podeg 2 H R4y 5F S WA R A T2 VR
Automatic Generation of HDL. Code for Regular

Expression Matching

B4 o1

—_—

R BADE KR

PoE N R4 e g

PRAZANFEFTFRERL T2V H
Automatic Generation of HDL Code for Regular Expression

Matching

Moyo4 ~ 1P Student: Wen-Bin Wang
Advisor: Prof. Tsern-Huei Lee

3 7
R A R

B =i« F
T % 4 T
mlplﬁig ,J\Eﬁ,_f_

RESE
A Thesis

Submitted to Institute of Communication Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master of Science
in
Communication Engineering
June 2005
Hsinchu, Taiwan, Republic of China.

PoE X R4 e g2

P AF AR EF T FRERLATZVH

LR AR g (7 RE KR AR K

s £

TREFEVHI - BRELEDFIE APF T RRIZALS G A P
Hf T e B AL ARG - B CARNG B CARS R R R
- B2 verilog i % fa it ANFA o B 8 W~ o NFA 2 B2 P RRET KA

"J"g?mq\?’# ‘Lgﬂ%%ﬁléﬁﬁﬁ;:’;g Ofé’ifj\.]’fiﬂ;‘l»%:{:m—glé ’ﬁg’@%"f\m

~

R AN T A T ek R e Eigd GNU grep(DFA) 0 2 > el 7 Rk
O mE(NEERATEDER); @ [1]J(NF)#» RN ken> 22 &

O(n*) chAl W& ff ° ' 7 & AR 0o > RiBRh v AL A KRt 2 4
WA B GE SRR G FOR S Y AR AP
Sen 2 4% Pentium 4 9% + g2 F{e APEX EP20K600EBC-6521X] %% FPGA

j\;r_.g °

Automatic Generation of HDL Code for Regular

Expression Matching

Student: Wen-Bin Wang Advisor: Prof. Tsern-Huei Lee

Institute of Communication Engineering

National Chiao-Tung University

Abstract

The regular expression matching is an important problem that occurs in many
areas of science and information-processing. In this paper, we design a C code which
accepts the regular expression and then outputs a NFA described by verilog language.
By means of the NFA circuit, the circuit can read the string and examine whether the
substring matches the regular expression or not. Using our approach, the area of the
hardware used grow in O(n), where n is the length of the regular expression. To
match a regular expression, GNU grep (DFA) requires O(2") memory and
approaches using the NFA in [1] require O(n®) area. Beside the improvement of the
area, this new design has not bad performance on debug, suitable device, optimization,
easily modifying the circuit. We evaluate our approach on the machine which has a

processor of the Pentium 4 and the target device is the APEX EP20K600EBC-6521X.

e
¢
-
X

B g Eacdt - FAMRRGEH £ RES Aadp o 2 ARy

e E el R 0 AL A REET T o

CEARE S SRR R0 £ R R At Sk

BTt v PO T R S RE K -

PR SRR SR R DB R T, S s LT Y s e e s i o
RAREETRE - PSS B MRS S A RAETOM AR o 2 BT R E
éﬁkgffa M f’é"% \‘gﬁ\f’é"fﬁ\%——% N ;ﬁ ’l}é‘?%\i?‘;ﬁ\fﬁig' ~ ?‘Eﬁ\’;g-&%‘fr

WES AL EREA AFTRES s S ENE A ahw o B o

P

I
34
'
o

Bt BRRHANYMT A hAD A MY T L L] P X 6T
EMAZNET IR BHFLEFTRE- I AFFN LAPE FAL
B PR EAFCA o

4R AR A B AP .

Ghike BT A E A B E Ak o

pas
A

2005 & = 7 T R 3

Contents

Contents
i
English Abstract ii
iii
Contents \Y%
List of Figures Vi
List of Tables vii
Chap 1 Introduction 1
Chap 2 Background 4
2.1 Finite AUtOMALA. T8 i s e esi it e e e ee e e eene 4
2.1.1 Nondeterministic Finite Automaton (NFA)...................... 5
2.1.2 Deterministic Finite Automaton (DFA)........ccccoeeviveveiiieninene. 7
2.2 Regular EXPreSSiON.......cccccveieiieieeie e eie e 9
2.3 Constructing the NFA from the Regular Expression................... 10
2.4 Extensions to the Regular Expression Notation......................... 13
2.5 Converting an Infix Expression to a Postfix Expression.............. 16
Chap 3 Related Work: Generating the Placed and Routed Netlist 20
Chap 4 Generating HDL Code 23

Contents

4.1 Reducing and Converting the Regular Expression..................... 24
4.2 Rearranging the Regular EXpPression..........c.cooevvviieiieeninnnnns 25
G oo | To] 1T (1] = 25
4.4 NFA Construction Algorithm.............cooiiiii 28
Chap 5 Using the Decoder (Fit for ASIC) 38
Chap 6 Performance and Comparison 40
Chap 7 Conclusion 44
References 45

List of Figures

List of Figures

1.1 Model for pattern-matching problems.....................cooo i, 2
2.1 finite aULOMALON. 5
2.2 the NFA diagram of recognizing web and ebay 6
2.3 the DFA dIagram..........oooiiii i e e e e, 8
2.4 constructing NFA from the regular expression...............cccooevn .. 12
2.5 NFATOr (a]b)™cd ..o 13
26 (a) NFA for. ; (b) NFA for 16
2.7 converting an infix expressionto a postfix-expression.................. 19
3.1 logic structures (a) single eharacter(b)* r,|r, (c) rr, (d) n*....... 21
4.1 the flow chart of the constructing NFA circuit........................... 24
4.2 10QIC SrUCIUES. ... vt it e e ee e e aeen. 28
4.3 the NFA construction algorithm........................ccooeeeieeee.. 30
4.4 (@) routing for comparator (b) routing for | (c) routing for *

(d) routing for ? (e) routing for + (f) routing for . (d) routing for ? .

(9) routing for A and $

(h) routing for concatenation (d) routing for i/o ports....................
4.5 the verilog code corresponding to the input, (a|b)*c(d|e)f*g.... 37
5.1 10QIC STIUCUIES. iuieie e et ee e e e neee e eenees 39

Vi

List of Tables

List of Tables

2.1 the transition table corresponding to the function 6 of Figure
2 e e 7

2.2 the transition table corresponding to the function & of Figure
0 8

6.1 thespacerequired..........covvviiiiiiiiiiiiii e, 42

6.2 thetimerequired..........coeoiiiii i e e 42

vii

Chapter 1 _Introduction

Chapter 1

Introduction

String pattern matching is an important problem that occurs in many areas of
science and information processing. In computing, it occurs as part of data processing,
text editing, term rewriting, lexical analysis, and information retrieval. In biology,
string-matching problems arise in the investigation of DNA sequences. The simplest
form of problem is to locate an occurrence of a:keyword as a substring in a sequence
of characters, which we call the input string.. For this problem, several innovative,
theoretical, and interesting algarithms have been devised that run significantly faster
than the obvious brute-force method. [3]

Pattern-matching problems can be shown in Figure 1.1 where p is the pattern
and s isthe input string. The pattern is transformed by the pattern-matcher generator
into a pattern matcher, which is used to look for an occurrence of the pattern in the
input string. The pattern matcher reports “yes” if s contains a substring matched by
p, “no” otherwise. In this paper, the pattern p described in the regular expression is
transformed into DFA (deterministic finite automaton) or NFA (nondeterministic finite
automaton) which used as the pattern matcher to process the input string s by the

pattern-matcher generator.

Chapter 1 _Introduction

pattern

input string yes
—— E—
s no

Figure 1.1 Model for pattern-matching problems [8]

About the former, its idea is to transform the regular expression into DFA and
then to use DFA for string matching. We take GNU grep for example. In the worst
case, the memory and time required.would be-exponential blowup. About the method
using NFA, we take the approache in-[1]-for-instance. The approach proposed in [1]

transforms the regular expression into-NFA and.to implement the NFA by generating
the placed and routed netlist on the FPGA. The approach requires O(n?)area and

takes O(1) time for processing per character (n is the length of the regular
expression). Compared with the method using DFA, the approache proposed in [1]
significantly reduces the space and time requirement.

The approach proposed in this paper also transforms the regular expression into
NFA . This approach includes four main parts, “converting the regular expression,”
“rearranging the regular expression,” “logic structures,” and “NFA construction
algorithm.” Beside the two metacharacters designed in [1], we implemenent
metacharacters often used and permit the metacharacter to be matche. The new

method provides a general solution for regular expression matching in hardware. Its

Chapter 1 _Introduction

flexibility includes debug, suitable device, optimization, easily modifying the circuit,
and so on. About area, the requirement is reduced from O(n®) to O(n) and the

utility rate becomes higher.

Chapter 2 is the background about the regular expression, finite automata and a
pseudo code for converting the infix expression to a postfix expression. Chapter 3
introduces the approach in [1]. Chapter 4&5 describes approach proposed in this
paper. Chapter 6 presents the evaluation result and comparison. Chapter 7 is the

conclusion.

Chapter 2 Background

Chapter 2

Background

2.1 Finite Automata [2]

Before introducing the automaton, we first introduce some important definitions.
These concepts include the “alphabet”, *strings™ and “language.” An alphabet is a
finite, nonempty set of symbols. Common alphabets-include the binary alphabet, the
set of all lower-case letters and"the set of-all-ASCIH characters. Usually, we use the
symbol X for an alphabet. A string is'a finite sequence of symbols chosen from
some alphabet. For example, “kitty” is the string that is chosen from the set of all
low-case letters. X* is the set of strings of length k and each of whose symbols is
in . For example, if £={0,1}, then %*={000,001,010,011,100,101,110,111}. A
set of strings which are chosen from X", where X" is the set of all strings over an
alphabet X, is called a language. For example, Chinese name is a set of strings over
the alphabets which are all Chinese words.

The finite automaton is a useful model for many important applications. Before
we introduce precise definitions of automata of various types, let us informally
introduce the sketch of what a finite automaton is. There are many systems or

components in one of a finite number of “states.” The purpose of a state is to

Chapter 2 Background

remember the relevant portion of the system’s history. The advantage of having a
finite number of states is to implement the system with finite resources. Let us take a
finite automaton (Figure 2.1) for example. A finite automaton has a set of states and
its “control” moves from state to state in response to external “inputs.” For finite
automata, circles represent states and arcs between states are labeled by “inputs,”
which represent external influences on the system. One of the states is designed the
“start state,” the state in which the system is placed initially. One or more states are
designed “final states” and it is conventional to designate final states by a double
circle. In Figure 2.1, state 1 is “start state” and state 5 is “final state.” Entering the

final state represents that the input sequence is good in some way.

O i OO0

Figure 2.1 finite-automaton

One of the crucial distinctions among classes of finite automaton is the number
of states once. “Nondeterministic Finite Automaton” means that the automaton may
be in several states at any one time but “Deterministic Finite Automaton” means that
it cannot be in more than one state at once. Below we introduce the definitions of
“Nondeterministic Finite Automaton” and “Deterministic Finite Automaton” for

details.

2.1.1 Nondeterministic Finite Automaton (NFA)

The definition of the nondeterministic finite automaton is below.
Start A=(Q.2,6,q,,F) a
> 1] 2

Chapter 2 Background

where:

1. Q isafinite set of states.

2. 2 s afinite set of input symbols.

3. q,, amemberof Q, is the start state.

4. F ,asubsetof Q, isthe set of final states.

5. &, the transition function is a function that takes a state in Q and an input

symbol in > as arguments and returns a subset of Q. If q is a state, and
a is an input symbol, then &(q,a) is that subset {p, p,,...} such that
there are arcs labeled a from q tosubset {p,, p,,...}.

A “nondeterministic” finite automaton (NFA) has several states at once. Take an
example, the automaton (Figure 2.2) is used to recognize occurrences of the words,
web andebay, in a text. The NFA of Figure:2.2 can be specified formally as
({4, 2,3,4,5,6,7,8},{all ASCII characters},0,1,{4,8})- . The transition table
corresponding to the function ¢ oftFigure-2.2.is shown in Table 2.1. The input and
state are designated respectively inthe first. row.and column of the Table 2.2. State 2

through 4 have the job of recognizing web, while state 5 through 8 recognize ebay .

©
OO

Figure 2.2: the NFA diagram of recognizing web and ebay

Chapter 2 Background

2.1.2 Deterministic Finite Automaton (DFA)

w e b a y other
ASCII
characters
1 {12y {15 {1 {L5r {1} {1}
2 ¢ {3} ¢ ¢ ¢ ¢
3 ¢ ¢ {4} ¢ ¢ ¢
4 “ {4 4 {4 {4 {4}
5 ¢ ¢ {6} ¢ ¢ ¢
6 ¢ ¢ ¢ {7} ¢ ¢
7 ¢ ¢ ¢ ¢ {8} ¢
8 8y {8 {8+ {8 {8 {8}

Table 2.1: the transition table.corresponding to the function & of Figure 2.2

The definition of the deterministic finite automaton is below.

A=(Q,2,0,qy,F)

where:

. Q s afinite set of states.

. 2 is afinite set of input symbols.

g, @ member of Q, is the start state.

F ,asubset of Q, is the set of final states.

o, the transition function is a function that takes a state in Q and an input

symbol in X as arguments and returns a state of Q. If q is a state, and

a isan input symbol, then &(q,a) is that state p such that there is an arc

labeled a from g to p. Notice that the difference between an NFA and

Chapter 2 Background

DFA is the type of value that & returns: a set of states in the case of an NFA

and a single state in the case of a DFA.

Figure 2.3 is a simple instance for the DFA which can be specified formally as

({1,2,3,4},{0,1},06,1,4) . The transition table corresponding to the function & of
Figure 2.3 is shown in Table 2.2. The input and state are designated respectively in the

first row and column of the Table 2.3.

Start

Figure 2.3: the DFA diagram

0 1
1 2 1
2 2 3
3 3 4
4 2 1

Table 2.2: the transition table corresponding to the function & of Figure 2.3

1

Chapter 2 Background

2.2 Regular Expression [8]

Here we switch our attention from machine-like descriptions of languages, NFA
and DFA, to an algebraic description: the “regular expression.” The regular expression
can be thought of as a “user-friendly” alternative to the automata notation. Besides,
regular expressions offer something that automata don’t: a declarative way to express
the strings we want to accept. Therefore, regular expressions serve as the input
language for many systems that process strings, e.g. UNIX grep command, UNIX
Lex(Lexical analyzer generator) and Flex(Fast Lex) tools.
We define regular expressions and the strings they match as follows:
1. The following characters are metacharacters: | () *
2. Anon-metacharacter a.'is a regular-expression that matches the string a.
3. If rp and r, are regularexpressions, then =(r, | r,) isa regular expression
that matches any string-matched.by-either -r, or r,.

4. If r, and r, areregular expressions, then (r;)(r,) isa regular expression
that matches any string of the form xy, where r, matches x and r,
matches .

5. If r isaregular expression, then (r)* is aregular expression that matches
any string of the form xx,..x,,n>0, where r matches x, for 1<i<n.
In practice, (r)* matches the empty string, which we denote by ¢.

6. If r isaregular expression, then (r) isaregular expression that matches
the same strings as r.

Here are two examples for understanding the regular expression. The regular
expression The (dog | cat) likes (studying | sleeping) matches any of

{The dog likes studying, The dog likes sleeping, The cat likes studying, The cat likes sleeping}

Chapter 2 Background

. The regular expression Thank you very(, very)* much matches the strings
Thank you very much; Thank you very, very much ;

Thank you very, very, very much ; and so on.

2.3 Constructing the NFA from the Regular Expression [8]

A NFA is a directed graph in which the nodes are the states and each edge is
labeled by a single character or the symbol &, which stands for the empty string. One
state is designated as a start state, and some states as final states. A NFA accepts a
string if there is a path from the start state to a final state whose edge labels spell out
the string. Once we have constructed a, NFA for a regular expression r, we run it on
the input string s. If the NFA enters a final state while processing s, we report that
r matched s, otherwise, we report “no”. The recursive procedure below can be
used to construct an NFA for the regular-‘expression. Using rule (1), we construct a
NFA for a non-metacharacter. Rule i(2)-(5) show how to combine the NFAs
constructed from the constituent subexpressions.

(1) For a non-metacharacter c, construct the NFA in Figure 2.4(a) where 1 isa

new start state and a a new final state. This automaton accepts the string c.

(2) Suppose N, and N, are NFA for r, and r,. For the regular expression

r=r|r,, construct the NFA N in Figure 2.4(b) where i is a new start state

and a a new final state. There is an ¢ -transition from i to the start states of
N, and N, .Thereisan ¢ -transition from the final states of N, and N, to

the new final state a. That is, any path from i to a must pass through either

N, or N, .Therefore, N acceptsany string acceptedby N, or N, .

n

10

Chapter 2 Background

(3) Suppose N, and N, are NFAsfor r, and r,. For the regular expression
r=nr,, construct the NFA N in Figure 2.4(c) where the start state of N,
becomes the start state of N and the final state of N, becomes the final state
of N. The final state of N, is merged with the start state of N_; that is, all
transitions from the start state of N, become transitions from the final state of
N, . The new merged state loses its status as a start or final state in N . A path

from i, to a must go first through N, and then through N _, so N

n

accepts any string of the form xy where N, accepts x and N, accepts y.

(4) Suppose N, is a NFA foryr;. Forthetregular expression r=r,*, construct

the NFA in Figure 2.4(d) where 1 is a new start state and a a new final state.
In N, wecango from i to a.directly,.alongan edge labeled &, representing

the fact that s* matches the empty. string, or we can go from i to a passing
through N, one or more times. Thus, N accepts any string matched by r,*.
(5) For the regular expression (r) use the NFAfor r.

Take a simple instance for understanding the procedure of constructing the NFA

from the regular expression. Figure 2.5 shows a NFA that results from this

construction for the regular expression (a|b)*cd .

11

Chapter 2 Background

&
(d)

Figure 2.4: constructing NFA from the regular expression

12

Chapter 2 Background

Figure 2.5: NFAfor (a|b)*cd

0 1
2.4 Extensions to the Regular Expression Notation [8] [9] [10]

[11]
4

Many text-editing and searching programs-add abbreviations and new operators
to the basic regular expression notation above to make it easier to specify patterns.
Here, we introduce some of the regular expressions used by the popular expression
matching programs awk, grep, egrep and lex on the UNIX.

(1) The + metacharacter: The character + means “one or more of the

preceding characters.” For example, the regular expression de+ f matches any

of the following: redefine, redeefine, redeeefine..., and so on.

(2) The [] metacharacters: The [] metacharacters enable us to define regular

expressions that match one of a group of alternatives. For example, the following

regular expression matches def or dEf : d[eE]f . When the ™ character
appears as the first character after the [, it indicates that the regular expression

is to match any character except the ones displayed between [and]. For

13

Chapter 2 Background

example, the regular expression d[*eE]f matches any pattern that satisfies the
following criteria: 1. The first character is d. 2. The second character is
anything other than e or E. 3. The last characteris f .

(3) The ? metacharacter: ? metacharacter matches zero or one occurrences of
the preceding character. For example, the regular expression de? f matches
either df or def.

(4) Escape sequences for metacharacters: If we want our regular expression to
include a character that is normally treated as a metacharacter, precede the
character with a backslash \. For example, to check for one or more occurrences
of * in a string, use the following regular expression: *+. The backslash
preceding the * tells us to treat the * as an ordinary character, not as the
metacharacter meaning” zero.or more occurrences.” To include a backslash in a
regular expression, specify two backslashes\\+. This regular expression tests
for one or more occurrences of \-“in.a-string.

(5) Matching any letter or number: The regular expression a[0123456789]c
matches a, followed by the any digits, followed by c. Another way of writing
this is as follows: aJ0—9]c. Here, the range [0—9] represents any digit
between 0 and 9. This regular expression matches aOc,alc,a2c, and so on up
to a9c. Similarly, the range [a—z] matches any lowercase letter, and the range
[A—Z] matches any uppercase letter. For example, the regular expression
[A-Z][A-Z] matches any two uppercase letters.

(6) Anchoring patterns: The regular expression ™ and $ ensure that the
regular expression is only matched at the start or the end of the string. For
example, the regular expression "def matches def only if these are the first
three characters in the strings. Similarly, the regular expression def$ matches
def only if these are the last three characters in the strings. We can combine ~

14

Chapter 2 Background

and $ force matching of the entire string, as follows: ~def$. This matches
only if the string is def .

(7) Matching any character: Another metacharacter supported in the regular
expression is the period (.) character, which matches any character. For
example, the regular expression d.f matches d, followed by any character,
followed by f .

(8) Matching a specified number of occurrences: We can define how many
occurrences of a character constitute a match. To do this, use metacharacters {
and }. For example, the regular expression de{l,3}f matches d, followed by
one, two, or three occurrences of e, followed by f . This means that def
deef , and deeef match, but df and deeeef do not. To specify an exact
number of occurrences, include only one value between the { and }: de{3}f .
This specifies exactly three.occurrences of -e , which means this regular
expression inly matches deeef :

Figure 2.6 shows two NFAs for '.and 1?2

15

Chapter 2 Background

~©

(@)

&
(b)
Figure 2.6: (a) NFA'for .= (b) NFA for r,?

2.5 Converting an Infix Expression to a Postfix Expression

[3]

Figure 2.7 is a pseudo code which converts an infix expression to a postfix
expression. For the conversion algorithm to be correct, we must check four issues. 1.
The postfix expression contains the correct operands in the correct order. 2. The
postfix expression evaluates subexpressions in the way indicated by the parentheses in
the infix expression. 3. The postfix expression handles operations of differing
precedence according to the precedence rules. 4. A string of operations of equal
precedence in the infix expression is handled correctly when translated into the

postfix expression. Below, we consider each of these four issues.

16

Chapter 2 Background

First we need to know that the operands (the numbers and variables) in the
postfix expression are in the same order as they are in the infix expression. Because
operands are written out as soon as they are read in, they are clearly in the same order

as in the infix expression.

Parentheses are a way of grouping subexpressions. Everything inside a pair of
matching parentheses is treated as a single unit by anything outside the parentheses.
The parentheses give the following message to the operations outside of the
parentheses: We will work things out among ourselves and deliver a single value for
you to combine with other operands. This means that all operations between a set of
matching parentheses in the infix expression should form a subexpression of the
postfix expression. The algorithm .keeps:strack of expressions with matching
parentheses by using the stack. When algorithms encounters an opening parenthesis,
that is, a ‘(’, it pushes this parenthesis into the stack.-The algorithm will never output
an operation from the stack that‘is below the opening parenthesis, ‘(’. It only outputs
operations that are within the pair of matching parentheses in the input expression.
Moreover, it outputs all of these operations. When it encounters the matching closing
parenthesis, it outputs all the remaining operations on the stack all the way down to
that matching opening parenthesis. This behavior can be completed by means of the
prcd function which executes the comparison of the precedence. The function has two
arguments. When the former argument owns the higher precedence than the later, the
function returns 1. The function returns 0 when the opening parenthesis is the
argument and the closing parenthesis is not. By returning 0, the stack can stop to pop
operations outside a pair of matching parentheses. When the closing parenthesis is the

argument, the function will return 1 until encountering the opening parenthesis. It will

17

Chapter 2 Background

make all operations between a set of matching parentheses in the infix expression

form a subexpression of the postfix expression.

When the infix expression contains an operation with low precedence followed
by an operation with a higher precedence, then the algorithm should output these
operations in reverse order. That is, the higher precedence should be written first. By
means of the function prcd, this work also is completed. The former argument of the
function is the top of the stack and the latter is the new coming operation. When the
precedence of the former is higher than the precedence of the latter, it represents that
an operation with higher precedence followed by an operation with a lower
precedence in the infix expression. Therefore, the stack is popped. Otherwise, the

order of the operations is reversed.

When the infix expression eontains a seguence of operations of equal precedence,
they represent an evaluation that goes-frem-left to right. The work is solved by

returning 1 when the function accepts the.same two operations as arguments.

18

Chapter 2 Background

opstak = the empty stack;
while ('not end of input)

{
symb = next input character;
if (symb is an operand)
add symb to the postfix string;
else
{
while ('empty(opstk) && pred(stacktop(opstk) , symb))
topsymb = pop(opstk);
add topsymb to the postfix string;
} /1 end while
I/ push (opstk, symb);
if (empty(opstk) || symb !=")")
push (opstk , symb);
else
topsymb = pop(opstk);
} /1 end else
} /1 end while

while (lempty(opstk))
{

topsymb = pop(opstk);
add topsymb to the postfix string;
} /1 end while

Figure 2.7: converting an‘infix expression to a postfix expression

19

Chapter 3 Related Work: Generating the Placed and Routed Netlist

Chapter 3

Related Work: Generating the Placed and
Routed Netlist [1]

This approach was introduced in [1] for finding matches to a given regular
expression in a given text. [1] presents an algorithm that constructs the
Nondeterministic Finite Automaton NFA) cireuit used for matches. The idea is to
map simple NFAs onto logic structures :and then to complete the whole circuit by
means of these logic structures.

Before introducing the algorithm, we first deseribe simple logic structures shown

in Figure 3.1, a single character, r,|r,, rr, and r*. Logic structures showed in

Figure 3.1(a), (b), (c) and (d) are the implementations of the NFAs shown in Figure
2.4(a), (b), (c) and (d) respectively. In Figure 3.1(a), the output is 1 only when the

flip-flop stores a 1 and the input character matches the character stored in the in the

comparator. In Figure 3.1(b), only when N, or N, has a match, the output of the
OR gate would be high. In Figure 3.1(c), only when N, and N, have matches, the

o would be high. In Figure 3.1(d), the o would be high whether N, has match or not.

The behavior of Figure 3.1 (a), (b), (c) and (d) is the same as Figure 2.4(a), (b), (c)

and (d), respectively.

20

Chapter 3 Related Work: Generating the Placed and Routed Netlist

o]

Flip-flop

A
A

Aﬂt Text j
aracter

B

Figure 3.1: logic structures (a) single character (b) r|r, (c) (ﬁ}d) I *

Here, we introduce the algorithm. The algorithm accepts the regular expression
in postfix form obtained by postorder traversal mi the syntaftree of the regular
expression and directly generates the placed and routed netlist for NFA logic. The
order of characters in the postfix form replaces the use of parentheses in the infix
form. By eliminating parentheses, the algorithm needs not to deal with parentheses, so
it is simplified. The algorithm places the NFA logic as a binary tree. That is, logic
structures for characters are leaf nodes and placed in the row 0. Once the logic
structure for the character is placed, the column counter is ingcremented. hpgic -

af S {022

structures for metacharacters are non-leaf nodes and are placed on separate rows.

“ NI N2

Chapter 3 Related Work: Generating the Placed and Routed Netlist

Once the logic structure for the metacharacter is placed, the row counter is

incremented.

By exploiting this algorithm, the area would depend on placement and routing
subroutines. According to [1], the area would be in O(n?) where n is the length of

the regular expression. This algorithm compared with a serial machine is better

because the DFA take O(2") memory.

22

Chapter 4 Generating HDL Code

Chapter 4

Generating HDL Code

This paper proposes a new method to construct the NFA circuit used for matches.
The method proposed in [1] only implements two metacharacters and the
metacharacter can’t be view as a symbol for matching. Here, this new method
implements metacharacters often used.and:permits the metacharacter to be matched.
Figure 4.1 is the flow chart of 4he .new methed for constructing NFA circuit. This
method includes four main parts, “converting the regular expression,” “rearranging
the regular expression,” “logic “structures,” and. “NFA construction algorithm.” In
order to generate the HDL code from the C'language and conform the syntax of the
HDL, these four parts are needed. “Reducing and converting the regular expression”
reduces the redundant part of the regular expression and converts some
metacharacters into the equivalent regular expression. “Rearranging the regular
expression” rearranges the order for simplifying the NFA algorithm. “Logic
structures” can be viewed as bricks for complete the circuit. “NFA construction
algorithm” accepts the output of “rearranging the regular expression” and completes

the circuit. We introduce them below for details.

23

Chapter 4 Generating HDL Code

regular verilog
> - - >
expression code

Figure 4.1: the flow chart of the constructing NFA circuit

4.1 Reducing and Converting the Regular Expression

Reducing and

converting the
In the beginning, we first examine whether the regula{égre sion in the Infix .

ular expression

form can be reduced or not. (regular expression b)*(regular expressiona) and
(regular expression a)(regular expréssion b)* ~“can be both reduced to
(regular expression a) . For the former, since the NFA must match strings beginning at
any position in the input text, <(regularexpression b)* is redundant. For the latter,
since the NFA can’t indicate which pattern-matched, thus (regular expression b)*
can be removed. Some metacharacters can be implemented only by converting the
regular expression into the other regular expression. We introduce and explain it
below.

If r isaregular expression, then r+ is a regular expression that matches any
string of the form x,x,..x,,n>1, where r matches x, for 1<i<n. Therefore, the
regular expression r+ could be implemented by converting it into rr*. However,
when encountering /+, we don’t convert it into //* since /+ means treating + as
a character to match.

r{n} isaregular expression that matches any string of the form xXx,...x, where

r matches x for 1<i<n. Therefore, the regular expression r{n} could be

24

Chapter 4 Generating HDL Code

implemented by converting it into rrr...r where n regular expressions are connected.

The regular expression [rr,..r.] is just the shorthand of the regular
expression(r, | r, |...|r,). Therefore, for the implementation, we convert the shorthand.
Similarly, regular expressions [A—K] and [1-9] are also converted. When
encountering [*rr,...r.], we convertitinto (r|r,|...|r,)+ where the meaning of +
has been changed. After converting the regular expression, there isa / in the front of

+. By means of this feature, we use + which follows) to solve metacharacters

*..].

4.2 Rearranging the Regular Expression

Here, we eliminate the parentheses_and_rearrange the order of metacharacters
which are | and ~. The position-of the metacharacter " is rearranged since the
logic structure which implements. ' needs-to-concatenated in the back of the first
comparator for checking whether the input-character is the beginning of the string or
not. The position of the metacharacter | is rearranged in order that the NFA
construction algorithm can build | on the top of the two suitable comparators and
needn’t to deal with parentheses. By eliminating parentheses, the NFA construction
algorithm can be simplified.

We use the pseudo code shown in the Figure 2.7. In the function prcd, there are
only |,(;and) without + — x,and+. After rearranging the order of the expression,

exchange positions of the metacharacter ~ and the first character.

4.3 Logic Structures

25

Chapter 4 Generating HDL Code

Metacharacters mentioned in the Chapter 2 can be implemented by building
some logic structures which established in the form of modules described by the HDL.
We choose and design eight logic structures as basic components of the whole circuit.
Figure 4.2 shows these modules. Note that the wire marked the odd number represents
the output. On the contrary, the even number indicates the input. The arrangement of
numbers is for the generation of the HDL code.

Figure (a) is a comparator which is the implementation of the Figure 2.4(a). The
flip-flop can be treated as the state of the NFA and we use the clock to segment the
coming symbol of the string. If the flip-flop stores a 1, it represents that the operation
of the “regular expression matching” walks to this state which the comparator stands
for. If the input symbol matches, the comparator delivers a 1 to the next comparator
which stands for the next state.

Figure 4.2(b), (c), (d), (e) and(f) are the‘implementations of Figure 2.4(b)(c)(d)
and Figure 2.5(b)(a), respectively. Figure:4:2(b) implements the regular expression
r,|r, where the circuit implementing.. 1 - connects w3&4 and the circuit
implementing r, connects w5&6. Any one of circuits implementing r, and r,
output a 1 and then the circuit implementing r, |r, outputs a 1. Figure 4.2(c), (d), (e)
and (f) are similar. Figure (c) is used for the regular expression rr,. Figure (d) is used
for the regular expression r,*. Figure (e) is used for the regular expression r,?.
Figure (f) is used for the regular expression r..r,.

Figure 4.2 (g) is designed for solving metacharacters ~ and $. Because
behaviors of metacharacters ® and $ can’t be drawn in the NFA, we design a
signal “sf” for examining whether the input symbol is the beginning or end of the
string or not. When the work for the “regular expression matching” starts or finishes,

signals “s” or “f” are designed to pull up for a clock. Take “benas an example, “ben

26

Chapter 4 Generating HDL Code

would be rearranged into b”~en. The two inputs of Figure 4.2(g) would be the output
of the comparator for b and the signal “s.” Only when the first symbol of the input
string is b, the regular expression has the possibility of matching. Figure4.2 (h) is
designed for solving metacharacters [*...]. After converting the regular expression,
the [*..] becomes (..)+ . When reading the + , we connect the circuit

implementing (...) and the inverter shown in the Figure 4.2(h).

27

Chapter 4 Generating HDL Code

=
= o

% clock Flip-flop

string C

<

(a)

K W w

. i

i !

w3 w4 w5 wbé

(b)

Figure 4.2: logic structures for (a) comparator (b) union | (c) concatenation (d)

closure * (e)? (f)dot . (g) anchor (h) +

28 w2 wl

Chapter 4 Generating HDL Code

4.4 NFA Construction Algorithm

Figure 4.3 shows the NFA construction algorithm and subroutines are shown
in the Figure 4.4. To give different names for all modules and wires, it is necessary
to compute how many logic structures are being used. Thus the counter, number, is
used. After accepting the regular expression in the postfix form, the algorithm
would check whether the regular expression finishes or not. If not, it examines the
input symbol, and then processes the particular subroutine. Until the regular
expression finishes, the algorithm processes the other recursion: examining
whether the number which the stack pops is the last one or not. If not, the
subroutine, routing for concatenation, works for concatenation, otherwise, the
subroutine, routing for i/o port, works,

Figure 4.4(a) is used only-when the symbol which has to be matched is
accepted and this logic structure dominates-how fast the circuit can be. In Figure
4.4(a), after naming wires and the comparator, ports of the comparator are assigned
and then push the number of the comparator into the stack. Next, for the next logic
structure used the number must be incremented. Figure 4.4(b), (c), (d), (e), (f) and
(g) are similar, so we only take Figure 4.4(b) to explain. Since the union of the
regular expression in the postfix form applies to the former two, the algorithm
pops the stack two times. After names of wires and the logic structure of the union
are declared, the algorithm completes the connection between wires by exploiting
the “assign”. Figure 4.4(i) is about the i/o port. The i port is stuck to the power

supply and the o port is just the wire.

29

Chapter 4 Generating HDL Code

Number =1

=0 ; postfix[K] != N .
postidid Fig 4.4(b) | >
Y
N k=k+1 Fig 4.4(c) ||
BEL | — Fig 4.4(d) >

Fig 4.4(i) Fig 4.4(;1)

BackSpace | Fig 4.4(e) | >

ESC | » Fig 4.4(f) | »

FormFeed |—» Fig 4.4(g) | >

N
0 Newlline |—» Fig 4.4(q) [
i
Fig4.4(a) —a
Y | NotWhite
Space
N
Fig4.4(a) | Y

Figure 4.3: the NFA construction algorithm

30

Chapter 4 Generating HDL Code

printf("wire w%d_1, w%d_2 ;\n", number, number) ;
printf("comparator_%c comparator%d(w%d_1, w%d_2, clk, data) ;\n\n",
postfix[k], number, number, number) ;

push(s2, number) ;

number++ ;

@

numberl = pop(s2) ;

number2 = pop(s2) ;

printf("wire w%d_1, w%d_2, w%d_3, w%d_4, w%d_5, w%d_6 ;\n", number, number, number, number, number,
number) ;

printf("union union%d(w%d_1, w%d_2, w%d_3, w%d_4, w%d_5, w%d_6) ;\n", number, number, number, number,
number, number, number) ;

printf("assign w%d_2 = w%d_3 ;\n", number2, number) ;

printf("assign w%d_2 = w%d_5 ;\n", numberl, number) ;

printf("assign w%d_4 = w%d_1 ;\n", number, number2) ;

printf("assign w%d_6 = w%d_1 ;\n\n", number, numberl) ;

push(s2, number) ;

number++ ;

(b)

numberl = pop(s2) ;

printf("wire w%d_1, w%d_2, w%d_3, w%d_4 ;\n", number, number, number, number) ;

printf("closure closure%d(w%d_1, w%d_2, w%d. 3, w%d_4) ;\n", number, number, number, number, number) ;
printf("assign w%d_4 = w%d_1 ;\n", number, numberl) ;

printf("assign w%d_2 = w%d_3 ;\n\n", numherl; number)

push(s2, number) ;

number++ ;

©

numberl = pop(s2) ;

printf("wire w%d_1, w%d_2, w%d_3, w%d_4 ;\n", number,'number, number, number) ;

printf("repetition repetition%d(w%d_1, w%d_2, w%d_3, w%d_4) ;\n", number, number, number, number, number) ;
printf("assign w%d_4 = w%d_1 ;\n", number, numberl) ;

printf("assign w%d_2 = w%d_3 ;\n\n", numberl, number) ;

push(s2, number) ;

number++ ;

(d)

numberl = pop(s2) ;

printf("wire w%d_1, w%d_2, w%d_3, w%d_4 ;\n", number, number, number, number) ;

printf("exclusion exclusion%d(w%d_1, w%d_2, w%d_3, w%d_4) ;\n", number, number, number, number, number) ;
printf("assign w%d_4 = w%d_1 ;\n", number, numberl) ;

printf("assign w%d_2 = w%d_3 ;\n\n", numberl, number) ;

push(s2, number) ;

number++ ;

©)

31

Chapter 4 Generating HDL Code

numberl = pop(s2) ;

printf("wire w%d_1, w%d_2, w%d_3, w%d_4 ;\n", number, number, number, number) ;

printf("dot dot%d(w%d_1, w%d_2, w%d_3, w%d_4) ;\n", number, number, number, number, number) ;
printf(“assign w%d_4 = w%d_1 ;\n", number, numberl) ;

printf(“assign w%d_2 = w%d_3 ;\n\n", numberl, number) ;

push(s2, number) ;

number++ ;

®

numberl = pop(s2) ;

printf("wire w%d_1, w%d_2, w%d_3, w%d_4 ;\n", number, number, number, number) ;

printf(“anchor anchor%d(w%d_1, w%d_2, w%d_3, w%d_4, xxx) ;\n", number, number, number, number, number) ;
printf(“assign w%d_4 = w%d_1 ;\n", number, numberl) ;

printf(“assign w%d_2 = w%d_3 ;\n\n", numberl, number) ;

push(s2, number) ;

number++ ;

@)

numberl = pop(s2) ;

number2 = pop(s2) ;

printf(“wire w%d_1, w%d_2, w%d_3, w%d_4, w%d_5, w%d_6 ;\n", number, number, number, number, number,
number) ;

printf(“"concatenation concatenation%d(w%d_1, w%d_2, w%d_3, w%d_4, w%d_5, w%d_6) ;\n", number, number,
number, number, number, number, number) ;

printf(“assign w%d_2 = w%d_3 ;\n", number2, number) ;

printf(“assign w%d_2 = w%d_5 ;\n", number1, number) ;

printf(“assign w%d_4 = w%d_1 ;\n", number, number2") ;

printf(“assign w%d_6 = w%d_1 ;\n\n", number, numberl) ;

push(s2, number) ;

number++ ;

(h)

numberl = pop(s2) ;

printf("wire in ;\n") ;

printf(“assign out = w%d_1 ;\n", numberl) ;
printf(“assign w%d_2 = in ;\n\n", numberl) ;
printf(“assign in = 1 ;\n\n") ;

0]
Figure 4.4: (a) routing for comparator (b) routing for | (c) routing for * (d) routing for ?
(e) routing for + (f) routing for . (d) routing for ? (g) routing for ~ or $

(h) routing for concatenation (d) routing for i/o ports

For more understanding, we demonstrate this method by entering a simple

regular expression (a|b)*c(d|e)f *g as the input of the system. Please refer to the

Figure 4.1, Figure 4.3 and Figure 4.4. The process of constructing the NFA for the
regular expression (a|b)*c(d|e)f *g is below. The verilog code corresponding to

the input, (a|b)*c(d|e)f *g, isshown in Figure 4.5.

32

Chapter 4 Generating HDL Code

(1) The regular expression is traversed from the infix form, (a|b)*c(d |e)f *g,
into the postfix form, ab|*cde| f *g

(2) In the beginning, the NFA construction algorithm prints 1% - 10" rows in
Figure 4.5. The 5" row is shown for the circuit’s name and the i/o ports. The 6", 7%
and 8" rows declare that clk, data and sf are input ports, where the size of the data is
8-hits for ASCII characters. The 9" row declares the out as the output.

(3) The NFA construction algorithm begins to read the regular expression. After
reading the character a, the algorithm executes the subroutine shown in the Figure
4.4(a) since a belongs to the character. Thus, 11" and 12" rows are printed, where
the 12" row declares the comparator and the i/o of the comparator. The stack stores
the number of the comparatorl.

(4) After reading the character ‘b, the process:is similar with (3). The stack
stores the number of the comparator2.

(5) After reading the metacharacter {;+the algorithm executes the subroutine
shown in the Figure 4.4(b). The stack pops 2'and 1. By means of the union3, the
union of the a and b is implemented(shown in 18" — 23" rows). The stack stores
the number of the union3.

(6) After reading the metacharacter *, the algorithm executes the subroutine
shown in the Figure 4.4(c). The stack pops 3. By means of the closure4, the closure of
(a|b) is implemented (shown in 25" — 27" rows). The stack stores the number of
closure4.

(7) After reading the character c, the process is similar with (3). The stack
stores the number of the comparatorb.

(8) After reading the character d, the process is similar with (3). The stack

stores the number of the comparator6.

33

Chapter 4 Generating HDL Code

(9) After reading the character e, the process is similar with (3). The stack
stores the number of the comparator7

(10) After reading the metacharacter |, the algorithm executes the subroutine
shown in the Figure 4.4(b). The stack pops 7 and 6. By means of the union8, the
unionof d and e isimplemented (shown in 39™ — 43" rows). The stack stores the
number of the union8.

(11) After reading the character f , the process is similar with (3). The stack
stores the number of the comparator9.

(12) After reading the metacharacter *, the algorithm executes the subroutine
shown in the Figure 4.4(c). The stack pops 9. By means of the closurel0, the closure
of f is implemented (shown in 49" — 51% rows). The stack stores the number of
closurel0.

(13) After reading the character g, the process is similar with (3). The stack
stores the number of the comparator1L:

(14) Reading the regular expression-is"finished; the algorithm executes the
subroutine shown in the Figure 4.4(h). The stack pops 11 and 10. By means of the
concatenation12, the concatenation of f* and g is implemented (shown in 57" —
61° rows). The stack stores the number of the concatention12.

(15) The algorithm executes the subroutine shown in the Figure 4.4(h). The stack
pops 12 and 8. By means of the concatenation13, the concatenation of (d|e) and
f*g isimplemented (shown in 64" — 68" rows). The stack stores the number of the
concatention13.

(16) The algorithm executes the subroutine shown in the Figure 4.4(h). The stack
pops 13 and 5. By means of the concatenationl4, the concatenation of ¢ and

(d|e)f*g is implemented (shown in 71 — 75" rows). The stack stores the number

34

Chapter 4 Generating HDL Code

of the concatention14.

(17) The algorithm executes the subroutine shown in the Figure 4.4(h). The stack
pops 14 and 4. By means of the concatenation15, the concatenation of (a|b)* and
c(d|e)f*g is implemented (shown in 78" — 82" rows). The stack stores the
number of the concatention15.

(18) Finally, the number, 15, which the stack pops is the last one. The algorithm
executes the subroutine shown in the Figure 4.4(i), i/o ports of the circuit is connected

(shown in 85" — 88" rows).

35

Chapter 4 Generating HDL Code

/ B R S S S S S S T e

//*************** main *hkkhkhkhkhkkhkhkhhkhkhkhkhkhkhik

// * *hkkkhhhkhhkkk * *hkk*k *kk*k * *%

module test(clk, data, sf, out) ;
input clk ;

input [7:0] data ;

input cf ;

output out ;

wirewl 1,wl 2;
comparator_a comparatorl(wl_1, wl 2, clk, data) ;

wirew2_1, w2 2;
comparator_b comparator2(w2_1, w2_2, clk, data) ;

wirew3 1, w3 2, w3_3,w3_4,w3 5 w3 6;

union union3(w3_1, w3 2, w3 3, w3 4,w3 5 w3 6);
assignwl 2=w3 3;

assignw2_2=w3 5;

assignw3_4=wl 1;

assignw3_6=w2_1;

wirewd 1, w4 2, wi 3, w4 4;

closure closure4(w4_1, w4 2, wa_3, w4.4)5
assignw4_4=w3 1;

assignw3_2=w4 3;

wirew5 1, wb_2;
comparator_c comparator5(wb=1, w5 2, clk,-data) ;

wirew6_1, w6 2 ;
comparator_d comparator6(wé_1, w62, clk, data’):

wirew7_1,w7_2;
comparator_e comparator7(w7_1, w7_2, clk, data) ;

wire w8 1, w8 2, w8_3, w8 4, w8 5, w8
union union8(w8_1, w8 2 3 4
assignwé_2=w8 3;
assignw7_2=w8 5;

assignw8 4=w6 _1;

assignw8 6=w7_1;

wirew9 1, w9 2;

36

[01]
[02]
[03]
[04]
[05]
[06]
[07]
[08]
[09]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]

Chapter 4 Generating HDL Code

comparator_f comparator9(w9_1, w9_2, clk, data) ; [46]

[47]
wire w10 1, w10 2, w10 3, w10 4; [48]
closure closure10(w10 1, w10 2, w10 3, w10 4); [49]
assignw10 4=w9 1: [50]
assign w9 2 =w10 _3; [51]

[52]
wirewll 1, w1l 2; [53]
comparator_g comparatorl1(wi1l_1, wll 2, clk, data) ; [54]

[55]
wire w12 1, w12 2, wi2 3,wi2 4, w12 5 wil2 6; [56]
concatenation concatenation12(w12_1, w12 2, wl2 3, w12 4, w12 5 w12 6); [57]
assign w10 2 =wi2 3; [58]
assignwll 2=wi12 5; [59]
assignw12_4=w10 1; [60]
assign w12 6=wil 1; [61]

[62]
wire w13 1, w13 2, w13 3,wi13 4, w13 5 wl3 6; [63]
concatenation concatenation13(w13_1, w13 2, w13 3, w13 4, w13 5 w13 6); [64]
assign w8 2 =w13_3; [65]
assign w12 _2=wil3 5; [66]
assignw13 4=w8 1: [67]
assign w13 6=wi12 1; [68]

[69]
wire w14 1, wl4 2, wl4 3, wil4 4, wid 5;wild 6 ; [70]
concatenation concatenation14(w4 1, wl4 2, wl4.3, wl4 4, wld 5 wld 6); [71]
assign ws_2=wi4 3; [72]
assign wi3 2=wl4 5 [73]
assignwl4 4=w5 1: [74]
assignwl4 6=w13 1; [75]

[76]
wire w15 1, wlb 2, w15 3, w15 4, wi5 5 W15 6 [77]
concatenation concatenation15(w15 4, w15 2, w15.'3, w15 4, w15 5 w15 6); [78]
assign w4 _2=w15_3; [79]
assign wl4d 2=wi5 5 [80]
assign w15 4=w4 1: [81]
assign w15 6=wi14 1; [82]

[83]
wire in ; [84]
assign out = w15 _1; [85]
assign wils 2 =in; [86]

[87]
assignin=1; [88]

[89]
endmodule [90]

Figure 4.5: the verilog code corresponding to the input, (a|b)*c(d|e)f *g

37

Chapter 5 Using the Decoder (Fit for ASIC)

Chapter 5

Using the Decoder (Fit for ASIC)

This new approach uses the NFA construction algorithm proposed in Chapter 4
and logic structures which are modulated from Figure 4.2 and Figure 4.4. When the
total area which is required for comparing the input with the character stored in the
comparator exceeds the area of a single, decoder, the work for comparison should be
handed over to the decoder. Therefore, when'the humber of comparators exceeds a
particular threshold, this approach can efficiently decreases the area required. Figure
5.1 shows the adjusted comparator and 8-t0-256 decoder (because the ASCII has 8
bits). The following are two choices to implement the decoder. One is to individually
assign the pin (for example, assign d97 = &(8'h01100001~"a) ;). When optimizing the
circuit, pins not used wouldn’t be synthesized and thus there is smaller area. The other
is to decode total pins once and this method has smaller delay.

This algorithm doesn’t always fit the FPGA for reducing the area used since
there are various architectures of the FPGA and all kinds of algorithms for placement
and routing. Every design team for FPGA has its own method for the compilation. But
this approach can surely reduce gate count when it is implemented in the form of

ASIC.

38

Chapter 5 Using the Decoder (Fit for ASIC)

TDJ

Flgur]%t'[.l lo cstructures

w2

match

39

cO ¢l

Chapter 6 Performance and Comparison

Chapter 6

Performance and Comparison

The memory needed for the software, GNU grep, and the area of the FPGA
required for the implementation of approaches which are mentioned in the chapter 3
and 4are showed in the Table 6.1. The regular expression tested is (a|b)*a(a|b)®
which has k occurrences of (a|b) at.the end and k ranges from 8 to 28. This
reqular expression denotes all sequencesrof. a's’.and b's in which the (k+1)"
symbol from the end is an a. Below we introduce the environment of the simulation,
performance and comparison.

The software program, GNU grep-version 2.4, runs on a machine with an 800
MHz Pentium I11 Xeon processor and 2 GB RAM running Linux (Red Hat 6.2). GNU
grep is the UNIX command and it uses the DFA for searching. The memory reported
(showed in the second and third columns of Table 6.1) is the maximum memory used
by the invocation grep. It uses an effective storage-reduction technique, “lazy
transition evaluation”. The transition function is only computed when the DFA is run.
Computed transitions are kept in a cache. Before a transition is made, the cache is
examined. If the required transition is not in the cache, it is computed and stored for a
subsequent use. Table 6.1 shows the result of simulation, and the data about GNU
grep is quoted from [1].

The performance of the GNU grep depends on the text. The performance of the

40

Chapter 6 Performance and Comparison

worst case is obtained by inputting the text which has all kinds of situation - taking
the regular expression a(a|b)® for an instance, the text contains aaa , aab, aba
and abb.As k increases, the memory and the time required reach unacceptable level
since the complete transition function is constructed. The time mentioned above
consists of the DFA construction time and the time searching the text. As k is 19, the
time required is 87309.38 seconds (24.2525 hours). For best case, because there is
only one transition constructed, the memory required is still a constant when k
changes.

The performance of the approach proposed in [1] is obtained using Xilinx
Foundation tools running on a 450 MHz Pentium Il and the target device is the Virtex
XCV100 FPGA. The performance of our approach is carried out by using Quartus Il
4.0 running on a Pentium 4 and the'target device is.the APEX EP20K600EBC-6521X.
Table 6.1 shows the result of simulation, and.the data about the approach proposed in
[1] is quoted from [1].

The performance of the approach:in [1] depends on k. As k changes, the area
required grows in O(k?). The construction time includes the time for the NFA
construction time, the time for configuration bits generation and the time for
configuring the FPGA. The last two terms dominates the construction time and the
time for processing per character is in O(1). k also determines the performance of
our approach . Compared with the approach in [1] , using our approach only
requires O(k) area. However, it leads to longer time required since the construction
time consists of the time for compiling the HDL code and the time for FPGA
configuration. Because our approach generates the HDL code, the circuit can be
implemented on ASIC and all kinds of FPGAs. Furthermore, the design software can

easily optimize the circuit.

4

Chapter 6 Performance and Comparison

k GNU grep GNU grep Approach in [1] Our approach
(best case) (worst case)
8 580 KB 1 MB 10x7 CLBs 11LEs
9 580 KB 1 MB 11x8 CLBs 12 LEs
10 580 KB 1.9 MB 12x8 CLBs 13 LEs
11 580 KB 2.2 MB 13x9 CLBs 14 LEs
12 580 KB 3.0 MB 14x9 CLBs 15 LEs
13 580 KB 4.4 MB 15x10 CLBs 16 LEs
14 580 KB 7.5 MB 16x10 CLBs 17 LEs
15 580 KB 13 MB 17x11 CLBs 18 LEs
16 580 KB 26 MB 18x11 CLBs 19 LEs
17 580 KB 54 MB 19x12 CLBs 20 LEs
18 580 KB 111 MB 20x12 CLBs 21 LEs
19 580 KB 229 MB 21x13 CLBs 22 LEs
28 30x16 CLBs 31LEs
Table6.1: the space required
k GNU grep GNU grep Approach in[1] Our approach
(best case) (worst case)
8 0.01s 0.00s 21 ms 36s
9 0.05s 0.00s 39 ms 36s
10 0.15s 0.00s 32 ms 36s
11 0.50s 0.00s 34 ms 37s
12 2.22s 0.00s 31 ms 36s

42

Chapter 6 Performance and Comparison

13 16.11s 0.005s 29 ms 36s
14 82.88 s 0.01s 33 ms 37s
15 345.33 s 0.03s 34 ms 37s
16 1383.55s 0.04s 34 ms 36s
17 5499.60 s 0.08s 37 ms 37s
18 21900.36 s 0.17s 37 ms 36s
19 87309.38 s 0.34s 31 ms 37s
28 39 ms 37s

Table6.2: the time required (Notice that definitions of the time in all columns are not

the same)

43

Chapter 7 Conclusion

Chapter 7

Conclusion

In this paper, we present the approach that constructs the NFA circuit for regular

expression matching by automatically generating HDL code. Approaches in [1]
require O(n*) areaand O(1) time for process per character (1 clock). However, the

approach proposed in this paper only.néeds O(n) area and still O(1) time for
processing per character. This new approach reducesthe area required significantly
and utilities the area efficiently..\WWe implement metacharacters often used, and thus
applications in reality become practicable. These applications include Snort, Clamav,
and so on.

Advantages of generating the HDL code can let the optimization easier and
fanout problems can be solved. Besides, the output of our approach are feasible for
all kinds of FPGAs and ASIC. If generating the netlist, the optimization and fanout
problem would be difficult to handle, and the design in [1] is only for a specific
FPGA.

From the discussion above, we know that this new method provides a general

solution for regular expression matching in hardware. The flexibility of this new

method includes debug, suitable device, optimization, easily modifying the circuit,
and so on. About area, the requirement is reduced from O(n?) to O(n) and the

utility rate becomes higher.

44

References

References

[1] R. Sidhu and V.K. Prasanna. Fast Regular Expression Matching using FPGAs,
Proceedings of IEEE Symposium on Field-Programmable Custom Computing

Machines,pp. Apr. 2001.

[2] John E. Hopcroft and Jeffery D. Ullman. Introduction to Automata Theory,

Languages, and Computation 2™ edition. Addison-Wesley, 2000.

[3] M. Main, W. Savitch. Data structures & other:objects using C++ 2" edition.

Addison-Wesley Longman, 2001:

[4] W. Wolf. Modern VLSI design 3™ edition. Prentice Hall, 2002

[5] E. Tau, D. Chen, I. Eslick, J. Brown, and A. DeHon. Afirst generation DPGA
implementation. In FPD’94- Third Canadian Workshop of Field-Programmable

Devices, pages 138-143, May 1995.

[6] S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A time-multiplexed FPGA.
In J. Arnold and K. L. Pocek, editors, Processings of IEEE Workshop on FPGAs

for Custom Computing Machines, pages 22-28, Napa, CA, April 1997.

[7] R. P.S. Sidhu, A. Mei, S. Wadhwa, and V. K. Prasanna. A self-reconfigurable gate

45

References

array architecture. In FPGA’99. Proceedings of the 1999 ACM/SIGDA Seventh

International Symposium on Field Programmable Gate Arrays, Aug. 2000.

[8] A. V. Aho. Handbook of Theoretical Computer Science, Volume A Algorithms and
Complexity, chapter 5. MIT Press/Elsevier, 1990.

[9] Friedl, Jeffrey E. F. Mastering regular expressions, O'Reilly, 2002

[10] Schwartz, Randal L. Christiansen, Tom. Learning Perl, O'Reilly & Associates,
1997

[11] Tom Christiansen and Nathan, Torkington. Perl cookbook, O'Reilly & Associates,
1998

46

