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Statistical Approach for Cycle Time Estimation
in Semiconductor Packaging Factories

W. L. Pearn, Yu-Ting Tai, and J. H. Lee

Abstract—In the semiconductor industry, to enhance customer
satisfactions and ability of quick responses, the development of
cycle time estimation model is very important. Cycle time estima-
tion is an essential planning basis, which has many applications,
especially on the analyses of performance indexes, capacity plan-
ning, and the assignments of due dates. In this paper, we provide
a statistical approach for cycle time estimation in semiconductor
plastic ball grid array (PBGA) packaging factories. Due to today’s
fierce competitive environments in the semiconductor industry,
planners involved in PBGA packaging factories need an approach
to obtain estimated cycle times with different confidence to ensure
the due date assignments more accurately. Therefore, upper
confidence bounds of estimated cycle times at various confidence
coefficients are also presented in this paper. We demonstrate the
applicability of the proposed cycle time estimation model incor-
porating the upper confidence bounds by presenting a real-world
example taken from a PBGA packaging shop floor in a semicon-
ductor packaging factory located in the Science-Based Industrial
Park in Hsinchu, Taiwan.

Index Terms—Cycle time estimation, Gamma distribution,
plastic ball grid array.

I. INTRODUCTION

T O increase the customer satisfaction in demand and en-
hance the ability of quick response, semiconductor man-

ufacturers need to develop a model in order to estimate cycle
times fast and accurately. Cycle time estimation is an essential
planning basis, which has many applications, especially on the
analyses of performance indexes, capacity planning, and the as-
signments of due dates in the semiconductor industry. Semi-
conductor manufacturing process is comprised of four major
processing stages involving wafer fabrication, wafer probing
process, integrated circuit (IC) packaging, and final test process.
Wafer fabrication and wafer probing processes are usually re-
ferred to as the “front-end,” while IC packaging and final test
processes are referred to as the “back-end” of production. In this
paper, we present a statistical model for cycle time estimation
in a plastic ball grid array (PBGA) packaging factory at the IC
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packaging processing stage in order to assist the proper assign-
ment of due dates and to enhance the ability of quick responses
in the whole semiconductor manufacturing process.

In this paper, we focus on constructing a model to be used for
cycle time estimation in a plastic ball grid array (PBGA) pack-
aging factory. The PBGA packaging processes are increasingly
popular because of their efficient mounting real estate, good
thermal, and electrical performance [1]. PBGA has emerged as
a popular array packaging method since it can include higher
input/output (I/O) counts on limited board area than the con-
ventional peripheral lead frame packages, such as plastic quad
flat packages (PQFPs). The PBGA packaging processes have
been applied in extensive applications such as cellular phones,
which require high I/O counts on reduced board. Generally,
the process of PBGA packaging involves ten major operations:
1) the grinding of the wafer back; 2) the mount of wafer; 3) the
sawing of wafer; 4) the bonding of die; 5) the bonding of wire;
6) the molding; 7) the marking; 8) the mounting of ball; 9) the
singulation; and 10) the inspection, as shown in Fig. 1. In the
process, dies are mounted and bonded by gold wires on sub-
strate strips. A substrate strip usually comprises four or eight
devices depicted in Fig. 2. In molding operation, dies are encap-
sulated as PBGA packages. Unlike leadframe packages, PBGA
uses solder balls as the interconnect path from the package to
the printed circuit boards. Solder balls are attached to the sub-
strate by applying a flux and reflowing the solder. Finally, the
individual PBGA devices are cut from the substrate strips in the
singulation operation and they are placed in trays for subsequent
inspections.

Cycle time estimation is an essential problem for PBGA
packaging factories. In PBGA packaging factories, due to wide
applications of PBGA packaging, there is a great proliferation
of product types. It should be noted that the number of solder
balls is a major characteristic among these various product
types. Fig. 3 presents the bottom view and side view of an
8 8 PBGA packaging product. In the PBGA packaging shop
floor, a job involves two cassettes comprising 20 substrate
strips each, which are clustered according to their product
types and processed on identical parallel machines. The job
processing time may vary, depending on the product type of the
job processed on. Furthermore, to prevent the critical resources
from starvation (idle), the CONWIP (constant work in process)
control policy is applied in order to maintain the level of WIP
constant. In addition, the processing statuses of machines, such
as processing, idle, or breakdown, mainly affect the cycle time
at each processing operation. Due to the lack of the fast and
accuracy cycle time estimation methods in PBGA packaging
factories, practitioners often use constant cycle times as bases
for due date assignment and scheduling. However, constant
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Fig. 1. PBGA packaging process flow.

Fig. 2. Substrate strip is comprised of four PBGA devices.

cycle time is so simplified that inappropriate due dates and
schedules may be assigned and constructed. Therefore, the
development of a model for cycle time estimation in PBGA
packaging factories is difficult but essential.

In this paper, the distribution of cycle time for single opera-
tion is first formulated. A two-parameter Gamma analysis char-
acterized with different waiting time distributions is used for the

Fig. 3. Example of a PBGA packaging product via bottom and side view im-
ages.

cycle time estimation. Subsequently, the combined distribution
adopting the reproductive property of the Gamma distribution
for multiple operations is also presented. To demonstrate the
applicability of the cycle time estimation model with the com-
bined distribution, we consider a real-world example taken from
a plastic ball grid array factory located in the Science-Based
Industrial Park in Hsinchu, Taiwan. The statistical cycle time
estimation model can allow us to obtain the upper confidence
bounds of cycle time efficiently and further to quickly respond
to customer requirements with different levels of customer ser-
vice.

This paper is organized as follows. Section II presents a com-
prehensive review of conventional cycle time estimation litera-
ture. Section III presents the cycle time distribution for single
operation. Section IV shows the combined distribution for mul-
tiple operations, and Section V gives a real-world example to
demonstrate the applicability of cycle time estimation model
in a PBGA packaging factory. Finally, Section VI provides the
conclusions.

II. CONVENTIONAL METHODS FOR CYCLE TIME ESTIMATION

In recent years, much research has focused on providing solu-
tions to cycle time estimation. Chung and Huang [2] and Backus
et al. [3] provided extensive discussions regarding the methods
of cycle time estimation. Chung and Huang [2] classified the
methods for cycle time estimation into analytical, simulation,
statistical analysis, and hybrid methods. Moreover, Chang and
Liao [4] considered that the tools in soft computing are also
widely applied in this field.

For analytical methods, there have been many researchers
who have investigated the cycle time estimation problems.
Chung and Huang [2] provided an analytical approach to
estimate cycle times for wafer fab with engineering lots.
Shanthikumar et al. [5] presented a survey regarding the
queueing theory for a semiconductor manufacturing system.
They provided a novel solution by incorporating a key charac-
teristic involving the dependent relationships in the classical
queueing theory and expected to point out new directions in
queueing model for semiconductor manufacturing systems.
Morrison and Martin [6] conducted a comprehensive review
regarding the queueing theory applied in cycle time estima-
tion. They provided some practical extensions to cycle time
approximations for the -queue [6]. They also provided
bounds for comparison for with mean cycle time prediction.
Moreover, Huang et al. [7] applied analytic approximations
for semiconductor wafer fabrication. De Ron and Rooda [8]
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described a lumped parameter model for manufacturing lines.
They used the Kingman’s equation and considered the basic
characteristics of real lines. However, most of those works
only focused on one operation, their computational results
cannot be extended to whole factory cycle times. Although the
methods applied queueing theory are fast in computing time,
the accuracy of classical queueing models is less satisfactory
than that of simulation, partly because the complex operational
behaviors of semiconductor fabs cannot be represented by one
single queueing model.

In recent years considerable concern has arisen over the
simulation methods in cycle time estimation research. Vig and
Dooley [9] proposed two methods for flow-time estimation
methods. They evaluated relationships between several shop
factors and effects on the due-date performance using a simu-
lation tool. Vig and Dooley [10] further proposed a flow-time
estimation and presented a regression-based approach for
setting job-shop due dates. Raghu and Rajendran [11] applied
a simulation method to select the best rule for shop floor
dispatching and developed a due-date assignment policy for a
real-life job shop. Chang [12] developed a cycle time estima-
tion approach to provide real-time estimates of the queueing
times for the jobs which still wait to perform the remaining
operations. He also incorporated this estimated queueing time
as essential information to the dispatching heuristics to improve
their scheduling performance. However, Backus et al. [3], De
Ron and Rooda [8], and Shanthikumar et al. [5] indicated that
the most common solution for estimating cycle time in complex
processes is simulation; however, the simulation method is time
consuming and impractical for complicated manufacturing
factories, especially in semiconductor manufacturing systems.
In addition, Morrison and Martin [6] indicated that the method
of simulation cannot offer closed-form expressions for system
metrics. Simulation is used for increasing the understanding of
behavior of manufacturing systems. Thus, it is difficult to apply
in the realistic shop floor because it needs heavy computation
loading.

For statistical analysis methods, Raddon and Grigsby [13]
presented a regression model to obtain cycle times. Backus et
al. [3] applied another statistical method, the data-mining ap-
proach, and provided nonlinear predictor variables to estimate
factory cycle time. Pearn et al. [14] presented a due-date as-
signment model for the semiconductor wafer fabrication under
a demand variant environment. They applied the contamination
model to tackle the effect of that product mix varies periodi-
cally. Backus et al. [3] pointed out that the statistical models
can be updated as necessary due to the ability regarding quickly
reanalyzing the statistical data. Moreover, in recent years the
technologies of soft computing including genetic algorithm,
fuzzy, and neural network approaches are applied to estimate
cycle times in semiconductor manufacturing processes. Hsu et
al. [15] applied constraint-based genetic algorithm (CBGA) to
conduct the flow time estimation model. The CBGA integrates
constraint-based reasoning with genetic algorithm to reveal the
rule sets. A filtering mechanism is incorporated in the CBGA to
enhance computational efficiency before generating and evalu-
ating chromosomes. Chang and Liao [4] presented a flow-time
prediction method, which incorporates fuzzy rule bases with

the aid of a self-organizing map (SOM) and genetic algorithm
(GA). In addition, Chen [16], [17] applied hybrid fuzzy c-mean
and fuzzy back propagation network approaches to estimate
cycle time in semiconductor manufacturing processes.

In addition, some research works investigate the hybrid
methods to estimate cycle time. Kaplan and Unal [18] combine
the simulation and statistical analysis approaches to estimate
cycle time. Liao and Wang [19] estimated delivery time using
the hybrid method incorporating neural networks and analytical
methods. Moreover, Chen [20] presented an intelligent mech-
anism which applies hybrid self-organization map and back
propagation network in the first part and incorporates a set of
fuzzy inference rules to evaluate the achievability of related
output time forecast in the second part.

III. CYCLE TIME DISTRIBUTION FOR SINGLE OPERATION

In this paper, a statistical approach for the cycle time esti-
mation in PBGA packaging process flow is presented. We con-
sider a more general and more flexible statistical version of a
cycle time estimation model for the PBGA packaging indus-
tries. Conventionally, the exponential distribution is commonly
used for queuing-time-estimated models; however, unsatisfac-
tory results limited their applications in practical factories. On
the contrary, Gamma distribution can provide a great flexibility
and cover extensive applications due to its two essential parame-
ters. Due to Gamma distribution being nonnegative domain and
right skewed probability distribution, it is used as the probability
model for the estimation of waiting time. For instance, it is used
for due date assignment for wafer fabrication [14]. Therefore, a
Gamma distribution for the cycle time estimation at single op-
eration has been applied in this investigation.

A. Gamma Distribution

The Gamma distribution is denoted as with
shape parameter and scale parameter . A random variable
is said to have a Gamma distribution with parameters ,

, , if its density function is given by

(1)

where is known as Gamma function.
The mean and variance are given, respectively, by

and . Gamma distribution is a nonneg-
ative domain and right skewed distribution. The skewness and
kurtosis (which are defined as the third and fourth moments of
the standardized distribution, respectively) of are

and , respectively. The skewness coefficient and
the kurtosis coefficient are calculated only by using the shape
parameter . This means that the scale parameter cannot af-
fect the values of skewness and kurtosis of Gamma distributions.
Therefore, we fix in this investigation for the Gamma distribu-
tions. Fig. 4 presents several Gamma distributions with different
combinations of and . As can be seen in Fig. 4, the Gamma
distribution covers a wide class of non-normal applications.

Fig. 4(a)-(c) present graphs of the density for a
variety of values of . It should be noted that as becomes large,
the density starts to resemble the normal density [21]. To obtain
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the maximum likelihood estimators (MLE) of and for the
Gamma distribution, we need to solve the following equations
simultaneously:

(2)

(3)

Solving the above equation for is rather complicated and there
is no explicit close form for the maximum likelihood estimators
of . In this paper, therefore, we consider the method of mo-
ment estimators to estimate the unknown parameters and .
The first two population moments ( and ) of the Gamma
distribution with parameters and are

(4)

(5)

By equating the first two sample moments ( and ) to
the corresponding first two population moments, therefore, we
can obtain

(6)

(7)

From these corresponding sample moments, and
are also obtained, where the sample average
and the sample variance

are the estimators of and , respectively.

B. Cycle Time Estimation

Like manufacturing processes in other industries, cycle time
at single operation in the PBGA packaging process flow equals
the process time plus the mean of waiting time. The formula can
be expressed as follows:

(8)

where is the cycle time of operation , is process time
of operation , and is the mean of the fitted
Gamma distribution of waiting time of operation in the PBGA
packaging process flow.

Consider a small-scaled example for cycle time estimation at
single operation in PBGA packaging process flow. The example
involves three parallel machines and two different product types,
namely, A and B. The various processing times and estimated
values regarding the two parameters of waiting time distribu-
tions for the two product types are shown in Table I. The process

TABLE I
PROCESS TIMES AND ESTIMATED PARAMETERS

OF WAITING TIME DISTRIBUTIONS

time is not affected by the machine processing it, but is depen-
dent on job’s product type. The “minute” is used as the unit for
process time and waiting time.

Since the waiting time of product type A at this single oper-
ation is fitted as Gamma distribution with parameters (21, 2.5),
the mean waiting time is 52.5 min. Similarly, since the waiting
time of product type B at this operation is fitted as Gamma dis-
tribution with parameters (28, 3.2), the mean waiting time is
89.6 min. Therefore, based on (8), the estimated cycle time for
product type A is 92.5 min. Similarly, 145.6 min is the value of
estimated cycle time of product type B in this operation.

IV. COMBINED DISTRIBUTION FOR MULTIPLE OPERATIONS

In this section, a combined cycle time of the multiple opera-
tions in the whole PBGA packaging process flow is developed.
Due to today’s fierce competitive environments in the semicon-
ductor industry, planner involved in PBGA packaging factories
should be capable of providing the estimated cycle times with
different confidence to ensure the due date assignments more ac-
curately. Therefore, upper confidence bounds of the estimated
cycle times at various confidence coefficients are presented.

A. Combined Gamma Distribution

To estimate cycle times of the multiple operations in the
whole PBGA packaging process flow, an essential statistical
property, reproductive property, of the Gamma distribution
is applied; therefore, a combined distribution is applied and
a combined cycle time estimated model is then constructed.
Gamma distribution has a reproductive property [22]: if

are independent random variables each having
a Gamma distribution of form

(9)

with possibly different values of , but with
common values of , then also has a
distribution of this form, with ,
and with the same values of . Applying this property, let

be a sequence of independent distribution of
and then the distribution of

is . Fig. 5(a)-(c) presents several Gamma
distributions with different values of and the same value of

. Fig. 5(d) further depicts the combined Gamma distribution
regarding Fig. 5(a)-(c).
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Fig. 4. Probability density functions for Gamma distribution with different pa-
rameter combinations. (a) Gamma(1,1). (b) Gamma(3,1). (c) Gamma(5,1). (d)
Gamma(1,3). (e) Gamma(3,3). (b) Gamma(5,3).

Fig. 5. Probability density functions for Gamma distribution with different �
parameter combinations. (a) Gamma(1,1). (b) Gamma(3,1). (c) Gamma(5,1).
(d) Gamma(9,1).

B. Combined Cycle Time Estimation

Using the reproductive property of Gamma distribution,
the combined waiting time ( ) is .

Therefore, the combined cycle time ( ) of the whole PBGA
packaging process flow can be calculated as

(10)

where is the total number of operations in PBGA packaging
process flow, is sum of processing times for each op-
eration, and is the mean of the combined
Gamma distribution of waiting time.

C. Upper Confidence Bounds for

For an individual job, we can obtain the upper bound of the
combined cycle time by taking the integral over the Gamma dis-
tribution. Using this method, cycle time equals to its process
time plus -percentile waiting time of the combined Gamma
distribution. The -percentile waiting time can be obtained by
taking the inverse of the cumulative function of the Gamma dis-
tribution. However, in many factories, the combined cycle times
of the whole PBGA packaging process flow are calculated as

where the mean of the combined
waiting time is incorporated.

To obtain the upper confidence bounds of the combined cycle
times under Gamma distribution, it requires the distribution of

which is a scaled Gamma. Finding exact confidence in-
terval of directly from the scaled Gamma is rather difficult
since the distribution of involves unknown pa-
rameters and which have to be estimated. The resulting
distribution becomes rather complicated. If we apply the Cen-
tral Limit Theorem, then is approx-
imately distributed as the standard normal distribution, .
Consequently, we have

(11)

So the probability that the random upper limit as

(12)

is an approximate one-sided confidence interval
for the combined waiting time. That is,
provides an upper confidence bound for the combined waiting
time with confidence coefficient . Since the of whole
PBGA packaging process flow being equal to the total process
times plus the confidence interval of the combined waiting time,
the upper confidence bound of can be ex-
pressed as

(13)
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TABLE II
200 OBSERVATIONS OF WAITING TIMES

Fig. 6. Histogram of the 200 observations.

That is, we have an approximate upper confidence
bound of

(14)

where is the percentile of the standard normal
distribution, for which tables are widely available

, is the sample size of waiting times, and
is the variance of the combined Gamma

distribution of waiting time in the PBGA packaging process
flow.

V. CYCLE TIME CALCULATION FOR PBGA
PACKAGING PROCESS

In this section, we consider a real-world application taken
from a PBGA packaging shop floor in a semiconductor pack-
aging factory located in the Science-based Industrial Park
in Hsinchu, Taiwan and investigate the applicability of the

proposed model. For the example investigated, there are three
product types of orders, namely, PBGA658, PBGA596, and
PBGA292. An order involves five jobs which must be processed
at all the ten operations, at where a set of identical machines
are arranged in parallel at each operation in the shop floor. In
the factory we investigated, a manufacturing execution system
(MES) is applied to enhance the abilities of automation and
data collections. To estimate the combined cycle time for the
whole process flow, we collect the waiting times regarding the
three product types in the shop floor from the MES. Table II
displays the 200 observations of waiting times, collected from
the historical data, at the wire bonding operation for PBGA596.
The “minute” is used as the unit for process time and waiting
time. Fig. 6 plots the histogram shown the collected data.

It is evident to conclude the data collected from the PBGA
packaging factory is not normal distributed by observing the his-
togram in Fig. 6. The historical data indicates that the process
is approximated by a Gamma distribution. The maximum-like-
lihood estimators (MLE) of and for the Gamma distribution
are rather complicated and there is no explicit close form for the
MLE of . Therefore, we consider the method of moments. The
parameters and of this Gamma process could be estimated
from the historical data, giving and .

To obtain the combined cycle time for the whole PBGA pack-
aging process flow, we collected the historical data of waiting
times for the three product types at the ten operations from the
MES applied in the shop floor. Table III shows the order process
time and Table IV presents the two essential statistical elements,
average ( ) and variance ( ) of the collected data at each
operation in the whole PBGA packaging process flow.

Using the method of moment estimators, and
, we estimate the parameters for Gamma distributions fitted

to of each product type in the PBGA packaging process
flow. Table V displays the estimated shape parameters ( ) with
fixing the scale parameter ( ) 5, 4.5, and 3 for product type
PBGA658, PBGA596, and PBGA292, respectively.

Based on (10), we can obtain the value of the combined
cycle time, 5447.45 min, for PBGA658 in the PBGA packaging
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TABLE III
ORDER PROCESS TIMES FOR EACH PRODUCT TYPE

AT EACH PBGA PACKAGING OPERATION

TABLE IV
THE AVERAGE (�) AND VARIANCE (� ) OF �� AT EACH PROCESS OPERATION

TABLE V
ESTIMATED SHAPE PARAMETERS (��) FOR FITTED

GAMMA DISTRIBUTIONS OF ��

factory. Similarly, the value of the combined cycle time for
PBGA596 and PBGA292 can be obtained as 4988.37 and
4127.37 minutes, respectively.

Using the reproductive property of the Gamma distribution,
the combined cycle time of PBGA658 has Gamma distribu-
tion and its corresponding parameters are Gamma (769.09,
5). Therefore, based on (14) for upper confidence bounds
calculation, the 95% upper confidence bound of for
PBGA658 is 5463.58 min. That is, the combined cycle time for
PBGA658 in the PBGA packaging process flow is not greater

than 5463.58 min at 95% confidence. Similarly, 5003.16 and
4138.89 are the 95% upper confidence bounds of for
PBGA596 and PBGA292, respectively. We note that the upper
confidence bounds can be used as a convenient reference point
for assigning due dates and other planning bases in order to
help the practitioners to provide an accuracy basis for due date
assignment, production planning, and factory performance
analysis.

VI. CONCLUSION

In this paper, we considered a statistical approach for cycle
time estimation incorporating the upper confidence bounds in
semiconductor PBGA packaging factories since the cycle time
is an essential basis for production planning and due date assign-
ment. We first provide a cycle time estimation model for single
operation. Waiting times of each product type are modeled as
Gamma distribution. We then present a combined cycle time
estimation model which incorporates the reproductive property
of Gamma distribution to estimate the whole factory cycle time
for the multiple operations in the PBGA packaging shop floors.
Moreover, upper confidence bounds at various confidence co-
efficients were also provided based on the investigated cycle
time estimation model in order to quickly respond to the cus-
tomer inquiries regarding due dates and shipping schedules. To
demonstrate the applicability of the proposal estimation model,
we considered a real-world example taken from a PBGA pack-
aging shop floor in a semiconductor factory located in the Sci-
ence-Based Industrial Park in Hsinchu, Taiwan. The computa-
tional results showed that the cycle time estimation model pro-
vided satisfactory values of cycle time. Therefore, we believe
that the investigated cycle time estimation model incorporating
upper confidence bounds may help industrial practitioners in-
volved in PBGA packaging shop floor to estimate cycle time
and to provide an accuracy basis for due date assignment, pro-
duction planning, and factory performance analysis and to make
judicious decisions.
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