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ABSTRACT: The model performance of an engineering system is affected by many variables subject to uncer­
tainty. Point estimate (PE) methods are practical tools to assess the uncertainty features of a model involving
multivariate stochastic parameters. Two PE methods have been developed for engineering applications. One is
Rosenblueth's PE method, which preserves the first three moments of random variables and the other is Hare's
PE method, which reduces the computations of Rosenblueth's method but only as appropriate for application
to random variables with normal distributions. In this study, two algorithms are proposed to encompass the
advantages of the two PE methods: computational practicality and the handling of mixture distributions. Through
a numerical experiment, the proposed methods yielded more accurate estimations than those of Rosenblueth's
method with about the same amount of computation as Hare's method. The two proposed methods were also
applied to estimate statistical moments of a pier scouring model output to demonstrate their performance in an
engineering application.

INTRODUCTION

In engineering design and analysis, one frequently uses
models involving parameters that are subject to uncertainty.
Therefore, model outputs on which engineering design and
analysis are based are also subject to uncertainty. To perform
uncertainty analysis for a model involving many stochastic
parameters, point estimate (PE) methods are practical tools.
Karmeshu and Lara-Rosano (1987) have shown that the first­
order second-moment method is a special case of the PE
methods when the uncertainties of random variables are
small. The PE methods evaluate uncertainty of a model by
computing the model responses at specified points in the pa­
rameter space. Proper points for model evaluation should be
selected to preserve probabilistic information of the random
variables.

Rosenblueth (1975) proposed a PE method for handling ran­
dom variables with symmetric distributions, which was later
extended to handle random variables with nonsymmetric dis­
tributions (Rosenblueth 1981). The algorithm, however, is
computationally less attractive since the required model eval­
uations increase rapidly with the number of random variables.
An alternative PE method is proposed by Hare (1989) to cir­
cumvent the computationally explosive nature of Rosen­
blueth's algorithm. Li (1992) and Zoppou and Li (1993) have
also developed a new algorithm to hold the same order of
accuracy as Rosenblueth's method and to reduce the amount
of computation. However, the required computation is still
far greater than Hare's algorithm unless the random variables
are multivariate normal. Chang et al. (1995) showed that the
estimated uncertainty feature of model output could be in­
accurate if the skewness of a random variable is not ac­
counted for. Nevertheless, the contribution of Hare's PE
method to practical uncertainty analysis of engineering prob­
lems is valuable.

By incorporating a set of semiempirical formulas developed
by Der Kiureghian and Liu (1985), this study extended Hare's
PE algorithm to allow handling random variables with a mix­
ture of known marginal distributions. Based on the given in­
formation about the marginal distributions of random varia­
bles, these formulas transform the original nonnormal random
variables into equivalent ones in the multivariate standard nor­
mal space. Therefore, in the equivalent multivariate standard
normal space, the proposed methods, which adopt the funda­
mental concepts of the Hare algorithm, can operate properly.
The selected points in the multivariate standard normal space
are transformed back to the original parameter space for eval­
uating statistical moments of model outputs. Accordingly, the
applicability of Hare's PE algorithm for uncertainty analysis
is expanded to handle problems involving multivariate non­
normal random variables.

In this paper, two algorithms that consider different expan­
sion points are proposed. The performance of the two pro­
posed algorithms are examined through a numerical experi­
ment and an application is made to a pier scouring model.
Specifically, the proposed PE algorithms were compared with
Rosenblueth's algorithms on the accuracy of uncertainty anal­
ysis under a number of stochastic parameters. Furthermore, the
overall performances of the three PE methods were evaluated
by fitting Johnson distribution (Johnson and Kotz 1970) curves
based on the computed moments.

PROPOSED METHOD 1: MEDIAN-EXPANSION
ALGORITHM

Multivariate Normal Space

In the median-expansion algorithm, the vector of stochastic
parameters X having a multivariate normal distribution are
standardized as

in which U = vector of uncorrelated random variables in the

in which Y = vector of the multivariate standard normal ran­
dom variables; D = a diagonal matrix containing the variances
of the stochastic parameters; and J.l. = vector of the mean val­
ues ofX.

Through an orthogonal transformation, the correlated stan­
dard normal variables, Y, are decomposed into independent
standard normal variables, Z, as
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eigenspace having the mean 0; and covariance matrix L, with
L and V, respectively, =eigenvalue and eigenvector matrices
associated with the correlation matrix of the stochastic param­
eters Rx. The eigenvector and eigenvalue matrices satisfy

(5)

in which

Rx=VL' (3) (6)

The mth order central moment of the model output W,
f1.W.m, can be obtained by

In many practical engineering problems, one often has to
deal with random variables having different types of distri­
bution. Such distributional information can have important im­
plications on the results of engineering uncertainty and relia­
bility analyses. The incorporation of marginal distributions
information of random variables further enhanced the capa­
bility of Harr's PE algorithm, which presently accounts for the
first two moments (including correlation) of the involved ran­
dom variables.

For a mixture of correlated random variables (not necessar­
ily all normal), the proposed methods incorporate the available
marginal distribution information by using the set of semiem­
pirical formulas derived by Der Kiureghian and Liu (1985).
These formulas transform the correlation coefficient of a pair
of nonnormal random variables to the equivalent one in the
standard normal space. Through this transformation, the fore­
going algorithm for multivariate normal parameters can be
performed appropriately.

The distribution types for the correlated random variables
pair the formulas are applicable to are shown in Fig. 2. AI­
th?ugh the underlying distributions for the applied input data
might not ~ known exactly, one can estimate the uncertainty
due to the different selection of distribution types by using the
pr?posed methods. The original multivariate nature of the ap­
phed data are not completely preserved, but the marginal dis­
tributions are.

The median-expansion algorithm consists of the following
steps:

where V = (Vil 1:12, ••• , vn), with Vil 1:12, ••• , Vn being the
column vectors of the eigenvectors; and L = diag(Ail A2' ... ,
An), with Ail A2' ... , An = corresponding eigenvalues. The
transformations provided by (1) and (2) are linear. Therefore,
if all the original stochastic parameters were normally distrib­
uted, the transformed parameter spaces for U are also normal.

In the median-expansion algorithm, a hypersphere with ra­
dius .y;; centered at the origin in the n-dimensional standard­
ized eigenspace is constructed. The points at which model out­
put is to be evaluated are located at the intersections of the
hypersphere and the eigenvectors of the correlation matrix of
the stochastic parameters. For problems involving n stochastic
parameters, model evaluations are performed at the total of 2n
intersection points whereas 2n points are needed by Rosen­
blueth's method.

Due to the normal distribution and the same scale on each
component in the standard space for Z, the 2n proposed points
for model evaluation are located on a hypersurface with an
equal probability density function (PDF) value. Fig. 1 sche­
~atically shows the point selections by Rosenblueth's algo­
nthm and the proposed method for a bivariate case in the
standard normal space. The selected points by the proposed
method are located on the ellipse, which is a circle in the
standardized eigenspace.

By (1) and (2), the points for model evaluation in the orig­
inal multivariate normal variable space can be obtained as

Xk± = f1. ± Y!;;no,sLo,sVk, k = 1, ... , n (4)

where Xk± = (Xkl±' Xk2±' ••• ,Xkn±)'=a column vector containing
the coordinates of the two intersection points on the kth ei­
genvector in the original normal variable space. At each se­
lected point, the corresponding model output value Wk± =
g(xk±), for k =1 to n, is computed.

The mth order moment about the origin of the model output
is calculated as

m

IJ.m = 2: (-l)iC;"lJ.ilJ.;'_1
i-o

where C'!' = m!/[i!(m - i)!], a binomial coefficient.

Incorporating Marginal Distributions of Random
Variables

(7)

VI

y.

""."" JL/

o Rosenblueth's~
o Modified Harr's

FIG. 1. Selections of Points for Model Evaluation by Different
PE Methods

1. Transformation of correlation in nonnormal space to the
equivalent normal space-the formulas transform the
correlation from the original space to the standard normal
space having a probability content equivalent to that of
the original space by

pt = T1j ' Plj (8)

in which pt = correlation between two standard normal
random variables, Yi and }j, whereas Pij is the correlation
between the nonnormal stochastic parameters Xi and X
in the original space; and Tij = a transformation factoi
that is a function of the marginal distributions and cor­
relation of the two stochastic parameters considered. For
each combination of the aforementioned distributions
one c?rresponding formula exists to compute Tij (see Fig:
2). Given the marginal distributions and correlations for
~e stoch~tic parameters, the formulas of Der Kiuregh­
ian ~nd LlU (1985) compute the corresponding transfor­
mation factor to obtain the equivalent correlation pt. Af­
ter all pairs of stochastic parameters are treated the
correlation matrix in the multivariate standard n~rmal
space, R y, can be obtained.
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Distribution of Variable j

N U E R TIL TIS L G T2L T3S

u
(1)

E:0
0

"i:: R:g
TIL....

0
C TIS
0.- L....
::J
.0 G'C
't;
C T2L

T3S

N = Normal
U = Uniform
E = Shifted Exponential
R .. Shifted Rayleigh

TlL =Type-l Lugeat Value
Pu =Correlation coefficient

TlS =Type-l Smalleat Value
L = Log-Normal
G = Gamma

T2L =Type-2 Lugeat Value
T3S = Type-3 Smalleat Value
d = Coetl'fcient of variation

FIG. 2. Schematic Description of Categories of Ti'ansformatlon Factor Ttl (Chang et al. 1994)

f(y)

-----.~~r__---.y

x =F" [<1> (y)]
f(x)

-+----,hr-~------. x

(a) median J.Ly=O

FIG. 3. Schematic Diagram of Ti'ansformatlon by Median-Expansion Algorithm between Nonnormal and Normal Spaces

2. Determine points for model evaluation in the standard
normal space-through the transformation by (8), the
operation domain is switched to the space in which the
transformed random variables are treated as if they were
multivariate standard normal random variables with the
correlation matrix R y • The transformed space is already
standard normal. Therefore, the standardization by (1) in
the median-expansion algorithm is not needed. Accord­
ingly, (4) can be used to determine the points for model
evaluation in the correlated standard normal space as

(9)

3. Inverse transformation-to generate appropriate points
for model evaluations in the original space, the points
selected in the standard normal space are transformed
back to the original space for evaluating the correspond­
ing model output values. The inverse transformation
from the standard normal space to the original space can

248/ JOURNAL OF HYDRAULIC ENGINEERING / MARCH 1997

be established by preserving the probability content. The
kth pair of selected points in the standard normal space,
Yk:!: = (Ykl:!:' Y0\2:!:' ... , Ykn:!:)', can be transformed back to
the original space as

in which FI( ) = cumulative distribution function (CDF) of the
ith parameter XI; and <1>( ) = standard normal CDF. Thus, the
kth pair of the selected points in the original parameter space
Xt:!: are obtained for model evaluation. The moments of model
output can be estimated by (5)-(7).

The selected points by the median-expansion algorithm for
model evaluation are, in essence, the expansion with respect
to the mean in the standard normal space that is also the me­
dian. Through the inverse transformation by (10), it preserves
the median of each stochastic parameter in the original space
as shown in Fig. 3. However, when the distribution of the

J. Hydraul. Eng. 1997.123:244-250.
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y'

fey)

(b)

----+-II-II--'r----~y

mean(a)

f(x)

-+---+-i--lr-----+x

FIG. 4. Schematic Diagram of Transformation by Mean-Expansion Algorithm between Nonnormal and Normal Spaces

PROPOSED METHOD 2: MEAN-EXPANSION
ALGORITHM

stochastic parameter in the original space was not symmetric,
the mean and median were different in the original space.

(IS)

(16)

BIAS =L(w.,P - w"p) dp

MAE =LIw.,p - w"pl dp

1. Biasness (BIAS)
2. Mean absolute error (MAE)
3. Root mean squared error (RMSE)

to 1.0 and 0.3, respectively. Consequently, the skew coefficient
for each stochastic parameter was 'Y =(0.3)3 + 3(0.3) =0.927.
For simplicity, the correlation between the two stochastic pa­
rameters, XI and Xj , was set as

PIJ =O.9Ii- J1 (14)

Performance Evaluation

Based on the distributional properties of the involved sto­
chastic parameters, 30,000 samples were generated by the
multivariate Monte Carlo simulation with known marginal dis­
tribution (Chang et al. 1994). In the performance evaluation,
the statistical characteristics of the model output from the
Monte Carlo simulation were adopted as the true uncertainty
features based on which the first four statistical moments of
the model output computed by the PE methods were com­
pared. Since the collective behavior of statistical moments can
be demonstrated by the corresponding distribution curve, the
performance evaluation further examined the goodness of fit
of two Johnson distribution curves that were fitted by using
the moments from the PE methods and the true values from
the Monte Carlo simulation, respectively. The Johnson distri­
bution was adopted for its versatility, covering a great variety
of commonly known distributions. The algorithm to determine
the Johnson distribution curve based on the first four moments
of a random variable was developed by Hill et al. (1976).

Three criteria were used to compare the relative perfor­
mance as a whole of the three PE methods:

(11)

(12)

(13)

yt =ct>;'[F(!-LI»), i = I-n

Then, the mean-expansion algorithm selects points for model
evaluation around the point y*. Fig. 4 shows the idea of the
mean-expansion algorithm for a univariate case. More specif­
ically, the selected points that encompass the origin in the stan­
dard normal space is now shifted with respect to y*.
Consequently, the equal PDF is no longer valid at the shifted
points. Therefore, for the two kth shifted points in the standard
multivariate normal space, y't: = (ytJ.:, yf2:, ... , Y:'S, the
associated PDF values are used as the weighing factors, ak:

at: =exp ( -~ ztofRi1zt:)

The mean-expansion algorithm adjusts the expansion point
from the median to the mean of the original stochastic pa­
rameters. In doing so, the property of equal PDF for each
selected point would no longer be held. Therefore, (5) and (6)
must be modified.

Let .... = (!-Lit !-L2, ..• , !-L.>' represent the means of the sto­
chastic parameters in the original space. In the standard normal
space, y* = (yr, yr, ... ,y:')', the equivalent point for the
mean of the original distributions can be determined by in­
verting (10) as

which is the exponential part of the multivariate standard nor­
mal PDF since the remaining part is a constant. Using (10),
the shifted points in the original space can be obtained. The
model output values are computed at these points and are
weighed by (12) to estimate the moments. That is, (5) for
computing moments of the model output is modified as

m I~ 1 .. .m m)E(W ) =- L.J (aHWH + at-Wt-
n t-l aH + at-

(17)NUMERICAL EXPERIMENT AND RESULTS

Experiment

This section describes the experiment for examining the per­
formance of the proposed PE methods as compared with that
of Rosenblueth's algorithm. The number of stochastic pa­
rameters involved are the main focus to examine its effect on
the performance of the three PE methods. Two to 10 stochastic
parameters were adopted for this experiment with the model
type as W = ~I iXI •

In the numerical experiment, all stochastic parameters were
assumed to have lognormal distributions. The mean values and
the standard deviations of all stochastic parameters were set

[
( ]112

RMSE = Jo (w.,P - W"p)2 dp

where w'.P = value of the pth order quantile for the assumed
true probability distribution; and W'. P = estimated quantile
value. The true quantile values, w"p, were computed using the
moments from the Monte Carlo simulation along with the
Johnson distribution, whereas the estimated quantiles, w.,p,
were based on the moments from the PE methods. The inte­
gration in the three performance criteria, (15)-(17), was done
numerically at several discrete probability values: 0.01,0.025,
0.05,0.1,0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, and
0.99. The quantiles at these probability levels were obtained
to calculate the values of the three performance criteria.
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Results and Comments

Table 1 shows the comparisons of statistical moments esti­
mated by the three PE methods with those of the "true" val­
ues from the Monte Carlo simulation (with the superscript
"a") for the two model types. The error percentages of esti­
mated moment values by the three PE methods are shown in
parentheses below the estimated values. The error percentages
were computed by

where 9PE and 9SIMUL = estimated moments by a PE method
and the Monte Carlo simulation, respectively.

The relative perfonnance of the three PE methods can be
made based on the infonnation provided in Tables 1 and 2.
From Table 1, one observes that the three PE methods yield
rather close estimations of the mean values for the model out­
put, W. Moreover, the two proposed PE methods provide a

epB = 9PE
- 9SIMUL X 100%

9SIMUL
(18)

better estimation of the standard deviation for W than Rosen­
blueth's method. Except for the kurtosis obtained by Rosen­
blueth's method, the accuracy of estimation by the three PE
methods deteriorates as the order of moment and the number
of stochastic parameters involved increase. Furthennore, the
three PE methods tend to overestimate the third and fourth
moments, with an increase in the number of stochastic pa­
rameters involved. Comparing the two proposed PE methods,
the mean-expansion algorithm yields more accurate estima­
tions for the second and third moments. However, the kurtosis
is excessively overestimated by the two proposed algorithms.

It is not easy to distinguish the performance just from the
moments since no consistently better results were obtained.
From the performance criteria MAE and RMSE, given in Ta­
ble 2, one can observe that the overall performance of the two
proposed PE methods is consistently superior to Rosenblueth's
method. Between the median and mean-expansion PE algo­
rithms, the latter consistently yields a more precise fitting to
the true distribution function for W. However, Table 2 indi-

TABLE 1. Comparison of Estimated Statistical Moments by Different PE Methods for W

Statistical Number of Stochastic Variables

moments Method Two Three Four Five Six Eight Ten
(1 ) (2) (3) (4) (5) (6) (7) (8) (9)

Mean SIMUL 2.9993- 5.998- 10.0096- 15.0155- 20.9849- 35.9992- 55.0315-
ROSEN OOסס.3 OOסס.6 OOסס.10 OOסס.15 ooסס.21 36.0000 55.0000

(0.02%) (0.03%) (-0.10%) (-0.10%) (0.07%) (0.00%) (-0.06%)
Md-PE 2.9989 5.9991 10.0005 15.0034 21.008 36.0235 55.0482

(-O.oI%) (0.02%) (-0.09%) (-0.08%) (0.11 %) (0.07%) (0.03%)
Mn-PE 3.0001 6.0006 10.0018 15.0044 21.0091 36.0285 55.0687

(0.03%) (0.04%) (-0.08%) (-0.07%) (0.12%) (0.08%) (0.07%)
Standard deviation SIMUL 0.8734- 1.7329- 2.8417- 4.2051- 5.7919- 9.6678- 14.5024-

ROSEN 0.8798 1.6831 2.6683 3.7998 5.0461 7.7807 10.7044
(0.73%) (-2.87%) (-6.10%) (-9.64%) (-12.88%) (-19.52%) (-26.19%)

Md-PE 0.8555 1.7171 2.8724 4.3222 6.0652 10.4217 15.9195
(-2.05%) (-0.91%) (1.08%) (2.78%) (4.72%) (7.80%) (9.77%)

Mn-PE 0.8658 1.7036 2.7952 4.1275 5.6865 9.4308 13.9267
(-0.87%) (-1.69%) (-1.64%) (-1.85%) (-1.82%) (-2.45%) (-3.97%)

Skewness SIMUL 0.8545- 0.8888- 0.8934- 0.8559- 0.8342- 0.822- 0.8137-
ROSEN 0.9263 1.0146 1.1022 1.1848 1.2636 1.4136 1.5569

(8.40%) (14.15%) (23.37%) (38.43%) (51.47%) (71.97%) (91.34%)
Md-PE 0.3869 0.7402 1.0636 1.3616 1.6367 2.1305 2.5636

(-54.72%) (-16.72%) (19.05%) (59.08%) (96.20%) (159.18%) (215.05%)
Mn-PE 0.5588 0.8048 1.0339 1.2479 1.4466 1.8022 2.1066

(-34.61%) (-9.45%) (15.73%) (45.80%) (73.41 %) (119.25%) (158.89%)
Kurtosis SIMUL 4.2166- 4.3697- 4.4624- 4.2897- 4.1956- 4.1787- 4.1449-

ROSEN 1.9079 2.1781 2.3877 2.5751 2.7625 3.1709 3.6416
(-54.75%) (-50.15%) (-46.49%) (-39.97%) (-34.16%) (-24.12%) (-12.14%)

Md-PE 2.0139 3.1305 4.3225 5.5702 6.8552 9.4945 12.1753
(-52.24%) (-28.36%) (-3.14%) (29.85%) (63.39%) (127.21%) (193.74%)

Mn-PE 2.3075 3.6482 5.0945 6.6353 8.2548 11.6885 15.3135
(-45.28%) (-16.51%) (14.17%) (54.68%) (96.75%) (179.72%) (269.45%)

Note: SIMUL = Monte Carlo simulation; ROSEN = Rosenblueth's method; Md-PE =median-expansion algorithm; and Mn-PE = mean-expansion
algorithm. The numbers in parentheses indicate the error percentages of estimated moment values by the three PE methods.

"True values from the Monte Carlo simulation.

TABLE 2 Comparison of Measures of Goodness of Fit to Distribution of Wby Different PE Methods

Performance Number of Stochastic Variables

criteria Method Two Three Four Five Six Eight Ten
(1 ) (2) (3) (4) (5) (6) (7) (8) (9)

BIAS ROSEN NC 0.0008 -0.0076 -0.0095 0.0281 0.002 -0.0649
Md-PE 0.0039 0.0059 -0.0086 -0.0218 -0.0014 -0.0429 -0.1154
Mn-PE 0.0047 0.0049 -0.0098 -0.0195 0.006 -0.0146 -0.043

MAE ROSEN NC 0.7657 1.2436 1.8547 2.5647 4.0327 6.4676
Md-PE 0.1135 0.0801 0.1633 0.3953 0.7549 1.9341 3.7122
Mn-PE 0.0955 0.0304 0.0725 0.2375 0.4572 1.0948 2.0759

RMSE ROSEN NC 0.8902 1.4378 2.1525 3.0031 5.0607 7.8158
Md-PE 0.1515 0.1032 0.2003 0.5017 0.9871 2.5374 4.9122
Mn-PE 0.1226 0.0467 0.0846 0.2734 0.5307 1.2672 2.3857

Note: ROSEN = Rosenblueth's method; Md-PE =median-expansion algorithm; Mn-PE =mean-expansion algorithm; and NC = not computable.
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(20)

cates that the measures of goodness of fit for Rosenblueth's
method is not computable in the case the two stochastic pa­
rameters are involved in. This is because the skew coefficient
and kurtosis estimated by Rosenblueth's method are too close
to the boundary of impossible region where the skew coeffi­
cient, -y, and the kurtosis, K, held the following relationship
(Johnson and Kotz 1970)

(19)

Near the boundary of the impossible region, K =-y2 + 1, the
Johnson distribution curve cannot be determined with stability.

The tendency of the two proposed PE methods to overes­
timate the moments can be explained by referring to Fig. 1.
Using the proposed methods, the two points on the principle
component axis with the highest variance contribution would
be positioned farther away from the mean than Rosenblueth's
PE method in the case of a stronger correlation. The presence
of an extraordinary point for model evaluation would signifi­
cantly influence the value of moment estimation, especially for
higher moments. This impact would be amplified as correla­
tion, model nonlinearity, or asymmetry condition of the dis­
tributions for stochastic parameters increase.

Regarding the model nonlinearity, other model types like W
=L I X: and W = III XI have been discussed in the study by
Chang (1994). It is indicated that the tendency to overestimate
higher moments by the three PE algorithms worsen as the
degree of model nonlinearity and the number of stochastic
parameters increase. However, the collective behaviors eval­
uated by fitting the Johnson distribution curve exhibit the con­
sistent improvements by the mean-expansion algorithm
throughout the numerical study.

APPLICATION

Bed scouring is a phenomenon in a river caused by the
interaction of flow and the river bed. Hydraulic structures such
as bridge piers are susceptible to failure under long-term and
continuous bed scouring. As required for engineering design
as well as for precaution against undesirable consequences, the
knowledge of bed scouring around bridge piers is essential.
Many models have been developed to predict the potential
scour depth around bridge piers. Using such a computer model
to aid the design of pier depth is common in modem hydraulic
engineering. However, the existence of various uncertainties
involved in bed scouring models results in uncertainty in the
scour depth prediction required for design.

For the purpose of illustration, a simple pier scour model
developed by Johnson (1992) is used here for uncertainty anal­
ysis. Focus is placed on the relative performances of the var­
ious PE methods in the uncertainty analysis as compared with
the Monte Carlo simulation (Chang et al. 1994).

Pier Scouring Model

Johnson (1992) proposed an empirical pier scouring model
based on experimental data from various sources

( )

0.98

D s = 2.02AY; FO.21<T-O.24

in which D s = predicted scour depth; A = model correction
factor; y = flow depth; b = pier width; F = Froude number;
and (J" = sediment gradation. Because the model is empirical
by nature, uncertainties exist in both the model itself and the
inputs/parameters involved (Yeh and Tung 1993). Conse­
quently, the scour depth computed from (20) is subject to un­
certainty and it is likely that a specified design pier depth could
be exceeded, resulting in potential threat to bridge safety.

Uncertainty Analysis of Pier Scouring Model

The stochastic parameters considered in (20) are A, y, F,
and <T. The stochasticity of model correction factor, A, repre­
sents the model uncertainty associated with the pier scouring
model whereas the randomness of y, F, and <T are results from
model input uncertainties. Their means and coefficients of var­
iation are listed in Table 3. According to Johnson (1992), all
stochastic parameters, except the model correction factor A,
are correlated random variables with the correlation matrix
given in Table 4. The model correction factor A is treated here
as an independent random variable.

The three PE methods that are used here for the uncertainty
analysis of the pier scouring model include: Rosenblueth's, the
proposed median-expansion, and the mean-expansion PE
methods. In the uncertainty analysis, mixture distributions
were adopted to explore the applicability of each method. The
distributions used for the stochastic parameters in the pier
scouring model were: gamma distribution for A, lognormal
distribution for <T and y, and Weibull distribution for F.

To compare the relative performance in uncertainty analysis
among the different methods, results from the Monte Carlo
simulation can be used as the true values for comparison.
Based on the given marginal distributions and correlations for
the stochastic parameters, 100,000 samples were generated
from which the statistical moments of scour depth from the
pier scouring model were computed.

Table 5 lists the estimated moments of the scour depth from
the three PE methods and their error percentages (in parenthe­
ses). Under the consideration of the mixture distributions for

TABLE 3. Means and Coefficients of Variation (COV) of Sto­
chastic Parameters Used In Pier Scouring Model [from Johnson
(1992)]

Variables Mean COV
(1 ) (2) (3)

A 1.000 0.18
y 4.250 0.20
F 0.537 0.38
IT 4.000 0.20

TABLE 4. Correlation among Stochastic Parameters Used In
Pier Scouring Model [from Johnson (1992)]

Variables A Y F IT

(1 ) (2) (3) (4) (5)

A 1.00 0.00 0.00 0.00
y 0.00 1.00 -0.33 -0.79
F 0.00 -0.33 1.00 0.29
IT 0.00 -0.79 0.29 1.00

TABLE 5. Comparison of First Four Moments for Random
Scour Depth by Various Methods

Methods

Moments ROSEN Md-PE Mn-PE SIMUL
(1 ) (2) (3) (4) (5)

1.1. 2.5843 2.5886 2.5831 2.5851
(-0.03%) (0.14%) (-0.08%)

IT 0.4864 0.4915 0.4853 0.4887
(-0.47%) (0.57%) (-0.70%)

'Y 0.3899 0.5204 0.3914 0.4023
(-3.08%) (29.36%) (-2.71%)

K 1.4925 3.5097 3.5365 3.2416
(-53.96%) (8.27%) (9.10%)

Note: ROSEN = Rosenblueth's method; Md-PE = median-expansion
PE method; Mn-PE = mean-expansion PE method; SIMUL = Monte
Carlo simulation. Numbers in parentheses indicate error percentages for
the estimated moments of the scour depth.
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the correlated stochastic parameters, all the methods are ca­
pable of estimating the first two moments accurately. For
higher moments, Table 5 indicates that Rosenblueth's method
fails to yield a good estimate for the kurtosis, whereas the
median-expansion PE method estimation for the skewness is
undesirable. The mean-expansion PE method, however, yields
closer estimations for both skew coefficient and kurtosis. From
the aspect of computation efficiency, eight model evaluations
are needed using the proposed PE methods since four sto­
chastic parameters were involved. However, use of Rosen­
blueth's PE method requires double the amount of computa­
tion.

SUMMARY AND CONCLUSION

In this study, two PE methods were proposed to incorporate
the marginal distributions of correlated random variables. The
proposed methods integrate Harr's PE procedure along with
the formulas that transform the original correlation to the
equivalent one in the standard normal space. The performance
of the proposed PE methods was evaluated against Rosen­
blueth's method using asymmetric random variables. Through
the numerical experiment, the proposed PE methods consis­
tently reveal superior performance to that of Rosenblueth's
method and require much less computation. The input require­
ments are marginal distributions of involved random variables
and their correlations.

The numerical experiment indicated that PE methods, in
general, are not necessarily appropriate for the uncertainty
analysis of all types of model. The degree of model nonlin­
earity and number of random variables might have significant
impacts on the accuracy of PE methods. In case the model
nonlinearity is high, the accuracy of higher-order moment es­
timations from any PE method should be questioned. Among
the two proposed PE methods, the mean-expansion algorithm
yields more accurate estimations for the test models.

In the application, the uncertainty analysis of a pier scouring
model was performed to demonstrate the relative performance
of each PE method for a practical engineering problem. Under
the mixture distributions and correlated stochastic parameters
considered in this particular application, the three PE methods
showed that estimations of the first two moments of the pre­
dicted scour depth are as accurate as those obtained from the
Monte Carlo simulation with 100,000 model evaluations.
However, only the mean-expansion method can yield closer
estimates for the two higher moments. This application shows
that the uncertainty estimated by the mean-expansion PE
method can achieve comparable accuracy with the one from
the Monte Carlo simulation with significantly less computa­
tions. The latter point is especially important for those uncer­
tainty analyses of models requiring a great amount of com­
putation in themselves.

APPENDIX I. REFERENCES

Chang, C. H. (1994). "Incorporate information of non-normal distribu­
tions in uncertainty analysis of hydrosystems," PhD dissertation, Inst.
of Civ. Engrg., Nat. Chiao-Tung Univ., Taiwan, ROC, 58-75.

Chang, C. H., Tung, Y. K., and Yang, J. C. (1994). "Monte Carlo sim­
ulation for correlated variables with marginal distributions." J. Hydr.
Engrg., ASCE, 120(3),313-331.

250/ JOURNAL OF HYDRAULIC ENGINEERING / MARCH 1997

Chang, C. H., Tung, Y. K., and Yang, J. C. (1995). "Evaluation ofprob­
ability point estimate methods." Appl. Math. Modelling, 19(2), 95­
105.

Der Kiureghian, A., and Liu, P. L. (1985). "Structural reliability under
incomplete probability information." J. Engrg. Mech., ASCE, 112(1),
85-104.

Harr, M. E. (1989). "Probabilistic estimates for multivariate analyses."
Appl. Math. Modelling, 13(5),313-318.

Hill, 1. D., Hill, R., and Holder, R. L. (1976)1. "Algorithm AS 99: fitting
Johnson curves by moments." Appl. Statistics, 25, 180-189.

Johnson, P. A. (1992). "Reliability-based pier scour engineering." J.
Hydr. Engrg., ASCE, 118(10), 1344-1358.

Johnson, N. L., and Kotz, S. (1970). Continuous univariate
distributions-l. John Wiley & Sons, Inc., New York, N.Y.

Karmeshu, and Lara-Rosano, F. (1987). "Modelling data uncertainty in
growth forecasts." Appl. Math. Modelling, 11(2), 62-68.

Li, K. S. (1992). "Point-estimate method for calculating statistical mo­
ments." J. Engrg. Mech., ASCE, 118(7), 1506-1511.

Rosenblueth, E. (1975). "Point estimates for probability moments."
Proc. Nat. Acad. Sci. USA, 72(10), 3812.

Rosenblueth, E. (1981). "Two-point estimates in probabilities." Appl.
Math. Modelling, 5(10), 329-335.

Yeh, K. C., and Tung, Y. K. (1993). "Uncertainty and sensitivity of a pit
migration model." J. Hydr. Engrg., ASCE, 119(2), 262-281.

Zoppou, C., and Li, K. S. (1993). "New point estimate method for water
resources modeling." J. Hydr. Engrg., ASCE, 119(11), 1300-1307.

APPENDIX II. NOTATION

The following symbols are used in this paper:

a = correction term in Rosenblueth's PE method;
D = diagonal matrix containing variances;
F = cumulative distribution function;

g() = model or function;
L = diagonal eigenvalue matrix;
n = number of stochastic parameters;
p = probability mass;

Rx = correlation matrix in the original space;
R y = correlation matrix in the standard normal space;
U = vector of stochastic parameters in the standard eigenspace;
V = eigenvectors matrix;
v = column vector of an eigenvector;

W = model output;
w = value of model output;
X = vector of stochastic parameters in the original space;
X = stochastic parameter in the original space;
x = value of a stochastic parameter in the original space;

Y = vector of stochastic parameters in the standard normal
space;

Y = stochastic parameter in the standard normal space;
y = value of a stochastic parameter in the standard normal

space;
y* = vector of mean values in the standard normal space;
y* = mean value in the standard normal space;
Z = vector of stochastic parameters in the eigenspace;
ex = weighing factor;
'Y = skew coefficient;
8 sign indicator;
6 = estimated moment;
>. eigenvalue;
fA. = vector of mean values;
1.1. mean value;
p correlation coefficient;
a = standard deviation; and
<P standard normal cumulative distribution function.
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