A Micro-architecture Simulator for Multimedia

Stream Processor

Eﬁﬁzj}_ DR 4

R REE L

SEA R LT

5B P AL B 2 e AR

A Micro-architecture Simulator for Multimedia Stream Processor

Fopod RS e Student : Fang-Ju Lin
R RRE 4 Advisor : Dr. Herming Chiueh

RIREE TR 4

T RAfRT kAL

A Thesis
Submitted to Institute of Communication Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Communication Engineering
January 2006
Hsinchu, Taiwan.

PEAREL LT &

SRR B PARIE 2 MO R E

F2 e g B

M= AET 1S LT

5 &

Stanford 4% % 48 * AR B B I BT A2 L g2 B Imagine o d
FF ARSIt e Stream Processor 4§17 J6 el * AR N 4TI * PR BIZEHE € 5 T A
o fl* AT REAT P2 ﬁi_‘f' Pl RS (T ety 0 A .9;3. 7 X & pFER o
AP T AL 22F b d o 4573 O i HMBY 25 4o 27 4250
it Stream Processor Al R H > £ - <AL e KA WS DA Mo TE o A
FOA PR AR N g K 2 FH IR LA HEF R 2
R E D AR Tt o By oo R - B RO E o HR S N
Mo A2t A R R O Fona o AT MR T F LR R R Y
o VRUET RN ELEFEHEY RS PENEGEIAMER -
T it 1t R M7 HE2 16 0 ¥ AR50 1 Stream Processor £ * R AL F R o %
FEROTEREY A2 I FHEEED MR AN R
7° it &2 Stream Processor #-# R4 I > A e 4 T 7 AR (T K i B AP

* A RE T ORPERS e PF S oo

A Micro-architecture Simulator for Multimedia

Stream Processor

Student: Fang-Ju Lin Advisor: Dr. Herming Chiueh

Institute of Communication Engineering
National Chiao Tung University

Hsinchu, Taiwan 30050

Abstract

A programmable processor, Imagine, has: been developed especially for
media applications by Stanford.. Since -a“programmable Stream Processor would
build various hardware micro-architectures: for diverse media applications, the cost
of time and money could be huge to implement various micro-architectures on
hardware and then compare their efficiencies. Therefore, how to construct suitable
micro-architectures of programmable Stream Processor for diverse media
applications is a great challenge. Nowadays, most of the hardware accelerators are
designed for dedicated application. Only when the hardware micro-architecture is
carefully designed for particular media application could the stream processor
achieves exceptional performance. For the purpose of resolving this dilemma, in
this paper, we develop the micro-architecture simulator for stream processor. The
micro-architecture simulator is expected to simulate the performance of media

application executed on various micro-architectures, and then to analyze the utility

rate of hardware and consumption of memory. By comparing the performance of
media application executed on diverse micro-architectures, the optimized hardware
micro-architecture can be determined and then the programmable Stream Processor
can be implemented on hardware. By utilizing micro-architecture simulator to
settle down optimized problems and then implement hardware with programmable
Stream Processor for diverse applications, this idea saves not only huge cost of

money on hardware, but also plenty of time for testing.

BETE T A ETRARIT AR o8 EDF Y o EAL T BE A SRR
AU L e

FAARR AN ERRRPFEF NH PP R A AR
SRR RS R fedp o N2 AR E R AR R A RE R
5T BRI ABREF S F AT P AR KU 4]

WHELEEF PR HBREEA G v FEA R > A g B 2k

HPD R AeY S DR R A J P IR PO R BEE

FE A - Aed B AT ARG T AP F T AR 2 AR

\6:«\
-
)
A
9
&q

AR PR BT P SR AT Y AT £ P 5 7
Brenip AR E 4 o JRR AGRE L Gt T DR A E R B

S F AL U FAB kR T 2 R g s B B Y Fla AT X
=

oo BERBMALE NS ERFL oKIF cFE oG 0B EAnDE
FAq 5 E 5 R RBAUBEL - AEARIFA DR > B B aro X
BN DER B P WG TR LRI PR SR A - A2 R B R TIR

%m;ﬁﬁoj1ww,ﬁ1?u@ﬂ§ﬂﬁimgﬁo

Content

B s [
ADSTFACT ... bttt be b ns i
- SR SPSR v
(010 01 (=] TR P PP PP PRTPPRO %
LISE OF FIQUIES ...ttt bbbt vii
LSt OF TADIES ...ttt iX
Chapter 1 INTrOQUCTIONcuviiiiiieieee e 1
Chapter 2 BaCKGrOUNGccouiiiiiieiecie sttt sre e anas 5
2.1 STreAM PrOCESSING ..cvvevvere e Bt iet s eathef i e eeeteste et sttt ese e e e sr b e b sbe e enes 5
2.1.1 Stream programming MOAet .ot e i 6

2.1.2 Stream mMICro-arChiteCTUNB i oo ettt 8

2.1.3 An example of stream processor: Amagine...........ccceceevvevveveesieeseenenns 9

2.2 Current usage of micro-architecture sSimulatorccccooeveiiiiiiiinns 10

2.3 The importance of the micro-architecture simulator...............cccooeveveiveiiennns 11
Chapter 3 Micro-architecture SIMUIALOT...........cceveiiiiiiiie s 15
3.1 Organization of the micro-architecture simulator.............ccccoceeeeveiieiecienne. 16

3.2 Design methodology of the micro-architecture simulatorccccceeveveenee. 17
BL2. L CHUSTEN 1.ttt 17

322 ALU, MUL, DIV ..ottt 19

3.2.3 MemOry hI€rarChy.........cccccveiiiieii e 27

3.3 Mechanism of the micro-architecture Simulator............cccccoveiiinniininens 27
3.3.1 Parameter definition.........cccooeieiinenc s 28

3.3.2 Map application into dedicated binary stream programming codes ...30

\Y

3.3 3 SIMUIALION .o 30

34 SUMMIATY .ttt ettt ettt et e e b e e et e e nrb e e nn b e e e s nb e e e nnbeeennnees 32
Chapter 4 Performance EValuationcccooeiiiiiiiieeeee s 33
4.1 BENCAMAIK ..ot 33

4.2 EXPErimENtal SEI-UD ..c.eoviiiiiiiieiiieieeie e 34
4.2.1 Parameter definition ..o 34

4.2.2 Translate FFT algorism into stream COde...........ccovvivenenencienininnns 35

4.2.3 Data loading from main Memory........c.cccccveveviieieeiesieece e 36

4.3 Result of performance evaluationccoceviriiininieieeeee e 38
4.3.1 1-cluster stream micro-architecture simulationcc.ccocoeeviivnnnnns 38

4.3.2 2-cluster stream micro-architecture simulationc.ccoccoenvnnnnns 41

4.3.3 4-cluster stream micro-architecture.simulationc.ccocoevnvninnns 45

4.3.4 8-cluster stream-micro-architecture sSimulationccccooeervrennns 51

4.4 Performance COMPAriSON ... L errerrrrmsemme e s sassesseeseeseesseessessesseessesssesesssesssenns 58

A5 SUMMAIY ..o o b8 2ttt e ettt et nbeen e e b e nn e 61
Chapter 5 Conclusion and fUtUre WOIKcocooveiiiii i 63
BIDHOGIAPNY ..o 65

Vi

List of Figures

Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8

Figure 4.9

Stream and kernel representation.............coovviiiii i i 7

Stream processor block diagram...........c..cooeie i

Contribution of the simulator..........ccoovoveive ..

Simulation fIOW.......oooiei

Block diagram of micro-architecture simulator........................

Micro-architecture cluster block diagram..............ccooviieienn.

Processing cluster instruction in the arithmetic cluster....

ALU instruction format..........oovveeieeiieiiiiaannn.

Detail of the functional Uit so. coeoee oo e,

Finding source data'of AL, ila e

Result write back of ALU ..o e

Block diagram of the ALU unit oo

Block diagram of a cluster..c i .. .o

Map the application into stream programming code.....................

Memory usage before simulation.............................

Block diagram of 1-cluster micro-architecture simulator

Simulation result of 1-cluster stream micro-architecture...............

Block diagram of 2-cluster micro-architecture simulator

Simulation result of 2-cluster stream micro-architecture...............

Block diagram of 4-cluster micro-architecture simulator

Simulation result of 4-cluster stream micro-architecture...............

Block diagram of 8-cluster micro-architecture simulator

Simulation result of 8-cluster stream micro-architecture...............

vii

16

17

18

19

.20

21

23

25

.29

30

37

39

40

42

44

46

48

50

.54

Figure 4.10 Performance of FFT on different micro-architecture.....................

Figure 4.11 Memory capacity of memory hierarchy

viii

List of Tables

Table 3.1 Lookup table of data SOUICE.........c.vvvi i e e, 22
Table 3.2 Lookup table of data write back destination of FUL........................... 24
Table 3.3 Kernel ISAOf ALU UNit......ooiiiii e e e 22

Table 3.4 Kernel ISAOf MUL UNit.......ooeiiii i e e 026

Table 3.5 Kernel ISA O DIV UNIt. ..o e e e e 26

Chapter 1 Introduction

Media applications are characterized by large available parallelism [3], little data
reuse and a high computation of memory access ratio [1]. While these
characteristics are poorly matched to conventional micro processor
micro-architectures, recent research has proposed using streaming micro-architecture
by fit modern VLSI technology with lots of ALUs on a single chip with hierarchical
communication bandwidth design to provide a leap in media applications. Relative
topics of recent research are Image Stream Processor [12], Smart Memories [16], and
Processing-In-Memory [10].

In order to achieve computation rates, .current media processor often uses
special-purpose [2], fixed-function hardware. tailored to one specific application.
However, special-purpose solutions lack of the flexibility to work effectively on a
wide application space. The demand for flexibility in media processing motivates
the use of programmable processors [2]. To bridge the gap between inflexible
special special-purpose solutions and current programmable micro-architectures that
cannot meet the computational demands of media-processing applications, stream
micro-architecture developed by Stanford University has been chosen [3]. Steam
processors directly exploit the parallelism and locality exposed by the stream
programming model [4] to achieve high performance.

Since, various stream micro-architecture with different ALU clusters are suitable
for media applications, mapping multimedia applications to adequate stream
programming model becomes essential. However, the organization of stream model
will be optimized for different multimedia applications. The number of ALUs in a
cluster and the number of clusters in the stream micro-architecture may be different,

1

according to the algorithm of different media applications. Thus, two solutions
existed to find the number of hardware needed for dedicated application. One
solution is to use hardware implementation of different stream micro-architectures to
evaluate performance is expensive and time consuming. The other is a software
solution, which simulates performance on different virtual stream micro-architectures
and compares the performance between the architectures. By doing so, the best
hardware organization, which has to fully optimize the usage of the hardware
resources and reach better performance, is obtained. The second solution,,
“micro-architecture simulator”, is suitable for the demand needed.

This project has been shared by a team of three graduate students. The major
tasks are low power ALU cluster design, memory design and simulator design. In
this thesis, a micro-architecture simulator will"be.implemented. Based on different
organizations, performance will be evaluated including CPU time, total memory
access time, time needed to access each-level-of the memory hierarchy, and the real
memory in use. Performance ‘of -conventional micro-architecture and stream
micro-architecture will be compared to prove the improvement of the stream
micro-architecture.

Before the media application being simulated in micro-architecture simulator, the
“micro-architecture decision” procedure has to be done. The micro-architecture to
be simulated is decided in the micro-architecture decision step, including cluster
numbers, the number of function units in a cluster, and capacity of each level memory
hierarchy. After parameters that may affect the micro-architecture determined, ISA
of the micro-architecture can obviously be known. Based on the ISA of the
micro-architecture and the instruction format of each function unit that may be

included in a cluster, the selected media application is mapped into binary stream

programming codes that can be executed in a stream processor. After the
micro-architecture is decided, and dedicated stream programming codes are generated,
they are put into simulator for simulation. Then, a simulation result will be generated.
The simulation result of one organization of stream micro-architecture is compared
with the result of other organization of micro-architecture, and parameters that may
affect the organization of the micro-architecture is adjusted. The operation of
simulation and adjustment is continued till the optimal performance is discovered.
Simulation result, on the other hand, can be taken to make sure the correctness of the
hand-coding binary stream programming codes. With micro-architecture simulator,
the optimized micro-architecture for dedicated media application can be discovered,
and can be implemented in hardware.

With micro-architecture simulator, media .application is simulated on the
simulator to evaluate performance.of different stream micro-architecture. In this
thesis, FFT (Fast Fourier <Transform)--s. chosen as benchmark and the
micro-architecture of a cluster is' decided, the only variable between different
organizations of stream micro-architecture is cluster number. FFT is simulated on
different cluster number’s stream micro-architecture, and performance of each
organization of stream micro-architecture is compared, including CPU time, memory
access times of each level memory hierarchy. For performance and memory
accessing benefit, 4-cluster stream micro-architecture is chosen as the best
micro-architecture for FFT.

The remainder of this thesis is organized as following: Chapter 2 presents
background information on media processors, micro-architecture that enables high
performance on media applications with fully-programmable processors, and the

design of current micro-architecture simulators. In Chapter 3, the design

methodology is presented. In Chapter 4, experimental results are provided and a
comparison to conventional micro-architecture is presented. Finally, future work

and conclusions are presented in Chapter 5, Chapter 6.

Chapter 2 Background

Media applications and media processors have recently become an active and
important area of research. Section 1 describes stream programming model, stream
micro-architecture, and an example of stream processor Imagine. Section 2 shows
current micro-architecture simulator’s implementation and design methodology.
Section 3 highlights the motivation of designing software micro-architecture simulator

for stream processor.

2.1 Stream processing

Stream processors are fully programmable processors which aimed at media
applications. Media applications, includingsignal processing, image and video
processing, and graphics, are :-well suited-to a stream processor like Imagine [5]

because they possess four key attributes [6}:

High Computation Rate: Many media applications require billions to tens of
billions of arithmetic operations per second to achieve real-time performance.
High Computation to Memory Ratio: Structuring media applications as stream
programs exposes their locality, allowing implementations to minimize global
memory usage. At the result stream programs tend to achieve a high
computation to memory ratio: most media applications perform tens to hundreds
of arithmetic operations for each necessary memory reference.
Produce-Consumer Locality with Little Global Data Reuse: The typical data
reference pattern in media applications requires a single read and write per global

data element. Little global reuse means that traditional caches are largely

ineffective in these applications. Intermediate results are produced at the end of
a computation stage and consumed at the beginning of the next stage.
Parallelism: Media applications exhibit instruction-level, data-level, and

task-level parallelism.

Media applications operate on streams of low-precision data, have abundant
data-parallelism, rarely reuse global data, and perform tens to hundreds of operations
per global data reference. These stream programs map easily and efficiently to the
data bandwidth hierarchy of the stream micro-architecture. The data parallelism
inherited in media applications allows a single instruction to control multiple
arithmetic units and allows intermediate data to be localized to small clusters of units,
significantly reducing communication demands. . Data from one processing kernel
are forwarded to the next kernel, which localized.the data communication and rarely
reused global data. Furthermore, the .computation demands of these applications can
be satisfied by keeping intermediate-data.close to the arithmetic units, rather in

memory.

2.1.1 Stream programming model

The stream processor executes applications that have been mapped to the stream
programming model [7]. This programming model organizes the computation in an
application into a sequence of arithmetic kernels, and organizes the data-flow into a
series of data streams. The data streams are ordered, finite-length sequences of data
orders of an arbitrary type (although all the records in one stream are of the same

type). The inputs and outputs to kernels are data streams. Streams passing among

multiple computation kernels form a stream program. The only non-local data a
kernel can reference at any time are the current head elements of its input streams and
the current tail elements of its output streams. In the stream programming model,
locality and concurrency are exposed both within a kernel and between kernels.

In Figure 2.1, shows the mapping of radix-2 FFT [7] to the stream model. Each
oval in the figure corresponds to the execution of a kernel, while each arrow
represents a data stream transfer. In the stream implementation, kernel requires two
input streams and one output stream. The output of the last kernel is in bit-reversed
order, so it must be reordered in the memory. In FFT only data elements passed
between kernels need to access the SRF, and only the initial input data and final

output data need to access the global memory space in DRAM.

Input Output

Figure 2.1 Stream-and kernel representation

Applications that are more involved than the FFT example map to the stream
model in a similar fashion. Examples can be found in other references: Khailany et
al. discuss the mapping of stereo depth extractor [5]; Rixner discusses the mapping of
an MPEG-2 encoder [8]; and Owens et al. discuss the mapping of a polygon rendering
pipeline [9].

The stream model is important because it organizes an application to expose the

locality and parallelism information that is inherent in the application.

2.1.2 Stream micro-architecture

The stream processor is a hardware micro-architecture designed to implement the

stream programming model.

Imagine, designed by computer systems laboratory of

Stanford University is a stream processor which block diagram is shown in Figure 2.2

[14]. The core of Imagine is a 128 KB stream register file (SRF).

The SRF is

connected to 8 SIMD-controlled VLIW-like arithmetic clusters controlled by a

microcontroller, a memory system interface to off-chip DRAM, and a network

interface to connect to other nodes of a multi-Image system. All modules are

controlled by an on-chip stream controller under the direction of an external host

| Network

Interface

¢

Network

processor.
SDRAM || SDRAM || SDRAM || SDRAM

i s Ta. & 1 Firif: i . eaieienieienieh it
1
! . . v7
i Streaming Memory System
i [T 1]
| 1 | Stream |

Host ! | Controller]

0s ! Stream Register File:

Processor:
i .
1
]
i 9 Sfl=1llx|len || ||w ||e ||
1 —_— Pt o o o o o Pt ot
1 o+ [[Q Q [[[Q
| E2 sllzllzllzllz[12][12]]2
i c = ZHHEZNENZ2ENENENE|IE
| Ss O[T T IC (1T [T |[T||©
' °w == (=== {=l=]l=
: o3 (=== 1=[]=|]=]||=
' S0 <l<{{<l=<I<=<]<||<
1
1
1

Figure 2.2 Stream processor block diagram

¢

The working set of streams is located in the SRF. Stream loads and stores occur
between the memory system and the SRF; network sends and receives occur between
the network interface and the SRF. The SRF also provides the stream inputs to
kernels and stores their stream outputs.

The kernels are executed in the 8 arithmetic clusters. Each cluster contains
several functional units (which can exploit instruction-level parallelism) fed by
distributed local register files. The 8 clusters (which can exploit data-level
parallelism) are controlled by the microcontroller, which supplies the same instruction
stream to each cluster. On Imagine, streams are implemented as contiguous blocks
of memory in the SRF or in off-chip memory. Kernels are implemented as programs
run on the arithmetic clusters.

The three-level memory bandwidth hierarchy.characteristic of media application
behavior consists of the memory system, the-SRF, ‘and the local register files within

the clusters

2.1.3 An example of stream processor: Imagine

Imagine is a programmable stream processor, which is a general purpose
processor, and is the hardware implementation of the stream model. The concept of
this micro-architecture is based on stream. Imagine is organized to take advantage
of the locality and parallelism inherent in media applications. A block diagram of
the micro-architecture is shown in Figure 2.2.

Imagine contains 48 ALUs [12], and a unique three level memory hierarchy
design to keep the functional units saturated during stream processing. The
three-tiered data bandwidth hierarchy consists of a stream memory system (2 GB/s), a

global stream register file (32 GB/s), and a set of local distributed register files located

near the arithmetic units (544 GB/s). The 128 KB SRF at the center of the
bandwidth hierarchy not only provides intermediate storage for data streams but also
enables additional stream clients to be modularly connected to Imagine, such as
streaming network interface. A single microcontroller broadcasts cluster instructions
in SIMD fashion to all of the arithmetic clusters. Each of Imagine’s 8 arithmetic
clusters consists of 6 functional units containing 3 adders, 2 multipliers, and a
divide/square root. These units are controlled by statically scheduled cluster

instructions issued by the microcontroller.

2.2 Current usage of micro-architecture simulator

In some relevant science projects to PIM (Processor In Memory) [10], there
always exist some cases utilizing.micro-architecture simulator. For example, in the
DIVA (Data IntensiVe Architecture) project.f11}, it-employed "DIVA simulator” to
simulate the operation of DIVA: ' Iniaddition,-the PHV project IRAM also makes use
of ” IRAM Simulator” to simulate the performance of iRAM [11].

Since Stream Processor also belongs to PIM techniques, our goal becomes to
discover the optimized stream micro-architecture for a specific media application
without using the expensive hardware equipment. The micro-architecture simulator
is designed for stream processor intended to simulate the performance of diverse
media application executed in stream processor.

The project has been divided into three parts in our team, including a low power
ALU cluster, memory management unit and address translation unit and the simulator
design. The detail micro-architecture of the cluster has been decided during a low
power cluster design, by surveying papers and considering the performance and

hardware usage. As for simulation, it has been designed for the performance

10

evaluation of different hardware organizations. The micro-architecture in a cluster
being evaluated is always the same, the only variable is the number of clusters. With
micro-architecture simulator, the number of clusters and the memory hierarchy
needed for dedicated micro-architecture can be easily decided, and the hardware

processor can be implemented.

2.3 The importance of the micro-architecture simulator

Stream micro-architecture could be the main trend of media processor in the
future! Different from the hardware design of the special-purpose processor, which
is designed for the algorithm of specific application and thus can achieve the best
performance only when executing.its favored application, the stream processor not
only possesses the advantage of theispecial-purpose processor to achieve very good
performance for specified application,..it but.also has great flexibility to adjust
hardware micro-architecture for arbitrary algorithm of application (the number of
computation units and the size of on-chip memory) and thus can best utilize the

hardware resources for desired application.

Since the stream micro-architecture for diverse media application is quite
different, how to discover the optimized micro-architecture for desired application is
definitely a big question! One intuitive way is to utilize hardware to implement
every possible design and then we can practically measure its performance.
However, it seems to be a very inefficient way to find optimized design since the cost

of the hardware implementation could be very expensive! In addition, hardware

11

implementation may take a lot of time. Compared to hardware implementation,
software simulation would be much faster, more efficient, and cheaper to achieve the
same purpose. Inspired from this idea, here we present the micro-architecture
simulator!

Since the e-Home project has been divided into three main parts, including
hardware design of an ALU cluster, simulator design for hardware performance
evaluation, and low-power technique needed on the whole stream micro-architecture.
In this thesis, the part of simulator design has been focused, it is helpful to the
hardware decision of the stream processor.

As shown in Figure 2.3, after micro-architecture decision step, application can be
mapped into binary stream programming codes according to the ISA and instruction
format of different functional units. Stream programming codes can be put into
simulator to simulate the operation.of which in stream processors, then the simulation
result will be generated, which-can:be-used-to compare to the simulation result of
other organization of micro-architectures.and.adjust the parameters that will affect the
organization of stream micro-architecture till the optimal organization of
micro-architecture is discovered. On the other hand, simulation result can also be

used to make sure the correctness of the stream programming codes.

12

Memory
capacity

Cluster #

Architecture
decision

Stream
programming code

Performance

evaluation correctness

Simulation
result

Figure 2.3 Contribution of the simulator

With micro-architecture simulator, the-performance of the application on diverse
stream micro-architectures can be easily.simulated. The micro-architecture of
different organizations of clusters and functional units will be simulated on the
micro-architecture simulator. The simulation results will show:

1.) How many functional units (ALU, MUL, DIV) in every cluster are used.

2.) How many memory hierarchies in every level in every cluster are used.

3.) How much CPU time it will cost when executing application.

4.) The number of memory hierarchy in every level being used.

Then, the optimized hardware micro-architecture for specific application can be
discovered based on these simulation results. The micro-architecture will efficiently

lower the performance and will not increase too many data exchange of

13

low-bandwidth memory. The determination of the optimized hardware
micro-architecture includes: number of clusters, number of functional units in a
cluster, the size of memory hierarchy in every level.

Since the test-bench selected in this thesis is “FFT”, the micro-architecture
needed to process this application is not that large enough. Time needed to access
each level of memory hierarchy (SRF, SP, LRF) is almost the same, so the
performance evaluated in this thesis depends only on the access time of each
functional unit. However, micro-architecture simulator might be used for many
other large applications in the future, time needed to access each level of memory
hierarchy might be different. In that case, time to access each level of memory
hierarchy have to be taken into consideration. The micro-architecture simulator
designed in this thesis also has the.function of evaluating the performance which takes
memory access time into acceunt, but the function is not suitable for the FFT’s
micro-architecture.

Up to now, the stream micro-architecture ‘has been widely explored to many
media applications and explicitly demonstrated in many references, such as 3-D
polygon rendering [9], MPEG-2 encoding [12], stereo depth extraction [13], and fast
Fourier transform (FFT). In this paper, we shall choose FFT [14] as the benchmark
to simulate the performance for specific hardware micro-architecture and then try to
determine the optimized micro-architecture from these simulation data.

The micro-architecture design of the Simulator shall be explicitly depicted in
Chapter 3. The demonstration of FFT on simulator and how we discover the

optimized micro-architecture for FFT will be drawn in Chapter 4.

14

Chapter 3 Micro-architecture simulator

Figure 3.1 illustrates the whole simulation flow. In the Section 3.1, we shall
introduce the whole micro-architecture of the simulator and the included components,
and explain how simulator works. In Section 3.2, we shall detail the way to design
the components inside the simulator, including cluster, functional unit, and memory
hierarchy. In Section 3.3, we shall introduce how to utilize simulator to simulate
hardware performance, that is, the whole simulation flow illustrated in figure above.

The actual simulation performance shall be presented in Chapter 4.

e —
- Architecture design ‘
|
) I

i icati || Cluster inst::uL(J:tion FU
Media application number format number ||
pa— e — :
) 4
Stream programming model
A 4 \ 4
kernels streams |
\ 4
' Cluster
: instructions
—>
[}
' (ALu)(muL)(orv) 4
Stream
programming
codes
DATA—|
Simulation
result

Figure 3.1 Simulation flow

15

3.1 Organization of the micro-architecture simulator

Figure 3.2 shows the block diagram of the simulator, which is a component of
the simulation flow shown in Figure 3.1. Simulator is composed of a controller,
many arithmetic clusters where the number of the clusters will differ from diverse
application, three-tiered memory hierarchy (SRF, SP, and LRF), and instruction
memory. It should be noted that the number of the components in the simulator is

not fixed. It would depend on the demands of diverse media applications.

MEM_D

Instruction memory

& =1
= ﬁﬁ@%ﬂ%=
LRF)

I
A l’é atchi
1/0 SLRF

Instruction
FILE

Figure 3.2 Block diagram of the micro-architecture simulator

Micro-architecture simulator is used to simulate the operation of the stream
processor and the performance of the hardware micro-architecture. As shown in the
flow of Figure 3.1, first, a multimedia application and then its hardware
micro-architecture, including the number hardware and the memory size have to be

16

chosen. Then, this application is translated into the stream programming model,
including kernel and stream, respectively. The cluster and its functional unit in
Figure 3.2 are just the kernel for processing stream. In addition, the data being
processed must be transformed into cluster instructions (stream) and then translate the
cluster instructions into binary expression according to the instruction format defined
by hardware.

Cluster instructions will be copied to instruction memory through File 1/O.
Controller will fetch instruction from instruction memory and equally distribute these
cluster instructions to cluster for executing. Three kinds of registers, SRF, SP, and

LRF, are used to save temporary results during computation process.

3.2 Design methodology of theimiero-architecture simulator

In this section, the description on how.to design the component of simulator,

including Cluster, and functional unit.(ALU,-MUL, DIV) is presented.
3.2.1 Cluster

Figure 3.3 shows the block diagram of cluster. Cluster includes two ALU units,
two MUL units, one DIV unit, and one 64 32-bit register, which is used to save data
exchange between different units in the same cluster. Please note the size of SP

register could vary according to the demands of diverse applications.

InputOutput——> / ALU\ / ALU\ / MUL\ / MUL\ / Dw\ Sclgzach
HEEEEBE BB BBw

Figure 3.3 Micro-architecture cluster block diagram

17

The main function of the component Cluster is to divide the received cluster
instruction into multiple instructions that are processable by function units according
to the number of functional units. As shown in Figure 3.4, cluster receives 137-bit
cluster instruction. According to micro-architecture of the cluster, cluster instruction
is divided into two 29-bit instructions for ALU, two 26-bit instructions for MUL, one

27-bit instruction for DIV.

ALU ALU MUL MUL DIV

(a) Cluster instruction

ALU

ALU

MUL

MUL

DIV

4 0 IAINE

(b) instructions are transferred to FU to process

Figure 3.4 Processing cluster instruction in the arithmetic cluster

18

3.2.2 ALU, MUL, DIV

In this section, how to design the functional unit shall be depicted. Since the
main spirits for designing ALU, MUL, and DIV are basically the same, we shall focus
on ALU to illustrate how to design functional unit. The only difference between

these three components is the bit of “Opcode” needed for expressing the operation in

the instruction format.

>

LU

ALU is a two stage pipeline computation unit. Figure 3.5 shows the instruction
format of ALU. The shadowed part in figure is.Opcode field, which expresses the
executing operation for instruction. Opcode also makes the biggest difference

between these three functional units: AELU.-MUL.‘and DIV. Please note that ALU

requires more diverse operations.

It demands4-bits to express.

LRF 0
Source

LRF 0
RD ADDR

LRF 1
Source

LRF 1
RD ADDR

DEST

WB
ADDR

OPCODE

29

27

21

Figure 3.5 ALU instruction format

19

13

10

0

Figure 3.6 is the detail view of the functional unit and its associated register files.

Roughly, it could be cataloged into three parts: data read, calculate, and write back.

19

Functional
Unit MUX > WRITE
LRF SP

LRFO_FU-1

READ< LRF1 FU-2,
LRF1_FU-3,
LRF1_FU-4,
LRF1_FU-5

FU-3FU-5

Figure 3.6 Detail of the functional unit

DataRead As shown in Figure. 3.6, the two MUXs in data input will judge the
source data from the field, "LRFO:Source”,-in the instruction format. Table 3.1
shows binary code and the corresponding source data. The origins of source data are
SRF, SP, and LRF, respectively. The desired datal can be found in the memory
location represented by "LRFO RD ADDR”. The way to find data2 is basically the
same as datal. The only difference is their reference fields. Acquiring data2 needs
to take references of the information of "LRF1 Source” and "LRF1 RD ADDR”.
Figure3.7 illustrates the program flow of how ALU in the simulator obtains two data

resources, datal and data2, according to the information of instruction.

20

Find_data2 ADDR()

calculate the memory
allocation K according to the K
“LRF1 RD ADDR?” field

* DATA2 %

& |
I Find_data2(int K, int clusterx, int FUX) I
{
I according to the “LRF1 Source” field I
I 00 do nothing I
01 data2 = SRF[K]
I 10 data2 = SP[K] I
11 data2 = LRF[K]
| } |
yzzzzosoopococeooas e
[}
i| LRFO LRF O y LRF1 LRF 1 WB
E Source RD ADDR:|; Source RD ADDR DEST ADDR OPCODE
[]
2y 27 IS 10 0
l,o"_ — e e — _‘._ _\._:-r.l
| Find_datalADDR() *DATALX |
{ -
I calculate the memory I -
allocation ”K” according to the K ;'
I “LRFO0 RD ADDR? field I
E |
I Find_datal(int K, int clusterx, int FUx) I
{
I according to the “LRFO0 Source” field I
I 00 do nothing I
01 datal = SRF[K]
I 10 datal = SP[K] I
11 datal = LRF[K]
| } |

Figure 3.7 Finding source data of ALU

21

Table 3.1 Lookup table of the data source

Binary Code Source
00 None
01 SRF
10 SP
11 LRF

Calculate The information describing what kind of operations is required to be
execute by every instruction will be implicitly included in the final field “Opcode” of
instruction. Different binary codes represent distinct operations. Table 3.3 shows
the lookup table for opcodes and corresponding operations. Matching the instruction
with those bits of opcode filed in the instruction format would know what kind of

operation is required for specific instruction.

Table3.3 Kernel'ISA of ALEU unit

OPCODE Operation
0001 ADD
0010 SUB
0011 ABS
0100 AND
0101 OR
0110 XOR
0111 NOT
1000 SLL
1001 SRL
1010 SRA
1011 LT
1100 LE
1101 EQ

22

Write Back The computation results of the functional unit will determine the
destination of write back through one MUX, including SRF, SP, and LRF. Write
back to LRF is classified into two kinds. If the results have to write back to the same
LRF of functional unit, it should be written back to LRF-0 (LRFO_FU-1). On the
other hand, if the result have to write to other LRFs of functional unit, it should be
written to LRF-1 (LRF1_FU-2, LRF1 FU-3, LRF1_FU-4, LRF1 FU-5). MUX
determines the destination of write back according to the information in the field
“DEST” of the instruction, and finds out the memory location of the write back from
the field "WB ADDR”. Table 3.2 shows the corresponding binary code and register
of DEST. Figure 3.8 illustrates the write-back step of programming process, and

Figure 3.9 illustrates the flow of programming process in ALU Unit.

' .
LRF 0 LRFO | LRF1 | LRF1 ! w |
Source | RDADDR | Source | RDADDR!| PEST | aAppr | OPCOPE
29 27 21 19 il BB 10—~ T 0
t| Find WBDDR) % WriteBack

~—

calculate the writeback
memory allocation K”
according to the

‘WBADDR' field K

}

Writeback(intK, int clusterx, int FUX)
{
1
according to the DEST” field
000 do nothing
001 SRF[K] = result
010 SP[K] = result
011 LRFO_FU1[K] = result
100 LRF1_FU2[K] = result
101 LRF1 FU3[K] = result
110 LRF1_FU4[K] = result
111 LRF1_FUS5[K] = result

Figure 3.8 Result write back of ALU

23

Table 3.2 Look up table of the data write back destination of FU-1

Binary Code DEST
000 None
001 SRF
010 SP
011 LRFO_FU1
100 LRF1_FU2
101 LRF1_FU3
110 LRF1_FU4
111 LRF1_FU5

24

{

}

Find_datalADDR()

calculate the memory
allocation ”K” according
to the “LRF0 RD ADDR”
field

DATAL | i

Find_data2 ADDR()

{

calculate the memory
allocation ”K” according
to the “LRF1 RD ADDR”
field K
}

*DATA2% |

Find_datal(int K, int clusterx, int FUX)
{

according to the “LRFO Source” field
00 do nothing

01 datal = SRF[K]

10 datal = SP[K]

11 datal = LRF[K]

Find_data2(int K, int clusterx, int FUXx)
{

according to the “LRF1 Source” field
00 do nothing

01 data2 = SRF[K]

10 data2 = SP[K]

11 data2 = LRF[K]

result

T T L TT rt o TrT LLCTTPPITEEEPPPPPREEEPPP .
Find_WBDDR() * WriteBack %
calculate the:writeback
memory allocation ”K”
according to-the
“WBADDRY field K
}

U

—

MUL is a four-stage pipeline computation unit.

Writeback(int K int clusterx, int FUX)
{

according to the “DEST” field
000 do nothing

001 SRF[K] = result

010 SP[K] = result

011 LRFO_FU1[K] = result
100 LRF1_FU2[K] = result
101 LRF1_FU3[K] = result
110 LRF1_FU4[K] = result
111 LRF1_FU5[K] = result

Figure 3.9 Block diagram of the ALU unit

The way MUL Unit deal with

instruction is the same as that of ALU. The only difference is that MUL Unit just

deal with one operation “multiple”.

25

Therefore, only one-bit is required for “Opcode”

filed in the instruction format and the instruction length of MUL Unit is three-bit less
than that of ALU Unit. Please not that the processing flow of ALU Unit in Figure
3.9 can be also applied to MUL Unit. However, in the third step, calculate, the
opcode must be referred to the corresponding operation shown in Table 3.4.

Table 3.4 Kernel ISA of MUL unit

OPCODE Operation
0 None
1 MUL

=
<

DIV is a six stage pipeline computation unit. Again, the way DIV Unit treats
instruction is the same as that of ALU, . The only difference lies in the operations
executed by DIV Unit and ALUW: Unit. ==The operations which DIV Unit deal with
are “division”, “remainder”, and “exponent”; respectively. Therefore, only two-bit
are required for “Opcode” field-in. instruction-format expressing these three distinct
operations. It follows that the instruction length of DIV Unit is two bit less than that
of ALU Unit. The programming flow of ALU Unit in Figure 3.9 can then be applied
again to DIV Unit except that the reference opcode in the third step, calculate, must
take the reference of Table 3.5 to see the corresponding operation.

Table 3.5 Kernel ISA of DIV unit

OPCODE Operation
00 None
01 DIV
10 REM
11 SQR

26

3.2.3 Memory hierarchy

Each level of memory hierarchy is implemented using global array.

1.) Instruction memory: Vary with different instruction number and cluster
length. The size of instruction memory is defined as “instruction number
multiplies VLIW _length”.

2.) SRF, SP, LRF: Assume each SRF, SP, and LRF is a sixty-four 32-bit
register. It could vary with the demands of diverse media applications.
Assume that ADDR_BIT needs six bits and the memory hierarchy sizes of
SRF, SP, and LRF in the system are 64 registers, 64*Cluster Number
registers, and 64*2*FU_Number*Cluster_Number registers, respectively.

Assume micro-architecture has 5-cluster, each cluster has four functional units,

and ADDR_BIT = 6. It follows that the applicable-memory hierarchy size SRF, SP,
and LRF of in the application are-64-registers,~320 registers(64*5), and 2560

registers(64*2*4*5), respectively.

3.3 Mechanism of the micro-architecture simulator

The performance simulation flow of media application in micro-architecture
simulator should be delineated in this section. In this paper, FFT is selected as the
simulation benchmark.

Simulation Flow is shown in Figure 3.1, where the design for the kernel of stream
programming mode, i. e., simulator, has been introduced in Section 3.2. The

application of Simulator can be roughly classified into two stages:

27

1.) Determination of the simulation micro-architecture of the application. This
step contains a number of parameters setups and shall be explicitly answered in
Section 3.3.1.

2.) Plugging cluster instruction (stream) into simulator for simulating, and

performance estimation shall be clarified in Section 3.3.2.

3.3.1 Parameter definition

Before the operation of the application to be simulated, the “micro-architecture
decision” step in Figure 2.3 has to be accomplished, a couple of parameters

establishing micro-architecture must be decided.

1.) The number of ALU, MUL, and DIV in a cluster: This step is to define the
micro-architecture inside a cluster. If defining.a eluster contains three ALU Units,
two MUL Units, and one DIV Unit,-then-the cluster executing instruction would be
like Figure 3.10. These parameters-will determine the instruction length of cluster
instruction, and the number of bit required for the "DEST” field in the instruction
format. If the number of the functional unit in a cluster lies between one to five,
the DEST field only needs 3-bit to express the destination of result write back; If
the number of the functional unit ranges from 6 to 13, the DEST field shall need

4-bit to represent.

28

x3

| =i
I /ALU\ /ALU\ /ALU\ /MuL\ /MUL\ /Drv\ |Ssaichl
Pad. |
x2 | aannnfl]
! e~ LrRF |
|

S g SN S g S S

x1

Figure 3.10 Block diagram of a cluster

2.) Determine the number of cluster needed for micro-architecture.
3.) Determine sufficient number of SRF, SP, and LRF, and the number of bit of
the ”ADDR_BIT” which expresses.memory location in the instruction format.
4.) According to several parameters defined above, we then can calculate the length
of ALU Unit, MUL Unit, and-DIV Unitfor dealing:with instructions, and the length
of cluster instruction.

ALU BIT =8+ 3*ADDR_BIT + DEST_BIT

MUL_BIT =5 + 3*ADDR_BIT + DEST_BIT

DIV_BIT =6 + 3*ADDR_BIT + DEST_BIT

VLIW_length = ALU_BIT*ALU_Number + MUL_BIT*MUL_Number +

DIV_BIT*DIV_Number

5.) Determine the consumed clock cycles executed by every functional unit,
“ALU_Time”, “MUL_Time”, and “DIV_Time”. The information is intended to

calculate CPU Time.

29

3.3.2 Map application into dedicated binary stream programming codes

Based on the “micro-architecture decision” step in 3.3.1, ISA of the
micro-architecture and the instruction format of different functional unit can be
explicitly known. As can be seen in Figure 3.11, the function of traditional
compiler is replaced by hand-coding method, which scheduling the instructions of
the application according to the ISA into cluster instructions, then the cluster
instructions is mapping into stream programming codes that can be executed on the

stream processor according to the instruction format of the functional units.
Application
(FFT)

Compiler
(hand optimization)

Micro

architecture B

Stream programming code

Figure 3.11 Map the application into stream programming code

3.3.3 Simulation

As can be seen in Figure 2.3, after accomplishing two steps of the
micro-architecture decision and mapping application into stream programming codes,
which may be plugged into simulator to simulate the performance executed on the

stream processor.

30

1.) Load the cluster instructions saved in the files into instruction memory using
File 1/0.
2.) According to the cluster number defined in Section 3.3.1, it would yield the
same number of cluster objects as cluster_ number”. Every cluster object
represents one cluster in real micro-architecture. According to the numbers
defined by ALU, MUL, and DIV in Section 3.3.1, every cluster object will declare
the same numbers of ALU object, MUL object, and DIV object. These functional
unit objects declared by every cluster stand for the functional units processing the
instruction in the cluster of practical micro-architecture.
3.) Controller would fetch the cluster instructions in the instruction memory, and
then equally distribute these instructions to clusters for dealing with instruction.
4.) The function of Cluster is to.divide the cluster instruction into instructions of the
same number as the number of functional unit in the cluster, and then submit these
instructions into ALU/MUL/DIV forexecuting.
For example, if a cluster has two ALU, two.MUL, and one DIV, we would divide
a 137-bit cluster instruction into two 29-bit ALU instructions, two 26-bit MUL
instructions, and one 27-bit DIV instruction, and then respectively submit them to
five Functional Units for processing. Figure 3.4 clearly illustrates the functions of
Cluster.
5.) Estimate Performance:
CPU Time Every time when the function, calculate(), is used in ALU, MUL,
and DIV, we accumulate the number of these function units being executed, i.
e., ALU, MUL, and DIV, inside different cluster. According to ALU_Time,
MUL_Time, and DIV_Time defined in Section 3.3.1, how many clock cycles

every cluster will cost when it implement application could be estimated

31

further. Comparing to the time consumed by the cluster, the desired CPU
Time for implementing application is just the maximum value being drawn.
Memory accessing times Every time when ALU, MUL, and DIV do data
fetch or data write back, memory hierarchy will be used. Simulator will
accumulate the number of accessing for every memory hierarchy level (could
be SRF, SP, or LRF). Application will show the employment information of
memory hierarchy after simulator done its work.

The amount of each Memory hierarchy level being used The information
about the required amount of memory in every level for simulating application
executed by stream processor will also show in the simulation results. This
information can greatly help determining how much memory hierarchy

capacity is required for the.application.

3.4 Summary

In this chapter, how to design an micro-architecture simulator, how to simulate
the process flow in stream processor of media application, and how to estimate its
performance has been introduced. In Chapter 4, actually the performance of the
media application, FFT, implemented in diverse hardware micro-architecture should
be simulated, and then the optimized hardware micro-architecture for FFT should be

selected according to the performance results.

32

Chapter 4 Performance Evaluation

In this chapter, FFT [15] is taken as benchmark and translated as application into
stream programming model to evaluate the performance of the micro-architecture

defined.

4.1 Benchmark

Media applications contain abundant parallelism and are computationally
intensive. In recent decades, a wide variety of media applications have been
simulated, such as stereo depth extractor, video encoder/decoder, polygon render and
matrix QR decomposition. These, media applications all bear a common
characteristic: containing a large amount of. data-level parallelism. All of these
media applications will first be mapped into stream programming model. A stream
program organizes data as streams and computation as sequence of kernels.

In the paper, 32-point Fast Fourier:Transform (FFT) is selected for the
benchmark. FFT is a kind of fast Discrete Fourier Transform (DFT). The
formulation is shown in Equation 4.1. There are two reasons why FFT is selected as
benchmark in this thesis. The first reason is that FFT is the most often used part in
multimedia applications. The second reason is that in paper [15], FFT is taken as an
example that executing on the Imagine, and the result of that is also discussed in the

paper. So, it is meaningful to take FFT as the benchmark of micro-architecture

simulator.
N-1
X[k]=> x[nlgV",0<k <N -1
n=0
WN — e—j.27r/N

Equation 4.1 Discrete fourier transform

33

First, FFT algorism has to be mapped into stream programming model. By
casting media applications as stream programs, hardware is able to take advantage of

the abundant parallelism, computational intensity, and locality in media applications.

4.2 Experimental set-up

4.2.1 Parameter definition

Before simulating FFT on simulator, a couple of parameters for determining
stream micro-architecture have to be defined. These parameters have been
introduced in Section 3.3.1.

1.) Number of function unit in a cluster: When the stream micro-architecture of
FFT is simulated, each cluster contains two ALU Units, two MUL Units, and
one DIV Unit. Since-cluster only.has.five functional units, the "DEST”
field requires only 3-bitfor expressing.

2.) Cluster number: In this paper,.we-would pay our attention on 1-cluster,
2-cluster, 4-cluster, and 8-cluster micro-architecture to simulate the
performance on the stream processor.

3.) ADDR_BIT: In the simulation of FFT, 6-bit memory allocation expression is
being adopted. In other words, the available space for memory hierarchy is
SRF = 64 registers, SP = 64*Cluster_Number registers, and LRF =

640*Cluster_Number registers, respectively.

34

4.) Based on the cluster number, functional unit number, DEST BIT, and
ADDR_BIT defined above, the length of every functional unit could be
calculated for executing instruction, and the length of cluster instruction.,
where VLIW_Length = 137, ALU_BIT = 29, MUL_BIT = 26, and DIV_BIT
= 27.

5.) Determine the required clock cycles for functional unit executing operation.

6.) ALU_Time = 2 cycles

7.) MUL_Time =4 cycles

8.) DIV_Time =6 cycles

4.2.2 Translate FFT algorism into stream code

As the simulation flow illustrated in Figure 3.1 shows, the selected media
application is mapped into stream programming -model. Kernel is simply the
simulator introduced in Section-3.4...-Therefore, FFT is translated into stream code
for the convenience of simulating on simulator:

In this system, since there is no compiler to generate the corresponding stream
code for FFT, hand coding method is taken to generate stream code of FFT. Before
simulating the performance of FFT, the instruction of FFT should be created first.
Then, the instruction should be scheduled to generate the cluster instructions that are
executable by micro-architecture simulator. It should be noted that ALU unit needs
two clock cycles to work while MUL unit requires four clock cycles. Moreover, FFT
does not require the functional unit, DIV, and thus the function of DIV will not be
explained in this section. It follows that the instruction formats, which are
corresponding to cluster instructions, have to be translated into binary code. Finally,

save these Binary codes are saved in a file called ”"FFT.dat”.

35

4.2.3 Data loading from main memory

In addition to determining those parameters mentioned in Section 3.3.1,
simulator will in advance load the necessary memory data into SRF, and LRF.

Since the purpose of stream micro-architecture is to decide how much space of
hardware will be utilized before the stream micro-architecture is implemented on
hardware, it could maximally exploit hardware to obtain the best performance
maximally exploit hardware. Therefore, the memories that data consumes when
performing FFT, i.e., the thirty-two x[n] in DFT, have been loaded on SRF in advance,
and a number of indispensable parameters during computation have been loaded on
LRF in advance, as well. As an example, during operation of FFT, there are many
mathematical formulae regarding.'sin and cosine being used. Thus, a couple of
corresponding values of sin and-cosine will be‘loaded-into LRF in advance.

Figure 4.1 shows the status of-memory. being utilized before the simulator
executes. Xx[0]~x[31] are copied'to SRE.through load command. The LRFO of
MUL1 and MUL2 would also load some required parameters from memory,

respectively.

36

SRF

X|0] X[1] X[2] X[3] X[4] X[5] X|6] X[7]

X[8] X[9] Xqo] | x| xp2p | xp3 | Xp4 | xqps)

X[6] | X171 | X8| X9 | Xpop | Xpu| XpR2)| X3

X[24] | X251 | X@26]| Xi271| Xi281| X[291| X301 | X[31]

__<
, Z
()
/
\
, 2
(-
/
\
/
\
/
\
2
/

-1 0.707
0.707 0.924
0.924 AR (35
0383 | AW 0195
0.195 :v:; b 0\931
0.981 = oAt 0.5548I
0.556 wf atal 0,831
0.831 1896 |

Figure 4.1 Memory usage before simulation

After the necessary parameters and loading for memory data are determined, the

simulator is ready to evaluate the performance.

37

4.3 Result of performance evaluation

In this section, performance evaluation for the stream micro-architecture of

different cluster is discussed in detail.
4.3.1 1-cluster stream micro-architecture simulation

First of all, FFT instructions are scheduled as 1-cluster cluster instructions. There
are 135 cluster instructions in total. Then, the instruction format definition shown
in Figure 3.5 is referred to translate the cluster instructions into binary code, i.e.,
representation with 0’s and 1’s.

1-cluster micro-architecture (Figure 4.2): 1-cluster micro-architecture

contains two ALU Units, two MWL Units, one DIV Unit, and five data exchange
intermediate medium between- functional units, 'SP, which are sixty-four 32bit
registers. There are one LRF; sixty-four-32-bit registers, and one SRF, sixty-four
32-bit registers, at the input of every functional unit. Therefore, we could know that
SRF is sixty-four 32-bit registers, SP is 64*1 = sixty-four 32-bit registers since there
is only one cluster in the entire system, and LRF is 64*2*5 = six hundred and forty
32-bit registers in total since there are five FUs in a cluster and one cluster in the

system.

38

Instruction
FILE

File
1/0

D b

[=L
o GRS ER R HE
IH B 8B H B

Instruction memory

Figure 4.2(a) Block diagram of 1-cluster micro-architecture simulator

0
- Y ALU1)< >
I I I Cluster I ‘ ALU2)< >
instructions \ instructign
‘ MUL 1 I rEe
controller cluster SPriTSR

MUL 2)« >

DIV

Figure 4.2(b) Stream programming model of 1-cluster architecture

The cluster instructions initially saved in file "fft.dat” will be read into
Instruction memory through File 1/0. The controller shown in Figure 4.3 will fetch
cluster instructions from instruction memory, and then submit all cluster instructions
to the only cluster for executing. The initial data x[0]~x[31] of FFT will be loaded
into SRF through memory. The initial input of Functional unit would be derived
from SRF. There are many intermediate computation results during the process from
x[0] to X[O], where X[O] is the output of FFT. If these data are used in the same
functional unit, these temporary results will be saved in LRFO of the functional unit.

Otherwise, these intermediate calculation results will be saved in LRF1 or SP in other

39

four functional units. Only the final calculation results, X[0]~X[31], will utilize SRF
to write them back to Memory. The intermediate calculation results could take
advantage of less time being consumed by LRF instead of memory to expedite whole
computation speed.

Figure 4.3 shows the simulation results. It can be seen that executing one
hundred and thirty-five cluster instructions require ALU Unit being used for 257 times,
MUL Unit for ninety-six times, and DIV Unit for zero time since the operation of FFT
does not need division. The whole operation of FFT requires four hundred and
fort-nine clock cycles. In the meantime, SRF, SP, and LRF are accessed one hundred
and thirty-seven times, one hundred and sixty-three times, and seven hundred
fifty-nine times, respectively.

Since this micro-architecture:has only one cluster, the time needed to execute
FFT is the same as the cloek .cycles spent by -Cluster 1. The ratio of this

micro-architecture using memory hierarchy-Is.SRF:/'SP : LRF =59 : 11 : 74.

40

w3 L us terl ¢

ALU hasz been used for 257 times.

MUL hasz been used for 76 times.

DIV haz been used for B times.

Total clusterd’'s CPU_time iz 449 seconds.
MEM_D has bheen uzed for 137 timesz.

%P1 hasz been used for 163 times.

LRF haz been used for 759 times.

#xCONCLUS T QN>

*##Tptal CPU_Time is 44?2 clock cycles.
=*=*[otal MEM_D uwusage iz 49 .

=*#*[otal SP usage iz 11 .

#*#¥[otal LRAF usage iz 42 .

Pressz any key to continue

Figure 4.3 Simulation result of X-cluster stream micro-architecture

4.3.2 2-cluster stream micro-architecture simulation

First of all, FFT instructions are scheduled as 2-cluster cluster instructions.
2-cluster micro-architecture is like dual CPU system. The system can deal with
two cluster instructions in one clock. After scheduling, there are sixty-five cluster
instructions for cluster 1, and 65 cluster instructions for cluster 2. After two
clusters execute one hundred and thirty cluster instructions in total, the final results
could be obtained. After scheduling instructions, like 1-cluster simulator, these one
hundred and thirty cluster instructions have to be translated into binary codes that are

implementable on simulator according to the instruction format shown in Figure 3.5.

41

2-cluster micro-architecture (Figure 4.4): There are two clusters in
micro-architecture. The functional unit in each cluster contains two ALU Units, two
MUL Units, one DIV Unit, and five data exchange intermediate medium between
functional units, SP, which are sixty-four 32bit registers. The definition is like that
of 1-cluster micro-architecture, which has been illustrated in Section 4.2.2. In
addition, there are also one LRF, sixty-four 32-bit registers, at the input of every
functional unit and one SRF, sixty-four 32-bit registers, in memory hierarchy.
Therefore, it could be known that SRF is 64 32-bit registers, SP is 64*2= 128 32-bit
registers since there are two clusters in the entire system, and LRF is 64*2*5*2 =

1280 32-bit registers in total since there are five FUs in a cluster and two clusters in

the system.
MEM_D
Instruction
FILE
SRF
File
110
\ 4

< = 1
= ﬁﬁ%%nw=
LRF)

-~ |
H 83 B B = LR:F :

Figure 4.4(a) Block diagram of 2-cluster micro-architecture simulator

42

ALU1)€

Y.V

ALU2)<

instructign

MUL 1
Instruction cluster B
Memory

Cluster NI 2
instructions

DIV

A
\4

xig

controller

o]

A
Y

ALU1

ALU2

instructign

MUL1)<

\4
wn

cluster

MUL 2

DIV

Figure 4.4(b) Stream programming medel of 2-cluster architecture

The cluster instructions Znitially .saved in file “fft.dat” will be read into
instruction memory through File /O, = The controller shown in Figure 4.4 will fetch
cluster instructions from instruction memory, and then equally distribute them to
cluster 1 and cluster 2 for executing. The initial data x[0]~x[31] of FFT will be
loaded into SRF register through memory. The initial data source of functional unit
would be derived from SRF. However, there are many intermediate computation
results during the process from x[n] to X[n], where X[n] is the output of FFT. If this
result is the input of the functional unit of the same cluster, it will be written to
registers LRF or SP. If the calculation result is taken as input of functional unit of
the other cluster, then data would be submitted to the function unit of the other cluster
through SRF register. Data exchange between every instruction would be processed
in the same cluster as possible through faster LRF or SP. Only when data are
exchanged between clusters will we use the SRF Register with slower access speed.

43

The final computation results X[0]~X[31], will be temporarily saved in SRF, and then
be written back to memory through memory store command. With this idea to
manipulate instructions could greatly save computation time.

Figure 4.5 shows simulation results of 2-cluster stream micro-architecture.
Compared to 1-cluster micro-architecture in Section 4.3.1, it can be readily seen that
the performance has been greatly improved when we utilize two clusters for
processing the cluster instructions of FFT. As shown in figures, it could be
observed that cluster 1 deals with sixty-five cluster instructions, uses ALU Unit for
one hundred and twenty-seven times, MUL for twenty-two times, and never use DIV
Unit since the operation of FFT does not need DIV Unit to implement instruction.
The whole operation of FFT require one hundred and seventy-one clock cycles for
cluster 1 processing sixty-five cluster instructions. In the meantime, SRF, SP, and
LRF are accessed one eighty-one.times, forty-eight times, and three hundred and
eighteen times, respectively.

As shown in the figure, it could be.observed that cluster 2 deals with sixty-five
cluster instructions, uses ALU Unit for one hundred and twenty-nine times, MUL for
seventy-four times, and never uses DIV Unit since the operation of FFT does not need
DIV Unit to do instruction. The whole operation of FFT require two hundred and
seventy-seven clock cycles for cluster 2 processing sixty-five cluster instructions. In
the meantime, SRF, SP, and LRF have been accessed for one hundred and three times,
one hundred and twenty-three times, and three hundred and eighty-three times,

respectively.

44

3 lusterd ¢
ALU has been
MUL has heen
DIV has been

used for
used for
used for

127 times.
22 times.
A times.

Total clusterl’s CPU_time is 171 clock cycles.
MEM_D has bheen used for 81 times.
%P1 hasz been used for 48 times.

LRF haz heen

3k lusterd e
ALU has heen
MUL has been
DIV has been

uzed for

used for
used for
used for

318 times.

129 times.
74 times.
A times.

Total cluster2’s CPU_time is 297 clock cycles.
MEM_D has bheen used for 183times.

%P1 hasz been used for 123 times.
LRF haz bheen used for 383 times.

COMCLUS T QM
#xJotal CPU_Time is 277 clock cycles.
**[otal MEM_D usage iz 32 .
**[otal SP usage iz 168 .
*xJotal LRF usage is 69

Prezz any key to continue

Figure 4.5 Simulation result of 2-cluster stream micro-architecture

The time spent by 2-cluster. stream micre-architecture for executing FFT

instructions is just the maximal time spent by clusterl and cluster 2, where the

CPU_Time of cluster-1 = 171 clock cycles, and CPU_Time of cluster-2 = 277 clock

cycles. Therefore, the CPU_Time spent in this system is 277 clock cycles (the

maximal value).

In addition, it could be observed that the ratio of the whole

micro-architecture using memory hierarchy is SRF: SP: LRF =62 : 6 : 116.

4.3.3 4-cluster stream micro-architecture simulation

First of all, schedule the FFT instructions as 4-cluster cluster instructions.

4-cluster micro-architecture is just like four-CPU system. The system can deal with

four cluster instructions in one clock. After scheduling, every cluster needs to deal

with forty-two cluster instructions.

After four clusters execute one hundred and

45

sixty-eight cluster instructions for total, it could be obtained the final results. After
scheduling instructions, just like 1-cluster simulator, these one hundred and thirty
cluster instructions have to be translated into binary codes that are implementable on

simulator according to the instruction format shown in Figure 3.5.

4-cluster micro-architecture (Figure 4.6): There are four clusters in
micro-architecture. The functional unit in each cluster contains two ALU Units, two
MUL Units, one DIV Unit, and five data exchange intermediate medium between
functional units, SP, which is sixty-four 32-bit registers. The definition is just like
that of 1-cluster micro-architecture, which has been illustrated in Section 4.2.2. In
addition, there are also one LRF, sixty-four 32-bit registers, in the input of every
functional unit and one SRF, sixty-four 32-bit registers, in memory hierarchy.
Therefore, it could be known that. SRF is 'Sixty-four-32-bit registers, SP is 64*4= 256
32-bit registers since there are two clusters-in-whole system, and LRF is 64*2*5*4 =
2560 32-bit registers for total since there are five FUs in a cluster and four clusters in

whole system.

46

MEM_D

Instruction memory

e
— Controller % % ﬂ EEQ_BEZ :
“LRE

X o\ 55T !
- bivviviiet
110 LRF

- re=-=-= |
o L
H B B B LRF :

ALU 1 -
#=H 1 ALU)<
instructipn .2
L (MUL D S
Cluster 1 . [[SPI1
e A
UL D
R« > ALU D)< >
ALU 2
struct instructipn
mMemory
MUL D«
Cluster Cluster 2 sp4]+
: f H
Instructions e R
DIV
controller
ALU T
ALU 2
instructipn
MUL 1 E
Cluster 3 B
.
— MUL 2
ALU T 5V
ALU 2
instructipn
(<3
MUL 1
Cluster 4 SPI1
=
MUL D« >
DIV

Figure 4.6(b) Stream programming model of 4-cluster architecture

47

The cluster instructions initially saved in file “fft.dat” will be read into
instruction memory through File 1/0. The controller shown in Figure 4.6 will fetch
cluster instructions from instruction memory, and then equally distribute them to
cluster 1, cluster 2, cluster 3, and cluster 4 for executing. The initial data x[0]~x[31]
of FFT will be loaded into SRF register through memory. The initial data source of
functional unit would be derived from SRF. However, there are many intermediate
computation results during the process from x[n] to X[n], where X[n] is the output of
FFT. If this result is the input of the functional unit of the same cluster, it will be
written to registers LRF or SP. If the calculation result is taken as input of functional
unit of the other cluster, then the data would be submitted to the function unit of the
other cluster through SRF register. Data exchange between every instruction would
be processed in the same cluster as possible through faster LRF or SP. Only when
data are exchanged between clusters, the SRF register with slower access speed will
be used. The final computation results-X[0]=X[31], will be temporarily saved in
SRF, and then be written back to ‘memory.through memory store command. With

this idea to manipulate instructions could greatly save computation time.

Figure 4.7 shows the simulation results of 4-cluster stream micro-architecture.
Compared to 1-cluster micro-architecture in Section 4.3.1, it can be readily seen that
the performance has been greatly improved when four clusters are utilized for

processing the cluster instructions of FFT.

As shown in figures, it could be observes that cluster 1 deals with forty-two
cluster instructions, uses ALU Unit for sixty-nine times, MUL for three times, and

never use DIV Unit since the operation of FFT does not need DIV Unit to implement

48

instruction. The whole operation of FFT require seventy-five clock cycles for
cluster-1 processing forty-two cluster instructions. In the meantime, SRF, SP, and
LRF are accessed for fifty-five times, fifteen times, and one hundred and forty-six
times, respectively.

As shown in figures, it could be observed that cluster 2 deals with forty-two
cluster instructions, uses ALU Unit for sixty-four times, MUL for nineteen times, and
never uses DIV Unit since the operation of FFT does not need DIV Unit to implement
instruction. The whole operation of FFT require one hundred and forty-two clock
cycles for cluster 2 processing forty-two cluster instructions. In the meantime, SRF,
SP, and LRF are accessed for sixty-three times, thirty-nine times, and one hundred and
forty-seven times, respectively.

As shown in figures, it could be observed that cluster 3 deals with forty-two
cluster instructions, uses ALU WUnit.for sixty-eight times, MUL for thirty-three times,
and never uses DIV Unit since the.operation.of [FFT does not need DIV Unit to
implement instruction. The whole -operation.“of FFT require one hundred and
thirty-four clock cycles for cluster 3 processing forty-two cluster instructions. In the
meantime, SRF, SP, and LRF are accessed for seventy times, fifty-seven times, and
one hundred and seventy-six times, respectively.

As shown in figures, it could be observed that cluster 4 deals with forty-two
cluster instructions, uses ALU Unit for fifty-six times, MUL for forty-one times, and
never uses DIV Unit since the operation of FFT does not need DIV Unit to implement
instruction. The whole operation of FFT requires one hundred and thirty-eight clock
cycles for cluster 4 processing forty-two cluster instructions. In the meantime, SRF,
SP, and LRF are accessed for sixty-one times, fifty-nine times, and one hundred and

seventy-one times, respectively.

49

e lus te rd w
ALU has been used for 69 times.
MUL has been used for 3 times.
DIV has been used for B times.
Total clusterdl’s CPU_time is 75 seconds.
MEM_D has been used for 55 times.
s been wused for 15 times.
= bheen wused for 146 times.

e L s te 2 s
ALY has been used for 64 times.
MUL has been wsed for 1?9 times.
DIV hasz been used for B times.
Total cluster2’'s CPU_time is 182
MEM_D has been wused for 63times.
SP1 has been used for 3?7 times.
s been wused for 147 times.

3 L s te 3 e
been uszed for 6B times.
been used for 33 times.
s been wused for B times.

Total clusterd’'s CPU_time is 134
MEM_D has been used for VA times.
SP1 has been used for 57 times.

LRF has been used for 176 times.

= L s te g e

LU has been used for 56 times.
MUL has been used for 41 times.
DIV has been used for B times.
Total clusterd’s CPU_time is 138
MEM_D has been used for 61 times.
SP1 has been used for 57 times.
LRF has been used for 171 times.

=G ONMCLUS T 0N

=#Total CPU_Time is 138 seconds.
#*%Total MEM_D uwusage is 64 .
=*xTotal P usage is 28 .
=xTotal LRF usage is 153 .
Frezsse any key to continue

Figure 4.7 Simulation result of 4-cluster stream micro-architecture

The time spent by 4-cluster stream micro-architecture for executing FFT
instructions is just the maximal time spent by cluster 1, cluster 2, cluster 3, and cluster
4 where the CPU_Time of cluster 1 = 75 clock cycles, CPU_Time of cluster 2 = 102
clock cycles, CPU_Time of cluster 3 = 134 clock cycles, and CPU_Time of cluster 4
= 138 clock cycles. Therefore, the CPU_Time spent in this system is one hundred and
thirty-eight clock cycles (the maximal value). In addition, it could be observed that
the ratio of the whole micro-architecture using memory hierarchy is SRF: SP : LRF =

64 : 20 : 153.

50

4.3.4 8-cluster stream micro-architecture simulation

First of all, schedule the FFT instructions as 8-cluster cluster instructions.
8-cluster micro-architecture is just like eight-CPU system. The system can deal
with eight cluster instructions in one clock. After scheduling, every cluster needs to
deal with thirty-four cluster instructions. After eight clusters execute two hundred
and seventy-two cluster instructions for total, the final results could be obtained.
After scheduling instructions, just like 1-cluster simulator, these two hundred and
seventy-two cluster instructions have to be translated into binary codes that are
implementable on simulator according to the instruction format shown in Figure 3.5.

8-cluster micro-architecture (Figure 4.8): There are eight clusters in
micro-architecture. The functional-unit in each cluster contains two ALU Units, two
MUL Units, one DIV Unit, and five data exchange intermediate medium between
functional units, SP, which is sixty=four-32bit.registers. The definition is just like
that of 1-cluster micro-architecture, which has been illustrated in Section 4.2.2. In
addition, there are also one LRF, sixty-four 32-bit registers, in the input of every
functional unit and one SRF, sixty-four 32-bit registers, in memory hierarchy.
Therefore, it could be known that SRF is sixty-four 32-bit registers, SP is 64*8 = 512
32-bit registers since there are two clusters in whole system, and LRF is 64*2*5*8 =
5120 32-bit registers for total since there are five FUs in a cluster and eight clusters

in whole system.

51

Instruction memory

Controller

A
File
1/0

Instruction
FILE

ﬁﬁﬁ%%ﬂWE

~ﬁﬁ%%ﬁ@i

wahhan®

— e o - n an wn E» En e E» e e - e - - -
- e e e e e e e e e e e e e e e e - - -

TBRREA™

Figure 4.8(a) Block diagram of 8-cluster micro-architecture simulator

52

| SP 1|
>
A

/lss
/
J

MUL 1

() ; "~ ~
E = Q7 X N
= = ; 5 g Ya| \{)Q\
A »
Z S & 5
= f — < o d N
g 5 S o S S S [1/
E <= ﬁ? S 9 v D k\/
g = L 3) N,
— S 5) Q
Q <P 7 é§“ l
O N 7]
)
&L < \
o ;t uni %\Q'J Q\
7
nemory N apalcS N o\
Cluster) O \ \
instructions e \ \
7
QUL A
ows® =
N
controller o
ALU1
N
Strucyq), A0 —
C/USte /]
rs / /
MULJ / /
Q S MOy / ':/
-/ . ¢ Dy
O s A 11/
A 2 & & > /
= 2 BRI N3 L
Z |E S BET 53 L
= =3 Ay] E
s |E S\ 2
o = > @
g L 2 Q) &< on
g A & < PN
12 o p J
»
I = N - 3 I\
J drE 4 4
A - ,L’—--\ \§
_ \ 7|
T 7 2 U//
%{ \ =15
\ = —
[5= =
: = A

Figure 4.8(b) Stream programming model of 8-cluster architecture

The cluster instructions initially saved in file “fft.dat” will be read into
instruction memory through File I1/0. The controller shown in Figure 4.8 will fetch
cluster instructions from instruction memory, and then equally distribute them to
cluster 1 to cluster 8 for executing. The initial data x[0]~x[31] of FFT will be loaded
into SRF register through memory. The initial data source of functional unit would

be derived from SRF. However, there are many intermediate computation results

53

during the process from x[n] to X[n], where X[n] is the output of FFT. If this result
is the input of the functional unit of the same cluster, it will be written to registers
LRF or SP. If the calculation result is taken as input of functional unit of the other
cluster, then the data would be submitted to the function unit of the other cluster
through SRF register. Data exchange between every instruction would be processed
in the same cluster as possible through faster LRF or SP. Only when data are
exchanged between clusters, the SRF register with slower access speed will be used.
The final computation results X[0]~X[31], will be temporarily saved in SRF, and then
be written back to memory through memory store command. With this idea to

manipulate instructions could greatly save computation time.

Figure 4.9 shows the simulation results of 8-cluster stream micro-architecture.
Compared to the 4-cluster micro-architecture in Section 4.3.3, it can be seen that the
performance has been hardly improved-when' eight clusters are utilized for

processing the cluster instructions of FET.

As shown in figures, it could be observed that clusterl deals with thirty-four
cluster instructions, uses ALU Unit for thirty-five times, MUL for once, and never use
DIV Unit since the operation of FFT does not need DIV Unit to implement instruction.
The whole operation of FFT require thirty-seven clock cycles for cluster 1 processing
thirty-four cluster instructions. In the meantime, SRF, SP, and LRF are accessed for
forty times, ten times, and fifty-eight times, respectively.

As shown in figures, it could be observed that cluster 2 deals with thirty-four
cluster instructions, uses ALU Unit for thirty-eight times, MUL for four times, and

never use DIV Unit since the operation of FFT does not need DIV Unit to implement

54

instruction. The whole operation of FFT require forty-six clock cycles for cluster 2
processing thirty-four cluster instructions. In the meantime, SRF, SP, and LRF are
accessed for thirty-eight times, twenty-five times, and sixty-three times, respectively.

As shown in figures, it could be observed that cluster 3 deals with thirty-four
cluster instructions, uses ALU Unit for twenty-four times, MUL for eight times, and
never use DIV Unit since the operation of FFT does not need DIV Unit to implement
instruction. The whole operation of FFT require forty clock cycles for cluster 3
processing thirty-four cluster instructions. In the meantime, SRF, SP, and LRF are
accessed for forty times, five times, and fifty-one times, respectively.

As shown in figures, it could be observed that cluster 4 deals with thirty-four
cluster instructions, uses ALU Unit for twenty-eight times, MUL for nine times, and
never use DIV Unit since the operation of FFT does not need DIV Unit to implement
instruction. The whole operation.of FFT require forty-six clock cycles for cluster4
processing thirty-four cluster instructions.—lIn-the meantime, SRF, SP, and LRF are
accessed for forty-one times, four times;.and fifty-Six times, respectively.

As shown in figures, it could be observed that cluster 5 deals with thirty-four
cluster instructions, uses ALU Unit for forty-two times, MUL for twenty-one times,
and never use DIV Unit since the operation of FFT does not need DIV Unit to
implement instruction. The whole operation of FFT require eighty-four clock cycles
for cluster 5 processing thirty-four cluster instructions. In the meantime, SRF, SP,
and LRF are accessed for fifty-five times, thirty-nine times, and ninety-one times,
respectively.

As shown in figures, it could be observed that cluster6 deals with thirty-four
cluster instructions, uses ALU Unit for thirty times, MUL for eighteen times, and

never use DIV Unit since the operation of FFT does not need DIV Unit to implement

55

instruction. The whole operation of FFT require sixty-six clock cycles for cluster 6
processing thirty-four cluster instructions. In the meantime, SRF, SP, and LRF are
accessed for fifty-five times, thirty times, and sixty-nine times, respectively.

As shown in figures, it could be observed that cluster 7 deals with thirty-four
cluster instructions, uses ALU Unit for twenty-six times, MUL for sixteen times, and
never use DIV Unit since the operation of FFT does not need DIV Unit to implement
instruction. The whole operation of FFT require fifty-eight clock cycles for cluster 7
processing thirty-four cluster instructions. In the meantime, SRF, SP, and LRF are
accessed for forty-four times, seventeen times, and sixty-five times, respectively.

As shown in figures, it could be observed that cluster 8 deals with thirty-four
cluster instructions, uses ALU Unit for thirty-four times, MUL for nineteen times, and
never use DIV Unit since the operation of FFT does not need DIV Unit to implement
instruction. The whole operation. of FFT.-require seventy-two clock cycles for
cluster-8 processing thirty-four-cluster instructions. = In the meantime, SRF, SP, and
LRF are accessed for seventy times,. seventeen times, and seventy-two times,

respectively.

56

#uClus teprs s
ed for 42 times.
for 21 ti 5

iz 84 clock cycles.
» 55 times.
» 39 times.

95 times.

cycles.

=G lus terh=
1 een | for 38 times.
» 18 i

CPU_time is 58 clock cycles.
ed for 44 times.
| for 17 times.

ed for 65 times.
¢« cycles.

sed for 34 times.

=k cycles.

exCONCLUS I ON»
(=xTotal CPU_Time

Figure 4.9 Simulation result of 8-cluster stream micro-architecture

The time spent by 8-cluster stream micro-architecture for executing FFT
instructions is just the maximal time spent by cluster-1 ~ cluster-8, where the
CPU_Time of cluster 1 = 37clock cycles, CPU_Time of cluster 2 = 46 clock cycles,
CPU_Time of cluster 3 = 40 clock cycles, CPU_Time of cluster 4 = 46 clock cycles,
CPU_Time of cluster 5 = 84 clock cycles, CPU_Time of cluster 6 = 66 clock cycles,
CPU_Time of cluster 7 = 58 clock cycles, and CPU_Time of cluster 8 = 72 clock
cycles. Therefore, the CPU_Time spent in this system is eighty-four clock cycles (the
maximal value). In addition, it could be observed that the ratio of the whole

micro-architecture using memory hierarchy is SRF: SP: LRF =64 : 25 : 212.

57

4.4 Performance comparison

800
700
600
500
400

performance

300
200
100

Performance of FFT on different architecture

\\

./

—e— CPU Time
—a— SRF
—— SP

—~— LRF

\
A—

—

\i‘\“

1-cluster

2-cluster 4-cluster 8-cluster

cluster number

Figure 4.10 Performance of FFT-on-different micro-architecture

Figure 4.10 shows the analysis chart of performance evaluation in Section 4.3.

The x-axis represents different stream micro-architectures, including 1-cluster,

2-cluster, 4-cluster, and 8-cluster; while the y-axis denotes performance.

The curve marked with diamond presents the necessary CPU_Time when FFT is

executed. As shown in the figure, it could be observed that when the cluster number

of the micro-architecture is increased from 1 to 2, the performance is doubled.

Compared 2-cluster with 4-cluster micro-architecture, the performance can still

double.

the improvement of performance can not be easily observe.

58

However, in the case of 4-cluster compared to 8-cluster micro-architecture,

The curve marked with square represents the required number of accessing SRF
when we execute FFT. It could be also viewed as the number of data exchange using
SRF. As shown in the figure, when the number of cluster is increased, for example
from 1-cluster to 2-cluster, or from 2-cluster to 4-cluster, the number of data exchange
using SRF increases slowly. However, when the number of cluster is increased from
4-cluster to 8-cluster, the number of data exchange using SRF obviously doubles.

The curve marked with triangle denotes the number of accessing SP when we
execute FFT. It can also be viewed as the number of data exchange using SP. As
shown in the figure, there is no relationship between the number of cluster and the
number of SP used. Therefore, it could be concluded that regardless of how many
clusters we have, the number of data exchange using SP between functional units in
the same cluster is not many. =Moreover, the functional unit will not vary with the
number of cluster either.

The curve marked with “x” represents.the number of accessing LRF when we
execute FFT, i.e., the number of data exchange using LRF. As shown in the figure,
with cluster increasing, the number of data exchange would decrease. When the
number of clusters is increased from one to four, the number of data exchange using
LRF linearly is decreased. However, in the case of increasing 4-cluster to 8-cluster,
the number of accessing LRF shows more drastic increase.

Since the number of accessing memory hierarchy is fixed when executing FFT,
the number of SRF being used increases proportionally with the number of clusters,
which linearly increases from one to four. However, the number of consumed LRF
shows linear decrease. In addition, when increasing the number of cluster from 4 to

8, the number of accessing SRF suddenly doubles and the number of accessing LRF

59

show noticeable decrease, which represents that data exchange between clusters, i.e.,
utilizing SRF to exchange data, becomes frequent. On the other hand, the number of
data exchange inside every cluster, i.e., using LRF to do data exchange, would
decrease.

Then let’s consider the wvariation of performance between different
micro-architectures. From 1-cluster, 2-cluster, to 4-cluster micro-architecture, the
performance all doubly increases. However, the performance only shows little
improvement from 4-cluster to 8-cluster micro-architecture. It cause huge data
exchange from high-bandwidth LRF to low-bandwidth SRF since the bandwidth of
LRF > SP > SRF. In this case, the advance in performance does not follow that in
expensive hardware.

Figure 4.11 analysis chart ofimemory usage, where x-axis represents different
level of memory hierarchy, while y-axis denotes memory usage in every level. The
demand for memory in every level does-not hold close relationship between
performances.

The demands for SRF usage in 1-cluster, 2-cluster, 4-cluster, and 8-cluster
micro-architecture are roughly the same. It does not increase with the number of
clusters. The capacity of SP usage for four micro-architectures is quite different.
However, it does not positive relation with the number of cluster. The capacity of
LRF would linearly increase with the number of cluster. In the 3-tiered memory

hierarchy, only the demand of LRF holds positive relation with cluster number.

60

Memory Capacity

250
200
150 @ 1-Cluster
| 2-Cluster
100 O 4-Cluster
O 8-Cluster
501

SRF Usage SP Usage LRF Usage

Figure 4.11 Memory capacity of memory hierarchy

From the analysis above,. it could be -concluded that the 4-cluster
micro-architecture best suits the hardware-micro-architecture of FFT-32 application.
As for the memory size required by-the micro-architecture, Figure 4.12, memory
usage chart, should be referenced where SRF = 64 32-bit registers, SP = 20 32-bit

registers, and LRF = 212 32-bit registers.

4.5 Summary

In this thesis, an micro-architecture simulator is being designed, where the main
function is to simulate the operation of media application in stream processor and
estimate performance. FFT is taken as benchmark. Several micro-architectures of
different cluster number have been attempted, and then analyzed with varying number
of accessing memory in each level and CPU Time for comparison. It could be

observed that when the number of cluster increase from 1 to 2 and 2 to 4, CPU Time

61

would double, and the number of SRF being used shows “linear” increase while the
that of LRF present linear decrease. However, when the cluster number of the
simulator goes from 4-cluster to 8-cluster, the progress of CPU Time is limited and
causes large amount of SRF being used, i.e., huge data exchange between clusters.
The design of stream processor is trying to have data calculated inside cluster as
possible. When necessary, data would be exchanged between clusters through SRF.
However, the simulation results of 8-cluster micro-architecture do not fit our
expectation.

Therefore, 4-cluster micro-architecture has been chosen as the most suitable one
for executing FFT in stream processor. In addition, the usage of memory hierarchy

IS SRF : SP: LRF =64 : 20 : 212, respectively.

62

Chapter 5 Conclusion and future work

Since stream processor is a general-purpose solution for media application, for
diverse media applications, different hardware micro-architecture could be used.
However, due to the high cost of hardware implementation and lengthy computing
time, the idea of software simulation is suggested.

First of all, the application to be simulated on the simulator needs to be
determined. Before simulation, one has to decide the specifications of the
micro-architecture, including number of cluster, number of functional unit in a cluster,
the capacity of each level of memory hierarchy. Then, ISA of the micro-architecture
can be explicitly known. Moreover, hand-coding method is used to replace the
functions of the complier. The function-are.to. schedule application instructions into
cluster instructions according to the ISA of the micro-architecture and to translate
cluster instructions into binary stream programming-codes according to the instruction
format of the functional units of ALU;MUL.,"and DIV. Stream programming codes
then can be plugged into simulator to simulate the executing of that on the stream
processor, and the simulation result can be generated. Stream programming code,
that simulates on different organization of the micro-architectures, results in different
simulation results. Simulation result of current organization of micro-architecture is
taken to compare with the result of other organizations of micro-architecture, and the
parameters will be adjusted till the optimal organization of the micro-architecture is
discovered including number of clusters, number of functional units in a cluster, and
capacity of each level of memory hierarchy. Simulation result also can be used to
ensure the correctness of the stream programming code generating by hand-coding

method.

63

With micro-architecture simulator, the optimal organization of micro-architecture
can be discovered. The simulation result of the application can be used by another
part of our project, “a low power ALU design”. Simulator can be used to determine
the number of clusters, and the capacity of the memory hierarchy needed in hardware
for executing particular media application. Then it can be implemented in hardware.

In this thesis, media application is classified into two kernels cluster and
functional unit to simulate the operation of media application in hardware. The
biggest challenge is to map the operation of FFT media application into binary stream
codes that are implementable in simulator. First of all, the N value of FFT has to be
decided, where in this thesis we select N = 32 for FFT simulation, and then translate
mathematical formula into instruction. Furthermore, scheduling for the
micro-architecture of different cluster number. is performed. Finally, cluster
instructions are translated into the.implementable. binary stream programming codes
in simulator. In the process of. -translating formulation into binary stream
programming codes, much time and-effort.are required. Therefore, one possible
future work to ameliorate this project is to develop a compiler to deal with scheduling
and to translate scheduled cluster instructions into binary code. By doing so, the

steps to generate binary stream codes would become more efficient.

64

Bibliography

1. U.J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and B. Towles, “Stream
scheduling,” Concurrent VLSI Micro-architecture Tech Report 122, Stanford
University, Computer Systems Laboratory, March 2002.

2. Brucek Khailany, “The VLSI Implementation and Evaluation of Area- and
Energy-Efficient Streaming Media Processors,” PhD thesis, Stanford University,
June 2003.

3. Rixner, Scott, et al., “A Bandwidth-Efficient Micro-architecture for Media
Processing,” In Proceedings of the International Symposium on
Micromicro-architecture (December,1998); pp. 3-13.

4. Dally W. J. et al., "Stream processors programmability with efficiency,” ACM
QUEUE, March 2004.

5. Khailany, Dally, Kapasi et al., “Imagine:Media Processing with Streams,” IEEE
Micro,March-April 2001, pp. 35-46

6. John D, Owens, Scott Rixner, Ujval J, Kapasi, Peter Mattson, Brian Towles, Ben
Serebrin, and William J. Dally "Media Processing Applications on the Imagine
Stream processor,” Proceedings of the International Conference on Computer
Design, Sep. 2002.

7. B. Khailany et al., “Exploring the VLSI Scalability of Stream Processors,” Proc,
9th Int’l Symp, High-Performance Computer Micro-architecture, IEEE CS Press,
2003, pp. 153-164.

8. S. Rixner, “Stream Processor Micro-architecture,” Kluwer Academic Publishers,

Boston, MA, 2001.

65

10.

11.

12.

13.

14.

15.

16.

Owens JD, Dally WJ, Kapasi UJ, Rixner S, Mattson P, Mowery B, “Polygon
rendering on a stream micro-architecture,” In: Proc, of the
Eurographics/SIGGRAPH Workshop on Graphics Hardware, 2000. 23~32.

J. Draper, et al, "The Micro-architecture of the DIVA Processing-in-Memory
Chip," to appear at International Conference on Supercomputing, June 2002.
Huang, Andrew, “Processor-In-Memory System Simulator,” MIT Al Lab
Abstracts of Research Projects, Fall 2000.

U.J, Kapasi et al., "Programmable Stream Processors," Computer, August 2003,
pp. 54-62

William Dally et al, "Stream Processors: Programmability with Efficiency,” ACM
Queue, March 2004, pp. 52-62.

Ujval J, Kapasi, William J, Dally, Scott Rixner;,.John D, Owens, and Brucek
Khailany, "The Imagine Stream.Processor;" Proceedings of the International
Conference on Computer Design}.Sep.-2002.

http://www.cmlab.csie.ntu.edu.tw/ecml/dsp/training/coding/transform/fft.html

K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, M. Horowitz, “Smart
Memories: A Modular Reconfigurable Micro-architecture,” Computer
Micro-architecture, 2000, Proceedings of the 27" International Symposium on

2000, Pages161-171.

66

http://csdl.computer.org/comp/mags/co/2003/08/r8054abs.htm
http://csdl.computer.org/comp/mags/co/2003/08/r8toc.htm
http://csdl.computer.org/comp/mags/co/2003/08/r8toc.htm
ftp://cva.stanford.edu/pub/publications/spqueue.pdf
http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html

	ｔｈｅｓｉｓ（１）.pdf
	ｔｈｅｓｉｓ（２）.pdf
	摘要
	Abstract
	 誌 謝
	 List of Figures
	 List of Tables
	Chapter 1 Introduction
	Chapter 2 Background
	2.1 Stream processing
	2.1.1 Stream programming model
	2.1.2 Stream micro-architecture
	2.1.3 An example of stream processor: Imagine

	2.2 Current usage of micro-architecture simulator
	2.3 The importance of the micro-architecture simulator
	Chapter 3 Micro-architecture simulator
	3.1 Organization of the micro-architecture simulator
	3.2 Design methodology of the micro-architecture simulator
	3.2.1 Cluster
	3.2.2 ALU, MUL, DIV
	3.2.3 Memory hierarchy

	3.3 Mechanism of the micro-architecture simulator
	3.3.1 Parameter definition
	3.3.2 Map application into dedicated binary stream programming codes
	3.3.3 Simulation

	3.4 Summary

	Chapter 4 Performance Evaluation
	4.1 Benchmark
	4.2 Experimental set-up
	4.2.1 Parameter definition
	4.2.2 Translate FFT algorism into stream code
	4.2.3 Data loading from main memory

	4.3 Result of performance evaluation
	4.3.1 1-cluster stream micro-architecture simulation
	4.3.2 2-cluster stream micro-architecture simulation
	4.3.3 4-cluster stream micro-architecture simulation
	4.3.4 8-cluster stream micro-architecture simulation

	4.4 Performance comparison
	4.5 Summary

	Chapter 5 Conclusion and future work
	Bibliography

