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中文摘要 

 

近幾年來，由於科技的進步，網路的傳輸速率也不斷地提升，大家都可以享

受到網路的便利性。但是在此同時，網路的安全問題卻也逐漸浮上了檯面，越來

越多的病毒、木馬程式等，讓人深怕下一個受害者就是自己，許多的網路安全軟

體就因此產生了。但是網路的速度越來越快，單單只靠著軟體的防護，似乎已經

不太足夠了。如果能讓軟體中工作量最大的部份－字串比對－由硬體來負責的

話，相信一定能夠大幅地提升工作效率。 

在許多的研究中[7, 8, 9, 11, 13, 14, 15]，都使用了硬體來加速字串比對的過

程。不過他們幾乎都是將規則(rule)建立在硬體上，此舉雖然提昇速度，但是卻有

著相當大的缺點，那就是無法建立太多的規則。原因在於硬體的邏輯閘數目是有

限，而根據不同的軟體，規則的數目有幾百幾千，甚至有上萬條的規則。 

因此本篇論文的目的，在於提出一種不同的硬體實現方式，不將規則存放在

硬體，而是存放在記憶體中。這種方法能夠讓硬體處理更多的規則，同時又有著

不錯的傳輸速率，以期能夠配合目前網路速度的需求。 
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Abstract 
 

Recent years, because of advancement of technology, network speed is increasing 

continuously. Everyone can enjoy the convenience of network. But in the same time, 

the security of network becomes a serious problem. More and more virus and Trojans 

make people dread that they are next victims. So, they begin to use some network 

security software. Nevertheless, under the increasing network speed, software may be 

not safe anymore. If we can let hardware do string matching that is heavy work in 

software, we believe that it must improve efficiency enormously. 

In some research [7, 8, 9, 11, 13, 14, 15], they almost build rules on the hardware 

to increase throughput. But there is a big problem in this way. There are not enough 

logic gates to build many rules. Especially, there are hundreds, thousands, even more 

than ten thousands of rules in software. 

Therefore, we propose a different hardware implement in this thesis. We do not 

build rule in hardware but store in memory. This approach not only processes more 

rules but also has good performance to match up the need of present network.  
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Chapter 1 

 

Introduction  
                                                                       

 

    As network technologies become more advanced, the security issues related to 

these technologies become more complex. The purpose of a Network Intrusion 

Detection System (NIDS) is to help protect computer network users from malicious 

attacks. To protect public and private networks, software-based intrusion detection 

systems have become the norm, with the goal of protecting against compromise to the 

network’s integrity, the machines that form the network, and the information 

contained within it. Network Intrusion Detection Systems (NIDS) are receiving 

considerable attention as a mechanism of last resort for shielding computer system and 

networks against attackers. 

     

1.1  Background 

 

    Network Intrusion Detection Systems (NIDS) attempt to detect such attempts by 

monitoring incoming traffic for suspicious contents. The typical function of a NIDS is 

based on a set of signatures (or rules), each describing one known intrusion threat, and 

use them to identify possible security threats, much like virus detection software, and 

report offending packets to the administrators for further actions. NIDS scan packet’s 

payload looking for pattern that would indicate security threats. String matching is 

generally expensive: finding a single pattern in an input string imposes computation 
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which is at least linear to the size of the input string, and NIDS rule-sets often contain 

hundreds of such strings. Most known NIDS implementations use general-purpose 

string matching algorithms that are known to perform well. The computational burden 

of string matching using those algorithms is significant: measurements on SNORT 

show that 31% of total processing is due to string matching; the percentage goes up to 

80% in the case of Web-intensive traffic [1]. So, string matching can be considered as 

one of the most computationally intensive parts of a NIDS and we focus on payload 

matching. However, intrusion detection systems running in general purpose 

processors can only serve up to a few hundred Mbps throughput. Therefore, seeking 

for hardware-based solutions is possibly the only way to increase performance for 

speeds higher than a few hundred Mbps.  

 

 

1.2  Motivation 

 

Most Network Intrusion Detection Systems use a general purpose processor running 

rule-based packet filtering software. However, with widespread availability of 1 Gbps 

Local Area Networks and 10 Gbps links, it has become clear that current 

software-based intrusion detection systems cannot process packets at those line rates, 

resulting in inadequate monitoring of network traffic and increasing the probability of 

an undetected attack.  

 

    Due to exhaustive string matching algorithm, software system running on single 

general purpose processor may not be able to inspect all network traffic [2][3]. ASIC 

commercial products can support high throughput, but constitute a relatively 

expensive solution. So, we choose FPGA as our design platform.  
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    FPGA-based systems provide higher flexibility and comparable to ASICs 

performance. Because network threats are constantly changing, it is very important to 

be able to change the rule set. FPGA-based platforms can exploit the fact that the 

NIDS rules change relatively frequently, and use reconfiguration to reduce 

implementation cost. FPGAs are flexible, reconfigurable, provide hardware speed, and 

therefore, are suitable for implementing such systems. But large designs are complex 

and therefore hard to operate at high frequency. Additionally, matching a large 

number of patterns has high area cost, so sharing logic is critical, since it could save a 

significant amount of resources, and make designs smaller and faster. These are some 

problems that we must be care and try to solve. 

 

 

1.3  Organization of the Thesis 

 

    The rest of this thesis is organized as follows. Chapter 2 introduces the string 

matching algorithms. In Chapter 3, we will brief some software-based Network 

Intrusion Detection Systems, like Snort, ClamAV, etc. In Chapter 4, we will review 

hardware-based Network Intrusion Detection Systems (NIDS), previous FPGA-based 

pattern matching architectures. Then, we will describe our proposed approach in 

Chapter 5. It also includes results and comparison of the performance between 

previous approach and ours. Finally, there is the conclusion of this thesis in Chapter 

6. 
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Chapter 2 

 

String Matching Algorithm 
                                           

 

    This chapter includes the briefs of some famous string matching algorithms. We 

will introduce how to build keyword sets and how to work according algorithms. 

Finally, we are going to compare these String Matching Algorithms to know each 

one’s superiority and shortcoming.  

 

 

2.1  Introduction  

 

    A number of algorithms have been proposed for pattern matching in a Network 

Intrusion Detection Systems. The performance of each algorithm may vary according 

to the case in which it is applied. Some are fast for a few rules, but does not perform 

well when used for a large set. And some behave well on large sets, but their 

performances start to degrade when short patterns appear in rules. Besides, in worst 

case a few string matching algorithms perform well, but others are good for average 

case. 

 

 

2.2  The Aho-Corasick Algorithm 
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    One of the earliest algorithms in precise multi-pattern string matching was 

proposed by Aho and Corasick [4], which is able to match patterns in worst-case time 

linear in the size of the input string. Aho-Corasick works by constructing a state 

machine from the patterns to be matched. The behavior of the pattern matching state 

machine is dictated by three functions: a goto function, a failure function, and an 

output function.  

 

    Figure 2.1 shows the functions used by a pattern matching state machine for the 

set of keywords {he, she, his, hers}.  

 

 
Figure 2.1 Pattern matching state machine 

 

    The goto function maps a pair consisting of a state and an input symbol into a 

state or the message fail. The directed graph in Figure 2.1.(a) represents the goto 

function. The state machine starts with an empty root node which is the default 

non-matching state, i.e. state 0 in Figure 2.1.(a).  
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    The failure function maps a state into a state. The failure function is consulted 

whenever the goto function reports fail. If fail happens, the failure pointers are added 

from each state to the longest prefix of that state which also leads to a valid state in the 

trie. In Figure 2.2 we can see that it also cans eliminate all failure transitions by 

precomputing the next state for every character from every state in the machine. The 

Figure 2.3 is the original version. 

 

 

Figure 2.2 Base Optimized Aho-Corasick Data 

 

 
Figure 2.3 Base Un-Optimized Aho-Corasick Data 

 

    Certain states are designated as output states which indicate that a set of 

keywords has been found. The output function formalizes this concept by associating 

a set of keywords (possibly empty) with every state. If the current state’s output 

function is a non-empty keyword, it will emit the keyword that contains by the current 

state. 

 

    In processing an input of length n makes exactly n goto transitions. And the total 

number of failure transitions must be at least one less than the total number of goto 

transitions. Therefore, the total number of state transitions is less than 2n. As we 
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mentioned before that its performance is linear with the input string length in the 

worst-case. So, Aho-Corasick is a linear-time algorithm that is optimal in the 

worst-case.  

 

 

2.3  The Boyer-Moore algorithm 

 

    The most well-known algorithm for matching a single pattern against an input 

string was proposed by Boyer and Moore [5]. The Boyer-Moore algorithm compares 

the search pattern with the input string, starting from the rightmost character of the 

search pattern. This allows the use of two heuristics, Bad Character Heuristics and 

Good Suffixes Heuristics, that may reduce the number of comparisons needed for 

pattern matching to increase matching efficiency. Both of them are triggered on a 

mismatch.  

 

    Bad Character: Given a single pattern of length n to match, one can look ahead in 

the input string by n characters. If the character at this position (the rightmost of the 

pattern) is not a character from our pattern, we can immediately move the search 

pointer ahead by n character without examining the other characters in between. If the 

character of the input string we look-ahead to does appear in the pattern, but is not the 

last character in the search pattern, we can skip ahead by the as large amount as 

possible that ensures that we have not missed a case of our pattern.  

 

    Good Suffixes: If a mismatch occurs in the middle of the pattern, there is a 

non-empty suffix that matches parts of pattern. Then we shift the pattern by the least 

amount that guarantees not to skip any occurrence of the non-empty suffix already 
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matched.  

 

Figure  2.4 Different Data type against Boyer-Moore 

    Figure 2.4 shows that the average number of references to string/character in 

string passed is against the pattern length for each of three source strings. From Figure 

2.4, we can know that the pattern is more like English text, it cans pass more character. 

So, it is possible to actually skip a large portion of the text while searching, leading to 

faster than linear algorithm in the average case. But it is somewhat worse for small 

alphabets, and its worst case behavior was quadratic. 

 

 

2.4  The Wu-Manber algorithm 

 

    The Wu-Manber algorithm [6] was developed by Wu and Manber for use in 

agrep and glimpse － two text searching applications. The algorithm is base on a Bad 
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Character Heuristic similar to Boyer-Moore. The design of the algorithm concentrates 

on typical searches rather than on worst-case behavior. This allow it to do some 

engineering decisions that make the algorithm significantly faster than other algorithm 

in practice.  

 

    The algorithm starts by procomputing two tables, a Bad Character shift table 

constructed by pre-processing all the patterns instead of only one, and a hash table. 

When the bad character shift fails, the first two characters of the string are indexed 

into a hash table to find a list of pointers to possible matching patterns. These patterns 

are compared in order to find any matches and then the input is shifted ahead by one 

character and the process repeats.  

 

    Figure 2.5 shows an excerpt of the modified Wu-Manber data structure, assuming 

that the strings to be searched for include cat, car, bar, foo, and for. Note that 

character such as x and z which do not appear in any of the strings have the maximum 

shift values. In comparison, characters in the middle of the strings have reduced shift 

values, and those that are at the end of the strings, such as r and o must be resolved by 

indexing into the hash table. 

 

 
Figure 2.5 Modified Wu-Manber 

 

    Figure 2.6 compares the Wu-Manber algorithm, labeled agrep, against four other 



                                                  Chapter 2  String Matching Algorithm 

 10

search routines: the original egrep and fgrep, GNU-grep version 2.0, and gre. The 

patterns were words of sizes ranging from 5 to 15 with average size slightly above 6. 

The original egrep and fgrep could not handle more than few hundreds patterns. 

 

 

Figure 2.6 A comparison of different search routines on a 15.8MB text 

 

    The performance of Wu-Manber was originally measured using text files and 

various sets of patterns. Overall the algorithm achieves a worst-case performance that 

is no better than naïve string matching, but the average case performance is among the 

best of all multi-pattern string matching algorithms. In the worst case the algorithm 

requires for every character of input a memory access to the shift and hash table, 

followed by as many string compares as there are patterns to be matched (this can 

only happen if the hash fails).  

 

 

2.5  Summary  

 

    In addition to algorithms which introduce above, there are some String Matching 

Algorithms. For example, K.M.P., which is similar to Boyer-Moore but is starting 

from leftmost, and AC-BM, which combines Aho-Corasick and Boyer-Moore to adopt 
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their excellence. 

 

    These algorithms have used by a little Network Intrusion Detection System 

software, Snort and ClamAV, etc. Snort adopted Boyer-Moore and modified 

Wu-Manber as its string matching algorithm. And ClamAV picked Aho-Corasick. So, 

software seems to choose a suitable algorithm itself. However, some of these 

algorithms are so complex that they can’t work well in hardware, and others cost a lot 

of hardware resources. 
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Chapter 3 

 

Software-based Network Intrusion Detection 

Systems 

                                           
 

    This chapter includes the brief of some well-known Software-based Network 

Intrusion Detection Systems. We are going to give an introduction of their architecture 

and describe their working principles. Then we will show some examples about their 

rule sets. 

 

 

3.1  Introduction 

 

    With each passing day there is more critical data accessible in some form over 

the network. Today any publicly accessible system on the Internet will be rapidly 

subjected to break-in attempts. So, Network Intrusion Detection Systems have become 

widely recognized as powerful tools for identifying, deterring and deflecting 

malicious attacks over the network. Essential to almost every Network Intrusion 

Detection System is the ability to search through packets and identify content that 

matched known attacks of its rule sets.  

    Network Intrusion Detection Systems are emerging as one of the most promising 

ways of providing protection to enterprise network, end users, and so on. The NIDS 
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market has been estimated at $100 million by the Aberdeen Group, with expectations 

that it will double in 2004 and keep growing in future years.  

 

 

3.2  Snort 

3.2.1  Background 

 

    Snort fills an important “ecological niche” in the realm of network security: a 

cross-platform, lightweight network intrusion detection tool that can be deployed to 

monitor small TCP/IP networks and detect a wide variety of suspicious network traffic 

as well as outright attacks. Snort is available under the GNU (General Public License), 

and is free for use in any environment, making the employment of Snort as a network 

security system more of a network management and coordination issue than one of 

affordability. 

 

    Lightweight NIDS should be cross-platform, have a small system footprint, and 

be easily configured by system administrators who need to implement a specific 

security solution in a short amount of time. Lightweight NIDS are small, powerful, 

and flexible enough to be used as permanent elements of the network security 

infrastructure. Snort is well suited to fill these roles. Compare this with many 

commercial NIDS, Snort con be configured and left running for long periods of time 

without requiring monitoring or administrative maintenance, and can therefore also be 

utilized as an integral part of most network security infrastructures. 

 

 

3.2.2  Architecture 
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    Snort is a libpcap-based packet sniffer and logger that can be used as a 

lightweight network intrusion detection system. It features rules based logging to 

perform content pattern matching and detect a variety of attacks and probes, such as 

buffer overflows, stealth port scans, CGI attacks, SMB probes, and much more. The 

detection engine is programmed using a simple language that describes per packet 

tests and actions. Ease of use simplifies and expedites the development of new exploit 

detection rules.  

 

    Snort’s architecture is focused on performance, simplicity, and flexibility. There 

are three primary subsystems that make up Snort: the packet decoder, the detection 

engine, and the logging and alerting subsystem.  

 

    The Packet Decoder 

      The decode engine is organized around the layers of the protocol stack present 

in the supported data-link and TCP/IP protocol definitions. Each subroutine in the 

decoder imposes order on the packet data by overlaying data structures on the raw 

network traffic. Snort provides decoding capabilities for Ethernet, SLIP, and raw 

(PPP) data-link protocols. 

 

    The Detection Engine 

      Snort maintains its detection rules in a two dimensional linked list of what are 

termed Chain Headers and Chain Options, looks like Figure 2.7. These are lists of 

rules that have been condensed down to a list of common attributes in the Chain 

Headers, with the detection modifier options contained in the Chain Options. 
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Figure 3.1 Rule Chain logical structure 

 

    The Logging/Alerting Subsystem 

      There are currently three logging and five alerting options.  

        Log packets: 

1. In their decoded. 

2. In human readable format to an IP-based directory structure. 

3. In tcpdump binary format to a single log file. 

        Alerts: 

1. The syslog alerts are sent as security/authorization messages. 

2. WinPopup alerts allow event notifications to be sent to a 

user-specified list. 

3. Full and Fast alerting. There are two options for sending the alerts to a 

plain text file. 

4. Completely disable alerting. 
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3.2.3  Snort Rules 

 

    Snort rules are simple to write, yet powerful enough to detect a wide variety of 

hostile or merely suspicious network traffic. Snort also interprets keywords enclosed 

in parentheses as “option fields”. Option fields are available for all rule types and may 

be used to generate complex behaviors from the program, such as in Figure 3.2. 

 

 

Figure 3.2 Option allow increased rule complexity. 

 

    The rule in Figure 3.2 would detect attempts to access the PHF service on any of 

the local network’s web servers. If such a packet is detected on the network, an event 

notification alert is generated and then the entire packet is logged via the logging 

mechanism selected at run-time.  

 

 

3.3  ClamAV 

3.3.1  Background 

 

    Clam AntiVirus is a GPL (GNU Public License) anti-virus toolkit for UNIX. The 

main purpose of this software is the integration with mail servers (attachment 

scanning). The package provides a flexible and scalable multi-threaded daemon, a 

command line scanner, and a tool for automatic updating via Internet. The programs 

are based on a shared library distributed with the Clam AntiVirus package, which you 

can use with your own software. Most importantly, the virus database is kept up to 

date. It is the most widely used open-source anti-virus scanner available. Currently, it 
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has a digital signature database of 20,712 viruses, worms and trojans. Then it also 

built-in supports for many kinds of compressed files, mail files, and compressed 

portable executable files.  

 

 

3.3.2  Data Structure 

 

    ClamAV stores its automaton in a trie data structure. To quickly perform a lookup 

in this trie, ClamAV uses a 256 element array for each node. It also modifies 

Aho-Corasick such that the trie has a height of two, and the leaf nodes contain a 

linked list of possible patterns. ClamAV fixes its trie depth to two because its database 

contains polymorphic viruses whose prefixes are as shout as two bytes. 

 

 

Figure 3.3 Part of the trie structure used by ClamAV. Success transitions are shown 

with solid lines, and failure transitions are represented with dashed lines. 

 

    See the Figure 3.3. As the linked lists get longer, the performance of ClamAV 

suffers from the cost of traversing the linked list. Unfortunately, each digital signature 

overtakes two bytes at least. As a result, ClamAV doesn’t scale well with large 

databases. 
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3.3.3  Improves the Scalability 

 

    As a result of the depth of the trie is the key point of the scalability of ClamAV. 

There was two recent studies which explored methods of breaking this restriction. By 

implementing work-arounds to grow the trie’s depth to four, ClamAV developers 

doubled scanning performance. But its memory consumption went from 11MB to 

90MB. Besides, researchers at Stony Brook also explored techniques of increasing the 

trie’s depth and achieved speeds as high as 3.13 times that of ClamAV on certain files 

[7].  

 

 

3.4  Compare ClamAV with Snort 

 

    Snort uses a string matching engine that performs very well for their rule sets. It 

uses a modified version of the Wu-Manber algorithm. Other variations of Snort use 

Boyer-Moore for rule sets with less than 10 signatures and Wu-Manber for others. The 

approach taken by Snort cannot be applied to virus scanning. First, the number of 

virus signatures is much larger. Second, while Snort can divide its signature into rule 

sets due to the nature of the threats they guard against, virus scanning systems cannot 

do the same. Even in the relatively small category of macro viruses, there are over 

7000 signatures. Thus, virus scanning applications have to use algorithms that scale to 

a large number of signatures. 
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Chapter 4 

 

Hardware-based Network Intrusion Detection 

Systems 

                                           
 

    This chapter will introduce former related work in FPGA. It contains their 

architectures and functions. Of course, it will include their characteristic in the final 

section.  

 

 

4.1  FPGA versus ASICs 

 

    Given the processing bandwidth limitations of the General Purpose Processors 

(GPP), which can serve only a few hundreds Mbps throughput, Hardware-based NIDS 

is an attractive alternative solution. Generally, ASICs (Application Specific Integrated 

Circuits) programmable security co-processors are expensive, complicated, and 

although they can support higher throughput compared to GPP, they do not achieve 

impressive performance. 

 

    On the other hand, FPGAs (Field Programmable Gate Arrays) are more suitable 

for using on NIDS, because they are reconfigurable. And FPGAs provide hardware 

speed and exploit parallelism. By vendor’s CAD tools, FPGA-based systems can be 
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entirely changed with only the reconfiguration overhead, just keeping the interface 

constants. This characteristic of reconfigurable devices allows updating or changing 

the rule sets, adding new features, even changing systems architecture, without any 

hardware cost. 

 

    There are some features of FPGA implementation against ASICs. 

    Advantages: 

a) Fast and cheap procedure for implementing hardware. 

b) Fast functional verification. 

c) Low cost of low-volume production. 

d) Improved time-to-market. 

e) Re-configurability in the field. 

    Disadvantages: 

a) Non-optimal utilization of silicon area. 

b) Signal delay and power consumption are high. 

c) Routing problems could limit flexibility. 

d) Potential clock-skew problems. 

 

 

4.2  Related Work 1 － Content Pattern Match Unit 

 

4.2.1  Brief 

 

    In [7], they used the rule sets which is called Hogwash (A search engine based on 

Snort), about 95 percent of all the known Internet attacks using 105 signature rules of 

most common attacks, to build their FPGA based NIDS. The rules contain information 
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to search through packet layers 2 through 4 first. If the packet header information 

matches the rule criteria, an exhaustive pattern search is performed on the payload 

(layers 5-7). Such a pattern search is done for all the rules with matching header 

information.  

 

 

4.2.2  Parallel Design 

 

    Figure 4.1 is a block diagram of the architecture. Each rule unit implements the 

logic for a single Snort rule signature. Packet data is passed to the rule units through a 

32-bit bus. Effective use of the hardware pipeline with optimized combinational logic 

between each stage shortened the critical path of the design. 

 

 
Figure 4.1 Parallel Datapath of NIDS in Reconfigurable Hardware 

 

    The simplicity of the design easily shows its resemblance with the software 

execution path of Hogwash. The header information of each packet is compared with 
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the predefined header data. If the header information matched the rule, the payload is 

sent to the content pattern match unit where the predefine pattern is searched. 

However, unlike the software implementation, all the rule chains are matched in 

parallel to achieve predictable high performance. 

 

    If a given packet is detected to be malicious, a flag is raised. In a system with 

sufficient buffer memory, the flag can be used to drop the packet. However, without 

any external memory, this flag can be used to corrupt the rest of the packet payload 

going through the pipeline; thereby causing the packet to be dropped at the receiving 

node. 

 

 

4.2.3  Content Pattern Match Unit 

 

 

Figure 4.2 Pattern Match Example 

 

    The content pattern match unit is the main function of the design. In Figure 4.2, 
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each column of each row has four 8-bit comparators work together to match four 

consecutive bytes of data simultaneously. In this example with data “pattern”, each 

row has four comparators groups which contain four different strings with different 

byte offsets. The match results are passed to the 1-bit registers located below all the 

comparators. Output from 1-bit register controls the subsequent 1-bit comparison 

result. When the OR gate receives 1 from one register, the Match flag would be set to 

1 to represent that this unit has confirmed a match with the incoming string. 

 

 

4.3  Related Work － Pipelined Comparator 

 

4.3.1  Brief 

 

    This architecture of an FPGA-based NIDS includes blocks that match deader 

fields rules, and blocks that perform text match against the entire packet payload [8]. 

In this architecture they focus on making the pattern match module as fast as possible, 

and assume that header field rules are relatively straightforward to implement at high 

speed since they involve a comparison of a few numerical fields only. 

 
Figure 4.3 Envisioned FPGA NIDS 
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    In Figure 4.3, we can the architecture of the Envisioned FPGA NIDS. Packets 

arrive and are fan-out to the matching engines. N parallel comparators process N 

characters per cycle (four in this case) to achieve higher processing throughput, and 

the matching results are encoded to determine the action for this packet. Shaded is the 

header matching logic that involves numerical field matching. The results of the 

system: 

a) An indication that there was indeed a match. 

b) The number of the rule that did match. 

 

 

4.3.2 Pipelined Comparator 

 

 

Figure 4.4 (a) Pipelined comparator, which matches pattern “ABC”. (b) Pipelined 

comparator, which matches pattern “ABC” starting at four different offsets. 

 

    In Figure 4.4 (a), it shows a pipelined comparator that matches the pattern 

“ABC”. In the first stage, comparator matched the 6 half bytes of the incoming packet 

data. In the following two stages, the partial matches transfer results (1 or 0) to AND 

gates to produce the overall match signal. In Figure 4.4 (b), it depicts the connection 

of four comparators that match the same pattern shifted by zero, one, two and three 
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characters (indicated by the numerical suffix in the comparator label). Comparator 

comparator_ABC(0) checks byte 0 to 2, comparator_ABC(1) checks bytes 1 to 3 and 

so on. 

 

 

4.4  Summary 

 

    In addition to approach that mentioned before, there are some researches in 

reconfigurable hardware about NIDS. Literature [9] shows that the approaches using 

reconfigurable hardware essentially involve building a finite automaton for a string to 

be searched, generating a specialized hardware circuit using gates and flip-flops for 

this finite automaton, and then instantiating multiple such finite automata in the 

reconfigurable chip to search the incoming data in parallel. 

 

    Most proposed FPGA-based NIDS use finite automata (either deterministic or 

non-deterministic) [9, 10] to perform the text search. These approaches are employed 

mainly for their low cost, which is reported to be is a few logic elements per search 

pattern character. But the operation of finite automata is limited to one character per 

cycle operation. To achieve higher bandwidth researchers have proposed the use of 

packet-level parallelism, whereby multiple copies of the finite automata work on 

different packets at lower rate. 

 

    However, the common characteristic of these approaches is that the on-chip 

hardware resource consumption (gates and flip-flops) grows linearly with the number 

of characters to be searched. Secondly, these methods require the FPGA to be 

reprogrammed to add or delete individual strings from the database. Any change in the 
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database requires the recompilation, regeneration of the finite automaton, re-synthesis, 

re-place and route of the circuits, even though it costs less than ASICs.  
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Chapter 5 

 

The Proposed Approach 

                                           
 

    In this chapter, we will propose our approach. It contains the architecture and its 

detail function. And we will explain why we do this. 

 

 

5.1  Conception 

 

    In some researches [7, 8, 11, 12], they implemented a few rule sets of 

Software-based NIDS (for example, Snort) in the reconfigurable hardware. For a 

certainty, they increased throughput of their system, even reaching the level of 

giga-bits per second. However, nowadays most of NIDS software has thousands of 

rules, and even more than ten thousands of rules in some NIDS software, like ClamAV. 

But by the restricted number of logic gates in the reconfigurable hardware, they can 

not put all rule sets on FPGA. 

 

    Therefore, if we want to implement a lot of rules of software-based NIDS on 

reconfigurable hardware and also keep higher throughput, we have to use memories to 

store large rule sets.  

 

    We take ClamAV’s digital signatures as our rule sets. Because its signatures are 
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hexadecimal data, in our design we do not need to support a unit that decodes 

incoming data’s header information.  

 

Gen.12 Tricks-A2=0231944201d1c24e79f7 

 

    Above string is one of ClamAV signature. Left of the sign “=” is the rule’s name, 

and its digital signature is formed hexadecimal in the right. In this example, the 

signature is composed by ten bytes. But in some signatures they may be composed by 

more than one hundred bytes. Following section, we will introduce our architecture.  

 

 

5.2  Our Proposed Architecture 

 

Bloom Filter

Network Traffic

FPGA-based Detection

Software Analyzer
(just match one rule)

Suspicious  Sub-string

The Most Possible Rule

 

Figure 5.1 Architecture 

 



                                                     Chapter 5  The Proposed Approach 

 29

    Figure 5.1 shows our architecture. In the architecture, there are three part of it.  

We introduce their function briefly below: 

    Bloom Filter  

      It collects fixed length incoming data, and then according to rule sets, using 

hash function to filter suspicious sub-strings. If hash result is noting, then shifts 

one byte and be continuous.  

 

    FPGA-based Detection  

      Detecting the suspicious sub-string to decide if it is false positive or not. If it is 

not false positive, points out which rule it may be. Although there are few 

chances to receive continuous suspicious sub-strings, we still need a small buffer 

to prevent it. 

 

    Software Analyzer  

      When it is active, we hope that it just need to pick only one rule to scan. In the 

case of which rule, it will get the information from FPGA-based Detection. 

 

    In [13], they just have bloom filter and analyzer. When bloom filter gets 

something, it will transmit the suspicious sub-string to analyzer. Afterwards, the 

analyzer search sub-string in its database. Although they may choose some suitable 

hash function to decrease false positive, it still may happen. From above, we can see 

that searching in database and false positive are its cost. 

 

    So, we add “FPGA-based Detection” between bloom filter and analyzer. The 

FPGA-based Detection has some functions in this. First, it will check the suspicious 

sub-string again to confirm that if it is false positive or not. If it is not false positive, in 

this step, we almost can say that it must be suspicious. Second, according the address 
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of memory it reads, we can view the address as serial numbers of the rule. And then, 

software analyzer bases on this serial number to find out the corresponding rule to 

match. In this situation, software analyzer just has to pick the designate rule directly, 

and do matching. For this reason, the FPGA-based Detection can save a lot of 

software operating time to increase efficiency. 

 

5.3  FPGA-based Detection 

 

CAM RAM Comparator

Data
64Bits

Data
16Bits

Add.
16Bits

Data
48Bits

Data
48Bits

Match

Which
One

Which
OneMatch

 

Figure 5.2 FPGA-based Detection 

 

    In Figure 5.2, there are CAM, RAM, Comparator in our FPGA-based Detection. 

In the design, we base on 64Bits (8bytes) data. Because the length of signatures in 

ClamAV is different, we have to cut them for fixed length to deal easily. Following we 

will introduce functions of these units. 
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5.3.1  Function of Each Unit 

 

    Content Addressable Memory (CAM) 

      An item stored in memory can be identified much faster by its content than by 

its address. Content Addressable Memory, works in this way—the system 

supplies the data, and CAM returns the address—making it ideal for high-speed 

search applications. In Figure 5.3 is about CAM’s functionality. 

 

 
Figure 5.3 CAM, when using CAM, the system supplies the data, and CAM returns 

the address. 

 

      We use CAM’s characteristic to get the address of signatures, so we do not 

search signatures in memory from top to bottom in worst case. But in APEX20K, 

which the FPGA we use, only provides 4096-words X 12-bits. In order to achieve 

the result of 16bits-CAM, we use some logic element to design a simple unit to 

co-operate. So, when we get 64-bits incoming data, pick 16-bits into CAM to get 

the corresponding address. And the other 48-bits waits for comparator. 

 

    Random Access Memory (RAM) 

      We read the partial signatures from RAM by using addresses that get from 

CAM. The 16-bits address can point out 65536 partial signatures. However, 

because we produce addresses by 16-bits of fixed length signatures, it may 

happen that some signatures have the same 16-bits, i.e. they have the same 
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address.  

 

      We see the following Table 5.1 first, it stores four signatures, 01123456, 

01234567, 01345678, 01456789. In the Address column, they all represent in 

binary, and the left 16-bits are the same with CAM’s output. And in content 

column, except that the leftmost is binary, they represent in hexadecimal. 

 

Address  Content 

0000000000000001000 0123456

0000000000000001001 0234567

0000000000000001010 0345678

0000000000000001011 1456789

Table 5.1 The content of RAM 

       

      To solve the problem that mentioned before, we use some tricks. Each 16-bits 

address out from CAM, we combine 3-bits with it. So we bottom on this 19-bits 

address to read data. The first signature’s 3-bits is 000 in the address. If another 

signature has the same 16-bits, its 3-bits is 001. And if the signature is the last 

one in the same 16-bits address, the leftmost bit of content sets 1, which be called 

Finish Bit. Previously signatures set 0.  

 

    Comparator 

      It receives 48-bits partial signature from RAM, and compares with other 

48-bits of incoming data. If they match, view the address as the serial numbers of 

the signature. When comparison is failed, and the Finish Bit of current signature 

is not 1, the address will be plus 1 to read the next signature into Comparator to 
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compare again. However, with the same 16-bits there are few signatures more 

than eight. In this situation, we will send prefix of these signatures to software to 

do complete matching.  

 

5.3.2  Flow Chart  

    There is a flow chart in the following Figure 5.4. Here, we will relate it. 

 

CAM

64-bits data

Comparator

Extend to 19-bits as
Memory Address

If 0, then
Address+1

48-bits data

48-bits data

No Match

Match & Which
One

Memory

No Suspicious Data

Check the Finish Bit

Check If It Is the 8th
data

If 1

If not

If yes

Send Suspicious
Information

16-bits data

 

Figure 5.4 Flow Chart 
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    When receiving suspicious 64-bits data from bloom filter, FPGA-based Detection 

will take 16-bits of incoming data into CAM to find out the corresponding address. 

Then we extend the address to 19-bits by 3-bits “000”, because there are some 

signatures that have the same 16-bits possibly. 

    Using this 19-bits to read the corresponding other 48-bits signature from memory, 

it will send them to Comparator to compare with the other 48-bits incoming data. If it 

matches, then sends now address which is as serial number of the signature to 

software analyzer. If it does not match, and Finish Bit is 0, it means that in the same 

16-bits address prefix of memory still has partial signatures, then now address will be 

plus 1 to read the next data to compare. If the Finish Bit is 1, and it is the eighth 

content of the same 16-bits address, it will send some information about the prefix of 

the incoming data to software analyzer. Then software uses this information to scan 

but not total database. Otherwise, it means that this incoming data is not suspicious. 
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Chapter 6 

 

Comparison and Conclusion 

                                           

 
    In this chapter, we will show the results and compare our performance with 

others. And there is a conclusion of this thesis in final. 

 

 

6.1 Results 
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Figure 6.1 The Corrected Architecture 
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    Based on some correction, there is the architecture in above figure. Compare to 

Figure 5.2, we add “extend to 19-bits address” and “Suspicious Infor.” in it. 

 

 

Figure 6.2 To match a non-unique 16-bits address incoming data 

 

    There are two waves in Figure 6.1. First picture shows that the system receives 

an incoming data “558becc746020040”. Because it does not have the unique 16-bits 

address, it must wait for some time to get the result. And then it finds out that the 

incoming data matches the No. 00001 rule.  

 

Incoming data:
50558becc7460202

Suspicious Infor.
2001

Figure 6.3 The Incoming Data that Need Suspicious Infor.  

 

    In Figure 6.3, the incoming data “50558becc7460202” is belong to “more than 

eight signatures in the same 16-bits address.” So, when it can not find the matching 

signatures in memory, it will send “Suspicious Infor.” 
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6.2  Comparison 

 

Description Device Patterns X 

Characters 

Logic 

Cells 

Utilization Throughput 

(Gbps) 

Sourdis-Pnevmatikatos 

Discrete Comparators [8] 

Virtex 

1000 

10 X 10 

47 X 10.4 

1728 

8132 

7% 

33% 

6.176 

5.472 

Sidhu et al. [9] 

NFAs/Reg. Expression 

Virtex 

100 

(1 X) 49  280 11% 0.748 

Lockwood [14] 

FSM+counter 

VirtexE 

1000 

1 X 11 98 0.4% 3.808 

Gokhale et al. [11] 

Discrete Comparators 

VirtexE 

1000 

32 X 20 9722 39% 2.176 

Young Cho et al. [7] 

Discrete Comparators 

Altera 

EP20K 

N/A N/A N/A 2.88 

Our Approach Altera 

EP20K 

20000 X 8 711 2% 1.514 

(2.432) 

Table 6.1 Performance Comparison 

    In Table 6.1, there are some comparisons between our approach and others’. We 

can see that our design implements the most characters, in others’ they only put fewer 

characters. It means that we can almost put all signatures in our design. In others’, 

they put their rules on FPGA. Because FPGA has limited resources (Logic Elements 

or Logic Cells), it can not put more rules on itself. So, we use FPGA to increase 

indexing speed but not put signatures.  

 

    ESB (Embedded System Block) is one of component of Altera APEX 20K. It 
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distributes over the APEX 20K discretely. And the CAMs we use are included in ESB. 

Because of the routing between APEX 20K ESB, throughput of our design is lower 

than others’. But it still achieves giga-bits rate.  

     

    In Table 6.1, we can see two statistics in our approach. In the parentheses, it 

means that more than half of signatures can achieve 2.432 giga-bits rate. The other 

means that the average throughput is 1.514 giga-bits rate in total signature.  

 

 

6.3  Conclusion 

 

    Nowadays, there are many attacks in Network. In order to find out these 

suspicious traffics, we scan network traffic according to rules. But the numbers of 

these rules are increasing all the days. Therefore, we must improve the efficiency of 

NIDS. So, we choose reconfigurable hardware. But when we design the detection 

system based on FPGA, not only concern about how high throughput of this system 

can achieve but also take care its scalability. For example, if we can increase 

throughput to terabits per second, but the system just can scan tens of rule sets. This 

system still is useless. In this thesis, we achieve these targets. In our design we 

successful propose an architecture that can include a lot of signatures and has not bad 

throughput.  
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