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Chapter 1

Introduction

Wireless location technologies have drawn a significant amount of attention over the past few

decades. Different types of Location-Based Services (LBSs) have been proposed and studied,

including the emergency 911 (E-911) subscriber safety services, the location-based billing, the

navigation system, and applications for the Intelligent Transportation System (ITS). Due to

the emergent interests in LBSs, it is required to provide enhanced precision in the location

estimation of a mobile device under different environments.

The wireless location techniques can be classified into (i) the satellite-based and (ii) the

network-based location estimation schemes. To simplify the introduction of these techniques,

in the following we use two-dimensional (2D) cases as application examples. A variety of

wireless location techniques have been studied and investigated in [1] and the introduction of

the wireless location techniques as follows is referred to the research.

The well-adapted technology for the satellite-based location estimation method is to utilize

the Global Positioning Systems (GPSs). It measures the Time-Of-Arrival (TOA) of the signals

coming from different satellites. The TOA scheme determines the mobile device position based

on the intersection of the range circles, as shown in Fig. 1.1a. Since the propagation time

of the radio wave is directly proportional to its traversed range, multiplying the speed of

light to the time can obtain the range from the mobile device to the communicating Base

Station (BS). It is noted that two range measurements provide an ambiguous fix, while three
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Figure 1.1: Position Determination Methods: (a) Time of Arrival (b)Time Difference of
Arrival (c) Angel of Arrival

measurements determine a unique position. The same principle is used by GPS, where the

circles become the spheres in space and the fourth measurement is required to obtain the 3-D

position for mobile device.

The network-based location estimation schemes have been widely proposed and employed

in the wireless communication system. These schemes locate the position of the MS based

on the measured radio signals from its neighborhood BSs. The representative algorithms for

the network-based location techniques are the Time Difference-Of-Arrival (TDOA) and the

Angle-Of-Arrival (AOA). The TDOA scheme determines the mobile device position based on

the trilateration, as shown in Fig. 1.1b. The scheme uses time difference measurements rather

than absolute time measurements as TOA dose. It is often referred to as the hyperbolic system
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because the time difference is converted to a constant distance difference to two base stations

(as foci) to define a hyperbolic curve. The intersection of two hyperbolas determines the

mobile device position. Therefore, it utilizes two pairs of BSs for positioning. The accuracy

of the scheme is a function of the relative base station geometric locations. For the network-

based systems, it also requires either precisely synchronized clocks for all transmitters and

receivers or a means to measure these time differences.

The AOA technique determines the mobile device position based on triangulation, as

shown in Fig. 1.1c. It is also called direction of arrival in some literature. The intersection

of two directional lines of bearing defines a unique position, each formed by a radial from a

BS to the mobile device in the 2-D space. This technique requires a minimum of two BSs

to determine a position. If available, more than one pair can be used in practice. However,

since directional antennas or antenna arrays are required, it is generally difficult to realize the

AOA technique at the mobile device.

It has been studied in several research [4]- [6] that the performance of the location es-

timation techniques listed above varies under different environments, where each technique

provides its advantages and limitations. In order to provide consistent location estimation

accuracy under different circumstances, a hybrid location estimation scheme is proposed in

part I of this thesis.

On the other hand, two algorithms are proposed in part II of this thesis for enhanced

wireless location estimation. As mentioned before, the major methods for the location esti-

mation techniques are the TOA, TDOA, and the AOA techniques. The equations associated

with the location estimation schemes are inherently nonlinear. Some different linear methods

have been proposed to obtain an approximate location. However, the methods are primar-

ily feasible for location estimation under Line-Of-Sight (LOS) environments. In part II, an

Geometry-constrained Location Estimation (GLE) algorithm and a location estimation with

the Virtual Base Stations (VBS) are proposed to obtain location estimation of the MS, espe-

cially for NLOS environments.

The remainder of this thesis is organized as follows. The related work, including the
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mathematic modeling, the sources of ranging errors, and other existing location estimation

algorithms, is briefly described in chapter 2. The overview of the proposed hybrid location

estimation algorithm can be obtained in chapter 3. Chapter 4 presents the system architecture

of the proposed algorithm. The proposed hybrid location estimation, filtering, and fusion

techniques are described in chapter 5. Chapter 6 illustrates the performance evaluation of the

proposed hybrid location estimation scheme in simulations. Chapter 7 shows the overview

of the proposed GLE and VBS algorithms. Chapter 8 describes both the GLE and VBS

algorithms in detail. The performance of the proposed two schemes are conducted in chapter

9 via simulations. Chapter 10 draws the conclusions.
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Chapter 2

Related Work

2.1 Mathematical Modeling

In this section, the mathematical models for the TOA, TDOA, and AOA measurements are

presented. The TOA measurement t` from the `th BS is obtained by

t` =
r`

c
=

1
c
ζ` + n` ` = 1, 2, ...n (2.1)

where c is the speed of light, and r` represents the measured relative distance between the

MS and the `th BS contaminated with the TOA measurement noise n`. The noiseless relative

distance ζ` between the MS and the `th BS can be obtained as

ζ` = ‖x − x `‖ (2.2)

where x = (x, y) represents the MS’s position, and x ` = (x`, y`) is the location of the `th BS

in the 2-D setting; while in the 3-D formulation, x = (x, y, z) and x ` = (x`, y`, z`). On the

other hand, the cellular-based TODA measurement ti,j is obtained by computing the time

difference between the MS w.r.t. the ith and the jth BSs:

ti,j =
ri,j

c
=

1
c
(ζi − ζj) + ni − nj (2.3)
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where ni and nj represent the measurement noises from the MS to the ith and the jth BSs.

Since it is assumed that the antenna arrays at the home BS can only measure the incoming

signals along the x and y directions, the AOA measurement θ of the cellular system is obtained

as

θ = tan−1(
y − y1

x− x1
) + nθ (2.4)

where θ represents the horizontal angle between the MS and its home BS. (x1, y1) is the

horizontal coordinate of the home BS, and nθ is measurement noise associated with θ.

2.2 Sources of Ranging Errors

The location accuracy reduces due to the influence of the measurement noises. Several main

sources of ranging errors are described in this section and this content is referred to [7].

Non-Line-of-Sight Errors

In dense urban environment, there may be no direct path from the MS to the BS as shown

in Fig. 2.1. Due to reflection and diffraction, the propagating wave may actually travel

excess path lengths on the order of hundreds of meters and the direct path is blocked. This

phenomenon, which we refer to as the NLOS error, ultimately translates into a biased estimate

of the mobile’s location. This problem has been recognized as a killer issue for mobile location.

In order to mitigate the effect of the measurement bias, it is necessary to develop location

algorithms that are robust to the NLOS error.

Multipath Errors

Multipath effects are caused by reflected signals entering the receiver antenna along with

direct path signal, as shown in Fig. 2.2. Since the reflected path is longer than the direct

path, the multipath signal blurs the peak of the direct signal at the output of the receiver

correlation channel and distorts the pseudorange measurement.
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Receiver Measurement Processing

Advances in digital processing technology have enabled the implementation of small, afford-

able multiple channel receivers for parallel tracking of more than the minimum reference

points for navigation solutions. This technology, in conjunction with advances in the speed

and precision of microprocessor computations, has resulted in great reductions in receiver

range measurement processing errors.

2.3 Studies on Existing Location Estimation Algorithms

Different location estimation schemes have been proposed to acquire the MS’s position. Var-

ious types of information (e.g. the signal traveling distance, the received angle of the signal,

or the Receiving Signal Strength (RSS)) are involved to facilitated the algorithm design for

location estimation. The primarily objectives in most of the location estimation algorithms

are to obtain higher estimation accuracy with promoted computational efficiency. The super-

resolution (or high-resoluction) schemes are proposed as in [8] - [11]. The scheme studied

in [8] considers arbitrary-located antennas and a particular covariance matrix within a noisy

environment. The covariance matrix is composed of various types of properties, including

gain, phase, frequency, polarization, and AOA information. The subspace method is pro-

posed in the scheme generates these component estimates of the covariance metrix based on

an eigen-analysis or eigen-composition. The most well-known super-resolution algorithm is

the MUltiple SIgnal Classification (MUSIC) [9], It is experimentally illustrated to be a robust

solution for location estimation, especially for a near-far environment. However, it has also

be shown in [10] and [11] that the drawbacks of the MUSIC approach include (i) comparably

high sensitivity to large noise and (ii) its complexity in computation.

The beamforming system is a space-time processor that operates on the output of a sensor

array. It provides spatial filtering capability by enhancing the amplitude of a coherent signal

associated with surrounding noises. Since the conventional beamforming technique is sensitive

to the estimation error for the MS’s position, a combination of localization and beamforming

is proposed as in [12]. It increases the robustness to location errors without sacrificing the
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computation efficiency. An enhanced algorithm for simultaneous multi-source beamforming

and adaptive multi-target tracking is studied in [13]. The correlation between the adaptive

minimum variance beamforming and the optimal source localization is also investigated and

developed as in [14].

Instead of exploiting the spatial and temporal information of the signal, the location

fingerprinting technique locates the MS based on the the RSS [15] [16]. The technique involves

both the off-line and the on-line phases. A location grid that is related to a signal signature

database for a specific service area is developed in the off-line phase; while a measured RSS

vector at the MS is delivered to the central server to compare with the location grid in the on-

line phase. In addition, a hybrid algorithm which combines the RF propagation loss model is

proposed to both mitigate the requirement of the training data and to adjust the configuration

changes [17]. On the other hand, the ray-tracing and ray-launching techniques are the two

ray optical approaches for location estimation. The radio signals that are launched from a

transmitter and reflected or diffracted by various objects are aggregated in a receiver. The

field strength and the signal propagation can therefore be predicted [18]; while [19] proposed

an efficient algorithm for prediction. The three dimensional indoor radio propagation models

are developed in [20] and [21]. Experimental formulas from extensive measurements of urban

and suburban propagation losses are studied as in [22] [23].

There are also different approaches adopting linearized methods to acquire the computing

efficiency while obtaining an approximate estimation of the MS’s position. The Taylor Series

Expansion (TSE) method was utilized in [24] to acquire the location estimation from the

TDOA measurements. The method requires iterative processes to obtain the location estimate

from a linearized system. The major drawback of this method is that it may suffer from the

convergence problem due to an incorrect initial guess of the MS’s position. The two-step

LS method was adopted to solve the location estimation problem from the TOA [25], the

TDOA [26], and the TDOA/AOA measurements [27]. It is an approximate realization of

the Maximum Likelihood (ML) estimator and does not require iterative processes. The two-

step LS scheme is advantageous in its computational efficiency with adequate accuracy for
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location estimation. However, the scheme is demonstrated to be feasible for acquiring the

MS’s position under the LOS situations.

Instead utilizing the Circular Line Of Position (CLOP) methods (e.g. the TSE and two-

step LS schemes), the Linear Line Of Position (LLOP) approach is presented as a new inter-

pretation for the cell geometry from the TOA measurements. Since two TOA measurements

that intersect at two points will generate a connecting line, two independent lines will be

created by using three BSs in the scenario of two-dimensional location estimation. Therefore,

the LS method can be adopted to estimate the location of the MS. The detail algorithm of the

LLOP approach can be obtained by using the TOA measurements as in [28], and the hybrid

TOA/AOA measurements in [29].

Some well-known schemes are improved continuously in order to achieve higher accu-

racy or promote the computational efficiency. The famous linear time-based algorithms, the

Taylor-Series Estimation (TSE) [24], the two-step LS method, and the Linear Line-of-Position

(LLOP) [28], are briefly described in the following subsection. For simplification, the thesis

described the TSE, two-step LS and LLOP methods in two-dimensional plane.

2.3.1 Taylor-Series Estimation

The content of this section will show the Taylor-Series Estimation (TSE), which is available

in [24].

Assuming that (x, y) is the position of the MS, (x`, y`) is the position of the `th base

station and r` is the TOA measurement from the base station `. Since in practice, especially

in urban or in mountainous areas, the signals from the mobile device are usually unable to

arrive at the base stations directly (or in the oppositive direction), they always take a longer

path than the direct one. So by incorporating the influences of NLOS propagation on the

location estimation, there exists

f`(x, y, x`, y`) = ζ` = r` − n` (2.5)

where ζ` represents the noiseless distance between the MS and the `th BS. n` is the mea-
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surement noise and is statistically distributed. We take the noises to have zero-mean values

< n` >=0 and nij =< ninj > is the i− jth term in the covariance matrix

Q = [nij ]

If the xv, yv are guesses of the true variable position, write

x = xv + δx y = yv + δy (2.6)

and expand f` in Taylor’s series keeping only terms below second order

f`v + a`1δx + a`2δy ' r` − n` (2.7)

where

f`v = f`(xv, yv, x`, y`)

a`1 = ∂f`/∂x|xv,yv a`2 = ∂f`/∂y|xv ,yv

and the approximate relations of 2.7 can be written as

Aδ ' z− n (2.8)

where

A =




a11 a12

a21 a22

. .

aN1 aN2




δ =




δx

δy


 z =




r1 − f1v

r2 − f2v

.

rN − fNv




n =




n1

n2

.

nN




The choice of δ that
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δ = (ATQ−1A)−1ATQz (2.9)

Thus, to estimate the position of the MS, compute δx, δy with (2.9), replace

xv ← xv + δx yv ← yv + δy (2.10)

in (2.9), and repeat the computations. The iterations will have converged when δx and δy are

essentially zero.

2.3.2 Two-Step Least Square Location Algorithm

The content of this section will show the Two-step Least Square (two-step LS) location algo-

rithm for TOA measurements and it can be obtained in [25]. For simplification, the two-step

LS method will be described for TOA measurements in a two-dimensional (2-D) plane. The

two-step LS method for TDOA measurements can be derived from the similar concept.

Assuming that (x, y) is the position of the mobile device, (x`, y`) is the position of the

`th base station and r` is the TOA measurement from the base station `. Since in practice,

especially in urban or in mountainous areas, the signals from the mobile device are usually

unable to arrive at the base stations directly (or in the oppositive direction), they always take

a longer path than the direct one. So by incorporating the influences of NLOS propagation,

killer issue for location estimation, on the location estimation, there exists

r2
` ≥ (x` − x)2 + (y` − y)2 = κ` − 2x`x− y`y + x2 + y2 ` = 1, 2, ...N (2.11)

where κ` = x2
` + y2

` , r` = ct` is the measured distance between the MS and the `th base

station, and c is the speed of light. And by defining a new variable β = x2 + y2, we rewrite

(2.11) through a set of linear expressions

−2x`x− 2y`y + β ≤ r2
` − κ` ` = 1, 2, ...N (2.12)
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Let x a = [x y β]T and express (2.12) in matrix form

Hx a ≤ J (2.13)

where

H =




−2x1 − 2y1 1

−2x2 − 2y2 1

. . .

−2xN − 2yN 1




J =




r2
1 − κ1

r2
2 − κ2

.

r2
N − κN




With measurement noise, the error vector is

ψ = J−Hx a (2.14)

When r` can be expressed as ξ` + cn`, the error vector ψ is found to be

ψ = 2cBn + c2n¯ n

B = diag{ξ1, ξ2, ..., ξN} (2.15)

The symbol ¯ represents the Schur product (element-by-element product). In addition, the

second term on the right of (2.15) can be ignored since the condition cn` ≤ ξ` is usually

satisfied. As a result, ψ becomes a Gaussian random vector with covariance matrix given by

Ψ = E[ψψT ] = 4c2BQB (2.16)

Q is the covariance matrix of measured noise, and ξ1,...,ξN are denoted as the true values of

distances between the sources and the receiver. The element x a are related by the equation,

β = x2 + y2, which means that (2.13) is still a set of nonlinear equations in two variables

x and y. The approach to solve the nonlinear problem is to first assume that there is no

relationship among x, y and β. That can then be solved by Least Square (LS). The final

solution is obtained by imposing the known relationship to the computed result via another
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LS computation. This two step procedure is an approximation of a true ML estimator. By

considering the elements of x a independent, the ML estimator of x a is

x a = arg min{(J−Hx )T Ψ−1(J−Hx )}

= (HT Ψ−1H)−1HT Ψ−1J (2.17)

The covariance matrix of x a is obtained by evaluating the expectations of x a and x ax
T
a from

(2.17). The covariance matrix of x a can be calculated as [26]

cov(x a) = (HT Ψ−1H)−1 (2.18)

Since we have used the independent supposition of variables x, y, and β in the estimation

of x a though the variable β is dependent on the variable x and y, we should revise the results

as follows. Let the estimation errors of x, y, and β be e1, e2, and e3. Here and below, denote

the ith entry of a matrix M as [M ]i; then the entries in vector x a become

[x a]1 = xo + e1 (2.19a)

[x a]2 = yo + e2 (2.19b)

[x a]3 = βo + e3 (2.19c)

where xo, yo, and βo are denoted as the true values of x, y, and β. Let another error vector

ψb = Jb −Hbx b (2.20)

where

Hb =




1 0

0 1

1 1


 Jb =




[xa]21

[xa]22

[xa]3




16



and x b=




x2

y2


. Substituting 2.19a- 2.19c into 2.20, we have

[ψ]1 = 2xoe1 + e2
1 ≈ 2xoe1

[ψ]2 = 2yoe2 + e2
2 ≈ 2yoe2

[ψ]3 = e3

Obviously, the above approximations are valid only when the errors e1, e2, and e3 are fairly

small. Subsequently, the covariance matrix of ψb is

Ψb = E[ψbψ
T
b ] = 4Bbcov(x )Bb

Bb = diag{xo, yo, 0.5} (2.22)

As an approximation, elements xo and yo in matrix x can be replaced by the first two elements

x and y in x a. Similarly, the ML estimate of x b is given by

x b = (HT
b Ψ−1

b Hb)−1HT
b Ψ−1

b Jb (2.23)

≈ (HT
b B−1

b (cov(x )a)−1B−1
b Hb)−1 (2.24)

• (HT
b B−1

b (cov(x )a)−1B−1
b )Jb (2.25)

So the final position estimation x = [x y]T is

x =
√

x b, or x = −√x b (2.26)

Here the sign of x should coincide with the sign of [x a]1 calculated by solving 2.17, and the

sign of y coincides with the sign of [x a]2.

The complete derivation of the two-step LS for TOA measurements is shown above. In

addition, the two-step LS method can be adopted to estimate MS location from the TDOA

[26], and the TDOA/AOA measurements [27]. The following two subsections describe the 3-D
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TOA location estimation for the satellite-based system, and the 3-D TDOA/AOA location

estimation algorithm for the cellular network.

2.3.3 Linear Line-of-Position

The content of this section will show the linear Line-of-Position (LLOP) and it can be referred

to [28].

The TOA location method measures the ranges between MS and BSs. This range between

the `th BS and the MS can be expressed as

ζ` =
√

(x` − x)2 + (y` − y)2 (2.27)

where (x, y) is the position of the MS, (x`, y`) is the position of the `th BS. The relationship

between the ranges for three BSs, their location, and the position of the MS are shown in Fig.

2.3 in two dimensions.

The Linear Line-of-Position (LLOP) method is based on the observations of Fig. 2.3. In-

stead utilizing circular LOPs, LLOP presents the approach of the linear LOPs (LLOP), a new

interpretation of the geometry of TOA location. Since two TOA measurements intersections

at two points generate a line, the least number of BSs (i.e. 3)used to estimate the location of

MS in 2D scenarios will produce two independent lines. As indicated in the figure, the new

LLOPs also intersect at the location of the MS.

To determine the equations for the new linear LOPs, we must start with the original LOP

equations, given in (2.27) for ` = 1, 2, 3. The lines which pass through the intersection of the

three circular LLOPs can be obtained by squaring and differentiating the ranges in (2.27) for

` = 1, 2 and ` = 1, 3 which result in

(x2 − x1)x + (y2 − y1)y =
1
2
(x2

2 − x2
1 + ζ2

1 − ζ2
2 ) (2.28)

(x3 − x1)x + (y3 − y1)y =
1
2
(x2

3 − x2
1 + ζ2

1 − ζ2
3 ) (2.29)

Given the two linear LOPs above, the location of the MS can be obtained by solving (2.28)
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Figure 2.3: The Geometry of TOA-Based Location with Circular LOPs and Linear LOPs

and (2.29). The location of the MS (x, y) can be obtained as

x =
(y2 − y1)C2 − (y3 − y1)C1

(x3 − x1)(y2 − y1)− (x2 − x1)(y3 − y1)
(2.30)

y =
(x2 − x1)C2 − (x3 − x1)C1

(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)
(2.31)

where

C1 = (x2
2 − x2

1 + ζ2
1 − ζ2

2 )

C2 = (x2
3 − x2

1 + ζ2
1 − ζ2

3 )

The previous section developed the location geometry for locating a MS in 2-D with three

BSs. When there are more than the minimum number (i.e. greater than three BSs in 2-D and

when there are measurement errors in the TOAs, two approaches to algorithm development

can be taken: an intersection solution (geometry based) and a least squares solution.
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Intersection Solution

This approach can be generalized for N total BSs where independent N − 1 lines can be

produced from the intersections of the N circles. These N−1 linear LOPs could then be used

to compute the intersection points. All of the intersections of the independent N − 1 lines

could be used to obtain (N−1)(N−2)
2 intersection points. As a result, the location of the MS

could be found from the mean of the intersection points or the centroid of a polygon formed

by these points.

Least Squares Solution

An alternative approach to the solution of geometric equations is to compute the position of

the MS using a least squares when the number of the received BSs (N) is more than three.

Each of the independent N − 1 lines is the form (shown as in (2.28)- (2.29))

a`,1x + a`,2y = aT
` x = b` (2.32)

for the `th line, where a` = [a`,1, a`,2]T and x = [x, y]T . The system of equations describing

all of the lines can be written in matrix form as

Ax = b (2.33)

where AT = [a1 a2...aG] and b = [b1 b2...bG]T , and G is the number of lines used. Due to the

measurement errors , LS estimate is used to solve a LS solution

x̂ = (ATA)−1ATb (2.34)

This algorithm is obviously much less difficult than the geometric one since there is no need

to compute intersections of many lines.
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Part I

Hybrid Location Estimation and

Tracking System for Mobile Devices
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Chapter 3

Overview

In general, the location estimation schemes can be classified into (i) the satellite-based and

(ii) the network-based location estimation algorithms. The well-adapted technology for

the satellite-based location estimation method is to utilize the Global Positioning Systems

(GPSs). The representative algorithms for the network-based location techniques are the

Time Difference-Of-Arrival (TDOA) and the Angle-Of-Arrival (AOA). It has been studied

in [4] that the performance of the location estimation techniques listed above varies under dif-

ferent environments. Due to weak incoming signals or shortage of signal sources (e.g. at rural

area), the network-based (i.e. TDOA, AOA) methods result in degraded performance for the

location determination of mobile devices [5] [6]. On the other hand, the major problem for

the satellite-based method is that the performance considerably degrades while the satellite

signals are severely blocked (e.g. at urban valley area).

In order to achieve better accuracy for location estimation, a hybrid approach should

be considered to satisfy the requirements under different environments. In this thesis, a

hybrid location estimation and tracking system is proposed for the Mobile Stations (MSs).

The proposed location estimation scheme determines the MS’s location by combining the

outcomes from both the network-based and the satellite-based techniques. In addition to the

longitude (x) and latitude (y) of the MS can be estimated, the altitude information (z) of the

MS is obtainable from the proposed system. The two-step Least Square (LS) method [25]- [27]
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is utilized to estimate the MS’s position based on the measurements. The Kalman filtering

technique [30] is exploited to smooth out the measurement noises and to track the position and

velocity of the MS. The Bayesian Inference Model [31] [32] is adopted as the fusion mechanism

to acquire the final position estimate from the GPS system and the cellular networks. The

performance of the proposed hybrid location estimation scheme is evaluated via simulations

under different environments.
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Chapter 4

System Architecture

Fig. 4.1 shows the schematic diagram of the system architecture for the proposed hybrid

location estimation. The hybrid system combines the signals coming from both the satellies

and the cellular networks. In order to obtain the TOA measurements from the satellites, it

is assumed that each MS is equipped with a GPS receiver. On the other hand, the proposed

hybrid system adopts the following features from the 3GPP standard [33] [34]:

1. Each Base Station (BS) has a forward-link pilot channel that continuously broadcast

its pilot signal in order to provide timing and phase information for all the MS in this

cellular network..

2. Each BS has a dedicated reverse-link pilot channel from the MS to provide initial ac-

quisition, time tracking, and power control measurements..

3. Each BS is equipped with antenna arrays for adaptive beam steering in order to facilitate

the AOA measurements. As shown in Fig. 4.1, the TDOA measurements are conducted

at the MS by obtaining the signals via the forwrd-link pilot channels from the BSs.

The AOA signals are transmitted from the MS to the BSs using the reverse-link pilot

channel. The AOA measurements are performed at the BS using its antenna arrays for

two-dimensional adaptive beam steering. In order to avoid signal degradation due to

the near-far effect, it is assumed in the proposed system that only the home BS provides
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Figure 4.1: The Schematic Diagram of the Hybrid Mobile Location Scheme

the capability of the AOA measurements.

As stated in the 3GPP standard, the location determination of the MS can either be

MS-Based or MS-Assisted. The choice between these two types of system depends on the

requirement of the communication bandwidth and the computation power of the MS. The hy-

brid location estimation scheme proposed in this paper can be applied to either MS-Assisted or

MS-Based system. The following two subsections describe the proposed system architectures

based on these two types of system:

The Mobile-Assisted System

The left schematic diagram of Fig. 4.2 shows the proposed hybrid algorithm that implements

on the MS-Assisted positioning system. This type of architecture is suitable for the MS

with insufficient computation capability. The following steps describe the procedures of the

proposed scheme for the MS-Assisted system:

1. The GPS-equipped MS receives signals from the satellites and conducts TOA mea-

surement (t`). The GPS receiver processes the TOA measurement and estimates the
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Figure 4.2: The Hybrid Location Estimation Scheme based on the Mobile-Assisted System
.

three-dimensional position (i.e. xG=[xG yG zG]T ) of the MS using the two-step LS

method. On the other hand, the TDOA measurement are calculated at the MS by

obtaining signals from its home Base Station (BS) and the neighboring BSs via the

forward-link pilot channel

2. These two sets of information, the location estimation (xG) and the TDOA measure-

ments (ti,j), are transmitted back to the home BS via the reverse-link pilot channel.

3. The AOA measurement (θ) is conducted at the home BS by receiving the signals from

the MS via the reverse-link channel.

4. The location server at the home BS performs location estimation by combining the

AOA and the TDOA measurements. The two-step LS method is utilized to estimate

three-dimensional position (xC) of the MS.

5. The BS location server performs Kalman filtering technique to smooth out the measure-

ment noises and to track the position data both from the TOA and the TDOA/AOA

channels.
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Figure 4.3: The Hybrid Location Estimation Scheme based on the Mobile-Based System
.

6. Data Fusion is performed to incorporate both the means (x̂G and x̂C) of the filtered

estimations (x̂G and x̂C) from the TOA and the TDOA/AOA measurements based on

their signal variations. The fused position estimate (x̂ f ) of the MS can be obtained.

The Mobile-Based System

The right schematic diagram of Fig. 4.3 shows the proposed scheme for the MS-Based po-

sitioning system. This type of architecture is suitable for the MS that possesses adequate

computation capability. The following procedures describe the proposed algorithm for the

MS-Based system:

1. The AOA measurement (θ) is obtained from the home BS and is transmitted to the MS

via the forward-link pilot channel. The TDOA measurements (ti,j) is computed within

the MS using the signals coming from the MS’s home and neighboring BSs.

2. The GPS-equipped MS receives signals from the satellites and provides location estimate

(xG) based on the TOA measurements (t`).
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3. The MS performs location estimate (xC) by combining the TDOA and the AOA mea-

surements using the two-step LS method.

4. The Kalman filtering techniques for both the TOA and the TDOA/AOA channels are

performed at the MS to obtain the location estimates, x̂G and x̂C . The final position

estimation (x̂ f ) is acquired after the fusion results from the mean values of the location

estimates x̂G and x̂C .
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Chapter 5

The Location Estimation and

Tracking Algorithms

As described in chapter 4, the proposed hybrid location estimation and tracking system con-

sists of three major components for location estimation and filtering: the two-step LS method,

the Kalman filtering technique, and the data fusion. The following subsections describe these

three components.

5.1 Two-Step Least Square Location Algorithm

Different approaches have been proposed for wireless location estimation in previous stud-

ies [24] [25] [26] [27]. The Taylor series expansion method proposed in [24] was utilized to

acquire the location estimation from the TDOA measurements. The method requires iterative

processes to obtain the location estimate from a linearized system. The major drawback of

this method is that it may suffer from the convergence problem due to the initial position

guess. The two-step LS (Least Square) method, an approximate realization of the Maximum

Likelihood (ML) estimator, was adopted to solve the location estimation problem and does

not require iterative processes. In addition to estimating the two-dimensional position of the

MS as in the previous research, the two-step LS method is applied in the proposed hybrid

system to calculate the 3-D location of the MS.
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3-D TOA Location Estimation

In order to solve for the two-step LS problem from the TOA measurements, it is assumed

that signals coming from at least four satellites are available. The 3-D TOA measurements

as described in (2.1) can be rewritten as

Hx = J (5.1)

where

x =
[

x y z β

]T

H =




−2x1 − 2y1 − 2z1 1

−2x2 − 2y2 − 2z2 1

. . . .

−2xN − 2yN − 2zN 1




J =




r2
1 − κ1

r2
2 − κ2

.

r2
N − κN




It is noted that β = x2 + y2 + z2 and κ` = x2
` + y2

` + z2
` for ` = 1, 2, ...N . The concept

of the two-step LS method is to acquire an intermediate location estimate in the first step

by assuming that x, y, z and β are not correlated. The second step of the method releases

this assumption by adjusting the intermediate result to obtain an improved location estimate,

xG=[xG yG zG]T . The details of the two-step LS method is shown in [25].

3-D TDOA/AOA Location Estimation

To solve for the two-step LS problem for the cellular-based system, the home BS should

provide both the TOA and AOA measurements, while three additional TOA measurements

are assumed to be obtainable from other BSs. The 3-D TDOA and AOA measurements as in

30



(2.3) and (2.4) can also be rewritten as (8.5), where the matrices H and J becomes

H = −




x2 − x1 y2 − y1 z2 − z1 r2,1

x3 − x1 y3 − y1 z3 − z1 r3,1

. . . .

xN − x1 yN − y1 zN − z1 rN,1

− sin θ cos θ 0 0




J =
1
2




r2
2,1 − κ2 + κ1

r2
3,1 − κ3 + κ1

.

r2
N,1 − κN + κ1

2x1 sin θ − 2y1 cos θ




In both matrices, the AOA components are computed based on the geometric approximation

as described in [27]. The two-step LS method is applied to obtain the location estimates from

the TDOA/AOA measurements.

5.2 Kalman Filtering

The content of this section will show the Kalman filtering and it can be referred to [28].

The Kalman filtering technique [30] is employed in the proposed scheme for post-processing

of measured signals. It provides the capabilities of range measurement, smoothing, and noise

mitigation for the TOA and the TDOA/AOA data. Furthermore, the Kalman filter can also

be utilized for trajectory tracking of the MS. The state equation for the Kalman filter can be

written as

x̂ k = Ax̂ k−1 + Γwk−1 (5.2)

The state vector, x̂ k=[x̂k ŷk ẑk v̂xk
v̂yk

v̂zk
]T , is defined as the estimated position and velocity

of the MS. The state matrix A represents the state change between the current time step k

and the previous time step k − 1. wk−1 is the driving noise vector with covariance matrix
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Q = σ2
eI, and

A =


 I 4tI

0 I


 Γ =


 0

4tI




The measurement process is described as

x k = Bx̂ k + ek (5.3)

where x k=[xk yk zk]T represents the measured data coming from the two-step LS algorithm.

The matrix B relates the state vector x̂ k to the measurements x k and B = [I 0]. wk

represent the measurement noises with covariance matrix R = σ2
x̂ I. (5.4)- (5.8) show the

iteration operation of the Kalman filter

x̂ k,k−1 = Ax̂ k−1,k−1 (5.4)

Ck,k−1 = ACk−1,k−1AT + ΓQΓT (5.5)

K = Ck,k−1BT (BCk,k−1BT + R−1)T (5.6)

Ck,k = Ck,k−1 −KBCk,k−1 (5.7)

x̂ k,k = x̂ k,k−1 + K(x k −BAx̂ k−1,k−1) (5.8)

where K is the kalman gain and Ck,k is the covariance matrix of the x̂ k,k.

As shown in Fig. 4.2, the Kalman filtering technique is applied to both the TOA and the

TDOA/AOA channels. The effectiveness of the Kalman filter will be illustrated in the next

section via simulations.

5.3 Data Fusion

The main functionality of data fusion is to merge disparate types of information in order to

enhance the position accuracy. By merging the TOA and the TDOA/AOA estimations, the

resulting data provides feasible location estimates under different environments (i.e. urban,
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suburban, and rural). The fusion process used in this paper is based on the Bayesian Inference

model [31] [32], which improves an estimate with known statistics. The fused position estimate

x̂ f and its variance σ2
f are obtained as follow:

x̂ f =
σ2

G

σ2
G + σ2

C

x̂C +
σ2

C

σ2
G + σ2

C

x̂G (5.9)

σ2
f =

1
σ−2

C + σ−2
G

(5.10)

where x̂C=[x̂C ŷ
C

ẑC ]T represents the mean value of the location estimate x̂C from the

TDOA/AOA channel; x̂G=[x̂G ŷ
G

ẑG]T is the mean value of the location estimate x̂G from

the TOA channel. σC and σG indicate the corresponding standard deviation of x̂C and x̂G.
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Chapter 6

Performance Evaluation

6.1 The Noise Model

Different noise models [25] [27] [37] [38] for the satellite-based and network-based system are

considered in the simulations. The models for measurement noises will be described as follows:

The Noise Model of TOA Measurements for the Satellite-based System

The probability distribution of the noise model for the satellite-based system, pn`
(τ), is ob-

tained as

pn`
(τ) =

τg

c
· Ug(τ) (6.1)

where Ug(τ) represents a uniform distribution function on the interval [0, 1]. τg is assumed

to be a constant value varying under different types of environment as given in Table I.
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TABLE I

Parameters for Noise Models

under Different Environments

Environment τg(m) τa τm (µs)

Urban 140 9o 0.4

Suburban 90 7o 0.3

Rural 40 5o 0.1

The Noise Model of AOA Measurements for the Network-based System

The probability distribution of the noise model for the AOA measurements, pnθ
(τ), is assumed

as

pnθ
(τ) = τa · Ua(τ) (6.2)

where Ua(τ) is a uniform distribution function on the interval [0, 1]. The selection of the τa

is also dependent on the environment.

The Noise Model of TOA/TDOA Measurements for the Network-based System

The model for the measurement noise of the TOA signals is selected as the Gaussian distribu-

tion with zero mean and 10 meters of standard deviation. On the other hand, an exponential

distribution pn`
(τ) is assumed for the NLOS noise model of the TOA measurements as pnk

(τ)

as

pnk
(τ) =





1
τk

e
−τ
τk τ > 0

0 otherwise
(6.3)

for ` = 1, 2,...N. τ` = τmζ`
ερ is the RMS delay spread between the `th BS to the MS; τm is

the median value of τ` whose value depends on the various environment. ε is the path loss

exponent which is assumed to be 0.5, and the factor for shadow fading ρ is set to 1 in the

simulations. On the other hand, the noise model of the TDOA measurements is described as
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the exponential distribution for k = i, j.

6.2 Simulation Parameters

Simulations are performed to show the effectiveness of the proposed location estimation

scheme. In the simulations, signals from four satellites and four BSs are assumed available

for estimating the position of the MS. The positions of the four satellites are located at (0, 0,

20000), (8000, 16000, 9000), (12000, 9000, 7000), and (8000, 7000, 17000) in kilometers. The

home BS is located at (0, 0, 330) in meters, while the positions of the other three neighboring

BSs are at (-1000, 1000
√

3, 350), (1000, 1000
√

3, 370), and (2000, 0, 340) all in meters. The

MS is assumed to travel at a constant speeds of (3, 4, 0) m/sec along the x, y, and z direc-

tions, i.e. (x, y, z) = (27 + 3t, 36 + 4t, 300) in meters. The total traveling time of the MS

is assumed to be 100 seconds. τg, Ua(τ), and τm are assumed to be constant values varying

under different types of environment as given in Table I.

6.3 Simulation Results

The effectiveness of using the Kalman filtering technique can be observed from Fig. 6.1. It

eliminates measurement noises and tracks the MS’s position and velocity in the longitude,

latitude, and altitude directions. Fig. 6.2 - Fig. 6.4 shows the performance comparison

between the proposed hybrid location estimation system, the satellite-based system, and the

cellular-based system under urban, suburban, and rural environments. It can be seen that

the RMS error of the MS’s position (i.e. ∆Pf = [(xf −x)2 +(yf − y)2 +(zf − z)2]
1
2 ) obtained

from the hybrid scheme is smaller comparing with that from the other two approaches. It is

also noted that the estimation error acquired from the satellite-based system has the worst

performance comparing with the other two systems in the urban area; while the cellular-based

system causes degraded results in the rural area. The hybrid system is capable of adjusting

itself to accommodate different situations, which provides consistent performance comparing

with the satellite-based and the cellular-based systems.
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Figure 6.1: Left Plots: Performance Comparison before (dots) and after (’+’ marks) using the
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Part II

Enhanced Wireless Location

Estimation Algorithms
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Chapter 7

Overview

A variety of wireless location techniques have been studied and investigated [1]- [3]. The

network-based location estimation schemes have been widely exploited in the wireless com-

munication system. These schemes locate the position of the MS based on the measured radio

signals from its neighborhood BSs. The major time-based methods for the network-based lo-

cation estimation techniques are the TOA, and the TDOA. The TOA scheme measures the

arrival time of the radio signals coming from different wireless BSs; while the TDOA scheme

measures the time difference between the radio signals.

Since the equations accompanied with the network-based location estimation schemes are

inherently nonlinear, it is required to adapt approximation techniques for location estimation.

In addition, the uncertainties induced by the measurement noises make it more difficult to

acquire the estimated MS position with tolerable precision. Different approaches have been

proposed to obtain an approximate location. The Taylor-Series Estimation (TSE) method

was utilized in [24] to acquire the location estimation from the TDOA measurements. The

method requires iterative processes to obtain the location estimate from a linearized system.

The major drawback of this method is that it may suffer from the convergence problem due to

an incorrect initial guess of the MS’s position. The two-step LS method was adopted to solve

the location estimation problem from the TOA [25], the TDOA [26], and the TDOA/AOA

measurements [27]. It is an approximate realization of the Maximum Likelihood (ML) estima-
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tor and does not require iterative processes. The Linear Line-of-Position (LLOP) [28] method

presents a different interpretation of the TOA geometry to estimate the MS’s location com-

paring with the conventional circular TOA methods. However, the algorithms as described

above are primarily feasible for location estimation under Line-Of-Sight (LOS) environments.

The Non-Line-Of-Sight (NLOS) situations, which occur mostly under urban or suburban ar-

eas, greatly affect the precision of these location estimation schemes. On the other hand, the

algorithm proposed in [35] alleviates the NLOS errors by considering the cell layout between

the MS and its associated BSs. A constrained nonlinear optimization is adopted to obtain

improved location estimate for the MS. However, the approach proposed in [35] involves the

requirement of solving an optimization problem based on a nonlinear objective function. The

inefficiency incurred by the algorithm may not be feasible to be applied in practical systems.

In this thesis, an efficient Geometry-constrained Location Estimation (GLE) algorithm

and a location estimation algorithm with the Virtual Base Stations (VBS) are proposed to

obtain location estimation of the MS, especially for NLOS environments. The proposed GLE

scheme integrates the geometric information from the cell layout into the conventional two-

step LS algorithm. The MS’s position is obtained by confining the estimation based on the

signal variations and the geometric layout between the MS and the BSs. Moreover, the

proposed VBS scheme integrates the geometric information from the extended cell layout

into the conventional two-step LS algorithm, especially not only NLOS environments but

also poor Geometric Dilution of Precision (GDOP) [36]. The MS’s position is obtained from

the time measurements by confining the estimation based on the signal variations and the

geometric layout extended by the virtual base stations. The reasonable location estimations

can be acquired from both the VBS and GLE within two computing iterations even with the

existence of the NLOS errors. The numerical results via simulations shows that the VBS and

GLE approaches can acquire higher accuracy for location estimation.
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Chapter 8

The Proposed GLE and VBS

Algorithms

The time-based algorithms, i.e. TSE, LLOP, and two-step LS as described in chapter 2,

are primarily feasible for location estimation under Line-Of-Sight (LOS) environments. In

order to preserve the computation efficiency and to obtain higher accuracy under Non-Line-

Of-Sight (NLOS) environments, the Geometry-Constrained Location Estimation (GLE) and

the location estimation with the Virtual Base stations (VBS) are designed to incorporate

geometric constraints within the formulation of the two-step LS method with the consideration

of the different geometric layouts between the MS and its associated BSs. The details of the

proposed GLE and VBS algorithms are described in this chapter.

8.1 The GLE Algorithm

The proposed GLE algorithm associated with the applications within three different scenarios

are described in this section. The measured distances r`, for ` = 1, 2, and 3, are illustrated

as in Fig. 8.1. It is noted that the three circles which define the TOA measurements will

intersect to a single point (i.e. the MS’s position) if the measurements are LOS and are free

of the measurement noises. The concept of the GLE algorithm is to consider the geometric

constraints between the MS and the BSs within the formulation of the two-step LS method. It
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Figure 8.1: The Schematic Diagram of the TOA-based Location Estimation for NLOS envi-
ronments (Generic Case)

is recognized that the range measurements are in general corrupted by both the measurement

noises and the NLOS errors. The conventional two-step LS algorithm obtains location estimate

primarily by considering the measurement noises with gentle NLOS errors. In the TOA-based

location estimation as shown in Fig. 8.1, the location estimation by using the two-step LS

method may fall around the boundaries of the three arcs, AB, BC, and CA, i.e. either inside

or outside of these arcs. Since the overlap region (i.e. constrained by the points A, B, and

C) grows as the NLOS errors are increased, the location estimation of the MS acquired by

the two-step LS method will result in deficient accuracy (i.e. the location estimate still falls

around the boundaries of the enlarged arcs AB, BC, and CA).

The primary objective of the proposed GLE algorithm is to confined the location estimate

within the overlap region by including the geometric constraints into the two-step LS method.

The following three different cases are considered based on the various cell layouts which may

occur:
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8.1.1 3 TOA Measurements – Generic Case

As illustrated in Fig. 8.1, three BSs associated with three TOA measurements are required

for the location estimation of the MS. The overlap region (i.e. confined by the arcs AB, BC,

and CA) is formed with the assumption that there is at least one NLOS error occurred from

one of the three TOA range measurements. Since the objective of the proposed GLE scheme

is to confine the estimated MS position within the region of ABC, the following constrained

cost function is defined:

γ =


 ∑

µ=a,b,c

1
3
‖x − µ‖2




1/2

(8.1)

where x is the MS’s location as mentioned before; a = (xa, ya), b = (xb, yb), and c = (xc, yc)

represent the corresponding coordinates of the points A, B, and C. γ is defined as a virtual

distance between the MS’s position and the three points A, B, and C. It is also noted that the

value of γ varies as the three coordinates a, b, and c are changed. An expected MS’s position

xe is chosen to locate within the triangular area ABC in order to fulfill the constraints from

the geometric layout. The corresponding expected virtual distance γe can be obtained as

γe =


 ∑

µ=a,b,c

1
3
‖x e − µ‖2




1/2

= γ + nγ (8.2)

where nγ is the error induced by the computed deviation between γe and γ. The major

functionality of the constrained cost function as in (8.2) is to minimize the deviation between

the virtual distance γ and the expected virtual distance γe. The selection of the expected MS

position xe is obtained by considering the signal variations from the three TOA measurements.

The coordinates of xe = (xe, ye) are chosen with different weights (w1, w2, w3) with respect

to the A, B, and C points of the triangle as

xe = w1xa + w2xb + w3xc (8.3a)

ye = w1ya + w2yb + w3yc (8.3b)
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where

w` =
σ2

`

σ2
1 + σ2

2 + σ2
3

for ` = 1, 2, 3 (8.4)

σ1, σ2, and σ3 are the corresponding standard deviations obtained from the three TOA mea-

surements, r1, r2, and r3. The decision of the weight w` is explained as follows. For the

measurement r1 (as shown in Fig. 8.1), the MS position should be located around the bound-

ary of the circle with the radius r1 without the existence of the NLOS errors. If the standard

deviation σ1 of the measurement r1 is comparably large, it indicates that the true position of

the MS should move toward inside of the circle boundary of the radius r1 due to the NLOS

errors. Consequently, the weight w1 is assigned with a larger value, which specifies that the

position of the MS should move toward the endpoint A of the triangle. The design concept is

applied to the selection of the other two weights, w2 and w3, in the same manner. With the

selection of the expected MS’s position xe, the expected virtual distance γe can be computed

from (8.2).

The proposed GLE algorithm is formulated by solving the two-step LS problem with the

additional geometric constraint. The solution is obtained by minimizing both (i) the errors

coming from the three TOA measurements (as in (2.1)) and (ii) the deviation between the

expected virtual distance and the virtual distance (as in (8.2)). By rearranging and combining

(2.1) and (8.2) in matrix format, the following equation can be obtained:

Hx = J + ψ (8.5)

where

x =
[

x y β

]T
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H =




−2x1 −2y1 1

−2x2 −2y2 1

−2x3 −2y3 1

−2γx −2γy 1




J =




r2
1 − κ1

r2
2 − κ2

r2
3 − κ3

γ2
e − γκ




The corresponding coefficients are given by

β = x2 + y2

κ` = x2
` + y2

` for ` = 1, 2, 3

γx =
1
3
(xa + xb + xc)

γy =
1
3
(ya + yb + yc)

γκ =
1
3
(x2

a + x2
b + x2

c + y2
a + y2

b + y2
c )

The noise matrix ψ in (8.5) can be obtained as

ψ = 2 c Bn + c2n2 (8.6)

where

B = diag
{

ζ1, ζ2, ζ3, γ

}

n =
[

n1 n2 n3 nγ/c

]T

Based on the two-step LS scheme, an intermediate location estimate after the first step can
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be obtained as

x̂ = (HTΨ−1H)−1HTΨ−1J (8.7)

where

Ψ = E[ψψT ] = 4 c2 BQB

It is noted that Ψ is obtained by neglecting the second term of (8.6). The matrix Q can be

acquired as

Q = diag
{

σ2
1, σ2

2, σ2
3, σ2

γe
/c2

}

It can be observed that Q represents the covariance matrix for both the TOA measurements

and the expected virtual distance, where σ2
γe/c corresponds to the standard deviation of γe/c.

The final location estimation after the second step of the two-step LS algorithm can be

obtained by referring the approach as stated in [25].

8.1.2 3 TOA Measurements – MS Locates Closer to its Home BS

In certain situations, the MS may locate much closer to its home BS compared to the other

BSs. Due to the fact that the NLOS errors grow as the distance between the MS and the

BS is increased [37], there is high possibility to result in no geometric intersection formed

by these TOA measurements. As is illustrated in Fig. 8.2, there is no intersection between

the circles with the radiuses r1 and r2. Since the MS is located closer to its home BS (i.e.

BS1), the non-intersect scenario occurs while there is larger NLOS error induced by the TOA

measurement from the BS2. The original proposal as stated in the previous generic case will

not be applicable in this type of situation.

In order to employ the GLE algorithm within this circumstance, it is required to impose an

additional constraint to appropriately formulate the problem. The inequality of r` > L1` +r1,

for ` = 2, 3, should be changed to r̂` = L1` + r1, where L1` corresponds the the distance

between the `th BS to the home BS. As shown in the Fig. 8.2, the modified radius r̂2 results

in an intersection with the home BS (i.e. point E) in order to facilitate the formulation of
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Figure 8.2: The Schematic Diagram of the TOA-based Location Estimation for NLOS envi-
ronments (Special Case: MS Locates Closer to its Home BS)

proposed GLE scheme. It is noted that the assumption is applicable since the non-intersect

situation is generally induced by the excessive amount of NLOS errors from the measurement

r2. As a result, the GLE algorithm can be applied in this case by substituting the points A.

B, and C (as in Fig. 8.1) with the points E, F , and G. Similar procedures can be employed

to solve for the two-step LS problem as mentioned in the previous case. The location estimate

of the MS can therefore be constrained within the updated triangular area, which is enclosed

by the points E, F , and G.

8.1.3 2 TOA and 1 AOA Measurements

Due to the weak incoming signals or the shortage of signal sources (e.g. at the rural area),

there is great possibility that the MS may not be able to acquire enough signal sources from

the environment, i.e. only two TOA measurements are available from the BS1 and the BS2.

In order to employ the proposed GLE algorithm within this circumstance, an additional AOA

measurement from the home BS is adopted. As mentioned in the 3GPP standard [33] [34],

each BS should be equipped with the antenna arrays for adaptive beam steering in order to
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facilitate the AOA measurements. It is also noted that only the AOA measurement from the

home BS is applied to avoid the signal degradation due to the near-far effect. The geometric

layout of the two TOA and the one AOA measurements is illustrated as in Fig. 8.3. The

proposed GLE algorithm can be applied in this case with some modifications from the generic

case. The region enclosed by the points A, B, and C (as in Fig. 8.1) is replaced by the

triangular area defined by the points I, J , and K. The selection of σ3 within the expected

MS’s position (i.e. in (8.4)) should be modified as σ3 = r1 ·σθ/c, where σθ corresponds to the

standard deviation of the measurement noise nθ as in (2.4). It is noted that σ3 is referred as

the signal variations coming from the AOA measurement. As the value of σ3 is increased, the

expected MS’s position xe should move away from the line which connects the points I and

J . The resulting location of xe is expected to move toward the point K as can be obtained

from (8.4).

In additions, the matrices, H and J, within (8.5) should be reformulated as

H =




−2x1 −2y1 1

−2x2 −2y2 1

− sin θ cos θ 0

−2γx −2γy 1



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J =




r2
1 − κ1

r2
2 − κ2

y1 cos θ − x1 sin θ

γ2
e − γκ




The matrices B, n, and Q associated with the noise matrix ψ as in (8.6) can be obtained

as

B = diag
{

ζ1, ζ2, ζ1, γ

}

n =
[

n1 n2 nθ nγ/c

]T

Q = diag
{

σ2
1, σ2

2, σ2
θ , σ2

γe
/c2

}

It is noted that value in the third diagonal term within the matrix B, i.e. the element ζ1,

can be obtained as in [27] based on geometric approximation of the AOA measurement. The

performance of the proposed GLE algorithm under the three different cases will be evaluated

and compared via simulations in the next section.

8.2 The VBS Algorithm

In this section, the proposed VBS scheme is described in details. The observation from the

GDOP effect is addressed in the chapter 8.3.1. Chapter 8.3.2 describes the concepts and

motivations of the proposed VBS scheme; while the formulation of the algorithm is presented

in the chapter 8.3.3.

8.2.1 Observation from the GDOP

The GDOP [36] is defined as the ratio between the location estimation error and the associated

measurement errors. It is utilized as an index for observing the location precision of the MS

under different geometric location within the network. In order to investigate the GDOP

effect, a cell layout with three TOA measurements are considered as shown in Fig. 8.4.
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Right Plot: GDOP Contours with Three Virtual BSs outside the Triangular area

The three BSs are assumed to locate at the coordinates (0, 0), (1000, 1000
√

3), and (2000,

0) in meters. The locations of the MS are designed to be within the enclosed triangular area

formed by the three base stations. i.e. points BS1, BS2, and BS3. The left plot of Fig. 8.5

shows the GDOP effect for the three TOA measurements within the triangular region. It can

be seen that there is worse GDOP effect (i.e. with higher GDOP values) around the areas

close to the three BSs comparing with the other region within the triangular area. In order to

further observe the GDOP effect, it is possibility to provide an additional BS with adjustable

location within the network. The right plot of Fig. 8.5 illustrates the GDOP effect with the

4th BS located at the center of the triangle BS1BS2BS3; while the left plot of Fig. 8.6 shows

that with the 4th BS situated outside of the triangular area, i.e. at point BSv2 as in Fig.

8.4. It can be observed form the right plot of Fig. 8.5 that not much GDOP improvement

is achieved by placing the 4th BS within the triangular region. On the other hand, it is

interesting to find that the high GDOP value around the BS1 and BS3 can be reduced by the

4th BS situated outside of the triangular area (as in the left plot of Fig. 8.6). Moreover, it can

be seen from the right plot of Fig. 8.6 that the comparably worse GDOP values around the

three BSs can be decreased by adding another three BSs (i.e. BSv1, BSv2, and BSv3) around
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the corresponding locations outside of the triangular region. It is also noted that the overall

GDOP values are decreased.

From the observation obtained as above, it is found to be beneficial to provide additional

BSs (with feasible adjustment of their locations) to improve the poor GDOP effect within

the network. However, it is not practical to arbitrarily install additional base stations in

reality. It is also not feasible for the MS to receive excessive measurement signals from more

than three BSs. In the proposed VBS scheme, the mathematically formulated virtual BSs are

applied. The positions of the virtual BSs determines the parameters within their correspond-

ing geometric constraints. Without physically installing additional BSs, the proposed scheme

can mitigate the poor GDOP effect with the virtual BSs. The following two subsections will

illustrate the overview and the detail formulation of the proposed VBS algorithm.

8.2.2 Overview of the VBS Algorithm

The concept of the VBS algorithm is to consider the geometric constraints between the MS

and its surrounding BSs within the formulation of the two-step LS method. It is recognized

that the range measurements are in general corrupted by both the measurement noises and

the NLOS errors. The conventional two-step LS algorithm obtains location estimate primarily

by considering the measurement noises with gentle NLOS errors. In the TOA-based location

estimation as shown in Fig. 8.4, the location estimation by using the two-step LS method may

fall around the boundaries of the three arcs, AB, BC, and CA, i.e. either inside or outside

of these arcs. Since the overlap region (i.e. constrained by the points A, B, and C) grows as

the NLOS errors are increased, the location estimation of the MS acquired by the two-step

LS method will result in deficient accuracy (i.e. the location estimate still falls around the

boundaries of the enlarged arcs AB, BC, and CA).

The primary objective of the proposed VBS algorithm is to confined the location estimate

within the overlap region by including the geometric constraints into the two-step LS method.

The locations of the virtual BSs can be arbitrarily placed within the network, which determine

the parameters in their associated the geometric constraints. The following subsection illus-
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trates the inclusion of a single virtual BS within the two-setp LS formulation. The insertion

of additional virtual BSs can easily be extended.

8.2.3 Formulation of the VBS Algorithm

As illustrated in Fig. 8.4, three BSs associated with the three TOA measurements are required

for the location estimation of the MS. The overlap region (i.e. confined by the arcs AB, BC,

and CA) is formed with the assumption that there is at least one NLOS error occurred from

one of the three TOA range measurements. Since the objective of the proposed VBS algorithm

is to confine the estimated MS position within the region of ABC, the following constraint

cost function can be defined:

γ =


 ∑

i = a,b,c

αi‖x − x i‖2


 (8.8)

where x is the MS’s location as mentioned before; xa = (xa, ya), xb = (xb, yb), and xc = (xc,

yc) represent the corresponding coordinates of the points A, B, and C. αi’s (for i = a, b, and

c) are the BS parameters that are determined by the location of the virtual BS, which will

be described later. γ is defined as a virtual distance between the MS’s position and the three

points A, B, and C. It is also noted that the value of γ varies as the three coordinates xa, xb,

and xc are changed. An expected MS’s position xe is chosen to locate within the triangular

area ABC in order to fulfill the constraints from the geometric layout. The corresponding

expected virtual distance γe can be obtained as

γe =


 ∑

i = a,b,c

αi‖x e − x i‖2


 = γ + nγ (8.9)

where nγ is the error induced by the computed deviation between γe and γ. The major

functionality of the constrained cost function as in (8.9) is to minimize the deviation between

the virtual distance γ and the expected virtual distance γe. The selection of the expected MS

position xe is obtained by considering the signal variations from the three TOA measurements.

The coordinates of xe = (xe, ye) are chosen with different weights (w1, w2, w3) with respect
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to the A, B, and C points of the triangle as

xe = w1xa + w2xb + w3xc (8.10a)

ye = w1ya + w2yb + w3yc (8.10b)

where

w` =
σ2

`

σ2
1 + σ2

2 + σ2
3

for ` = 1, 2, 3 (8.11)

σ1, σ2, and σ3 are the corresponding standard deviations obtained from the three TOA mea-

surements, r1, r2, and r3. The decision of the weight w` is explained as follows. For the

measurement r1 (as shown in Fig. 8.4), the MS position should be located around the bound-

ary of the circle with the radius r1 without the existence of the NLOS errors. If the standard

deviation σ1 of the measurement r1 is comparably large, it indicates that the true position of

the MS should move toward inside of the circle boundary of the radius r1 due to the NLOS

errors. Consequently, the weight w1 is assigned with a larger value, which specifies that the

position of the MS should move toward the endpoint A of the triangle. The design concept is

applied to the selection of the other two weights, w2 and w3, in the same manner. With the

selection of the expected MS’s position xe, the expected virtual distance γe can be computed

from (8.9).

The proposed VBS algorithm is formulated by solving the two-step LS problem with

the additional geometric constraint, which is determined by the location of the virtual BS.

The solution is obtained by minimizing both (i) the errors coming from the three TOA

measurements (as in (2.1)) and (ii) the deviation between the expected virtual distance and

the virtual distance (as in (8.9)). By rearranging and combining (2.1) and (8.9) in the matrix

format, the following equation can be obtained:

Hx = J + ψ (8.12)

55



where

x =
[

x y β

]T

H =




−2x1 −2y1 1

−2x2 −2y2 1

−2x3 −2y3 1

−2xv −2yv 1




J =




r2
1 − κ1

r2
2 − κ2

r2
3 − κ3

γe − γκ




The corresponding coefficients are given by

β = x2 + y2 (8.13)

κ` = x2
` + y2

` for ` = 1, 2, 3 (8.14)

xv = αaxa + αbxb + αcxc (8.15)

yv = αaya + αbyb + αcyc (8.16)

γκ = αa(x2
a + y2

a) + αb(x2
b + y2

b ) + αc(x2
c + y2

c ) (8.17)

It is noted that x v = (xv, yv) represents the coordinates of the virtual base station, which

can be assigned based on the GDOP requirement as described in the Subsection A. Since

the coordinates of xa, xb, and xc are obtainable after the three TOA measurements are

acquired, the αi’s within the constraint equation (8.9) can be computed from (8.15) and

(8.16), associated with
∑

i = a,b,c αi = 1. It is note that the last equation is utilized to facilitate

the formulation of the two-step LS problem. Moreover, the noise matrix ψ in (8.12) can be

obtained as

ψ = 2 c Bn + c2n2 (8.18)
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where

B = diag
{

ζ1, ζ2, ζ3, |γ| 12
}

n =
[

n1 n2 n3 n|γ| 12 /c

]T

Based on the two-step LS scheme, an intermediate location estimate after the first step can

be obtained as

x̂ = (HTΨ−1H)−1HTΨ−1J (8.19)

where

Ψ = E[ψψT ] = 4 c2 BQB

It is noted that Ψ is obtained by neglecting the second term of (8.18). The matrix Q can be

acquired as

Q = diag
{

σ2
1, σ2

2, σ2
3, σ2

|γe|
1
2
/c2

}

It can be observed that Q represents the covariance matrix for both the TOA measurements

and the expected virtual distance, where σ|γe|
1
2

corresponds to the standard deviation of |γe| 12 .

The final location estimation after the second step of the two-step LS algorithm can be

obtained by referring the approach as stated in [25].
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Chapter 9

Performance Evaluation

9.1 Simulation Results of the GLE Algorithm

Simulations are performed to show the effectiveness of the proposed GLE scheme under dif-

ferent cell layouts. The simulation parameters are illustrated in the chapter 9.1.1. The per-

formance comparison between the proposed GLE algorithm with the other existing location

estimation schemes, i.e. the Taylor-Series Estimation (TSE) and the two-step LS methods,

are conducted in the chapter 9.1.2.

9.1.1 Noise Models and Simulation Parameters

Different noise models [37] [38] for the AOA and the TOA measurements are considered in

the simulations. The noise models can be referred to chapter 6.1. The parameters for the

TOA noise models in this section primarily fulfill the environment while the MS are located

within the suburban area. On the other hand, the τa for the AOA model is chosen as 5, which

indicates that the measurement noise associated with the AOA signal varies between -5o and

5o.

The simulation parameters associated with the three different cases (as described in the

chapter 8.1) are listed as follows:

1. The home BS, i.e. BS1, is located at (0, 0) in meters; while the positions of the other
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Figure 9.1: Performance Comparison between the Location Estimation Algorithms under
NLOS Environments (Generic Case: 3 TOA Measurements)

two BSs, BS2 and BS3, are located at (1000, 1000
√

3) and (-1000, 1000
√

3) in meters.

The true position of the MS is assumed to be at (300, 400) in meters in this case.

2. In this case, the BS1, BS2, and BS3 share the same values as in the first case. The

true position of the MS is located at (50, 50) in meters, which is closer to the home BS

comparing with the previous case.

3. The signal from the BS3 is assumed unavailable in this case. The MS can only receive

the signals from both the BS1 and the BS2 with their coordinates as indicated in the

first two cases. The true position of the MS is located at (300, 400) in meters.

9.1.2 Simulation Results

Fig. 9.1 - Fig. 9.3 show the performance comparison between the proposed GLE algorithm,

the conventional two-step LS algorithm, and the TSE scheme in different situations. It is

noted that the vertical axis in these plots represents the RMS error of the MS position as

∆Pf = ‖x̂f −x‖, where x̂f represents the final location estimate from the location estimation

algorithms. Figs. 9.1 and 9.2 show the comparison between these location estimation schemes
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Figure 9.2: Performance Comparison between the Location Estimation Algorithms under
NLOS Environments (Special Case: 3 TOA Measurements – MS Locates Closer to its Home
BS)

with three TOA measurements available, while the MS is located either farther away (in Fig.

9.1) or closer (in Fig. 9.2) from its home BS. It can be seen from both plots that the proposed

GLE algorithm outperforms the conventional two-step LS method with around 45 m of RMS

error under 67 % of average position errors.

Fig. 9.3 illustrates the performance comparison under two TOA and one AOA measure-

ments. It can also be seen that the GLE algorithm can obtain better location estimation

accuracy comparing with the other schemes. In all these three plots, it is observed that

the performance results of the TSE algorithm are obtained in between those from the GLE

and the two-step LS schemes. However, several drawbacks have been encountered by using

the TSE algorithm in the simulations comparing with the other two schemes: (i) The TSE

scheme requires reasonable initial guess of the MS’s position in order to prevent estimation

divergence in most cases; (ii) The determination of the incremental steps within the TSE

algorithm significantly affect the performance of the location estimate. It requires more com-

puting iterations in order to acquire feasible location estimation for the MS. The merits of

considering the geometric constraints within the formulation of the two-step LS scheme can
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Figure 9.3: Performance Comparison between the Location Estimation Algorithms under
NLOS Environments (Special Case: 2 TOA and 1 AOA Measurements)

be seen from these simulation results. A feasible location estimate of the MS can be acquired

within the efficient GLE scheme as proposed.

9.2 Simulation Results of the VBS Algorithm

Simulations are performed to show the effectiveness of the proposed VBS scheme. The noise

models and the simulation parameters are illustrated in the chapter 9.2.1. The performance

comparison between the proposed VBS algorithm with the other existing location estimation

schemes, i.e. straight Line of Position (LOP) and the two-step LS methods, are conducted in

the chapter 9.2.2.

9.2.1 Noise Models and Simulation Parameters

In the simulations, the noise model for the TOA measurements is the same as the one in

chapter 9.1. On the other hand, the home BS, i.e. BS1, is located at (0, 0) in meters; while

the positions of the other two BSs, BS2 and BS3, are located at (1000, 1000
√

3) and (-1000,

1000
√

3) in meters. The true position of the MS is assumed to be at (200, 200) in meters.
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VBS(1) VBS(3) VBS(6)

Figure 9.4: The Three Cases for the VBS Scheme with Different Placements of the Virtual
BSs (The Black Dots (•) are the Locations of the Virtual BSs; The Solid Triangle Represents
the Area Enclosed by the BS1BS2BS3)

The performance evaluation is conducted under the following three different cases as shown

in Fig. 9.4:

1. VBS(1): A single virtual BS is assigned inside of the triangular area, i.e. (xv, yv) =

((x1 + x2 + x3)/3, (y1 + y2 + y3)/3).

2. VBS(3): Three virtual BSs are located outside of the triangular region, i.e. (xv1, yv1) =

(0, 2000/
√

3), (xv2, yv2) = (1000, −1000/
√

3), and (xv3, yv3) = (2000, 2000/
√

3).

3. VBS(6): Six virtual BSs are located outside of the triangular region, i.e. (xv1, yv1) =

(0, 2000/
√

3), (xv2, yv2) = (1000, −1000/
√

3), (xv3, yv3) = (2000, 2000/
√

3), (xv4, yv4) =

(−1000, −1000/
√

3), (xv5, yv5) = (3000, −1000/
√

3), and (xv6, yv6) = (1000, 5000/
√

3).

9.2.2 Simulation Results

Fig. 9.5 shows the performance comparison between the proposed VBS algorithm (including

the VBS(1), VBS(3), and VBS(6)), the conventional two-step LS algorithm, and the LOP

scheme. The mean value of the NLOS noises are assumed as τm = 0.3 µs for all cases. It

can be seen that the VBS scheme with six virtual BSs situated outside of the triangular

region outperforms the other schemes. The VBS(6) case surpasses the conventional two-step

LS method with around 110 m of RMS error under 67% of average position errors. It can

also be seen that the VBS(3) case also provides feasible performance comparing with the
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Figure 9.5: Performance Comparison between the Location Estimation Schemes under NLOS
Environments (with Median Value of the NLOS Noises: τm =0.3 µs)

VBS(1), the LOP, and the two-step LS methods. As predictable, the VBS(1) case does not

provide satisfactory performance since the corresponding virtual BS is located inside of the

triangular area. The results are consistent with the observation obtained from the GDOP

effect. Fig. 9.6 illustrates the RMS errors under different NLOS noises (with 50% of average

position errors). It can be observed that the VBS(6) case can effectively mitigates the RMS

errors, especially under the environment with excessive NLOS noises. It is noted that the

VBS scheme with cases that includes more than six virtual BSs have also been conducted

via simulations. However, not much improvement on the RMS error has been achieved with

different placements of the additional virtual BSs. The case with the VBS(6) layout (as shown

in the right schematic diagram of Fig. 9.4) can be sufficient in improving the RMS errors for

location estimation of the MS.
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ent NLOS environments (with 50% of Average Position Errors)
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Chapter 10

Conclusion

In part I of this thesis, a hybrid location estimation and tracking system is proposed. The

system is capable of estimating the three dimensional position and velocity of the mobile de-

vices. It is shown in the simulation results that the proposed hybrid scheme provides consis-

tent location estimation accuracy under different environments. Additionally, the Geometry-

constrained Location Estimation (GLE) and location algorithm with Virtual Base Stations

(VBS) are presented in part II of this thesis. Both algorithms enhances the conventional two-

step LS algorithm by imposing additional geometric constraints within its formulation. By

using the GLE and VBS methods, the computational efficiency acquired from the two-step LS

method is preserved. GLE obtains higher location estimation accuracy for the MS, especially

under NLOS environments. Moreover, estimation accuracy can further be improved by the

proposed VBS method, especially the environments with both the NLOS noises and the poor

GDOP circumstance. It is shown in the simulation results that the proposed GLE and VBS

algorithms provide better position location estimate comparing with other existing methods.
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