

 國 立 交 通 大 學

電信工程學系

碩 士 論 文

多媒體串列處理器之

分散式記憶體管理單元設計

Distributed Memory Management Unit Design
for Media Stream Processor Architecture

 研 究 生：鄭漳源

 指導教授：闕 河 鳴 博士

中 華 民 國 九十四 年 十 月

多媒體串列處理器之分散式記憶體管理單元設計

Distributed Memory Management Unit Design for

Media Stream Processor Architecture

研 究 生：鄭漳源

指導教授：闕河鳴 博士

Student：Chang-Yuan Cheng
Advisor：Dr. Herming Chiueh

國 立 交 通 大 學

電 信 工 程 學 系 碩 士 班

碩 士 論 文

A Thesis
Submitted to Department of Communication Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master of Science

in
Communication Engineering

October 2005
Hsinchu, Taiwan.

中華民國九十四年十月

 I

多媒體串列處理器之分散式記憶體管理單元設計

研究生：鄭漳源 指導教授：闕河鳴 博士

國立交通大學

電信工程學系碩士班

摘要

 在現今多媒體應用上，影像處理、視訊壓縮、二維和三維繪圖、資料

複製和資料搬移是常見的程序。然而，處理器和記憶體之間的頻寬差距造成

傳輸資料減速。為了縮短現今多媒體影像處理架構上的差距，這篇論文提出

了一個分散式記憶體管理單元。分散式記憶體管理單元包含位址轉換單元和

雙倍資料率記憶體控制器。位址轉換單元提供一個虛擬記憶體機制和用來節

省資料傳輸時間。雙倍資料率記憶體控制器用於簡易地爆發讀取和寫入模

式。從分散式記憶體管理單元實現的結果顯示，當傳送十六百萬位元組資料

量時，提出的位址轉換單元架構比傳統的位址轉換單元速度提升了二百萬

倍。然而，當資料量小於十六百萬位元組時，無位址轉換單元傳輸時間與有

位址轉換單元傳輸時間相比會隨著資料量的增加而增加。本篇論文便是針對

現今多媒體應用架構中，用微量增加的電路面積和功率消耗以換取資料傳輸

效能的躍進。

 II

Distributed Memory Management Unit Design
for Media Stream Processor Architecture

Student: Chang-Yuan Cheng Advisor: Dr. Herming Chiueh

Department of Communication Engineering

National Chiao Tung University

Hsinchu, Taiwan

Abstract

In modern multimedia applications such as image processing, video

compression, two-dimension and three-dimension graphics, data copying and data

moving are common processes. However, the bandwidth gaps between processors and

memory cause the slow down of transition data. In order to bridge the gap, this thesis

proposed a distributed memory management unit (DMMU) for modern media

processing architectures. The DMMU consists of address translation unit (ATU) and

double data rate (DDR) memory controller. The ATU provides a virtual memory

mechanism, and been used to save data transition time. The DDR memory controller

is used in simply burst read and burst write mode. The result of DMMU

implementation shows that proposed ATU architecture provides 2 million times

speed-up than conventional ATU when transmitted 16MB data size. However, when

the data capacity is less than 16MB, the proportion of the transition time without

ATU/ ATU is increased for the data capacity. The proposed design provides a leap up

in data transition for modern media processing architecture with a tiny overhead in

circuit area and power.

 III

Acknowledgments

 本篇論文能夠順利完成，首先最要感謝的是我的指導教授闕河嗚博士。闕老

師在我研究上遇到問題時總能適時的提供意見，使我能得以突破窘境。另外，老

師注重的是學生能夠獨立思考問題與面對問題時該有的處理態度與應變能力，使

得我在研究領域上獲益良多。

 其次，感謝偉閔、庭瑋、明崇、芳如四位同學在我的研究與生活上，給予的

幫助與鼓勵，使我能夠獲得更多的知識與技術。在此也謝謝祐誠、景鴻學長在工

作站管理與研究領域的指導，幫助我能夠順利的解決問題，也感謝明治、志軒、

書豪、智閔學長與實驗室學弟對我的幫助，讓我有一個難忘的研究生涯。

 最後，我要感謝父母的支持與栽培與兄姊的鼓勵，和其他關心我的朋友，唯

有藉著大家的鼓勵，才能造就今日的我。

 我誠心感謝上述提攜或幫助過我的你們，謝謝大家並祝福大家。

 鄭漳源

 中華民國九十四年十月於新竹

 IV

Contents

中文摘要
English Abstract
Acknowledgments
Contents
List of Tables
List of Figures

Chapter1 Introduction _________

1.1 Motivation
1.2 Organization

Chapter2 DMMU Design Architecture
2.1 Data Copying and Data Moving in Address Translation Unit
2.2 Distributed Memory Management Unit
2.3 Address Translation Unit
2.4 DDR Memory Controller

2.4.1 Device Operations of DDR SDRAM
2.4.2 Mode Register Definition of DDR SDRAM
2.4.3 Block Diagram of DDR Memory Controller
2.4.4 The Main Controller Module
2.4.5 Summary

Chapter3 Implementation
3.1 Computer-Aided Design Flow
3.2 Implementation of DMMU Interface
3.3 Circuit Verification
3.4 Functional Verification
3.5 Performance Evaluation

3.5.1 Comparison
3.6 Summary

Chapter4 Conclusions ____
Bibliography

Ⅰ

Ⅱ

Ⅲ

Ⅳ

V
Ⅵ

1
1
4
5
5
7
9
12
12
15
16
17
19
20
20
23
25
29
45
45
49
51
52

 V

List of Tables

Table 2.1 The supervisor and users access privileges and correspond to PR bits
Table 3.1 The signals on the DMMU interface
Table 3.2 The results of the ATU synthesis
Table 3.3 The results of the DMMU synthesis
Table 3.4 The results of the P&R in core utilization = 0.7
Table 3.5 The results of the P&R in core utilization = 0.8
Table 3.6 The core area of the P&R results between the different core utilization

and clock frequency
Table 3.7 The specification table of the design
Table 3.8 The different parameter values during initial states
Table 3.9 The different parameter values during command states
Table 3.10 The test bench of the ATU
Table 3.11 The clock period of the micro-controller, the DMMU and DDR
Table 3.12 The data transition time of data copying and data moving in the

different data capacity without ATU
Table 3.13 Total access time of two ATU modes

12
24
26
26
27
27
27

28
30
30
33
46
46

48

 VI

List of Figures

Figure 1.1 The performance gap of CPU and memory
Figure 1.2 Bandwidth hierarchy of an imagine stream architecture
Figure 1.3 Time to complete a series of memory references without access

scheduling
Figure 1.4 Time to complete a series of memory references with access

scheduling
Figure 1.5 Memory access scheduler architecture
Figure 2.1 The page table of traditional address translation
Figure 2.2 The proposed ATU mechanism in the DMMU
Figure 2.3 The proposed DMMU micro-architecture in the streaming memory

system of the imagine stream processor
Figure 2.4 The proposed memory system
Figure 2.5 The block diagrams of the DMMU micro-architecture
Figure 2.6 The flows of the address translation
Figure 2.7 The stream register file organization
Figure 2.8 The translation table of the address translation mode
Figure 2.9 The block diagram of DDR SDRAM 512Mb B-die
Figure 2.10 The simplified state diagram of the DDR SDRAM
Figure 2.11 The mode register set of DDR SDRAM
Figure 2.12 The functional block diagram of the DDR memory controller
Figure 2.13 Initial state diagram of DDR memory controller
Figure 2.12 The command state diagram of DDR memory controller
Figure 3.1 The cell-base design flow
Figure 3.2 The physical level design flow
Figure 3.3 The DMMU interface
Figure 3.4 Layout of DMMU
Figure 3.5 The operation environment of DMMU functional verification
Figure 3.6 The initial state machine of DDR memory controller
Figure 3.7 The burst write and burst read mode of DDR memory controller
Figure 3.8 Access data (PR = 2’b00) under supervisor mode in the DMMU
Figure 3.9 Access data (PR = 2’b01) under supervisor mode in the DMMU
Figure 3.10 Access data (PR = 2’b10) under supervisor mode in the DMMU
Figure 3.11 Access data (PR = 2’b11) under supervisor mode in the DMMU
Figure 3.12 Access data (PR = 2’b00) under users mode in the DMMU
Figure 3.13 Access data (PR = 2’b01) under users mode in the DMMU

1
2
3

3

3
6
6
8

8
9
9
10
11
13
15
16
17
18
19
21
22
23
28
29
31
32
35
36
37
38
40
41

 VII

Figure 3.14 Access data (PR = 2’b10) under users mode in the DMMU
Figure 3.15 Access data (PR = 2’b11) under users mode in the DMMU
Figure 3.16 Data capacity over limitation in the DMMU
Figure 3.17 Test configuration environment
Figure 3.18 The access time versus the data capacity for different ATU
Figure 3.19 The proportion of the access time without ATU/ATU versus the

different data capacity

42
43
44
45
48
49

 1

.
Chapter 1

Introduction

1.1 Motivation

In recent years, microprocessor speed increases at 60% per year, and DRAM
speed increases at 7% per year. The performance gap of CPU and memory is shown in
Figure 1.1. Data bandwidth gap between CPU and memory becomes larger and larger.
In order to reduce the gap, there are many improvement methods between CPUs and
memory. Caches, memory hierarchies and memory system of streaming processor are
examples. Other methods are recent developments such as 128-bit memory channels,
multiple memory channels, DDR SDRAM, etc, for increasing the memory bandwidth
[1].

Figure 1.1 The performance gap of CPU and memory.

Multimedia applications are popular nowadays. They are characterized by large

available parallelism, little data reuse, and high computation to memory access [2][9].
In high computation to memory, data are continuously loaded to CPUs and stored to
memory. Therefore, performance gap between CPU and memory will worsen data
bandwidth more severely in multimedia applications. In related researches of
multimedia applications, many kinds of architecture are used to solve the problem
[3][4]. For instance, the imagine stream processor is proposed by Stanford University
[5].

 2

As shown in Figure 1.2, the imagine stream processor is characterized by data
bandwidth hierarchy. It scales the provided bandwidth across the levels of the storage
hierarchy. The different bandwidths are expressed among the local register files (LRF),
stream register file (SRF) and SDRAM, respectively. They are used to solve the
performance gap between ALU cluster and memory. When access instructions are
issued in stream processor, data must be loaded to SRF or stored to SDRAM [6].
Therefore, data copying and data moving are needed to frequently load and store data
in imagine stream processor.

SDRAM

St
re

am
 R

eg
is

te
r F

ile ALU Cluster

ALU Cluster

ALU Cluster

ALU Cluster

LRF

2GB/s 32GB/s 544GB/s

St
re

am
in

g
m

em
or

y

SDRAM

SDRAM

SDRAM

Figure 1.2 Bandwidth hierarchy of an imagine stream architecture [6].

In order to save the access time of data loading and storing, the memory access
scheduling architecture is proposed in the memory system of the stream processor [7].
It is used to schedule memory references to optimize memory system. Suppose the
sequence is composed of eight memory references as shown in Figure 1.3. Each
memory reference consists of bank, row and column. Every access is needed 3 cycles
to precharge a bank, 3 cycles to access a row of a bank, and 1 cycle to access a
column of a row. If these eight memory references are performed in order, they will
take 56 cycles to complete the total eight references. If eight memory references are
scheduled as shown in Figure 1.4, they will totally take 19 cycles [7].

As shown in Figure 1.5, memory access scheduling is the process of ordering

the DRAM operations (bank precharge, row activation, and column access) necessary
to complete the set of currently pending memory references. Through reordering
DRAM operations, the memory system can save access time on waiting previous
process [7].

 3

Figure 1.3 Time to complete a series of memory references without access scheduling
[7].

1 2 3 4 5 6 7 8 910111213141516171819
P

P

A

A

C

C
P

P
C

C
A C

C

C

CA
(0.0.0)
(0.1.0)
(0.0.1)
(0.1.3)
(1.0.0)
(1.1.1)
(1.0.1)
(1.1.2)

Time (Cycles)

Figure 1.4 Time to complete a series of memory references with access scheduling
[7].

Precharge0

Row
Arbiter0

Column
Arbiter

Row
ArbiterN

PrechargeN

Address
Arbiter

DRAM Operations

Bank N Pending References

Bank 0 Pending References

Memory References

Memory Access
Scheduler Logic

VL/S Row Col Data State

VL/S Row Col Data State

Figure 1.5 Memory access scheduler architecture [7].

Furthermore, when many users simultaneously access data that are included of

video, audio, still images and other data-intensive data, data copying and data moving
are more common operations. Therefore, they will waste much time to load and store

 4

even if they use memory access scheduling. On the other hand, fast data copying and
data moving are needed on streaming processor. In order to improve the performance
of data transition in the imagine stream processor, a distributed memory management
unit (DMMU) is proposed in this thesis. DMMU includes with address translation
unit (ATU) and the DDR memory controller.

In traditional address translation, the translated table only defines the mapping

physical address, such as page table [1][13]. The page corresponds to physical address
is fixed, so that data copying and data moving are needed to transit to required address.
Therefore, if the instruction of data transition is issued, data is transited from original
physical address to goal physical address. However, this proposed ATU contains a
novel segment table mechanism, which users can flexibly define, for fast data copying
and data moving. As the instruction of data transition is issued, the goal physical
address is invariant. The segment needs to be mapped from the original segment to
target segment. Therefore, the same data is found through the segment access. The
advantage of the proposed ATU saves the data transition time through segment
mapping.

In this thesis, one of our goals is to design an efficient ATU. The flexible

segment table which consists of variable segment size, protection privilege, boundary
check, and validity reforms the data transition mechanism. Take advantage of the
proposed ATU to achieve the fast data copying and data moving. The other of our
goals is to integrate ATU and DDR memory controller in stream processor.

1.2 Organization

This thesis is organized as following: In Chapter 2, the detail design of the
distributed memory management unit is presented.

In Chapter 3, the implementation of the DMMU is described in detail. The

functional verification and performance evaluation are presented.

In Chapter 4, the conclusions of DMMU and the future work are presented.

 5

Chapter 2

DMMU Design Architecture

The architecture of the distributed memory management unit (DMMU) design
is presented in this chapter. It is composed with an address translation unit (ATU) and
a DDR memory controller. In Section 2.1, the improved of data copying and data
moving mechanisms between the proposed address translation and a traditional
address translation are presented. In Section 2.2, the DMMU micro-architecture is
presented to improve the memory system of the streaming processors. The DMMU
increases the speed of the data transition in streaming processors. The ATU of the
DMMU translates from virtual address to physical address [10]. The basic building
blocks of ATU will be explained in Section 2.3. The DDR memory controller is used
with simply burst read or burst write command [11]. In Section 2.4, the functional
units of the DDR memory controller are expressed for how to operate in read or write
command.

2.1 Data Copying and Data Moving in Address Translation Unit

In traditional address translation, the virtual address is translated to physical
address corresponds to a translated table, such as page table [1][13]. As shown in
Figure 2.1, the virtual address is broken into virtual page number and page offset
[1][13]. At first, the virtual page number corresponds to the entry of the page table. As
the entry is selected, the physical page number of page table is mapped to physical
memory or disk storage. When instruction of load and store are issued, data could be
found at corresponding memory or disk storage. However, when instruction of data
transition is issued, data is transited from original physical address to target physical
address. Because the translated table of the traditional address translation is fixed,
data copying and data moving are needed to transit to required address. The access
time of traditional address translation is wasted for data transition. Therefore, in order
to save the data transition time, a new address translation is proposed. Data copying
and data moving are not needed to transit, they only need segment mapping.

 6

Valid

Physical page
number

1
1
1
1

1
1

0

0
0

Page table

Virtual page
number

Disk storage

Physical memory

Figure 2.1 The page table of traditional address translation [1][13].

The data transition of the proposed ATU is described in below. The mechanism
transfers from the virtual address to the physical address. The segment base defines
the start location of the DDR SDRAM and the limit base defines the maximum data
capacity, protection mode and validity. The proposed ATU mechanism is shown in
Figure 2.2. The flows of data copying and data moving are described for the operation
process.

Figure 2.2 The proposed ATU mechanism in the DMMU.

 7

For an example, if the instruction of data copying is issued, the micro-controller
loads the segment0 and the limit0 in register files first. Next, the segment0 and limit0
of the register files store into the segment1 and the limit1. After the segment1 and the
limit1 are completed setup, the address would be issued by the micro-controller.
When the micro-controller issues the new address to ATU, the index of the virtual
address will be pointed to the segment1 and the limit1. Then, the virtual address is
transferred to the same physical address of DDR SDRAM. It saves the transition time
for copying data from the block1 to the block2, but it wastes time to access the
segment and limit register files. Finally, the ATU checks the protection bits of the
segment0 and segment1. If the protection modes of the two segments are operated on
“read only”, they will work normally in streaming processing. Else the error will be
generated with an exception in the streaming processing.

The mechanism of data moving is similar to data copying. The only one
different with data copying on the proposed ATU is the original segment0 and limit0
will be updated by the users. The valid bit would be set “low” to refuse the original
access.

 In the above operations of the traditional and the proposed address translation,
determine the access time of data copying and data moving depending on the data
transition. The proposed DMMU is used to increase data transition efficiency in
multimedia applications.

2.2 Distributed Memory Management Unit

The proposed DMMU micro-architecture, which improves data transition time
in the streaming memory system of the media stream architecture, is shown in Figure
2.3. The improved streaming architecture consists of micro-controller, ALU Cluster,
Stream Register Files (SRF), network interface, address translation unit, DDR
memory controller, parcel network and off-chip DDR SDRAM. When stream data is
transmitted between SRF and off-chip DDR SDRAM, the required data is needed to
load and store to SRF. Furthermore, when the stream data is transited between
off-chip DDR SDRAM and off-chip DDR SDRAM, the required data is not needed to
load and store to SRF. The characteristics of the DMMU are variable-sized segment
register files, fast data copying and fast data moving. On the ATU mechanism, the
users can flexibly define the segment sizes for the different data lengths of the media
streaming data. So, the DMMU is the irregular memory access mechanism which can
suit the variable-sizes streaming data.

 8

Figure 2.3 The proposed DMMU micro-architecture in the streaming memory system
of the imagine stream processor.

The proposed memory system which consists of the DMMU and a parcel

network mechanism is shown in Figure 2.4. The DMMU supports in-memory address
translation. When data is copied and moved in the same off-chip memory, the
micro-controller can control the DMMU to save much time to load or store data.
When data is accessed in the different off-chip memory, it would be needed a parcel
network to communicate each other. Parcels are transmitted through a separate
DMMU-to-DMMU interconnection to enable communication without interfering with
host-memory traffic [12][13]. To avoid saturation of the memory bus,
DMMU-to-DMMU communications occur primarily by means of a distinct high
bandwidth network between the DMMU and DMMU. Through the network
mechanism, it could be easily accomplished on data transition.

Figure 2.4 The proposed memory system.

 9

 The block diagrams of the DMMU micro-architecture are shown in Figure 2.5.
The DMMU consists of the virtual address, register files, control signal, virtual
address to physical address mechanism, physical address and exception in the ATU
and the clock generator, control signal and data signal in DDR memory controller
module.

Figure 2.5 The block diagrams of the DMMU micro-architecture.

2.3 Address Translation Unit

The ATU is an address translation mechanism that translated virtual addresses
to physical addresses [10]. The flows of the address translation are shown in Figure
2.6.

Figure 2.6 The flows of the address translation.

 10

Before the address translation, the boundary of the data length limitation is
needed to decide in our design. The stream register file organization is diagramed in
Figure 2.7 [5]. The SRF contains a 128 KB SRAM organized as 1024 blocks of 32
words of 32 bits each. So the minimum boundary of the data length limitation must be
more than 128 KB. Since the minimum boundary of the data length limitation is
32’h00007FFF. The maximum boundary of the data length limitation is dependant on
the data capacity of the DDR SDRAM. For an instance, when the data capacity of
DDR SDRAM is 256 MB, the maximum boundary of the data length limitation is
32’h03FFFFFF. However, the maximum limitation is not the entire block size of the
DDR SDRAM. It can be flexible defined according to users. For an instance, it could
be 256 MB, 64 MB or 512KB …etc. It only normally translates from virtual address
to physical address between the maximum and minimum boundaries.

Figure 2.7 The stream register file organization [5].

From Figure 2.6, the basic function units of the ATU consist of the virtual

address, register files, control signal, virtual address to physical address mechanism,
physical address and exception. The virtual address is composed with 32 bit. The
register files are used to store the segment register files, limit register files, protection
modes and validity. The segment register files decide the start location of the physical
memory and the limit register files are checked of the virtual address offset which
belongs to the limitation boundary. The protection modes are used to decide the
privileges of the users and supervisor. The valid bit is represented the validity of the

 11

segment. The control signal has four functions, which are the translation mode, user
privilege, memory enable and read/write command. The translation modes are
classified of address translation or without address translation. If the translation mode
is the address translation mode, the virtual address will be translated to the physical
address through segment mapped. The other translation mode, the without address
translation mode is used to debugging or initialization, the virtual address is
completely mapped to the physical address. The physical address is composed with 25
bits. The exception is checked of the boundary of the virtual address, segment validity
and access privilege.

The translation table of the address translation mode is shown in Figure 2.8.

The index of the virtual address is used to select a segment of the table. The segment
adds to the offset to form the physical address on Eq 2.1. The exception condition E
for address translation is listed on Eq 2.2. If the offset of the virtual address exceeds
the boundary of the limit registers, it will be sent an error to except this invalid virtual
address. It could avoid mapping to null physical address.

Figure 2.8 The translation table of the address translation mode.

 12

 PA = Segment Base + offset (Eq 2.1)

))limit[27](va[24])limit[4](va[1])limit[3](va[0]E ∧∨⋅⋅⋅∨∧∨∧= (Eq 2.2)

The supervisor and users access privileges and correspond to PR bits are
expressed in table 2.1. When P bit is “high”, it is a supervisor privilege. On this level,
the supervisor could read/write or read only with R bit is “low” or “high” and users
could not access data on the situation. When P bit is “low”, users could read/write or
read only with R bit is “low” or “high”. The supervisor could read/write in the
privilege.

Table 2.1 The supervisor and users access privileges and correspond to PR bits.

Encoding of PR Bits Supervisor Privilege User Privilege

00 RW(read-write) RW

01 RW RO(read only)

10 RW None

11 RO None

2.4 DDR Memory Controller

This section described the elaboration of the DDR memory controller. The
device operations of DDR SDRAM are reviewed. The initialization and command
operations of DDR memory controller are showed in this Section. The command
modes of our DDR memory controller support burst write and burst read modes.

2.4.1 Device Operations of DDR SDRAM

DDR SDRAM is the double data rate synchronous dynamic random access
memory. From the speed increasing of the memory, DDR SDRAM transfers data on
both the rising and falling edge of the clock [14][15][16]. The device operations and
timing diagram of DDR SDRAM are referenced by SAMSUNG’s products [17]. The
DDR SDRAM 512Mb B-die (x4, x8, x16) is showed for example. As shown in Figure
2.9, SDRAM is operated with complicated signals which consist of address, bank,
chip select, row address strobe, column address strobe, write enable, clock, clock
enable, data mask, data, and data strobe. By controlling those signals, the DDR
SDRAM could be operated normally. Therefore, DDR memory controller would be
used to simplify these numerous signals.

 13

CK,CK

LWE

CK,CK CS RAS CAS WE

CK,CK
RAS

R
A

S

CK,CK

CAS

LWE

Figure 2.9 The block diagram of DDR SDRAM 512Mb B-die [17].

The simplified state diagram of the DDR SDRAM is shown in Figure 2.10 [17].

The device operations of DDR SDRAM are briefly described in below. They consist
of state modes and access functionalities [17].

Power-up & Initialization Sequence: DDR SDRAM must be powered up and
initialized before reading and writing command. When the initialization sequence is
completed, the DDR SDRAM is ready to normal operation.

Mode Register Set (MRS): The mode register set stores control signals for
operating modes of DDR SDRAM. It consists of Latency CAS , addressing mode, burst
length, test mode, DLL reset. Users can define the information to control MRS
modes.

Extended Mode Register Set (EMRS): The extended mode register set stores
control signals for enabling or disabling DLL, and output driver impendence. The
extended mode register set must be defined after power up for enabling or disabling
DLL.

 14

Precharge: The precharge command is used to precharge or close a bank. The
precharge command can be used to precharge each bank respectively or all banks
simultaneously.

No Operation (NOP) & Device Deselect: The operation of device deselect is
used to ignore all inputs. NOP must wait 200us delay to finish the current operation
before precharge command is issued.

Row Active: When banks are selected, the row activate would proceed with next
step. Before write and read command are issued, row active must be ready.

Read Bank: This command is used after the row active command to initiate the
burst read of data. The length of the burst and the CAS latency time will be
determined depending on MRS mode.

Write Bank: This command is used after the row activate command to initiate the
burst write of data. The length of the burst will be determined depending on MRS
mode.

The essential functionality is required for the DDR SDRAM device. They are
included burst read operation, read interrupted by a precharge, write interrupted by a
write, write interrupted by a read & dm, write interrupted by a precharge & dm, burst
stop, dm masking, read with auto precharge, write with auto precharge, auto refresh &
self refresh and power down. We will describe two operations that are burst read
operation and burst write operation.

Burst Read Operation: Burst read operation in DDR SDRAM is continuously
reading data. The address inputs (A0~A9) determine the starting address for the burst.
The mode register sets type of burst (sequential or interleave) and burst length (2, 4, 8)
are decided. The first output data is available after the CAS latency from the read
command.

Burst Write Operation: Burst write operation in DDR SDRAM is continuously
writing data. The mode register sets type of burst (sequential or interleave) and burst
length (2, 4, 8) are decided. There is no write latency relative to DQS required for
burst write cycle.

 15

Power
On

Precharge
PREALL

MRS
EMRS

Idle Auto
Refresh

Self
Refresh

Active
Power
Down

Precharge
Power
Down

Burst
Stop

Read

Read A

Pre
Charge

PREALL

Writ A

Write

Row
Active

Power
Applied

MRS

REFS
RESX

REFA

CKEL
CKEH

ACT
CKEH

CKEL

Write

Writ A Read A

Read ReadWrite

Read

PRE

PRE PRE

Read A
Read A

Writ A

PRE

Automatic Sequence
Command Sequence

Figure 2.10 The simplified state diagram of the DDR SDRAM [17].

2.4.2 Mode Register Definition of DDR SDAM

In order to understand the DDR memory controller how to execute the read or
write command, the mode register set of DDR SDRAM must be defined. The mode
register which stores data for controlling the various operation modes of DDR
SDRAM is shown in Figure 2.11. The mode register set is included burst length,
addressing mode, burst type, CAS Latency, test mode, DLL reset [17].

The burst length uses A0~A2 to express three classifications of data length that

are two, four or eight blocks of data. Addressing mode uses A3 to represent two
classifications of burst types that are sequential and interleave.CAS Latency is the
abbreviation of column address strobe latency that is meant read latency from column

 16

address. The CAS Latency uses A4~A6 to represent 2, 2.5, or 3 clock cycles of CAS
latency. A7 is expressed normal mode or test mode. DLL is the abbreviation of
dynamic link library.A8 is used to control DLL reset. The parameters are eight blocks
of data, sequential, and Latency CAS = 2, respectively. The parameter of data width is
32 bits on the user side and a half of data width is 16 bits on the DDR side.

Latency CAS
Figure 2.11 The mode register set of DDR SDRAM [17].

2.4.3 Block Diagram of DDR Memory Controller

The DDR memory controller which is combined with the ATU is used to
simply read and write command in streaming processor. The functional block diagram
of the DDR memory controller is shown in Figure 2.12. It consists of the main
controller module, the signal generation module, the data path module and the clock
generator module. The main controller module, which has a refresh counter, an initial
and a command state machine are used to control the operation states of the DDR
SDRAM. The signal generation module generates addresses, banks and control
signals to DDR SDRAM. The data path module design interfaces between the DDR
with a 16-bit data bus, and the bus master with a 32-bit data bus. The pattern
generator generates two clock signals, one is clk (133MHz) and the other is clk2x
(266MHz). The ddr_clk and ddr_clkn which are used to control active situations of
DDR SDRAM are generated by clock generator. In next section, the parameters of
mode register set in DDR SDRAM are defined.

 17

Figure 2.12 The functional block diagram of the DDR memory controller.

2.4.4 The Main Controller Module

Before memory access could be executed, DDR SDRAM needs to initialize by
a sequence of commands [17]. The INIT_FSM module deals with DDR SDRAM
initialization. The initial state diagram of the DDR memory controller is shown in
Figure 2.13. At first, the circuit must be reset. After reset, the stable situation of
system will be checked. In order to steady power and clock, the delay is needed 200
us. After power and clock are stable, the NOP and precharge command are issued,
respectively. The initialization starts with the precharge all banks. Through EMRS
DLL enable, MRS DLL reset, Precharge all banks, first Auto Refresh, second Auto
Refresh and MRS, the initial finite state machine goes to ready state and remains for
the normal memory access. After initialization of state machine is completed, the
write and read command are issued by command finite state machine [11].

 18

Figure 2.13 Initial state diagram of DDR memory controller.

The command state diagram of the DDR memory controller is shown in Figure

2.14. It deals with read, write and refresh of the DDR. During reset, the CMD_FSM
state machine is initialized to idle. The Read/Write/Refresh cycle are operated in the
command state machine, which performs read data from DDR SDRAM, write data to
DDR SDRAM or auto refresh DDR SDRAM. The rows need to be selected before
they could be accessed. However, only one row in the same bank could be selected at
a time. Active command is used to select the rows and precharge (or the auto
precharge hidden in the write and read commands as used in this design) is used to
close the rows. When issuing the commands for opening or closing the rows, both row
address and bank address need to be provided [11].

 19

Figure 2.14 The command state diagram of DDR memory controller.

2.5 Summary

 The proposed DMMU micro-architecture, which improves data transition time
in the streaming memory system of the media stream architecture, is introduced in this
chapter. The operation processes of data copying and data moving is established. The
ATU is described with data copying and data moving mechanism, variable segment
size, protection privilege, boundary check, and validity. The DDR memory controller,
which contains initial state and command state operation, supports simple burst write
and burst read mode. The implementation of the DMMU which consists of circuit
verification, function verification, and performance evaluation will be presented in
next chapter.

 20

Chapter 3

Implementation

The implementation of the DMMU architecture is expressed in this chapter. In
Section 3.1, the CAD flow is introduced to understand the procedures of our design.
The implementation of DMMU interface is demonstrated in Section 3.2. The
verifications of the layout and the specification table are shown in Section 3.3. The
functional verification and the performance evaluation are presented in Section 3.4
and 3.5, respectively. Finally, a summary is addressed in Section 3.6.

3.1 Computer-Aided Design Flow

The cell-base IC design flow is used to complete the design in the DDMU. The
three levels of the design flow are shown in Figure 3.1 [1]. Our design is described
with a behavioral level, a structural level and a physical level. The three levels are
introduced in below.

Behavioral level: When the block diagram of the architecture is designed, it must be
considered the behavior mode. Not only functions are right in the design, but also the
structural level and the physical level are estimated simultaneously.

Structural level: The behavior mode of the design architecture is described by
Verilog HDL (hardware description language). After the coding is correctly verified,
the functional waveform of our design is simulated by Spring Soft Debussy. When the
behavior simulation is completed, the logic synthesis is continued to transfer from
Register-Transfer-Level (RTL) to gate-level netlists by Synopsys Design Compiler.
We set the synthesis environments that are included operating environment,
optimization constraints and optimization directives. We determine the critical
constraints which area, power and timing must achieve the requirement of our design.
Before the next level, the pre-layout simulation needs to check the netlists. If the
waveform of the gate-level simulation is right, it represents that the structural level is
completed. Else we would rebuild the RTL circuits and repeat the above steps.

 21

Physical level: When we get the gate-level netlists, the next step of the design flow is
generating the layout of DMMU. We use the Electronics Design Automation (EDA)
tool to auto place and route (P&R) the circuit by Synopsys Astro. The physical level
design flow is shown in Figure 3.2. These steps which include the design setup, the
floorplanning, timing setup, post-placement optimization, clock tree synthesis, routing,
design for manufacturing, design rule checking (DRC) & layout versus schematic
(LVS), post-layout simulation and tape out. If there is any error in the verifications,
the steps floorplanning, placement, or re-design the architecture need to be iterated.
Through the step-by-step flow, the transistor-level simulation is essential to analyze
power and check timing. The design has been gone through the cell-based design flow
to produce GDSII layout file, which can be fabricated in any foundry.

Figure 3.1 The cell-base design flow.

 22

Figure 3.2 The physical level design flow.

 23

3.2 Implementation of DMMU Interface

The input and output ports of DMMU interface are expressed in Figure 3.3. The
signals and their functions are described in Table 3.1. The input ports include clock,
reset, address, control signals, register files and data inout. The output ports include
ATU exception, DDR SDRAM control signals, DDR clock, DDR address, DDR
banks, and DDR data inout.

Figure 3.3 The DMMU interface.

 24

Table 3.1 The signals on the DMMU interface.
Signal Name IO Description

clk input System clock
clk2x input The double frequency of the system

clock
reset_n input This active low signal resets the

system
addr[31:0] input System address
direct_n input Without address translation mode or

with address translation mode
sumode input Supervisor mode or user mode

mem_enable input Memory enable
r_wn input Read or write at r_wn active high or

low
seg_lim [31:0] input The input of the segment base signal

and the limit base signal
seg_lim_sw input Switch the input signal of the selecting

segment base or limit base
seg_lim_sel [3:0] input Select an index block of the segment

base and the limit base
sel [3:0] input Select the chip of the DDR memory

module
sys_dmsel [3:0] input System data mask select during DDR

write
sys_dly_200us input This active high signal indicates that

the DDR SDRAM has gone through
the 200us delay for power and clock
stabilization

sys_adsn input Active low system interface address
strobe. This pin indicates the start of a
bus master cycle

sys_rdyn output Active low ready signal (for both
read/write cycles)

sys_init_done output This active high signal indicates that
the DDR SDRAM initialization is
completed. Until this signal is asserted
no READ/WRITE to be performed.

 25

ddr_dqm[1:0] output DDR SDRAM data bus mask when
high, masks write data

ddr_wen output DDR write enable
ddr_rasn output DDR row address strobe

cs0 output DDR sdram chip select chip0
cs1 output DDR sdram chip select chip1
cs2 output DDR sdram chip select chip2
cs3 output DDR sdram chip select chip3

cke0 output DDR sdram clock enable chip0
cke1 output DDR sdram clock enable chip1
cke2 output DDR sdram clock enable chip2
cke3 output DDR sdram clock enable chip3

ddr_casn output DDR column address strobe signal
ddr_ba[1:0] output DDR bank address

ddr_add[12:0] output DDR address
ddr_clk output DDR clock
ddr_clkn output DDR negated clock
invalid output Address valid

unmapped output Address mapped
data[31:0] inout System data in/out

ddr_dq[15:0] inout DDR data in/out
ddr_dqs[1:0] inout DDR data strobe

3.3 Circuit Verification

 In our design, the DMMU works at clock frequency of 133MHz. In this section,
we will discuss area/gate-counts/power versus different clock frequency which
consists of 325 MHz, 300 MHz, 266 MHz, 200 MHz and 133 MHz. The EDA tools
(Synopsys Design Compiler & Astro) are used to estimate the results of synthesis and
P&R. In different clock frequency, area, gate-counts and power are expressed in Table
3.2 and Table 3.3. When clock frequency rises from 133 MHz to 325 MHz, area and
gate-counts increase insignificantly. It represented that the synthesis elements are
almost the same. Furthermore, power is equal to fCV2, so power increases in
proportion to frequency. The power of DMMU grows from 39mW to 94mW in the
synthesis result. Therefore, the results of synthesis are represented that the clock
needs to increase under the reasonable power range.

 26

Table 3.2 The results of the ATU synthesis.
Clock Frequency Area (um2) Gate Counts Power (mW)

133 MHz 125072.289062 12532 20.2765
200 MHz 126606.195312 12685 30.4731
266 MHz 127484.968750 12774 40.5217
300 MHz 129959.984375 13021 45.8336
325 MHz 130119.640625 13037 48.4491

Table 3.3 The results of the DMMU synthesis.
Clock Frequency Area (um2) Gate Counts Power (mW)

133 MHz 175009.984375 17535 39.1006
200 MHz 175672.328125 17602 58.6705
266 MHz 176178.281250 17653 78.1133
300 MHz 177299.359375 17765 88.1455
325 MHz 177671.875000 17802 94.7326

The results of the P&R in the different core utilization are listed in Table 3.4

and Table 3.5. When the clock frequency is increased from 200 MHz to 325 MHz, the
arriving time of DMMU will decrease. But the circuits may not meet the spec in the
higher clock frequency. On the other hand, when the test bench is operated in the
higher clock frequency, the errors may be generated in the post-layout simulation. But,
when the circuits are synthesized with high clock frequency environment, it could be
normally operated in the lower clock frequency. Through the results of our testing
verification, the post-layout simulation in the clock frequency: 200 MHz of the
DDR400 is normally worked by the clock frequency of the synthesis circuits: 300
MHz. The core area of the P&R results between the different core utilization and
clock frequency is listed in Table 3.6.

 27

Table 3.4 The results of the P&R in core utilization = 0.7.
Clock Frequency (ATU) Arrive Time Slack

200 MHz 5.2728 -0.5595
266 MHz 4.8928 -1.4305
300 MHz 4.9248 -1.7700
325 MHz 4.8358 -2.0403

Clock Frequency (DDR Controller) Arrive Time Slack

200 MHz 2.0052 -0.2040
266 MHz 1.6491 -0.0264
300 MHz 1.5998 -0.1902
325 MHz 1.6176 -0.3372

Table 3.5 The results of the P&R in core utilization = 0.8.

Clock Frequency (ATU) Arrive Time Slack
200 MHz 5.2321 -0.5394
266 MHz 5.1156 -1.5446
300 MHz 5.0839 -1.8783
325 MHz 4.9507 -2.1704

Clock Frequency (DDR Controller) Arrive Time Slack

200 MHz 2.0836 0.1557
266 MHz 1.5947 0.0195
300 MHz 1.6578 -0.3102
325 MHz 1.7014 -0.4211

Table 3.6 The core area of the P&R results between the different core utilization and
clock frequency.

Clock Frequency (DMMU) Core Area (um2)
(core utilization=0.7)

Core Area (um2)
(core utilization=0.8)

200 MHz 250560.3136 214507.9225
266 MHz 252506.2500 217715.5600
300 MHz 254459.7136 223048.3984
325 MHz 255439.2681 223861.4596

 28

The specification table of our design is listed in Table 3.7. We have used EDA
tools which include verilog compiler, the waveform simulation by using Spring Soft
Debussy, the synthesis software by using Synopsys Design Compiler, the layout
generated by using Synopsys Astro, DRC and LVS by using Cadence Calibre. The
technology is using UMC 0.18um Mixed Signal (1P6M) CMOS. The library is using
Artisan SAGE-X Standard Cell Library. The core size of the layout is 0.705 mm2. The
gate count of synthesis result is 17928. The clock frequency is working at 133MHz.
The power dissipation is 48.9mW. The final layout of DMMU is shown in Figure 3.4.

Table 3.7 The specification table of the design.
Technology UMC 0.18um Mixed Signal (1P6M) CMOS
Library Artisan SAGE-X Standard Cell Library
Core Size 0.705 mm2

Gate Count 17928
Clock Frequency 133 MHz
Power Dissipation 48.9 mW

Figure 3.4 Layout of DMMU.

 29

3.4 Functional Verification

After the layout of the DMMU is placed and routed, the GDS-II file is streamed
out. The standard delay format (SDF) and the netlists of the P&R result are also
dumped to test the post-layout simulation. The post-layout simulation of the DMMU
has been tested in below. The operation environment of DMMU functional
verification is shown in Figure 3.5. At functional verification, we test the burst write,
burst read, exception check and boundary check.

Figure 3.5 The operation environment of DMMU functional verification.

In our design, The DDR memory controller is tested at first. The measurement
consists of initial state, burst read and burst write mode. Furthermore, there are two
translation modes which include ATU mode and without ATU mode. In ATU mode,
two protection privileges, which are supervisor level and user level, are represented
access limit. No matter what levels are accessed, the premise that the register files
must be valid. When the data capacity of the segment overflows maximum capacity,
there will be generated an exception signal. The segment and limit register files also
could be flexibly defined by users. Data capacity of DDR SDRAM will influence on
the maximum sizes of the media sources. We have also estimated the performance
evaluation for the access time versus the data capacity in the next section.

Before the circuit is verified, the DDR SDRAM must have been initiated first.

As shown in Table 3.8, the different parameter values of istate are represented i_IDLE,
i_NOP, i_PRE, i_tRP, i_EMRS, i_tMRD, i_MRS, i_AR1, i_tRFC1, i_AR2, i_tRFC2,
and i_ready, respectively.

 30

Table 3.8 The different parameter values during initial states.
Parameters Values

i_IDLE 4'b0000 (16’h0)
i_NOP 4'b0001 (16’h1)
i_PRE 4'b0010 (16’h2)
i_tRP 4'b0011 (16’h3)

i_EMRS 4'b0100 (16’h4)
i_tMRD 4'b0101 (16’h5)
i_MRS 4'b0110 (16’h6)
i_AR1 4'b0111 (16’h7)

i_tRFC1 4'b1000 (16’h8)
i_AR2 4'b1001 (16’h9)

i_tRFC2 4'b1010 (16’h10)
i_ready 4'b1011 (16’h11)

As shown in Table 3.9, the different parameter values of cstate are represented

c_idle, c_tRCD, c_cl, c_rdata, c_wdata, c_c_tRFC, c_tDAL, c_ACTIVE, c_READA,
c_WRITEA, and c_AR, respectively. In chapter 2, from Figure 2.14 shows read
command would be followed to complete by c_idle, c_ACTIVE, c_tRCD, c_READA,
c_cl, c_rdata, and c_idlen. Write command would be followed to complete by c_idle,
c_ACTIVE, c_tRCD, c_WRITEA, c_wdata, c_tDAL, and c_idle.

Table 3.9 The different parameter values during command states.

Parameters Values
c_idle 4'b0000 (16’h0)

c_tRCD 4'b0001 (16’h1)
c_cl 4'b0010 (16’h2)

c_rdata 4'b0011 (16’h3)
c_wdata 4'b0100 (16’h4)
c_tRFC 4'b0101 (16’h5)
c_tDAL 4'b0110 (16’h6)

c_ACTIVE 4'b1000 (16’h8)
c_READA 4'b1001 (16’h9)
c_WRITEA 4'b1010 (16’h10)

c_AR 4'b1011 (16’h11)

 31

At DDR memory controller testing, the initial state of DDR memory controller
is shown in Figure 3.6. When the initial state finishes, the sys_init_done is from low
to high. The procedure of initial state (istate) is contrasted with Table 3.8 and Figure
2.13. The istate is composed with a hexadecimal radix. The burst write and read mode
of DDR memory controller is shown in Figure 3.7. When the write command is issued,
the physical address addressed to DDR memory controller. Address contains row
address, banks selection, and column address. Data is written to SDRAM by double
data rate. The procedure of command state (cstate) is contrasted with Table 3.9 and
Figure 2.14. When the read command is issued, the physical address addressed to
DDR memory controller. Data read from SDRAM by double data rate. The procedure
of command state (cstate) is contrasted with Table 3.9 and Figure 2.14.

Figure 3.6 The initial state machine of DDR memory controller.

G
1

a
d
d
r
[
3
1
:
0
]

p
a
d
d
[
2
4
:
0
]

c
l
k

c
l
k
2
x

d
a
t
a
_
g
e
n
[
3
1
:
0
]

d
d
r
_
a
d
d
[
1
2
:
0
]

d
d
r
_
b
a
[
1
:
0
]

d
d
r
_
c
l
k

d
d
r
_
c
l
k
n

c
s
t
a
t
e
[
3
:
0
]

i
s
t
a
t
e
[
3
:
0
]

d
a
t
a
[
3
1
:
0
]

d
d
r
_
d
q
[
1
5
:
0
]

d
d
r
_
d
q
m
[
1
:
0
]

d
d
r
_
d
q
s
[
1
:
0
]

d
d
r
_
r
a
s
n

d
d
r
_
c
a
s
n

d
d
r
_
w
e
n

d
i
r
e
c
t
_
n

i
n
v
a
l
i
d

m
e
m
_
e
n
a
b
l
e

r
_
w
n

r
e
s
e
t
_
n

s
e
g
_
l
i
m
[
3
1
:
0
]

s
e
g
_
l
i
m
_
s
e
l
[
3
:
0
]

s
e
g
_
l
i
m
_
s
w

s
e
l
[
3
:
0
]

s
u
m
o
d
e

s
y
s
_
d
l
y
_
2
0
0
u
s

s
y
s
_
i
n
i
t
_
d
o
n
e

s
y
s
d
_
r
e
a
d
[
3
1
:
0
]

u
n
m
a
p
p
e
d

w
r
i
t
e
_
e
n

1
6
0
0
0
0
0

1
7
0
0
0
0
0

1
8
0
0
0
0
0

1
9
0
0
0
0
0

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

0
1
_
1
1
1
1
_
1
*

1
*

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

1
*

3
1

3
0

3
0

0
1

2
3

4
5

6
5

2
3

7
8

9
1
0

6
5

1
f
f
_
f
f
f
f

1
f
f
_
f
f
f
f

X
X
X
X
_
X
X
X
X

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

3

0

1
1

0 0 f 0

 32

Figure 3.7 The burst write and burst read mode of DDR memory controller.

G
1

p
a
d
d
[
2
4
:
0
]

c
s
t
a
t
e
[
3
:
0
]

i
s
t
a
t
e
[
3
:
0
]

c
l
k

c
l
k
2
x

d
d
r
_
a
d
d
[
1
2
:
0
]

d
d
r
_
b
a
[
1
:
0
]

d
d
r
_
c
l
k

d
d
r
_
c
l
k
n

d
a
t
a
[
3
1
:
0
]

d
d
r
_
d
q
[
1
5
:
0
]

d
d
r
_
d
q
m
[
1
:
0
]

d
d
r
_
d
q
s
[
1
:
0
]

d
d
r
_
r
a
s
n

d
d
r
_
c
a
s
n

d
d
r
_
w
e
n

m
e
m
_
e
n
a
b
l
e

r
_
w
n

r
e
s
e
t
_
n

s
y
s
_
d
l
y
_
2
0
0
u
s

s
y
s
_
i
n
i
t
_
d
o
n
e

s
y
s
d
_
r
e
a
d
[
3
1
:
0
]

G
2

G
3

5
1
5
0
0
0
0

5
2
0
0
0
0
0

5
2
5
0
0
0
0

5
3
0
0
0
0
0

X
X
X
_
X
X
X
X

0
8

1
1
0

4
6

0
8

1
9

2
3

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

1
1
_
1
1
1
1
_
1
1
*
1
0
0
_
*

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

1
1
_
1
1
1
1
_
1
1
*

1
0
0
_
*

3
1

3
1

3
1

3
1

0
1

2
3

*
0

1
2

0
1

0
2

0
3

0
X
X
X
X

0
1

0
2

0
3

0

0
3

0
3

0
3

0
3

0
0

3
0

3
0

3
0

3
0

0
1

2
3

X
*

0
1

2

1
4
0
0

0

1
1

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

3

3

0

3

 33

At the address translation unit testing, protection modes are decided the access
privileges of supervisor and a user, we have verified their functions in below. If the
sumode bit is high, it is represented that data are accessed by supervisor. The
protection mode is defined the “PR” bits, which will be represented the read/write,
read only, or none privilege. When “P” = 1, it is represented supervisor privilege, and
“P” = 0 is represented user privilege. “R” = 0 is represented having the privilege of
read/write, and “R” = 1 is represented having the privilege of read only. The
supervisor has the highest privilege, So that the “P” = 0 is represented that data can be
accessed. On the contrary, “P” = 1 is represented that users can’t access any data. The
Segment access modes and corresponding PR bit encodings of our design are listed in
Table 2.1.

 The test bench of the ATU is shown in Table 3.10. The table consists of
privilege modes, virtual address, physical address, segment, limit, protection modes
and validity. In below figure, the virtual address translates to physical address by
referencing the Table 3.10.

Table 3.10 The test bench of the ATU.

 sumode Segment Virtual
Address

Physical
Address

Limit+PRV

Figure
3.11

supervisor 32’h00000000 32’h00001400 25’h0001400 32’h00fffff9

Figure
3.12

supervisor 32’h00200000 32’h02001410 25’h0201410 32’h00fffffb

Figure
3.13

supervisor 32’h00400000 32’h04001420 25’h0401420 32’h00fffffd

Figure
3.14

supervisor 32’h00600000 32’h06001430 25’h0601430 32’h00ffffff

Figure
3.15

users 32’h00800000 32’h08001440 25’h0801440 32’h00fffff9

Figure
3.16

users 32’h00a00000 32’h0a001450 25’h0a01450 32’h00fffffb

Figure
3.17

users 32’h00c00000 32’h0c001460 25’h0c01460 32’h00fffffd

Figure
3.18

users 32’h00e00000 32’h0e001470 25’h0e01470 32’h00ffffff

 34

As shown in Figure 3.8, “sumode” = 1’b1 & “PR” = 2’b00, they represent that
supervisor can write and read.
 a. Write mode: Data could be written, “invalid” = 0. Address does not exceed
limitation, “unmapped” = 0. Address is translated from virtual address (32’h00001400)
to physical address (25’h0001400).
 b. Read mode: Data could be read, “invalid” = 0, Address does not exceed
limitation, “unmapped” = 0. Address is translated from virtual address (32’h00001400)
to physical address (25’h0001400).

As shown in Figure 3.9, “sumode” = 1’b1 & “PR” = 2’b01, they represent that
supervisor can write and read.
 a. Write mode: Data could be written, “invalid” = 0. Address does not exceed
limitation, “unmapped” = 0. Address is translated from virtual address (32’h02001410)
to physical address (25’h0201410).
 b. Read mode: Data could be read, “invalid” = 0, Address does not exceed
limitation, “unmapped” = 0. Address is translated from virtual address (32’h02001410)
to physical address (25’h0201410).

As shown in Figure 3.10, “sumode” = 1’b1 & “PR” = 2’b10, they represent that
supervisor can write and read.
 a. Write mode: Data could be written, “invalid” = 0. Address does not exceed
limitation, “unmapped” = 0. Address is translated from virtual address (32’h04001420)
to physical address (25’h0401420).
 b. Read mode: Data could be read, “invalid” = 0, Address does not exceed
limitation, “unmapped” = 0. Address is translated from virtual address (32’h04001420)
to physical address (25’h0401420).

As shown in Figure 3.11, “sumode” = 1’b1 & “PR” = 2’b11, they represent that
supervisor can read only.
 a. Write mode: Data could not be written, “invalid” = 1. Address does not
exceed limitation, “unmapped” = 0. Address is not translated from virtual address
(32’h06001430) to physical address (high impedance).
 b. Read mode: Data could be read, “invalid” = 0, Address does not exceed
limitation, “unmapped” = 0. Address is translated from virtual address (32’h06001430)
to physical address (25’h0601430).

 35

Figure 3.8 Access data (PR = 2’b00) under supervisor mode in the DMMU.

G
1

a
d
d
r
[
3
1
:
0
]

p
a
d
d
[
2
4
:
0
]

c
l
k

c
l
k
2
x

d
a
t
a
_
g
e
n
[
3
1
:
0
]

d
d
r
_
a
d
d
[
1
2
:
0
]

d
d
r
_
b
a
[
1
:
0
]

d
d
r
_
c
l
k

d
d
r
_
c
l
k
n

c
s
t
a
t
e
[
3
:
0
]

i
s
t
a
t
e
[
3
:
0
]

d
a
t
a
[
3
1
:
0
]

d
d
r
_
d
q
[
1
5
:
0
]

d
d
r
_
d
q
m
[
1
:
0
]

d
d
r
_
d
q
s
[
1
:
0
]

d
d
r
_
r
a
s
n

d
d
r
_
c
a
s
n

d
d
r
_
w
e
n

d
i
r
e
c
t
_
n

i
n
v
a
l
i
d

m
e
m
_
e
n
a
b
l
e

r
_
w
n

r
e
s
e
t
_
n

s
e
g
_
l
i
m
[
3
1
:
0
]

s
e
g
_
l
i
m
_
s
e
l
[
3
:
0
]

s
e
g
_
l
i
m
_
s
w

s
e
l
[
3
:
0
]

s
u
m
o
d
e

s
y
s
_
d
l
y
_
2
0
0
u
s

s
y
s
_
i
n
i
t
_
d
o
n
e

s
y
s
d
_
r
e
a
d
[
3
1
:
0
]

u
n
m
a
p
p
e
d

w
r
i
t
e
_
e
n

G
2

G
3

5
3
5
0
0
0
0

5
4
0
0
0
0
0

5
4
5
0
0
0
0

5
5
0
0
0
0
0

5
5
5
0
0
0
0

1
4
0
0

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

1
1
_
1
1
1
1
_
1
1
*

1
0
0
*

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

1
1
_
1
1
1
1
_
1
1
*

1
0
0
*

3
1

3
1

3
1

3
1

0
8

1
1
0

4
6

0
8

1
9

2
3

*
4
0

4
1

4
2

4
3

*
4
0

4
1

4
2

4
0

0
4
*

0
4
2

0
*

0
X
X
X
X

4
0

0
4
1

0
4
2

0
4
3

0

0
3

0
3

0
3

0
3

0
0

3
0

3
0

3
0

3
0

3
*

4
0

4
1

4
2

4
3

X
*

4
0

4
1

4
2

1
4
0
0

1
4
0
0

0

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

3

0

1
1

4
3

0

f
f
_
f
f
f
f

f 2

4
3

 36

Figure 3.9 Access data (PR = 2’b01) under supervisor mode in the DMMU.

G
1

a
d
d
r
[
3
1
:
0
]

p
a
d
d
[
2
4
:
0
]

c
l
k

c
l
k
2
x

d
a
t
a
_
g
e
n
[
3
1
:
0
]

d
d
r
_
a
d
d
[
1
2
:
0
]

d
d
r
_
b
a
[
1
:
0
]

d
d
r
_
c
l
k

d
d
r
_
c
l
k
n

c
s
t
a
t
e
[
3
:
0
]

i
s
t
a
t
e
[
3
:
0
]

d
a
t
a
[
3
1
:
0
]

d
d
r
_
d
q
[
1
5
:
0
]

d
d
r
_
d
q
m
[
1
:
0
]

d
d
r
_
d
q
s
[
1
:
0
]

d
d
r
_
r
a
s
n

d
d
r
_
c
a
s
n

d
d
r
_
w
e
n

d
i
r
e
c
t
_
n

i
n
v
a
l
i
d

m
e
m
_
e
n
a
b
l
e

r
_
w
n

r
e
s
e
t
_
n

s
e
g
_
l
i
m
[
3
1
:
0
]

s
e
g
_
l
i
m
_
s
e
l
[
3
:
0
]

s
e
g
_
l
i
m
_
s
w

s
e
l
[
3
:
0
]

s
u
m
o
d
e

s
y
s
_
d
l
y
_
2
0
0
u
s

s
y
s
_
i
n
i
t
_
d
o
n
e

s
y
s
d
_
r
e
a
d
[
3
1
:
0
]

u
n
m
a
p
p
e
d

w
r
i
t
e
_
e
n

G
2

G
3

5
8
5
0
0
0
0

5
9
0
0
0
0
0

5
9
5
0
0
0
0

6
0
0
0
0
0
0

2
0
0
_
1
4
1
0

2
0
0
_
1
4
1
0

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

1
0
_
*

1
_
1
1
1
1
_
1
1
*

1
0
0
*

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

1
0
_
*

1
_
1
1
1
1
_
1
1
*

1
0
0
*

3
1

3
1

3
1

3
1

0
8

1
1
0

4
6

0
8

1
9

2
3

*
4
4

4
5

4
6

4
7

*
4
4

4
5

4
6

4
7

4
4

0
*

0
*

0
*

0
X
X
X
X

4
4

0
4
5

0
4
6

0
4
7

0

0
3

0
3

0
3

0
3

0
0

3
0

3
0

3
0

3
0

7
*

4
4

4
5

4
6

4
7

X
*

4
4

4
5

4
6

2
0
_
1
4
1
0

0

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

3

0

1
1 0

f
f
_
f
f
f
f

f 2

4
7

 37

Figure 3.10 Access data (PR = 2’b10) under supervisor mode in the DMMU.

G
1

a
d
d
r
[
3
1
:
0
]

p
a
d
d
[
2
4
:
0
]

c
l
k

c
l
k
2
x

d
a
t
a
_
g
e
n
[
3
1
:
0
]

d
d
r
_
a
d
d
[
1
2
:
0
]

d
d
r
_
b
a
[
1
:
0
]

d
d
r
_
c
l
k

d
d
r
_
c
l
k
n

c
s
t
a
t
e
[
3
:
0
]

i
s
t
a
t
e
[
3
:
0
]

d
a
t
a
[
3
1
:
0
]

d
d
r
_
d
q
[
1
5
:
0
]

d
d
r
_
d
q
m
[
1
:
0
]

d
d
r
_
d
q
s
[
1
:
0
]

d
d
r
_
r
a
s
n

d
d
r
_
c
a
s
n

d
d
r
_
w
e
n

d
i
r
e
c
t
_
n

i
n
v
a
l
i
d

m
e
m
_
e
n
a
b
l
e

r
_
w
n

r
e
s
e
t
_
n

s
e
g
_
l
i
m
[
3
1
:
0
]

s
e
g
_
l
i
m
_
s
e
l
[
3
:
0
]

s
e
g
_
l
i
m
_
s
w

s
e
l
[
3
:
0
]

s
u
m
o
d
e

s
y
s
_
d
l
y
_
2
0
0
u
s

s
y
s
_
i
n
i
t
_
d
o
n
e

s
y
s
d
_
r
e
a
d
[
3
1
:
0
]

u
n
m
a
p
p
e
d

w
r
i
t
e
_
e
n

G
2

G
3

6
5
5
0
0
0
0

6
6
0
0
0
0
0

6
6
5
0
0
0
0

6
7
0
0
0
0
0

6
0
0
_
1
4
3
0

4
0
_
1
4
2
0 1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

1
1
0
_
*
1
_
1
1
1
1
_
1
1
*

1
0
0
*

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

1
1
0
_
*
1
_
1
1
1
1
_
1
1
*

1
0
0
*

3
1

3
1

3
1

3
1

0
8

1
1
0

4
6

0
8

1
9

2
3

*
c

d
e

f
*

c
d

e

c
0

d
0

e
0

f
0

X
X
X
X

c
0

d
0

e
0

f
0

0
3

0
3

0
3

0
3

0
0

3
0

3
0

3
0

3
0

*
*

c
d

e
f

X
*

c
d

e

6
0
0
_
1
4
3
0

6
0
_
1
4
3
0

0

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

3

0

1
1

f

0

f
f
_
f
f
f
f

f 2

f

 38

Figure 3.11 Access data (PR = 2’b11) under supervisor mode in the DMMU.

G
1

a
d
d
r
[
3
1
:
0
]

p
a
d
d
[
2
4
:
0
]

c
l
k

c
l
k
2
x

d
a
t
a
_
g
e
n
[
3
1
:
0
]

d
d
r
_
a
d
d
[
1
2
:
0
]

d
d
r
_
b
a
[
1
:
0
]

d
d
r
_
c
l
k

d
d
r
_
c
l
k
n

c
s
t
a
t
e
[
3
:
0
]

i
s
t
a
t
e
[
3
:
0
]

d
a
t
a
[
3
1
:
0
]

d
d
r
_
d
q
[
1
5
:
0
]

d
d
r
_
d
q
m
[
1
:
0
]

d
d
r
_
d
q
s
[
1
:
0
]

d
d
r
_
r
a
s
n

d
d
r
_
c
a
s
n

d
d
r
_
w
e
n

d
i
r
e
c
t
_
n

i
n
v
a
l
i
d

m
e
m
_
e
n
a
b
l
e

r
_
w
n

r
e
s
e
t
_
n

s
e
g
_
l
i
m
[
3
1
:
0
]

s
e
g
_
l
i
m
_
s
e
l
[
3
:
0
]

s
e
g
_
l
i
m
_
s
w

s
e
l
[
3
:
0
]

s
u
m
o
d
e

s
y
s
_
d
l
y
_
2
0
0
u
s

s
y
s
_
i
n
i
t
_
d
o
n
e

s
y
s
d
_
r
e
a
d
[
3
1
:
0
]

u
n
m
a
p
p
e
d

w
r
i
t
e
_
e
n

G
2

G
3

6
7
5
0
0
0
0

6
8
0
0
0
0
0

6
8
5
0
0
0
0

6
9
0
0
0
0
0

6
9
5
0
0
0
0

6
0
0
_
1
4
3
0

6
0
0
_
1
4
3
0

X
X
X
_
X
X
X
X 1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

x
_
x
*

1
_
1
1
1
1
_
1
1
*

x
_
x
*

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

1
1
0
*

1
_
1
1
1
1
_
1
1
*

1
0
0
*

3
X

3
X

3
1

3
1

0
8

1
1
0

4
6

0
8

1
9

2
3

4
c

4
d

4
e

4
f

*
c

d
e

f

4
c

0
*

0
*

0
*

0
X
X
X
X

c
0

d
0

e
0

f
0

0
3

0
3

0
3

0
3

0
0

3
0

3
0

3
0

3
0

4
c

4
d

4
e

4
f

X
*

c
d

e

�
�
�
�
�
�

�
�
�
�
�
�

6
0
_
1
4
3
0

0

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

3

0

1
1 0

f
f
_
f
f
f
f

3 2

f

 39

As shown in Figure 3.12, “sumode” = 1’b0 & “PR” = 2’b00, they represent that
user can write and read.
 a. Write mode: Data could be written, “invalid” = 0. Address does not exceed
limitation, “unmapped” = 0. Address is translated from virtual address (32’h08001440)
to physical address (25’h0801440).
 b. Read mode: Data could be read, “invalid” = 0, Address does not exceed
limitation, “unmapped” = 0. Address is translated from virtual address (32’h08001440)
to physical address (25’h0801440)

As shown in Figure 3.13, “sumode” = 1’b0 & “PR” = 2’b01, they represent that
user can read only.
 a. Write mode: Data could not be written, “invalid” = 1. Address does not
exceed limitation, “unmapped” = 0. Address is not translated from virtual address
(32’h0a001450) to physical address (high impedance).
 b. Read mode: Data could be read, “invalid” = 0, Address does not exceed
limitation, “unmapped” = 0. Address is translated from virtual address (32’h0a001450)
to physical address (25’h0a01450)

As shown in Figure 3.14, “sumode” = 1’b0 & “PR” = 2’b10, they represent that
user can not do anything.
 a. Write mode: Data could not be written, “invalid” = 1. Address does not
exceed limitation, “unmapped” = 0. Address is not translated from virtual address
(32’h0c001460) to physical address (high impedance).
 b. Read mode: Data could not be read, “invalid” = 1, Address does not exceed
limitation, “unmapped” = 0. Address is not translated from virtual address
(32’h0c001460) to physical address (high impedance)

As shown in Figure 3.15, “sumode” = 1’b0 & “PR” = 2’b1, they represent that
user can not do anything.
 a. Write mode: Data could not be written, “invalid” = 1. Address does not
exceed limitation, “unmapped” = 0. Address is not translated from virtual address
(32’h0e001470) to physical address (high impedance).
 b. Read mode: Data could not be read, “invalid” = 1, Address does not exceed
limitation, “unmapped” = 0. Address is not translated from virtual address
(32’h0e001470) to physical address (high impedance)

 40

Figure 3.12 Access data (PR = 2’b00) under users mode in the DMMU.

G
1

a
d
d
r
[
3
1
:
0
]

p
a
d
d
[
2
4
:
0
]

c
l
k

c
l
k
2
x

d
a
t
a
_
g
e
n
[
3
1
:
0
]

d
d
r
_
a
d
d
[
1
2
:
0
]

d
d
r
_
b
a
[
1
:
0
]

d
d
r
_
c
l
k

d
d
r
_
c
l
k
n

c
s
t
a
t
e
[
3
:
0
]

i
s
t
a
t
e
[
3
:
0
]

d
a
t
a
[
3
1
:
0
]

d
d
r
_
d
q
[
1
5
:
0
]

d
d
r
_
d
q
m
[
1
:
0
]

d
d
r
_
d
q
s
[
1
:
0
]

d
d
r
_
r
a
s
n

d
d
r
_
c
a
s
n

d
d
r
_
w
e
n

d
i
r
e
c
t
_
n

i
n
v
a
l
i
d

m
e
m
_
e
n
a
b
l
e

r
_
w
n

r
e
s
e
t
_
n

s
e
g
_
l
i
m
[
3
1
:
0
]

s
e
g
_
l
i
m
_
s
e
l
[
3
:
0
]

s
e
g
_
l
i
m
_
s
w

s
e
l
[
3
:
0
]

s
u
m
o
d
e

s
y
s
_
d
l
y
_
2
0
0
u
s

s
y
s
_
i
n
i
t
_
d
o
n
e

s
y
s
d
_
r
e
a
d
[
3
1
:
0
]

u
n
m
a
p
p
e
d

w
r
i
t
e
_
e
n

G
2

G
3

7
2
5
0
0
0
0

7
3
0
0
0
0
0

7
3
5
0
0
0
0

7
4
0
0
0
0
0

7
4
5
0
0
0
0

8
0
0
_
1
4
4
0

8
0
0
_
1
4
4
0

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

1
0
0
*

1
_
1
1
1
1
_
1
1
*

1
0
0
*

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

1
0
0
*

1
_
1
1
1
1
_
1
1
*

1
0
0
*

3
1

3
1

3
1

3
1

0
8

1
1
0

4
6

0
8

1
9

2
3

*
5
0

5
1

5
2

5
3

*
5
0

5
1

5
2

5
3

5
0

0
5
*

0
5
*

0
5
*

0
X
X
X
X

5
0

0
5
1

0
5
2

0
5
3

0

0
3

0
3

0
3

0
3

0
0

3
0

3
0

3
0

3
0

1
3
*

5
0

5
1

5
2

5
3

X
*

5
0

5
1

5
2

8
0
_
1
4
4
0

0

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

3

0

1
1 0

f
f
_
f
f
f
f

3 2

5
3

 41

Figure 3.13 Access data (PR = 2’b01) under users mode in the DMMU.

G
1

a
d
d
r
[
3
1
:
0
]

p
a
d
d
[
2
4
:
0
]

c
l
k

c
l
k
2
x

d
a
t
a
_
g
e
n
[
3
1
:
0
]

d
d
r
_
a
d
d
[
1
2
:
0
]

d
d
r
_
b
a
[
1
:
0
]

d
d
r
_
c
l
k

d
d
r
_
c
l
k
n

c
s
t
a
t
e
[
3
:
0
]

i
s
t
a
t
e
[
3
:
0
]

d
a
t
a
[
3
1
:
0
]

d
d
r
_
d
q
[
1
5
:
0
]

d
d
r
_
d
q
m
[
1
:
0
]

d
d
r
_
d
q
s
[
1
:
0
]

d
d
r
_
r
a
s
n

d
d
r
_
c
a
s
n

d
d
r
_
w
e
n

d
i
r
e
c
t
_
n

i
n
v
a
l
i
d

m
e
m
_
e
n
a
b
l
e

r
_
w
n

r
e
s
e
t
_
n

s
e
g
_
l
i
m
[
3
1
:
0
]

s
e
g
_
l
i
m
_
s
e
l
[
3
:
0
]

s
e
g
_
l
i
m
_
s
w

s
e
l
[
3
:
0
]

s
u
m
o
d
e

s
y
s
_
d
l
y
_
2
0
0
u
s

s
y
s
_
i
n
i
t
_
d
o
n
e

s
y
s
d
_
r
e
a
d
[
3
1
:
0
]

u
n
m
a
p
p
e
d

w
r
i
t
e
_
e
n

G
2

G
3

7
7
5
0
0
0
0

7
8
0
0
0
0
0

7
8
5
0
0
0
0

7
9
0
0
0
0
0

a
0
0
_
1
4
5
0

a
0
0
_
1
4
5
0

X
X
X
_
X
X
X
X 1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

x
_
x
*

1
_
1
1
1
1
_
1
1
*

x
_
x
*

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

1
0
1
*

1
_
1
1
1
1
_
1
1
*

1
0
0
*

3
X

3
X

3
1

3
1

0
8

1
1
0

4
6

0
8

1
9

2
3

5
4

5
5

5
6

5
7

*
1
4

1
5

1
6

1
7

5
4

0
*

0
5
*

0
*

0
X
X
X
X

1
4

0
1
5

0
1
6

0
1
7

0

0
3

0
3

0
3

0
3

0
0

3
0

3
0

3
0

3
0

�
�
�
�
�
�

5
4

5
5

5
6

5
7

X
*

1
4

1
5

1
6

�
�
�
�
�
�

�
�
�
�
�
�

a
0
_
1
4
5
0

0

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

3

0

1
1 0

f
f
_
f
f
f
b

5 2

1
7

 42

Figure 3.14 Access data (PR = 2’b10) under users mode in the DMMU.

G
1

a
d
d
r
[
3
1
:
0
]

p
a
d
d
[
2
4
:
0
]

c
l
k

c
l
k
2
x

d
a
t
a
_
g
e
n
[
3
1
:
0
]

d
d
r
_
a
d
d
[
1
2
:
0
]

d
d
r
_
b
a
[
1
:
0
]

d
d
r
_
c
l
k

d
d
r
_
c
l
k
n

c
s
t
a
t
e
[
3
:
0
]

i
s
t
a
t
e
[
3
:
0
]

d
a
t
a
[
3
1
:
0
]

d
d
r
_
d
q
[
1
5
:
0
]

d
d
r
_
d
q
m
[
1
:
0
]

d
d
r
_
d
q
s
[
1
:
0
]

d
d
r
_
r
a
s
n

d
d
r
_
c
a
s
n

d
d
r
_
w
e
n

d
i
r
e
c
t
_
n

i
n
v
a
l
i
d

m
e
m
_
e
n
a
b
l
e

r
_
w
n

r
e
s
e
t
_
n

s
e
g
_
l
i
m
[
3
1
:
0
]

s
e
g
_
l
i
m
_
s
e
l
[
3
:
0
]

s
e
g
_
l
i
m
_
s
w

s
e
l
[
3
:
0
]

s
u
m
o
d
e

s
y
s
_
d
l
y
_
2
0
0
u
s

s
y
s
_
i
n
i
t
_
d
o
n
e

s
y
s
d
_
r
e
a
d
[
3
1
:
0
]

u
n
m
a
p
p
e
d

w
r
i
t
e
_
e
n

G
2

G
3

8
2
0
0
0
0
0

8
2
5
0
0
0
0

8
3
0
0
0
0
0

8
3
5
0
0
0
0

8
4
0
0
0
0
0

c
0
0
_
1
4
6
0

c
0
0
_
1
4
6
0

X
X
X
_
X
X
X
X 1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

x
_
x
x
*
1
_
1
1
1
1
_
1
1
*

x
_
x
1
*

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

x
_
x
x
*
1
_
1
1
1
1
_
1
1
*

x
_
x
1
*

3
X

3
X

3
X

3
X

0
8

1
1
0

4
6

0
8

1
9

2
3

5
8

5
9

5
a

5
b

*
0

5
8

0
*

0
*

0
*

0
X
X
X
X

0

0
3

0
3

0
3

0
3

0
0

3
0

3
0

3
0

3
0

�
�
�
�
�

5
8

5
9

5
a

5
b

X
*

�
�
�
�
�

�
�
�
�
�

0

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

3

0

1
1 0

f
f
_
f
f
f
d

6 2

0

 43

`
Figure 3.15 Access data (PR = 2’b11) under users mode in the DMMU.

G
1

a
d
d
r
[
3
1
:
0
]

p
a
d
d
[
2
4
:
0
]

c
l
k

c
l
k
2
x

d
a
t
a
_
g
e
n
[
3
1
:
0
]

d
d
r
_
a
d
d
[
1
2
:
0
]

d
d
r
_
b
a
[
1
:
0
]

d
d
r
_
c
l
k

d
d
r
_
c
l
k
n

c
s
t
a
t
e
[
3
:
0
]

i
s
t
a
t
e
[
3
:
0
]

d
a
t
a
[
3
1
:
0
]

d
d
r
_
d
q
[
1
5
:
0
]

d
d
r
_
d
q
m
[
1
:
0
]

d
d
r
_
d
q
s
[
1
:
0
]

d
d
r
_
r
a
s
n

d
d
r
_
c
a
s
n

d
d
r
_
w
e
n

d
i
r
e
c
t
_
n

i
n
v
a
l
i
d

m
e
m
_
e
n
a
b
l
e

r
_
w
n

r
e
s
e
t
_
n

s
e
g
_
l
i
m
[
3
1
:
0
]

s
e
g
_
l
i
m
_
s
e
l
[
3
:
0
]

s
e
g
_
l
i
m
_
s
w

s
e
l
[
3
:
0
]

s
u
m
o
d
e

s
y
s
_
d
l
y
_
2
0
0
u
s

s
y
s
_
i
n
i
t
_
d
o
n
e

s
y
s
d
_
r
e
a
d
[
3
1
:
0
]

u
n
m
a
p
p
e
d

w
r
i
t
e
_
e
n

G
2

G
3

8
7
0
0
0
0
0

8
7
5
0
0
0
0

8
8
0
0
0
0
0

8
8
5
0
0
0
0

e
0
0
_
1
4
7
0

e
0
0
_
1
4
7
0

X
X
X
_
X
X
X
X 1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

x
_
x
x
*
1
_
1
1
1
1
_
1
1
*

x
_
x
*

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

x
_
x
*

1
_
1
1
1
1
_
1
1
*

x
_
x
1
*

3
X

3
X

3
X

3
X

0
8

1
1
0

4
6

0
8

1
9

2
3

5
c

5
d

5
e

5
f

*
0

5
c

0
*

0
*

0
*

0
X
X
X
X

0

0
3

0
3

0
3

0
3

0
0

3
0

3
0

3
0

3
0

�
�
�
�
�

5
c

5
d

5
e

5
f

X
*

�
�
�
�
�

�
�
�
�
�

0

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

3

0

1
1 0

f
f
_
f
f
f
f

7 2

0

 44

As shown in Figure 3.16, because the address exceeds the limitation, it should
give an exception.
 a. Write mode: Data could be written, “invalid” = 0. Address exceeds limitation,
“unmapped” = 1. Address is not translated from virtual address to physical address
 b. Read mode: Data could be read, “invalid” = 0, Address exceeds limitation,
“unmapped” = 1. Address is not translated from virtual address to physical address.

Figure 3.16 Data capacity over limitation in the DMMU.

G
1

a
d
d
r
[
3
1
:
0
]

p
a
d
d
[
2
4
:
0
]

c
l
k

c
l
k
2
x

d
a
t
a
_
g
e
n
[
3
1
:
0
]

d
d
r
_
a
d
d
[
1
2
:
0
]

d
d
r
_
b
a
[
1
:
0
]

d
d
r
_
c
l
k

d
d
r
_
c
l
k
n

c
s
t
a
t
e
[
3
:
0
]

i
s
t
a
t
e
[
3
:
0
]

d
a
t
a
[
3
1
:
0
]

d
d
r
_
d
q
[
1
5
:
0
]

d
d
r
_
d
q
m
[
1
:
0
]

d
d
r
_
d
q
s
[
1
:
0
]

d
d
r
_
r
a
s
n

d
d
r
_
c
a
s
n

d
d
r
_
w
e
n

d
i
r
e
c
t
_
n

i
n
v
a
l
i
d

m
e
m
_
e
n
a
b
l
e

r
_
w
n

r
e
s
e
t
_
n

s
e
g
_
l
i
m
[
3
1
:
0
]

s
e
g
_
l
i
m
_
s
e
l
[
3
:
0
]

s
e
g
_
l
i
m
_
s
w

s
e
l
[
3
:
0
]

s
u
m
o
d
e

s
y
s
_
d
l
y
_
2
0
0
u
s

s
y
s
_
i
n
i
t
_
d
o
n
e

s
y
s
d
_
r
e
a
d
[
3
1
:
0
]

u
n
m
a
p
p
e
d

w
r
i
t
e
_
e
n

G
2

G
3

8
9
5
0
0
0
0

9
0
0
0
0
0
0

9
0
5
0
0
0
0

9
1
0
0
0
0
0

1
0
3
f
_
f
f
f
f

1
0
3
f
_
f
f
f
f

X
X
X
_
X
X
*

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

x
_
x
x
*
1
_
1
1
1
1
_
1
1
*

x
_
x
1
*

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

x
_
x
x
*
1
_
1
1
1
1
_
1
1
*

x
_
x
1
*

3
X

3
X

3
X

3
X

0
8

1
1
0

4
6

0
8

1
9

2
3

2
0

2
1

2
2

2
3

X
*

2
0

0
*

0
2
*

0
2
*

0
X
X
X
X

0

0
3

0
3

0
3

0
3

0
0

3
0

3
0

3
0

3
0

�
�

2
0

2
1

2
2

2
3

X
*

�
�
�
�

�
�
�
�

0

1
_
1
1
1
1
_
1
1
1
1
_
1
1
1
1

3

0

1
1

0

0

f
f
_
f
f
f
f

7 2

0

 45

3.5 Performance Evaluation

In this section, the circuit performance was evaluated. The access time versus
different data capacity on data copying or data moving between ATU and without
ATU was estimated for the testing benchmark.

3.5.1 Comparison

The test configuration environment is shown in Figure 3.17. Some of the testing
assumptions are expressed in detail. The model of DDR SDRAM is mt46v16m8
which is produced by the MICRON TECHNOLOGY, INC. The DMMU and DDR
SDRAM are operated on the clock frequency 133MHz. We suppose that a
micro-controller is a block of a register file. The micro-controller issues one byte per
clock cycle to DMMU for addresses, the segment register files and the limit register
files. It also issues a read/write instruction to the DMMU. Other signals of DMMU
are ignored in our discussion.

DDR
SDRAMMicro-controller DMMU

Figure 3.17 Test configuration environment.

When the test configuration is ready, we will compare the access time of data
copying and data moving versus the different data capacity. We suppose the range of
the data capacity of the segment is from 16 bytes to 16 mega bytes. We will discuss
the data capacity is 16B, 64B, 256B, 1KB, 4KB, 16KB, 64KB, 256KB, 1MB, 4MB
and 16MB, respectively. At first, we suppose the register files of the micro-controller
access 8 bits once. The clock period of the different devices are listed in Table 3.11,
which are the micro-controller clock (mclk), the DMMU (ATU and DDR Memory
Controller) clock T(DMMUclk) and the DDR SDRAM clock T(DDR SDRAM). We
suppose the critical period is DMMU clock and DDR SDRAM. The speed of the
micro-controller is two times of the speed of the DDR SDRAM.

 46

Table 3.11 The clock period of the micro-controller, the DMMU and DDR.
T(Clock) Clock period
T(mclk) 3.75 ns

T(DMMUclk) 7.5 ns
T(DDR SDRAM) 7.5 ns

The ATU and without ATU mechanisms are expressed in below, the calculation

of the access time is dependent on data capacity. We will calculate 16 bytes for
example.

16 Bytes: When the read and write instruction are issued once, respectively, the
block of data (burst length = 8) * (ddr_dq = 16 bits) = 16 bytes is transited between
the micro-controller and DDR SDRAM. From the above, the total access time is write
(89 ns) + read (141.5 ns) = 230.5 ns.

The data transition time of data copying and data moving in the different data
capacity without ATU is listed in Table 3.12. On without ATU mode, it is needed to
read data into the register files of micro-controller and write data into DDR SDRAM.
The data transition time is occupied most proportion, we would ignore the access time
of the other signals.

Table 3.12 The data transition time of data copying and data moving in the different
data capacity without ATU.

Data Capacity Data transition time
 16B 230.5 ns
 64B 922 ns
256B 3688 ns

 1KB 14752 ns
 4KB 59008 ns
16KB 236032 ns
64KB 944128 ns

256KB 3776512 ns
1MB 15106048 ns
4MB 60424192 ns

16MB 241696768 ns

 47

The access time of the DMMU with different data capacity is discussed in
below. With ATU mechanism, the register files of micro-controller loads and stores
the segment and the limit register files. Because a block of testing segment is
composed with 32bits, it needs 8 cycles to load and store 32 bits. So the segment and
the limit register file are needed to access 8 and 8 (DMMUclk) cycles, respectively.
The ATU mechanism only changes the segment and the limit register file to arrive at
data copying and data moving in the access processing. Because the total access time
is independent on the data capacity, the total access time with ATU is 120 ns.

The total time (with ATU)
= T(DMMUclk) * 8 + T(DMMUclk) * 8
= 7.5 * 8 + 7.5 * 8
= 120 ns

The total access time of the two ATU modes is listed in Table 3.13. Eq 3.1 is
expressed the benchmark of the access time versus the data capacity for different
ATU mechanisms. The performance evaluation which is the access time versus the
data capacity between ATU and without ATU on copying data and moving data is
shown in Figure 3.18. When the data capacity is larger and larger in without ATU
mode, the transition time is in proportion to larger. But the total access time of the
different data capacity in ATU mode is the same. The advantage of ATU mechanism
saves more and more access time. The capacity of segment and limit registers Table is
defined 32 bits * 16 blocks * 2. As the memory capacity is increased, the blocks of the
segment and limit registers will be followed increasing. For an example, when the
capacity of DDR SDRAM increases from 256MB to 512 MB. The Segment and limit
register files will increase from 32 bits * 32 blocks to 32 bits * 64 blocks. The area of
the register files are increased in the DMMU.

 48

Table 3.13 Total access time of two ATU modes
Data Capacity Total Access Time (ATU) Total Access Time (no ATU)

 16B 120 ns 230.5 ns
 64B 120 ns 922 ns
256B 120 ns 3688 ns
1KB 120 ns 14752 ns

 4KB 120 ns 59008 ns
16KB 120 ns 236032 ns
64KB 120 ns 944128 ns

256KB 120 ns 3776512 ns
1MB 120 ns 15106048 ns
4MB 120 ns 60424192 ns
16MB 120 ns 241696768 ns

ATU)(with Time AccessLimit andSegment
ATU)(without Time Access Data Writeand Read Benchmark = (Eq 3.1)

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

Data Copying & Moving Reference

With ATU
Without ATU

Data Capacity (bytes)

A
cc

ce
ss

 T
im

e
(n

s)

16M4M1M256K64K16K4K1K2566416

Figure 3.18 The access time versus the data capacity for different ATU.

 From the above, the maximum segment size is defined as 16 MB. If the data
length is more than the maximum segment size, the access time of the data copying
and the data moving will not be fixed in the ATU mechanism. We suppose the data
lengths of our testing are 32 MB, 48 MB and 64 MB, respectively. From Eq 3.1, when
the data length is increased from 16 MB to 48 MB, the access time of the data

 49

copying and the data moving are continuously increased in without ATU mechanism.
In the ATU mechanism, when the data capacity is 32 MB, the micro-controller loads
the segment0 and limit0 and stores to segment2 and limit2. The micro-controller also
loads another segment1 and limit1 and stores to segment 3 and limit3. It will take two
times access time of the data capacity: 16 MB to load and store segment register files.
The access time of the data capacity: 48 MB will three times to load and store the
segment register files. The proportion of the access time without ATU/ ATU versus the
different data capacity is shown in Figure 3.19. When the data capacity is larger than
one maximum size of the segment, the proportion is not increased more and more.
The result is represented the maximum access proportion of the DMMU is about two
million times.

1

10

100

1000

10000

100000

1000000

10000000
(Access Time Without ATU/ ATU)

64M32M16M4M1M256K64K16K 484K
Data Capacity (bytes)

Pr
op

or
tio

n

Figure 3.19 The proportion of the access time without ATU/ATU versus the different
data capacity.

3.6 Summary

At result of circuit verification, when clock frequency rises from 133MHz to
325MHz, the area invariantly increases from 175009 um2 to 177671 um2. It
corresponds to the power grows from 39mW to 94mW. The result of P&R shows the
clock frequency could normally work on 200MHz. At function verification, the ATU
and DDR memory controller is verified completely in this chapter. The post-layout

 50

simulation confirms that the function verification of DMMU is correct. The transition
range of data capacity supports from 16KB to 256MB. Finally, the performance
evaluation shows that the data transition of the conventional ATU to the proposed
ATU architecture is sharp ratio when transmitted data size is less than 16MB. The
ratio is 2 million times in transmitted 16MB data size.

 51

Chapter 4

Conclusion

The implementation of the distributed memory management unit (DMMU) in
the stream memory system of streaming processor is described in this thesis. We have
designed and implemented the DMMU, including address translation unit (ATU) and
double data rate (DDR) memory controller. The ATU provides a virtual memory
mechanism, which users can flexibly define, to save data transition time. The DDR
memory controller is used in simply burst read and write mode. When the improved
memory system is applied in multimedia applications, the access time in memory
hierarchy will be decreased more efficiently.

In this thesis, the Cell-Base design flow and UMC 0.18um technology are used

to implement our design. The results of the implementation are presented, including
circuit verification, function verification and performance evaluation. The circuit
verification shows that area increases insignificantly when clock frequency rises from
133MHz to 325MHz. Power increases in proportion to frequency, so it grows from
39mW to 94mW. Function verification reveals: (a) access privilege, exception and
boundary check to verify the address translation; (b) burst read and burst write mode
to confirm the DDR memory controller. Performance evaluation proves that proposed
ATU architecture provides 2 million times speed-up than conventional ATU when
transmitted 16MB data size.

The advantage of the DMMU architecture provides a sharp increasing of data
transition by using the small circuit area and power in modern multimedia
applications. Users flexibly define the segment table to achieve fast data copying and
data moving. When the proposed DMMU is integrated to multimedia applications, the
data transition is more efficient to save transition time.

 52

Bibliography

[1] John. L. Hennessy, and David A.Patterson,“ Computer Architecture – A

Quantitative Approach,” Morgan Kaufmann, 3rd edition.

[2] Scott Rixner, “ Stream Processor Architecture,” Kluwer Academic Publishers,

Boston, MA, 2001.

[3] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany, Abelardo
Lopez-Lagunas, Peter Mattson, and John D. Owens “ A Bandwidth-Efficient
Architecture for Media Processing,” Proceedings of the 31st Annual
International Symposium on Microarchitecture, Nov. 30 - Dec. 2, 1998, Dallas,
Texas, pp. 3-13.

[4] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin,

C. Chen, C. W. Kang, I. Kim, and G. Daglikoca “ The Architecture of the DIVA
Processing-In-Memory Chip,” In Proceedings of the International Conference
on Supercomputing, June, 2002.

[5] Khailany. B., Dally. W.J., Kapasi. U.J., Mattson, P.; Namkoong, J.; Owens, J.D.;

Towles, B.; Chang, A.; Rixner, S, “ Imagine: Media Processing with Streams,”
Micro, IEEE Volume 21, Issue 2, March-April 2001 Page(s):35 - 46 Digital
Object Identifier 10.1109/40.918001

[6] Brucek Khailany, William J. Dally, Scott Rixner, Ujval J. Kapasi, Peter Mattson,

Jinyung Namkoong, John D. Owens, and Brian Towles “ Imagine: Signal and
Imagine Processing with Streams,” Hotchips 12, August 2000, Stanford, CA.

[7] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D.

Owens “ Memory Access Scheduling,” 27th Annual International Symposium on
Computer Architecture, Vancouver, Canada, June 2000, pp. 128-138.

[8] DDR SDRAM controller MegaCore Function, http://www.altera.com

[9] Brucek Khailany, “ The VLSI Implementation and Evaluation of Area-and

Energy-Efficient Streaming Media Processors,” Ph.D. dissertation, Stanford
University, June 2003.

 53

[10] Herming Chiueh, Draper J., Mediratta S., Sondeen J. “ The Address Translation
Unit of the Data–Intensive Architecture (DIVA) System,” Solid-State Circuits
Conference, 2002, ESSCIRC 2002, Proceedings of the 28th European 24-26 Sept.
2002 Page(s):767 – 770

[11] DDR SDRAM Memory Controller”, http://www.latticesemi.com

[12] M. Hall and C. Steele “ Memory Management in PIM-Based Systems,” In

Proceedings of the Workshop on Intelligent Memory Systems, held in
conjunction with Architectural Support for Programming Languages and
Operating Systems, Boston, MA, Nov. 2000

[13] John. L. Hennessy, and David A.Patterson,“ Computer Organization &

Design – The Hardware / Software Interface,” Morgan Kaufmann, 3rd
edition.

[14] DDR SDRAM, http://www.tech-faq.com

[15] J. M. Rabaey, A.Chandrakasan, and B.Nikolic,“ Digital Integrated Circuits,”

Prentice Hall, 2nd edition.

[16] CUPPU, VINODH, ET AL., “ A Performance Comparison of Contemporary

DRAM Architectures,” In Proceedings of the International Symposium on
Computer Architecture (May 1999), pp. 222-233.

[17] The device operations and timing block diagram of DDR SDRAM,

http://www.samsung.com

	01_cover.pdf
	02_title.pdf
	03_chinese_abstract.pdf
	04_english_abstract.pdf
	05_Acknowledgments.pdf
	06_table_of_contents.pdf
	07_list_of_table.pdf
	08_list_of_figure.pdf
	Chapter1.pdf
	Chapter2.pdf
	Chapter3.pdf
	Chapter4.pdf
	09_bibliography.pdf

