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摘要 

 

 Stanford 針對多媒體應用程式發展出一個可程式化的處理器 Imagine。 由

於可程式化的 Stream Processor 針對不同的應用程式所適用的硬體架構會有所不

同，利用硬體實現各種不同的架構並且比較執行的效能，不但耗費很長的時間，

硬體製作的成本也非常的昂貴。 根據不同的多媒體應用程式，如何決定可程式

化 Stream Processor 的硬體架構，是一大難題。 然而現今的硬體加速電路，大

部分都是針對特定的用途而設計，其硬體架構的設計是針對特定的應用程式，才

能達到很好的執行效能。 在本論文中，將提出一個架構的模擬器，模擬多媒體

應用程式在不同架構上的執行效能，並分析硬體的使用率以及記憶體使用的容

量。 比較應用程式在各種架構上的執行效率，挑選出最適合的硬體架構。 決

定最佳化的硬體架構之後，可程式化的 Stream Processor 再用硬體去實現。 各

式各樣的多媒體應用程式，利用架構模擬器找出最佳化的硬體架構，再搭配可程

式化的 Stream Processor 將硬體實現，不但省下了硬體製作成本；速度相較於使

用硬體實現來測試也加快許多。 
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Abstract 

   A programmable processor, Imagine, has been developed especially for 

media applications by Stanford. Since a programmable Stream Processor would 

build various hardware micro-architectures for diverse media applications, the cost 

of time and money could be huge to implement various micro-architectures on 

hardware and then compare their efficiencies. Therefore, how to construct suitable 

micro-architectures of programmable Stream Processor for diverse media 

applications is a great challenge. Nowadays, most of the hardware accelerators are 

designed for dedicated application. Only when the hardware micro-architecture is 

carefully designed for particular media application could the stream processor 

achieves exceptional performance. For the purpose of resolving this dilemma, in 

this paper, we develop the micro-architecture simulator for stream processor. The 

micro-architecture simulator is expected to simulate the performance of media 

application executed on various micro-architectures, and then to analyze the utility 
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rate of hardware and consumption of memory. By comparing the performance of 

media application executed on diverse micro-architectures, the optimized hardware 

micro-architecture can be determined and then the programmable Stream Processor 

can be implemented on hardware. By utilizing micro-architecture simulator to 

settle down optimized problems and then implement hardware with programmable 

Stream Processor for diverse applications, this idea saves not only huge cost of 

money on hardware, but also plenty of time for testing. 
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Chapter 1 Introduction 

 Media applications are characterized by large available parallelism [3], little data 

reuse and a high computation of memory access ratio [1].  While these 

characteristics are poorly matched to conventional micro processor 

micro-architectures, recent research has proposed using streaming micro-architecture 

by fit modern VLSI technology with lots of ALUs on a single chip with hierarchical 

communication bandwidth design to provide a leap in media applications.  Relative 

topics of recent research are Image Stream Processor [12], Smart Memories [16], and 

Processing-In-Memory [10].   

 In order to achieve computation rates, current media processor often uses 

special-purpose [2], fixed-function hardware tailored to one specific application.  

However, special-purpose solutions lack of the flexibility to work effectively on a 

wide application space.  The demand for flexibility in media processing motivates 

the use of programmable processors [2].  To bridge the gap between inflexible 

special special-purpose solutions and current programmable micro-architectures that 

cannot meet the computational demands of media-processing applications, stream 

micro-architecture developed by Stanford University has been chosen [3].  Steam 

processors directly exploit the parallelism and locality exposed by the stream 

programming model [4] to achieve high performance. 

 Since, various stream micro-architecture with different ALU clusters are suitable 

for media applications, mapping multimedia applications to adequate stream 

programming model becomes essential.  However, the organization of stream model 

will be optimized for different multimedia applications.  The number of ALUs in a 

cluster and the number of clusters in the stream micro-architecture may be different, 
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according to the algorithm of different media applications.  Thus, two solutions 

existed to find the number of hardware needed for dedicated application.  One 

solution is to use hardware implementation of different stream micro-architectures to 

evaluate performance is expensive and time consuming.  The other is a software 

solution, which simulates performance on different virtual stream micro-architectures 

and compares the performance between the architectures.  By doing so, the best 

hardware organization, which has to fully optimize the usage of the hardware 

resources and reach better performance, is obtained.  The second solution,, 

“micro-architecture simulator”, is suitable for the demand needed. 

 This project has been shared by a team of three graduate students.  The major 

tasks are low power ALU cluster design, memory design and simulator design.  In 

this thesis, a micro-architecture simulator will be implemented.  Based on different 

organizations, performance will be evaluated including CPU time, total memory 

access time, time needed to access each level of the memory hierarchy, and the real 

memory in use.  Performance of conventional micro-architecture and stream 

micro-architecture will be compared to prove the improvement of the stream 

micro-architecture. 

Before the media application being simulated in micro-architecture simulator, the 

“micro-architecture decision” procedure has to be done.  The micro-architecture to 

be simulated is decided in the micro-architecture decision step, including cluster 

numbers, the number of function units in a cluster, and capacity of each level memory 

hierarchy.  After parameters that may affect the micro-architecture determined, ISA 

of the micro-architecture can obviously be known.  Based on the ISA of the 

micro-architecture and the instruction format of each function unit that may be 

included in a cluster, the selected media application is mapped into binary stream 
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programming codes that can be executed in a stream processor.  After the 

micro-architecture is decided, and dedicated stream programming codes are generated, 

they are put into simulator for simulation. Then, a simulation result will be generated.  

The simulation result of one organization of stream micro-architecture is compared 

with the result of other organization of micro-architecture, and parameters that may 

affect the organization of the micro-architecture is adjusted.  The operation of 

simulation and adjustment is continued till the optimal performance is discovered.  

Simulation result, on the other hand, can be taken to make sure the correctness of the 

hand-coding binary stream programming codes.  With micro-architecture simulator, 

the optimized micro-architecture for dedicated media application can be discovered, 

and can be implemented in hardware. 

With micro-architecture simulator, media application is simulated on the 

simulator to evaluate performance of different stream micro-architecture.  In this 

thesis, FFT (Fast Fourier Transform) is chosen as benchmark and the 

micro-architecture of a cluster is decided, the only variable between different 

organizations of stream micro-architecture is cluster number.  FFT is simulated on 

different cluster number’s stream micro-architecture, and performance of each 

organization of stream micro-architecture is compared, including CPU time, memory 

access times of each level memory hierarchy.  For performance and memory 

accessing benefit, 4-cluster stream micro-architecture is chosen as the best 

micro-architecture for FFT.  

The remainder of this thesis is organized as following: Chapter 2 presents 

background information on media processors, micro-architecture that enables high 

performance on media applications with fully-programmable processors, and the 

design of current micro-architecture simulators.  In Chapter 3, the design 
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methodology is presented.  In Chapter 4, experimental results are provided and a 

comparison to conventional micro-architecture is presented.  Finally, future work 

and conclusions are presented in Chapter 5, Chapter 6. 
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Chapter 2 Background 

Media applications and media processors have recently become an active and 

important area of research.  Section 1 describes stream programming model, stream 

micro-architecture, and an example of stream processor Imagine.  Section 2 shows 

current micro-architecture simulator’s implementation and design methodology.  

Section 3 highlights the motivation of designing software micro-architecture simulator 

for stream processor. 

2.1 Stream processing 

Stream processors are fully programmable processors which aimed at media 

applications.  Media applications, including signal processing, image and video 

processing, and graphics, are well suited to a stream processor like Imagine [5] 

because they possess four key attributes [6]: 

 

High Computation Rate:  Many media applications require billions to tens of 

billions of arithmetic operations per second to achieve real-time performance. 

High Computation to Memory Ratio: Structuring media applications as stream 

programs exposes their locality, allowing implementations to minimize global 

memory usage.  At the result stream programs tend to achieve a high 

computation to memory ratio: most media applications perform tens to hundreds 

of arithmetic operations for each necessary memory reference. 

Produce-Consumer Locality with Little Global Data Reuse:  The typical data 

reference pattern in media applications requires a single read and write per global 

data element.  Little global reuse means that traditional caches are largely 
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ineffective in these applications.  Intermediate results are produced at the end of 

a computation stage and consumed at the beginning of the next stage.  

Parallelism: Media applications exhibit instruction-level, data-level, and 

task-level parallelism. 

 

Media applications operate on streams of low-precision data, have abundant 

data-parallelism, rarely reuse global data, and perform tens to hundreds of operations 

per global data reference.  These stream programs map easily and efficiently to the 

data bandwidth hierarchy of the stream micro-architecture.  The data parallelism 

inherited in media applications allows a single instruction to control multiple 

arithmetic units and allows intermediate data to be localized to small clusters of units, 

significantly reducing communication demands.  Data from one processing kernel 

are forwarded to the next kernel, which localized the data communication and rarely 

reused global data.  Furthermore, the computation demands of these applications can 

be satisfied by keeping intermediate data close to the arithmetic units, rather in 

memory. 

 

2.1.1 Stream programming model 

The stream processor executes applications that have been mapped to the stream 

programming model [7].  This programming model organizes the computation in an 

application into a sequence of arithmetic kernels, and organizes the data-flow into a 

series of data streams.  The data streams are ordered, finite-length sequences of data 

orders of an arbitrary type (although all the records in one stream are of the same 

type).  The inputs and outputs to kernels are data streams.  Streams passing among 
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multiple computation kernels form a stream program.  The only non-local data a 

kernel can reference at any time are the current head elements of its input streams and 

the current tail elements of its output streams.  In the stream programming model, 

locality and concurrency are exposed both within a kernel and between kernels. 

In Figure 2.1, shows the mapping of radix-2 FFT [7] to the stream model.  Each 

oval in the figure corresponds to the execution of a kernel, while each arrow 

represents a data stream transfer.  In the stream implementation, kernel requires two 

input streams and one output stream.  The output of the last kernel is in bit-reversed 

order, so it must be reordered in the memory.  In FFT only data elements passed 

between kernels need to access the SRF, and only the initial input data and final 

output data need to access the global memory space in DRAM. 

 

 

Figure 2.1 Stream and kernel representation 

 

 Applications that are more involved than the FFT example map to the stream 

model in a similar fashion.  Examples can be found in other references: Khailany et 

al. discuss the mapping of stereo depth extractor [5]; Rixner discusses the mapping of 

an MPEG-2 encoder [8]; and Owens et al. discuss the mapping of a polygon rendering 

pipeline [9]. 

 The stream model is important because it organizes an application to expose the 

locality and parallelism information that is inherent in the application. 
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2.1.2 Stream micro-architecture 

The stream processor is a hardware micro-architecture designed to implement the 

stream programming model.  Imagine, designed by computer systems laboratory of 

Stanford University is a stream processor which block diagram is shown in Figure 2.2 

[14].  The core of Imagine is a 128 KB stream register file (SRF).  The SRF is 

connected to 8 SIMD-controlled VLIW-like arithmetic clusters controlled by a 

microcontroller, a memory system interface to off-chip DRAM, and a network 

interface to connect to other nodes of a multi-Image system.  All modules are 

controlled by an on-chip stream controller under the direction of an external host 

processor. 

 

 

Figure 2.2 Stream processor block diagram 
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The working set of streams is located in the SRF.  Stream loads and stores occur 

between the memory system and the SRF; network sends and receives occur between 

the network interface and the SRF.  The SRF also provides the stream inputs to 

kernels and stores their stream outputs. 

 The kernels are executed in the 8 arithmetic clusters.  Each cluster contains 

several functional units (which can exploit instruction-level parallelism) fed by 

distributed local register files.  The 8 clusters (which can exploit data-level 

parallelism) are controlled by the microcontroller, which supplies the same instruction 

stream to each cluster.  On Imagine, streams are implemented as contiguous blocks 

of memory in the SRF or in off-chip memory.  Kernels are implemented as programs 

run on the arithmetic clusters. 

 The three-level memory bandwidth hierarchy characteristic of media application 

behavior consists of the memory system, the SRF, and the local register files within 

the clusters 

2.1.3 An example of stream processor: Imagine 

Imagine is a programmable stream processor, which is a general purpose 

processor, and is the hardware implementation of the stream model.  The concept of 

this micro-architecture is based on stream.  Imagine is organized to take advantage 

of the locality and parallelism inherent in media applications.  A block diagram of 

the micro-architecture is shown in Figure 2.2.  

Imagine contains 48 ALUs [12], and a unique three level memory hierarchy 

design to keep the functional units saturated during stream processing.  The 

three-tiered data bandwidth hierarchy consists of a stream memory system (2 GB/s), a 

global stream register file (32 GB/s), and a set of local distributed register files located 
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near the arithmetic units (544 GB/s).  The 128 KB SRF at the center of the 

bandwidth hierarchy not only provides intermediate storage for data streams but also 

enables additional stream clients to be modularly connected to Imagine, such as 

streaming network interface.  A single microcontroller broadcasts cluster instructions 

in SIMD fashion to all of the arithmetic clusters.  Each of Imagine’s 8 arithmetic 

clusters consists of 6 functional units containing 3 adders, 2 multipliers, and a 

divide/square root.  These units are controlled by statically scheduled cluster 

instructions issued by the microcontroller. 

2.2 Current usage of micro-architecture simulator 

 In some relevant science projects to PIM (Processor In Memory) [10], there 

always exist some cases utilizing micro-architecture simulator.  For example, in the 

DIVA (Data IntensiVe Architecture) project [11], it employed ”DIVA simulator” to 

simulate the operation of DIVA.  In addition, the PIM project IRAM also makes use 

of ” IRAM Simulator” to simulate the performance of iRAM [11].  

Since Stream Processor also belongs to PIM techniques, our goal becomes to 

discover the optimized stream micro-architecture for a specific media application 

without using the expensive hardware equipment.  The micro-architecture simulator 

is designed for stream processor intended to simulate the performance of diverse 

media application executed in stream processor. 

 The project has been divided into three parts in our team, including a low power 

ALU cluster, memory management unit and address translation unit and the simulator 

design. The detail micro-architecture of the cluster has been decided during a low 

power cluster design, by surveying papers and considering the performance and 

hardware usage. As for simulation, it has been designed for the performance 
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evaluation of different hardware organizations. The micro-architecture in a cluster 

being evaluated is always the same, the only variable is the number of clusters. With 

micro-architecture simulator, the number of clusters and the memory hierarchy 

needed for dedicated micro-architecture can be easily decided, and the hardware 

processor can be implemented.  

 

2.3 The importance of the micro-architecture simulator 

 

Stream micro-architecture could be the main trend of media processor in the 

future!  Different from the hardware design of the special-purpose processor, which 

is designed for the algorithm of specific application and thus can achieve the best 

performance only when executing its favored application, the stream processor not 

only possesses the advantage of the special-purpose processor to achieve very good 

performance for specified application, it but also has great flexibility to adjust 

hardware micro-architecture for arbitrary algorithm of application (the number of 

computation units and the size of on-chip memory) and thus can best utilize the 

hardware resources for desired application. 

 

Since the stream micro-architecture for diverse media application is quite 

different, how to discover the optimized micro-architecture for desired application is 

definitely a big question!  One intuitive way is to utilize hardware to implement 

every possible design and then we can practically measure its performance.  

However, it seems to be a very inefficient way to find optimized design since the cost 

of the hardware implementation could be very expensive!  In addition, hardware 
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implementation may take a lot of time.  Compared to hardware implementation, 

software simulation would be much faster, more efficient, and cheaper to achieve the 

same purpose.  Inspired from this idea, here we present the micro-architecture 

simulator! 

Since the e-Home project has been divided into three main parts, including 

hardware design of an ALU cluster, simulator design for hardware performance 

evaluation, and low-power technique needed on the whole stream micro-architecture.  

In this thesis, the part of simulator design has been focused, it is helpful to the 

hardware decision of the stream processor. 

As shown in Figure 2.3, after micro-architecture decision step, application can be 

mapped into binary stream programming codes according to the ISA and instruction 

format of different functional units.  Stream programming codes can be put into 

simulator to simulate the operation of which in stream processors, then the simulation 

result will be generated, which can be used to compare to the simulation result of 

other organization of micro-architectures and adjust the parameters that will affect the  

organization of stream micro-architecture till the optimal organization of 

micro-architecture is discovered.  On the other hand, simulation result can also be 

used to make sure the correctness of the stream programming codes.  
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Figure 2.3 Contribution of the simulator 

 

With micro-architecture simulator, the performance of the application on diverse 

stream micro-architectures can be easily simulated.  The micro-architecture of 

different organizations of clusters and functional units will be simulated on the 

micro-architecture simulator.  The simulation results will show:   

1.) How many functional units (ALU, MUL, DIV) in every cluster are used.  

2.) How many memory hierarchies in every level in every cluster are used.  

3.) How much CPU time it will cost when executing application.  

4.) The number of memory hierarchy in every level being used.  

 

Then, the optimized hardware micro-architecture for specific application can be 

discovered based on these simulation results.  The micro-architecture will efficiently 

lower the performance and will not increase too many data exchange of 
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low-bandwidth memory.  The determination of the optimized hardware 

micro-architecture includes:  number of clusters, number of functional units in a 

cluster, the size of memory hierarchy in every level. 

Since the test-bench selected in this thesis is “FFT”, the micro-architecture 

needed to process this application is not that large enough.  Time needed to access 

each level of memory hierarchy (SRF, SP, LRF) is almost the same, so the 

performance evaluated in this thesis depends only on the access time of each 

functional unit.  However, micro-architecture simulator might be used for many 

other large applications in the future, time needed to access each level of memory 

hierarchy might be different.  In that case, time to access each level of memory 

hierarchy have to be taken into consideration.  The micro-architecture simulator 

designed in this thesis also has the function of evaluating the performance which takes 

memory access time into account, but the function is not suitable for the FFT’s 

micro-architecture. 

Up to now, the stream micro-architecture has been widely explored to many 

media applications and explicitly demonstrated in many references, such as 3-D 

polygon rendering [9], MPEG-2 encoding [12], stereo depth extraction [13], and fast 

Fourier transform (FFT).  In this paper, we shall choose FFT [14] as the benchmark 

to simulate the performance for specific hardware micro-architecture and then try to 

determine the optimized micro-architecture from these simulation data. 

The micro-architecture design of the Simulator shall be explicitly depicted in 

Chapter 3.  The demonstration of FFT on simulator and how we discover the 

optimized micro-architecture for FFT will be drawn in Chapter 4. 
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Chapter 3 Micro-architecture simulator 

 Figure 3.1 illustrates the whole simulation flow.  In the Section 3.1, we shall 

introduce the whole micro-architecture of the simulator and the included components, 

and explain how simulator works.  In Section 3.2, we shall detail the way to design 

the components inside the simulator, including cluster, functional unit, and memory 

hierarchy.  In Section 3.3, we shall introduce how to utilize simulator to simulate 

hardware performance, that is, the whole simulation flow illustrated in figure above.  

The actual simulation performance shall be presented in Chapter 4. 

 

Media application

Stream programming model

kernels streams

Cluster

ALU MUL DIV

Cluster
instructions

Stream 
programming 

codes

simulator DATA

Architecture design

Cluster
number

FU
instruction

format

FU
number

Simulation
result

 

Figure 3.1 Simulation flow 
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3.1 Organization of the micro-architecture simulator 

 Figure 3.2 shows the block diagram of the simulator, which is a component of 

the simulation flow shown in Figure 3.1.  Simulator is composed of a controller, 

many arithmetic clusters where the number of the clusters will differ from diverse 

application, three-tiered memory hierarchy (SRF, SP, and LRF), and instruction 

memory.  It should be noted that the number of the components in the simulator is 

not fixed.  It would depend on the demands of diverse media applications. 

 

Figure 3.2 Block diagram of the micro-architecture simulator 

 

 Micro-architecture simulator is used to simulate the operation of the stream 

processor and the performance of the hardware micro-architecture.  As shown in the 

flow of Figure 3.1, first, a multimedia application and then its hardware 

micro-architecture, including the number hardware and the memory size have to be 
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chosen.  Then, this application is translated into the stream programming model, 

including kernel and stream, respectively.  The cluster and its functional unit in 

Figure 3.2 are just the kernel for processing stream.  In addition, the data being 

processed must be transformed into cluster instructions (stream) and then translate the 

cluster instructions into binary expression according to the instruction format defined 

by hardware. 

 Cluster instructions will be copied to instruction memory through File I/O. 

Controller will fetch instruction from instruction memory and equally distribute these 

cluster instructions to cluster for executing.  Three kinds of registers, SRF, SP, and 

LRF, are used to save temporary results during computation process. 

3.2 Design methodology of the micro-architecture simulator 

In this section, the description on how to design the component of simulator, 

including Cluster, and functional unit (ALU, MUL, DIV) is presented. 

3.2.1 Cluster 

 Figure 3.3 shows the block diagram of cluster. Cluster includes two ALU units, 

two MUL units, one DIV unit, and one 64 32-bit register, which is used to save data 

exchange between different units in the same cluster.  Please note the size of SP 

register could vary according to the demands of diverse applications. 

 

 

Figure 3.3 Micro-architecture cluster block diagram 
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 The main function of the component Cluster is to divide the received cluster 

instruction into multiple instructions that are processable by function units according 

to the number of functional units.  As shown in Figure 3.4, cluster receives 137-bit 

cluster instruction.  According to micro-architecture of the cluster, cluster instruction 

is divided into two 29-bit instructions for ALU, two 26-bit instructions for MUL, one 

27-bit instruction for DIV. 

 

 

Figure 3.4 Processing cluster instruction in the arithmetic cluster 
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3.2.2 ALU, MUL, DIV 

 In this section, how to design the functional unit shall be depicted.  Since the 

main spirits for designing ALU, MUL, and DIV are basically the same, we shall focus 

on ALU to illustrate how to design functional unit.  The only difference between 

these three components is the bit of “Opcode” needed for expressing the operation in 

the instruction format. 

 

ALU 

ALU is a two stage pipeline computation unit.  Figure 3.5 shows the instruction 

format of ALU.  The shadowed part in figure is Opcode field, which expresses the 

executing operation for instruction.  Opcode also makes the biggest difference 

between these three functional units: ALU, MUL, and DIV.  Please note that ALU 

requires more diverse operations.  It demands 4-bits to express. 

 

 

Figure 3.5 ALU instruction format 

 

  Figure 3.6 is the detail view of the functional unit and its associated register files. 

Roughly, it could be cataloged into three parts: data read, calculate, and write back. 

 

 19



READ

Functional 
Unit

MUX MUX

MUX

L
R
F
0

L
R
F
1

SP
SRF SRF

SP

MUXFU-1

FU-2
FU-3

FU-4
FU-5

SPLRF
LRF0_FU-1

LRF1_FU-2, 
LRF1_FU-3, 
LRF1_FU-4, 
LRF1_FU-5

WRITE

 
Figure 3.6 Detail of the functional unit 

 

Data Read As shown in Figure 3.6, the two MUXs in data input will judge the 

source data from the field, ”LRF0 Source”, in the instruction format.  Table 3.1 

shows binary code and the corresponding source data.  The origins of source data are 

SRF, SP, and LRF, respectively.  The desired data1 can be found in the memory 

location represented by ”LRF0 RD ADDR”.  The way to find data2 is basically the 

same as data1.  The only difference is their reference fields.  Acquiring data2 needs 

to take references of the information of ”LRF1 Source” and ”LRF1 RD ADDR”.  

Figure3.7 illustrates the program flow of how ALU in the simulator obtains two data 

resources, data1 and data2, according to the information of instruction. 
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LRF 0 
Source

LRF 1 
Source

LRF 0 
RD ADDR

LRF 1 
RD ADDR DEST WB

ADDR OPCODE

29 27 21 19 13 10 4 0

Find_data1ADDR()
{
calculate the memory 
allocation ”K” according to the 
“LRF0 RD ADDR” field
}

Find_data1(int K, int clusterx, int FUx)
{
according to the “LRF0 Source” field 
00 do nothing
01 data1 = SRF[K]
10 data1 = SP[K]
11 data1 = LRF[K]
}

K

DATA1

Find_data2ADDR()
{
calculate the memory 
allocation ”K” according to the 
“LRF1 RD ADDR” field
}

Find_data2(int K, int clusterx, int FUx)
{
according to the “LRF1 Source” field 
00 do nothing
01 data2 = SRF[K]
10 data2 = SP[K]
11 data2 = LRF[K]
}

K

DATA2

 

Figure 3.7 Finding source data of ALU 
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Table 3.1 Lookup table of the data source 

SP10

LRF11

SRF01

None00

SourceBinary Code

SP10

LRF11

SRF01

None00

SourceBinary Code

 

Calculate  The information describing what kind of operations is required to be 

execute by every instruction will be implicitly included in the final field “Opcode” of 

instruction.  Different binary codes represent distinct operations.  Table 3.3 shows 

the lookup table for opcodes and corresponding operations.  Matching the instruction 

with those bits of opcode filed in the instruction format would know what kind of 

operation is required for specific instruction. 

   

Table 3.3 Kernel ISA of ALU unit 

EQ1101

LE1100

LT1011

SRA1010

SRL1001

SLL1000

NOT0111

XOR0110

OR0101

AND0100

ABS0011

SUB0010

ADD0001

OperationOPCODE

EQ1101

LE1100

LT1011

SRA1010

SRL1001

SLL1000

NOT0111

XOR0110

OR0101

AND0100

ABS0011

SUB0010

ADD0001

OperationOPCODE
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Write Back The computation results of the functional unit will determine the 

destination of write back through one MUX, including SRF, SP, and LRF.  Write 

back to LRF is classified into two kinds.  If the results have to write back to the same 

LRF of functional unit, it should be written back to LRF-0 (LRF0_FU-1).  On the 

other hand, if the result have to write to other LRFs of functional unit, it should be 

written to LRF-1 (LRF1_FU-2, LRF1_FU-3, LRF1_FU-4, LRF1_FU-5).  MUX 

determines the destination of write back according to the information in the field 

“DEST” of the instruction, and finds out the memory location of the write back from 

the field ”WB ADDR”.  Table 3.2 shows the corresponding binary code and register 

of DEST.  Figure 3.8 illustrates the write-back step of programming process, and 

Figure 3.9 illustrates the flow of programming process in ALU Unit. 

 
Figure 3.8 Result write back of ALU 
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Table 3.2 Look up table of the data write back destination of FU-1 

LRF1_FU5111

LRF1_FU4110

LRF1_FU3101

LRF1_FU2100

LRF0_FU1011

SP010

SRF001

None000

DESTBinary Code

LRF1_FU5111

LRF1_FU4110

LRF1_FU3101

LRF1_FU2100

LRF0_FU1011

SP010

SRF001

None000

DESTBinary Code
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Find_WBDDR()
{
calculate the writeback
memory allocation ”K”
according to the 
“WBADDR” field
}

Writeback(int K, int clusterx, int FUx)
{
according to the “DEST” field 
000 do nothing
001 SRF[K] = result
010 SP[K] = result
011 LRF0_FU1[K] = result
100 LRF1_FU2[K] = result
101 LRF1_FU3[K] = result
110 LRF1_FU4[K] = result
111 LRF1_FU5[K] = result
}

＊WriteBack＊

K

4.4.

Find_data1ADDR()
{
calculate the memory 
allocation ”K” according 
to the “LRF0 RD ADDR”
field
}

Find_data1(int K, int clusterx, int FUx)
{
according to the “LRF0 Source” field 
00 do nothing
01 data1 = SRF[K]
10 data1 = SP[K]
11 data1 = LRF[K]
}

＊DATA1＊

K

1.1.

Find_data2ADDR()
{
calculate the memory 
allocation ”K” according 
to the “LRF1 RD ADDR”
field
}

Find_data2(int K, int clusterx, int FUx)
{
according to the “LRF1 Source” field 
00 do nothing
01 data2 = SRF[K]
10 data2 = SP[K]
11 data2 = LRF[K]
}

＊DATA2＊

K

2.2.

calculate
data1 data2

result

 

Figure 3.9 Block diagram of the ALU unit 

MUL 

MUL is a four-stage pipeline computation unit.  The way MUL Unit deal with 

instruction is the same as that of ALU.  The only difference is that MUL Unit just 

deal with one operation “multiple”.  Therefore, only one-bit is required for “Opcode” 
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filed in the instruction format and the instruction length of MUL Unit is three-bit less 

than that of ALU Unit.  Please not that the processing flow of ALU Unit in Figure 

3.9 can be also applied to MUL Unit.  However, in the third step, calculate, the 

opcode must be referred to the corresponding operation shown in Table 3.4. 

Table 3.4 Kernel ISA of MUL unit 

MUL1

None0

OperationOPCODE

MUL1

None0

OperationOPCODE

 

DIV 

 DIV is a six stage pipeline computation unit.  Again, the way DIV Unit treats 

instruction is the same as that of ALU.  The only difference lies in the operations 

executed by DIV Unit and ALU Unit.  The operations which DIV Unit deal with 

are ”division”, “remainder”, and “exponent”, respectively.  Therefore, only two-bit 

are required for “Opcode” field in instruction format expressing these three distinct 

operations.  It follows that the instruction length of DIV Unit is two bit less than that 

of ALU Unit.  The programming flow of ALU Unit in Figure 3.9 can then be applied 

again to DIV Unit except that the reference opcode in the third step, calculate, must 

take the reference of Table 3.5 to see the corresponding operation. 

Table 3.5 Kernel ISA of DIV unit 

SQR11

REM10

DIV01

None00

OperationOPCODE

SQR11

REM10

DIV01

None00

OperationOPCODE
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3.2.3 Memory hierarchy 

 Each level of memory hierarchy is implemented using global array. 

1.) Instruction memory:  Vary with different instruction number and cluster 

length.  The size of instruction memory is defined as “instruction number 

multiplies VLIW_length”. 

2.) SRF, SP, LRF:  Assume each SRF, SP, and LRF is a sixty-four 32-bit 

register.  It could vary with the demands of diverse media applications.  

Assume that ADDR_BIT needs six bits and the memory hierarchy sizes of 

SRF, SP, and LRF in the system are 64 registers, 64*Cluster_Number 

registers, and 64*2*FU_Number*Cluster_Number registers, respectively. 

Assume micro-architecture has 5-cluster, each cluster has four functional units, 

and ADDR_BIT = 6.  It follows that the applicable memory hierarchy size SRF, SP, 

and LRF of in the application are 64 registers, 320 registers(64*5), and 2560 

registers(64*2*4*5), respectively. 

3.3 Mechanism of the micro-architecture simulator 

 The performance simulation flow of media application in micro-architecture 

simulator should be delineated in this section.  In this paper, FFT is selected as the 

simulation benchmark. 

Simulation Flow is shown in Figure 3.1, where the design for the kernel of stream 

programming mode, i. e., simulator, has been introduced in Section 3.2.  The 

application of Simulator can be roughly classified into two stages:  
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1.) Determination of the simulation micro-architecture of the application.  This 

step contains a number of parameters setups and shall be explicitly answered in 

Section 3.3.1.   

2.) Plugging cluster instruction (stream) into simulator for simulating, and 

performance estimation shall be clarified in Section 3.3.2. 

3.3.1 Parameter definition 

 Before the operation of the application to be simulated, the “micro-architecture 

decision” step in Figure 2.3 has to be accomplished, a couple of parameters 

establishing micro-architecture must be decided. 

 

1.) The number of ALU, MUL, and DIV in a cluster: This step is to define the 

micro-architecture inside a cluster.  If defining a cluster contains three ALU Units, 

two MUL Units, and one DIV Unit, then the cluster executing instruction would be 

like Figure 3.10.  These parameters will determine the instruction length of cluster 

instruction, and the number of bit required for the ”DEST” field in the instruction 

format.  If the number of the functional unit in a cluster lies between one to five, 

the DEST field only needs 3-bit to express the destination of result write back; If 

the number of the functional unit ranges from 6 to 13, the DEST field shall need 

4-bit to represent. 
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Figure 3.10 Block diagram of a cluster 

 

2.) Determine the number of cluster needed for micro-architecture. 

3.) Determine sufficient number of SRF, SP, and LRF, and the number of bit of 

the ”ADDR_BIT” which expresses memory location in the instruction format. 

4.) According to several parameters defined above, we then can calculate the length 

of ALU Unit, MUL Unit, and DIV Unit for dealing with instructions, and the length 

of cluster instruction. 

 ALU_BIT = 8 + 3*ADDR_BIT + DEST_BIT 

 MUL_BIT = 5 + 3*ADDR_BIT + DEST_BIT 

 DIV_BIT = 6 + 3*ADDR_BIT + DEST_BIT 

 VLIW_length = ALU_BIT*ALU_Number + MUL_BIT*MUL_Number +  

                 DIV_BIT*DIV_Number 

5.) Determine the consumed clock cycles executed by every functional unit, 

“ALU_Time”, “MUL_Time”, and “DIV_Time”. The information is intended to 

calculate CPU Time. 
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3.3.2 Map application into dedicated binary stream programming codes 

Based on the “micro-architecture decision” step in 3.3.1, ISA of the 

micro-architecture and the instruction format of different functional unit can be 

explicitly known.  As can be seen in Figure 3.11, the function of traditional 

compiler is replaced by hand-coding method, which scheduling the instructions of 

the application according to the ISA into cluster instructions, then the cluster 

instructions is mapping into stream programming codes that can be executed on the 

stream processor according to the instruction format of the functional units. 

 

Figure 3.11 Map the application into stream programming code 

 

3.3.3 Simulation  

 As can be seen in Figure 2.3, after accomplishing two steps of the 

micro-architecture decision and mapping application into stream programming codes, 

which may be plugged into simulator to simulate the performance executed on the 

stream processor. 
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1.) Load the cluster instructions saved in the files into instruction memory using 

File I/O. 

2.) According to the cluster number defined in Section 3.3.1, it would yield the 

same number of cluster objects as ”cluster_number”.  Every cluster object 

represents one cluster in real micro-architecture.  According to the numbers 

defined by ALU, MUL, and DIV in Section 3.3.1, every cluster object will declare 

the same numbers of ALU object, MUL object, and DIV object.  These functional 

unit objects declared by every cluster stand for the functional units processing the 

instruction in the cluster of practical micro-architecture. 

3.) Controller would fetch the cluster instructions in the instruction memory, and 

then equally distribute these instructions to clusters for dealing with instruction. 

4.) The function of Cluster is to divide the cluster instruction into instructions of the 

same number as the number of functional unit in the cluster, and then submit these 

instructions into ALU/MUL/DIV for executing.  

For example, if a cluster has two ALU, two MUL, and one DIV, we would divide 

a 137-bit cluster instruction into two 29-bit ALU instructions, two 26-bit MUL 

instructions, and one 27-bit DIV instruction, and then respectively submit them to 

five Functional Units for processing.  Figure 3.4 clearly illustrates the functions of 

Cluster. 

5.) Estimate Performance: 

CPU Time Every time when the function, calculate(), is used in ALU, MUL, 

and DIV, we accumulate the number of these function units being executed, i. 

e., ALU, MUL, and DIV, inside different cluster.  According to ALU_Time, 

MUL_Time, and DIV_Time defined in Section 3.3.1, how many clock cycles 

every cluster will cost when it implement application could be estimated 
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further.  Comparing to the time consumed by the cluster, the desired CPU 

Time for implementing application is just the maximum value being drawn. 

Memory accessing times   Every time when ALU, MUL, and DIV do data 

fetch or data write back, memory hierarchy will be used.  Simulator will 

accumulate the number of accessing for every memory hierarchy level (could 

be SRF, SP, or LRF).  Application will show the employment information of 

memory hierarchy after simulator done its work. 

The amount of each Memory hierarchy level being used     The information 

about the required amount of memory in every level for simulating application 

executed by stream processor will also show in the simulation results.  This 

information can greatly help determining how much memory hierarchy 

capacity is required for the application. 

 

3.4 Summary 

 In this chapter, how to design an micro-architecture simulator, how to simulate 

the process flow in stream processor of media application, and how to estimate its 

performance has been introduced.  In Chapter 4, actually the performance of the 

media application, FFT, implemented in diverse hardware micro-architecture should 

be simulated, and then the optimized hardware micro-architecture for FFT should be 

selected according to the performance results. 
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Chapter 4 Performance Evaluation 

In this chapter, FFT [15] is taken as benchmark and translated as application into 

stream programming model to evaluate the performance of the micro-architecture 

defined. 

4.1 Benchmark 

Media applications contain abundant parallelism and are computationally 

intensive. In recent decades, a wide variety of media applications have been 

simulated, such as stereo depth extractor, video encoder/decoder, polygon render and 

matrix QR decomposition.  These media applications all bear a common 

characteristic: containing a large amount of data-level parallelism.  All of these 

media applications will first be mapped into stream programming model.  A stream 

program organizes data as streams and computation as sequence of kernels. 

 In the paper, 32-point Fast Fourier Transform (FFT) is selected for the 

benchmark.  FFT is a kind of fast Discrete Fourier Transform (DFT).  The 

formulation is shown in Equation 4.1.  There are two reasons why FFT is selected as 

benchmark in this thesis.  The first reason is that FFT is the most often used part in 

multimedia applications.  The second reason is that in paper [15], FFT is taken as an 

example that executing on the Imagine, and the result of that is also discussed in the 

paper.  So, it is meaningful to take FFT as the benchmark of micro-architecture 

simulator. 
1
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Equation 4.1 Discrete fourier transform 
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First, FFT algorism has to be mapped into stream programming model.  By 

casting media applications as stream programs, hardware is able to take advantage of 

the abundant parallelism, computational intensity, and locality in media applications. 

4.2 Experimental set-up 

4.2.1 Parameter definition 

 Before simulating FFT on simulator, a couple of parameters for determining 

stream micro-architecture have to be defined.  These parameters have been 

introduced in Section 3.3.1. 

1.) Number of function unit in a cluster: When the stream micro-architecture of 

FFT is simulated, each cluster contains two ALU Units, two MUL Units, and 

one DIV Unit.  Since cluster only has five functional units, the ”DEST” 

field requires only 3-bit for expressing. 

2.) Cluster number: In this paper, we would pay our attention on 1-cluster, 

2-cluster, 4-cluster, and 8-cluster micro-architecture to simulate the 

performance on the stream processor. 

3.) ADDR_BIT: In the simulation of FFT, 6-bit memory allocation expression is 

being adopted.  In other words, the available space for memory hierarchy is 

SRF = 64 registers, SP = 64*Cluster_Number registers, and LRF = 

640*Cluster_Number registers, respectively. 
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4.) Based on the cluster number, functional unit number, DEST_BIT, and 

ADDR_BIT defined above, the length of every functional unit  could be 

calculated for executing instruction, and the length of cluster instruction., 

where VLIW_Length = 137, ALU_BIT = 29, MUL_BIT = 26, and DIV_BIT 

= 27. 

5.) Determine the required clock cycles for functional unit executing operation. 

6.) ALU_Time = 2 cycles 

7.) MUL_Time = 4 cycles 

8.) DIV_Time = 6 cycles 

4.2.2 Translate FFT algorism into stream code 

As the simulation flow illustrated in Figure 3.1 shows, the selected media 

application is mapped into stream programming model.  Kernel is simply the 

simulator introduced in Section 3.4.  Therefore, FFT is translated into stream code 

for the convenience of simulating on simulator. 

In this system, since there is no compiler to generate the corresponding stream 

code for FFT, hand coding method is taken to generate stream code of FFT.  Before 

simulating the performance of FFT, the instruction of FFT should be created first.  

Then, the instruction should be scheduled to generate the cluster instructions that are 

executable by micro-architecture simulator.  It should be noted that ALU unit needs 

two clock cycles to work while MUL unit requires four clock cycles.  Moreover, FFT 

does not require the functional unit, DIV, and thus the function of DIV will not be 

explained in this section.  It follows that the instruction formats, which are 

corresponding to cluster instructions, have to be translated into binary code.  Finally, 

save these Binary codes are saved in a file called ”FFT.dat”.  
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4.2.3 Data loading from main memory 

 In addition to determining those parameters mentioned in Section 3.3.1, 

simulator will in advance load the necessary memory data into SRF, and LRF. 

Since the purpose of stream micro-architecture is to decide how much space of 

hardware will be utilized before the stream micro-architecture is implemented on 

hardware, it could maximally exploit hardware to obtain the best performance 

maximally exploit hardware.  Therefore, the memories that data consumes when 

performing FFT, i.e., the thirty-two x[n] in DFT, have been loaded on SRF in advance, 

and a number of indispensable parameters during computation have been loaded on 

LRF in advance, as well.  As an example, during operation of FFT, there are many 

mathematical formulae regarding sin and cosine being used.  Thus, a couple of 

corresponding values of sin and cosine will be loaded into LRF in advance. 

Figure 4.1 shows the status of memory being utilized before the simulator 

executes.  x[0]~x[31] are copied to SRF through load command.  The LRF0 of 

MUL1 and MUL2 would also load some required parameters from memory, 

respectively. 
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Figure 4.1 Memory usage before simulation 

 

 After the necessary parameters and loading for memory data are determined, the 

simulator is ready to evaluate the performance. 
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4.3 Result of performance evaluation 

In this section, performance evaluation for the stream micro-architecture of 

different cluster is discussed in detail. 

4.3.1 1-cluster stream micro-architecture simulation 

First of all, FFT instructions are scheduled as 1-cluster cluster instructions. There 

are 135 cluster instructions in total.  Then, the instruction format definition shown 

in Figure 3.5 is referred to translate the cluster instructions into binary code, i.e., 

representation with 0’s and 1’s. 

1-cluster micro-architecture (Figure 4.2): 1-cluster micro-architecture 

contains two ALU Units, two MUL Units, one DIV Unit, and five data exchange 

intermediate medium between functional units, SP, which are sixty-four 32bit 

registers.  There are one LRF, sixty-four 32-bit registers, and one SRF, sixty-four 

32-bit registers, at the input of every functional unit.  Therefore, we could know that 

SRF is sixty-four 32-bit registers, SP is 64*1 = sixty-four 32-bit registers since there 

is only one cluster in the entire system, and LRF is 64*2*5 = six hundred and forty 

32-bit registers in total since there are five FUs in a cluster and one cluster in the 

system. 
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 Figure 4.2(a) Block diagram of 1-cluster micro-architecture simulator 

 
Figure 4.2(b) Stream programming model of 1-cluster architecture 

 

 The cluster instructions initially saved in file ”fft.dat” will be read into 

Instruction memory through File I/O.  The controller shown in Figure 4.3 will fetch 

cluster instructions from instruction memory, and then submit all cluster instructions 

to the only cluster for executing.  The initial data x[0]~x[31] of FFT will be loaded 

into SRF through memory.  The initial input of Functional unit would be derived 

from SRF.  There are many intermediate computation results during the process from 

x[0] to X[0], where X[0] is the output of FFT.  If these data are used in the same 

functional unit, these temporary results will be saved in LRF0 of the functional unit.  

Otherwise, these intermediate calculation results will be saved in LRF1 or SP in other 
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four functional units.  Only the final calculation results, X[0]~X[31], will utilize SRF 

to write them back to Memory.  The intermediate calculation results could take 

advantage of less time being consumed by LRF instead of memory to expedite whole 

computation speed. 

 Figure 4.3 shows the simulation results.  It can be seen that executing one 

hundred and thirty-five cluster instructions require ALU Unit being used for 257 times, 

MUL Unit for ninety-six times, and DIV Unit for zero time since the operation of FFT 

does not need division.  The whole operation of FFT requires four hundred and 

fort-nine clock cycles.  In the meantime, SRF, SP, and LRF are accessed one hundred 

and thirty-seven times, one hundred and sixty-three times, and seven hundred 

fifty-nine times, respectively. 

 Since this micro-architecture has only one cluster, the time needed to execute 

FFT is the same as the clock cycles spent by Cluster 1.  The ratio of this 

micro-architecture using memory hierarchy is SRF: SP : LRF = 59 : 11 : 74. 
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Figure 4.3 Simulation result of 1-cluster stream micro-architecture 

4.3.2 2-cluster stream micro-architecture simulation 

  First of all, FFT instructions are scheduled as 2-cluster cluster instructions. 

2-cluster micro-architecture is like dual CPU system.  The system can deal with 

two cluster instructions in one clock.  After scheduling, there are sixty-five cluster 

instructions for cluster 1, and 65 cluster instructions for cluster 2.  After two 

clusters execute one hundred and thirty cluster instructions in total, the final results 

could be obtained.  After scheduling instructions, like 1-cluster simulator, these one 

hundred and thirty cluster instructions have to be translated into binary codes that are 

implementable on simulator according to the instruction format shown in Figure 3.5. 
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2-cluster micro-architecture (Figure 4.4): There are two clusters in 

micro-architecture. The functional unit in each cluster contains two ALU Units, two 

MUL Units, one DIV Unit, and five data exchange intermediate medium between 

functional units, SP, which are sixty-four 32bit registers.  The definition is like that 

of 1-cluster micro-architecture, which has been illustrated in Section 4.2.2.  In 

addition, there are also one LRF, sixty-four 32-bit registers, at the input of every 

functional unit and one SRF, sixty-four 32-bit registers, in memory hierarchy.  

Therefore, it could be known that SRF is 64 32-bit registers, SP is 64*2= 128 32-bit 

registers since there are two clusters in the entire system, and LRF is 64*2*5*2 = 

1280 32-bit registers in total since there are five FUs in a cluster and two clusters in 

the system. 
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Figure 4.4(a) Block diagram of 2-cluster micro-architecture simulator 
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Figure 4.4(b) Stream programming model of 2-cluster architecture 

 

The cluster instructions initially saved in file ”fft.dat” will be read into 

instruction memory through File I/O.  The controller shown in Figure 4.4 will fetch 

cluster instructions from instruction memory, and then equally distribute them to 

cluster 1 and cluster 2 for executing.  The initial data x[0]~x[31] of FFT will be 

loaded into SRF register through memory.  The initial data source of functional unit 

would be derived from SRF.  However, there are many intermediate computation 

results during the process from x[n] to X[n], where X[n] is the output of FFT.  If this 

result is the input of the functional unit of the same cluster, it will be written to 

registers LRF or SP.  If the calculation result is taken as input of functional unit of 

the other cluster, then data would be submitted to the function unit of the other cluster 

through SRF register.  Data exchange between every instruction would be processed 

in the same cluster as possible through faster LRF or SP.  Only when data are 

exchanged between clusters will we use the SRF Register with slower access speed.  
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The final computation results X[0]~X[31], will be temporarily saved in SRF, and then 

be written back to memory through memory store command.  With this idea to 

manipulate instructions could greatly save computation time. 

  Figure 4.5 shows simulation results of 2-cluster stream micro-architecture. 

Compared to 1-cluster micro-architecture in Section 4.3.1, it can be readily seen that 

the performance has been greatly improved when we utilize two clusters for 

processing the cluster instructions of FFT.  As shown in figures, it could be 

observed that cluster 1 deals with sixty-five cluster instructions, uses ALU Unit for 

one hundred and twenty-seven times, MUL for twenty-two times, and never use DIV 

Unit since the operation of FFT does not need DIV Unit to implement instruction.  

The whole operation of FFT require one hundred and seventy-one clock cycles for 

cluster 1 processing sixty-five cluster instructions.  In the meantime, SRF, SP, and 

LRF are accessed one eighty-one times, forty-eight times, and three hundred and 

eighteen times, respectively. 

As shown in the figure, it could be observed that cluster 2 deals with sixty-five 

cluster instructions, uses ALU Unit for one hundred and twenty-nine times, MUL for 

seventy-four times, and never uses DIV Unit since the operation of FFT does not need 

DIV Unit to do instruction.  The whole operation of FFT require two hundred and 

seventy-seven clock cycles for cluster 2 processing sixty-five cluster instructions.  In 

the meantime, SRF, SP, and LRF have been accessed for one hundred and three times, 

one hundred and twenty-three times, and three hundred and eighty-three times, 

respectively. 
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Figure 4.5 Simulation result of 2-cluster stream micro-architecture 

The time spent by 2-cluster stream micro-architecture for executing FFT 

instructions is just the maximal time spent by cluster1 and cluster 2, where the 

CPU_Time of cluster-1 = 171 clock cycles, and CPU_Time of cluster-2 = 277 clock 

cycles.  Therefore, the CPU_Time spent in this system is 277 clock cycles (the 

maximal value).  In addition, it could be observed that the ratio of the whole 

micro-architecture using memory hierarchy is SRF: SP : LRF = 62 : 6 : 116. 

4.3.3 4-cluster stream micro-architecture simulation 

First of all, schedule the FFT instructions as 4-cluster cluster instructions. 

4-cluster micro-architecture is just like four-CPU system.  The system can deal with 

four cluster instructions in one clock.  After scheduling, every cluster needs to deal 

with forty-two cluster instructions.  After four clusters execute one hundred and 
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sixty-eight cluster instructions for total, it could be obtained the final results.  After 

scheduling instructions, just like 1-cluster simulator, these one hundred and thirty 

cluster instructions have to be translated into binary codes that are implementable on 

simulator according to the instruction format shown in Figure 3.5. 

 

4-cluster micro-architecture (Figure 4.6): There are four clusters in 

micro-architecture. The functional unit in each cluster contains two ALU Units, two 

MUL Units, one DIV Unit, and five data exchange intermediate medium between 

functional units, SP, which is sixty-four 32-bit registers.  The definition is just like 

that of 1-cluster micro-architecture, which has been illustrated in Section 4.2.2.  In 

addition, there are also one LRF, sixty-four 32-bit registers, in the input of every 

functional unit and one SRF, sixty-four 32-bit registers, in memory hierarchy.  

Therefore, it could be known that SRF is sixty-four 32-bit registers, SP is 64*4= 256 

32-bit registers since there are two clusters in whole system, and LRF is 64*2*5*4 = 

2560 32-bit registers for total since there are five FUs in a cluster and four clusters in 

whole system. 
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Figure 4.6(a) Block diagram of 4-cluster micro-architecture simulator 
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Figure 4.6(b) Stream programming model of 4-cluster architecture 
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The cluster instructions initially saved in file ”fft.dat” will be read into 

instruction memory through File I/O.  The controller shown in Figure 4.6 will fetch 

cluster instructions from instruction memory, and then equally distribute them to 

cluster 1, cluster 2, cluster 3, and cluster 4 for executing.  The initial data x[0]~x[31] 

of FFT will be loaded into SRF register through memory.  The initial data source of 

functional unit would be derived from SRF. However, there are many intermediate 

computation results during the process from x[n] to X[n], where X[n] is the output of 

FFT.  If this result is the input of the functional unit of the same cluster, it will be 

written to registers LRF or SP.  If the calculation result is taken as input of functional 

unit of the other cluster, then the data would be submitted to the function unit of the 

other cluster through SRF register.  Data exchange between every instruction would 

be processed in the same cluster as possible through faster LRF or SP.  Only when 

data are exchanged between clusters, the SRF register with slower access speed will 

be used.  The final computation results X[0]~X[31], will be temporarily saved in 

SRF, and then be written back to memory through memory store command.  With 

this idea to manipulate instructions could greatly save computation time. 

 

Figure 4.7 shows the simulation results of 4-cluster stream micro-architecture. 

Compared to 1-cluster micro-architecture in Section 4.3.1, it can be readily seen that 

the performance has been greatly improved when four clusters are utilized for 

processing the cluster instructions of FFT.  

 

As shown in figures, it could be observes that cluster 1 deals with forty-two 

cluster instructions, uses ALU Unit for sixty-nine times, MUL for three times, and 

never use DIV Unit since the operation of FFT does not need DIV Unit to implement 
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instruction.  The whole operation of FFT require seventy-five clock cycles for 

cluster-1 processing forty-two cluster instructions.  In the meantime, SRF, SP, and 

LRF are accessed for fifty-five times, fifteen times, and one hundred and forty-six 

times, respectively. 

As shown in figures, it could be observed that cluster 2 deals with forty-two 

cluster instructions, uses ALU Unit for sixty-four times, MUL for nineteen times, and 

never uses DIV Unit since the operation of FFT does not need DIV Unit to implement 

instruction.  The whole operation of FFT require one hundred and forty-two clock 

cycles for cluster 2 processing forty-two cluster instructions.  In the meantime, SRF, 

SP, and LRF are accessed for sixty-three times, thirty-nine times, and one hundred and 

forty-seven times, respectively. 

As shown in figures, it could be observed that cluster 3 deals with forty-two 

cluster instructions, uses ALU Unit for sixty-eight times, MUL for thirty-three times, 

and never uses DIV Unit since the operation of FFT does not need DIV Unit to 

implement instruction.  The whole operation of FFT require one hundred and 

thirty-four clock cycles for cluster 3 processing forty-two cluster instructions.  In the 

meantime, SRF, SP, and LRF are accessed for seventy times, fifty-seven times, and 

one hundred and seventy-six times, respectively. 

As shown in figures, it could be observed that cluster 4 deals with forty-two 

cluster instructions, uses ALU Unit for fifty-six times, MUL for forty-one times, and 

never uses DIV Unit since the operation of FFT does not need DIV Unit to implement 

instruction.  The whole operation of FFT requires one hundred and thirty-eight clock 

cycles for cluster 4 processing forty-two cluster instructions.  In the meantime, SRF, 

SP, and LRF are accessed for sixty-one times, fifty-nine times, and one hundred and 

seventy-one times, respectively. 

 49



 

Figure 4.7 Simulation result of 4-cluster stream micro-architecture 

 

The time spent by 4-cluster stream micro-architecture for executing FFT 

instructions is just the maximal time spent by cluster 1, cluster 2, cluster 3, and cluster 

4 where the CPU_Time of cluster 1 = 75 clock cycles, CPU_Time of cluster 2 = 102 

clock cycles, CPU_Time of cluster 3 = 134 clock cycles, and CPU_Time of cluster 4 

= 138 clock cycles. Therefore, the CPU_Time spent in this system is one hundred and 

thirty-eight clock cycles (the maximal value).  In addition, it could be observed that 

the ratio of the whole micro-architecture using memory hierarchy is SRF: SP : LRF = 

64 : 20 : 153. 
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4.3.4 8-cluster stream micro-architecture simulation 

First of all, schedule the FFT instructions as 8-cluster cluster instructions. 

8-cluster micro-architecture is just like eight-CPU system.  The system can deal 

with eight cluster instructions in one clock.  After scheduling, every cluster needs to 

deal with thirty-four cluster instructions.  After eight clusters execute two hundred 

and seventy-two cluster instructions for total, the final results could be obtained.  

After scheduling instructions, just like 1-cluster simulator, these two hundred and 

seventy-two cluster instructions have to be translated into binary codes that are 

implementable on simulator according to the instruction format shown in Figure 3.5. 

8-cluster micro-architecture (Figure 4.8): There are eight clusters in 

micro-architecture. The functional unit in each cluster contains two ALU Units, two 

MUL Units, one DIV Unit, and five data exchange intermediate medium between 

functional units, SP, which is sixty-four 32bit registers.  The definition is just like 

that of 1-cluster micro-architecture, which has been illustrated in Section 4.2.2.  In 

addition, there are also one LRF, sixty-four 32-bit registers, in the input of every 

functional unit and one SRF, sixty-four 32-bit registers, in memory hierarchy.  

Therefore, it could be known that SRF is sixty-four 32-bit registers, SP is 64*8 = 512 

32-bit registers since there are two clusters in whole system, and LRF is 64*2*5*8 = 

5120 32-bit registers for total since there are five FUs in a cluster and eight clusters 

in whole system. 
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Figure 4.8(a) Block diagram of 8-cluster micro-architecture simulator 
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Figure 4.8(b) Stream programming model of 8-cluster architecture 

 

The cluster instructions initially saved in file ”fft.dat” will be read into 

instruction memory through File I/O.  The controller shown in Figure 4.8 will fetch 

cluster instructions from instruction memory, and then equally distribute them to 

cluster 1 to cluster 8 for executing.  The initial data x[0]~x[31] of FFT will be loaded 

into SRF register through memory.  The initial data source of functional unit would 

be derived from SRF. However, there are many intermediate computation results 
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during the process from x[n] to X[n], where X[n] is the output of FFT.  If this result 

is the input of the functional unit of the same cluster, it will be written to registers 

LRF or SP.  If the calculation result is taken as input of functional unit of the other 

cluster, then the data would be submitted to the function unit of the other cluster 

through SRF register.  Data exchange between every instruction would be processed 

in the same cluster as possible through faster LRF or SP.  Only when data are 

exchanged between clusters, the SRF register with slower access speed will be used.  

The final computation results X[0]~X[31], will be temporarily saved in SRF, and then 

be written back to memory through memory store command.  With this idea to 

manipulate instructions could greatly save computation time. 

 

Figure 4.9 shows the simulation results of 8-cluster stream micro-architecture. 

Compared to the 4-cluster micro-architecture in Section 4.3.3, it can be seen that the 

performance has been hardly improved when eight clusters are utilized for 

processing the cluster instructions of FFT.  

 

As shown in figures, it could be observed that cluster1 deals with thirty-four 

cluster instructions, uses ALU Unit for thirty-five times, MUL for once, and never use 

DIV Unit since the operation of FFT does not need DIV Unit to implement instruction.  

The whole operation of FFT require thirty-seven clock cycles for cluster 1 processing 

thirty-four cluster instructions.  In the meantime, SRF, SP, and LRF are accessed for 

forty times, ten times, and fifty-eight times, respectively. 

   As shown in figures, it could be observed that cluster 2 deals with thirty-four 

cluster instructions, uses ALU Unit for thirty-eight times, MUL for four times, and 

never use DIV Unit since the operation of FFT does not need DIV Unit to implement 
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instruction.  The whole operation of FFT require forty-six clock cycles for cluster 2 

processing thirty-four cluster instructions.  In the meantime, SRF, SP, and LRF are 

accessed for thirty-eight times, twenty-five times, and sixty-three times, respectively. 

As shown in figures, it could be observed that cluster 3 deals with thirty-four 

cluster instructions, uses ALU Unit for twenty-four times, MUL for eight times, and 

never use DIV Unit since the operation of FFT does not need DIV Unit to implement 

instruction.  The whole operation of FFT require forty clock cycles for cluster 3 

processing thirty-four cluster instructions.  In the meantime, SRF, SP, and LRF are 

accessed for forty times, five times, and fifty-one times, respectively. 

As shown in figures, it could be observed that cluster 4 deals with thirty-four 

cluster instructions, uses ALU Unit for twenty-eight times, MUL for nine times, and 

never use DIV Unit since the operation of FFT does not need DIV Unit to implement 

instruction.  The whole operation of FFT require forty-six clock cycles for cluster4 

processing thirty-four cluster instructions.  In the meantime, SRF, SP, and LRF are 

accessed for forty-one times, four times, and fifty-six times, respectively. 

As shown in figures, it could be observed that cluster 5 deals with thirty-four 

cluster instructions, uses ALU Unit for forty-two times, MUL for twenty-one times, 

and never use DIV Unit since the operation of FFT does not need DIV Unit to 

implement instruction.  The whole operation of FFT require eighty-four clock cycles 

for cluster 5 processing thirty-four cluster instructions.  In the meantime, SRF, SP, 

and LRF are accessed for fifty-five times, thirty-nine times, and ninety-one times, 

respectively. 

As shown in figures, it could be observed that cluster6 deals with thirty-four 

cluster instructions, uses ALU Unit for thirty times, MUL for eighteen times, and 

never use DIV Unit since the operation of FFT does not need DIV Unit to implement 
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instruction.  The whole operation of FFT require sixty-six clock cycles for cluster 6 

processing thirty-four cluster instructions.  In the meantime, SRF, SP, and LRF are 

accessed for fifty-five times, thirty times, and sixty-nine times, respectively. 

As shown in figures, it could be observed that cluster 7 deals with thirty-four 

cluster instructions, uses ALU Unit for twenty-six times, MUL for sixteen times, and 

never use DIV Unit since the operation of FFT does not need DIV Unit to implement 

instruction.  The whole operation of FFT require fifty-eight clock cycles for cluster 7 

processing thirty-four cluster instructions.  In the meantime, SRF, SP, and LRF are 

accessed for forty-four times, seventeen times, and sixty-five times, respectively. 

As shown in figures, it could be observed that cluster 8 deals with thirty-four 

cluster instructions, uses ALU Unit for thirty-four times, MUL for nineteen times, and 

never use DIV Unit since the operation of FFT does not need DIV Unit to implement 

instruction.  The whole operation of FFT require seventy-two clock cycles for 

cluster-8 processing thirty-four cluster instructions.  In the meantime, SRF, SP, and 

LRF are accessed for seventy times, seventeen times, and seventy-two times, 

respectively. 
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Figure 4.9 Simulation result of 8-cluster stream micro-architecture 

 

The time spent by 8-cluster stream micro-architecture for executing FFT 

instructions is just the maximal time spent by cluster-1 ~ cluster-8, where the 

CPU_Time of cluster 1 = 37clock cycles, CPU_Time of cluster 2 = 46 clock cycles, 

CPU_Time of cluster 3 = 40 clock cycles, CPU_Time of cluster 4 = 46 clock cycles, 

CPU_Time of cluster 5 = 84 clock cycles, CPU_Time of cluster 6 = 66 clock cycles, 

CPU_Time of cluster 7 = 58 clock cycles, and CPU_Time of cluster 8 = 72 clock 

cycles. Therefore, the CPU_Time spent in this system is eighty-four clock cycles (the 

maximal value).  In addition, it could be observed that the ratio of the whole 

micro-architecture using memory hierarchy is SRF: SP : LRF = 64 : 25 : 212. 
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4.4 Performance comparison  
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Figure 4.10 Performance of FFT on different micro-architecture 

 

 Figure 4.10 shows the analysis chart of performance evaluation in Section 4.3.  

The x-axis represents different stream micro-architectures, including 1-cluster, 

2-cluster, 4-cluster, and 8-cluster; while the y-axis denotes performance.  

 The curve marked with diamond presents the necessary CPU_Time when FFT is 

executed.  As shown in the figure, it could be observed that when the cluster number 

of the micro-architecture is increased from 1 to 2, the performance is doubled.  

Compared 2-cluster with 4-cluster micro-architecture, the performance can still 

double.  However, in the case of 4-cluster compared to 8-cluster micro-architecture, 

the improvement of performance can not be easily observe. 
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The curve marked with square represents the required number of accessing SRF 

when we execute FFT.  It could be also viewed as the number of data exchange using 

SRF.  As shown in the figure, when the number of cluster is increased, for example 

from 1-cluster to 2-cluster, or from 2-cluster to 4-cluster, the number of data exchange 

using SRF increases slowly.  However, when the number of cluster is increased from 

4-cluster to 8-cluster, the number of data exchange using SRF obviously doubles. 

 The curve marked with triangle denotes the number of accessing SP when we 

execute FFT.  It can also be viewed as the number of data exchange using SP.  As 

shown in the figure, there is no relationship between the number of cluster and the 

number of SP used.  Therefore, it could be concluded that regardless of how many 

clusters we have, the number of data exchange using SP between functional units in 

the same cluster is not many.  Moreover, the functional unit will not vary with the 

number of cluster either. 

 The curve marked with “x” represents the number of accessing LRF when we 

execute FFT, i.e., the number of data exchange using LRF.  As shown in the figure, 

with cluster increasing, the number of data exchange would decrease.  When the 

number of clusters is increased from one to four, the number of data exchange using 

LRF linearly is decreased.  However, in the case of increasing 4-cluster to 8-cluster, 

the number of accessing LRF shows more drastic increase. 

 Since the number of accessing memory hierarchy is fixed when executing FFT, 

the number of SRF being used increases proportionally with the number of clusters, 

which linearly increases from one to four.  However, the number of consumed LRF 

shows linear decrease.  In addition, when increasing the number of cluster from 4 to 

8, the number of accessing SRF suddenly doubles and the number of accessing LRF 
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show noticeable decrease, which represents that data exchange between clusters, i.e., 

utilizing SRF to exchange data, becomes frequent.  On the other hand, the number of 

data exchange inside every cluster, i.e., using LRF to do data exchange, would 

decrease.  

Then let’s consider the variation of performance between different 

micro-architectures.  From 1-cluster, 2-cluster, to 4-cluster micro-architecture, the 

performance all doubly increases.  However, the performance only shows little 

improvement from 4-cluster to 8-cluster micro-architecture.  It cause huge data 

exchange from high-bandwidth LRF to low-bandwidth SRF since the bandwidth of 

LRF > SP > SRF.  In this case, the advance in performance does not follow that in 

expensive hardware.  

Figure 4.11 analysis chart of memory usage, where x-axis represents different 

level of memory hierarchy, while y-axis denotes memory usage in every level.  The 

demand for memory in every level does not hold close relationship between 

performances. 

The demands for SRF usage in 1-cluster, 2-cluster, 4-cluster, and 8-cluster 

micro-architecture are roughly the same.  It does not increase with the number of 

clusters.  The capacity of SP usage for four micro-architectures is quite different.  

However, it does not positive relation with the number of cluster.  The capacity of 

LRF would linearly increase with the number of cluster.  In the 3-tiered memory 

hierarchy, only the demand of LRF holds positive relation with cluster number.  
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Figure 4.11 Memory capacity of memory hierarchy 

 

From the analysis above, it could be concluded that the 4-cluster 

micro-architecture best suits the hardware micro-architecture of FFT-32 application.  

As for the memory size required by the micro-architecture, Figure 4.12, memory 

usage chart, should be referenced where SRF = 64 32-bit registers, SP = 20 32-bit 

registers, and LRF = 212 32-bit registers. 

4.5 Summary 

In this thesis, an micro-architecture simulator is being designed, where the main 

function is to simulate the operation of media application in stream processor and 

estimate performance.  FFT is taken as benchmark.  Several micro-architectures of 

different cluster number have been attempted, and then analyzed with varying number 

of accessing memory in each level and CPU Time for comparison.  It could be  

observed that when the number of cluster increase from 1 to 2 and 2 to 4, CPU Time 
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would double, and the number of SRF being used shows “linear” increase while the 

that of LRF present linear decrease.  However, when the cluster number of the 

simulator goes from 4-cluster to 8-cluster, the progress of CPU Time is limited and 

causes large amount of SRF being used, i.e., huge data exchange between clusters.  

The design of stream processor is trying to have data calculated inside cluster as 

possible.  When necessary, data would be exchanged between clusters through SRF.  

However, the simulation results of 8-cluster micro-architecture do not fit our 

expectation. 

 Therefore, 4-cluster micro-architecture has been chosen as the most suitable one 

for executing FFT in stream processor.  In addition, the usage of memory hierarchy 

is SRF : SP : LRF = 64 : 20 : 212, respectively. 
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Chapter 5 Conclusion and future work 

 Since stream processor is a general-purpose solution for media application, for 

diverse media applications, different hardware micro-architecture could be used.  

However, due to the high cost of hardware implementation and lengthy computing 

time, the idea of software simulation is suggested.  

 First of all, the application to be simulated on the simulator needs to be 

determined.  Before simulation, one has to decide the specifications of the 

micro-architecture, including number of cluster, number of functional unit in a cluster, 

the capacity of each level of memory hierarchy.  Then, ISA of the micro-architecture 

can be explicitly known.  Moreover, hand-coding method is used to replace the 

functions of the complier.  The function are to schedule application instructions into 

cluster instructions according to the ISA of the micro-architecture and to translate 

cluster instructions into binary stream programming codes according to the instruction 

format of the functional units of ALU, MUL, and DIV.  Stream programming codes 

then can be plugged into simulator to simulate the executing of that on the stream 

processor, and the simulation result can be generated.  Stream programming code, 

that simulates on different organization of the micro-architectures, results in different 

simulation results.  Simulation result of current organization of micro-architecture is 

taken to compare with the result of other organizations of micro-architecture, and the 

parameters will be adjusted till the optimal organization of the micro-architecture is 

discovered including number of clusters, number of functional units in a cluster, and 

capacity of each level of memory hierarchy.  Simulation result also can be used to 

ensure the correctness of the stream programming code generating by hand-coding 

method.   
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 With micro-architecture simulator, the optimal organization of micro-architecture 

can be discovered.  The simulation result of the application can be used by another 

part of our project, “a low power ALU design”.  Simulator can be used to determine 

the number of clusters, and the capacity of the memory hierarchy needed in hardware 

for executing particular media application.  Then it can be implemented in hardware. 

 In this thesis, media application is classified into two kernels cluster and 

functional unit to simulate the operation of media application in hardware.  The 

biggest challenge is to map the operation of FFT media application into binary stream 

codes that are implementable in simulator.  First of all, the N value of FFT has to be 

decided, where in this thesis we select N = 32 for FFT simulation, and then translate 

mathematical formula into instruction.  Furthermore, scheduling for the 

micro-architecture of different cluster number is performed.  Finally, cluster 

instructions are translated into the implementable binary stream programming codes 

in simulator.  In the process of translating formulation into binary stream 

programming codes, much time and effort are required.  Therefore, one possible 

future work to ameliorate this project is to develop a compiler to deal with scheduling 

and to translate scheduled cluster instructions into binary code.  By doing so, the 

steps to generate binary stream codes would become more efficient. 
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