we find that the output data, OUT_R and OUT_I cannot

match with the input data generated from the pre-written ROM in Figure 5.7.

According the result, we may guest that maybe the FFT component is not exactly

the same as the FFT function in MATLAB and there may exist a scalar difference

 94

between them. Once there is a scalar , the output of passing through IFFT and

FFT may become , resulting in the mismatch between the input and output and

the difficulty to recognize the existence of the scalar for the data represented

in a binary form is not so straightforward. Therefore, our next experiment is to

find out the scalars of both DFT and FFT blocks respectively when compared with

the FFT function built in MATLAB.

k
2k

2k

—————————————————————————————————

 Experiment 6:

Find out the scalars exist in both DFT block and FFT block compared with FFT

function built in MATLAB.

 Process 6:

Simulating the truncation mechanism in MATLAB is necessary so that a closer

environment can be created. There are two typical truncation situations, truncation

that happens at tail and at head, as illustrated in Figure 5.8 and labeled “1” and “2”

respectively. The left hand side shows two truncation cases in hardware, and the

right hand side shows the corresponding expressions used to simulate in

MATLAB. By comparing the output of DFT and IFT built in previous experiment

with the truncated version of DFT and IFFT simulated in MATLAB, we can start

to find out the relation ship between them.

x
2 2[floor(/ 2)]2x

x
6

6

if 0, mod(,2)

if 0, -mod(abs(),2)

x x

x x

⎧ ≥⎪
⎨

<⎪⎩

7

In MATLABIn Hardware

7

25

2 5

1

2

x
2 2[floor(/ 2)]2x

x
6

6

if 0, mod(,2)

if 0, -mod(abs(),2)

x x

x x

⎧ ≥⎪
⎨

<⎪⎩

7

In MATLABIn Hardware

7

25

2 5

x
2 2[floor(/ 2)]2x

x
6

6

if 0, mod(,2)

if 0, -mod(abs(),2)

x x

x x

⎧ ≥⎪
⎨

<⎪⎩

7

In MATLABIn Hardware

7

25

2 5

1

2

Figure 5.8: Truncation behavior of IFFT (FFT) block

 Result 6:

By fixing the input data of DFT and FFT blocks in hardware, and the input of

truncated version of FFT function in MATLAB, we can finally obtain a

relationship among them as shown in Figure 5.9. The results inspire us that since

 95

separate it into two terms, 1/8 and 1/1.646, where 1/8 can be realized by right

shifting (R.S.) 3 bits in hardware, as illustrated in Figure 5.10 (b).

(a)

IDFT Block

IFFT X 30.77

New IFFT Block

IFFT X 64
X 1.646 X 0.292

IDFT Block

IFFT X 30.77

IDFT Block

IFFT X 30.77

New IFFT Block

IFFT X 64
X 1.646 X 0.292

New IFFT Block

IFFT X 64
X 1.646 X 0.292

(b)

DFT Block

FFT X 1/8

New FFT Block

FFT X 1.646 X 0.6075 R.S.
3 bits

DFT Block

FFT X 1/8

DFT Block

FFT X 1/8

New FFT Block

FFT X 1.646 X 0.6075 R.S.
3 bits

Figure 5.10: (a) Adjusted new IFFT block (b) Adjusted new FFT block

 Result 7:

After adjust the previous IFFT block by adding a scalar at its output, we can

obtain the same value as we expected at the outer output of IFFT block. As done in

FFT block, the previous FFT block is also modified by putting a scalar at its

output, but unfortunately the results do not seem to match what we expected.

Therefore, our next experiment is trying to figure out why we cannot obtain the

expected value.

—————————————————————————————————

 Experiment 8:

Figure out the reason that causes the output of FFT block to mismatch the results

we expected.

 Process 8:

So far, we can obtain the same value of FFT input in the receiver side of FPGA

compared with in MATLAB, but we cannot obtain the expected value after the

FFT block. Therefore, we try to analysis the range of input data to ensure that all

 97

the input data fall into the safe range and the information within will not be

truncated after FFT processing. Fortunately, we find that there are some input

values like 44 or which may be too large to pass the FFT block without

saturation. To make sure if the values 44 and are too large or not, a small

trial in MATLAB is processed and the command is expressed as follows

28−

28−

fft([45*ones(1,32)-29*ones(1,32)])

The result of this trial shows that the output may range from to 1506 and

we can not express the output by using only 8 bits, which implies the occurrence

of saturation and truncation. A general saturation example is shown in Figure 5.11.

If we have too large input values, the inner output of FFT may become so large

that some values cannot be stored, which results in the saturation on outer output.

To avoid this situation, we have to scale down the input. As illustrated in upper

part of Figure 5.12, we move the right-shifting block at the output to the input side,

since the action of right shifting 3 bits is equivalent to scaling down by a factor of

8. By this method, the whole FFT block can experience still the same scalar and

achieve the goal of saturation avoidance almost, but the results show that

saturation still happens on a few larger inputs. To further reduce the situation, we

right shift one more bit at input side, and we add a 1-bit-left-shifting block to

compensate. The final version is shown in the lower part of Figure 5.12.

1506−

 Result 8:

After the modification for the avoidance of saturation, we eventually obtain the

correct value as we expected in the output of FFT block, which also achieves the

long-term target, replacing the IDFT (DFT) blocks with IFFT (FFT) blocks

Figure 5.11: Saturation example of FFT block

Outer Input Bus

Inner Input Bus

Inner Output Bus

Outer Output Bus
Saturation

FFT
Sign bit

Data

Zero paddingOuter Input Bus

Inner Input Bus

Inner Output Bus

Outer Output Bus
Saturation

FFT
Sign bit

Data

Zero padding

 98

Ma. FFT
Function X 1.646 X 0.6075R.S.

3 bits
Ma. FFT
Function X 1.646 X 0.6075 R.S.

3 bits

Ma. FFT
Function X 1.646 X 0.6075R.S.

4 bits
L.S.
1 bit

Ma. FFT
Function X 1.646 X 0.6075R.S.

3 bits
Ma. FFT
Function X 1.646 X 0.6075R.S.

3 bits
Ma. FFT
Function X 1.646 X 0.6075 R.S.

3 bits
Ma. FFT
Function X 1.646 X 0.6075 R.S.

3 bits

Ma. FFT
Function X 1.646 X 0.6075R.S.

4 bits
L.S.
1 bit

Ma. FFT
Function X 1.646 X 0.6075R.S.

4 bits
L.S.
1 bit

Figure 5.12: Modification for the avoidance of saturation

5.5 Summary

In this chapter, we provide some useful experiences for those who would like to

build up such a similar prototype system. We first give an overview of how to do

system level evaluation before implementation. Then, the job of hardware partition is

also introduced since we have more than one hardware modules to share the whole

tasks. Moreover, during the implementation, some precious experiences and tips are

provided both in FPGA realization and DSP realization, respectively. In the end of this

chapter, we give a detailed example on replacing DFT (IDFT) components to FFT

(IFFT) components by means of showing a series of arising problems and the

corresponding solutions.

 99

