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中文摘要 

 

正規表示法比對是一個很重要的問題，在科學和資訊處理領域上有很多相關

的應用。在這篇論文裡，我們設計一個 C程式，這個 C程式讀正規表示法然後輸

出一個以 verilog 語言描述的 NFA。將字串輸入此 NFA 電路後，此電路可以檢查

字串裡是否有符合正規表示法描述的子字串。使用我們提出的方法，硬體需求的

成長將正比於正規表示法的長度。若使用 GNU grep(DFA)的方法，記憶體需求將

以 成長( 是正規表示法的長度);使用[1](NFA)所提出來的方法需要

的硬體面積。除了面積的改善以外，在這篇論文裡介紹的新方法在偵錯、

適用硬體、最佳化、電路修改、以及面積的使用效率上皆有不錯的表現。我們提

出的方法利用 Pentium 4 的中央處理器和 APEX EP20K600EBC-6521X 型號的 FPGA

來評估。  

(2 )nO n
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Abstract 
 

The regular expression matching is an important problem that occurs in many 

areas of science and information processing. In this paper, we design a C code which 

accepts the regular expression and then outputs a NFA described by verilog language. 

By means of the NFA circuit, the circuit can read the string and examine whether the 

substring matches the regular expression or not. Using our approach, the area of the 

hardware used grow in , where  is the length of the regular expression. To 

match a regular expression, GNU grep (DFA) requires  memory and 

approaches using the NFA in [1] require  area. Beside the improvement of the 

area, this new design has not bad performance on debug, suitable device, optimization, 

easily modifying the circuit. We evaluate our approach on the machine which has a 

processor of the Pentium 4 and the target device is the APEX EP20K600EBC-6521X. 

( )O n n
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Chapter 1 
 

Introduction 
                                                                           

 

 String pattern matching is an important problem that occurs in many areas of 

science and information processing. In computing, it occurs as part of data processing, 

text editing, term rewriting, lexical analysis, and information retrieval. In biology, 

string-matching problems arise in the investigation of DNA sequences. The simplest 

form of problem is to locate an occurrence of a keyword as a substring in a sequence 

of characters, which we call the input string. For this problem, several innovative, 

theoretical, and interesting algorithms have been devised that run significantly faster 

than the obvious brute-force method. [8] 

 Pattern-matching problems can be shown in Figure 1.1 where p  is the pattern 

and  is the input string. The pattern is transformed by the pattern-matcher generator 

into a pattern matcher, which is used to look for an occurrence of the pattern in the 

input string. The pattern matcher reports “yes” if  contains a substring matched by 

s

s

p , “no” otherwise. In this paper, the pattern p  described in the regular expression is 

transformed into DFA (deterministic finite automaton) or NFA (nondeterministic finite 

automaton) which used as the pattern matcher to process the input string  by the 

pattern-matcher generator.  

s

 1



                                                             Chapter 1  Introduction 
 

pattern

    p

yes

no

input string

       s  

Figure 1.1 Model for pattern-matching problems [8] 

 

About the former, its idea is to transform the regular expression into DFA and 

then to use DFA for string matching. We take GNU grep for example. In the worst 

case, the memory and time required would be exponential blowup. About the method 

using NFA, we take the approache in [1] for instance. The approach proposed in [1] 

transforms the regular expression into NFA and to implement the NFA by generating 

the placed and routed netlist on the FPGA. The approach requires area and 

takes  time for processing per character (  is the length of the regular 

expression). Compared with the method using DFA, the approache proposed in [1] 

significantly reduces the space and time requirement. 

2( )O n

(1)O n

The approach proposed in this paper also transforms the regular expression into 

NFA . This approach includes four main parts, “converting the regular expression,” 

“rearranging the regular expression,” “logic structures,” and “NFA construction 

algorithm.” Beside the two metacharacters designed in [1], we implemenent 

metacharacters often used and permit the metacharacter to be matche. The new 

method provides a general solution for regular expression matching in hardware. Its  

 2
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flexibility includes debug, suitable device, optimization, easily modifying the circuit, 

and so on. About area, the requirement is reduced from  to  and the 

utility rate becomes higher.  

2( )O n ( )O n

 

 Chapter 2 is the background about the regular expression, finite automata and a 

pseudo code for converting the infix expression to a postfix expression. Chapter 3 

introduces the approach in [1]. Chapter 4&5 describes approach proposed in this 

paper. Chapter 6 presents the evaluation result and comparison. Chapter 7 is the 

conclusion. 
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Chapter 2 
 

Background 
                                                                          

 

 

2.1 Finite Automata [2] 

 

 Before introducing the automaton, we first introduce some important definitions. 

These concepts include the “alphabet”, “strings” and “language.” An alphabet is a 

finite, nonempty set of symbols. Common alphabets include the binary alphabet, the 

set of all lower-case letters and the set of all ASCII characters. Usually, we use the 

symbol  for an alphabet. A string is a finite sequence of symbols chosen from 

some alphabet. For example, “kitty” is the string that is chosen from the set of all 

low-case letters. k

Σ

Σ  is the set of strings  length k  and each of whose symbols is 

in Σ . For exam  {0,1Σ = 110,111} . A 

set of strings which are chosen from 

of

if , then ,010,011,100,101,Σ =ple, } 3 {000,001

*Σ , where *Σ  is the set of all strings over an 

Σ , is called a language. For example, Chinese name is a set of strings over 

the alphabets which are all Chinese words. 

alphabet 

  

 The finite automaton is a useful model for many important applications. Before 

we introduce precise definitions of automata of various types, let us informally 

introduce the sketch of what a finite automaton is. There are many systems or 

components in one of a finite number of “states.” The purpose of a state is to 

 4
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remember the relevant portion of the system’s history. The advantage of having a 

finite number of states is to implement the system with finite resources. Let us take a 

finite automaton (Figure 2.1) for example. A finite automaton has a set of states and 

its “control” moves from state to state in response to external “inputs.” For finite 

automata, circles represent states and arcs between states are labeled by “inputs,” 

which represent external influences on the system. One of the states is designed the 

“start state,” the state in which the system is placed initially. One or more states are 

designed “final states” and it is conventional to designate final states by a double 

circle. In Figure 2.1, state 1 is “start state” and state 5 is “final state.” Entering the 

final state represents that the input sequence is good in some way. 

 

 

Figure 2.1: finite automaton 

 

One of the crucial distinctions among classes of finite automaton is the number 

of states once. “Nondeterministic Finite Automaton” means that the automaton may 

be in several states at any one time but “Deterministic Finite Automaton” means that 

it cannot be in more than one state at once. Below we introduce the definitions of 

“Nondeterministic Finite Automaton” and “Deterministic Finite Automaton” for 

details.   

 

2.1.1 Nondeterministic Finite Automaton (NFA)  

  

The definition of the nondeterministic finite automaton is below. 

0( , , , , )A Q q Fδ= ∑  

 5
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 6

where: 

is a finite set of states. 

bols. 

 4. , a subset of , is the set of final states. 

5. 

 1. Q  

 2.  is a finite set of input sym∑

 3. , a member of Q , is the start state. 0q

F Q

δ , the transition function is a function that takes a state in and an input 

sym as ar . If is a state, and 

Q  

bol in ∑  guments and returns a subset of Q q  

a  is an input symbol, then ( , )q aδ  is that subset { , ...}p p  such that 

there are arcs labeled a  from q  to subset { , ,...}p p . 

ndeterministic” finite automa FA) has several st ce. Take an 

, the automaton (Figure 2.2) is used to recog rre

1 2 ,

A “no ton (N ates at on

example nize occu nces of the words, 

1 2

web  and ebay , in a text. The NFA of Figure 2.2 can be specified formally as 

({1,2,3,4,5,6,7,8},{all ASCII characters}, ,1,{4,8})δ . The transition table 

espond to the function corr ing δ  of Figure 2.2 is shown in Table 2.1. The input and 

lumn of the Table 2.2. State 2 

through 4 have the job of recognizing web , while state 5 through 8 recognize ebay .  

 

state are designated respectively in the first row and co

1

2 3 4

5
Start

w

e

e

b

 

Figure 2.2: the NFA diagram

b
Σ

6 7 8a y

 of recognizing  and 

 

web ebay  
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w  e  b  a  y other 

ASCII

characters

 

 

1 {1, 2} {1, 5} {1} {1, 5} {1} {1} 

2 φ  {3} φ  φ  φ  φ  

3 φ  φ  {4} φ  φ  φ  

4 {4 {4} {4} {4} {4} } {4} 

5 φ  φ  {6} φ  φ  φ  

6 φ  φ  φ  {7} φ  φ  

7 φ  φ  φ  φ  {8} φ  

8 {8 {8} {8 {8} {8} } } {8} 

Table 2.1: the transition table corresponding to the function δ  of Figure 2.2 

 

2.1.2 

 

ton is below. 

Deterministic Finite Automaton (DFA)  

 The definition of the deterministic finite automa

0( , , , , )A Q q Fδ= ∑  

where: 

 1. is a finite set of states. 

is a finite set of input symbols. 

 start state. 

5. 

Q  

 2. ∑  

 3. , a member of Q , is the0q

 4. , a subset of Q , is the set of final states. F

δ , the transition function is a function that takes a state in and an input 

symbol in as arguments and returns a state of . If is a state, and 

Q  

∑  Q q  

a  is an input symbol, then ( , )q aδ  is that state p  such that there is an arc 

labeled a  from q  to p . Notice that the difference between an NFA and 

 7
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DFA is the type of value that δ  returns: a set of s es in he case of an NF  

and a single state in the case of a DFA.  

ure 2.3 is a simple instance for the DFA which can be specified formally as 

},{0,1}, ,1,4)

tat  t A

 

Fig

({1,2,3,4 δ . The transition table corresponding to the function δ  of 

Figure 2.3 is shown in Table 2.2. The input and state are designated respectively in the 

first 

 

row and column of the Table 2.3. 

1 0 0

1

1

1

0

Start 0

 
Figure 2.3: the DFA diagram 

 

 0 1 

1 2 1 

2 2 3 

3 3 4 

4 2 1 

Table 2.2: the transition table corresponding to the function δ  of Figure 2.3 
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2.2

 

 Here we switch our attention from machine-like descriptions of languages, NFA 

he “regular expression.” The regular expression 

an be thought of as a “user-friendly” alternative to the automata notation. Besides, 

t matches the string . 

pression 

.  

s  

 Regular Expression [8] 

and DFA, to an algebraic description: t

c

regular expressions offer something that automata don’t: a declarative way to express 

the strings we want to accept. Therefore, regular expressions serve as the input 

language for many systems that process strings, e.g. UNIX grep command, UNIX 

Lex(Lexical analyzer generator) and Flex(Fast Lex) tools.  

 We define regular expressions and the strings they match as follows:  

 1.  The following characters are metacharacters: | ( ) * 

 2.  A non-metacharacter a  is a regular expression tha a

3.  If 1r  and 2r  are regular expressions, then 1 2( | )r r  is a regular ex

that matches any string matched by either 1r  or 2r

4.  If 1r  and 2r  are regular expressions, then 1 2( )( )r r   is a regular expres ion

that matches any string of the form xy  1r  matches x  and 2r, where  

ma hes 

5.  If is a regular expression, then is a regular expression that matches 

e  ma

tc y . 

r  ( )*r  

any string of the form 1 2... , 0nx x x n ≥ , wher tches ir x  for 1 i n≤ ≤ . 

In practice, ( )*r  matches the empty string, which we denote by ε . 

r  is a regular expression, then 6.  If is a regular expression that matches 

 Here are two examples for understanding the regular expression. The regular 

expression ) matches any of 

{    }The dog T he likes sleeping

( )r  

the same strings as r .  

   ,   likes studying he dog likes sleeping The cat likes studying T cat

 ( | )  ( |The dog cat likes studying sleeping  

  ,     ,  

 9
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. The regu k very very much  matches the strings  

; and so on.  

he NFA from the Regu 8] 

 

 A NFA is a directed graph in which the nodes are the states and each edge is 

bol 

lar expression  Than you (,  )*  

   T k you very much ;   ,   Thank you very very much ; 

  ,  ,  Thank you

2.3 Constructing t lar Expression [

han

 very very very much

   

labeled by a single character or the sym ε , which stands for the empty string. One 

 a 

ring if there is a path from the start state to a final state whose edge labels spell out 

state is designated as a start state, and some states as final states. A NFA accepts

st

the string. Once we have constructed a NFA for a regular expression r , we run it on 

the input string s . If the NFA enters a final state while processing s , we report that 

r  matched s , otherwise, we report  “no”. The recursive procedure below can be 

used to construct an NFA for the regular expression. Using rule (1), we construct a 

NFA for a non-metacharacter. Rule (2)-(5) show how to comb e the NFAs 

constructed from he constituent subexpressions.  

(1) For a non-metacharacter c , construct the NFA in Figure 2.4(a) where i  is a 

new start state and a  a new final state. This automaton accepts the string c . 

(2) Suppose 
1r

N  and 
2r

N  are NFA for 1r  and 2r . For the regular expression 

|r r r= , construct the NFA N  in Figure 2

in

 t

.4(b here is a new start state 1 2 ) w i  

and a  a new final state. There is an ε -transition from i  to the start states of 

1r
N  and 

2r
N . There is an ε -transition  the final st   and  to 

the new final state  is, any path from  to must pass through either 

 from ates of
1r

N
2r

N

a . That i a  

1r
N  or 

2r
N . Therefore, N  accepts any string accepted by 

1r
N  or 

2r
N . 
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(3) Suppose a

trans tions from

m 

1r
N  and 

2r
N  re NFAs for 1r  and 2r . For the regular expression 

1 2r r r= , construct the NFA N  in Figure 2.4(c) where the start state of 
1r

N  

s the start state o and the final state of becomes the final state become f N  
2r

N  

of N . The final state of is merged with the s rt state of ; that is, all 

 the start state of become transitions from the final state of 

. The new merged state loses its status as a start or final state in N . A path 

fro  to must go first through  and then through , so N  

accepts any string of the form 

1r
N  ta

2r
N

i
2r

N  

1r
N

1r
i

2r
a  

1r
N

2r
N

xy  accepts  where 
1r

N x  and  accepts y . 

is a NFA for . For the regular expression =

the NF  in Figure 2.4(d) where i  is a new start state and a  a new final state. 

In N , we can go from i  to directly, along an edge labeled 

2

(4) Suppose , construct 

A

rN

1r
N  1r 1 *r r

a  ε , representi g n

matches the empty string, or we can go from  to  passing 

through one or more times. Thus, accepts any string matched by 

 

from the regular expression. Figure 2.5 shows a NFA that results from this 

construction for the regular expression 

the fact that *s  i a

1r 1

(5) For the regular expression use the NFA for r . 

Take a simple instance for understanding the procedure of constructing the NFA 

N  N  *r . 

( )r  

( | )*a b cd . 
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i ac

i a

ε ε

ε ε

1r
N

2r
N

1r
i

2r
i

1r
a

2r
a

1r
N

2r
N

1r
i

2r
a

ε

εε

ε

i a
1r

N
1r

i
1r

a

(a)

( )b

( )c

( )d  
Figure 2.4: constructing NFA from the regular expression 
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ε

ε

ε ε

ε ε

ε

ε

a

b

c d

 

Figure 2.5: NFA for  ( | )*a b cd

 

2.4 Extensions to the Regular Expression Notation [8] [9] [10] 

[11] 

 

 Many text-editing and searching programs add abbreviations and new operators 

to the basic regular expression notation above to make it easier to specify patterns. 

Here, we introduce some of the regular expressions used by the popular expression 

matching programs awk, grep, egrep and lex on the UNIX.  

(1) The  metacharacter: The character + +  means “one or more of the 

preceding characters.” For example, the regular expression de f+  matches any 

of the following: , and so on. , , ...neredefine redeefine redeeefi

(2) The  metacharacters: The [ ] metacharacters enable us to define regular 

expressions that match one of a group of alternatives. For example, the following 

regular expression matches def  or : . When the  character 

appears as the first character after the , it indicates that the regular expression 

is to match any character except the ones displayed between [  and . For 

[ ]

dEf [ ]d eE f ^

[

]

 13
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example, the regular expression  matches any pattern that satisfies the 

following criteria: 1. The first character is d . 2. The second character is 

anything other than  or . 3. The last character is 

[^ ]d eE f

e E f . 

(3) The  metacharacter:  metacharacter matches zero or one occurrences of 

the preceding character. For example, the regular expression  matches 

either  or . 

? ?

?de f

df def

(4) Escape sequences for metacharacters: If we want our regular expression to 

include a character that is normally treated as a metacharacter, precede the 

character with a backslash . For example, to check for one or more occurrences 

of  in a string, use the following regular expression: 

\

* \ *+ . The backslash 

preceding the * tells us to treat the * as an ordinary character, not as the 

metacharacter meaning” zero or more occurrences.” To include a backslash in a 

regular expression, specify two backslashes \ \ + . This regular expression tests 

for one or more occurrences f \  in a stringo . 

c

 

(5) Matching any letter or number: The regular expression  

matches , followed by the any digits, followed by . Another way of writing 

this is as follows: . Here, the range [0

[0123456789]a c

a c

[0 9]a − 9]−  represents any digit 

between 0 and 9. This regular expression matches  and so on up 

to . Similarly, the range 

0 , 1 , 2 ,a c a c a c

9a c [a z]−  matches any lowercase letter, and the range 

[ ]A Z−  matches any uppercase letter. For example, the regular expression 

[ ][ ]A Z A Z− −  matches any two uppercase letters.  

(6) Anchoring patterns: The regular expression  and  ensure that the 

regular expression is only matched at the start or the end of the string. For 

example, the regular expression  matches  only if these are the first 

three characters in the strings. Similarly, the regular expression  matches 

 only if these are the last three characters in the strings. We can combine  

^ $

^def def

$def

def ^

 14
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and  force matching of the entire string, as follows: . This matches 

only if the string is . 

$ ^def $

def

(7) Matching any character: Another metacharacter supported in the regular 

expression is the period (.)  character, which matches any character. For 

example, the regular expression  matches , followed by any character, 

followed by 

.d f d

f . 

(8) Matching a specified number of occurrences: We can define how many 

occurrences of a character constitute a match. To do this, use metacharacters  

and . For example, the regular expression  matches , followed by 

one, two, or three occurrences of , followed by 

{

} {1,3}de f d

e f . This means that , 

, and  match, but  and  do not. To specify an exact 

number of occurrences, include only one value between the  and }: . 

This specifies exactly three occurrences of , which means this regular 

expression inly matches . 

def

deef deeef df deeeef

{ {3}de f

e

deeef

 Figure 2.6 shows two NFAs for  and  . 1 ?r

 

 15



                                                              Chapter 2  Background 
 

i aΣ

(a)

εε

ε

i a
1r

N
1r

i
1r

a

( )b  
Figure 2.6: (a) NFA for  (b) NFA for  . 1 ?r

 

2.5 Converting an Infix Expression to a Postfix Expression 

[3]  

 Figure 2.7 is a pseudo code which converts an infix expression to a postfix 

expression. For the conversion algorithm to be correct, we must check four issues. 1. 

The postfix expression contains the correct operands in the correct order. 2. The 

postfix expression evaluates subexpressions in the way indicated by the parentheses in 

the infix expression. 3. The postfix expression handles operations of differing 

precedence according to the precedence rules. 4. A string of operations of equal 

precedence in the infix expression is handled correctly when translated into the 

postfix expression. Below, we consider each of these four issues.  

 16
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 First we need to know that the operands (the numbers and variables) in the 

postfix expression are in the same order as they are in the infix expression. Because 

operands are written out as soon as they are read in, they are clearly in the same order 

as in the infix expression. 

 Parentheses are a way of grouping subexpressions. Everything inside a pair of 

matching parentheses is treated as a single unit by anything outside the parentheses. 

The parentheses give the following message to the operations outside of the 

parentheses: We will work things out among ourselves and deliver a single value for 

you to combine with other operands. This means that all operations between a set of 

matching parentheses in the infix expression should form a subexpression of the 

postfix expression. The algorithm keeps track of expressions with matching 

parentheses by using the stack. When algorithms encounters an opening parenthesis, 

that is, a ‘(’, it pushes this parenthesis into the stack. The algorithm will never output 

an operation from the stack that is below the opening parenthesis, ‘(’. It only outputs 

operations that are within the pair of matching parentheses in the input expression. 

Moreover, it outputs all of these operations. When it encounters the matching closing 

parenthesis, it outputs all the remaining operations on the stack all the way down to 

that matching opening parenthesis. This behavior can be completed by means of the 

prcd function which executes the comparison of the precedence. The function has two 

arguments. When the former argument owns the higher precedence than the later, the 

function returns 1. The function returns 0 when the opening parenthesis is the 

argument and the closing parenthesis is not. By returning 0, the stack can stop to pop 

operations outside a pair of matching parentheses. When the closing parenthesis is the 

argument, the function will return 1 until encountering the opening parenthesis. It will 
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make all operations between a set of matching parentheses in the infix expression 

form a subexpression of the postfix expression. 

 When the infix expression contains an operation with low precedence followed 

by an operation with a higher precedence, then the algorithm should output these 

operations in reverse order. That is, the higher precedence should be written first. By 

means of the function prcd, this work also is completed. The former argument of the 

function is the top of the stack and the latter is the new coming operation. When the 

precedence of the former is higher than the precedence of the latter, it represents that 

an operation with higher precedence followed by an operation with a lower 

precedence in the infix expression. Therefore, the stack is popped. Otherwise, the 

order of the operations is reversed.  

 When the infix expression contains a sequence of operations of equal precedence, 

they represent an evaluation that goes from left to right. The work is solved by 

returning 1 when the function accepts the same two operations as arguments. 
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opstak = the empty stack;
while ( not end of input )
{

symb = next input character;

if ( symb is an operand )
add symb to the postfix string;

else 
{

while ( !empty(opstk) && prcd(stacktop(opstk) , symb))
{

topsymb = pop(opstk);
add topsymb to the postfix string;

} // end while

// push ( opstk, symb );
if (empty(opstk) || symb != ')' )

push (opstk , symb);
else

topsymb = pop(opstk);
} // end else

} // end while

while (!empty(opstk))
{

topsymb = pop(opstk);
add topsymb to the postfix string;

} // end while
 

Figure 2.7: converting an infix expression to a postfix expression 

 

 

 19



                          Chapter 3  Related Work: Generating the Placed and Routed Netlist 

 

Chapter 3 
 

Related Work: Generating the Placed and 

Routed Netlist [1] 
                                                                         

 
 

This approach was introduced in [1] for finding matches to a given regular 

expression in a given text. [1] presents an algorithm that constructs the 

Nondeterministic Finite Automaton (NFA) circuit used for matches. The idea is to 

map simple NFAs onto logic structures and then to complete the whole circuit by 

means of these logic structures.  

 Before introducing the algorithm, we first describe simple logic structures shown 

in Figure 3.1, a single character, ,  and 1 2|r r 1 2r r 1r ∗ . Logic structures showed in 

Figure 3.1(a), (b), (c) and (d) are the implementations of the NFAs shown in Figure 

2.4(a), (b), (c) and (d) respectively. In Figure 3.1(a), the output is 1 only when the 

flip-flop stores a 1 and the input character matches the character stored in the in the 

comparator. In Figure 3.1(b), only when  or  has a match, the output of the 

OR gate would be high. In Figure 3.1(c), only when  and  have matches, the 

o would be high. In Figure 3.1(d), the o would be high whether  has match or not. 

The behavior of Figure 3.1 (a), (b), (c) and (d) is the same as Figure 2.4(a), (b), (c) 

and (d), respectively. 

1N 2N

1N 2N

1N

 

 20



                          Chapter 3  Related Work: Generating the Placed and Routed Netlist 

 
Figure 3.1: logic structures (a) single character (b)  (c)  (d)  1 2|r r 1 2r r 1r ∗

 

 Here, we introduce the algorithm. The algorithm accepts the regular expression 

in postfix form obtained by postorder traversal of the syntax tree of the regular 

expression and directly generates the placed and routed netlist for NFA logic. The 

order of characters in the postfix form replaces the use of parentheses in the infix 

form. By eliminating parentheses, the algorithm needs not to deal with parentheses, so 

it is simplified. The algorithm places the NFA logic as a binary tree. That is, logic 

structures for characters are leaf nodes and placed in the row 0. Once the logic 

structure for the character is placed, the column counter is incremented. Logic 

structures for metacharacters are non-leaf nodes and are placed on separate rows. 
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Once the logic structure for the metacharacter is placed, the row counter is 

incremented. 

By exploiting this algorithm, the area would depend on placement and routing 

subroutines. According to [1], the area would be in  where n is the length of 

the regular expression. This algorithm compared with a serial machine is better 

because the DFA take  memory.    

2( )O n

(2 )nO
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Chapter 4 
 

Generating HDL Code 
                                                                         

 
 

This paper proposes a new method to construct the NFA circuit used for matches. 

The method proposed in [1] only implements two metacharacters and the 

metacharacter can’t be view as a symbol for matching. Here, this new method 

implements metacharacters often used and permits the metacharacter to be matched. 

Figure 4.1 is the flow chart of the new method for constructing NFA circuit. This 

method includes four main parts, “converting the regular expression,” “rearranging 

the regular expression,” “logic structures,” and “NFA construction algorithm.” In 

order to generate the HDL code from the C language and conform the syntax of the 

HDL, these four parts are needed. “Reducing and converting the regular expression” 

reduces the redundant part of the regular expression and converts some 

metacharacters into the equivalent regular expression. “Rearranging the regular 

expression” rearranges the order for simplifying the NFA algorithm. “Logic 

structures” can be viewed as bricks for complete the circuit. “NFA construction 

algorithm” accepts the output of “rearranging the regular expression” and completes 

the circuit. We introduce them below for details.  
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verilog 

code

regular 

expression

Figure 4.1: the flow chart of the constructing NFA circuit 

 

 

4.1 Reducing and Converting the Regular Expression 

 

  In the beginning, we first examine whether the regular expression in the infix 

form can be reduced or not. (r  and 

 can be both reduced to 

. For the former, since the NFA must match strings beginning at 

any position in the input text,  is redundant. For the latter, 

since the NFA can’t indicate which pattern matched, thus  

can be removed. Some metacharacters can be implemented only by converting the 

regular expression into the other regular expression. We introduce and explain it 

below. 

egular expression b)*(regular expression a)

(regular expression a)(regular expression b)*

(regular expression a)

(regular expression b)*

(regular expression b)*

If  is a regular expression, then r r +  is a regular expression that matches any 

string of the form 1 2... , 1nx x x n ≥ , where  matches r ix  for 1 i n≤ ≤ . Therefore, the 

regular expression  could be implemented by converting it into . However, 

when encountering , we don’t convert it into  since 

r + *rr

/+ //* /+  means treating  as 

a character to match. 

+

{ }r n  is a regular expression that matches any string of the form 1 2... nx x x  where 

 matches r ix  for . Therefore, the regular expression  could be 1 i n≤ ≤ { }r n
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implemented by converting it into  where n regular expressions are connected. ...rrr r

The regular expression  is just the shorthand of the regular 

expression . Therefore, for the implementation, we convert the shorthand. 

Similarly, regular expressions [ ]

1 2[ ... ]nr r r

1 2( | | ... | )nr r r

A K− and [1 9]−  are also converted. When 

encountering , we convert it into 1 2[^ ... ]nr r r 1 2( | | ... | )nr r r +  where the meaning of +  

has been changed. After converting the regular expression, there is a  in the front of 

. By means of this feature, we use 

/

+ +  which follows )  to solve metacharacters 

.  [^...]

 

4.2 Rearranging the Regular Expression 

 

 Here, we eliminate the parentheses and rearrange the order of metacharacters 

which are  and . The position of the metacharacter  is rearranged since the 

logic structure which implements  needs to concatenated in the back of the first 

comparator for checking whether the input character is the beginning of the string or 

not. The position of the metacharacter |  is rearranged in order that the NFA 

construction algorithm can build  on the top of the two suitable comparators and 

needn’t to deal with parentheses. By eliminating parentheses, the NFA construction 

algorithm can be simplified. 

| ^ ^

^

|

 We use the pseudo code shown in the Figure 2.7. In the function prcd, there are 

only  without . After rearranging the order of the expression, 

exchange positions of the metacharacter  and the first character. 

|, (,and ) , , ,and+ − × ÷

^

   

4.3 Logic Structures 
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Metacharacters mentioned in the Chapter 2 can be implemented by building 

some logic structures which established in the form of modules described by the HDL. 

We choose and design eight logic structures as basic components of the whole circuit. 

Figure 4.2 shows these modules. Note that the wire marked the odd number represents 

the output. On the contrary, the even number indicates the input. The arrangement of 

numbers is for the generation of the HDL code.  

Figure (a) is a comparator which is the implementation of the Figure 2.4(a). The 

flip-flop can be treated as the state of the NFA and we use the clock to segment the 

coming symbol of the string. If the flip-flop stores a 1, it represents that the operation 

of the “regular expression matching” walks to this state which the comparator stands 

for. If the input symbol matches, the comparator delivers a 1 to the next comparator 

which stands for the next state.  

Figure 4.2(b), (c), (d), (e) and (f) are the implementations of Figure 2.4(b)(c)(d) 

and Figure 2.5(b)(a), respectively. Figure 4.2(b) implements the regular expression 

 where the circuit implementing  connects w3&4 and the circuit 

implementing  connects w5&6. Any one of circuits implementing  and  

output a 1 and then the circuit implementing  outputs a 1. Figure 4.2(c), (d), (e) 

and (f) are similar. Figure (c) is used for the regular expression . Figure (d) is used 

for the regular expression . Figure (e) is used for the regular expression . 

Figure (f) is used for the regular expression . 

1 2|r r 1r

2r 1r 2r

1 2|r r

1 2r r

1 *r 1 ?r

1 2.r r

Figure 4.2 (g) is designed for solving metacharacters  and . Because 

behaviors of metacharacters  and $  can’t be drawn in the NFA, we design a 

signal “sf” for examining whether the input symbol is the beginning or end of the 

string or not. When the work for the “regular expression matching” starts or finishes, 

signals “s” or “f” are designed to pull up for a clock. Take as an example,  

^ $

^

^ben ^ben
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would be rearranged into . The two inputs of Figure 4.2(g) would be the output 

of the comparator for  and the signal “s.” Only when the first symbol of the input 

string is , the regular expression has the possibility of matching. Figure4.2 (h) is 

designed for solving metacharacters . After converting the regular expression, 

the  becomes . When reading the 

^b en

b

b

[^...]

[^...] (...)+ + , we connect the circuit 

implementing  and the inverter shown in the Figure 4.2(h).  (...)

 

  

 

 27



                                            Chapter 4  Generating HDL Code 

 

 
Figure 4.2: logic structures for (a) comparator (b) union |  (c) concatenation (d) 

closure  (e) ?  (f) dot . (g) anchor (h) * +   
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4.4 NFA Construction Algorithm 

 

 Figure 4.3 shows the NFA construction algorithm and subroutines are shown 

in the Figure 4.4. To give different names for all modules and wires, it is necessary 

to compute how many logic structures are being used. Thus the counter, number, is 

used. After accepting the regular expression in the postfix form, the algorithm 

would check whether the regular expression finishes or not. If not, it examines the 

input symbol, and then processes the particular subroutine. Until the regular 

expression finishes, the algorithm processes the other recursion: examining 

whether the number which the stack pops is the last one or not. If not, the 

subroutine, routing for concatenation, works for concatenation, otherwise, the 

subroutine, routing for i/o port, works.   

 Figure 4.4(a) is used only when the symbol which has to be matched is 

accepted and this logic structure dominates how fast the circuit can be. In Figure 

4.4(a), after naming wires and the comparator, ports of the comparator are assigned 

and then push the number of the comparator into the stack. Next, for the next logic 

structure used the number must be incremented. Figure 4.4(b), (c), (d), (e), (f) and 

(g) are similar, so we only take Figure 4.4(b) to explain. Since the union of the 

regular expression in the postfix form applies to the former two, the algorithm 

pops the stack two times. After names of wires and the logic structure of the union 

are declared, the algorithm completes the connection between wires by exploiting 

the “assign”. Figure 4.4(i) is about the i/o port. The i port is stuck to the power 

supply and the o port is just the wire.  
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Fig 4.4(i)
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Fig 4.4(e)

Fig 4.4(f)
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Figure 4.3: the NFA construction algorithm  
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printf("wire w%d_1, w%d_2 ;\n", number, number) ; 
printf("comparator_%c comparator%d( w%d_1, w%d_2, clk, data ) ;\n\n", 
postfix[k], number, number, number ) ;
push(s2, number) ; 
number++ ;

(a)

number1 = pop(s2) ; 
number2 = pop(s2) ;
printf("wire w%d_1, w%d_2, w%d_3, w%d_4, w%d_5, w%d_6 ;\n", number, number, number, number, number, 
number) ;
printf("union union%d( w%d_1, w%d_2, w%d_3, w%d_4, w%d_5, w%d_6 ) ;\n", number, number, number, number, 
number, number, number ) ;
printf("assign w%d_2 = w%d_3 ;\n", number2, number ) ;
printf("assign w%d_2 = w%d_5 ;\n", number1, number ) ;
printf("assign w%d_4 = w%d_1 ;\n", number, number2 ) ;
printf("assign w%d_6 = w%d_1 ;\n\n", number, number1 ) ;
push(s2, number) ;
number++ ;

(b)

number1 = pop(s2) ;
printf("wire w%d_1, w%d_2, w%d_3, w%d_4 ;\n", number, number, number, number) ;
printf("closure closure%d( w%d_1, w%d_2, w%d_3, w%d_4 ) ;\n",  number, number, number, number, number ) ;
printf("assign w%d_4 = w%d_1 ;\n", number, number1 ) ;
printf("assign w%d_2 = w%d_3 ;\n\n", number1, number ) ;
push(s2, number) ;
number++ ;

(c)

(d)

(e)

number1 = pop(s2) ;
printf("wire w%d_1, w%d_2, w%d_3, w%d_4 ;\n", number, number, number, number) ;
printf("repetition repetition%d( w%d_1, w%d_2, w%d_3, w%d_4 ) ;\n",  number, number, number, number, number ) ;
printf("assign w%d_4 = w%d_1 ;\n", number, number1 ) ;
printf("assign w%d_2 = w%d_3 ;\n\n", number1, number ) ;
push(s2, number) ;
number++ ;

number1 = pop(s2) ;
printf("wire w%d_1, w%d_2, w%d_3, w%d_4 ;\n", number, number, number, number) ;
printf("exclusion exclusion%d( w%d_1, w%d_2, w%d_3, w%d_4 ) ;\n",  number, number, number, number, number ) ;
printf("assign w%d_4 = w%d_1 ;\n", number, number1 ) ;
printf("assign w%d_2 = w%d_3 ;\n\n", number1, number ) ;
push(s2, number) ;
number++ ;
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number1 = pop(s2) ;
printf("wire w%d_1, w%d_2, w%d_3, w%d_4 ;\n", number, number, number, number) ;
printf("dot dot%d( w%d_1, w%d_2, w%d_3, w%d_4 ) ;\n",  number, number, number, number, number ) ;
printf("assign w%d_4 = w%d_1 ;\n", number, number1 ) ;
printf("assign w%d_2 = w%d_3 ;\n\n", number1, number ) ;
push(s2, number) ;
number++ ;

(f)

(g)

(h)

number1 = pop(s2) ;
printf("wire w%d_1, w%d_2, w%d_3, w%d_4 ;\n", number, number, number, number) ;
printf("anchor anchor%d( w%d_1, w%d_2, w%d_3, w%d_4, xxx ) ;\n",  number, number, number, number, number ) ;
printf("assign w%d_4 = w%d_1 ;\n", number, number1 ) ;
printf("assign w%d_2 = w%d_3 ;\n\n", number1, number ) ;
push(s2, number) ;
number++ ;

number1 = pop(s2) ; 
number2 = pop(s2) ;
printf("wire w%d_1, w%d_2, w%d_3, w%d_4, w%d_5, w%d_6 ;\n", number, number, number, number, number, 
number) ;
printf("concatenation concatenation%d( w%d_1, w%d_2, w%d_3, w%d_4, w%d_5, w%d_6 ) ;\n", number, number, 
number, number, number, number, number ) ;
printf("assign w%d_2 = w%d_3 ;\n", number2, number ) ;
printf("assign w%d_2 = w%d_5 ;\n", number1, number ) ;
printf("assign w%d_4 = w%d_1 ;\n", number, number2 ) ;
printf("assign w%d_6 = w%d_1 ;\n\n", number, number1 ) ;
push(s2, number) ;
number++ ;

number1 = pop(s2) ;
printf("wire in ;\n") ;
printf("assign out = w%d_1 ;\n", number1) ;
printf("assign w%d_2 = in ;\n\n", number1) ;
printf("assign in = 1 ;\n\n") ;

(i)  

Figure 4.4: (a) routing for comparator (b) routing for | (c) routing for * (d) routing for ? 

(e) routing for  (f) routing for . (d) routing for ? (g) routing for  or  ^ $+

(h) routing for concatenation (d) routing for i/o ports 

 

 For more understanding, we demonstrate this method by entering a simple 

regular expression  as the input of the system. Please refer to the 

Figure 4.1, Figure 4.3 and Figure 4.4. The process of constructing the NFA for the 

regular expression  is below. The verilog code corresponding to 

the input, , is shown in Figure 4.5. 

( | )* ( | ) *a b c d e f g

( | )* ( | ) *a b c d e f g

( | )* ( | ) *a b c d e f g
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 (1) The regular expression is traversed from the infix form, , 

into the postfix form,   

( | )* ( | ) *a b c d e f g

| * | *ab cde f g

 (2) In the beginning, the NFA construction algorithm prints 1st - 10th rows in 

Figure 4.5. The 5th row is shown for the circuit’s name and the i/o ports. The 6th, 7th 

and 8th rows declare that clk, data and sf are input ports, where the size of the data is 

8-bits for ASCII characters. The 9th row declares the out as the output.  

 (3) The NFA construction algorithm begins to read the regular expression. After 

reading the character , the algorithm executes the subroutine shown in the Figure 

4.4(a) since  belongs to the character. Thus, 11

a

a th and 12th rows are printed, where 

the 12th row declares the comparator and the i/o of the comparator. The stack stores 

the number of the comparator1. 

 (4) After reading the character , the process is similar with (3). The stack 

stores the number of the comparator2. 

b

 (5) After reading the metacharacter | , the algorithm executes the subroutine 

shown in the Figure 4.4(b). The stack pops 2 and 1. By means of the union3, the 

union of the  and b is implemented(shown in 18a th – 23rd rows ). The stack stores 

the number of the union3. 

 (6) After reading the metacharacter *, the algorithm executes the subroutine 

shown in the Figure 4.4(c). The stack pops 3. By means of the closure4, the closure of 

 is implemented (shown in 25( | )a b th – 27th rows). The stack stores the number of 

closure4. 

 (7) After reading the character , the process is similar with (3). The stack 

stores the number of the comparator5. 

c

 (8) After reading the character , the process is similar with (3). The stack 

stores the number of the comparator6. 

d
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 (9) After reading the character , the process is similar with (3). The stack 

stores the number of the comparator7 

e

 (10) After reading the metacharacter | , the algorithm executes the subroutine 

shown in the Figure 4.4(b). The stack pops 7 and 6. By means of the union8, the 

union of   and  is implemented (shown in 39d e th – 43rd rows). The stack stores the 

number of the union8. 

 (11) After reading the character f , the process is similar with (3). The stack 

stores the number of the comparator9. 

 (12) After reading the metacharacter *, the algorithm executes the subroutine 

shown in the Figure 4.4(c). The stack pops 9. By means of the closure10, the closure 

of f  is implemented (shown in 49th – 51st rows). The stack stores the number of 

closure10. 

 (13) After reading the character , the process is similar with (3). The stack 

stores the number of the comparator11. 

g

 (14) Reading the regular expression is finished; the algorithm executes the 

subroutine shown in the Figure 4.4(h). The stack pops 11 and 10. By means of the 

concatenation12, the concatenation of *f  and  is implemented (shown in 57g th – 

61st rows ). The stack stores the number of the concatention12.  

 (15) The algorithm executes the subroutine shown in the Figure 4.4(h). The stack 

pops 12 and 8. By means of the concatenation13, the concatenation of  and ( | )d e

*f g  is implemented (shown in 64th – 68th rows). The stack stores the number of the 

concatention13.  

 (16) The algorithm executes the subroutine shown in the Figure 4.4(h). The stack 

pops 13 and 5. By means of the concatenation14, the concatenation of c  and 

 is implemented (shown in 71( | ) *d e f g st – 75th rows). The stack stores the number 
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of the concatention14.  

 (17) The algorithm executes the subroutine shown in the Figure 4.4(h). The stack 

pops 14 and 4. By means of the concatenation15, the concatenation of  and 

 is implemented (shown in 78

( | )*a b

( | ) *c d e f g th – 82nd rows). The stack stores the 

number of the concatention15. 

 (18) Finally, the number, 15, which the stack pops is the last one. The algorithm 

executes the subroutine shown in the Figure 4.4(i), i/o ports of the circuit is connected 

(shown in 85th – 88th rows).  
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//***************************************                                                             [01]     
//*************** main ******************                                                             [02]
//***************************************                                                             [03]

[04]
module test(clk, data, sf, out) ;                    [05]
input clk ;                                                                                           [06]
input [7:0] data ;                                                                                    [07]
input cf  ;                                                                                           [08]
output out ;                                                                                          [09]

[10]
wire w1_1, w1_2 ;                                                                                     [11]
comparator_a comparator1( w1_1, w1_2, clk, data ) ;                                                   [12]

 [13]
wire w2_1, w2_2 ;                                                                                     [14]
comparator_b comparator2( w2_1, w2_2, clk, data ) ;                                                   [15]

[16]
wire w3_1, w3_2, w3_3, w3_4, w3_5, w3_6 ;                                                             [17]
union union3( w3_1, w3_2, w3_3, w3_4, w3_5, w3_6 ) ;                                                  [18]
assign w1_2 = w3_3 ;                                                                                  [19]
assign w2_2 = w3_5 ;                                                                                  [20]
assign w3_4 = w1_1 ;                                                                                  [21]
assign w3_6 = w2_1 ;                                                                                  [22]

[23]
wire w4_1, w4_2, w4_3, w4_4 ;                                                                         [24]
closure closure4( w4_1, w4_2, w4_3, w4_4 ) ;                                                          [25]
assign w4_4 = w3_1 ;                                                                                  [26]
assign w3_2 = w4_3 ;                                                                                  [27]

[28]
wire w5_1, w5_2 ;                                                                                     [29]
comparator_c comparator5( w5_1, w5_2, clk, data ) ;                                                   [30]

[31]
wire w6_1, w6_2 ;                                                                                     [32]
comparator_d comparator6( w6_1, w6_2, clk, data ) ;                                                   [33]

[34]
wire w7_1, w7_2 ;                                                                                     [35]
comparator_e comparator7( w7_1, w7_2, clk, data ) ;                                                   [36]

[37]
wire w8_1, w8_2, w8_3, w8_4, w8_5, w8_6 ;                                                             [38]
union union8( w8_1, w8_2, w8_3, w8_4, w8_5, w8_6 ) ;                                                 [39]
assign w6_2 = w8_3 ;                                                                                  [40]
assign w7_2 = w8_5 ;                                                                                  [41]
assign w8_4 = w6_1 ;                                                                                  [42]
assign w8_6 = w7_1 ;                                                                                  [43]

[44]
wire w9_1, w9_2 ;                                                                                     [45]  
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comparator_f comparator9( w9_1, w9_2, clk, data ) ;                                                   [46]
[47]

wire w10_1, w10_2, w10_3, w10_4 ;                                                                     [48]
closure closure10( w10_1, w10_2, w10_3, w10_4 ) ;                                                   [49]
assign w10_4 = w9_1 ;                                                                                 [50]
assign w9_2 = w10_3 ;                                                                                 [51]

[52]
wire w11_1, w11_2 ;                                                                                   [53]
comparator_g comparator11( w11_1, w11_2, clk, data ) ;                                             [54]

[55]
wire w12_1, w12_2, w12_3, w12_4, w12_5, w12_6 ;                                                   [56]
concatenation concatenation12( w12_1, w12_2, w12_3, w12_4, w12_5, w12_6 ) ;     [57]
assign w10_2 = w12_3 ;                                                                                [58]
assign w11_2 = w12_5 ;                                                                                [59]
assign w12_4 = w10_1 ;                                                                                [60]
assign w12_6 = w11_1 ;                                                                                [61]

[62]
wire w13_1, w13_2, w13_3, w13_4, w13_5, w13_6 ;                                                   [63]
concatenation concatenation13( w13_1, w13_2, w13_3, w13_4, w13_5, w13_6 ) ;     [64]
assign w8_2 = w13_3 ;                                                                                 [65]
assign w12_2 = w13_5 ;                                                                                [66]
assign w13_4 = w8_1 ;                                                                                 [67]
assign w13_6 = w12_1 ;                                                                                [68]

[69]
wire w14_1, w14_2, w14_3, w14_4, w14_5, w14_6 ;                                                   [70]
concatenation concatenation14( w14_1, w14_2, w14_3, w14_4, w14_5, w14_6 ) ;     [71]
assign w5_2 = w14_3 ;                                                                                 [72]
assign w13_2 = w14_5 ;                                                                                [73]
assign w14_4 = w5_1 ;                                                                                 [74]
assign w14_6 = w13_1 ;                                                                                [75]

[76]
wire w15_1, w15_2, w15_3, w15_4, w15_5, w15_6 ;                                                   [77]
concatenation concatenation15( w15_1, w15_2, w15_3, w15_4, w15_5, w15_6 ) ;     [78]
assign w4_2 = w15_3 ;                                                                                 [79]
assign w14_2 = w15_5 ;                                                                                [80]
assign w15_4 = w4_1 ;                                                                                 [81]
assign w15_6 = w14_1 ;                                                                                [82]

[83]
wire in ;                                                                                             [84]
assign out = w15_1 ;                                                                                  [85]
assign w15_2 = in ;                                                                                   [86]

[87]
assign in = 1 ;                                                                                       [88]

[89]
endmodule                                                                                             [90]  

 

Figure 4.5: the verilog code corresponding to the input,  ( | )* ( | ) *a b c d e f g
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Chapter 5 
 

Using the Decoder (Fit for ASIC) 
                                                                         

 
 

This new approach uses the NFA construction algorithm proposed in Chapter 4 

and logic structures which are modulated from Figure 4.2 and Figure 4.4. When the 

total area which is required for comparing the input with the character stored in the 

comparator exceeds the area of a single decoder, the work for comparison should be 

handed over to the decoder. Therefore, when the number of comparators exceeds a 

particular threshold, this approach can efficiently decreases the area required. Figure 

5.1 shows the adjusted comparator and 8-to-256 decoder (because the ASCII has 8 

bits). The following are two choices to implement the decoder. One is to individually 

assign the pin (for example, assign d97 = &(8'b01100001~^a) ;). When optimizing the 

circuit, pins not used wouldn’t be synthesized and thus there is smaller area. The other 

is to decode total pins once and this method has smaller delay.  

This algorithm doesn’t always fit the FPGA for reducing the area used since 

there are various architectures of the FPGA and all kinds of algorithms for placement 

and routing. Every design team for FPGA has its own method for the compilation. But 

this approach can surely reduce gate count when it is implemented in the form of 

ASIC.     
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Figure 5.1: logic structures 
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Performance and Comparison  
                                                                         

 
 

The memory needed for the software, GNU grep, and the area of the FPGA 

required for the implementation of approaches which are mentioned in the chapter 3 

and 4are showed in the Table 6.1. The regular expression tested is  

which has  occurrences of at the end and ranges from 8 to 28. This 

performance and comparison.  

The software program, GNU grep version 2.4, runs on a m

( | )* ( | )ka b a a b

k ( | )a b  k  

regular expression denotes all sequences of  and  in which the 

symbol from the end is an . Below we introduce the environment of the simulation, 

achine with an 800 

MHz Pentiu

epends on the text. The performance of the 

'sa 'sb ( 1)thk +  

a

m III Xeon processor and 2 GB RAM running Linux (Red Hat 6.2). GNU 

grep is the UNIX command and it uses the DFA for searching. The memory reported 

(showed in the second and third columns of Table 6.1) is the maximum memory used 

by the invocation grep. It uses an effective storage-reduction technique, “lazy 

transition evaluation”. The transition function is only computed when the DFA is run. 

Computed transitions are kept in a cache. Before a transition is made, the cache is 

examined. If the required transition is not in the cache, it is computed and stored for a 

subsequent use. Table 6.1 shows the result of simulation, and the data about GNU 

grep is quoted from [1]. 

The performance of the GNU grep d

 40



                                               Chapter 6  Performance and Comparison 

worst case is obtained by inputting the text which has all kinds of situation - taking 

the regular expression  for an instance, the text contains , ,  

and . As increases, the memory and the time required reach unacceptable level 

since the complete transition function is constructed. The time mentioned above 

consists of the DFA construction time and the time searching the text. As is 19, the 

time required is 87309.38 seconds (24.2525 hours). For best case, because there is 

only one transition constructed, the memory required is still a constant when 

changes. 

2( | )a a b aaa aab aba

abb k

k  

k  

The performance of the approach proposed in [1] is obtained using Xilinx 

Foundation tools running on a 450 MHz Pentium III and the target device is the Virtex 

XCV100 FPGA. The performance of our approach is carried out by using Quartus II 

4.0 running on a Pentium 4 and the target device is the APEX EP20K600EBC-6521X. 

Table 6.1 shows the result of simulation, and the data about the approach proposed in 

[1] is quoted from [1]. 

The performance of the approach in [1] depends on . As changes, the area 

s dominates the construction time and the 

time for processing per character is in (1)O . k  also determines the performance of 

our approach . Compared with the appro

requires ( )O k  area. However, it leads to longer time required since the construction 

time consists of the time for compiling the HDL code and the time for FPGA 

configuration. Because our approach generates the HDL code, the circuit can be 

implemented on ASIC and all kinds of FPGAs. Furthermore, the design software can 

easily optimize the circuit.  

 

k k  

required grows in . The construction time includes the time for the NFA 

construction tim e for configuration bits generation and the time for 

ach in [1] , using our approach  only 

2( )O k

e, the tim

configuring the FPGA. The last two term
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k  GNU grep 

(b

GNU grep 

(w

Approach in [1] Our approach 

est case) orst case) 

8 580 KB  1 MB 10 7 CLBs×  11 LEs  

9 580 KB  1 MB  11 8 CLBs×  12 LEs  

10 580 KB  1.9 MB  12 8 CLBs×  13 LEs  

11 580 KB  2.2 MB  13 9 CLBs×  14 LEs  

12 580 KB  3.0 MB  14 9 CLBs×  15 LEs  

13 580 KB  4.4 MB  15 10 CLBs×  16 LEs  

14 580 KB  7.5 MB  16 10 CLBs×  17 LEs  

15 580 KB  13 MB  17 11 CLBs×  18 LEs  

16 580 KB  26 MB  18 11 CLBs×  19 LEs  

17 580 KB  54 MB  19 12 CLBs×  20 LEs  

18 580 KB  111 MB 20 12 CLBs×  21 LEs  

19 580 KB  229 MB  21 13 CLBs×  22 LEs  

28   30 16 CLBs×  31 LEs  

 

Table6.1: the space required 

 

GNU grep 

(b

GNU grep 

(w

Approach in [1] Our approach k  

est case) orst case) 

8 21 ms 36s 0.01 s 0.00 s 

9 0.05 s 0.00 s 39 ms 36 s 

10 0.15 s 0.00 s 32 ms 36 s 

11 0.50 s 0.00 s 34 ms 37 s 

12 2.22 s 0.00 s 31 ms 36 s 
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13 16.11 s 0.005 s 29 ms 36 s 

14 82.88 s 0.01 s  33 ms 37 s 

15 345.33 s 0.03 s 34 ms 37 s 

16 1383.55 s 0.04 s 34 ms 36 s 

17 5499.60 s 0.08 s 37 ms 37 s 

18 21900.36 s 0.17 s 37 ms 36 s 

19 87309.38 s 0.34 s 31 ms 37 s 

28   39 ms 37 s 

 

Table6.2: the time required (Notice that definitions of the time in all columns are not 

 
the same) 
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Chapter 7 
 

Conclusion 
                                                                         

 
 

In this paper, we present the approach that constructs the NFA circuit for regular 

expression matching by automatically generating HDL code. Approaches in [1] 

require  area and  time for process per character (1 clock). However, the 

approach proposed in this paper only needs  area and still  time for 

processing per character. This new approach reduces the area required significantly 

and utilities the area efficiently. We implement metacharacters often used, and thus 

applications in reality become practicable. These applications include Snort, Clamav, 

and so on.   

2( )O n (1)O

( )O n (1)O

Advantages of generating the HDL code can let the optimization easier and 

fanout problems can be solved. Besides, the output of our approach are feasible for 

all kinds of FPGAs and ASIC. If generating the netlist, the optimization and fanout 

problem would be difficult to handle, and the design in [1] is only for a specific 

FPGA.  

 From the discussion above, we know that this new method provides a general 

solution for regular expression matching in hardware. The flexibility of this new 

method includes debug, suitable device, optimization, easily modifying the circuit, 

and so on. About area, the requirement is reduced from  to  and the 

utility rate becomes higher.  

2( )O n ( )O n
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