
國 立 交 通 大 學

電 信 工 程 學 系 碩 士 班

碩 士 論 文

多媒體串列處理器之微架構模擬器

A Micro-architecture Simulator for Multimedia

Stream Processor

研究生：林芳如

指導教授：闕河鳴 博士

中華民國九十五年一月

多媒體串列處理器之微架構模擬器

A Micro-architecture Simulator for Multimedia Stream Processor

研 究 生：林芳如

指導教授：闕河鳴 博士

Student：Fang-Ju Lin
Advisor：Dr. Herming Chiueh

國立交通大學

電信工程學系碩士班

碩士論文

A Thesis
Submitted to Institute of Communication Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in
Communication Engineering

January 2006
Hsinchu, Taiwan.

中華民國九十五年一月

多媒體串列處理器之微架構模擬器

學生：林芳如 指導教授：闕河鳴

國立交通大學電信工程學系碩士班

摘要

 Stanford 針對多媒體應用程式發展出一個可程式化的處理器 Imagine。 由

於可程式化的 Stream Processor 針對不同的應用程式所適用的硬體架構會有所不

同，利用硬體實現各種不同的架構並且比較執行的效能，不但耗費很長的時間，

硬體製作的成本也非常的昂貴。 根據不同的多媒體應用程式，如何決定可程式

化 Stream Processor 的硬體架構，是一大難題。 然而現今的硬體加速電路，大

部分都是針對特定的用途而設計，其硬體架構的設計是針對特定的應用程式，才

能達到很好的執行效能。 在本論文中，將提出一個架構的模擬器，模擬多媒體

應用程式在不同架構上的執行效能，並分析硬體的使用率以及記憶體使用的容

量。 比較應用程式在各種架構上的執行效率，挑選出最適合的硬體架構。 決

定最佳化的硬體架構之後，可程式化的 Stream Processor 再用硬體去實現。 各

式各樣的多媒體應用程式，利用架構模擬器找出最佳化的硬體架構，再搭配可程

式化的 Stream Processor 將硬體實現，不但省下了硬體製作成本；速度相較於使

用硬體實現來測試也加快許多。

 i

A Micro-architecture Simulator for Multimedia

Stream Processor

Student: Fang-Ju Lin Advisor: Dr. Herming Chiueh

Institute of Communication Engineering

National Chiao Tung University

Hsinchu, Taiwan 30050

Abstract

 A programmable processor, Imagine, has been developed especially for

media applications by Stanford. Since a programmable Stream Processor would

build various hardware micro-architectures for diverse media applications, the cost

of time and money could be huge to implement various micro-architectures on

hardware and then compare their efficiencies. Therefore, how to construct suitable

micro-architectures of programmable Stream Processor for diverse media

applications is a great challenge. Nowadays, most of the hardware accelerators are

designed for dedicated application. Only when the hardware micro-architecture is

carefully designed for particular media application could the stream processor

achieves exceptional performance. For the purpose of resolving this dilemma, in

this paper, we develop the micro-architecture simulator for stream processor. The

micro-architecture simulator is expected to simulate the performance of media

application executed on various micro-architectures, and then to analyze the utility

 ii

rate of hardware and consumption of memory. By comparing the performance of

media application executed on diverse micro-architectures, the optimized hardware

micro-architecture can be determined and then the programmable Stream Processor

can be implemented on hardware. By utilizing micro-architecture simulator to

settle down optimized problems and then implement hardware with programmable

Stream Processor for diverse applications, this idea saves not only huge cost of

money on hardware, but also plenty of time for testing.

 iii

誌 謝

 兩年的研究所生涯即將接近尾聲了，兩年的學習，讓我更加了解學海的無涯

知識的浩瀚。

 首先我要感謝我的指導教授闕河鳴老師，以其豐厚的學術素養，在研究學問

的要領與態度給予啟發和指導，以及在學業及生活上給予協助與教導，讓我受益

良多。另外，也要感謝交大副校長黃威老師；清大電機系許雅三老師以及台大電

機系呂良鴻老師，百忙中撥冗擔任我的論文口試委員，對於我的論文給予建議，

著實獲益良多。

 謝謝兩年來一起努力的實驗室成員們，謝謝他們對我的幫助及照顧。還要感

謝每天一起生活的室友們，在寫論文的過程中，互相打氣互相鼓勵，這本論文才

可以順利的完成。另外我要特別感激我的男朋友葉威廷，在研究所的兩年中，不

斷的給我鼓勵與動力，解開我課業上的疑惑，並且在我論文的撰寫過程中給予許

多的寶貴意見，以及幫我修改論文中文法的錯誤，從他身上學習到的，讓我有很

大的成長。

 另外，還要感謝我最愛的兩隻狗寶貝，鬍子、達達，有了他們，讓我的生活

更加的多姿多采，永遠充滿歡笑。最後我要謝謝我的父母，哥哥，溫暖的家，永

遠都是我的避風港，不論面臨挫折或是困難，挑戰，都陪我一起度過，永遠都默

默的支持我。有了他們，我才可以順利拿到碩士的學位。

 iv

Content

摘要...i

Abstract ..ii

誌 謝...iv

Content...v

List of Figures ..vii

List of Tables...ix

Chapter 1 Introduction ...1

Chapter 2 Background ...5

2.1 Stream processing ..5

2.1.1 Stream programming model..6

2.1.2 Stream micro-architecture...8

2.1.3 An example of stream processor: Imagine..9

2.2 Current usage of micro-architecture simulator ..10

2.3 The importance of the micro-architecture simulator...................................... 11

Chapter 3 Micro-architecture simulator...15

3.1 Organization of the micro-architecture simulator..16

3.2 Design methodology of the micro-architecture simulator17

3.2.1 Cluster ...17

3.2.2 ALU, MUL, DIV...19

3.2.3 Memory hierarchy...27

3.3 Mechanism of the micro-architecture simulator ..27

3.3.1 Parameter definition..28

3.3.2 Map application into dedicated binary stream programming codes ...30

 v

3.3.3 Simulation ...30

3.4 Summary ..32

Chapter 4 Performance Evaluation ..33

4.1 Benchmark ...33

4.2 Experimental set-up ...34

4.2.1 Parameter definition..34

4.2.2 Translate FFT algorism into stream code..35

4.2.3 Data loading from main memory..36

4.3 Result of performance evaluation ..38

4.3.1 1-cluster stream micro-architecture simulation38

4.3.2 2-cluster stream micro-architecture simulation41

4.3.3 4-cluster stream micro-architecture simulation45

4.3.4 8-cluster stream micro-architecture simulation51

4.4 Performance comparison ...58

4.5 Summary ..61

Chapter 5 Conclusion and future work ..63

Bibliography ..65

 vi

List of Figures

Figure 2.1 Stream and kernel representation………………………………………7

Figure 2.2 Stream processor block diagram………………………………………8

Figure 2.3 Contribution of the simulator…….……………………………………13

Figure 3.1 Simulation flow……………………………………………………….15

Figure 3.2 Block diagram of micro-architecture simulator……………………16

Figure 3.3 Micro-architecture cluster block diagram……………………………17

Figure 3.4 Processing cluster instruction in the arithmetic cluster………………..18

Figure 3.5 ALU instruction format………………………………………….…….19

Figure 3.6 Detail of the functional unit…………………………………………...20

Figure 3.7 Finding source data of ALU…………………………………………...21

Figure 3.8 Result write back of ALU…………………………………………….23

Figure 3.9 Block diagram of the ALU unit……………………………………….25

Figure 3.10 Block diagram of a cluster…………………………………………...29

Figure 3.11 Map the application into stream programming code…………………30

Figure 4.1 Memory usage before simulation……………………………………...37

Figure 4.2 Block diagram of 1-cluster micro-architecture simulator…………….39

Figure 4.3 Simulation result of 1-cluster stream micro-architecture…………….40

Figure 4.4 Block diagram of 2-cluster micro-architecture simulator…………….42

Figure 4.5 Simulation result of 2-cluster stream micro-architecture…………….44

Figure 4.6 Block diagram of 4-cluster micro-architecture simulator…………….46

Figure 4.7 Simulation result of 4-cluster stream micro-architecture…………….48

Figure 4.8 Block diagram of 8-cluster micro-architecture simulator…………….50

Figure 4.9 Simulation result of 8-cluster stream micro-architecture…………….54

 vii

Figure 4.10 Performance of FFT on different micro-architecture………………...55

Figure 4.11 Memory capacity of memory hierarchy………………………………58

 viii

List of Tables

Table 3.1 Lookup table of data source……………………………………………….22

Table 3.2 Lookup table of data write back destination of FU1………………………24

Table 3.3 Kernel ISA of ALU Unit…………………………………………………...22

Table 3.4 Kernel ISA of MUL Unit…………………………………………………..26

Table 3.5 Kernel ISA of DIV Unit……………………………………………………26

 ix

Chapter 1 Introduction

 Media applications are characterized by large available parallelism [3], little data

reuse and a high computation of memory access ratio [1]. While these

characteristics are poorly matched to conventional micro processor

micro-architectures, recent research has proposed using streaming micro-architecture

by fit modern VLSI technology with lots of ALUs on a single chip with hierarchical

communication bandwidth design to provide a leap in media applications. Relative

topics of recent research are Image Stream Processor [12], Smart Memories [16], and

Processing-In-Memory [10].

 In order to achieve computation rates, current media processor often uses

special-purpose [2], fixed-function hardware tailored to one specific application.

However, special-purpose solutions lack of the flexibility to work effectively on a

wide application space. The demand for flexibility in media processing motivates

the use of programmable processors [2]. To bridge the gap between inflexible

special special-purpose solutions and current programmable micro-architectures that

cannot meet the computational demands of media-processing applications, stream

micro-architecture developed by Stanford University has been chosen [3]. Steam

processors directly exploit the parallelism and locality exposed by the stream

programming model [4] to achieve high performance.

 Since, various stream micro-architecture with different ALU clusters are suitable

for media applications, mapping multimedia applications to adequate stream

programming model becomes essential. However, the organization of stream model

will be optimized for different multimedia applications. The number of ALUs in a

cluster and the number of clusters in the stream micro-architecture may be different,

 1

according to the algorithm of different media applications. Thus, two solutions

existed to find the number of hardware needed for dedicated application. One

solution is to use hardware implementation of different stream micro-architectures to

evaluate performance is expensive and time consuming. The other is a software

solution, which simulates performance on different virtual stream micro-architectures

and compares the performance between the architectures. By doing so, the best

hardware organization, which has to fully optimize the usage of the hardware

resources and reach better performance, is obtained. The second solution,,

“micro-architecture simulator”, is suitable for the demand needed.

 This project has been shared by a team of three graduate students. The major

tasks are low power ALU cluster design, memory design and simulator design. In

this thesis, a micro-architecture simulator will be implemented. Based on different

organizations, performance will be evaluated including CPU time, total memory

access time, time needed to access each level of the memory hierarchy, and the real

memory in use. Performance of conventional micro-architecture and stream

micro-architecture will be compared to prove the improvement of the stream

micro-architecture.

Before the media application being simulated in micro-architecture simulator, the

“micro-architecture decision” procedure has to be done. The micro-architecture to

be simulated is decided in the micro-architecture decision step, including cluster

numbers, the number of function units in a cluster, and capacity of each level memory

hierarchy. After parameters that may affect the micro-architecture determined, ISA

of the micro-architecture can obviously be known. Based on the ISA of the

micro-architecture and the instruction format of each function unit that may be

included in a cluster, the selected media application is mapped into binary stream

 2

programming codes that can be executed in a stream processor. After the

micro-architecture is decided, and dedicated stream programming codes are generated,

they are put into simulator for simulation. Then, a simulation result will be generated.

The simulation result of one organization of stream micro-architecture is compared

with the result of other organization of micro-architecture, and parameters that may

affect the organization of the micro-architecture is adjusted. The operation of

simulation and adjustment is continued till the optimal performance is discovered.

Simulation result, on the other hand, can be taken to make sure the correctness of the

hand-coding binary stream programming codes. With micro-architecture simulator,

the optimized micro-architecture for dedicated media application can be discovered,

and can be implemented in hardware.

With micro-architecture simulator, media application is simulated on the

simulator to evaluate performance of different stream micro-architecture. In this

thesis, FFT (Fast Fourier Transform) is chosen as benchmark and the

micro-architecture of a cluster is decided, the only variable between different

organizations of stream micro-architecture is cluster number. FFT is simulated on

different cluster number’s stream micro-architecture, and performance of each

organization of stream micro-architecture is compared, including CPU time, memory

access times of each level memory hierarchy. For performance and memory

accessing benefit, 4-cluster stream micro-architecture is chosen as the best

micro-architecture for FFT.

The remainder of this thesis is organized as following: Chapter 2 presents

background information on media processors, micro-architecture that enables high

performance on media applications with fully-programmable processors, and the

design of current micro-architecture simulators. In Chapter 3, the design

 3

methodology is presented. In Chapter 4, experimental results are provided and a

comparison to conventional micro-architecture is presented. Finally, future work

and conclusions are presented in Chapter 5, Chapter 6.

 4

Chapter 2 Background

Media applications and media processors have recently become an active and

important area of research. Section 1 describes stream programming model, stream

micro-architecture, and an example of stream processor Imagine. Section 2 shows

current micro-architecture simulator’s implementation and design methodology.

Section 3 highlights the motivation of designing software micro-architecture simulator

for stream processor.

2.1 Stream processing

Stream processors are fully programmable processors which aimed at media

applications. Media applications, including signal processing, image and video

processing, and graphics, are well suited to a stream processor like Imagine [5]

because they possess four key attributes [6]:

High Computation Rate: Many media applications require billions to tens of

billions of arithmetic operations per second to achieve real-time performance.

High Computation to Memory Ratio: Structuring media applications as stream

programs exposes their locality, allowing implementations to minimize global

memory usage. At the result stream programs tend to achieve a high

computation to memory ratio: most media applications perform tens to hundreds

of arithmetic operations for each necessary memory reference.

Produce-Consumer Locality with Little Global Data Reuse: The typical data

reference pattern in media applications requires a single read and write per global

data element. Little global reuse means that traditional caches are largely

 5

ineffective in these applications. Intermediate results are produced at the end of

a computation stage and consumed at the beginning of the next stage.

Parallelism: Media applications exhibit instruction-level, data-level, and

task-level parallelism.

Media applications operate on streams of low-precision data, have abundant

data-parallelism, rarely reuse global data, and perform tens to hundreds of operations

per global data reference. These stream programs map easily and efficiently to the

data bandwidth hierarchy of the stream micro-architecture. The data parallelism

inherited in media applications allows a single instruction to control multiple

arithmetic units and allows intermediate data to be localized to small clusters of units,

significantly reducing communication demands. Data from one processing kernel

are forwarded to the next kernel, which localized the data communication and rarely

reused global data. Furthermore, the computation demands of these applications can

be satisfied by keeping intermediate data close to the arithmetic units, rather in

memory.

2.1.1 Stream programming model

The stream processor executes applications that have been mapped to the stream

programming model [7]. This programming model organizes the computation in an

application into a sequence of arithmetic kernels, and organizes the data-flow into a

series of data streams. The data streams are ordered, finite-length sequences of data

orders of an arbitrary type (although all the records in one stream are of the same

type). The inputs and outputs to kernels are data streams. Streams passing among

 6

multiple computation kernels form a stream program. The only non-local data a

kernel can reference at any time are the current head elements of its input streams and

the current tail elements of its output streams. In the stream programming model,

locality and concurrency are exposed both within a kernel and between kernels.

In Figure 2.1, shows the mapping of radix-2 FFT [7] to the stream model. Each

oval in the figure corresponds to the execution of a kernel, while each arrow

represents a data stream transfer. In the stream implementation, kernel requires two

input streams and one output stream. The output of the last kernel is in bit-reversed

order, so it must be reordered in the memory. In FFT only data elements passed

between kernels need to access the SRF, and only the initial input data and final

output data need to access the global memory space in DRAM.

Figure 2.1 Stream and kernel representation

 Applications that are more involved than the FFT example map to the stream

model in a similar fashion. Examples can be found in other references: Khailany et

al. discuss the mapping of stereo depth extractor [5]; Rixner discusses the mapping of

an MPEG-2 encoder [8]; and Owens et al. discuss the mapping of a polygon rendering

pipeline [9].

 The stream model is important because it organizes an application to expose the

locality and parallelism information that is inherent in the application.

 7

2.1.2 Stream micro-architecture

The stream processor is a hardware micro-architecture designed to implement the

stream programming model. Imagine, designed by computer systems laboratory of

Stanford University is a stream processor which block diagram is shown in Figure 2.2

[14]. The core of Imagine is a 128 KB stream register file (SRF). The SRF is

connected to 8 SIMD-controlled VLIW-like arithmetic clusters controlled by a

microcontroller, a memory system interface to off-chip DRAM, and a network

interface to connect to other nodes of a multi-Image system. All modules are

controlled by an on-chip stream controller under the direction of an external host

processor.

Figure 2.2 Stream processor block diagram

 8

The working set of streams is located in the SRF. Stream loads and stores occur

between the memory system and the SRF; network sends and receives occur between

the network interface and the SRF. The SRF also provides the stream inputs to

kernels and stores their stream outputs.

 The kernels are executed in the 8 arithmetic clusters. Each cluster contains

several functional units (which can exploit instruction-level parallelism) fed by

distributed local register files. The 8 clusters (which can exploit data-level

parallelism) are controlled by the microcontroller, which supplies the same instruction

stream to each cluster. On Imagine, streams are implemented as contiguous blocks

of memory in the SRF or in off-chip memory. Kernels are implemented as programs

run on the arithmetic clusters.

 The three-level memory bandwidth hierarchy characteristic of media application

behavior consists of the memory system, the SRF, and the local register files within

the clusters

2.1.3 An example of stream processor: Imagine

Imagine is a programmable stream processor, which is a general purpose

processor, and is the hardware implementation of the stream model. The concept of

this micro-architecture is based on stream. Imagine is organized to take advantage

of the locality and parallelism inherent in media applications. A block diagram of

the micro-architecture is shown in Figure 2.2.

Imagine contains 48 ALUs [12], and a unique three level memory hierarchy

design to keep the functional units saturated during stream processing. The

three-tiered data bandwidth hierarchy consists of a stream memory system (2 GB/s), a

global stream register file (32 GB/s), and a set of local distributed register files located

 9

near the arithmetic units (544 GB/s). The 128 KB SRF at the center of the

bandwidth hierarchy not only provides intermediate storage for data streams but also

enables additional stream clients to be modularly connected to Imagine, such as

streaming network interface. A single microcontroller broadcasts cluster instructions

in SIMD fashion to all of the arithmetic clusters. Each of Imagine’s 8 arithmetic

clusters consists of 6 functional units containing 3 adders, 2 multipliers, and a

divide/square root. These units are controlled by statically scheduled cluster

instructions issued by the microcontroller.

2.2 Current usage of micro-architecture simulator

 In some relevant science projects to PIM (Processor In Memory) [10], there

always exist some cases utilizing micro-architecture simulator. For example, in the

DIVA (Data IntensiVe Architecture) project [11], it employed ”DIVA simulator” to

simulate the operation of DIVA. In addition, the PIM project IRAM also makes use

of ” IRAM Simulator” to simulate the performance of iRAM [11].

Since Stream Processor also belongs to PIM techniques, our goal becomes to

discover the optimized stream micro-architecture for a specific media application

without using the expensive hardware equipment. The micro-architecture simulator

is designed for stream processor intended to simulate the performance of diverse

media application executed in stream processor.

 The project has been divided into three parts in our team, including a low power

ALU cluster, memory management unit and address translation unit and the simulator

design. The detail micro-architecture of the cluster has been decided during a low

power cluster design, by surveying papers and considering the performance and

hardware usage. As for simulation, it has been designed for the performance

 10

evaluation of different hardware organizations. The micro-architecture in a cluster

being evaluated is always the same, the only variable is the number of clusters. With

micro-architecture simulator, the number of clusters and the memory hierarchy

needed for dedicated micro-architecture can be easily decided, and the hardware

processor can be implemented.

2.3 The importance of the micro-architecture simulator

Stream micro-architecture could be the main trend of media processor in the

future! Different from the hardware design of the special-purpose processor, which

is designed for the algorithm of specific application and thus can achieve the best

performance only when executing its favored application, the stream processor not

only possesses the advantage of the special-purpose processor to achieve very good

performance for specified application, it but also has great flexibility to adjust

hardware micro-architecture for arbitrary algorithm of application (the number of

computation units and the size of on-chip memory) and thus can best utilize the

hardware resources for desired application.

Since the stream micro-architecture for diverse media application is quite

different, how to discover the optimized micro-architecture for desired application is

definitely a big question! One intuitive way is to utilize hardware to implement

every possible design and then we can practically measure its performance.

However, it seems to be a very inefficient way to find optimized design since the cost

of the hardware implementation could be very expensive! In addition, hardware

 11

implementation may take a lot of time. Compared to hardware implementation,

software simulation would be much faster, more efficient, and cheaper to achieve the

same purpose. Inspired from this idea, here we present the micro-architecture

simulator!

Since the e-Home project has been divided into three main parts, including

hardware design of an ALU cluster, simulator design for hardware performance

evaluation, and low-power technique needed on the whole stream micro-architecture.

In this thesis, the part of simulator design has been focused, it is helpful to the

hardware decision of the stream processor.

As shown in Figure 2.3, after micro-architecture decision step, application can be

mapped into binary stream programming codes according to the ISA and instruction

format of different functional units. Stream programming codes can be put into

simulator to simulate the operation of which in stream processors, then the simulation

result will be generated, which can be used to compare to the simulation result of

other organization of micro-architectures and adjust the parameters that will affect the

organization of stream micro-architecture till the optimal organization of

micro-architecture is discovered. On the other hand, simulation result can also be

used to make sure the correctness of the stream programming codes.

 12

Figure 2.3 Contribution of the simulator

With micro-architecture simulator, the performance of the application on diverse

stream micro-architectures can be easily simulated. The micro-architecture of

different organizations of clusters and functional units will be simulated on the

micro-architecture simulator. The simulation results will show:

1.) How many functional units (ALU, MUL, DIV) in every cluster are used.

2.) How many memory hierarchies in every level in every cluster are used.

3.) How much CPU time it will cost when executing application.

4.) The number of memory hierarchy in every level being used.

Then, the optimized hardware micro-architecture for specific application can be

discovered based on these simulation results. The micro-architecture will efficiently

lower the performance and will not increase too many data exchange of

 13

low-bandwidth memory. The determination of the optimized hardware

micro-architecture includes: number of clusters, number of functional units in a

cluster, the size of memory hierarchy in every level.

Since the test-bench selected in this thesis is “FFT”, the micro-architecture

needed to process this application is not that large enough. Time needed to access

each level of memory hierarchy (SRF, SP, LRF) is almost the same, so the

performance evaluated in this thesis depends only on the access time of each

functional unit. However, micro-architecture simulator might be used for many

other large applications in the future, time needed to access each level of memory

hierarchy might be different. In that case, time to access each level of memory

hierarchy have to be taken into consideration. The micro-architecture simulator

designed in this thesis also has the function of evaluating the performance which takes

memory access time into account, but the function is not suitable for the FFT’s

micro-architecture.

Up to now, the stream micro-architecture has been widely explored to many

media applications and explicitly demonstrated in many references, such as 3-D

polygon rendering [9], MPEG-2 encoding [12], stereo depth extraction [13], and fast

Fourier transform (FFT). In this paper, we shall choose FFT [14] as the benchmark

to simulate the performance for specific hardware micro-architecture and then try to

determine the optimized micro-architecture from these simulation data.

The micro-architecture design of the Simulator shall be explicitly depicted in

Chapter 3. The demonstration of FFT on simulator and how we discover the

optimized micro-architecture for FFT will be drawn in Chapter 4.

 14

Chapter 3 Micro-architecture simulator

 Figure 3.1 illustrates the whole simulation flow. In the Section 3.1, we shall

introduce the whole micro-architecture of the simulator and the included components,

and explain how simulator works. In Section 3.2, we shall detail the way to design

the components inside the simulator, including cluster, functional unit, and memory

hierarchy. In Section 3.3, we shall introduce how to utilize simulator to simulate

hardware performance, that is, the whole simulation flow illustrated in figure above.

The actual simulation performance shall be presented in Chapter 4.

Media application

Stream programming model

kernels streams

Cluster

ALU MUL DIV

Cluster
instructions

Stream
programming

codes

simulator DATA

Architecture design

Cluster
number

FU
instruction

format

FU
number

Simulation
result

Figure 3.1 Simulation flow

 15

3.1 Organization of the micro-architecture simulator

 Figure 3.2 shows the block diagram of the simulator, which is a component of

the simulation flow shown in Figure 3.1. Simulator is composed of a controller,

many arithmetic clusters where the number of the clusters will differ from diverse

application, three-tiered memory hierarchy (SRF, SP, and LRF), and instruction

memory. It should be noted that the number of the components in the simulator is

not fixed. It would depend on the demands of diverse media applications.

Figure 3.2 Block diagram of the micro-architecture simulator

 Micro-architecture simulator is used to simulate the operation of the stream

processor and the performance of the hardware micro-architecture. As shown in the

flow of Figure 3.1, first, a multimedia application and then its hardware

micro-architecture, including the number hardware and the memory size have to be

 16

chosen. Then, this application is translated into the stream programming model,

including kernel and stream, respectively. The cluster and its functional unit in

Figure 3.2 are just the kernel for processing stream. In addition, the data being

processed must be transformed into cluster instructions (stream) and then translate the

cluster instructions into binary expression according to the instruction format defined

by hardware.

 Cluster instructions will be copied to instruction memory through File I/O.

Controller will fetch instruction from instruction memory and equally distribute these

cluster instructions to cluster for executing. Three kinds of registers, SRF, SP, and

LRF, are used to save temporary results during computation process.

3.2 Design methodology of the micro-architecture simulator

In this section, the description on how to design the component of simulator,

including Cluster, and functional unit (ALU, MUL, DIV) is presented.

3.2.1 Cluster

 Figure 3.3 shows the block diagram of cluster. Cluster includes two ALU units,

two MUL units, one DIV unit, and one 64 32-bit register, which is used to save data

exchange between different units in the same cluster. Please note the size of SP

register could vary according to the demands of diverse applications.

Figure 3.3 Micro-architecture cluster block diagram

 17

 The main function of the component Cluster is to divide the received cluster

instruction into multiple instructions that are processable by function units according

to the number of functional units. As shown in Figure 3.4, cluster receives 137-bit

cluster instruction. According to micro-architecture of the cluster, cluster instruction

is divided into two 29-bit instructions for ALU, two 26-bit instructions for MUL, one

27-bit instruction for DIV.

Figure 3.4 Processing cluster instruction in the arithmetic cluster

 18

3.2.2 ALU, MUL, DIV

 In this section, how to design the functional unit shall be depicted. Since the

main spirits for designing ALU, MUL, and DIV are basically the same, we shall focus

on ALU to illustrate how to design functional unit. The only difference between

these three components is the bit of “Opcode” needed for expressing the operation in

the instruction format.

ALU

ALU is a two stage pipeline computation unit. Figure 3.5 shows the instruction

format of ALU. The shadowed part in figure is Opcode field, which expresses the

executing operation for instruction. Opcode also makes the biggest difference

between these three functional units: ALU, MUL, and DIV. Please note that ALU

requires more diverse operations. It demands 4-bits to express.

Figure 3.5 ALU instruction format

 Figure 3.6 is the detail view of the functional unit and its associated register files.

Roughly, it could be cataloged into three parts: data read, calculate, and write back.

 19

READ

Functional
Unit

MUX MUX

MUX

L
R
F
0

L
R
F
1

SP
SRF SRF

SP

MUXFU-1

FU-2
FU-3

FU-4
FU-5

SPLRF
LRF0_FU-1

LRF1_FU-2,
LRF1_FU-3,
LRF1_FU-4,
LRF1_FU-5

WRITE

Figure 3.6 Detail of the functional unit

Data Read As shown in Figure 3.6, the two MUXs in data input will judge the

source data from the field, ”LRF0 Source”, in the instruction format. Table 3.1

shows binary code and the corresponding source data. The origins of source data are

SRF, SP, and LRF, respectively. The desired data1 can be found in the memory

location represented by ”LRF0 RD ADDR”. The way to find data2 is basically the

same as data1. The only difference is their reference fields. Acquiring data2 needs

to take references of the information of ”LRF1 Source” and ”LRF1 RD ADDR”.

Figure3.7 illustrates the program flow of how ALU in the simulator obtains two data

resources, data1 and data2, according to the information of instruction.

 20

LRF 0
Source

LRF 1
Source

LRF 0
RD ADDR

LRF 1
RD ADDR DEST WB

ADDR OPCODE

29 27 21 19 13 10 4 0

Find_data1ADDR()
{
calculate the memory
allocation ”K” according to the
“LRF0 RD ADDR” field
}

Find_data1(int K, int clusterx, int FUx)
{
according to the “LRF0 Source” field
00 do nothing
01 data1 = SRF[K]
10 data1 = SP[K]
11 data1 = LRF[K]
}

K

DATA1

Find_data2ADDR()
{
calculate the memory
allocation ”K” according to the
“LRF1 RD ADDR” field
}

Find_data2(int K, int clusterx, int FUx)
{
according to the “LRF1 Source” field
00 do nothing
01 data2 = SRF[K]
10 data2 = SP[K]
11 data2 = LRF[K]
}

K

DATA2

Figure 3.7 Finding source data of ALU

 21

Table 3.1 Lookup table of the data source

SP10

LRF11

SRF01

None00

SourceBinary Code

SP10

LRF11

SRF01

None00

SourceBinary Code

Calculate The information describing what kind of operations is required to be

execute by every instruction will be implicitly included in the final field “Opcode” of

instruction. Different binary codes represent distinct operations. Table 3.3 shows

the lookup table for opcodes and corresponding operations. Matching the instruction

with those bits of opcode filed in the instruction format would know what kind of

operation is required for specific instruction.

Table 3.3 Kernel ISA of ALU unit

EQ1101

LE1100

LT1011

SRA1010

SRL1001

SLL1000

NOT0111

XOR0110

OR0101

AND0100

ABS0011

SUB0010

ADD0001

OperationOPCODE

EQ1101

LE1100

LT1011

SRA1010

SRL1001

SLL1000

NOT0111

XOR0110

OR0101

AND0100

ABS0011

SUB0010

ADD0001

OperationOPCODE

 22

Write Back The computation results of the functional unit will determine the

destination of write back through one MUX, including SRF, SP, and LRF. Write

back to LRF is classified into two kinds. If the results have to write back to the same

LRF of functional unit, it should be written back to LRF-0 (LRF0_FU-1). On the

other hand, if the result have to write to other LRFs of functional unit, it should be

written to LRF-1 (LRF1_FU-2, LRF1_FU-3, LRF1_FU-4, LRF1_FU-5). MUX

determines the destination of write back according to the information in the field

“DEST” of the instruction, and finds out the memory location of the write back from

the field ”WB ADDR”. Table 3.2 shows the corresponding binary code and register

of DEST. Figure 3.8 illustrates the write-back step of programming process, and

Figure 3.9 illustrates the flow of programming process in ALU Unit.

Figure 3.8 Result write back of ALU

 23

Table 3.2 Look up table of the data write back destination of FU-1

LRF1_FU5111

LRF1_FU4110

LRF1_FU3101

LRF1_FU2100

LRF0_FU1011

SP010

SRF001

None000

DESTBinary Code

LRF1_FU5111

LRF1_FU4110

LRF1_FU3101

LRF1_FU2100

LRF0_FU1011

SP010

SRF001

None000

DESTBinary Code

 24

Find_WBDDR()
{
calculate the writeback
memory allocation ”K”
according to the
“WBADDR” field
}

Writeback(int K, int clusterx, int FUx)
{
according to the “DEST” field
000 do nothing
001 SRF[K] = result
010 SP[K] = result
011 LRF0_FU1[K] = result
100 LRF1_FU2[K] = result
101 LRF1_FU3[K] = result
110 LRF1_FU4[K] = result
111 LRF1_FU5[K] = result
}

＊WriteBack＊

K

4.4.

Find_data1ADDR()
{
calculate the memory
allocation ”K” according
to the “LRF0 RD ADDR”
field
}

Find_data1(int K, int clusterx, int FUx)
{
according to the “LRF0 Source” field
00 do nothing
01 data1 = SRF[K]
10 data1 = SP[K]
11 data1 = LRF[K]
}

＊DATA1＊

K

1.1.

Find_data2ADDR()
{
calculate the memory
allocation ”K” according
to the “LRF1 RD ADDR”
field
}

Find_data2(int K, int clusterx, int FUx)
{
according to the “LRF1 Source” field
00 do nothing
01 data2 = SRF[K]
10 data2 = SP[K]
11 data2 = LRF[K]
}

＊DATA2＊

K

2.2.

calculate
data1 data2

result

Figure 3.9 Block diagram of the ALU unit

MUL

MUL is a four-stage pipeline computation unit. The way MUL Unit deal with

instruction is the same as that of ALU. The only difference is that MUL Unit just

deal with one operation “multiple”. Therefore, only one-bit is required for “Opcode”

 25

filed in the instruction format and the instruction length of MUL Unit is three-bit less

than that of ALU Unit. Please not that the processing flow of ALU Unit in Figure

3.9 can be also applied to MUL Unit. However, in the third step, calculate, the

opcode must be referred to the corresponding operation shown in Table 3.4.

Table 3.4 Kernel ISA of MUL unit

MUL1

None0

OperationOPCODE

MUL1

None0

OperationOPCODE

DIV

 DIV is a six stage pipeline computation unit. Again, the way DIV Unit treats

instruction is the same as that of ALU. The only difference lies in the operations

executed by DIV Unit and ALU Unit. The operations which DIV Unit deal with

are ”division”, “remainder”, and “exponent”, respectively. Therefore, only two-bit

are required for “Opcode” field in instruction format expressing these three distinct

operations. It follows that the instruction length of DIV Unit is two bit less than that

of ALU Unit. The programming flow of ALU Unit in Figure 3.9 can then be applied

again to DIV Unit except that the reference opcode in the third step, calculate, must

take the reference of Table 3.5 to see the corresponding operation.

Table 3.5 Kernel ISA of DIV unit

SQR11

REM10

DIV01

None00

OperationOPCODE

SQR11

REM10

DIV01

None00

OperationOPCODE

 26

3.2.3 Memory hierarchy

 Each level of memory hierarchy is implemented using global array.

1.) Instruction memory: Vary with different instruction number and cluster

length. The size of instruction memory is defined as “instruction number

multiplies VLIW_length”.

2.) SRF, SP, LRF: Assume each SRF, SP, and LRF is a sixty-four 32-bit

register. It could vary with the demands of diverse media applications.

Assume that ADDR_BIT needs six bits and the memory hierarchy sizes of

SRF, SP, and LRF in the system are 64 registers, 64*Cluster_Number

registers, and 64*2*FU_Number*Cluster_Number registers, respectively.

Assume micro-architecture has 5-cluster, each cluster has four functional units,

and ADDR_BIT = 6. It follows that the applicable memory hierarchy size SRF, SP,

and LRF of in the application are 64 registers, 320 registers(64*5), and 2560

registers(64*2*4*5), respectively.

3.3 Mechanism of the micro-architecture simulator

 The performance simulation flow of media application in micro-architecture

simulator should be delineated in this section. In this paper, FFT is selected as the

simulation benchmark.

Simulation Flow is shown in Figure 3.1, where the design for the kernel of stream

programming mode, i. e., simulator, has been introduced in Section 3.2. The

application of Simulator can be roughly classified into two stages:

 27

1.) Determination of the simulation micro-architecture of the application. This

step contains a number of parameters setups and shall be explicitly answered in

Section 3.3.1.

2.) Plugging cluster instruction (stream) into simulator for simulating, and

performance estimation shall be clarified in Section 3.3.2.

3.3.1 Parameter definition

 Before the operation of the application to be simulated, the “micro-architecture

decision” step in Figure 2.3 has to be accomplished, a couple of parameters

establishing micro-architecture must be decided.

1.) The number of ALU, MUL, and DIV in a cluster: This step is to define the

micro-architecture inside a cluster. If defining a cluster contains three ALU Units,

two MUL Units, and one DIV Unit, then the cluster executing instruction would be

like Figure 3.10. These parameters will determine the instruction length of cluster

instruction, and the number of bit required for the ”DEST” field in the instruction

format. If the number of the functional unit in a cluster lies between one to five,

the DEST field only needs 3-bit to express the destination of result write back; If

the number of the functional unit ranges from 6 to 13, the DEST field shall need

4-bit to represent.

 28

Figure 3.10 Block diagram of a cluster

2.) Determine the number of cluster needed for micro-architecture.

3.) Determine sufficient number of SRF, SP, and LRF, and the number of bit of

the ”ADDR_BIT” which expresses memory location in the instruction format.

4.) According to several parameters defined above, we then can calculate the length

of ALU Unit, MUL Unit, and DIV Unit for dealing with instructions, and the length

of cluster instruction.

 ALU_BIT = 8 + 3*ADDR_BIT + DEST_BIT

 MUL_BIT = 5 + 3*ADDR_BIT + DEST_BIT

 DIV_BIT = 6 + 3*ADDR_BIT + DEST_BIT

 VLIW_length = ALU_BIT*ALU_Number + MUL_BIT*MUL_Number +

 DIV_BIT*DIV_Number

5.) Determine the consumed clock cycles executed by every functional unit,

“ALU_Time”, “MUL_Time”, and “DIV_Time”. The information is intended to

calculate CPU Time.

 29

3.3.2 Map application into dedicated binary stream programming codes

Based on the “micro-architecture decision” step in 3.3.1, ISA of the

micro-architecture and the instruction format of different functional unit can be

explicitly known. As can be seen in Figure 3.11, the function of traditional

compiler is replaced by hand-coding method, which scheduling the instructions of

the application according to the ISA into cluster instructions, then the cluster

instructions is mapping into stream programming codes that can be executed on the

stream processor according to the instruction format of the functional units.

Figure 3.11 Map the application into stream programming code

3.3.3 Simulation

 As can be seen in Figure 2.3, after accomplishing two steps of the

micro-architecture decision and mapping application into stream programming codes,

which may be plugged into simulator to simulate the performance executed on the

stream processor.

 30

1.) Load the cluster instructions saved in the files into instruction memory using

File I/O.

2.) According to the cluster number defined in Section 3.3.1, it would yield the

same number of cluster objects as ”cluster_number”. Every cluster object

represents one cluster in real micro-architecture. According to the numbers

defined by ALU, MUL, and DIV in Section 3.3.1, every cluster object will declare

the same numbers of ALU object, MUL object, and DIV object. These functional

unit objects declared by every cluster stand for the functional units processing the

instruction in the cluster of practical micro-architecture.

3.) Controller would fetch the cluster instructions in the instruction memory, and

then equally distribute these instructions to clusters for dealing with instruction.

4.) The function of Cluster is to divide the cluster instruction into instructions of the

same number as the number of functional unit in the cluster, and then submit these

instructions into ALU/MUL/DIV for executing.

For example, if a cluster has two ALU, two MUL, and one DIV, we would divide

a 137-bit cluster instruction into two 29-bit ALU instructions, two 26-bit MUL

instructions, and one 27-bit DIV instruction, and then respectively submit them to

five Functional Units for processing. Figure 3.4 clearly illustrates the functions of

Cluster.

5.) Estimate Performance:

CPU Time Every time when the function, calculate(), is used in ALU, MUL,

and DIV, we accumulate the number of these function units being executed, i.

e., ALU, MUL, and DIV, inside different cluster. According to ALU_Time,

MUL_Time, and DIV_Time defined in Section 3.3.1, how many clock cycles

every cluster will cost when it implement application could be estimated

 31

further. Comparing to the time consumed by the cluster, the desired CPU

Time for implementing application is just the maximum value being drawn.

Memory accessing times Every time when ALU, MUL, and DIV do data

fetch or data write back, memory hierarchy will be used. Simulator will

accumulate the number of accessing for every memory hierarchy level (could

be SRF, SP, or LRF). Application will show the employment information of

memory hierarchy after simulator done its work.

The amount of each Memory hierarchy level being used The information

about the required amount of memory in every level for simulating application

executed by stream processor will also show in the simulation results. This

information can greatly help determining how much memory hierarchy

capacity is required for the application.

3.4 Summary

 In this chapter, how to design an micro-architecture simulator, how to simulate

the process flow in stream processor of media application, and how to estimate its

performance has been introduced. In Chapter 4, actually the performance of the

media application, FFT, implemented in diverse hardware micro-architecture should

be simulated, and then the optimized hardware micro-architecture for FFT should be

selected according to the performance results.

 32

Chapter 4 Performance Evaluation

In this chapter, FFT [15] is taken as benchmark and translated as application into

stream programming model to evaluate the performance of the micro-architecture

defined.

4.1 Benchmark

Media applications contain abundant parallelism and are computationally

intensive. In recent decades, a wide variety of media applications have been

simulated, such as stereo depth extractor, video encoder/decoder, polygon render and

matrix QR decomposition. These media applications all bear a common

characteristic: containing a large amount of data-level parallelism. All of these

media applications will first be mapped into stream programming model. A stream

program organizes data as streams and computation as sequence of kernels.

 In the paper, 32-point Fast Fourier Transform (FFT) is selected for the

benchmark. FFT is a kind of fast Discrete Fourier Transform (DFT). The

formulation is shown in Equation 4.1. There are two reasons why FFT is selected as

benchmark in this thesis. The first reason is that FFT is the most often used part in

multimedia applications. The second reason is that in paper [15], FFT is taken as an

example that executing on the Imagine, and the result of that is also discussed in the

paper. So, it is meaningful to take FFT as the benchmark of micro-architecture

simulator.
1

0

.2 /

[] [] ,0 1
N

kn
N

n

j N
N

X k x n W k N

W e π

−

=

−

= ≤

=

∑ g ≤ −

Equation 4.1 Discrete fourier transform

 33

First, FFT algorism has to be mapped into stream programming model. By

casting media applications as stream programs, hardware is able to take advantage of

the abundant parallelism, computational intensity, and locality in media applications.

4.2 Experimental set-up

4.2.1 Parameter definition

 Before simulating FFT on simulator, a couple of parameters for determining

stream micro-architecture have to be defined. These parameters have been

introduced in Section 3.3.1.

1.) Number of function unit in a cluster: When the stream micro-architecture of

FFT is simulated, each cluster contains two ALU Units, two MUL Units, and

one DIV Unit. Since cluster only has five functional units, the ”DEST”

field requires only 3-bit for expressing.

2.) Cluster number: In this paper, we would pay our attention on 1-cluster,

2-cluster, 4-cluster, and 8-cluster micro-architecture to simulate the

performance on the stream processor.

3.) ADDR_BIT: In the simulation of FFT, 6-bit memory allocation expression is

being adopted. In other words, the available space for memory hierarchy is

SRF = 64 registers, SP = 64*Cluster_Number registers, and LRF =

640*Cluster_Number registers, respectively.

 34

4.) Based on the cluster number, functional unit number, DEST_BIT, and

ADDR_BIT defined above, the length of every functional unit could be

calculated for executing instruction, and the length of cluster instruction.,

where VLIW_Length = 137, ALU_BIT = 29, MUL_BIT = 26, and DIV_BIT

= 27.

5.) Determine the required clock cycles for functional unit executing operation.

6.) ALU_Time = 2 cycles

7.) MUL_Time = 4 cycles

8.) DIV_Time = 6 cycles

4.2.2 Translate FFT algorism into stream code

As the simulation flow illustrated in Figure 3.1 shows, the selected media

application is mapped into stream programming model. Kernel is simply the

simulator introduced in Section 3.4. Therefore, FFT is translated into stream code

for the convenience of simulating on simulator.

In this system, since there is no compiler to generate the corresponding stream

code for FFT, hand coding method is taken to generate stream code of FFT. Before

simulating the performance of FFT, the instruction of FFT should be created first.

Then, the instruction should be scheduled to generate the cluster instructions that are

executable by micro-architecture simulator. It should be noted that ALU unit needs

two clock cycles to work while MUL unit requires four clock cycles. Moreover, FFT

does not require the functional unit, DIV, and thus the function of DIV will not be

explained in this section. It follows that the instruction formats, which are

corresponding to cluster instructions, have to be translated into binary code. Finally,

save these Binary codes are saved in a file called ”FFT.dat”.

 35

4.2.3 Data loading from main memory

 In addition to determining those parameters mentioned in Section 3.3.1,

simulator will in advance load the necessary memory data into SRF, and LRF.

Since the purpose of stream micro-architecture is to decide how much space of

hardware will be utilized before the stream micro-architecture is implemented on

hardware, it could maximally exploit hardware to obtain the best performance

maximally exploit hardware. Therefore, the memories that data consumes when

performing FFT, i.e., the thirty-two x[n] in DFT, have been loaded on SRF in advance,

and a number of indispensable parameters during computation have been loaded on

LRF in advance, as well. As an example, during operation of FFT, there are many

mathematical formulae regarding sin and cosine being used. Thus, a couple of

corresponding values of sin and cosine will be loaded into LRF in advance.

Figure 4.1 shows the status of memory being utilized before the simulator

executes. x[0]~x[31] are copied to SRF through load command. The LRF0 of

MUL1 and MUL2 would also load some required parameters from memory,

respectively.

 36

Figure 4.1 Memory usage before simulation

 After the necessary parameters and loading for memory data are determined, the

simulator is ready to evaluate the performance.

 37

4.3 Result of performance evaluation

In this section, performance evaluation for the stream micro-architecture of

different cluster is discussed in detail.

4.3.1 1-cluster stream micro-architecture simulation

First of all, FFT instructions are scheduled as 1-cluster cluster instructions. There

are 135 cluster instructions in total. Then, the instruction format definition shown

in Figure 3.5 is referred to translate the cluster instructions into binary code, i.e.,

representation with 0’s and 1’s.

1-cluster micro-architecture (Figure 4.2): 1-cluster micro-architecture

contains two ALU Units, two MUL Units, one DIV Unit, and five data exchange

intermediate medium between functional units, SP, which are sixty-four 32bit

registers. There are one LRF, sixty-four 32-bit registers, and one SRF, sixty-four

32-bit registers, at the input of every functional unit. Therefore, we could know that

SRF is sixty-four 32-bit registers, SP is 64*1 = sixty-four 32-bit registers since there

is only one cluster in the entire system, and LRF is 64*2*5 = six hundred and forty

32-bit registers in total since there are five FUs in a cluster and one cluster in the

system.

 38

 Figure 4.2(a) Block diagram of 1-cluster micro-architecture simulator

Figure 4.2(b) Stream programming model of 1-cluster architecture

 The cluster instructions initially saved in file ”fft.dat” will be read into

Instruction memory through File I/O. The controller shown in Figure 4.3 will fetch

cluster instructions from instruction memory, and then submit all cluster instructions

to the only cluster for executing. The initial data x[0]~x[31] of FFT will be loaded

into SRF through memory. The initial input of Functional unit would be derived

from SRF. There are many intermediate computation results during the process from

x[0] to X[0], where X[0] is the output of FFT. If these data are used in the same

functional unit, these temporary results will be saved in LRF0 of the functional unit.

Otherwise, these intermediate calculation results will be saved in LRF1 or SP in other

 39

four functional units. Only the final calculation results, X[0]~X[31], will utilize SRF

to write them back to Memory. The intermediate calculation results could take

advantage of less time being consumed by LRF instead of memory to expedite whole

computation speed.

 Figure 4.3 shows the simulation results. It can be seen that executing one

hundred and thirty-five cluster instructions require ALU Unit being used for 257 times,

MUL Unit for ninety-six times, and DIV Unit for zero time since the operation of FFT

does not need division. The whole operation of FFT requires four hundred and

fort-nine clock cycles. In the meantime, SRF, SP, and LRF are accessed one hundred

and thirty-seven times, one hundred and sixty-three times, and seven hundred

fifty-nine times, respectively.

 Since this micro-architecture has only one cluster, the time needed to execute

FFT is the same as the clock cycles spent by Cluster 1. The ratio of this

micro-architecture using memory hierarchy is SRF: SP : LRF = 59 : 11 : 74.

 40

Figure 4.3 Simulation result of 1-cluster stream micro-architecture

4.3.2 2-cluster stream micro-architecture simulation

 First of all, FFT instructions are scheduled as 2-cluster cluster instructions.

2-cluster micro-architecture is like dual CPU system. The system can deal with

two cluster instructions in one clock. After scheduling, there are sixty-five cluster

instructions for cluster 1, and 65 cluster instructions for cluster 2. After two

clusters execute one hundred and thirty cluster instructions in total, the final results

could be obtained. After scheduling instructions, like 1-cluster simulator, these one

hundred and thirty cluster instructions have to be translated into binary codes that are

implementable on simulator according to the instruction format shown in Figure 3.5.

 41

2-cluster micro-architecture (Figure 4.4): There are two clusters in

micro-architecture. The functional unit in each cluster contains two ALU Units, two

MUL Units, one DIV Unit, and five data exchange intermediate medium between

functional units, SP, which are sixty-four 32bit registers. The definition is like that

of 1-cluster micro-architecture, which has been illustrated in Section 4.2.2. In

addition, there are also one LRF, sixty-four 32-bit registers, at the input of every

functional unit and one SRF, sixty-four 32-bit registers, in memory hierarchy.

Therefore, it could be known that SRF is 64 32-bit registers, SP is 64*2= 128 32-bit

registers since there are two clusters in the entire system, and LRF is 64*2*5*2 =

1280 32-bit registers in total since there are five FUs in a cluster and two clusters in

the system.

ALU ALU MUL MUL DIV Scratch Pad
LRF

MEM_D

SRF

Controller

Instruction
FILE

File
I/O

Instruction memory ALU ALU MUL MUL DIV Scratch Pad
LRF

Figure 4.4(a) Block diagram of 2-cluster micro-architecture simulator

 42

Figure 4.4(b) Stream programming model of 2-cluster architecture

The cluster instructions initially saved in file ”fft.dat” will be read into

instruction memory through File I/O. The controller shown in Figure 4.4 will fetch

cluster instructions from instruction memory, and then equally distribute them to

cluster 1 and cluster 2 for executing. The initial data x[0]~x[31] of FFT will be

loaded into SRF register through memory. The initial data source of functional unit

would be derived from SRF. However, there are many intermediate computation

results during the process from x[n] to X[n], where X[n] is the output of FFT. If this

result is the input of the functional unit of the same cluster, it will be written to

registers LRF or SP. If the calculation result is taken as input of functional unit of

the other cluster, then data would be submitted to the function unit of the other cluster

through SRF register. Data exchange between every instruction would be processed

in the same cluster as possible through faster LRF or SP. Only when data are

exchanged between clusters will we use the SRF Register with slower access speed.

 43

The final computation results X[0]~X[31], will be temporarily saved in SRF, and then

be written back to memory through memory store command. With this idea to

manipulate instructions could greatly save computation time.

 Figure 4.5 shows simulation results of 2-cluster stream micro-architecture.

Compared to 1-cluster micro-architecture in Section 4.3.1, it can be readily seen that

the performance has been greatly improved when we utilize two clusters for

processing the cluster instructions of FFT. As shown in figures, it could be

observed that cluster 1 deals with sixty-five cluster instructions, uses ALU Unit for

one hundred and twenty-seven times, MUL for twenty-two times, and never use DIV

Unit since the operation of FFT does not need DIV Unit to implement instruction.

The whole operation of FFT require one hundred and seventy-one clock cycles for

cluster 1 processing sixty-five cluster instructions. In the meantime, SRF, SP, and

LRF are accessed one eighty-one times, forty-eight times, and three hundred and

eighteen times, respectively.

As shown in the figure, it could be observed that cluster 2 deals with sixty-five

cluster instructions, uses ALU Unit for one hundred and twenty-nine times, MUL for

seventy-four times, and never uses DIV Unit since the operation of FFT does not need

DIV Unit to do instruction. The whole operation of FFT require two hundred and

seventy-seven clock cycles for cluster 2 processing sixty-five cluster instructions. In

the meantime, SRF, SP, and LRF have been accessed for one hundred and three times,

one hundred and twenty-three times, and three hundred and eighty-three times,

respectively.

 44

Figure 4.5 Simulation result of 2-cluster stream micro-architecture

The time spent by 2-cluster stream micro-architecture for executing FFT

instructions is just the maximal time spent by cluster1 and cluster 2, where the

CPU_Time of cluster-1 = 171 clock cycles, and CPU_Time of cluster-2 = 277 clock

cycles. Therefore, the CPU_Time spent in this system is 277 clock cycles (the

maximal value). In addition, it could be observed that the ratio of the whole

micro-architecture using memory hierarchy is SRF: SP : LRF = 62 : 6 : 116.

4.3.3 4-cluster stream micro-architecture simulation

First of all, schedule the FFT instructions as 4-cluster cluster instructions.

4-cluster micro-architecture is just like four-CPU system. The system can deal with

four cluster instructions in one clock. After scheduling, every cluster needs to deal

with forty-two cluster instructions. After four clusters execute one hundred and

 45

sixty-eight cluster instructions for total, it could be obtained the final results. After

scheduling instructions, just like 1-cluster simulator, these one hundred and thirty

cluster instructions have to be translated into binary codes that are implementable on

simulator according to the instruction format shown in Figure 3.5.

4-cluster micro-architecture (Figure 4.6): There are four clusters in

micro-architecture. The functional unit in each cluster contains two ALU Units, two

MUL Units, one DIV Unit, and five data exchange intermediate medium between

functional units, SP, which is sixty-four 32-bit registers. The definition is just like

that of 1-cluster micro-architecture, which has been illustrated in Section 4.2.2. In

addition, there are also one LRF, sixty-four 32-bit registers, in the input of every

functional unit and one SRF, sixty-four 32-bit registers, in memory hierarchy.

Therefore, it could be known that SRF is sixty-four 32-bit registers, SP is 64*4= 256

32-bit registers since there are two clusters in whole system, and LRF is 64*2*5*4 =

2560 32-bit registers for total since there are five FUs in a cluster and four clusters in

whole system.

 46

ALU ALU MUL MUL DIV Scratch Pad
LRF

MEM_D

SRF

Controller

Instruction memory

Instruction
FILE

File
I/O

ALU ALU MUL MUL DIV Scratch Pad
LRF

ALU ALU MUL MUL DIV Scratch Pad
LRF

ALU ALU MUL MUL DIV Scratch Pad
LRF

Figure 4.6(a) Block diagram of 4-cluster micro-architecture simulator

S
R
F

Cluster 1

ALU 1
ALU 2

MUL 1

MUL 2

DIV

SP 1

instruction

Cluster 2

ALU 1
ALU 2

MUL 1

MUL 2

DIV

SP 1

instruction

ALU 1
ALU 2

MUL 1

MUL 2

DIV

SP 1

instruction

Cluster 3

ALU 1
ALU 2

MUL 1

MUL 2

DIV

SP 1

instruction

controller

Cluster
instructions

Instruction
memory S

R
F

S
R
F

S
R
F

Cluster 4

Figure 4.6(b) Stream programming model of 4-cluster architecture

 47

The cluster instructions initially saved in file ”fft.dat” will be read into

instruction memory through File I/O. The controller shown in Figure 4.6 will fetch

cluster instructions from instruction memory, and then equally distribute them to

cluster 1, cluster 2, cluster 3, and cluster 4 for executing. The initial data x[0]~x[31]

of FFT will be loaded into SRF register through memory. The initial data source of

functional unit would be derived from SRF. However, there are many intermediate

computation results during the process from x[n] to X[n], where X[n] is the output of

FFT. If this result is the input of the functional unit of the same cluster, it will be

written to registers LRF or SP. If the calculation result is taken as input of functional

unit of the other cluster, then the data would be submitted to the function unit of the

other cluster through SRF register. Data exchange between every instruction would

be processed in the same cluster as possible through faster LRF or SP. Only when

data are exchanged between clusters, the SRF register with slower access speed will

be used. The final computation results X[0]~X[31], will be temporarily saved in

SRF, and then be written back to memory through memory store command. With

this idea to manipulate instructions could greatly save computation time.

Figure 4.7 shows the simulation results of 4-cluster stream micro-architecture.

Compared to 1-cluster micro-architecture in Section 4.3.1, it can be readily seen that

the performance has been greatly improved when four clusters are utilized for

processing the cluster instructions of FFT.

As shown in figures, it could be observes that cluster 1 deals with forty-two

cluster instructions, uses ALU Unit for sixty-nine times, MUL for three times, and

never use DIV Unit since the operation of FFT does not need DIV Unit to implement

 48

instruction. The whole operation of FFT require seventy-five clock cycles for

cluster-1 processing forty-two cluster instructions. In the meantime, SRF, SP, and

LRF are accessed for fifty-five times, fifteen times, and one hundred and forty-six

times, respectively.

As shown in figures, it could be observed that cluster 2 deals with forty-two

cluster instructions, uses ALU Unit for sixty-four times, MUL for nineteen times, and

never uses DIV Unit since the operation of FFT does not need DIV Unit to implement

instruction. The whole operation of FFT require one hundred and forty-two clock

cycles for cluster 2 processing forty-two cluster instructions. In the meantime, SRF,

SP, and LRF are accessed for sixty-three times, thirty-nine times, and one hundred and

forty-seven times, respectively.

As shown in figures, it could be observed that cluster 3 deals with forty-two

cluster instructions, uses ALU Unit for sixty-eight times, MUL for thirty-three times,

and never uses DIV Unit since the operation of FFT does not need DIV Unit to

implement instruction. The whole operation of FFT require one hundred and

thirty-four clock cycles for cluster 3 processing forty-two cluster instructions. In the

meantime, SRF, SP, and LRF are accessed for seventy times, fifty-seven times, and

one hundred and seventy-six times, respectively.

As shown in figures, it could be observed that cluster 4 deals with forty-two

cluster instructions, uses ALU Unit for fifty-six times, MUL for forty-one times, and

never uses DIV Unit since the operation of FFT does not need DIV Unit to implement

instruction. The whole operation of FFT requires one hundred and thirty-eight clock

cycles for cluster 4 processing forty-two cluster instructions. In the meantime, SRF,

SP, and LRF are accessed for sixty-one times, fifty-nine times, and one hundred and

seventy-one times, respectively.

 49

Figure 4.7 Simulation result of 4-cluster stream micro-architecture

The time spent by 4-cluster stream micro-architecture for executing FFT

instructions is just the maximal time spent by cluster 1, cluster 2, cluster 3, and cluster

4 where the CPU_Time of cluster 1 = 75 clock cycles, CPU_Time of cluster 2 = 102

clock cycles, CPU_Time of cluster 3 = 134 clock cycles, and CPU_Time of cluster 4

= 138 clock cycles. Therefore, the CPU_Time spent in this system is one hundred and

thirty-eight clock cycles (the maximal value). In addition, it could be observed that

the ratio of the whole micro-architecture using memory hierarchy is SRF: SP : LRF =

64 : 20 : 153.

 50

4.3.4 8-cluster stream micro-architecture simulation

First of all, schedule the FFT instructions as 8-cluster cluster instructions.

8-cluster micro-architecture is just like eight-CPU system. The system can deal

with eight cluster instructions in one clock. After scheduling, every cluster needs to

deal with thirty-four cluster instructions. After eight clusters execute two hundred

and seventy-two cluster instructions for total, the final results could be obtained.

After scheduling instructions, just like 1-cluster simulator, these two hundred and

seventy-two cluster instructions have to be translated into binary codes that are

implementable on simulator according to the instruction format shown in Figure 3.5.

8-cluster micro-architecture (Figure 4.8): There are eight clusters in

micro-architecture. The functional unit in each cluster contains two ALU Units, two

MUL Units, one DIV Unit, and five data exchange intermediate medium between

functional units, SP, which is sixty-four 32bit registers. The definition is just like

that of 1-cluster micro-architecture, which has been illustrated in Section 4.2.2. In

addition, there are also one LRF, sixty-four 32-bit registers, in the input of every

functional unit and one SRF, sixty-four 32-bit registers, in memory hierarchy.

Therefore, it could be known that SRF is sixty-four 32-bit registers, SP is 64*8 = 512

32-bit registers since there are two clusters in whole system, and LRF is 64*2*5*8 =

5120 32-bit registers for total since there are five FUs in a cluster and eight clusters

in whole system.

 51

ALU ALU MUL MUL DIV Scratch Pad
LRF

MEM_D

SRF

Controller

Instruction memory

Instruction
FILE

File
I/O

ALU ALU MUL MUL DIV Scratch Pad
LRF

ALU ALU MUL MUL DIV Scratch Pad
LRF

ALU ALU MUL MUL DIV Scratch Pad
LRF

ALU ALU MUL MUL DIV Scratch Pad
LRF

ALU ALU MUL MUL DIV Scratch Pad
LRF

ALU ALU MUL MUL DIV Scratch Pad
LRF

ALU ALU MUL MUL DIV Scratch Pad
LRF

Figure 4.8(a) Block diagram of 8-cluster micro-architecture simulator

 52

controller

Cluster
instructions

Instruction
memory

S
R

F

Clus
ter

 3

ALU 1

ALU 2

M
UL 1

M
UL 2

DIVins
tru

cti
on

SP
 3

S
R
F

Cluster 4

ALU 1 ALU 2

MUL 1

MUL 2

DIV

instruction
SP 4

S
R

F

Cluster 5

ALU 1

ALU 2

MUL 1

MUL 2DIV

instruction

SP 5

S
R

F

Cluster 6

ALU 1
ALU 2

M
UL 1

M
UL 2

DIV

instruction

S R F

SP 6

Cl
us

te
r 2

AL
U

1

AL
U

2

M
UL

 1

M
UL

 2
DI

V
SP

 2

in
str

uc
tio

n

Figure 4.8(b) Stream programming model of 8-cluster architecture

The cluster instructions initially saved in file ”fft.dat” will be read into

instruction memory through File I/O. The controller shown in Figure 4.8 will fetch

cluster instructions from instruction memory, and then equally distribute them to

cluster 1 to cluster 8 for executing. The initial data x[0]~x[31] of FFT will be loaded

into SRF register through memory. The initial data source of functional unit would

be derived from SRF. However, there are many intermediate computation results

 53

during the process from x[n] to X[n], where X[n] is the output of FFT. If this result

is the input of the functional unit of the same cluster, it will be written to registers

LRF or SP. If the calculation result is taken as input of functional unit of the other

cluster, then the data would be submitted to the function unit of the other cluster

through SRF register. Data exchange between every instruction would be processed

in the same cluster as possible through faster LRF or SP. Only when data are

exchanged between clusters, the SRF register with slower access speed will be used.

The final computation results X[0]~X[31], will be temporarily saved in SRF, and then

be written back to memory through memory store command. With this idea to

manipulate instructions could greatly save computation time.

Figure 4.9 shows the simulation results of 8-cluster stream micro-architecture.

Compared to the 4-cluster micro-architecture in Section 4.3.3, it can be seen that the

performance has been hardly improved when eight clusters are utilized for

processing the cluster instructions of FFT.

As shown in figures, it could be observed that cluster1 deals with thirty-four

cluster instructions, uses ALU Unit for thirty-five times, MUL for once, and never use

DIV Unit since the operation of FFT does not need DIV Unit to implement instruction.

The whole operation of FFT require thirty-seven clock cycles for cluster 1 processing

thirty-four cluster instructions. In the meantime, SRF, SP, and LRF are accessed for

forty times, ten times, and fifty-eight times, respectively.

 As shown in figures, it could be observed that cluster 2 deals with thirty-four

cluster instructions, uses ALU Unit for thirty-eight times, MUL for four times, and

never use DIV Unit since the operation of FFT does not need DIV Unit to implement

 54

instruction. The whole operation of FFT require forty-six clock cycles for cluster 2

processing thirty-four cluster instructions. In the meantime, SRF, SP, and LRF are

accessed for thirty-eight times, twenty-five times, and sixty-three times, respectively.

As shown in figures, it could be observed that cluster 3 deals with thirty-four

cluster instructions, uses ALU Unit for twenty-four times, MUL for eight times, and

never use DIV Unit since the operation of FFT does not need DIV Unit to implement

instruction. The whole operation of FFT require forty clock cycles for cluster 3

processing thirty-four cluster instructions. In the meantime, SRF, SP, and LRF are

accessed for forty times, five times, and fifty-one times, respectively.

As shown in figures, it could be observed that cluster 4 deals with thirty-four

cluster instructions, uses ALU Unit for twenty-eight times, MUL for nine times, and

never use DIV Unit since the operation of FFT does not need DIV Unit to implement

instruction. The whole operation of FFT require forty-six clock cycles for cluster4

processing thirty-four cluster instructions. In the meantime, SRF, SP, and LRF are

accessed for forty-one times, four times, and fifty-six times, respectively.

As shown in figures, it could be observed that cluster 5 deals with thirty-four

cluster instructions, uses ALU Unit for forty-two times, MUL for twenty-one times,

and never use DIV Unit since the operation of FFT does not need DIV Unit to

implement instruction. The whole operation of FFT require eighty-four clock cycles

for cluster 5 processing thirty-four cluster instructions. In the meantime, SRF, SP,

and LRF are accessed for fifty-five times, thirty-nine times, and ninety-one times,

respectively.

As shown in figures, it could be observed that cluster6 deals with thirty-four

cluster instructions, uses ALU Unit for thirty times, MUL for eighteen times, and

never use DIV Unit since the operation of FFT does not need DIV Unit to implement

 55

instruction. The whole operation of FFT require sixty-six clock cycles for cluster 6

processing thirty-four cluster instructions. In the meantime, SRF, SP, and LRF are

accessed for fifty-five times, thirty times, and sixty-nine times, respectively.

As shown in figures, it could be observed that cluster 7 deals with thirty-four

cluster instructions, uses ALU Unit for twenty-six times, MUL for sixteen times, and

never use DIV Unit since the operation of FFT does not need DIV Unit to implement

instruction. The whole operation of FFT require fifty-eight clock cycles for cluster 7

processing thirty-four cluster instructions. In the meantime, SRF, SP, and LRF are

accessed for forty-four times, seventeen times, and sixty-five times, respectively.

As shown in figures, it could be observed that cluster 8 deals with thirty-four

cluster instructions, uses ALU Unit for thirty-four times, MUL for nineteen times, and

never use DIV Unit since the operation of FFT does not need DIV Unit to implement

instruction. The whole operation of FFT require seventy-two clock cycles for

cluster-8 processing thirty-four cluster instructions. In the meantime, SRF, SP, and

LRF are accessed for seventy times, seventeen times, and seventy-two times,

respectively.

 56

Figure 4.9 Simulation result of 8-cluster stream micro-architecture

The time spent by 8-cluster stream micro-architecture for executing FFT

instructions is just the maximal time spent by cluster-1 ~ cluster-8, where the

CPU_Time of cluster 1 = 37clock cycles, CPU_Time of cluster 2 = 46 clock cycles,

CPU_Time of cluster 3 = 40 clock cycles, CPU_Time of cluster 4 = 46 clock cycles,

CPU_Time of cluster 5 = 84 clock cycles, CPU_Time of cluster 6 = 66 clock cycles,

CPU_Time of cluster 7 = 58 clock cycles, and CPU_Time of cluster 8 = 72 clock

cycles. Therefore, the CPU_Time spent in this system is eighty-four clock cycles (the

maximal value). In addition, it could be observed that the ratio of the whole

micro-architecture using memory hierarchy is SRF: SP : LRF = 64 : 25 : 212.

 57

4.4 Performance comparison

Performance of FFT on different architecture

0

100

200

300

400

500

600

700

800

1-cluster 2-cluster 4-cluster 8-cluster

cluster number

pe
rf

or
m

an
ce CPU Time

SRF
SP
LRF

Figure 4.10 Performance of FFT on different micro-architecture

 Figure 4.10 shows the analysis chart of performance evaluation in Section 4.3.

The x-axis represents different stream micro-architectures, including 1-cluster,

2-cluster, 4-cluster, and 8-cluster; while the y-axis denotes performance.

 The curve marked with diamond presents the necessary CPU_Time when FFT is

executed. As shown in the figure, it could be observed that when the cluster number

of the micro-architecture is increased from 1 to 2, the performance is doubled.

Compared 2-cluster with 4-cluster micro-architecture, the performance can still

double. However, in the case of 4-cluster compared to 8-cluster micro-architecture,

the improvement of performance can not be easily observe.

 58

The curve marked with square represents the required number of accessing SRF

when we execute FFT. It could be also viewed as the number of data exchange using

SRF. As shown in the figure, when the number of cluster is increased, for example

from 1-cluster to 2-cluster, or from 2-cluster to 4-cluster, the number of data exchange

using SRF increases slowly. However, when the number of cluster is increased from

4-cluster to 8-cluster, the number of data exchange using SRF obviously doubles.

 The curve marked with triangle denotes the number of accessing SP when we

execute FFT. It can also be viewed as the number of data exchange using SP. As

shown in the figure, there is no relationship between the number of cluster and the

number of SP used. Therefore, it could be concluded that regardless of how many

clusters we have, the number of data exchange using SP between functional units in

the same cluster is not many. Moreover, the functional unit will not vary with the

number of cluster either.

 The curve marked with “x” represents the number of accessing LRF when we

execute FFT, i.e., the number of data exchange using LRF. As shown in the figure,

with cluster increasing, the number of data exchange would decrease. When the

number of clusters is increased from one to four, the number of data exchange using

LRF linearly is decreased. However, in the case of increasing 4-cluster to 8-cluster,

the number of accessing LRF shows more drastic increase.

 Since the number of accessing memory hierarchy is fixed when executing FFT,

the number of SRF being used increases proportionally with the number of clusters,

which linearly increases from one to four. However, the number of consumed LRF

shows linear decrease. In addition, when increasing the number of cluster from 4 to

8, the number of accessing SRF suddenly doubles and the number of accessing LRF

 59

show noticeable decrease, which represents that data exchange between clusters, i.e.,

utilizing SRF to exchange data, becomes frequent. On the other hand, the number of

data exchange inside every cluster, i.e., using LRF to do data exchange, would

decrease.

Then let’s consider the variation of performance between different

micro-architectures. From 1-cluster, 2-cluster, to 4-cluster micro-architecture, the

performance all doubly increases. However, the performance only shows little

improvement from 4-cluster to 8-cluster micro-architecture. It cause huge data

exchange from high-bandwidth LRF to low-bandwidth SRF since the bandwidth of

LRF > SP > SRF. In this case, the advance in performance does not follow that in

expensive hardware.

Figure 4.11 analysis chart of memory usage, where x-axis represents different

level of memory hierarchy, while y-axis denotes memory usage in every level. The

demand for memory in every level does not hold close relationship between

performances.

The demands for SRF usage in 1-cluster, 2-cluster, 4-cluster, and 8-cluster

micro-architecture are roughly the same. It does not increase with the number of

clusters. The capacity of SP usage for four micro-architectures is quite different.

However, it does not positive relation with the number of cluster. The capacity of

LRF would linearly increase with the number of cluster. In the 3-tiered memory

hierarchy, only the demand of LRF holds positive relation with cluster number.

 60

0

50

100

150

200

250

SRF Usage SP Usage LRF Usage

Memory Capacity

1-Cluster
2-Cluster
4-Cluster
8-Cluster

Figure 4.11 Memory capacity of memory hierarchy

From the analysis above, it could be concluded that the 4-cluster

micro-architecture best suits the hardware micro-architecture of FFT-32 application.

As for the memory size required by the micro-architecture, Figure 4.12, memory

usage chart, should be referenced where SRF = 64 32-bit registers, SP = 20 32-bit

registers, and LRF = 212 32-bit registers.

4.5 Summary

In this thesis, an micro-architecture simulator is being designed, where the main

function is to simulate the operation of media application in stream processor and

estimate performance. FFT is taken as benchmark. Several micro-architectures of

different cluster number have been attempted, and then analyzed with varying number

of accessing memory in each level and CPU Time for comparison. It could be

observed that when the number of cluster increase from 1 to 2 and 2 to 4, CPU Time

 61

would double, and the number of SRF being used shows “linear” increase while the

that of LRF present linear decrease. However, when the cluster number of the

simulator goes from 4-cluster to 8-cluster, the progress of CPU Time is limited and

causes large amount of SRF being used, i.e., huge data exchange between clusters.

The design of stream processor is trying to have data calculated inside cluster as

possible. When necessary, data would be exchanged between clusters through SRF.

However, the simulation results of 8-cluster micro-architecture do not fit our

expectation.

 Therefore, 4-cluster micro-architecture has been chosen as the most suitable one

for executing FFT in stream processor. In addition, the usage of memory hierarchy

is SRF : SP : LRF = 64 : 20 : 212, respectively.

 62

Chapter 5 Conclusion and future work

 Since stream processor is a general-purpose solution for media application, for

diverse media applications, different hardware micro-architecture could be used.

However, due to the high cost of hardware implementation and lengthy computing

time, the idea of software simulation is suggested.

 First of all, the application to be simulated on the simulator needs to be

determined. Before simulation, one has to decide the specifications of the

micro-architecture, including number of cluster, number of functional unit in a cluster,

the capacity of each level of memory hierarchy. Then, ISA of the micro-architecture

can be explicitly known. Moreover, hand-coding method is used to replace the

functions of the complier. The function are to schedule application instructions into

cluster instructions according to the ISA of the micro-architecture and to translate

cluster instructions into binary stream programming codes according to the instruction

format of the functional units of ALU, MUL, and DIV. Stream programming codes

then can be plugged into simulator to simulate the executing of that on the stream

processor, and the simulation result can be generated. Stream programming code,

that simulates on different organization of the micro-architectures, results in different

simulation results. Simulation result of current organization of micro-architecture is

taken to compare with the result of other organizations of micro-architecture, and the

parameters will be adjusted till the optimal organization of the micro-architecture is

discovered including number of clusters, number of functional units in a cluster, and

capacity of each level of memory hierarchy. Simulation result also can be used to

ensure the correctness of the stream programming code generating by hand-coding

method.

 63

 With micro-architecture simulator, the optimal organization of micro-architecture

can be discovered. The simulation result of the application can be used by another

part of our project, “a low power ALU design”. Simulator can be used to determine

the number of clusters, and the capacity of the memory hierarchy needed in hardware

for executing particular media application. Then it can be implemented in hardware.

 In this thesis, media application is classified into two kernels cluster and

functional unit to simulate the operation of media application in hardware. The

biggest challenge is to map the operation of FFT media application into binary stream

codes that are implementable in simulator. First of all, the N value of FFT has to be

decided, where in this thesis we select N = 32 for FFT simulation, and then translate

mathematical formula into instruction. Furthermore, scheduling for the

micro-architecture of different cluster number is performed. Finally, cluster

instructions are translated into the implementable binary stream programming codes

in simulator. In the process of translating formulation into binary stream

programming codes, much time and effort are required. Therefore, one possible

future work to ameliorate this project is to develop a compiler to deal with scheduling

and to translate scheduled cluster instructions into binary code. By doing so, the

steps to generate binary stream codes would become more efficient.

 64

Bibliography

1. U. J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and B. Towles, “Stream

scheduling,” Concurrent VLSI Micro-architecture Tech Report 122, Stanford

University, Computer Systems Laboratory, March 2002.

2. Brucek Khailany, “The VLSI Implementation and Evaluation of Area- and

Energy-Efficient Streaming Media Processors,” PhD thesis, Stanford University,

June 2003.

3. Rixner, Scott, et al., “A Bandwidth-Efficient Micro-architecture for Media

Processing,” In Proceedings of the International Symposium on

Micromicro-architecture (December 1998), pp. 3-13.

4. Dally W. J. et al., "Stream processors programmability with efficiency," ACM

QUEUE, March 2004.

5. Khailany, Dally, Kapasi et al., “Imagine:Media Processing with Streams,” IEEE

Micro,March-April 2001, pp. 35-46

6. John D, Owens, Scott Rixner, Ujval J, Kapasi, Peter Mattson, Brian Towles, Ben

Serebrin, and William J. Dally "Media Processing Applications on the Imagine

Stream processor," Proceedings of the International Conference on Computer

Design, Sep. 2002.

7. B. Khailany et al., “Exploring the VLSI Scalability of Stream Processors,” Proc,

9th Int’l Symp, High-Performance Computer Micro-architecture, IEEE CS Press,

2003, pp. 153-164.

8. S. Rixner, “Stream Processor Micro-architecture,” Kluwer Academic Publishers,

Boston, MA, 2001.

 65

9. Owens JD, Dally WJ, Kapasi UJ, Rixner S, Mattson P, Mowery B, “Polygon

rendering on a stream micro-architecture,” In: Proc, of the

Eurographics/SIGGRAPH Workshop on Graphics Hardware, 2000. 23~32.

10. J. Draper, et al, "The Micro-architecture of the DIVA Processing-in-Memory

Chip," to appear at International Conference on Supercomputing, June 2002.

11. Huang, Andrew, “Processor-In-Memory System Simulator,” MIT AI Lab

Abstracts of Research Projects, Fall 2000.

12. U.J, Kapasi et al., "Programmable Stream Processors," Computer, August 2003,

pp. 54-62

13. William Dally et al, "Stream Processors: Programmability with Efficiency," ACM

Queue, March 2004, pp. 52-62.

14. Ujval J, Kapasi, William J, Dally, Scott Rixner, John D, Owens, and Brucek

Khailany, "The Imagine Stream Processor," Proceedings of the International

Conference on Computer Design, Sep. 2002.

15. http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html

16. K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, M. Horowitz, “Smart

Memories: A Modular Reconfigurable Micro-architecture,” Computer

Micro-architecture, 2000, Proceedings of the 27th International Symposium on

2000, Pages161-171.

 66

http://csdl.computer.org/comp/mags/co/2003/08/r8054abs.htm
http://csdl.computer.org/comp/mags/co/2003/08/r8toc.htm
http://csdl.computer.org/comp/mags/co/2003/08/r8toc.htm
ftp://cva.stanford.edu/pub/publications/spqueue.pdf
http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html

	ｔｈｅｓｉｓ（１）.pdf
	ｔｈｅｓｉｓ（２）.pdf
	摘要
	Abstract
	 誌 謝
	 List of Figures
	 List of Tables
	Chapter 1 Introduction
	Chapter 2 Background
	2.1 Stream processing
	2.1.1 Stream programming model
	2.1.2 Stream micro-architecture
	2.1.3 An example of stream processor: Imagine

	2.2 Current usage of micro-architecture simulator
	2.3 The importance of the micro-architecture simulator
	Chapter 3 Micro-architecture simulator
	3.1 Organization of the micro-architecture simulator
	3.2 Design methodology of the micro-architecture simulator
	3.2.1 Cluster
	3.2.2 ALU, MUL, DIV
	3.2.3 Memory hierarchy

	3.3 Mechanism of the micro-architecture simulator
	3.3.1 Parameter definition
	3.3.2 Map application into dedicated binary stream programming codes
	3.3.3 Simulation

	3.4 Summary

	Chapter 4 Performance Evaluation
	4.1 Benchmark
	4.2 Experimental set-up
	4.2.1 Parameter definition
	4.2.2 Translate FFT algorism into stream code
	4.2.3 Data loading from main memory

	4.3 Result of performance evaluation
	4.3.1 1-cluster stream micro-architecture simulation
	4.3.2 2-cluster stream micro-architecture simulation
	4.3.3 4-cluster stream micro-architecture simulation
	4.3.4 8-cluster stream micro-architecture simulation

	4.4 Performance comparison
	4.5 Summary

	Chapter 5 Conclusion and future work
	Bibliography

