
Applied Mathematics and Computation 213 (2009) 92–101
Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc
Controlling arrivals for a queueing system with an unreliable server:
Newton-Quasi method

Kuo-Hsiung Wang a,*, Dong-Yuh Yang b

a Department of Applied Mathematics, National Chung-Hsing University, Taichung 402, Taiwan
b Department of Industrial of Engineering and Management, National Chiao Tung University, Hsinchu 30050, Taiwan

a r t i c l e i n f o a b s t r a c t
Keywords:
F-policy
Matrix analytical method
Optimization
Newton-Quasi method
Startup
Server breakdowns
0096-3003/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.amc.2009.03.002

* Corresponding author.
E-mail address: khwang@amath.nchu.edu.tw (K.
This paper deals with the control policy of a removable and unreliable server for an M/M/1/K
queueing system, where the removable server operates an F-policy. The so-called F-policy
means that when the number of customers in the system reaches its capacity K (i.e. the sys-
tem becomes full), the system will not accept any incoming customers until the queue
length decreases to a certain threshold value F. At that time, the server initiates an exponen-
tial startup time with parameter c and starts allowing customers entering the system. It is
assumed that the server breaks down according to a Poisson process and the repair time has
an exponential distribution. A matrix analytical method is applied to derive the steady-state
probabilities through which various system performance measures can be obtained. A cost
model is constructed to determine the optimal values, say (F*,l*,c*), that yield the minimum
cost. Finally, we use the two methods, namely, the direct search method and the Newton-
Quasi method to find the global minimum (F*,l*,c*). Numerical results are also provided
under optimal operating conditions.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

One of the most investigated topics of queueing problem is the control of queue. The aim of controllable queueing models
is to find the optimal operating policy which enables a decision-maker to turn the server on or off at a minimum cost. A com-
prehensive review on the controllable queues can be found in Tadj and Choudhury [12]. Past work regarding controllable
queues may be divided into two parts, one aims at controlling service whereas the other aims at controlling arrivals. In
the controlling service category, the N-policy M/M/1 queueing system without startup was first introduced by Yadin and
Naor [22]. Tadj [11] applied the matrix analytic methodology to study an r-quorum queueing system under N-policy disci-
pline. The N-policy M/M/1 queueing system with exponential startup times was first proposed by Baker [1]. Borthakur et al.
[2] extended Baker’s model to general startup time. Queueing models with an unreliable server closely resemble to practical
situations. The server may meet unpredicted breakdowns while providing service. Considering queueing systems with server
breakdowns, Wang [14,15], Wang et al. [16] derived analytic steady-state solutions of the N-policy M/M/1, the N-policy M/
Ek/1 and N-policy M/H2/1 queueing systems, respectively. Moreover, Wang et al. [17] generalized Wang et al. [16] to the N-
policy M/HK/1 queueing system. Ke and Pearn [7] developed the closed-form solutions for the N-policy M/M/1 queue with
server breakdowns and multiple vacations. The expected number of customers in the controllable M/G/1 queueing system
with server breakdowns operating under three control policies were developed by Wang and Ke [18]. In some actual situ-
ations, the server often requires a startup time before starting the service. As for the N-policy M/G/1 queue with startup
. All rights reserved.

-H. Wang).

mailto:khwang@amath.nchu.edu.tw
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


K.-H. Wang, D.-Y. Yang / Applied Mathematics and Computation 213 (2009) 92–101 93
times, it was investigated by numerous authors, including Lee and Park [8], Medhi and Templeton [9], Takagi [13], etc. Lately,
Ke [6] examined some important system characteristics for the N-policy M/G/1 queue with server vacations, startup and
breakdowns. Wang et al. [21] developed the approximate probability distribution of the queue length for the N-policy M/
G/1 queue with server breakdown and startup by using the maximum entropy approach. In the controlling arrivals category,
Gupta and Melachrinoudis [4] derived complementary relationships between N-policy and F-policy in finite source queueing
models with spares. Through a series of propositions, the relationship between the N-policy and the F-policy is established
by Gupta [3]. Karaesmen and Gupta [5] applied the duality relationship to obtain the stationary queue length distributions
for the two queueing systems under N-policy and F-policy. Recently, Wang et al. [19,20] investigated the optimal manage-
ment problem of an M/G/1/K and G/M/1//K queueing systems with combined F-policy and an exponential startup time,
respectively.

On the whole, controlling arrivals queueing systems with server breakdowns have seldom been investigated by existing
research works. In this paper, we deal with a single unreliable server in an M/M/1/K queueing system with combined F-pol-
icy and an exponential startup time. The F-policy addresses the issue of controlling arrivals in a queueing system. The policy
of controlling arrivals focuses on reducing the number of customers in the system. There are many real-life situations which
can be fit into this model

There are three primary objectives in this paper. Firstly, to present a matrix analytical method for developing the steady-
state solutions for the F-policy M/M/1/K queueing system with server breakdowns and an exponential startup time. Sec-
ondly, we develop the cost model to determine the joint optimal values of F, l and c that will yield the minimum cost.
Thirdly, we use the two methods, namely, the direct search method and the Newton-Quasi method to find the global
minimum.
2. Description of system

Gupta [3] first introduced the concept of an F-policy. The definition of an F-policy is described as follows: when the num-
ber of customers in the system reaches its capacity K (i.e. the system becomes full), no further arriving customers are allowed
to enter the system until there are enough customers in the system being served so that the number of customers in the
system decreases to a threshold value F (0 6 F 6 K � 1). At that time, the server is required to take an exponential startup
time with parameter c to start allowing customers entering the system. Thus, the system operates normally until the number
of customers in the system reaches its capacity at which time the above process is repeated all over again.

In this paper, we consider controlling the arrivals to a finite capacity M/M/1/K queueing system under F-policy subject
to server breakdowns and an exponential startup time. It is assumed that customers arrive according to a Poisson process
with parameter k and the service times of the customers are independent random variables having a common exponential
distribution with mean 1/l. Assume that the server may encounter break down at any time with breakdown rate a.
Whenever the server breaks down, it is immediately repaired at a repair rate b. Breakdown and repair time distributions
of the server are assumed to be exponentially distributed. Customers arriving at the server are assumed to form a single
waiting line and are served in the order of their arrivals; that is, according to the first-come, first-served (FCFS) discipline.
Suppose the server can serve only one customer at a time, and that the service is independent of the arrival of the cus-
tomers. Customers entering into the service facility and finding that the server is busy have to wait in the queue until the
server is available.
3. Steady-state solutions

For the F-policy M/M/1/K queueing system with server breakdowns and an exponential startup time, we define the fol-
lowing notations that will be used in the subsequent derivation:

N(t) � the number of customers in the system at time t,
Y(t) � the server state at time t,

where
YðtÞ ¼

0 if the arrivals are not allowed to enter the system and the server is broken down;
1 if the arrivals are not allowed to enter the system and the server is busy;
2 if the arrivals are allowed to enter the system and the server is busy;
3 if the arrivals are allowed to enter the system and the server is broken down:

8>>><
>>>:
Then {Y(t),N(t); t P 0} is a continuous time Markov process on state space
S ¼ fð0;nÞjn ¼ 1;2; . . . ;Kg [ fð1;nÞjn ¼ 0;1;2; . . . ;Kg [ fð2; nÞjn ¼ 0;1;2; . . . ;K � 1g [ fð3; nÞjn ¼ 1;2; . . . ;K � 1g:
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We define
P0;nðtÞ ¼ PrfYðtÞ ¼ 0;NðtÞ ¼ ng;
P1;nðtÞ ¼ PrfYðtÞ ¼ 1;NðtÞ ¼ ng;
P2;nðtÞ ¼ PrfYðtÞ ¼ 2;NðtÞ ¼ ng;
and
P3;nðtÞ ¼ PrfYðtÞ ¼ 3;NðtÞ ¼ ng:
Furthermore, we let
Pi;n ¼ lim
t!1

Pi;nðtÞ; i ¼ 0;1;2;3:
The derivation of the following steady-state equations for a finite capacity M/M/1/K queueing system combined with F-
policy, server breakdowns and an exponential startup time are given in the Appendix.

3.1. Steady-state equations
bP0;n ¼ aP1;n; 1 6 n 6 K; ð1Þ
cP1;0 ¼ lP1;1; ð2Þ
ðlþ aþ cÞP1;n ¼ lP1;nþ1 þ bP0;n; 1 6 n 6 F; ð3Þ
ðlþ aÞP1;n ¼ lP1;nþ1 þ bP0;n; F þ 1 6 n 6 K � 1; ð4Þ
ðlþ aÞP1;K ¼ kP2;K�1 þ bP0;K ; ð5Þ
kP2;0 ¼ cP1;0 þ lP2;1; ð6Þ
ðkþ aþ lÞP2;n ¼ cP1;n þ kP2;n�1 þ lP2;nþ1 þ bP3;n; 1 6 n 6 F; ð7Þ
ðkþ aþ lÞP2;n ¼ kP2;n�1 þ lP2;nþ1 þ bP3;n; F þ 1 6 n 6 K � 2; ð8Þ
ðkþ aþ lÞP2;K�1 ¼ kP2;K�2 þ bP3;K�1; K � 1 ¼ n – F; ð9Þ
ðkþ bÞP3;1 ¼ aP2;1; ð10Þ
ðkþ bÞP3;n ¼ aP2;n þ kP3;n�1; 2 6 n 6 K � 2; ð11Þ
bP3;K�1 ¼ aP2;K�1 þ kP3;K�2: ð12Þ
3.2. Matrix analytical solutions

Matrix analytical method is a useful tool for constructing stochastic models. This method is widely used to deal with var-
ious queueing models that desires exact analysis. The matrix analytical method is proposed by Neuts [10] for analyzing the
embedded Markov chains of many practical queueing systems. By using the matrix analytical method, we develop the stea-
dy-state probabilities P0,n (1 6 n 6 K), P1,n (0 6 n 6 K), P2,n(0 6 n 6 K � 1), P3,n(1 6 n 6 K � 1). The corresponding transition
rate matrix Q of this Markov chain has the block-tridiagonal form:
Q ¼

A0 B0 0 0
C1 A1 B1 0
0 C2 A2 B2

0 0 C3 A3

2
6664

3
7775:
The rate matrix Q of this state process is similar to the quasi birth and death type, and this class of Markov process has
been extensively studied by Neuts [10]. Each element of the matrix Q is a square matrix of order (K + 1) which takes the fol-
lowing form:
Aj ¼

xj;0 yj;0 0 0 � � � 0 0 0
zj;1 xj;1 yj;1 0 � � � 0 0 0
0 zj;2 xj;2 yj;2 � � � 0 0 0
0 0 zj;3 xj;3 � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 � � � xj;K�2 yj;K�2 0
0 0 0 0 � � � zj;K�1 xj;K�1 yj;K�1

0 0 0 0 � � � 0 zj;K xj;K

2
666666666666664

3
777777777777775

for j ¼ 0;1;2;3:
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Before representing the elements of Aj (j = 0,1,2,3), we need to define an indicator function K[a,b](i)
K½a;b�ðiÞ ¼
1; if a 6 i 6 b;

0; o:w:

�

Consequently, xj,i, yj,i and zj,i can be represented as:
xj;i ¼

/K½0;0�ðiÞ þ bK½1;K�ðiÞ if j ¼ 0; 0 6 i 6 K;

cK½0;0�ðiÞ þ ðcþ lþ aÞK½1;F�ðiÞ þ ðlþ aÞK½Fþ1;K�ðiÞ; if j ¼ 1; 0 6 i 6 K;

kK½0;0�ðiÞ þ ðkþ aþ lÞK½1;K�1�ðiÞ þ /K½K;K�ðiÞ; if j ¼ 2; 0 6 i 6 K;

/K½0;0�ðiÞ þ ðkþ bÞK½1;K�2�ðiÞ þ bK½K�1;K�1�ðiÞ þ /K½K;K�ðiÞ; if j ¼ 3; 0 6 i 6 K;

8>>><
>>>:

yj;i ¼
0; if j ¼ 0;1; 0 6 i 6 K � 1;
�kK½0;K�2�ðiÞ; if j ¼ 2; 0 6 i 6 K � 1;
�kK½1;K�2�ðiÞ; if j ¼ 3; 0 6 i 6 K � 1;

8><
>:
and
zj;i ¼
0; if j ¼ 0;3; 1 6 i 6 K;

�lK½1;K�ðiÞ; if j ¼ 1; 1 6 i 6 K;

�lK½1;K�1�ðiÞ; if j ¼ 2; 1 6 i 6 K;

8><
>:

Bj ¼

bj;0 0 0 � � � 0 0
0 bj;1 0 � � � 0 0
0 0 bj;2 � � � 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � bj;K�1 0
0 0 0 � � � 0 bj;K

2
6666666664

3
7777777775
; j ¼ 0;1;2
are (K + 1) square matrices. For 0 6 i 6 K
bj;i ¼
/K½0;0�ðiÞ � bK½1;K�ðiÞ; if j ¼ 0;
�cK½0;F�ðiÞ; if j ¼ 1;
�aK½1;K�1�ðiÞ þ /K½K;K�ðiÞ; if j ¼ 2;

8><
>:

Cj ¼

cj;0 dj;0 0 � � � 0 0
0 cj;1 dj;1 � � � 0 0
0 0 cj;2 � � � 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � cj;K�1 dj;K�1

0 0 0 � � � 0 cj;K

2
6666666664

3
7777777775
; j ¼ 1;2;3
are (K + 1) square matrices and
cj;i ¼
�aK½1;K�ðiÞ; if j ¼ 1;
/K½K;K�ðiÞ; if j ¼ 2;
/K½0;0�ðiÞ � bK½1;K�1�ðiÞ þ /K½K;K�ðiÞ; if j ¼ 3;

8><
>:

dj;i ¼
�k; if j ¼ 2; i ¼ K � 1;
0; o:w:

�

It is noted that / is a non-zero real number in the above expressions. Let P be the corresponding steady-state prob-
ability vector of Q. By partitioning the vector P as P = {P0,P1,P2,P3}, where Pj = {Pj,0,Pj,1,Pj,2, . . . ,Pj,K�1,Pj,K} is an 1 � (K + 1)
row vector for j = 0,1,2,3, where P0,0, P2,K, P3,0 and P3,K are equal to zero. By solving the steady-state equations PQ = 0, we
obtain
P0A0 þP1C1 ¼ 0; ð13Þ
P0B0 þP1A1 þP2C2 ¼ 0; ð14Þ
P1B1 þP2A2 þP3C3 ¼ 0; ð15Þ
P2B2 þP3A3 ¼ 0: ð16Þ
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Thus after routine substitutions, we get
P3 ¼ �P2B2A�1
3 ; ð17Þ

P2 ¼ �P1B1ðA2 � B2A�1
3 C3Þ�1

; ð18Þ

P1 ¼ �P0B0 A1 � B1ðA2 � B2A�1
3 C3Þ�1C2

h i�1
; ð19Þ

P0ðA0 þW1C1Þ ¼ 0: ð20Þ
If we set Wj = �Bj�1(Aj + Wj+1Cj+1)�1 (j = 1,2), P1 and P2 can be simplified to P1 = P0W1 and P2 = P1W2, respectively. In
addition, one can observe that W3 ¼ �B2A�1

3 . Eq. (20) determines P0 up to a multiplicative constant. The other Eqs.
(17)–(19) determine P1, P2 and P3, up to the same constant, which is uniquely determined by the following normalizing
equation
X3

j¼0

Pje ¼ 1; ð21Þ
where e represents a column vector with each component equal to one. An efficient computer program was developed to
solve Pj and Pj,n for 0 6 j 6 3. If we set a = 0, the server in this queueing model is reliable. It is worth to mention that the
results coincided with those in Gupta [3, p. 1007].

4. Cost function structure

In this section, we first obtain some system performance measures from steady-state probabilities. Based on these system
performance measures, we derive the total expected cost function per unit time.

4.1. System performance measures

Some important system performance measures of the F-policy M/M/1/K queueing system with combined server break-
downs and an exponential startup time are defined as follows:

LS � the expected number of customer in the system;
PB � the probability that the server is busy;
PI � the probability that the system is idle;
PD � the probability that the server is broken down.

The expressions for LS, PB, PI, and PD are given by:
LS ¼
XK

n¼1

nP0;n þ
XK

n¼1

nP1;n þ
XK�1

n¼1

nP2;n þ
XK�1

n¼1

nP3;n; ð22Þ

PB ¼
XK

n¼1

P1;n þ
XK�1

n¼1

P2;n; ð23Þ

PI ¼
X2

j¼1

Pj;0; ð24Þ

PD ¼
XK

n¼1

P0;n þ
XK�1

n¼1

P3;n: ð25Þ
4.2. Total expected cost function

We develop an expected cost function per unit time for the F-policy M/M/1/K queue with server breakdowns and an expo-
nential startup time. In this cost model, three decision variables F, l and c are considered. The discrete variable F is required
to be a natural number. The continuous variables l and c are positive numbers. Let us define the following cost elements:

Ch � holding cost per unit time for each customer present in the system;
Cb � busy cost per unit time for a busy server;
Cd � breakdown cost per unit time for a failed server;
Ci � idle cost per unit time for an idle server;
Cl � fixed cost of providing a service rate l for customers;
Cc � fixed cost of providing a startup rate c when allowing customer to enter the system at each time.
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Based on the definitions of each cost element listed above and its corresponding system characteristics, the total expected
cost function per unit time is given by
Table 1
System
conditio

k

F*

TC(F*,l
LS

PB

PI

PD
TCðF;l; cÞ ¼ ChLS þ CbPB þ CiPI þ CdPD þ Culþ Ccc: ð26Þ
The cost parameters in Eq. (26) are assumed to be linear in the expected number of the identical quantity. Due to the
highly non-linear and complex nature of the optimization problem, it is extremely difficult to develop analytic results
for the optimum value (F*,l*,c*). In the next section, we will utilize the direct search method to find the optimal threshold
F, say F*, when l and c are fixed. Next, we fix F* and use the Newton-Quasi method to find the optimal value of (l,c), say
(l*,c*).
5. Cost minimization

The aim of this section is to designate optimal values for this queueing system. In the cost function (26), three variables
F, l and c are considered. The discrete variable F is required to be a natural number. The continuous variables l and c are
positive numbers. Our objective is to determine the optimal value of (F,l,c), say (F*,l*,c*), so as to minimize this function.
In the following subsections, we use the direct search method and the Newton-Quasi method to find three optimum val-
ues F, l and c that will minimize the cost function. Some numerical results are also provided for the purpose of
illustration.

5.1. Direct search method

By using Eqs. (22)–(25), explicit expression for formula (26) can be obtained. However, it is tediously complex. Therefore,
we perform numerical computations to demonstrate that the cost function is indeed convex, so the solution obtained gives a
global minimum. By exploiting the property of F, we first use direct substitution of successive values of F into the cost func-
tion. Numerical results are provided by considering the following cost parameters:
Ch ¼ $5; Cb ¼ $100; Cd ¼ $300; Ci ¼ $200; Cl ¼ $3; Cc ¼ $1:
The cost minimization problem can be illustrated mathematically as:
TCðF�;l; cÞ ¼ Minimize
F

TCðF;l; cÞ: ð27Þ
Since F is a discrete variable, we employ the following inequalities to find F*:
TCðF� � 1;l; cÞP TCðF�;l; cÞ;
and
TCðF� þ 1;l; cÞP TCðF�;l; cÞ:
We fix the number of system capacity K = 15, (l,c) = (1.5,0.5), a = 0.05, b = 3.0, vary the value of threshold F from 0 to 14,
and choose different values of k = 0.6, 0.8, 1.0, 1.2, 1.4. From Table 1, we observe that (i) the optimal threshold value F* de-
creases as k increases; (ii) TC(F*,l,c) decreases as k increases. Next, we fix K = 15, k = 1.2, (l,c) = (1.5,0.5), vary the value of
threshold F from 0 to 14, and choose different values of (a,b) = (0.01,1.0), (0.05,1.0), (0.10,1.0), (0.10,2.0), (0.10,6.0). The re-
sults in Table 2 make it obvious that (i) the optimal threshold value F* decreases as a increases or b decreases; (ii) TC(F*,l,c)
increases as a increases or b decreases.

Moreover, we fix K = 15, k = 1.4, a = 0.05, b = 3.0, vary the value of threshold F from 0 to 14, and choose (l,c)= (1.5,0.1),
(1.8,0.1), (2.0,0.1), (2.0,0.5), (2.0,1.0). One can see from Table 3 that (i) the optimal threshold value F* increases as l increases
or c decreases; (ii) TC(F*,l,c) increases as l increases or c increases. Numerical results of the minimum expected cost
TC(F*,l,c) and the system performance measures Ls, PI, PB and PD, at the optimal threshold value F* are also listed in Tables
1–3.
performance measures of the F-policy M/M/1/K queueing system with server breakdowns and an exponential startup time under optimal operation
ns (K = 15, l = 1.5, c = 0.5, a = 0.05, b = 3.0).

0.6 0.8 1.0 1.2 1.4

14 11 8 6 5
,c) 169.105 158.500 149.855 144.928 144.244

0.688 1.187 2.039 3.352 4.792
0.007 0.533 0.665 0.781 0.862
0.593 0.458 0.324 0.206 0.124
0.400 0.009 0.011 0.013 0.014



Table 2
System performance measures of the F-policy M/M/1/K queueing system with server breakdowns and an exponential startup time under optimal operation
conditions (K = 15, k = 1.2, l = 1.5, c = 0.5).

(a,b) (0.01,1.0) (0.05,1.0) (0.1,1.0) (0.1,2.0) (0.1,6.0)

F* 6 5 4 5 6
TC(F*,l,c) 144.054 150.049 157.500 149.813 144.892
LS 3.296 3.664 4.088 3.64728 3.348
PB 0.782 0.771 0.755 0.773 0.782
PI 0.210 0.190 0.169 0.188 0.205
PD 0.008 0.039 0.076 0.039 0.013

Table 3
System performance measures of the F-policy M/M/1/K queueing system with server breakdowns and an exponential startup time under optimal operation
conditions (K = 15, k = 1.4, a = 0.05, b = 3.0).

(l,c) (1.5,0.1) (1.8,0.1) (2.0,0.1) (2.0,0.5) (2.0,1.0)

F* 11 13 14 8 7
TC(F*,l,c) 146.673 146.847 149.684 149.740 150.213
LS 4.655 3.074 2.314 2.331 2.333
PB 0.826 0.753 0.691 0.695 0.696
PI 0.160 0.234 0.297 0.293 0.292
PD 0.014 0.013 0.012 0.012 0.012
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5.2. Newton-Quasi method

We fix F* and use the Newton-Quasi method to globally search (l,c) until the minimum value of TC(F*,l,c), say
TC(F*,l*,c*) is attained. The cost minimization problem can be illustrated mathematically as
Table 4
Newton

Numbe

0
1
2
3
4
5
6
7

Max. to
TCðF�;l�; c�Þ ¼ Minimize
l;c

TCðF�;l; cÞ: ð28Þ
The essence of the Newton-Quasi method is to find a search direction in each iteration. Then try different step length along
this direction for a better solution until the tolerance is small enough. We designate the vector ~X consisting of l and c. We
construct the respective gradient ~rTCð~X0Þ, which consists of oTC/ol and o TC/oc. Next, we use the Newton-Quasi method to
find the global minimum expected cost. Let the corresponding solution be denoted by (l*,c*). The steps of the Newton-Quasi
method can be summarized as follows:

1. Let ~X0 ¼ ½l; c�T .
2. Set the initial trial solution for ~X0, and compute TCð~X0Þ.
3. Compute the cost gradient ~rTCð~X0Þ ¼ ½oTC=ol; oTC=oc�T j~X0

and the cost Hessian matrix
Hð~XÞ ¼ o2TC=ol2 o2TC=oloc
o2TC=ocol o2TC=oc2

" #
:

4. Find the new trial solution ~Xnþ1 ¼ ~Xn � ½Hð~XÞ��1~rTCð~XnÞ.
5. Set n = n + 1 and repeat steps 2–4 until joTC/olj < e1 and joTC/ocj < e2, where e1 = e2 = 10�6 are the tolerances.
6. Find the global minimum value TCð~XT

nÞ ¼ TCðl�; c�Þ.
-Quasi method in searching the optimal solution (k = 1.2, a = 0.05, b = 3.0).

r of iterations TC(F*,l,c) F* l c Max. tolerance

144.9280850 6 1.50000000 0.50000000 –
143.6933638 6 1.27089080 0.30859284 13.680
143.5658694 6 1.31542201 0.36403603 3.430
143.5570658 6 1.31318749 0.39981980 0.443
143.5568332 6 1.31340494 0.40684769 0.064
143.5568333 6 1.31341033 0.40708021 1.989 � 10�3

143.5568333 6 1.31341033 0.40708039 1.549 � 10�5

143.5568328 6 1.31341034 0.40708033 5.14 � 10�7

lerance = Max{jo(TC)/olj, jo(TC)/ocj}.



Table 5
Newton-Quasi method in searching the optimal solution (k = 1.2, a = 0.1, b = 2.0).

Number of iterations TC(F*,l,c) F* l c Max. tolerance

0 149.8131619 5 1.50000000 0.500000000 –
1 149.2752325 5 1.36276454 0.383504737 8.212
2 149.2617250 5 1.37244177 0.423341664 0.741
3 149.2613561 5 1.37236902 0.433307170 0.072
4 149.2613557 5 1.37237423 0.433715952 0.003
5 149.2613559 5 1.37237424 0.433716671 4.83 � 10�6

6 149.2613555 5 1.37237422 0.433716533 1.708 � 10�6

7 149.2613556 5 1.37237424 0.433716552 1.655 � 10�6

8 149.2613556 5 1.37237425 0.433716641 6.050 � 10�7

Max. tolerance = Max{jo(TCj)/olj, jo(TC)/o cj}.
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Using the results shown in the second last column of Table 1, we select k = 1.2, a = 0.05, b = 3.0 and the initial trial solution
(F*,l,c) = (6,1.5,0.5) with initial value TC(F*,l,c) = 144.928. We apply the algorithm of the Newton-Quasi method as men-
tioned above. After seven iterations, Table 4 clearly shows that the minimum expected cost converges to the solution
(F*,l*,c*) = (6,1.31341034,0.40708033) with value 143.5568328. Next, we utilize the results of Table 2, we select k = 1.2,
a = 0.1, b = 2.0 and the initial trial solution (F*,l,c) = (5,1.5,0.5) with initial value TC(F*,l,c)=149.813. The algorithm of the
Newton-Quasi method is used. The numerical results after eight iterations are shown in Table 5. The minimum expected cost
converges to the solution (F*,l*,c*) = (5,1.37237425,0.433716641) with value 149.2613556.

Finally, we employ the results of Table 3, that is, we select k = 1.4, a = 0.05, b = 3.0 and the initial trial solution
(F*,l,c) = (13,1.8,0.1) with initial value TC(F*,l,c)=146.847. Again, we use the Newton-Quasi method as mentioned
above. After nine iterations, Table 6 shows that the minimum expected cost converges to the solution (F*,l*,c*) =
Table 6
Newton-Quasi method in searching the optimal solution (k = 1.4, a = 0.05, b = 3.0).

Number of iterations TC(F*,l,c) F* l c Max. tolerance

0 146.8465179 13 1.8000000 0.10000000 –
1 145.4015473 13 1.50828140 0.19512111 11.841
2 145.0161744 13 1.60459867 0.22598991 7.130
3 145.0072276 13 1.60203890 0.24449565 0.864
4 145.0070504 13 1.60256213 0.24762375 0.107
5 145.0070498 13 1.60257251 0.24770760 0.003
6 145.0070498 13 1.60257251 0.24770769 3.170 � 10�6

7 145.0070498 13 1.60257250 0.24770765 1.420 � 10�6

8 145.0070499 13 1.60257254 0.24770766 2.890 � 10�6

9 145.0070496 13 1.60257253 0.24770768 6.720 � 10�7

Max. tolerance = Max{jo(TC)/olj, jo(TC)/ocj}.

Fig. 1. State-transition-rate diagram for the F-policy M/M/1/K queueing system with server breakdowns and an exponential startup time.
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(13,1.60257253,0.24770768) with value 145.0070496. Tables 4–6 show that the cost TC(F*,l*,c*) is actually lower than
the initial cost. Furthermore, we may conclude that the Newton-Quasi method is quite useful and easy to implement
in finding the optimum values l* and c*.
6. Conclusions

In this paper, the matrix analytical technique is used to derive the steady-state probabilities. System performance mea-
sures can be obtained from steady-state results. Following the construction of the total expected cost function per unit time,
we employ two methods to obtain the optimum values F*, l* and c* that yield the minimum cost. One method is the direct
search method which is used to find the optimal threshold F. The other is the Newton-Quasi method which is applied to ob-
tain the optimal values of the continuous variables l and c if F* has been decided. Specifically, an efficient procedure (New-
ton-Quasi method) is developed for searching the optimum values (F*,l*,c*) that minimizes the cost function. We also
provide some numerical experiments in which the system performance measures are evaluated under optimal operating
conditions.
Appendix. Differential equations for the F-policy M/M/1/K queueing system with server breakdowns and an
exponential startup time

Referring to the state-transition-rate diagram for the F-policy M/M/1/K queueing system with server breakdowns and an
exponential startup time shown in Fig. 1, we consider the transitions occurring during [t, t + dt]. Using the birth and death
process, we shall obtain the differential equations for the controlling arrivals systems:
dP0;nðtÞ
dt

¼ �bP0;nðtÞ þ aP1;nðtÞ; 1 6 n 6 K; ðA:1Þ

dP1;0ðtÞ
dt

¼ �cP1;0ðtÞ þ lP1;1ðtÞ; ðA:2Þ

dP1;nðtÞ
dt

¼ �ðlþ aþ cÞP1;nðtÞ þ lP1;nþ1ðtÞ þ bP0;nðtÞ; 1 6 n 6 F; ðA:3Þ

dP1;nðtÞ
dt

¼ �ðlþ aÞP1;nðtÞ þ lP1;nþ1ðtÞ þ bP0;nðtÞ; F þ 1 6 n 6 K � 1; ðA:4Þ

dP1;KðtÞ
dt

¼ �ðlþ aÞP1;KðtÞ þ kP2;K�1ðtÞ þ bP0;KðtÞ; ðA:5Þ

dP2;0ðtÞ
dt

¼ �kP2;0ðtÞ þ cP1;0ðtÞ þ lP2;1ðtÞ; ðA:6Þ

dP2;nðtÞ
dt

¼ �ðkþ aþ lÞP2;nðtÞ þ cP1;nðtÞ þ kP2;n�1ðtÞ þ lP2;nþ1ðtÞ þ bP3;nðtÞ; 1 6 n 6 F; ðA:7Þ

dP2;nðtÞ
dt

¼ �ðkþ aþ lÞP2;nðtÞ þ kP2;n�1ðtÞ þ lP2;nþ1ðtÞ þ bP3;nðtÞ; F þ 1 6 n 6 K � 2; ðA:8Þ

dP2;K�1ðtÞ
dt

¼ �ðkþ aþ lÞP2;K�1ðtÞ þ kP2;K�2ðtÞ þ bP3;K�1ðtÞ; K � 1 ¼ n – F; ðA:9Þ

dP3;1ðtÞ
dt

¼ �ðkþ bÞP3;1ðtÞ þ aP2;1ðtÞ; ðA:10Þ

dP3;nðtÞ
dt

¼ �ðkþ bÞP3;nðtÞ þ aP2;nðtÞ þ kP3;n�1ðtÞ; 2 6 n 6 K � 2; ðA:11Þ

dP3;K�1ðtÞ
dt

¼ �bP3;K�1ðtÞ þ aP2;K�1ðtÞ þ kP3;K�2ðtÞ: ðA:12Þ
If the solutions for the steady-state exist, it must satisfy
lim
t!1

dPi;nðtÞ
dt

¼ 0 where i ¼ 0;1;2;3;
that is, Pi,n(t) is independent of t, and let us define
Pi;n ¼ lim
t!1

Pi;nðtÞ;
then we obtain the steady-state equations for the F-policy M/M/1/K queueing system with server breakdowns and an expo-
nential startup time, which is corresponding to Eqs. (1)–(12).
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