
IET
do

www.ietdl.org
Published in IET Computers & Digital Techniques
Received on 9th July 2008
Revised on 18th November 2008
doi: 10.1049/iet-cdt.2008.0097

ISSN 1751-8601

Analysis of shared-link AXI
N.Y.-C. Chang1 Y.-Z. Liao2 T.-S. Chang1

1Department of Electronic Engineering, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan
2Global Unichip Corp., No. 10. Li-Hsin 6th Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
E-mail: ycchang@twins.ee.nctu.edu.tw

Abstract: Shared-link AXI provides decent communication performance and requires half the cost of its crossbar
counterpart. The authors analysed the performance impact of the factors in a shared-link AXI system. The factors
include interface buffer size, arbitration combination and task access setting (transfer mode mapping). A hybrid
data locked transfer mode was also proposed to improve the performance due to AXI’s extra transition cycle. The
analysis is carried out by simulating a multi-core platform with a shared-link AXI backbone running a video phone
application. The performance is evaluated in terms of bandwidth utilisation, average transaction latency and
system task completion time. The analysis showed that channel-independent arbitration could contribute up
to 23.2% of bandwidth utilisation and completion time difference. Moreover, the analysis suggests that the
proposed hybrid data locked mode should be used only by long access latency devices. Such setting resulted
in up to 21.1% completion time reduction compared with the setting without the hybrid data locked mode.
The design options in shared-link AXI bus are also discussed.
i

1 Introduction
With the rapid progress of system-on-a-chip (SOC) and
massive data movement requirement, on-chip system bus
becomes the central role in determining the performance of
a SOC. Two types of on-chip bus have been widely used in
current designs: pipelined-based bus and packet-based bus.

For pipelined-based buses, such as ARM’s AMBA 2.0
AHB [1], IBM’s CoreConnect [2] and OpenCore’s
WishBone [3], the cost and complexity to bridge the
communications among on-chip designs are low. However,
pipeline-based bus suffers from bus contention and
inherent blocking characteristics due to the protocol. The
contention issue can be alleviated by adopting multi-layer
bus structure [4] or using proper arbitration policies [5, 6].
However, the blocking characteristic, which allows a
transfer to complete only if the previous transfer has
completed, cannot be altered without changing the bus
protocol. This blocking characteristic reduces the bus
bandwidth utilisation when accessing long latency devices,
such as an external memory controller.

To cope with the issues of pipelined-based buses,
packet-based buses such as ARM’s AMBA 3.0 AXI [7],
Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 373–383
: 10.1049/iet-cdt.2008.0097
OCP-IP’s Open Core Protocol (OCP) [8], and
STMicroelectronics’ STBus [9] have been proposed to
support outstanding transfer and out-of-order transfer
completion. We will focus on AXI here because of its
popularity. AXI bus possesses multiple independent
channels to support multiple simultaneous address and data
streams. Besides, AXI also supports improved burst
operation, register slicing with registered input and secured
transfer.

Despite the above features, AXI requires high cost and
possesses long transaction handshaking latency. However, a
shared-link AXI interconnect can provide good performance
while requiring less than half of the hardware required by
a crossbar AXI implementation. This work focused on
the performance analysis of a shared-link AXI. The
handshaking latency is at least two cycles if the interface or
interconnect is designed with registered input. This would
limit the bandwidth utilisation to less than 50%. To reduce
the handshaking latency, we proposed a hybrid data locked
transfer mode. Unlike the lock transfer in [10] which
requires arbitration lock over transactions, our data locked
mode is based on a transfer-level arbitration scheme and
allows bus ownership to change between transactions. This
gives more flexibility to arbitration policy selection.
373

& The Institution of Engineering and Technology 2009



37

&

www.ietdl.org
With the additional features of AXI, new factors that affect
the bus performance are also introduced. The first factor is
the arbitration combination. The multi-channel architecture
allows different and independent arbitration policies to be
adopted by each channel. However, existing AXI-related
works often assumed a unified arbitration policy where each
channel adopts the same arbitration policy [10–12].
Another key factor is the interface buffer size. A larger
interface buffer usually implies that more out-of-order
transactions can be handled. The third factor is the task
access setting, which defines how the transfer modes
should be used by the devices within a system. Proper task
access settings can yield better performance. However,
the proper setting may be different under different
circumstances, such as different buffer sizes.

Being aware of the performance factors mentioned above,
we conducted a detailed simulation-based analysis on the
performance impact of the factors. The analysis is carried
out by simulating a multi-core platform with a shared-link
AXI backbone running a video phone application. The
performance is evaluated in terms of bandwidth utilisation,
average transaction latency and system task completion
time. In addition to the analysis on the performance impact
of the aforementioned factors, the performance of a
corresponding five-layer AHB-lite bus, which has a cost
comparable to a 5-channel shared-link AXI, is also
included for comparison.

The rest of the paper is organised as follows. Section 2
presents the related works on AXI bus. Section 3 presents
the proposed transfer modes and Section 4 explains the
corresponding arbitration framework. Section 5 presents the
simulation platform and evaluation metrics for performance
comparison. The comparison of the simulation result is
available in Section 6. Finally, Section 7 concludes this work.

2 Related works
Many works have been conducted on the communication
architecture of pipelined-based bus. Earlier works used
formal analytic approach [13, 14] to explore the design
space of communication architecture and evaluate the
performance of a pipeline-based bus system. Although
formal analytic approach can provide the average or best/
worst case overall bus performance, such an approach can
hardly account for instantaneous changes of bus behaviour.
This limitation gave rise to high-level simulation-based
approach which is capable of capturing the detailed
instantaneous bus behaviour with cycle accuracy [15].
Pasricha et al. [16] used the cycle count accurate
transaction boundaries model in the architecture
exploration of an MPEG AHB system. Later, Pasricha
et al. [17] also conducted experiment on bus architecture
synthesis under different given constraints. Their synthesis
method yielded cost-efficient bus matrices much faster and
reliable than manual optimisation.
4
The Institution of Engineering and Technology 2009
Most of the techniques developed in the abovementioned
works can be extended for the analysis of packet-based bus.
Pasricha et al. [12] extended their communication
architecture synthesis framework to AXI. Their work
automatically generates the best bus topology, arbitration
policy and parameter settings driven by throughput
requirements. Besides bus topology exploration, comparison
between packet-based bus and pipelined-based bus has also
drawn attention. Pasricha et al. [18] compared the
performance of a shared-link AXI and a single-layered AHB.
Their comparison showed that up to 30% of bandwidth
utilisation improvement can be achieved by AXI compared
with AHB. They also investigated the impact of the
transaction reordering buffer size in the memory controller.
Lee et al. [19] built a crossbar AXI platform and a single-
layered shared-link AHB platform to quantify the
performance difference. They reported 40% communication
efficiency improvement between AXI and AHB. Ruggiero
et al. [20] studied the scalability of AHB, AXI and STBus
under shared bus topology. Their result showed that AXI is
far more scalable to the number of master devices than AHB.
When the number of processor reaches eight, AXI can
achieve 60% bandwidth utilisation improvement over AHB.

Comparison of bus connectivity configuration, such as
shared-link, multi-layer (partial crossbar) and full matrix
(crossbar), has also been interested as well. Lahiri et al. [21]
proposed a design space exploration methodology and
compared the performance between single-layer and multi-
layer shared-link buses. Recently, Murali et al. [22]
presented a bus communication architecture exploration
method that finds the most power-efficient crossbar
interconnect for a packet-based bus. They also briefly
compared the performance and normalised cost ratio
among shared-link, multi-layer and crossbar configurations.

Although the aforementioned works conducted analyses
on communication architecture, the register slicing impact
and multi-channel arbitration issues that arise with the
features of packet-based bus have been overlooked. In
addition, previous performance comparison of multi-
channel AXI and single-layer share-link AHB may not be
fair since AXI requires much more hardware cost.

3 Transfer modes
3.1 Normal

This mode is the basic transfer mode in an AXI bus with
registered interface. In the first cycle of a transfer using
normal mode, the initiator sets the valid signal high and
sends it to the target. In the second cycle, the target
receives the high valid signal and sets the ready signal high
for one cycle in response. Once the initiator receives the
high ready signal, the initiator resets the valid signal low
and this transfer is completed. As a result, at least two
cycles are needed to complete a transfer in an AXI bus
with registered interface. Fig. 1 illustrates the transfer of
IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 373–383
doi: 10.1049/iet-cdt.2008.0097



IET
do

www.ietdl.org
Figure 1 Normal mode transfer example
two normal transactions with a data burst length of four. It
takes 16 bus cycles to complete the eight data transfer in
the two transactions. This means 50% of the bus available
bandwidth is wasted.

3.2 Interleaved mode

The interleaved mode [10, 20] hides transfer latency by
allowing two transactions from different initiators to be
transferred in an interleaved manner. Fig. 2 illustrates the
transfer of the two transactions mentioned earlier using
interleaved transfer mode. The one cycle latency introduced
in the normal mode for request B is hidden by the transfer
of request A. Similarly, the interleaved transfer mode can
also be applied to data channels. As a result, transferring
the data of the two transactions only takes nine cycles.

To support the interleaved mode, only the bus interconnect
needs additional hardware. No additional hardware in device
interface or modification on bus protocol is required. Hence,
an AXI interconnect that supports the interleaved mode can
be used with standard AXI device.

3.3 Proposed data locked mode

Although the interleaved mode can increase bandwidth
utilisation when more than one initiator is using the bus,
the interleaved mode cannot be enabled when only one
standalone initiator is using the bus. To handle this, we
proposed the data locked mode. In contrast to the locked
Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 373–383
i: 10.1049/iet-cdt.2008.0097
transfer implemented in [11] that can only perform when
the bus ownership is locked across consecutive transactions,
the proposed data locked mode locks the ownership of the
bus only within the period of burst data transfers. During
the burst data transfer period, the ready signal is tied high
and hence the handshaking process is bypassed. Unlike the
interleaved mode, which can be applied to both request and
data channels, the proposed data locked mode supports
only burst data transfer.

Fig. 3 illustrates an example of two transactions using data
locked mode to transfer data. Device M0 sends a data locked
request A and device M1 sends a data locked request B. Once
the bus interconnect accepts request A, the bus interconnect
records the transaction ID of request A. When a data transfer
with the matched ID appears in the data channel, the bus
interconnect uses data locked mode to transfer the data
continuously. For a transaction with a data burst of n, the
data transfer latency is nþ 1 cycles.

There are two approaches to signal the bus interconnect to
use the data locked mode for a transaction. One uses
ARLOCK/AWLOCK signal in the address channels to
signal the bus of an incoming transaction using data locked
transfer. However, doing so requires modifying the protocol
definition of these signals and the bus interface. To avoid
modifying the protocol, the other approach assigns the
devices that can use the data locked mode in advance. The
overhead of this approach is that the bus interconnect must
provide mechanisms to configure the device transfer mode
Figure 2 Interleaved mode transfer example
375

& The Institution of Engineering and Technology 2009



376

&

www.ietdl.org
Figure 3 Data locked mode transfer example
mapping. Note that these two approaches can be used
together without conflict.

To support the proposed data locked mode, the bus
interconnect needs an additional buffer, called data locked
mode buffer, to keep record of the transactions using the
data locked mode. Each entry in the buffer stores one
transaction ID. If all the entries in the data locked mode
buffer are in use, no more transactions can be transferred
using the data locked mode.

3.4 Proposed hybrid data locked mode

The hybrid data locked mode is proposed to allow additional
data locked mode transaction requests to be transferred using
the normal or interleaved mode when the data locked mode
buffer is full. This allows more transactions to be available
to the scheduler of the devices that support transaction
scheduling. With the additional transactions, the scheduler
of such devices may achieve better scheduling result.

However, only a limited number of additional transactions
using the data locked mode can be transferred using the
normal or interleaved mode. This avoids bandwidth-hungry
devices from occupying the bus with too many transactions.
A hybrid mode counter is included to count the number of
additional transactions transferred. If the counter value
reaches the preset threshold, no more data locked mode
transactions can be transferred using the normal or
interleaved mode until the data locked mode buffer
becomes not full again. Once the data locked mode buffer
is not full, the hybrid mode counter is reset.

4 Channel-independent
arbitration framework
With the introduction of the multi-channel architecture and the
proposed transfer modes, traditional arbitration framework that
was based on single-channel architecture must be revamped.
Therefore, we propose an arbitration framework that supports
different arbitration flows for address channels and data
channels. In contrast to existing works that used unified
arbitration, each independent channel in the proposed
arbitration framework is allowed to have its own arbitration
The Institution of Engineering and Technology 2009
policy. This framework allows different arbitration policies to
be combined together in a simple plug-and-play manner.

Fig. 4a illustrates the arbitration flow for address channels.
Upon receiving multiple data locked mode transaction
requests from different initiators, the arbitration flow first
checks whether the data locked mode buffer is full or not.
If there is an available empty entry in the data locked mode
buffer, the data locked mode transaction requests are
arbitrated according to the arbitration policy adopted for
the address channel. If the data locked mode buffer is full
and the hybrid mode counter has not reached the
threshold, all data locked mode transaction requests are
treated as normal and interleaved mode transaction
requests. As a result, all transaction requests are arbitrated
together according to the adopted arbitration policy. On
the other hand, if the hybrid mode counter has already
reached the threshold, only the original normal and
interleaved mode transaction requests are arbitrated. This
arbitration flow gives higher priority to data locked mode
transactions than normal or interleaved mode transactions.

Fig. 4b illustrates the arbitration flow for data channels.
The arbitration flow first checks if there is already a
transaction transferring data using the data locked mode. If
there is already a transaction transferring data using the
data locked mode, no other transaction would be granted.
If no transaction is transferring, data locked mode
transactions would be arbitrated according to the arbitration
policy adopted by the data channel. If there is no data
locked mode transaction requesting to transfer data, normal
and interleaved mode transactions are arbitrated.

The reason for giving higher priority to the transactions
using the data locked mode is that these transactions are
often latency sensitive. To minimise the latency of these
transactions, the transactions must be transferred using the
data locked mode and given the highest arbitration priority.

5 Performance analysis setup
To properly evaluate the performance of the proposed transfer
modes and arbitration framework on a shared-link AXI bus,
we built a high-level model of a simplified multi-core
IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 373–383
doi: 10.1049/iet-cdt.2008.0097



IET
do

www.ietdl.org
platform system using SystemC [23]. The simulation accuracy
of this model depends on modelling methodology, platform
architecture authenticity and application traffics accuracy. The
bus and components in the platform were modelled using
transaction-level and behaviour-level modelling method,
respectively. Transaction-level modelling uses a transaction
instead of a cycle as the basic simulation unit. Since a
transaction takes a fixed number of cycles to complete in each
channel, transaction-level modelling ensures bus cycle
accuracy in our simulations. More details on transaction-level
modelling can be found in [15]. To pursue platform
architecture authenticity, the multi-core platform model was

Figure 4 Arbitration framework for a share-link AXI bus

a Address channel arbitration
b Data channel arbitration
Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 373–383
i: 10.1049/iet-cdt.2008.0097
built based on a real multi-core platform [24]. The real
platform has been verified with a portable media player and
smartphone applications. This ensures the simulation result
from our platform model to be practical. The application
traffics were derived based on the behaviour and algorithm of
the platform components to ensure traffics accuracy. The
details of the platform architecture and bus traffics are
provided in the following subsections.

5.1 Multimedia platform architecture

Fig. 5 illustrates the target platform from the system bus point of
view. Note that when the platform is used for AHB simulation,
the bus interconnect is replaced with a five-layer AHB-lite
interconnect with each master port having one dedicated
AHB-lite bus. Since we only focus on the transaction
behaviour on the bus, the devices are modelled to only exhibit
transaction behaviour and pattern. However, the CPU does
generate transactions related to interrupt service routines
(ISR) upon receiving an interrupt request (IRQ). In addition,
the DMA controller is also programmed to carry out different
data moving tasks to mimic the behaviour of its real

Figure 5 Block diagram of the target platform

a Using AXI
b Using AHB-lite
377

& The Institution of Engineering and Technology 2009



378

& T

www.ietdl.org
counterpart. Including such more detailed behaviour enables us
to include the inter-task dependency between devices. Note that
the memory controller has two slave ports to allow more
transactions to be seen by the scheduler of the memory
controller. Among all the devices, the memory controller is
the only one with access latency ranging from 0 to 16 cycles.

The AXI bus is clocked at 40 MHz with both the address
and data widths being 32-bit wide. This would yield an ideal
total bandwidth of 320 MB/s with the read and write
bandwidths being 160 MB/s each.

5.2 Video phone scenario

We have selected the video phone application for analysis
because it covers a variety of devices and traffics that are
common in most multimedia consumer electronic products.
The bandwidth requirement of the video phone application
is heavier than other applications such as portable media
player, video recording, MP3 player and regular phone
service. This heavy bandwidth requirement also makes the
video phone application a perfect application to test the
performance limit of a bus.

In the video phone application, the system must deliver
both audio and video communication at the same time.
The system supports 44.1 kHz stereo audio capture/output
and audio compression/decompression. As to video, the
he Institution of Engineering and Technology 2009
system provides VGA-sized video capture, compression,
decompression and display with a target frame rate of
30 fps. Table 1 lists the task description, bandwidth
requirement and task completion time constraint of each
master device in the video phone application. Although
more devices may be included in a system, the bus traffic is
usually dominated by the master devices listed in Table 1.
The total bus bandwidth requirement is 247.8 MB/s,
which occupies 77.5% of the 320 MB/s available bus
bandwidth. If the bus can achieve a bandwidth utilisation
higher than 77.5%, all the system tasks are more likely to
complete within the specified timing constraints.

6 Simulation result
6.1 Evaluation metrics

The definition and physical meaning of the evaluation
metrics are explained as follows:

(A) Bandwidth utilisation (BWU)

The BWU is defined as the percentage of available ideal bus
bandwidth being used to actually transfer data, that is,

BWU ¼
Bused

Bideal

� 100% (1)
Table 1 Port task description and bandwidth requirement

Master port Task Required read BW
(MB/s)

Required write BW
(MB/s)

Total required BW
(MB/s)

MPU audio codec 1.467 1.467 2.934

OS routine 0.001 0.001 0.002

Total ISR 0.172 0.493 2.935

total bandwidth
requirement

1.640 1.961 3.601

DSP video decode 14.836 42.473 57.309

Video
encoder

video encode 59.927 14.255 74.182

DMAC0 video in to MEM 27.927 27.927 55.855

audio in to MEM 0.176 0.176 0.353

3G communication 0.132 0.132 0.265

total bandwidth
requirement

28.236 28.236 56.472

DMAC1 MEM to video out 27.927 27.927 55.855

MEM to audio out 0.176 0.176 0.353

total bandwidth
requirement

28.104 28.104 56.208

system total bandwidth requirement 132.743 115.028 247.771
IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 373–383
doi: 10.1049/iet-cdt.2008.0097



IET
doi

www.ietdl.org
where Bused and Bideal are the actually used bandwidth and
available ideal bandwidth, respectively. A higher BWU
implies that more data can be transferred within a period of
time. It also implies shorter effective transaction latency
from the system’s point of view.

(B) Transaction latency

The transaction latency we used is defined as the average of
read and write transaction latencies. The latency of a read
or write transaction is measured from the time a transaction
request is sent from a master till the time the read data or
write response is returned to the master. The average
transaction latency, denoted as TL, can be defined as

TL ¼

P
TLread þ

P
TLwrite

Nread þ Nwrite

(2)

where
P

TLread and
P

TLwrite are the sums of all read and
write transaction latencies, respectively. Nread and Nwrite are
the total number of read and write transactions,
respectively. In contrast to the bandwidth, which increases
as more data can be transferred, the transaction latency may
remain the same even if the BWU has been increased.

(C) System task completion time

The system task completion time is defined as the time when
all tasks in the video phone application have been completed.
We believe it is crucial to minimise the system task
completion time so that the task-level timing constraint can
be met. In the video phone application, all tasks must be
done within 33 ms, otherwise we say the system violates
the real-time constraint.

6.2 AXI interface buffer size and bus
arbitration impact

The effect of the bus interface buffer size and the
combination of arbitration policies are investigated first.
The investigated buffer sizes are 1, 2, 4, 8 and 16. Each
entry keeps the record of a transaction. Table 2 lists the
abbreviations of the investigated arbitration policy
combinations. The weighting parameter, which is slots in
the TDMA and tickets in the Lottery, are tuned to match
the bandwidth requirement of the video phone application.
Table 3 lists the detailed weight parameter of each channel.
Since write response channel does not require high
bandwidth, round-robin arbitration is selected for write
response channel due to its fairness. Note that in this
experiment, only the normal and the interleaved modes
are used.

Fig. 6 shows the BWU, average transaction latency and
completion time, respectively. In general, the BWU
increased as the interface buffer size increased. However,
the BWU stopped increasing when the buffer size is
Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 373–383
: 10.1049/iet-cdt.2008.0097
greater than 8 because of the required bandwidth limit.
The average transaction latency is also proportional to the
interface buffer size. This is because with a larger buffer, a
transaction would spend more time pending in the
interface buffer before this transaction finishes transferring
the data. In contrast, the completion time decreases as the
buffer size increases.

It is interesting that the transaction latency did not reflect
the result in BWU. This is because the outstanding and out-
of-order transfer capabilities, which are related to the buffer
size, allow multiple transactions to be transferred on the
bus in an overlapped manner. As a result, the latency of a
transaction becomes longer, but the transfers on the bus
can be arranged in a more compact way. This is one of the
characteristics in a packet-based bus that is different from a
traditional pipeline-based bus.

Table 2 Combinations of arbitration policies

Arbitration policy of channels

Combination
name

Address
channel

Data channel Write
response
channel

FF fixed
priority

fixed priority round-Robin

FT fixed
priority

TDMA round-Robin

FR fixed
priority

round-Robin round-Robin

FL fixed
priority

lottery round-Robin

TF TDMA fixed priority round-Robin

TT TDMA TDMA round-Robin

TR TDMA round-Robin round-Robin

TL TDMA lottery round-Robin

RF round-
Robin

fixed priority round-Robin

RT round-
Robin

TDMA round-Robin

RR round-
Robin

round-Robin round-Robin

RL round-
Robin

lottery round-Robin

LF lottery fixed priority round-Robin

LT lottery TDMA round-Robin

LR lottery round-Robin round-Robin

LL lottery lottery round-Robin
379

& The Institution of Engineering and Technology 2009



380

&

www.ietdl.org
Table 3 Weight allocation of TDMA and Lottery arbitration schemes

Channel Slots/tickets of each initiator port

read address CPU DSP video enc. DMAC0 DMAC1

4 8 24 24 24

write address CPU DSP video enc. DMAC0 DMAC1

4 24 8 24 24

read data video in mem. ctrl. 0 mem. ctrl. 1 others

8 24 16 4

write data CPU DSP video enc. DMAC0 DMAC1

4 24 8 24 24
T

For the arbitration policy, the impact on the performance
was not significant when the buffer size is 1 and 2. After
the buffer size becomes larger than 2, the combinations
with data channels using fixed-priority, such as FF, TF, RF
and LF, usually achieve lower BWU than other
combinations. On the other hand, the combinations with
data channels using TDMA, such as FT, TT, RT and LT,
usually achieve the highest BWU. Similar trend is also
observed in the execution time. However, this trend is weak
in the transaction latency, which doest not reflect the result
of the BWU.

The completion time comparison shows that when
TDMA is used for data channel, the 33 ms timing
constraint can be satisfied in buffer sizes 8 and 16. On the
other hand, no arbitration policy combination satisfied the
33 ms timing constraint with the buffer size smaller than 8.

In summary, bandwidth and completion time improved
sub-linearly as the interface buffer size increased. However,
the buffer size increase also increased the transaction
latency near linearly. When a smaller interface buffer is
used, the arbitration combination had less impact on
performance. On the other hand, for a larger buffer size,
the best arbitration combination could yield up to 23.3%
performance gain over the worst arbitration combination.
The result suggests that using a fair arbitration policy on
data channels should be more promising. For address
channels, a simpler arbitration policy is good enough
because address channel arbitration had less impact on bus
performance.

6.3 Task access setting impact

This subsection finds out how the hybrid data locked mode
should be used and shows the performance impact delivered
by using the hybrid data locked mode. A task access setting
defines how the transfer modes should be used by the
devices in a system. Table 4 lists the four settings
investigated here. The memory device is singled out because
it is the only device with non-zero access latency. All other
devices have zero access latency and hence are treated the
he Institution of Engineering and Technology 2009
same. Note that the results here are the average over all 16
arbitration policy combinations. The buffer size of data
locked mode and hybrid counterthreshold are both set to one.

Fig. 7 shows the average BWUs, average transaction
latency and completion time of different task access
settings. In general, HN setting achieved the highest BWU
among all the task access settings except in buffer size 16.
This is because when the buffer size is 16, the BWU of
NN, HN and NH settings is already high enough to
handle all the data transfer. If the buffer size is small, the
use of the hybrid data locked mode could reduce the
completion time by up to 26.8% compared with NN.
Although HN achieved the highest performance in most
cases, HH achieved the highest BWU in buffer size 1
because no out-of-order transfer can be carried out with
the interface buffer having only one entry. Consequently,
HH took shorter time to transfer a transaction and less
bandwidth would be wasted. In contrast to HH’s highest
BWU in buffer size 1, HH setting achieved the lowest
bandwidth utilisation when the buffer size is larger than
2. This is because HH had less opportunity to enable
interleaved transfer mode on normal transactions when the
interface buffer size increases. Unlike the result in the
BWU, HH setting achieved the shortest average
transaction latency among the four settings. The
transaction latency of HH did not increase significantly as
the buffer size increased. On the other hand, NN had the
expected longest average transaction latency. The trend in
completion time matches the trend in BWU in general.
HN setting achieved the shortest completion time and met
the 33 ms timing constraint with a buffer size larger than 4.

In summary, HN was the best task access setting in most
cases in terms of BWU and completion time. This suggests
that the hybrid data locked mode would best be used by
long access latency devices, but not by zero access latency
devices. From the transaction latency perspective, HH
achieved the shortest transaction latency. This suggests that
processors or devices that require short latency should use
the hybrid mode.
IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 373–383
doi: 10.1049/iet-cdt.2008.0097



IET
doi

www.ietdl.org
6.4 Single-layer shared-link AXI against
five-layer AHB-lite

This subsection compares the performance between a share-
link five-channel AXI interconnect and a cost equivalent
five-layer AHB-lite interconnect. The five-layer AHB-lite
interconnect is capable of providing a maximum bandwidth
of 800 MB/s. We used two task access settings for the
AXI case, one is NN setting and the other is HN setting.

Figure 6 Performance of different interface buffer size and
arbitration policy combinations

a Bandwidth utilisation
b Average transaction latency
c System task completion time
Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 373–383
: 10.1049/iet-cdt.2008.0097
Table 4 Task access settings

Settings Memory access tasks Other tasks

NN normal and
interleaved

normal and
interleaved

HN hybrid normal and
interleaved

NH normal and
interleaved

hybrid

HH hybrid hybrid

Figure 7 Performance of different task access settings and
interface buffer size

a Bandwidth utilisation
b Average transaction latency
c System task completion time
381

& The Institution of Engineering and Technology 2009



382

&

www.ietdl.org
The interface buffer sizes we investigated are 1 and 8. Since
the interface buffer size has no effect in AHB, only the result
of buffer size 1 is available for AHB.

Fig. 8 compares the BWU, average transaction latency and
completion time of the AHB and AXI platforms. The BWU
of shared-link AXI is significantly higher than that of AHB.
If the interface buffer size is 8, the BWU of AXI
outperformed AHB by at least 58.3%. However, AXI’s
transaction latency can reach up to 4.7 times of AHB’s in
buffer size 8. The completion time comparison shows that

Figure 8 Performance of five-layer AHB-lite and single-layer
shared-link AXI

a Bandwidth utilisation
b Average transaction latency
c System task completion time
The Institution of Engineering and Technology 2009
despite the long latency in AXI, the completion time in
AXI reduced up to 44.2% when compared with AHB.

The result shows that a single share-link AXI outperforms
a five-layer AHB-lite interconnect in the videophone case
study. Given that the hardware cost of a five-layer AHB-
lite interconnect is comparable to a shared-link AXI
interconnect, using a shared-link AXI interconnect may be
more efficient than using a multi-layer AHB interconnect.

7 Discussion and summary
The analysis in this work provides some insights for
multimedia system design involving a shared-link AXI
interconnect. If the buffer cost and transaction latency are
not the primary concerns, system designers can consider
using larger interface buffer to take the full advantage of
out-of-order and outstanding transfer capabilities. However,
some care must be taken in selecting a proper arbitration
combination when using a channel-independent arbitration
framework, especially when the interface buffer is large. The
analysis showed that the arbitration combination could affect
bus performance by up to 23.2%. Moreover, the arbitration
combination that yields the best system performance may
vary depending on the interface buffer size, task access
setting and application traffic characteristic. In general, using
a fair arbitration policy such as the TDMA is preferred for
data channels. As to address channels, system designers can
select a simpler arbitration policy to reduce the cost since the
address channel arbitration has less impact on system
performance. On the other hand, if the buffer cost and
transaction latency do matter, system designers can use the
hybrid data locked mode to achieve a performance similar to
the case that uses only the interleaved mode, but with only
half the interface buffer size. When the hybrid data locked
mode is adopted for only long access latency devices, the
simulation showed up to 21.1% completion time and 14.3%
transaction latency reduction with respect to the setting
without the hybrid data locked mode. With the short
transaction latency, system designers can also consider
adopting the hybrid data locked mode for latency-sensitive
devices, such as CPUs, to reduce transaction latency.
Although the analysis was conducted using AXI, we believe
that the experience can be extended and applied to other
shared-link packet-based bus as well.

8 References

[1] ARM Limited: ‘AMBA 2 specification’, Available at http://
www.arm.com/products/solutions/amba2overview.html

[2] IBM Microelectronics: ‘CoreConnect bus architecture’,
Available at http://www-306.ibm.com/chips/products/
coreconnect/

[3] OpenCore: ‘SoC interconnect: wishbone’, Available at
http://www.opencores.org/projects.cgi/web/wishbone/
wishbone
IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 373–383
doi: 10.1049/iet-cdt.2008.0097



IE
do

www.ietdl.org
[4] ARM Limited: ‘Multi-layer AHB overview’ May 2004

[5] POLETTI F., BERTOZZI D., BENINI L., BOGLIOLO A.: ‘Performance
snalysis of arbitration polices for SoC communication
architectures’, Des. Autom. Embedded Syst., 2003, 8,
(2–3), pp. 189–210

[6] LAHIR K., RAGHUNATHAN A., LAKSHMINARAYANA G.:
‘LOTTERYBUS: a new high-performance communication
architecture for system-on-chip designs’. In Proc. 38th
Design Automation Conf., June 2001, pp. 15–20

[7] ARM Limited: ‘AXI protocol’, Available at http://www.
arm.com/products/solutions/AMBA3AXI.html

[8] Open Core Protocol International Partnership
(OCP-IP): ‘Open core protocol’, Available at http://www.
ocpip.org/

[9] ST Microelectronics: ‘STBus interconnect,’ Available at
http://www.st.com/stonline/products/technologies/soc/
stbus.htm

[10] Arm Limited: ‘PrimeCell AXI interconnect (PL300)
technical reference manual’, October 2005

[11] Synopsis Inc.: ‘DesignWare IP solutions for AMBA
interconnect’at Available at http://www.synopsys.com/
products/designware/amba_solutions.html

[12] PASRICHA S., DUTT N., BEN-ROMDHANE M.: ‘Automated
throughput driven synthesis of bus-based communication
architectures’. In Proc. ASPDAC, February 2005

[13] RICHTER K., JERSAK M., ERNST R.: ‘A formal approach to
MpSoC performance verification’, IEEE Comput., 2003, 36,
pp. 60–67

[14] MADL G., PASRICHA S., ZHU Q., BATHEN L., DUTT N.: ‘Formal
performance evaluation of AMBA-based system-on-chip
designs’. In Proc. 6th ACM and IEEE Int. Conf. Embedded
Software, 2006, pp. 311–320
T Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 373–383
i: 10.1049/iet-cdt.2008.0097
[15] CAI L., GAJSKI D.: ‘Transaction level modeling: an
overview’. In Proc. 2nd IEEE/ACM/IFIP Int. Conf.
Hardware/Software Codesign, October 2003, pp. 19–24

[16] PASRICHA S., DUTT N., BEN-ROMDHANCE M.: ‘Fast exploration of
bus-based on-chip communication architectures’. In Proc.
2nd IEEE/ACM/IFIP Int. Conf. Hardware/Software Codesign
and System Synthesis, September 2004, pp. 242–247

[17] PASRICHA S., DUTT N., BEN-ROMDHANE M.: ‘Constraint-driven
bus matrix synthesis for MPSoC’. In Proc. ASPDAC,
January 2006, pp. 30–35

[18] PASRICHA S., DUTT N., BEN-ROMDHANE M.: ‘High level
design space exploration of shared bus communication
architectures’, CECS Technical Report 04-06, 2004

[19] LEE S., LEE C., LEE H.-J.: ‘A new multi-channel on-chip-bus
architecture for system-on-chips’. In Proc. IEEE Int. SOC
Conf., September 2004, pp. 305–308

[20] RUGGIERO M., ANGIOLINI F., POLETTI F., BERTOZZI D.: ‘Scalability
analysis of evolving SoC interconnect protocols’. In Proc.
Int. Symp. System-on-Chip, November 2004, pp. 169–172

[21] LAHIRI K., RAGHUNATHAN A., DEY S.: ‘Design space
exploration for optimizing on-chip communication
architectures,’, IEEE Trans. Comput.r-aided Des. Integr.
Circuits Syst., 2004, 23, (6), pp. 952–961

[22] MURALI S., BENINI L., DE MICHELI G.: ‘An application-specific
design methodology for on-chip crossbar generation,’,
IEEE Trans. Comput.-aided Des. Inegr. Circuits syst., 2007,
26, (7), pp. 1283–1296

[23] Open SystemC Initiative (OSCI): ‘SystemC’, Available at
http://systemc.org

[24] LIN T.-J., LIU C.-N., TSENG S.-Y., CHU Y.-H., WU A.-Y.: ‘Overview of
ITRI PAC project– from VLIW DSP processor to multicore
computing platform’. In Proc. IEEE Int. Symp. VLSI Des.,
Automation, and Test, April 2008, pp. 188–191
383

& The Institution of Engineering and Technology 2009


