List of Figures

Figure 2.1	(a) Conventional muticarrier technique (b) Orthogonal	
	muticarrier modulation technique	5
Figure 2.2	Transmitter architecture of the adaptive 4×4 MIMO-OFDM	
	system	6
Figure 2.3	Convolutional encoder with code rate 1/3	7
Figure 2.4	Interleaver and de-interleaver schemes	8
Figure 2.5	QPSK, 16-QAM, and 64-QAM constellations	9
Figure 2.6	Training sequence and frame structure of IEEE 802.11a standard1	0
Figure 2.7	Receiver architecture of the adaptive 4×4 MIMO-OFDM system1	1
Figure 2.8	Fine timing synchronization scheme1	3
Figure 2.9	Frequency synchronization concept1	4
Figure 2.10	Channel estimation scheme1	5
Figure 2.11	STBC coding matrix with rate 3/41	8
Figure 2.12	V-BLAST encoding procedure1	9
Figure 2.13	V-BLAST decoding procedure2	0
Figure 2.14	G-STBC coding concept2	1
Figure 2.15	Condition number of 1,000 UHR channels2	4
Figure 2.16	Condition number of 1,000 CLR channels2	5

Figure 3.1	Development environment of fast prototyping system	27
Figure 3.2	Modules installed on Aptix MP3CF platform	28
Figure 3.3	Aptix MP3CF platform	29
Figure 3.4	Explorer flow	31
Figure 3.5	FPGA design flow	34

Figure 3.6	Architecture of TMS320C6701 DSP	37
Figure 3.7	Memory mapping of TMS320C6701 DSP	38
Figure 3.8	Host port interface of TMS320C6701 DSP	40
Figure 3.9	External memory interface of TMS320C6701 DSP	41
Figure 3.10	'C6701 DSP EVM	42
Figure 3.11	Architecture of 'C6701 DSP EVM	43
Figure 3.12	'C6701 DSP EVM module and its outer components	45
Figure 3.13	Read state timing diagram of 'C6701 DSP EVM	47
Figure 3.14	Write state timing diagram of 'C6701 DSP EVM	47
Figure 3.15	USB 2.0 module	48
Figure 3.16	USB 2.0 module and its neighborhood	48
Figure 3.17	DAC and ADC modules	50

Juning

Figure 4.1	Frame structure using identity matrix as structure matrix	53
Figure 4.2	Results of interrupt scheduling	55
Figure 4.3	Programming concept in high level language	56
Figure 4.4	Programming concept in hardware description language	56
Figure 4.5	Partition result of MIMO-OFDM system	57
Figure 4.6	Diagram of transmitter in DSP	58
Figure 4.7	Constellation of the first transmit antenna at (a) $SNR = 0 dB$ (b)	
	SNR = 10 dB (c) $SNR = 20 dB$, and the constellation of first	
	receive antenna at (d) SNR = 20 under a flat fading channel with	
	a sample of condition number 10	60
Figure 4.8	Circuit design of transmitter in FPGA	61
Figure 4.9	Circuit design of each transmit branch	62
Figure 4.10	Address values of <i>ram_ctrl</i> block	63
Figure 4.11	Circuit design of receiver in FPGA	64
Figure 4.12	Circuit design of RRC and time synchronization	65
Figure 4.13	Concept of time synchronization method	66
Figure 4.14	Circuit design of RRC and time synchronization	67

Figure 4.15	Viterbi decoder and its related circuits	68
Figure 4.16	Diagram of receiver in DSP	69
Figure 4.17	Received data from receiver FPGA	69
Figure 4.18	Throughput performances under different channel conditions	
	(a) $K = 10$ (b) $K = 20$ (c) $K = 30$ (d) $K = 40$ (e) $K = 50$ (f) $K = 100$	
	(g) $K = 200$ (h) $K = 400$ (i) $K = 1,000$ (j) $K = 100,000$	76
Figure 4.19	Adaptive performance comparison under SNR=16dB	78
Figure 4.20	Performance demonstration interface	79

Figure 5.1	Some principles of hardware partition	83
Figure 5.2	Partition of MIMO-OFDM system	84
Figure 5.3	Circuit design of IFFT implemented by FFT	89
Figure 5.4	(a) IFFT component and its output data buffer (b) FFT	
	component and its output data buffer	91
Figure 5.5	(a) Data before zero tone removal and pilot tone rearrangement	
	(b) Data after zero tone removal and pilot tone rearrangement	92
Figure 5.6	Process of adjusting the delay of control signal	93
Figure 5.7	Circuit design of the testing project	94
Figure 5.8	Truncation behavior of IFFT (FFT) block	95
Figure 5.9	Relationship between MATLAB function IFFT (FFT) with (a)	
	IDFT block (b) IFFT block (c) DFT block (d) FFT block	96
Figure 5.10	(a) Adjusted new IFFT block (b) Adjusted new FFT block	97
Figure 5.11	Saturation example of FFT block	98
Figure 5.12	Modification for the avoidance of saturation	99