

國 立 交 通 大 學

電 信 工 程 學 系 碩 士 班

碩 士 論 文

自動產生硬體描述語言實現正規表示法比對

Automatic Generation of HDL Code for Regular

Expression Matching

研 究 生： 王文彬

指導教授： 李程輝 教授

中 華 民 國 九 十 四 年 六 月

自動產生硬體描述語言實現正規表示法比對

Automatic Generation of HDL Code for Regular Expression

Matching

研 究 生： 王文彬 Student: Wen-Bin Wang
指導教授： 李程輝 教授 Advisor: Prof. Tsern-Huei Lee

國 立 交 通 大 學

電 信 工 程 學 系 碩 士 班

碩 士 論 文

A Thesis
Submitted to Institute of Communication Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in
Communication Engineering

June 2005
Hsinchu, Taiwan, Republic of China.

中 華 民 國 九 十 四 年 六 月

自動產生硬體描述語言實現正規表示法比對

研究生： 王文彬 指導教授： 李程輝 教授

國立交通大學

電信工程學系碩士班

中文摘要

正規表示法比對是一個很重要的問題，在科學和資訊處理領域上有很多相關

的應用。在這篇論文裡，我們設計一個 C程式，這個 C程式讀正規表示法然後輸

出一個以 verilog 語言描述的 NFA。將字串輸入此 NFA 電路後，此電路可以檢查

字串裡是否有符合正規表示法描述的子字串。使用我們提出的方法，硬體需求的

成長將正比於正規表示法的長度。若使用 GNU grep(DFA)的方法，記憶體需求將

以 成長(是正規表示法的長度);使用[1](NFA)所提出來的方法需要

的硬體面積。除了面積的改善以外，在這篇論文裡介紹的新方法在偵錯、

適用硬體、最佳化、電路修改、以及面積的使用效率上皆有不錯的表現。我們提

出的方法利用 Pentium 4 的中央處理器和 APEX EP20K600EBC-6521X 型號的 FPGA

來評估。

(2)nO n

)(2nO

 i

Automatic Generation of HDL Code for Regular

Expression Matching

Student: Wen-Bin Wang Advisor: Prof. Tsern-Huei Lee

Institute of Communication Engineering

National Chiao-Tung University

Abstract

The regular expression matching is an important problem that occurs in many

areas of science and information processing. In this paper, we design a C code which

accepts the regular expression and then outputs a NFA described by verilog language.

By means of the NFA circuit, the circuit can read the string and examine whether the

substring matches the regular expression or not. Using our approach, the area of the

hardware used grow in , where is the length of the regular expression. To

match a regular expression, GNU grep (DFA) requires memory and

approaches using the NFA in [1] require area. Beside the improvement of the

area, this new design has not bad performance on debug, suitable device, optimization,

easily modifying the circuit. We evaluate our approach on the machine which has a

processor of the Pentium 4 and the target device is the APEX EP20K600EBC-6521X.

()O n n

(2)nO

2()O n

 ii

誌 謝

 感謝我的指導教授 - 李程輝教授這兩年來給予我的指導，以及在做研究上

該有的方法和態度，我覺得很幸運可以跟到老師。

 感謝交大資科所林盈達教授、台大資管所孫雅麗教授以及交大電信所闕河鳴

助理教授，在口試時所提出的寶貴建議與指教。

 很感謝網路技術實驗室的學長們：柏均、柏成、思儒、冠州、程翔和克偉，

在我剛踏進實驗室一切都很陌生時，伸出援手，對我照顧和關懷。也感謝實驗室

的同學們：偉志、景融、偉倫、冠亨、易霖，怡彣、孟諭、偉臣、名駿、雅婷和

謹慧，在交大兩年來給予我許多歡樂、成長以及美好的回憶，謝謝你們。

 最後，最感謝我的父親王金來先生以及母親周玉梅女士，從小到大所給予我

無微不至的養育及照顧，無論發生任何事總是一直支持著我，給我鼓勵，替我擔

憂，你們是最好的父母。

也感謝所有我的家人與朋友們。

 這篇論文獻給所有我愛的人與愛我的人。

 2005年六月 于風城交大

 iii

 Contents

Contents

中文摘要 i

English Abstract ii

誌謝 iii

Contents iv

List of Figures vi

List of Tables vii

Chap 1 Introduction 1

Chap 2 Background 4

2.1 Finite Automata…………………………………………………... 4

 2.1.1 Nondeterministic Finite Automaton (NFA)…………………. 5

 2.1.2 Deterministic Finite Automaton (DFA)................................... 7

 2.2 Regular Expression... 9

 2.3 Constructing the NFA from the Regular Expression………………. 10

2.4 Extensions to the Regular Expression Notation…...………………. 13

 2.5 Converting an Infix Expression to a Postfix Expression………….. 16

Chap 3 Related Work: Generating the Placed and Routed Netlist 20

Chap 4 Generating HDL Code 23

 iv

 Contents

 4.1 Reducing and Converting the Regular Expression………………... 24

 4.2 Rearranging the Regular Expression………………………………. 25

 4.3 Logic Structures…………………………………………………… 25

 4.4 NFA Construction Algorithm……………………………………… 28

Chap 5 Using the Decoder (Fit for ASIC) 38

Chap 6 Performance and Comparison 40

Chap 7 Conclusion 44

References 45

 v

 List of Figures

List of Figures

1.1 Model for pattern-matching problems………………………………. 2

2.1 finite automaton……………………………………………………... 5

2.2 the NFA diagram of recognizing and ebay …………………. web 6

2.3 the DFA diagram……………………………………………………. 8

2.4 constructing NFA from the regular expression……………………… 12

2.5 NFA for ……………………………………………….... (|)*a b cd 13

2.6 (a) NFA for . (b) NFA for

……………………………………... 1 ?r
16

2.7 converting an infix expression to a postfix expression……………… 19

3.1 logic structures (a) single character (b) (c) (d) ……. 1 2|r r 1 2r r 1 *r 21

.1 e flow chart of the constructing NFA circuit……………………… 24

.2 gic structures………………………………………………………. 28

.3 e NFA construction algorithm…………………………………….. 30

.4) routing for comparator (b) routing for | (c) routing for *

4 th

4 lo

4 th

4 (a

(d) routing for ? (e) routing for + (f) routing for . (d) routing for ?

o n (d) routing for i/o ports…………….....

31

.5 e verilog code corresponding to the input, …. 37

.1 gic structures………………………………………………………. 39

(g) routing for ^ and $

(h) routing for c ncatenatio

4 th (|)* (|) *a b c d e f g

5 lo

 vi

 List of Tables

List of Tables

2.1 the transition table corresponding to the function δ of Figure
2.2……………………………………………………………………. 7

2.2 the transition table corresponding to the function δ of Figure

2.3……………………………………………………………………. 8

6.1 the space required…………………………………………………… 42

6.2 the time required…………………………………………………….. 42

 vii

 Chapter 1 Introduction

Chapter 1

Introduction

 String pattern matching is an important problem that occurs in many areas of

science and information processing. In computing, it occurs as part of data processing,

text editing, term rewriting, lexical analysis, and information retrieval. In biology,

string-matching problems arise in the investigation of DNA sequences. The simplest

form of problem is to locate an occurrence of a keyword as a substring in a sequence

of characters, which we call the input string. For this problem, several innovative,

theoretical, and interesting algorithms have been devised that run significantly faster

than the obvious brute-force method. [8]

 Pattern-matching problems can be shown in Figure 1.1 where p is the pattern

and is the input string. The pattern is transformed by the pattern-matcher generator

into a pattern matcher, which is used to look for an occurrence of the pattern in the

input string. The pattern matcher reports “yes” if contains a substring matched by

s

s

p , “no” otherwise. In this paper, the pattern p described in the regular expression is

transformed into DFA (deterministic finite automaton) or NFA (nondeterministic finite

automaton) which used as the pattern matcher to process the input string by the

pattern-matcher generator.

s

 1

 Chapter 1 Introduction

pattern

 p

yes

no

input string

 s

Figure 1.1 Model for pattern-matching problems [8]

About the former, its idea is to transform the regular expression into DFA and

then to use DFA for string matching. We take GNU grep for example. In the worst

case, the memory and time required would be exponential blowup. About the method

using NFA, we take the approache in [1] for instance. The approach proposed in [1]

transforms the regular expression into NFA and to implement the NFA by generating

the placed and routed netlist on the FPGA. The approach requires area and

takes time for processing per character (is the length of the regular

expression). Compared with the method using DFA, the approache proposed in [1]

significantly reduces the space and time requirement.

2()O n

(1)O n

The approach proposed in this paper also transforms the regular expression into

NFA . This approach includes four main parts, “converting the regular expression,”

“rearranging the regular expression,” “logic structures,” and “NFA construction

algorithm.” Beside the two metacharacters designed in [1], we implemenent

metacharacters often used and permit the metacharacter to be matche. The new

method provides a general solution for regular expression matching in hardware. Its

 2

 Chapter 1 Introduction

flexibility includes debug, suitable device, optimization, easily modifying the circuit,

and so on. About area, the requirement is reduced from to and the

utility rate becomes higher.

2()O n ()O n

 Chapter 2 is the background about the regular expression, finite automata and a

pseudo code for converting the infix expression to a postfix expression. Chapter 3

introduces the approach in [1]. Chapter 4&5 describes approach proposed in this

paper. Chapter 6 presents the evaluation result and comparison. Chapter 7 is the

conclusion.

 3

 Chapter 2 Background

Chapter 2

Background

2.1 Finite Automata [2]

 Before introducing the automaton, we first introduce some important definitions.

These concepts include the “alphabet”, “strings” and “language.” An alphabet is a

finite, nonempty set of symbols. Common alphabets include the binary alphabet, the

set of all lower-case letters and the set of all ASCII characters. Usually, we use the

symbol for an alphabet. A string is a finite sequence of symbols chosen from

some alphabet. For example, “kitty” is the string that is chosen from the set of all

low-case letters. k

Σ

Σ is the set of strings length k and each of whose symbols is

in Σ . For exam {0,1Σ = 110,111} . A

set of strings which are chosen from

of

if , then ,010,011,100,101,Σ =ple, } 3 {000,001

*Σ , where *Σ is the set of all strings over an

Σ , is called a language. For example, Chinese name is a set of strings over

the alphabets which are all Chinese words.

alphabet

 The finite automaton is a useful model for many important applications. Before

we introduce precise definitions of automata of various types, let us informally

introduce the sketch of what a finite automaton is. There are many systems or

components in one of a finite number of “states.” The purpose of a state is to

 4

 Chapter 2 Background

remember the relevant portion of the system’s history. The advantage of having a

finite number of states is to implement the system with finite resources. Let us take a

finite automaton (Figure 2.1) for example. A finite automaton has a set of states and

its “control” moves from state to state in response to external “inputs.” For finite

automata, circles represent states and arcs between states are labeled by “inputs,”

which represent external influences on the system. One of the states is designed the

“start state,” the state in which the system is placed initially. One or more states are

designed “final states” and it is conventional to designate final states by a double

circle. In Figure 2.1, state 1 is “start state” and state 5 is “final state.” Entering the

final state represents that the input sequence is good in some way.

Figure 2.1: finite automaton

One of the crucial distinctions among classes of finite automaton is the number

of states once. “Nondeterministic Finite Automaton” means that the automaton may

be in several states at any one time but “Deterministic Finite Automaton” means that

it cannot be in more than one state at once. Below we introduce the definitions of

“Nondeterministic Finite Automaton” and “Deterministic Finite Automaton” for

details.

2.1.1 Nondeterministic Finite Automaton (NFA)

The definition of the nondeterministic finite automaton is below.

0(, , , ,)A Q q Fδ= ∑

 5

 Chapter 2 Background

 6

where:

is a finite set of states.

bols.

 4. , a subset of , is the set of final states.

5.

 1. Q

 2. is a finite set of input sym∑

 3. , a member of Q , is the start state. 0q

F Q

δ , the transition function is a function that takes a state in and an input

sym as ar . If is a state, and

Q

bol in ∑ guments and returns a subset of Q q

a is an input symbol, then (,)q aδ is that subset { , ...}p p such that

there are arcs labeled a from q to subset { , ,...}p p .

ndeterministic” finite automa FA) has several st ce. Take an

, the automaton (Figure 2.2) is used to recog rre

1 2 ,

A “no ton (N ates at on

example nize occu nces of the words,

1 2

web and ebay , in a text. The NFA of Figure 2.2 can be specified formally as

({1,2,3,4,5,6,7,8},{all ASCII characters}, ,1,{4,8})δ . The transition table

espond to the function corr ing δ of Figure 2.2 is shown in Table 2.1. The input and

lumn of the Table 2.2. State 2

through 4 have the job of recognizing web , while state 5 through 8 recognize ebay .

state are designated respectively in the first row and co

1

2 3 4

5
Start

w

e

e

b

Figure 2.2: the NFA diagram

b
Σ

6 7 8a y

 of recognizing and

web ebay

 Chapter 2 Background

w e b a y other

ASCII

characters

1 {1, 2} {1, 5} {1} {1, 5} {1} {1}

2 φ {3} φ φ φ φ

3 φ φ {4} φ φ φ

4 {4 {4} {4} {4} {4} } {4}

5 φ φ {6} φ φ φ

6 φ φ φ {7} φ φ

7 φ φ φ φ {8} φ

8 {8 {8} {8 {8} {8} } } {8}

Table 2.1: the transition table corresponding to the function δ of Figure 2.2

2.1.2

ton is below.

Deterministic Finite Automaton (DFA)

 The definition of the deterministic finite automa

0(, , , ,)A Q q Fδ= ∑

where:

 1. is a finite set of states.

is a finite set of input symbols.

 start state.

5.

Q

 2. ∑

 3. , a member of Q , is the0q

 4. , a subset of Q , is the set of final states. F

δ , the transition function is a function that takes a state in and an input

symbol in as arguments and returns a state of . If is a state, and

Q

∑ Q q

a is an input symbol, then (,)q aδ is that state p such that there is an arc

labeled a from q to p . Notice that the difference between an NFA and

 7

 Chapter 2 Background

DFA is the type of value that δ returns: a set of s es in he case of an NF

and a single state in the case of a DFA.

ure 2.3 is a simple instance for the DFA which can be specified formally as

},{0,1}, ,1,4)

tat t A

Fig

({1,2,3,4 δ . The transition table corresponding to the function δ of

Figure 2.3 is shown in Table 2.2. The input and state are designated respectively in the

first

row and column of the Table 2.3.

1 0 0

1

1

1

0

Start 0

Figure 2.3: the DFA diagram

 0 1

1 2 1

2 2 3

3 3 4

4 2 1

Table 2.2: the transition table corresponding to the function δ of Figure 2.3

 8

 Chapter 2 Background

2.2

 Here we switch our attention from machine-like descriptions of languages, NFA

he “regular expression.” The regular expression

an be thought of as a “user-friendly” alternative to the automata notation. Besides,

t matches the string .

pression

.

s

 Regular Expression [8]

and DFA, to an algebraic description: t

c

regular expressions offer something that automata don’t: a declarative way to express

the strings we want to accept. Therefore, regular expressions serve as the input

language for many systems that process strings, e.g. UNIX grep command, UNIX

Lex(Lexical analyzer generator) and Flex(Fast Lex) tools.

 We define regular expressions and the strings they match as follows:

 1. The following characters are metacharacters: | () *

 2. A non-metacharacter a is a regular expression tha a

3. If 1r and 2r are regular expressions, then 1 2(|)r r is a regular ex

that matches any string matched by either 1r or 2r

4. If 1r and 2r are regular expressions, then 1 2()()r r is a regular expres ion

that matches any string of the form xy 1r matches x and 2r, where

ma hes

5. If is a regular expression, then is a regular expression that matches

e ma

tc y .

r ()*r

any string of the form 1 2... , 0nx x x n ≥ , wher tches ir x for 1 i n≤ ≤ .

In practice, ()*r matches the empty string, which we denote by ε .

r is a regular expression, then 6. If is a regular expression that matches

 Here are two examples for understanding the regular expression. The regular

expression) matches any of

{ }The dog T he likes sleeping

()r

the same strings as r .

 , likes studying he dog likes sleeping The cat likes studying T cat

 (|) (|The dog cat likes studying sleeping

 , ,

 9

 Chapter 2 Background

. The regu k very very much matches the strings

; and so on.

he NFA from the Regu 8]

 A NFA is a directed graph in which the nodes are the states and each edge is

bol

lar expression Than you (,)*

 T k you very much ; , Thank you very very much ;

 , , Thank you

2.3 Constructing t lar Expression [

han

 very very very much

labeled by a single character or the sym ε , which stands for the empty string. One

 a

ring if there is a path from the start state to a final state whose edge labels spell out

state is designated as a start state, and some states as final states. A NFA accepts

st

the string. Once we have constructed a NFA for a regular expression r , we run it on

the input string s . If the NFA enters a final state while processing s , we report that

r matched s , otherwise, we report “no”. The recursive procedure below can be

used to construct an NFA for the regular expression. Using rule (1), we construct a

NFA for a non-metacharacter. Rule (2)-(5) show how to comb e the NFAs

constructed from he constituent subexpressions.

(1) For a non-metacharacter c , construct the NFA in Figure 2.4(a) where i is a

new start state and a a new final state. This automaton accepts the string c .

(2) Suppose
1r

N and
2r

N are NFA for 1r and 2r . For the regular expression

|r r r= , construct the NFA N in Figure 2

in

 t

.4(b here is a new start state 1 2) w i

and a a new final state. There is an ε -transition from i to the start states of

1r
N and

2r
N . There is an ε -transition the final st and to

the new final state is, any path from to must pass through either

 from ates of
1r

N
2r

N

a . That i a

1r
N or

2r
N . Therefore, N accepts any string accepted by

1r
N or

2r
N .

 10

 Chapter 2 Background

(3) Suppose a

trans tions from

m

1r
N and

2r
N re NFAs for 1r and 2r . For the regular expression

1 2r r r= , construct the NFA N in Figure 2.4(c) where the start state of
1r

N

s the start state o and the final state of becomes the final state become f N
2r

N

of N . The final state of is merged with the s rt state of ; that is, all

 the start state of become transitions from the final state of

. The new merged state loses its status as a start or final state in N . A path

fro to must go first through and then through , so N

accepts any string of the form

1r
N ta

2r
N

i
2r

N

1r
N

1r
i

2r
a

1r
N

2r
N

xy accepts where
1r

N x and accepts y .

is a NFA for . For the regular expression =

the NF in Figure 2.4(d) where i is a new start state and a a new final state.

In N , we can go from i to directly, along an edge labeled

2

(4) Suppose , construct

A

rN

1r
N 1r 1 *r r

a ε , representi g n

matches the empty string, or we can go from to passing

through one or more times. Thus, accepts any string matched by

from the regular expression. Figure 2.5 shows a NFA that results from this

construction for the regular expression

the fact that *s i a

1r 1

(5) For the regular expression use the NFA for r .

Take a simple instance for understanding the procedure of constructing the NFA

N N *r .

()r

(|)*a b cd .

 11

 Chapter 2 Background

i ac

i a

ε ε

ε ε

1r
N

2r
N

1r
i

2r
i

1r
a

2r
a

1r
N

2r
N

1r
i

2r
a

ε

εε

ε

i a
1r

N
1r

i
1r

a

(a)

()b

()c

()d
Figure 2.4: constructing NFA from the regular expression

 12

 Chapter 2 Background

ε

ε

ε ε

ε ε

ε

ε

a

b

c d

Figure 2.5: NFA for (|)*a b cd

2.4 Extensions to the Regular Expression Notation [8] [9] [10]

[11]

 Many text-editing and searching programs add abbreviations and new operators

to the basic regular expression notation above to make it easier to specify patterns.

Here, we introduce some of the regular expressions used by the popular expression

matching programs awk, grep, egrep and lex on the UNIX.

(1) The metacharacter: The character + + means “one or more of the

preceding characters.” For example, the regular expression de f+ matches any

of the following: , and so on. , , ...neredefine redeefine redeeefi

(2) The metacharacters: The [] metacharacters enable us to define regular

expressions that match one of a group of alternatives. For example, the following

regular expression matches def or : . When the character

appears as the first character after the , it indicates that the regular expression

is to match any character except the ones displayed between [and . For

[]

dEf []d eE f ^

[

]

 13

 Chapter 2 Background

example, the regular expression matches any pattern that satisfies the

following criteria: 1. The first character is d . 2. The second character is

anything other than or . 3. The last character is

[^]d eE f

e E f .

(3) The metacharacter: metacharacter matches zero or one occurrences of

the preceding character. For example, the regular expression matches

either or .

? ?

?de f

df def

(4) Escape sequences for metacharacters: If we want our regular expression to

include a character that is normally treated as a metacharacter, precede the

character with a backslash . For example, to check for one or more occurrences

of in a string, use the following regular expression:

\

* \ *+ . The backslash

preceding the * tells us to treat the * as an ordinary character, not as the

metacharacter meaning” zero or more occurrences.” To include a backslash in a

regular expression, specify two backslashes \ \ + . This regular expression tests

for one or more occurrences f \ in a stringo .

c

(5) Matching any letter or number: The regular expression

matches , followed by the any digits, followed by . Another way of writing

this is as follows: . Here, the range [0

[0123456789]a c

a c

[0 9]a − 9]− represents any digit

between 0 and 9. This regular expression matches and so on up

to . Similarly, the range

0 , 1 , 2 ,a c a c a c

9a c [a z]− matches any lowercase letter, and the range

[]A Z− matches any uppercase letter. For example, the regular expression

[][]A Z A Z− − matches any two uppercase letters.

(6) Anchoring patterns: The regular expression and ensure that the

regular expression is only matched at the start or the end of the string. For

example, the regular expression matches only if these are the first

three characters in the strings. Similarly, the regular expression matches

 only if these are the last three characters in the strings. We can combine

^ $

^def def

$def

def ^

 14

 Chapter 2 Background

and force matching of the entire string, as follows: . This matches

only if the string is .

$ ^def $

def

(7) Matching any character: Another metacharacter supported in the regular

expression is the period (.) character, which matches any character. For

example, the regular expression matches , followed by any character,

followed by

.d f d

f .

(8) Matching a specified number of occurrences: We can define how many

occurrences of a character constitute a match. To do this, use metacharacters

and . For example, the regular expression matches , followed by

one, two, or three occurrences of , followed by

{

} {1,3}de f d

e f . This means that ,

, and match, but and do not. To specify an exact

number of occurrences, include only one value between the and }: .

This specifies exactly three occurrences of , which means this regular

expression inly matches .

def

deef deeef df deeeef

{ {3}de f

e

deeef

 Figure 2.6 shows two NFAs for and . 1 ?r

 15

 Chapter 2 Background

i aΣ

(a)

εε

ε

i a
1r

N
1r

i
1r

a

()b
Figure 2.6: (a) NFA for (b) NFA for . 1 ?r

2.5 Converting an Infix Expression to a Postfix Expression

[3]

 Figure 2.7 is a pseudo code which converts an infix expression to a postfix

expression. For the conversion algorithm to be correct, we must check four issues. 1.

The postfix expression contains the correct operands in the correct order. 2. The

postfix expression evaluates subexpressions in the way indicated by the parentheses in

the infix expression. 3. The postfix expression handles operations of differing

precedence according to the precedence rules. 4. A string of operations of equal

precedence in the infix expression is handled correctly when translated into the

postfix expression. Below, we consider each of these four issues.

 16

 Chapter 2 Background

 First we need to know that the operands (the numbers and variables) in the

postfix expression are in the same order as they are in the infix expression. Because

operands are written out as soon as they are read in, they are clearly in the same order

as in the infix expression.

 Parentheses are a way of grouping subexpressions. Everything inside a pair of

matching parentheses is treated as a single unit by anything outside the parentheses.

The parentheses give the following message to the operations outside of the

parentheses: We will work things out among ourselves and deliver a single value for

you to combine with other operands. This means that all operations between a set of

matching parentheses in the infix expression should form a subexpression of the

postfix expression. The algorithm keeps track of expressions with matching

parentheses by using the stack. When algorithms encounters an opening parenthesis,

that is, a ‘(’, it pushes this parenthesis into the stack. The algorithm will never output

an operation from the stack that is below the opening parenthesis, ‘(’. It only outputs

operations that are within the pair of matching parentheses in the input expression.

Moreover, it outputs all of these operations. When it encounters the matching closing

parenthesis, it outputs all the remaining operations on the stack all the way down to

that matching opening parenthesis. This behavior can be completed by means of the

prcd function which executes the comparison of the precedence. The function has two

arguments. When the former argument owns the higher precedence than the later, the

function returns 1. The function returns 0 when the opening parenthesis is the

argument and the closing parenthesis is not. By returning 0, the stack can stop to pop

operations outside a pair of matching parentheses. When the closing parenthesis is the

argument, the function will return 1 until encountering the opening parenthesis. It will

 17

 Chapter 2 Background

make all operations between a set of matching parentheses in the infix expression

form a subexpression of the postfix expression.

 When the infix expression contains an operation with low precedence followed

by an operation with a higher precedence, then the algorithm should output these

operations in reverse order. That is, the higher precedence should be written first. By

means of the function prcd, this work also is completed. The former argument of the

function is the top of the stack and the latter is the new coming operation. When the

precedence of the former is higher than the precedence of the latter, it represents that

an operation with higher precedence followed by an operation with a lower

precedence in the infix expression. Therefore, the stack is popped. Otherwise, the

order of the operations is reversed.

 When the infix expression contains a sequence of operations of equal precedence,

they represent an evaluation that goes from left to right. The work is solved by

returning 1 when the function accepts the same two operations as arguments.

 18

 Chapter 2 Background

opstak = the empty stack;
while (not end of input)
{

symb = next input character;

if (symb is an operand)
add symb to the postfix string;

else
{

while (!empty(opstk) && prcd(stacktop(opstk) , symb))
{

topsymb = pop(opstk);
add topsymb to the postfix string;

} // end while

// push (opstk, symb);
if (empty(opstk) || symb != ')')

push (opstk , symb);
else

topsymb = pop(opstk);
} // end else

} // end while

while (!empty(opstk))
{

topsymb = pop(opstk);
add topsymb to the postfix string;

} // end while

Figure 2.7: converting an infix expression to a postfix expression

 19

 Chapter 3 Related Work: Generating the Placed and Routed Netlist

Chapter 3

Related Work: Generating the Placed and

Routed Netlist [1]

This approach was introduced in [1] for finding matches to a given regular

expression in a given text. [1] presents an algorithm that constructs the

Nondeterministic Finite Automaton (NFA) circuit used for matches. The idea is to

map simple NFAs onto logic structures and then to complete the whole circuit by

means of these logic structures.

 Before introducing the algorithm, we first describe simple logic structures shown

in Figure 3.1, a single character, , and 1 2|r r 1 2r r 1r ∗ . Logic structures showed in

Figure 3.1(a), (b), (c) and (d) are the implementations of the NFAs shown in Figure

2.4(a), (b), (c) and (d) respectively. In Figure 3.1(a), the output is 1 only when the

flip-flop stores a 1 and the input character matches the character stored in the in the

comparator. In Figure 3.1(b), only when or has a match, the output of the

OR gate would be high. In Figure 3.1(c), only when and have matches, the

o would be high. In Figure 3.1(d), the o would be high whether has match or not.

The behavior of Figure 3.1 (a), (b), (c) and (d) is the same as Figure 2.4(a), (b), (c)

and (d), respectively.

1N 2N

1N 2N

1N

 20

 Chapter 3 Related Work: Generating the Placed and Routed Netlist

Figure 3.1: logic structures (a) single character (b) (c) (d) 1 2|r r 1 2r r 1r ∗

 Here, we introduce the algorithm. The algorithm accepts the regular expression

in postfix form obtained by postorder traversal of the syntax tree of the regular

expression and directly generates the placed and routed netlist for NFA logic. The

order of characters in the postfix form replaces the use of parentheses in the infix

form. By eliminating parentheses, the algorithm needs not to deal with parentheses, so

it is simplified. The algorithm places the NFA logic as a binary tree. That is, logic

structures for characters are leaf nodes and placed in the row 0. Once the logic

structure for the character is placed, the column counter is incremented. Logic

structures for metacharacters are non-leaf nodes and are placed on separate rows.

 21

 Chapter 3 Related Work: Generating the Placed and Routed Netlist

Once the logic structure for the metacharacter is placed, the row counter is

incremented.

By exploiting this algorithm, the area would depend on placement and routing

subroutines. According to [1], the area would be in where n is the length of

the regular expression. This algorithm compared with a serial machine is better

because the DFA take memory.

2()O n

(2)nO

 22

 Chapter 4 Generating HDL Code

Chapter 4

Generating HDL Code

This paper proposes a new method to construct the NFA circuit used for matches.

The method proposed in [1] only implements two metacharacters and the

metacharacter can’t be view as a symbol for matching. Here, this new method

implements metacharacters often used and permits the metacharacter to be matched.

Figure 4.1 is the flow chart of the new method for constructing NFA circuit. This

method includes four main parts, “converting the regular expression,” “rearranging

the regular expression,” “logic structures,” and “NFA construction algorithm.” In

order to generate the HDL code from the C language and conform the syntax of the

HDL, these four parts are needed. “Reducing and converting the regular expression”

reduces the redundant part of the regular expression and converts some

metacharacters into the equivalent regular expression. “Rearranging the regular

expression” rearranges the order for simplifying the NFA algorithm. “Logic

structures” can be viewed as bricks for complete the circuit. “NFA construction

algorithm” accepts the output of “rearranging the regular expression” and completes

the circuit. We introduce them below for details.

 23

 Chapter 4 Generating HDL Code

verilog

code

regular

expression

Figure 4.1: the flow chart of the constructing NFA circuit

4.1 Reducing and Converting the Regular Expression

 In the beginning, we first examine whether the regular expression in the infix

form can be reduced or not. (r and

 can be both reduced to

. For the former, since the NFA must match strings beginning at

any position in the input text, is redundant. For the latter,

since the NFA can’t indicate which pattern matched, thus

can be removed. Some metacharacters can be implemented only by converting the

regular expression into the other regular expression. We introduce and explain it

below.

egular expression b)*(regular expression a)

(regular expression a)(regular expression b)*

(regular expression a)

(regular expression b)*

(regular expression b)*

If is a regular expression, then r r + is a regular expression that matches any

string of the form 1 2... , 1nx x x n ≥ , where matches r ix for 1 i n≤ ≤ . Therefore, the

regular expression could be implemented by converting it into . However,

when encountering , we don’t convert it into since

r + *rr

/+ //* /+ means treating as

a character to match.

+

{ }r n is a regular expression that matches any string of the form 1 2... nx x x where

 matches r ix for . Therefore, the regular expression could be 1 i n≤ ≤ { }r n

 24

 Chapter 4 Generating HDL Code

implemented by converting it into where n regular expressions are connected. ...rrr r

The regular expression is just the shorthand of the regular

expression . Therefore, for the implementation, we convert the shorthand.

Similarly, regular expressions []

1 2[...]nr r r

1 2(| | ... |)nr r r

A K− and [1 9]− are also converted. When

encountering , we convert it into 1 2[^ ...]nr r r 1 2(| | ... |)nr r r + where the meaning of +

has been changed. After converting the regular expression, there is a in the front of

. By means of this feature, we use

/

+ + which follows) to solve metacharacters

. [^...]

4.2 Rearranging the Regular Expression

 Here, we eliminate the parentheses and rearrange the order of metacharacters

which are and . The position of the metacharacter is rearranged since the

logic structure which implements needs to concatenated in the back of the first

comparator for checking whether the input character is the beginning of the string or

not. The position of the metacharacter | is rearranged in order that the NFA

construction algorithm can build on the top of the two suitable comparators and

needn’t to deal with parentheses. By eliminating parentheses, the NFA construction

algorithm can be simplified.

| ^ ^

^

|

 We use the pseudo code shown in the Figure 2.7. In the function prcd, there are

only without . After rearranging the order of the expression,

exchange positions of the metacharacter and the first character.

|, (,and) , , ,and+ − × ÷

^

4.3 Logic Structures

 25

 Chapter 4 Generating HDL Code

Metacharacters mentioned in the Chapter 2 can be implemented by building

some logic structures which established in the form of modules described by the HDL.

We choose and design eight logic structures as basic components of the whole circuit.

Figure 4.2 shows these modules. Note that the wire marked the odd number represents

the output. On the contrary, the even number indicates the input. The arrangement of

numbers is for the generation of the HDL code.

Figure (a) is a comparator which is the implementation of the Figure 2.4(a). The

flip-flop can be treated as the state of the NFA and we use the clock to segment the

coming symbol of the string. If the flip-flop stores a 1, it represents that the operation

of the “regular expression matching” walks to this state which the comparator stands

for. If the input symbol matches, the comparator delivers a 1 to the next comparator

which stands for the next state.

Figure 4.2(b), (c), (d), (e) and (f) are the implementations of Figure 2.4(b)(c)(d)

and Figure 2.5(b)(a), respectively. Figure 4.2(b) implements the regular expression

 where the circuit implementing connects w3&4 and the circuit

implementing connects w5&6. Any one of circuits implementing and

output a 1 and then the circuit implementing outputs a 1. Figure 4.2(c), (d), (e)

and (f) are similar. Figure (c) is used for the regular expression . Figure (d) is used

for the regular expression . Figure (e) is used for the regular expression .

Figure (f) is used for the regular expression .

1 2|r r 1r

2r 1r 2r

1 2|r r

1 2r r

1 *r 1 ?r

1 2.r r

Figure 4.2 (g) is designed for solving metacharacters and . Because

behaviors of metacharacters and $ can’t be drawn in the NFA, we design a

signal “sf” for examining whether the input symbol is the beginning or end of the

string or not. When the work for the “regular expression matching” starts or finishes,

signals “s” or “f” are designed to pull up for a clock. Take as an example,

^ $

^

^ben ^ben

 26

 Chapter 4 Generating HDL Code

would be rearranged into . The two inputs of Figure 4.2(g) would be the output

of the comparator for and the signal “s.” Only when the first symbol of the input

string is , the regular expression has the possibility of matching. Figure4.2 (h) is

designed for solving metacharacters . After converting the regular expression,

the becomes . When reading the

^b en

b

b

[^...]

[^...] (...)+ + , we connect the circuit

implementing and the inverter shown in the Figure 4.2(h). (...)

 27

 Chapter 4 Generating HDL Code

Figure 4.2: logic structures for (a) comparator (b) union | (c) concatenation (d)

closure (e) ? (f) dot . (g) anchor (h) * +

 28

 Chapter 4 Generating HDL Code

4.4 NFA Construction Algorithm

 Figure 4.3 shows the NFA construction algorithm and subroutines are shown

in the Figure 4.4. To give different names for all modules and wires, it is necessary

to compute how many logic structures are being used. Thus the counter, number, is

used. After accepting the regular expression in the postfix form, the algorithm

would check whether the regular expression finishes or not. If not, it examines the

input symbol, and then processes the particular subroutine. Until the regular

expression finishes, the algorithm processes the other recursion: examining

whether the number which the stack pops is the last one or not. If not, the

subroutine, routing for concatenation, works for concatenation, otherwise, the

subroutine, routing for i/o port, works.

 Figure 4.4(a) is used only when the symbol which has to be matched is

accepted and this logic structure dominates how fast the circuit can be. In Figure

4.4(a), after naming wires and the comparator, ports of the comparator are assigned

and then push the number of the comparator into the stack. Next, for the next logic

structure used the number must be incremented. Figure 4.4(b), (c), (d), (e), (f) and

(g) are similar, so we only take Figure 4.4(b) to explain. Since the union of the

regular expression in the postfix form applies to the former two, the algorithm

pops the stack two times. After names of wires and the logic structure of the union

are declared, the algorithm completes the connection between wires by exploiting

the “assign”. Figure 4.4(i) is about the i/o port. The i port is stuck to the power

supply and the o port is just the wire.

 29

 Chapter 4 Generating HDL Code

Fig 4.4(i)

Number = 1

k=0 ; postfix[k] != '\
0' ; k++ \Y N

the last one
in the stack

Y N

|

*

?

+

.

^

Fig 4.4(b)

Fig 4.4(c)

Fig 4.4(d)

Fig 4.4(e)

Fig 4.4(f)

Fig 4.4(g)

Fig 4.4(h)

N

N

N

N

N

Fig 4.4(a)

N

N

a

b

e

f

n

S

k = k+ 1

BEL

BackSpace

ESC

FormFeed

Y

Y

Y

Y

NewLine

Y

Y

Y

Y

Y

Y

Y

NotWhite
Space

N

N

N

N

Y

Y

Fig 4.4(a)
N

Fig 4.4(g)$

N

Y

Figure 4.3: the NFA construction algorithm

 30

 Chapter 4 Generating HDL Code

printf("wire w%d_1, w%d_2 ;\n", number, number) ;
printf("comparator_%c comparator%d(w%d_1, w%d_2, clk, data) ;\n\n",
postfix[k], number, number, number) ;
push(s2, number) ;
number++ ;

(a)

number1 = pop(s2) ;
number2 = pop(s2) ;
printf("wire w%d_1, w%d_2, w%d_3, w%d_4, w%d_5, w%d_6 ;\n", number, number, number, number, number,
number) ;
printf("union union%d(w%d_1, w%d_2, w%d_3, w%d_4, w%d_5, w%d_6) ;\n", number, number, number, number,
number, number, number) ;
printf("assign w%d_2 = w%d_3 ;\n", number2, number) ;
printf("assign w%d_2 = w%d_5 ;\n", number1, number) ;
printf("assign w%d_4 = w%d_1 ;\n", number, number2) ;
printf("assign w%d_6 = w%d_1 ;\n\n", number, number1) ;
push(s2, number) ;
number++ ;

(b)

number1 = pop(s2) ;
printf("wire w%d_1, w%d_2, w%d_3, w%d_4 ;\n", number, number, number, number) ;
printf("closure closure%d(w%d_1, w%d_2, w%d_3, w%d_4) ;\n", number, number, number, number, number) ;
printf("assign w%d_4 = w%d_1 ;\n", number, number1) ;
printf("assign w%d_2 = w%d_3 ;\n\n", number1, number) ;
push(s2, number) ;
number++ ;

(c)

(d)

(e)

number1 = pop(s2) ;
printf("wire w%d_1, w%d_2, w%d_3, w%d_4 ;\n", number, number, number, number) ;
printf("repetition repetition%d(w%d_1, w%d_2, w%d_3, w%d_4) ;\n", number, number, number, number, number) ;
printf("assign w%d_4 = w%d_1 ;\n", number, number1) ;
printf("assign w%d_2 = w%d_3 ;\n\n", number1, number) ;
push(s2, number) ;
number++ ;

number1 = pop(s2) ;
printf("wire w%d_1, w%d_2, w%d_3, w%d_4 ;\n", number, number, number, number) ;
printf("exclusion exclusion%d(w%d_1, w%d_2, w%d_3, w%d_4) ;\n", number, number, number, number, number) ;
printf("assign w%d_4 = w%d_1 ;\n", number, number1) ;
printf("assign w%d_2 = w%d_3 ;\n\n", number1, number) ;
push(s2, number) ;
number++ ;

 31

 Chapter 4 Generating HDL Code

number1 = pop(s2) ;
printf("wire w%d_1, w%d_2, w%d_3, w%d_4 ;\n", number, number, number, number) ;
printf("dot dot%d(w%d_1, w%d_2, w%d_3, w%d_4) ;\n", number, number, number, number, number) ;
printf("assign w%d_4 = w%d_1 ;\n", number, number1) ;
printf("assign w%d_2 = w%d_3 ;\n\n", number1, number) ;
push(s2, number) ;
number++ ;

(f)

(g)

(h)

number1 = pop(s2) ;
printf("wire w%d_1, w%d_2, w%d_3, w%d_4 ;\n", number, number, number, number) ;
printf("anchor anchor%d(w%d_1, w%d_2, w%d_3, w%d_4, xxx) ;\n", number, number, number, number, number) ;
printf("assign w%d_4 = w%d_1 ;\n", number, number1) ;
printf("assign w%d_2 = w%d_3 ;\n\n", number1, number) ;
push(s2, number) ;
number++ ;

number1 = pop(s2) ;
number2 = pop(s2) ;
printf("wire w%d_1, w%d_2, w%d_3, w%d_4, w%d_5, w%d_6 ;\n", number, number, number, number, number,
number) ;
printf("concatenation concatenation%d(w%d_1, w%d_2, w%d_3, w%d_4, w%d_5, w%d_6) ;\n", number, number,
number, number, number, number, number) ;
printf("assign w%d_2 = w%d_3 ;\n", number2, number) ;
printf("assign w%d_2 = w%d_5 ;\n", number1, number) ;
printf("assign w%d_4 = w%d_1 ;\n", number, number2) ;
printf("assign w%d_6 = w%d_1 ;\n\n", number, number1) ;
push(s2, number) ;
number++ ;

number1 = pop(s2) ;
printf("wire in ;\n") ;
printf("assign out = w%d_1 ;\n", number1) ;
printf("assign w%d_2 = in ;\n\n", number1) ;
printf("assign in = 1 ;\n\n") ;

(i)

Figure 4.4: (a) routing for comparator (b) routing for | (c) routing for * (d) routing for ?

(e) routing for (f) routing for . (d) routing for ? (g) routing for or ^ $+

(h) routing for concatenation (d) routing for i/o ports

 For more understanding, we demonstrate this method by entering a simple

regular expression as the input of the system. Please refer to the

Figure 4.1, Figure 4.3 and Figure 4.4. The process of constructing the NFA for the

regular expression is below. The verilog code corresponding to

the input, , is shown in Figure 4.5.

(|)* (|) *a b c d e f g

(|)* (|) *a b c d e f g

(|)* (|) *a b c d e f g

 32

 Chapter 4 Generating HDL Code

 (1) The regular expression is traversed from the infix form, ,

into the postfix form,

(|)* (|) *a b c d e f g

| * | *ab cde f g

 (2) In the beginning, the NFA construction algorithm prints 1st - 10th rows in

Figure 4.5. The 5th row is shown for the circuit’s name and the i/o ports. The 6th, 7th

and 8th rows declare that clk, data and sf are input ports, where the size of the data is

8-bits for ASCII characters. The 9th row declares the out as the output.

 (3) The NFA construction algorithm begins to read the regular expression. After

reading the character , the algorithm executes the subroutine shown in the Figure

4.4(a) since belongs to the character. Thus, 11

a

a th and 12th rows are printed, where

the 12th row declares the comparator and the i/o of the comparator. The stack stores

the number of the comparator1.

 (4) After reading the character , the process is similar with (3). The stack

stores the number of the comparator2.

b

 (5) After reading the metacharacter | , the algorithm executes the subroutine

shown in the Figure 4.4(b). The stack pops 2 and 1. By means of the union3, the

union of the and b is implemented(shown in 18a th – 23rd rows). The stack stores

the number of the union3.

 (6) After reading the metacharacter *, the algorithm executes the subroutine

shown in the Figure 4.4(c). The stack pops 3. By means of the closure4, the closure of

 is implemented (shown in 25(|)a b th – 27th rows). The stack stores the number of

closure4.

 (7) After reading the character , the process is similar with (3). The stack

stores the number of the comparator5.

c

 (8) After reading the character , the process is similar with (3). The stack

stores the number of the comparator6.

d

 33

 Chapter 4 Generating HDL Code

 (9) After reading the character , the process is similar with (3). The stack

stores the number of the comparator7

e

 (10) After reading the metacharacter | , the algorithm executes the subroutine

shown in the Figure 4.4(b). The stack pops 7 and 6. By means of the union8, the

union of and is implemented (shown in 39d e th – 43rd rows). The stack stores the

number of the union8.

 (11) After reading the character f , the process is similar with (3). The stack

stores the number of the comparator9.

 (12) After reading the metacharacter *, the algorithm executes the subroutine

shown in the Figure 4.4(c). The stack pops 9. By means of the closure10, the closure

of f is implemented (shown in 49th – 51st rows). The stack stores the number of

closure10.

 (13) After reading the character , the process is similar with (3). The stack

stores the number of the comparator11.

g

 (14) Reading the regular expression is finished; the algorithm executes the

subroutine shown in the Figure 4.4(h). The stack pops 11 and 10. By means of the

concatenation12, the concatenation of *f and is implemented (shown in 57g th –

61st rows). The stack stores the number of the concatention12.

 (15) The algorithm executes the subroutine shown in the Figure 4.4(h). The stack

pops 12 and 8. By means of the concatenation13, the concatenation of and (|)d e

*f g is implemented (shown in 64th – 68th rows). The stack stores the number of the

concatention13.

 (16) The algorithm executes the subroutine shown in the Figure 4.4(h). The stack

pops 13 and 5. By means of the concatenation14, the concatenation of c and

 is implemented (shown in 71(|) *d e f g st – 75th rows). The stack stores the number

 34

 Chapter 4 Generating HDL Code

of the concatention14.

 (17) The algorithm executes the subroutine shown in the Figure 4.4(h). The stack

pops 14 and 4. By means of the concatenation15, the concatenation of and

 is implemented (shown in 78

(|)*a b

(|) *c d e f g th – 82nd rows). The stack stores the

number of the concatention15.

 (18) Finally, the number, 15, which the stack pops is the last one. The algorithm

executes the subroutine shown in the Figure 4.4(i), i/o ports of the circuit is connected

(shown in 85th – 88th rows).

 35

 Chapter 4 Generating HDL Code

//*************************************** [01]
//*************** main ****************** [02]
//*************************************** [03]

[04]
module test(clk, data, sf, out) ; [05]
input clk ; [06]
input [7:0] data ; [07]
input cf ; [08]
output out ; [09]

[10]
wire w1_1, w1_2 ; [11]
comparator_a comparator1(w1_1, w1_2, clk, data) ; [12]

 [13]
wire w2_1, w2_2 ; [14]
comparator_b comparator2(w2_1, w2_2, clk, data) ; [15]

[16]
wire w3_1, w3_2, w3_3, w3_4, w3_5, w3_6 ; [17]
union union3(w3_1, w3_2, w3_3, w3_4, w3_5, w3_6) ; [18]
assign w1_2 = w3_3 ; [19]
assign w2_2 = w3_5 ; [20]
assign w3_4 = w1_1 ; [21]
assign w3_6 = w2_1 ; [22]

[23]
wire w4_1, w4_2, w4_3, w4_4 ; [24]
closure closure4(w4_1, w4_2, w4_3, w4_4) ; [25]
assign w4_4 = w3_1 ; [26]
assign w3_2 = w4_3 ; [27]

[28]
wire w5_1, w5_2 ; [29]
comparator_c comparator5(w5_1, w5_2, clk, data) ; [30]

[31]
wire w6_1, w6_2 ; [32]
comparator_d comparator6(w6_1, w6_2, clk, data) ; [33]

[34]
wire w7_1, w7_2 ; [35]
comparator_e comparator7(w7_1, w7_2, clk, data) ; [36]

[37]
wire w8_1, w8_2, w8_3, w8_4, w8_5, w8_6 ; [38]
union union8(w8_1, w8_2, w8_3, w8_4, w8_5, w8_6) ; [39]
assign w6_2 = w8_3 ; [40]
assign w7_2 = w8_5 ; [41]
assign w8_4 = w6_1 ; [42]
assign w8_6 = w7_1 ; [43]

[44]
wire w9_1, w9_2 ; [45]

 36

 Chapter 4 Generating HDL Code

comparator_f comparator9(w9_1, w9_2, clk, data) ; [46]
[47]

wire w10_1, w10_2, w10_3, w10_4 ; [48]
closure closure10(w10_1, w10_2, w10_3, w10_4) ; [49]
assign w10_4 = w9_1 ; [50]
assign w9_2 = w10_3 ; [51]

[52]
wire w11_1, w11_2 ; [53]
comparator_g comparator11(w11_1, w11_2, clk, data) ; [54]

[55]
wire w12_1, w12_2, w12_3, w12_4, w12_5, w12_6 ; [56]
concatenation concatenation12(w12_1, w12_2, w12_3, w12_4, w12_5, w12_6) ; [57]
assign w10_2 = w12_3 ; [58]
assign w11_2 = w12_5 ; [59]
assign w12_4 = w10_1 ; [60]
assign w12_6 = w11_1 ; [61]

[62]
wire w13_1, w13_2, w13_3, w13_4, w13_5, w13_6 ; [63]
concatenation concatenation13(w13_1, w13_2, w13_3, w13_4, w13_5, w13_6) ; [64]
assign w8_2 = w13_3 ; [65]
assign w12_2 = w13_5 ; [66]
assign w13_4 = w8_1 ; [67]
assign w13_6 = w12_1 ; [68]

[69]
wire w14_1, w14_2, w14_3, w14_4, w14_5, w14_6 ; [70]
concatenation concatenation14(w14_1, w14_2, w14_3, w14_4, w14_5, w14_6) ; [71]
assign w5_2 = w14_3 ; [72]
assign w13_2 = w14_5 ; [73]
assign w14_4 = w5_1 ; [74]
assign w14_6 = w13_1 ; [75]

[76]
wire w15_1, w15_2, w15_3, w15_4, w15_5, w15_6 ; [77]
concatenation concatenation15(w15_1, w15_2, w15_3, w15_4, w15_5, w15_6) ; [78]
assign w4_2 = w15_3 ; [79]
assign w14_2 = w15_5 ; [80]
assign w15_4 = w4_1 ; [81]
assign w15_6 = w14_1 ; [82]

[83]
wire in ; [84]
assign out = w15_1 ; [85]
assign w15_2 = in ; [86]

[87]
assign in = 1 ; [88]

[89]
endmodule [90]

Figure 4.5: the verilog code corresponding to the input, (|)* (|) *a b c d e f g

 37

 Chapter 5 Using the Decoder (Fit for ASIC)

Chapter 5

Using the Decoder (Fit for ASIC)

This new approach uses the NFA construction algorithm proposed in Chapter 4

and logic structures which are modulated from Figure 4.2 and Figure 4.4. When the

total area which is required for comparing the input with the character stored in the

comparator exceeds the area of a single decoder, the work for comparison should be

handed over to the decoder. Therefore, when the number of comparators exceeds a

particular threshold, this approach can efficiently decreases the area required. Figure

5.1 shows the adjusted comparator and 8-to-256 decoder (because the ASCII has 8

bits). The following are two choices to implement the decoder. One is to individually

assign the pin (for example, assign d97 = &(8'b01100001~^a) ;). When optimizing the

circuit, pins not used wouldn’t be synthesized and thus there is smaller area. The other

is to decode total pins once and this method has smaller delay.

This algorithm doesn’t always fit the FPGA for reducing the area used since

there are various architectures of the FPGA and all kinds of algorithms for placement

and routing. Every design team for FPGA has its own method for the compilation. But

this approach can surely reduce gate count when it is implemented in the form of

ASIC.

 38

 Chapter 5 Using the Decoder (Fit for ASIC)

Figure 5.1: logic structures

 39

 Chapter 6 Performance and Comparison

Chapter 6

Performance and Comparison

The memory needed for the software, GNU grep, and the area of the FPGA

required for the implementation of approaches which are mentioned in the chapter 3

and 4are showed in the Table 6.1. The regular expression tested is

which has occurrences of at the end and ranges from 8 to 28. This

performance and comparison.

The software program, GNU grep version 2.4, runs on a m

(|)* (|)ka b a a b

k (|)a b k

regular expression denotes all sequences of and in which the

symbol from the end is an . Below we introduce the environment of the simulation,

achine with an 800

MHz Pentiu

epends on the text. The performance of the

'sa 'sb (1)thk +

a

m III Xeon processor and 2 GB RAM running Linux (Red Hat 6.2). GNU

grep is the UNIX command and it uses the DFA for searching. The memory reported

(showed in the second and third columns of Table 6.1) is the maximum memory used

by the invocation grep. It uses an effective storage-reduction technique, “lazy

transition evaluation”. The transition function is only computed when the DFA is run.

Computed transitions are kept in a cache. Before a transition is made, the cache is

examined. If the required transition is not in the cache, it is computed and stored for a

subsequent use. Table 6.1 shows the result of simulation, and the data about GNU

grep is quoted from [1].

The performance of the GNU grep d

 40

 Chapter 6 Performance and Comparison

worst case is obtained by inputting the text which has all kinds of situation - taking

the regular expression for an instance, the text contains , ,

and . As increases, the memory and the time required reach unacceptable level

since the complete transition function is constructed. The time mentioned above

consists of the DFA construction time and the time searching the text. As is 19, the

time required is 87309.38 seconds (24.2525 hours). For best case, because there is

only one transition constructed, the memory required is still a constant when

changes.

2(|)a a b aaa aab aba

abb k

k

k

The performance of the approach proposed in [1] is obtained using Xilinx

Foundation tools running on a 450 MHz Pentium III and the target device is the Virtex

XCV100 FPGA. The performance of our approach is carried out by using Quartus II

4.0 running on a Pentium 4 and the target device is the APEX EP20K600EBC-6521X.

Table 6.1 shows the result of simulation, and the data about the approach proposed in

[1] is quoted from [1].

The performance of the approach in [1] depends on . As changes, the area

s dominates the construction time and the

time for processing per character is in (1)O . k also determines the performance of

our approach . Compared with the appro

requires ()O k area. However, it leads to longer time required since the construction

time consists of the time for compiling the HDL code and the time for FPGA

configuration. Because our approach generates the HDL code, the circuit can be

implemented on ASIC and all kinds of FPGAs. Furthermore, the design software can

easily optimize the circuit.

k k

required grows in . The construction time includes the time for the NFA

construction tim e for configuration bits generation and the time for

ach in [1] , using our approach only

2()O k

e, the tim

configuring the FPGA. The last two term

 41

 Chapter 6 Performance and Comparison

k GNU grep

(b

GNU grep

(w

Approach in [1] Our approach

est case) orst case)

8 580 KB 1 MB 10 7 CLBs× 11 LEs

9 580 KB 1 MB 11 8 CLBs× 12 LEs

10 580 KB 1.9 MB 12 8 CLBs× 13 LEs

11 580 KB 2.2 MB 13 9 CLBs× 14 LEs

12 580 KB 3.0 MB 14 9 CLBs× 15 LEs

13 580 KB 4.4 MB 15 10 CLBs× 16 LEs

14 580 KB 7.5 MB 16 10 CLBs× 17 LEs

15 580 KB 13 MB 17 11 CLBs× 18 LEs

16 580 KB 26 MB 18 11 CLBs× 19 LEs

17 580 KB 54 MB 19 12 CLBs× 20 LEs

18 580 KB 111 MB 20 12 CLBs× 21 LEs

19 580 KB 229 MB 21 13 CLBs× 22 LEs

28 30 16 CLBs× 31 LEs

Table6.1: the space required

GNU grep

(b

GNU grep

(w

Approach in [1] Our approach k

est case) orst case)

8 21 ms 36s 0.01 s 0.00 s

9 0.05 s 0.00 s 39 ms 36 s

10 0.15 s 0.00 s 32 ms 36 s

11 0.50 s 0.00 s 34 ms 37 s

12 2.22 s 0.00 s 31 ms 36 s

 42

 Chapter 6 Performance and Comparison

13 16.11 s 0.005 s 29 ms 36 s

14 82.88 s 0.01 s 33 ms 37 s

15 345.33 s 0.03 s 34 ms 37 s

16 1383.55 s 0.04 s 34 ms 36 s

17 5499.60 s 0.08 s 37 ms 37 s

18 21900.36 s 0.17 s 37 ms 36 s

19 87309.38 s 0.34 s 31 ms 37 s

28 39 ms 37 s

Table6.2: the time required (Notice that definitions of the time in all columns are not

the same)

 43

 Chapter 7 Conclusion

Chapter 7

Conclusion

In this paper, we present the approach that constructs the NFA circuit for regular

expression matching by automatically generating HDL code. Approaches in [1]

require area and time for process per character (1 clock). However, the

approach proposed in this paper only needs area and still time for

processing per character. This new approach reduces the area required significantly

and utilities the area efficiently. We implement metacharacters often used, and thus

applications in reality become practicable. These applications include Snort, Clamav,

and so on.

2()O n (1)O

()O n (1)O

Advantages of generating the HDL code can let the optimization easier and

fanout problems can be solved. Besides, the output of our approach are feasible for

all kinds of FPGAs and ASIC. If generating the netlist, the optimization and fanout

problem would be difficult to handle, and the design in [1] is only for a specific

FPGA.

 From the discussion above, we know that this new method provides a general

solution for regular expression matching in hardware. The flexibility of this new

method includes debug, suitable device, optimization, easily modifying the circuit,

and so on. About area, the requirement is reduced from to and the

utility rate becomes higher.

2()O n ()O n

 44

 References

References

[1] R. Sidhu and V.K. Prasanna. Fast Regular Expression Matching using FPGAs,

Proceedings of IEEE Symposium on Field-Programmable Custom Computing

Machines,pp. Apr. 2001.

[2] John E. Hopcroft and Jeffery D. Ullman. Introduction to Automata Theory,

Languages, and Computation 2nd edition. Addison-Wesley, 2000.

[3] M. Main, W. Savitch. Data structures & other objects using C++ 2nd edition.

Addison-Wesley Longman, 2001.

[4] W. Wolf. Modern VLSI design 3rd edition. Prentice Hall, 2002

[5] E. Tau, D. Chen, I. Eslick, J. Brown, and A. DeHon. Afirst generation DPGA

implementation. In FPD’94- Third Canadian Workshop of Field-Programmable

Devices, pages 138-143, May 1995.

[6] S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A time-multiplexed FPGA.

In J. Arnold and K. L. Pocek, editors, Processings of IEEE Workshop on FPGAs

for Custom Computing Machines, pages 22-28, Napa, CA, April 1997.

[7] R. P.S. Sidhu, A. Mei, S. Wadhwa, and V. K. Prasanna. A self-reconfigurable gate

 45

 References

array architecture. In FPGA’99. Proceedings of the 1999 ACM/SIGDA Seventh

International Symposium on Field Programmable Gate Arrays, Aug. 2000.

[8] A. V. Aho. Handbook of Theoretical Computer Science, Volume A Algorithms and

Complexity, chapter 5. MIT Press/Elsevier, 1990.

[9] Friedl, Jeffrey E. F. Mastering regular expressions, O'Reilly, 2002

[10] Schwartz, Randal L. Christiansen, Tom. Learning Perl, O'Reilly & Associates,

1997

[11] Tom Christiansen and Nathan, Torkington. Perl cookbook, O'Reilly & Associates,

1998

 46

