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摘 要       

隨著次深次微米技術演進到 0.18 微米以下，晶片上功率傳輸網路的分析，已

經變成在今日的高效能晶片設計下的ㄧ個非常重要而且具挑戰性的ㄧ個問題。功

率傳輸網路上較低的電源電壓，將會減少電路的雜訊容忍度。除此之外，較高的

電路操作頻率，將使得由 Ldi/dt 電壓壓降而來的電路雜訊為之增加。這些效應將

會增加功率傳輸網路的設計複雜度以及對於有效率的功率傳輸網路分析方法的

需求。 
   在本篇論文當中，對於功率傳輸網路分析，我們提出了ㄧ個以集合體基礎的

代數多重網格分析方法。首先，我們將原始的功率傳輸網路模擬成許多 RLKC 元

件以及片段線性的電流源。然後，利用修飾節點分析方法，我們可以把原始問題

轉換成一個 Ax=b 的線性代數問題。在此，A 是一個 nn× 的矩陣，x 和 b 是 1×n 的

向量。在對於這個線性代數問題，應用了我們的集合體演算法之後，我們可以把

原始的系統矩陣分成許多小的子矩陣，並實行一個代數的切割去簡化問題。 
   實驗結果顯示出，我們的集合體基礎的代數多重網格方法，在時間和記憶體

方面，比較傳統的代數多重網格方法以及現存的改善 Krylov 子系統方法，都得

到了更好的結果。 
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ABSTRACT 

 
As the ultra deep sub-micron technology scales down to 0.18 µm, power 

distribution network analysis becomes one of the most critical and challenging 
problems in today’s high performance chip design. Lower supply voltage on power 
distribution network decreases the circuit noise margin and higher circuit operation 
frequency increases the circuit noise from Ldi/dt voltage drop. Those effects increase 
the design complexity of power distribution network and also increase the demand of 
efficient power distribution network analysis methods.  

In this thesis, we present an aggregation-based algebraic multigrid method for 
power distribution network analysis. First, we model the original power distribution 
network with RLKC segments and piecewise linear current sources. Then we use 
modified nodal analysis to transform the problem into an Ax=b linear algebraic 
problem where A is a nn×  matrix, x and b are 1×n  vectors. By performing an 
aggregation algorithm, the original system matrix is divided into many small 
sub-matrices and an algebraic partition is performed to simplify our problem. 

Experimental results show our aggregation-based algebraic multigrid method runs 
faster and spend less memory usage than both traditional algebraic multigrid method 
and the existing IEKS (Improve Krylov Subspace) method.  
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Chapter 1

Introduction

This chapter gives an introduction of this thesis. Since our research topic is to develop

an efficient analysis tool for on-chip power/ground distribution network. We discuss the

basic concepts of on-chip power/ground distribution network in the beginning. The role

of an on-chip power/ground distribution network is to supply stable voltage references to

the on-chip circuitry and ensuring reliable operation of today’s high performance micro-

processors. However, as the ultra deep sub-micron technology scales below 0.18µm, cir-

cuits with increasingly higher speed are being integrated with increasingly higher density.

Higher device densities and faster switching frequencies cause large switching currents

to flow in the on-chip power/ground distribution network, and will cause larger voltage

fluctuations due toIR drop andLdi/dt noise which degrade the performance and relia-

bility of the circuit. High average currents flowing through the power/ground distribution

network may cause the undesirable electromigration effect which will degrade the cir-

cuit’s reliability. The descriptions of the voltage fluctuations and electromigration effect

are shown in the following [1] [2] [3]

• IR drop voltage noise: An example of theIR drop voltage noise is shown in

Fig. 1.1.IR drop mainly results from the resistance of the on-chip power network

whereI represents current. If large current flows through the power network, an

un-acceptable voltage drop occurs. LargeIR drop results from large current must

be handled carefully during design period.
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Fig. 1.1:An Example ofIR Drop Voltage Noise

• Ldi/dt voltage noise:Ldi/dt noise occurs from a sudden change of current flow-

ing through a power network. With higher operation frequency of today’s high

performance IC design,Ldi/dt voltage noise becomes larger.Ldi/dt noise also

results from mutual inductance coupling effect. Two parallel wires may cause large

Ldi/dt voltage drop noise with each other.

• Electromigration: Electromigration effect results from a conductor with too much

current flowing through it and hence, the displacement of metal atoms due to electron-

flux. This behavior will cause shorts or opens in the metal lines, and degrading the

circuit’s reliability.

As the supply voltage scaling to control the power dissipation in the circuit [4], the

noise margin of the on-chip power/ground distribution network are sensitive to the voltage

fluctuations and excessive voltage drops may cause the functional failures of the circuit.
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With these reasons, the analysis of on-chip power/ground distribution network has be-

come a critical issue of today’s high performance IC design. In order to precisely predict

the voltage distribution and correctly simulate the behavior of the on-chip power/ground

distribution network, we model the active devices between power and ground distribu-

tion networks as time-varying current sources and gate capacitances [14]. By the way,

the power distribution network and ground distribution network can be separated for sim-

plicity. We focus on the simulation of power distribution network in this thesis and this

method can be extended to the ground distribution network analysis in the same manner.

The power distribution network is usually an irregular mesh and is modeled asRLKC

segments whereR, L, andC represent the stamping matrix of resistors, inductances, and

capacitances, andK represents the susceptance matrix [22] [23] which is defined as the

inversion ofL. The structure of power distribution network is shown in Fig. 1.2. Since

mutual inductance coupling has long range effect [5] which means that the coupling be-

tween two parallel wire segments decays very slowly with their separated distance, and

generates a dense matrix ofL, for simplicity, the mutual inductances coupling effects are

not shown in Fig. 1.2.

The rest of this chapter is organized as following. In Section 1.1, we compare the

existing analysis methods for power network analysis and state our research motivation.

Our contributions and the organization of this thesis are presented in Section 1.2 and 1.3.

1.1 Motivations

In this section, we compare the existing analysis methods for power network and state our

research motivation. With the ultra deep sub-micron technology, several features of chips

(higher operating frequency, larger number of transistors, smaller feature sizes of transis-

tors and lower supply voltages) have made the integrity issues of power delivery network

become a key issue of high performance designs [6][7][8]. Generally, the power deliv-

ery network contains enormous amount of circuit elements and such huge size requires

3
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Power Supply
On-Chip resistance and inductance

Time-Varying Current Sources Gate Capacitances

Fig. 1.2:The Structure of Power Network

highly efficient analyzers. Thus, the general circuit solvers such as SPICE by using direct

methods are not suitable for the power delivery analysis. In the past years, various efficient

methods have been proposed for the power delivery network analysis. The preconditioned

conjugate gradient (PCG) method is applied for solving power grid analysis in [9]. The

hierarchical methods are developed in [10][11]. The improved extended Krylov subspace

(IEKS) method developed in [11] extends the model order reduction technique to deal

with time-varying current sources without the moment shifting procedure. Multigrid-like

methods are developed in [12][13] to map the original problem to a reduced system with

smaller size by using the circuit’s geometry properties. However, these frameworks pro-

posed in [12][13] are hard to handle the coupling effects of mutual inductances. Hence, an

adaptive algebraic multigrid (AMG) method is used in [14] to analyze the power network.

It reformulates the system matrix and views the problem as an algebraic problem which

doesn’t need the geometry information. With these properties, the AMG based method

can handle mutual inductance coupling effects.

The mapping operators of AMG in [14] are determined by locally calculating the
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equation,Ae ≈ 0, whereA is the system matrix ande represents the error vector. The

quality of mapping operator strongly depends on the choice of coarse grids and the con-

structed mapping operators only contain the local information ofA. The mapping opera-

tors of AMG may lose a few of important error terms because of the inadequate choice of

coarse grids, hence, degrade the convergence rate. Therefore, an adaptive choice method

of coarse grids is developed in [14] to improve the above undesirable behavior. However,

this method needs to construct the mapping operators at each time step and may boost the

CPU time. To solve this problem, our aggregation-based algebraic multigrid (AbAMG)

method contains a global mapping operator construction procedure.

The idea of our mapping operator construction is based on the aggregation AMG

method used in [25] [26][27]. Aggregation methods originated in economics [28], where

similar products are considered together instead of individually. This procedure allows

significant reduction in the problem size, and maintaining accurate representation of the

overall behaviors. In multigrid terminology, the coarse grid is selected as a collection of

subsets of the fine grid. An algebraic partition is performed to the original fine grid and the

original system matrix is partitioned into several aggregated sub-matrices. The mapping

operators of aggregation AMG method are constructed from the system’s global eigen-

decomposition property. Generally, the error in the direction of an eigenvector associated

with a large eigenvalue is rapidly reduced by relaxation and the error in the direction of an

eigenvector associated with a small eigenvalue is reduced by a factor that may approach 1

as the eigenvalue approaches 0 [20]. The eigenvectors associated with small eigenvalues

of each sub-matrix are calculated to approximate the smooth error components of the

original system matrix and the mapping operatorP is composed by these eigenvectors.

With accurate calculation of these eigenvectors, the mapping operator can project the

original system to a better transformed system than traditional AMG in [14] and achieving

better convergence rate. However, the eigen-decomposition complexity of the aggregated

sub-matrix grows rapidly with the matrix size and may boost the CPU time.
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In Chapter 3, we will show that the system matrix of the power delivery network

analysis problem has resistance dominate property when determining the aggregation.

The maximum matrix size of each sub-matrix of the original system is less than 4 and

the analysis problem has excellent property for aggregation AMG. The mapping opera-

tor construction of our proposed AbAMG method is based on the concept of aggregation

AMG and an innovative matrix compensation algorithm with a global error estimation

procedure is performed to further improve the quality of the mapping operators. The

mapping operator construction procedure of AbAMG is independent of the choice of

coarse grids and it only needs to be performed once for all time steps. With these prop-

erties, the AbAMG method can construct better mapping operators than the traditional

AMG method, and achieving better performance for solving the power delivery network

problem.

1.2 Our Contributions

This section we discuss our contributions in the following aspects

• The practicability of aggregation AMG to power network analysis: In this the-

sis, we discuss the practicability of the aggregation AMG to power network analy-

sis problem. Although the computation complexities of the eigen-decomposition

procedures of the aggregated sub-matrices grow rapidly with the matrix size. We

discuss the resistance dominate property when determining the aggregation of the

system matrix of the power delivery network. The maximum aggregation size is

only of 4 and the aggregation AMG method is efficient to analysis the power de-

livery network problem. We discovery the practicability of the aggregation AMG

to power network analysis and provide a new idea of AMG method to analysis the

power delivery network problem.

• Global error estimation: Although the real error of the analysis system is un-

known, we propose a global error estimation method in this thesis. By applying the

6



relaxation process to a problem with known solution, we can obtain the information

about the troublesome error. The homogeneous equation,Ax = 0, serves us well

for this purpose whereA is the system matrix andx is the solution vector. Our

global error estimation process begins by applying iterative methodi times to the

homogeneous equation with a random initial guessx0. The resulting solution vector

xi can provide us the information about global error distribution. The error vector

contains information of the algebraic property of system matrixA and improves the

construction of AMG inter-grid mapping operators. The detail discussion of global

error estimation and mapping operators construction will be shown in Section 3.4.

• Global mapping operator construction: In contract to AMG, AbAMG constructs

the mapping operator from the global information ofA. An aggregation algorithm

is performed to partition the original system matrixA into many sub-systems and

the approximated eigenvectors ofA can be calculated from each sub-system lo-

cally. Since each sub-system is not totally independent and has weak connections

with each other. An algebraic matrix compensation algorithm is performed to catch

the weak connection effects. The error vector generated during the global error

estimation is used in the matrix compensation algorithm. After the compensation

algorithm, we can construct a better mapping operator from the global information

of system and get better performance than standard AMG.

1.3 Organization of this Thesis

The rest of this thesis is organized as follows. Chapter 2 introduces the Modified Nodal

Analysis method and the mathematical background of multigrid and traditional AMG.

Chapter 3 describes our proposed algorithm flow. In Chapter 4, we compare the ex-

perimental results of AbAMG, traditional AMG and IEKS methods. Finally, we give a

conclusion in Chapter 5.

7



Chapter 2

Preliminaries

This chapter introduces several mathematic background knowledge that will be used in

this thesis. The Modified Nodal Analysis (MNA) method [15] is illustrated in Section

2.1. By using MNA, we can get the system equation, and modeling the original problem

as a linear algebraic problem. The direct and iterative methods for solving a linear alge-

braic problem are discussed in Section 2.2. Finally, the theory of the multigrid method is

presented in Section 2.3.

2.1 Modified Nodal Analysis

MNA is very useful for large circuit analysis and is easier to implement algorithmically

on a computer. The analysis principles of it and an example forRLC circuit are shown

below.

• Principles of MNA: To apply the MNA to a circuit withn nodes,m voltage sources

andk inductances. We apply the following steps.

– Step 1:Name then nodes and currents through each current source.

– Step 2:Name the currents through each voltage source and inductance.

– Step 3:Apply Kirchoff’s current law to then nodes. We take currents out of

a node to be positive.

– Step 4:Write an equation for the voltage each voltage source and inductance.

8



– Step 5:Solve the system ofn + m + k unknowns.

Example: Consider aRLC circuit shown below:

R1 L1

C1

V1(t) V2(t)I1(t)

Fig. 2.1:RLC Circuit

Apply step 1 and step 2:

R1 L1

C1

V1(t) V2(t)I1(t)

Va(t) Vb(t) Vc(t)

iv1(t) iv2(t)

iL(t)

Fig. 2.2:RLC Circuit After Step 1,2

Apply step 3:

Node a : iv1(t) + I1(t) +
Va(t)− Vb(t)

R1

= 0 (2.1)

9



Node b :
Vb(t)− Va(t)

R1

+ C1
dVb(t)

dt
+ iL(t) = 0 (2.2)

Node c : iv2(t)− iL(t) = 0 (2.3)

Apply step 4:

Vb(t)− Vc(t) = L1
diL(t)

dt
(2.4)

Va(t) = V1(t) (2.5)

Vc(t) = V2(t) (2.6)

Apply step 5:



1
R1

− 1
R1

0 0 1 0
− 1

R1

1
R1

0 1 0 0
0 0 0 −1 0 1
0 −1 1 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0




Va(t)
Vb(t)
Vc(t)
iL(t)
iv1(t)
iv2(t)

+


0 0 0 0 0 0
0 C1 0 0 0 0
0 0 0 0 0 0
0 0 0 L1 0 0
0 0 0 0 0 0
0 0 0 0 0 0




Va(t)′

Vb(t)′

Vc(t)′

iL(t)′

iv1(t)′

iv2(t)′

 =


−I1(t)

0
0
0

V1(t)
V2(t)


(2.7)

Rearranging Equation (2.7), we can get the following equations:



1
R1

− 1
R1

0 0 1 0
− 1

R1

1
R1

0 1 0 0
0 0 0 −1 0 1
0 −1 1 0 0 0
−1 0 0 0 0 0
0 0 −1 0 0 0




Va(t)
Vb(t)
Vc(t)
iL(t)
iv1(t)
iv2(t)

+


0 0 0 0 0 0
0 C1 0 0 0 0
0 0 0 0 0 0
0 0 0 L1 0 0
0 0 0 0 0 0
0 0 0 0 0 0




V ′

a(t)
V ′

b (t)
V ′

c (t)
i′L(t)
i′v1(t)
i′v2(t)

 =


−1 0 0
0 0 0
0 0 0
0 0 0
0 −1 0
0 0 −1


 I1(t)

V1(t)
V2(t)



(2.8)

From Equation (2.8), the MNA circuit equations of a linearRLC circuit can be rep-

resented as following:

Ĝx(t) + Ĉ
d

dt
x(t) = Bu(t) (2.9)
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where

Ĝ =

 G −AT
l −AT

VE

AT
l 0 0

AT
VE

0 0


Ĉ =

C 0 0
0 L 0
0 0 0


x(t) =

 v(t)
il(t)

iVE
(t)


v(t) corresponds to the unknown nodal voltages.il(t) and iVE

(t) correspond to the

branch currents flowing through inductors and independent voltage sources.G, C andL

represent the stamping matrices of the resistors, the conductors and the inductors.Al and

AVE
correspond to the coefficient matrices related to the inductors and the independent

voltage sources.u(t) is the vector of independent voltage sources and the independent

current sources.B is the coefficient matrix related tou(t). Integrating Equation (2.9)

from timet to (t + h), we can get the following equation

Ĝ
∫ t+h

t
x(t)dt + Ĉ

∫ t+h

t

dx(t)

dt
dt = B

∫ t+h

t
u(t)dt (2.10)

Applying trapezoidal approximation [15] with time step h to Equation (2.10), we have

Ĝ

(
x(t + h) + x(t)

2

)
h + Ĉ(x(t + h)− x(t)) = B

(
u(t + h) + u(t)

2

)
(2.11)

Reformulating Equation (2.11), we have

(
Ĝ +

2

h
Ĉ
)

x(t + h) = −
(
Ĝ− 2

h
Ĉ
)

x(t) + B(u(t + h) + u(t)) (2.12)

Equation (2.12) can be viewed as a linear algebraic problem ofAx = b, whereA

is equal to
(
Ĝ + 2

h
Ĉ
)
. The solution ofx can be solved iteratively with time steph and

each time step encounters anAx = b problem which can be solved by direct or iterative

methods.
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2.2 Direct and Iterative Methods for Solving Linear Equa-
tion

Direct Methods:

When solving a linear algebraic problem

Ax = b (2.13)

whereA is n ∗ n matrix, x and b aren ∗ 1 vectors. The simplest direct method is to

calculate the inverse matrix ofA and the solution ofx is

x = A−1b (2.14)

Another direct method is theLU decomposition method [16]. Substituting theA matrix

into a product of lower- and upper-triangular matrices:

A =

[ ... 0

L
...

] [ ... U

0
...

]
(2.15)

We have

LUx = b (2.16)

In order to solve Equation (2.16), we substitute

y = Ux (2.17)

such that

Ly = b (2.18)

So we first solve the Equation (2.18) byForward Substitution to obtainy and then

solve the Equation (2.17) byBack Substitution to get the final solutionx.

Direct methods can always get the answer of a linear algebraic problem with high

computational complexity. Most direct methods have computational complexities in pro-

portion ton3 [16]. With the tremendous amounts of transistors in today’s VLSI design,

12



direct analysis methods are prohibitive due to computational complexity.

Iterative Methods:

In contract to direct methods, iterative methods solve a linear algebraic problem it-

eratively [17]. It gets the answer after several iterations. Considering a linear algebraic

problemAx = b, iterative method splits the matrixA into the form

A = M −N (2.19)

whereM andN aren ∗ n matrices. So Equation (2.13) becomes

(M −N)x = b (2.20)

Reformulating Equation (2.20), we have

x = M−1Nx + M−1b (2.21)

From Equation (2.19), we can get

M−1N = I −M−1A (2.22)

Substituting Equation (2.22) into Equation (2.21), we can get a standard iterative formula:

xi+1 = (I −M−1A)xi + M−1b (2.23)

wherexi is the value ofx afteri− th iterations.

Substituting the real solutionx to the both sides of Equation (2.23), we can get the

error propagation equation as the following

ei+1 = (I −M−1A)ei (2.24)

whereei = x− xi

The matrixA can be decomposed asA = D + L + U whereD, L, andU are the ma-

trices of the diagonal, lower triangular, and upper triangular elements ofA. The decom-

positions ofA are shown in Fig. 2.3. For the Jacobi and Gauss-Seidel iterative methods,

theM matrix are substituted byD andD + L [17], and the iterative solving scheme of

the Jacobi and Gauss-Seidel iterative methods can be showing as following

13



• Jacobi Relaxation:

xi+1 = xi + D−1ri (2.25)

• Gauss-Seidel Relaxation:

xi+1 = xi + (D + L)−1ri (2.26)

whereri means the residual afteri times iterations and is equal tob− Axi

D

L

U

Fig. 2.3:Decompositions of Matrix A

Iterative method converges to the correct answer after several iterations and the com-

putational complexity is oftenn log n per iteration [17]. The efficiency of iterative method

depends on how fast it can converge to the correct answer. From Appendix A, we can

know that the error in the direction of an eigenvector associated with a large eigenvalue

is rapidly reduced by relaxation and the error in the direction of an eigenvector associated

with a small eigenvalue is reduced by a factor that may approach 1 as the eigenvalue ap-

proaches 0. The smooth error components must be solved by efficient solution methods.

An example of iterative method is shown in Fig. 2.4. We apply the Gauss-Seidel

iterative method to a power network analysis problem of dimension 260 with random

initial error. The supply voltage of this power network problem is 1V. The initial error of
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each node is shown in (a). The error of each node after 5, 20, 50 times of Gauss-Seidel

relaxations are shown in (b), (c), (d). The error components that are easy to be eliminated

by the iterative methods are defined as the oscillatory errors and the error components

that are hard to be eliminated by the iterative methods are defined as the smooth errors.

We can find that the Gauss-Seidel relaxations eliminates the error slowly and some nodes

have large errors which need 50 times of iterations to eliminate. In order to solve this

stalling behavior and make the problem converge faster, the multigrid method is proposed

[18].
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Fig. 2.4:Smoothing of Random Error by Gauss-Seidel Iteration
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2.3 Multigrid Method

The earliest multigrid method is geometry multigrid (GMG) introduced by Brandt in

1973. It uses the geometry properties of system to construct a complementary multilevel

structure to overcome the stalling behavior in general iterative methods. The complemen-

tary multilevel structure is developed with two main ideas.

First, we know that the iterative method quickly eliminates oscillatory errors and we

must look for a process that can efficiently eliminate smooth errors. Since the global com-

putational complexity is proportional to the problem size, we transfer the original problem

from the original domain (fine domain) into a coarser domain such that we can attempt to

solve the problem there with cheaper computational cost. This domain transformation is

called the coarsening procedure and is determined by the geometry properties of system

in GMG. A standard geometry coarsening of a regular mesh is shown in Fig. 2.5. The

original analysis system is fine grid of larger dimension and the transformed system is

coarse grid of smaller dimension.

Fine Grid Coarse Grid

Fig. 2.5:Standard Geometry Coarsening of a Regular Mesh
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Second, another difficulty is about how to represent the error on the coarser domain

since it is the quantity we do not know. Considering an algebraic equation,Ax = b, with

an approximation,̂x, the residual is defined as

r = b− Ax̂ = A(x− x̂) = Ae (2.27)

So, although the error is unknown, it can be solved by using the residual equation,Ae = r.

If we calculate the residualr on the original fine domain and project this residual to the

transformed coarse domain. The residual equation of the coarse domain can be solved

and an error correction termec can be obtained to correct the solution.

Based on these ideas, we can construct a two-level solution method as shown in

Fig. 2.6. First, we apply the iterative method to the equationAx = b to eliminate the

oscillatory error components on the fine grid of dimensionN . This step is also called the

relaxation step and the residual on the fine grids is calculated byr = b − Ax. Then,

the residual isrestricted to the coarse grids with a smaller dimensionM by rc = Rr,

and the coarse grid operator is constructed by the Galerkin operatorAc = RAP . Here,

R is a M × N , P is a N × M matrix andR = P T . On the coarse grids, the residual

equation,Acec = rc, is solved and the error correction termec is interpolated to the fine

grids bye = Pec. The smooth error components not eliminated well by relaxation on the

fine grid can be eliminated by the error correction termec. A complementary two-level

solution scheme can be constructed to overcome the stalling behavior of smooth error

components in general iterative methods. The correct solution is obtained byx = x + e,

and a post-relaxation step is applied on the fine grids to ensure that the oscillatory error is

not introduced through the coarse-grid correction step.

Applying the two-level solution method recursively, a multilevel solution method is

constructed and the coarsest residual equation can be solved with cheaper computational

cost. The multigrid V-cycle is shown in Fig. 2.7. The fine grid is labeled as level 1 and

the coarsest grid is labeled as level L. A relaxation step is first applied in the fine grid of

level 1 and the residual is restricted to the next level. These steps are repeated until the
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Relax on Ax = b
Compute residual

r= b - Ax

Restrict rc = Rr

Correct solution
x x + e

Relax again

Interpolate e = Pec

Solve Acec= rc

ec= (Ac)-1rc

Fine Grid

Coarse Grid

A :  N*N 
Ac : M*M 
(M<N)
R : M*N 
P : N*M
Ac = RAfP

Fig. 2.6:Two-Level Solution Method

coarsest level is reached and the residual equation of level L is solved to get the correction

error termeL. Then, the error termeL is interpolated to the fine grid of level 1 and the

post-relaxation step is performed at each level.

Multigrid method constructs a complementary multilevel structure which can effi-

ciently eliminate all error components. The efficiency of multigrid method depends on

how to choose the coarse grid and determine the intergrid mapping operatorsP andR.

The mapping mechanism of GMG is easily determined with regular mesh but hard with

irregular mesh. In order to develop a more robust solving method, an algebraic multigrid

method is proposed in Section 2.3.1.

2.3.1 Traditional Algebraic Multigrid Method

AMG method was first introduced by Brandt in [19]. It is developed for solving problems

with irregular or unknown geometry properties. In contract to GMG, AMG uses only

information from the system matrix.

In this section, we focus our discussion on the traditional AMG. Considering an alge-
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Fig. 2.7:The Multigrid V-Cycle

braic equation,Ax = b, AMG determines the inter-grid mapping operators, coarse grid

from the matrixA and the graph of it. Each row of the matrixA can be represented as

a node and its connection edge in a graph. The coefficients of the matrixA represent

the connections of the graph. For example, if|aij| = 0, there is no edge between node

i andj in the graph ofA. If |aij| ≥ θ|aii|, we say that nodej strongly influencesi. If

|aij| ≤ θ|aii|, nodej weakly influencesi. Here,θ is a coefficient from 0 to 1 and is often

chosen to be 0.25.

With these definitions, we can construct the matrix graph ofA and determine the

coarse grid by thecolor scheme algorithm [18]. This method begins by assigning a

measure to each nodei of its potential quality to be a coarse node. The weight of nodei

is determined by counting the number of nodes strongly influenced by nodei. Then, we

choose the nodei with maximum weight to be the starting coarse grid since it has good

potential to approximate other nodes. The nodes strongly influenced by nodei are defined

as fine nodes since they can be approximated well by nodei. It’s logical that the nodes

strongly influence the new fine nodes should be defined as coarse nodes since they can

approximate the new fine nodes well. Thus ,we increase the weights of the nodes strongly

influence the new fine nodes by 1 and repeat the coarse node selection until all nodes of
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Algorithm of Color Scheme
Input: The Graph of System Matrix A of Nodes 1, 2, ..., n
and the Related Weights w1, w2, ..., wn of These Nodes
Output: The Sets of Coarse and Fine Nodes
1 Begin
2 NodeCounter=0
3 While NodeCounter!=n
4 MaxWeight=0, StartNode=1
5 For each nodei
6 If nodei is not defined as a coarse or fine node
7 If wi >MaxWeight
8 Then MaxWeight=wi, StartNode=i
9 EndFor
10 StartNode is defined as a coarse node, NodeCounter++
11 For each nodej that is strongly influenced by StartNode
12 If nodej is not defined as a coarse or fine node
13 nodej is defined as a fine node, NodeCounter++
14 For each nodek that strongly influences nodej
15 If nodek is not defined as a coarse or fine node
16 wk + +
17 EndFor
18 EndFor
19 End.

Table 2.1:Algorithm of Color Scheme

the matrix graph of A are defined as coarse or fine nodes. The algorithm of color scheme

is shown in Table 2.1 and an example of it is given

Fig. 2.8 shows an example of color scheme. The description of each step is shown

below:

• Example of Color Scheme:

– Step a:A matrix graph ofA is given with node number 1 to 14.

– Step b: The weight of each nodei is determined.

– Step c: Node 3 is defined as the starting coarse node with maximum weight

of 4 and node 1, 4, 13, 14 are defined as fine nodes. The weights of node 2, 5,

9, 11 are increased.
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Fig. 2.8:Example of Color Scheme

– Step d: Node 11 is defined as the new coarse node with maximum weight of

5 and node 12 is defined as new fine node. The weight of node 9 is increased

by 1.

– Step e:Node 9 is defined as the new coarse node with maximum weight of 5

and node 6 is defined as new fine node.

– Step f: Node 5 is defined as the new coarse node with maximum weight of 3

and node 7 is defined as new fine node. The weight of node 8 is increased by

1.

– Step g:Node 8 is defined as the new coarse node with maximum weight of 3

and node 10 is defined as new fine node.

– Step h:Node 2 is defined as the new coarse node with maximum weight of 2.

All nodes in the matrix graph of A are defined and the color scheme finishes.
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By using the color scheme algorithm, we can get the coarse grid and every fine nodei

can be approximated well by the coarse nodes strongly influencei. However, the selected

coarse grid only considers local connections of each nodei and may choose bad coarse

nodes that will decrease the convergence rate. To overcome this defect, we propose a

global mapping operator construction to build the global-considering coarse grids.

To further discuss the inter-grid mapping operator, we continue the discussion of inter-

grid transfer operator. Since the key to the efficiency of the multigrid method depends

on the complementarity of the relaxation and coarse-grid correction steps. We begin

the discussion of inter-grid transfer operator with the property of algebraic smoothness,

(Ae)i ≈ 0 which means that residual become small after several iterative iterations for

each rowi. The equation can be rewritten as

aiiei ≈ −
∑
j 6=i

aijej (2.28)

We define that the DOFs of fine grid isC∪F , whereC is the set of coarse-level nodes

andF is the set of remaining fine-level nodes. Rewriting Equation (2.28), we can get

aiiei ≈ −
∑
j∈Ci

aijej −
∑
k∈Fi

aikek (2.29)

whereCi = C ∩Ni, Fi = F ∩Ni, andNi means the neighboring nodes of nodei.

For further discussion, we divide theFi into F s
i andFw

i whereF s
i is the set of nodes

which strongly influencei in Fi, andFw
i is the set of nodes which weakly influencei in

Fi. Equation (2.29) can be rewritten as

aiiei ≈ −
∑
j∈Ci

aijej −
∑

k∈F s
i

aikek −
∑

m∈F w
i

aimem (2.30)

From Equation (2.30), we can try to define an interpolation structure since theei for

each node is approximated by the neighboring coarse nodesCi and fine nodesFi. If we

can approximate the value ofFi as a sum of the values ofCi, ei can be approximated by

Ci only and an interpolation can be defined.
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Since the values ofF s
i nodes are large compared toaii, we approximateek by Ci in

the following form

ek ≈

∑
j∈Ci

akjej∑
l∈Ci

akl

(2.31)

Substituting Equation (2.31) into Equation (2.30) and adding the values ofFw
i points

into aii, we can get the following equation

aii +
∑

m∈F w
i

aim

 ei = −
∑
j∈Ci

aij +
∑

k∈F s
i

 aikakj∑
l∈Ci

akl


 ej (2.32)

From Equation (2.32), an interpolation formula fori ∈ F , ei =
∑

j∈Ci

wijej, can be

defined with

wij = −

aij +
∑

k∈F s
i

 aikakj∑
l∈Ci

akl


aii +

∑
m∈F w

i

aim

(2.33)

The value ofF s
i is approximated by a sum of the value ofCi, and the value ofFw

i

is simply added toaii. However, the selection ofF s
i andFw

i is fully determined by their

coefficients in Equation (2.30), and this would cause the bad choice ofF s
i andFw

i . Some

nodes ofFw
i with large errors should be labeled in the set ofF s

i . This behavior will

decrease the convergence rate of standard AMG. One of the main object of our AbAMG

is to overcome this defect.

After introducing the concepts of color scheme and weights calculation, the flowchart

of traditional AMG is shown in Fig. 2.9. At first, a cycle construction is performed to

construct the multigrid V-cycle. In the fine grid, a color scheme is performed to determine

the coarse grid and the weights of intergrid transfer operator can be calculated by Equation

(2.33). The coarse grid operatorAc can be derived from the Galerkin operatorAc =

RAfP . We apply these steps repeatedly until the coarsest grid operator is coarse enough.

After the step of traditional AMG cycle construction, we can derive the multigrid V-cycle

and the answer ofx can be solved by the multilevel solver mentioned in section 2.3.

23



Input

Color scheme

Weights calculation

Coarse grid 
construction

Can level (i+1) be 
solved?

i=1

i=i+1

No

Yes

Output

Level
1

2

3

L

Traditional AMG cycle construction

Multilevel solver

Fig. 2.9:The Flowchart of Traditional AMG

AMG construct the coarse grid and transfer operator from the property of system

matrix only. It can be applied to various types of problems without additional geometry

information. However, the construction of mapping operatorR andP strongly depends

on the choice of coarse grid and contains only local information of the system. Another

algebraic multigrid method using the aggregation concept is introduced in Section 2.3.2.

2.3.2 Aggregation Algebraic Multigrid Method

Aggregation methods originated in economics [28], where similar products are consid-

ered together instead of individually. This procedure allows significant reduction in the

problem size, and maintaining accurate representation of the overall behaviors. In multi-

grid terminology, the coarse grid is selected as a collection of subsets of the fine grid. An

algebraic partition is performed to the original fine grid and the original system matrix is
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partitioned into several aggregated sub-matrices.

The idea of the mapping operator construction of aggregation AMG [25][26][27] is

based on the concept that the smooth error components are in the directions of the sys-

tem’s eigenvectors associated with small eigenvalues [27]. An algebraic partition is per-

formed in the aggregation AMG according to the connections of the nodes in the graph

of the system matrixA and the nodes with strong influence between them are clustered

together in an aggregation. A node-by-node aggregation algorithm is discussed in Sec-

tion 3.5.1. After the aggregation procedure, an eigen-decomposition procedure is per-

formed in each aggregated sub-matrix and the eigenvector related to the small eigenvalue

is used to compose the mapping operatorP . With accurate calculation of the system’s

smooth error components, the aggregation AMG can achieve better convergence rate than

traditional AMG. However, the weak connected coefficients of small values between ag-

gregations are simply neglected or added to the diagonal elements in the aggregated sub-

matrices, and decreasing the convergence rate of aggregation AMG. An innovative ma-

trix compensation algorithm with a global error estimation procedure is proposed in our

AbAMG method to improve this defect in Chapter 3.
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Chapter 3

Aggregation-Based Algebraic Multigrid

In this chapter, we will introduce the algorithm flow of our proposed method. We first

state the problem formulation of the research in Section 3.1. In Section 3.2, we show

the algorithm flowchart of AbAMG and compare the main differences between it and

traditional AMG. The overview of our approach and previous works and the derivation of

analysis system equations are discussed in Section 3.3 and Section 3.4. Finally, the cycle

construction of our method and multilevel solver are discussed in Section 3.5 and 3.6.

3.1 Problem Formulation

The problem formulation of AbAMG for on-chip power network analysis can be formu-

lated as follows.

• Input: A RLKC network netlist and the independent voltage sources are given for

on-chip power network. The external current sources are modeled as time varying

piecewise linear current sources.

• Output: The voltage waveform of each node and the current waveform of each

wire segment are shown with respect to time.

• Goal: To develop an efficient analysis method for on-chip power network.
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3.2 Flowchart of Our Proposed Method

This section we show the flowchart of our proposed method and point out the main differ-

ences between our method and traditional AMG. The flowchart of our proposed method

is shown in Fig. 3.1
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Fig. 3.1:Flowchart of Our Proposed Method

At first, an aggregation-based AMG cycle construction is performed to construct the

multigrid V-cycle. In the fine grid, a global error estimation gives an estimation of global

null-space error. This information can be used to compensate the following aggregated

sub-matrices. Then, an aggregation algorithm is applied to partition the original system

matrix into many sub-matrices to localize the problem. After that, a matrix compensa-

tion algorithm compensates the sub-matrices and the intergrid transfer operator can be

derived from the sub-matrices locally. The coarse grid operatorAc can be derived from
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the Galerkin operatorAc = RAfP . These steps are applied recursively to construct the

multigrid V-cycle and the answer ofx can be solved by the multilevel solver.

The main difference between our method and traditional AMG is based on the cycle

construction step. Traditional AMG selects the coarse grid by the color-scheme algorithm

and begins the construction of intergrid transfer operator with the concept of algebraic

smoothnessAe ≈ 0. Our proposed method begins the cycle construction step with the

aggregation concept. Since most iterative methods quickly eliminate the components of

the error in the directions of the eigenvectors of the system matrix associated with the large

eigenvalues [20]. If we can get the eigenvectors of the system matrixA, the interpolation

operator can be composed by the eigenvectors associated with small eigenvalues and a

multilevel structure that can efficiently eliminate all error components can be constructed.

However, the real eigenvectors of the system matrix can’t be calculated directly. We

apply an aggregation algorithm to the original system matrix to perform an algebraic

partition and try to get the approximated eigenvectors of the system matrix from the ag-

gregated sub-matrices locally. The error estimation and matrix compensation steps are

used to improve the quality of the aggregated sub-matrices. The eigenvector associated

with the small eigenvalue in each aggregated sub-matrix is used to compose the intergrid

transfer operatorR andP . By using aggregation-based AMG, we can project the original

system matrix into another domain to expose the low frequency errors in the original do-

main, and construct a smaller interpolation operator compared to traditional AMG with

the aggregation property.

3.3 Overview of Our Approach and Previous Works

In this section, we compare the existing published multigrid methods on the power net-

work analysis in Fig. 3.2. The multigrid method was first applied to the power network

problem by Nassif in [12][13]. It applied the geometry multigrid method and extended

the mapping operator constructing scheme to the irregular mesh structure. However, this
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method modeled the power network as the RC segments, and had problem with mutual

inductance coupling effects.

The concept of algebraic multigrid method was first applied to power network prob-

lem by Su. It used a geometry-like mapping operator constructing scheme to solve the

problem in short time. However, the model of this method didn’t include the mutual

inductance and the rough mapping operator constructing scheme lead to large errors.

Another algebraic multigrid solver is developed in [14]. It used the traditional alge-

braic multigrid method with RLKC model and an adaptive coarsening scheme is applied

to improve the convergence rate. However, the coarsening scheme must construct the

cycle at every time steps and will increase the CPU time.

Our proposed method developed an aggregation-based AMG method for power net-

work problem. Our proposed method used the RLKC model as [14]. We discuss the

practicability of the aggregation AMG to the problem and an additional matrix compen-

sation algorithm with a global error estimation method is applied to further improve the

convergence rate.

3.4 Derivation of System Equations

By using MNA, the system equation of an irregular power network can be formulated as

following

Ĝx(t) + Ĉ
d

dt
x(t) = Bu(t) (3.1)

where

Ĝ =

 G −AT
l −AT

VE

AT
l 0 0

AT
VE

0 0


Ĉ =

C 0 0
0 L 0
0 0 0


x(t) =

 v(t)
il(t)

iVE
(t)


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Fig. 3.2:Comparison between Our Method and Previous Methods

The definitions ofĜ, Ĉ andx(t) are the same as Section 2.1. Since the independent

voltage sources are known, it is not necessary to solve the nodes of independent voltage

sources and the currents flowing through them. With this idea, the analysis dimension can

be reduced and the system equation can be rewritten as following

G̃x̃(t) + C̃
d

dt
x̃(t) = B̃ũ(t) + G̃EvE(t), (3.2)

where

G̃ =
[

Gn −AT
ln

AT
ln 0

]
, C̃ =

[
Cn 0
0 L

]
,

x̃(t) =
[
vn(t)
il(t)

]
, G̃E =

[
GE

LE

]
.

Here, vE(t), vn(t), and il(t) correspond to the vectors of the independent voltage

sources, the unknown nodal voltages, and the branch currents flowing through inductors,

respectively,Gn, Cn, andL represent the stamping matrices of the resistors not con-

necting tovE(t), the capacitors, and the inductors, respectively,Aln corresponds to the
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coefficient matrix related to those inductors not connecting tovE(t), ũ(t) is the vector

of independent current sources, andB̃, GE, andAlE are the coefficient matrices related

to ũ(t), the stamping of resistors betweenvn(t) andvE(t), and the connecting ofL and

vE(t), respectively.

Applying trapezoidal approximation with time step h, Equation (3.2) can be reformu-

lated as following

[ 2Cn

h
+ Gn −AT

ln

Aln
2L
h

] [
vn(t + h)
il(t + h)

]
= 2

[
GE

AlE

]
vE(t)

+
[ 2Cn

h
−G AT

ln

−Aln
2L
h

] [
vn(t)
il(t)

]
+ B̃

[
ũ(t + h) + ũ(t)

0

]
. (3.3)

After the time domain discretion, we can observe that the transient analysis system

matrix in Equation (3.3) is not symmetric and positive definite due to the introduction of

current variables.

Since the Multigrid method requires the matrix to be symmetric positive definite, some

extra processing is needed to reformulate the system matrix [21]. Similar to the method

used in [9], we split the variable vector into nodal voltage vector and branch current vector.

By using block matrix operations, we can decompose Equation (3.3) into two iteration

formulas for nodal voltages and branch currents. The system equations are reformulated

as following(
2Cn

h
+ Gn +

h

2
AT

lnL−1Aln

)
vn(t + h) =(

2Cn

h
−Gn −

h

2
AT

lnL−1Aln

)
vn(t) + 2AT

lnil(t)

+B̃(ũ(t + h) + ũ(t)) + hAT
lnL−1AlEvE(t) + 2GEvE(t) (3.4)

il(t + h) = il(t)−
h

2
L−1Al (vn(t + h) + vn(t)) + hL−1AlEvE(t) (3.5)

Since the matricesGn, Cn, andL−1 (or K) are SPD, we can prove that the system ma-

trix of Equation (3.4) is still SPD. TheL−1 (K) [22] is sparser than the originalL matrix,

and the above symmetric property can save 50% of the memory usage. Equation (3.4) is

equivalent to solve anAx = b problem, whereA is equal to(2Cn

h
+ Gn + h

2
AT

lnL−1Aln),
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and this problem can be solved by the two-level solution method, and the solutions of

Equation (3.4) and (3.5) are solved iteratively.

3.5 Aggregation-Based AMG Cycle Construction

In this section, a global mapping operator construction of our AbAMG is presented. At

first, a node-by-node aggregation algorithm is shown in Section 3.5.1. The practicability

of the aggregation AMG method to the power network analysis problem is discussed in

Section 3.5.2. The global error estimation procedure and matrix compensation algorithm

are stated in Section 3.5.3 and Section 3.5.4. Finally, the mapping operator construction

procedure is stated in Section 3.5.5.

3.5.1 Aggregation Algorithm

The purpose of the aggregation method in AMG is to reformulate the original system

matrix such that the smooth error components of the system can be calculated from the

modified system easily. Different from the difficulty of performing a geometry partition

with the complex mutual inductance coupling effects on the circuit topology, the aggrega-

tion method provides an easy approach to partition the problem in the algebraic manner,

and simplifying the problem.

A node-by-node aggregation algorithm is discussed in this section. The definition of

strong connection between nodesi andj provides a good measurement when determin-

ing aggregations. Nodesi andj are defined to have a strong connection if there is any

strongly influence relation between them. If there is no strongly influence relation be-

tween nodei and nodej, we say that they have a weak connection. Node with maximum

number of strong connections acts a good candidate to be the starting node in the aggre-

gation algorithm and nodes with strong connections between them must be labeled in the

same aggregation since the value ofaij is large with respect toaii. The nodes with weak

connections between them should be labeled in different aggregations and each node can
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only be included in an aggregation. The rules of aggregation can be concluded in the

following

• Aggregation Rules:

– Select the node with maximum number of strong connections in the graph as

the starting node when determining an aggregation

– Every node must be included in an aggregation

– Each node can not be labeled to different aggregation

– Let the nodes which have strong connections between them be labeled in same

aggregation

– Let the nodes which have weak connections between them be labeled in dif-

ferent aggregations

Considering a system equation,Ax = b, the aggregation algorithm is shown in Table

3.1 and 3.2.

An example of aggregation algorithm is shown in the following. Considering a system

equationAx = b, the original system matrixA and the graph of it are shown in Fig. 3.3.

Fig. 3.4 shows an example of aggregation. The description of each step is shown

below:

• Example of Aggregation:

– Step a:A matrix graph ofA is given with node number 1 to 12.

– Step b: The weight of each nodei is determined by counting the number of

strong connections.

– Step c: Node 9 is defined as the starting aggregated node with maximum

weight of 4 and labeled to aggregation a.
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Algorithm of Aggregation
Input: The Graph of System Matrix A of Nodes 1, 2, ..., n
and the Related Weights w1, w2, ..., wn of These Nodes
Output: Aggregations 1, 2, ...,m

1 Begin
2 NodeCounter=0, AggCounter=0
3 While NodeCounter!=n
4 MaxWeight=0, StartNode=1
5 For each nodei
6 If nodei is not in an aggregation
7 If wi >MaxWeight
8 Then MaxWeight=wi, StartNode=i
9 EndFor
10 AggCounter++
11 j=AggCounter, StartNode is labeled in aggregationj
12 NodeCounter++
13 AggreConstruct(StartNode)
14 End.

Table 3.1:Algorithm of Aggregation

Algorithm of AggreConstruct
Input: The Node i and It’s Strongly Connected Nodes n1, n2, ..., ns

1 Begin
2 For Each strongly connected nodek of nodei
3 If nodek is not in an aggregation
4 Nodek is labeled in aggregationj
5 NodeCounter++
6 AggreConstruct(k)
7 EndFor
8 End.

Table 3.2:Algorithm of AggreConstruct
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– Step d: Node 6, 7, 11, 12 have strong connections to node 9 and are labeled

to aggregation a.

– Step e: Node 4 is defined as the starting aggregated node with maximum

weight of 3 and labeled to aggregation b.

– Step f: Node 2, 8, 10 have strong connections to node 4 and are labeled to

aggregation b.

– Step g: Node 1 is defined as the starting aggregated node with maximum

weight of 2 and labeled to aggregation c.

– Step h:Node 3, 5 have strong connections to node 1 and are labeled to aggre-

gation c. Every nodes are included in an aggregation and the aggregation step

is finished.

After the aggregation step, the modified system matrixA is shown in Fig. 3.5. We

can find that the nodes have strong connections between them are clustered together in

the same aggregation. The modified system matrix is reformulated into three aggregated

sub-matrices a,b,c and the smooth error components of the original system can be derived

35



10

9

3

4

7

2

11

6 12

8

5

1

2

4

2

3

3

2

3

3 3

3

2

2

(a) (b) (c) (d)

2

a

2

3

3

2

3

3 3

3

2

2

2

a

2

3

a

2

a

a a

3

2

2

(e) (f) (g) (h)

2

a

2

b

a

2

a

a a

3

2

2

b

a

2

b

a

b

a

a a

b

2

2

b

a

2

b

a

b

a

a a

b

2

c

b

a

c

b

a

b

a

a a

b

c

c

Strong connection Weak connection

Fig. 3.4:Example of Aggregation

by the eigen-decomposition analysis of these sub-matrices. The weakly connected coef-

ficients between aggregations are simply added to the diagonal elements of the aggrega-

tions or neglected since their value is small compared to the diagonal elements. However,

some nodes with weakly connected coefficient may have large errors in the global view,

and decreasing the convergence rate. A global error estimation procedure is presented in

Section 3.5.3 to give an estimation of these troublesome error components and the related

matrix compensation algorithm is shown in Section 3.5.4 to improve this defeat.

3.5.2 Practicability of Aggregation AMG Method to Power Network
Analysis

In this subsection, we discuss the practicability of the aggregation AMG method to power

network analysis problem. The aggregation AMG method is applied to theAx = b prob-

lem in equation (3.4), whereA is equal to(2Cn

h
+Gn + h

2
AT

lnL−1Aln). From the predictive
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technology model (PTM) developed by the Berkeley university (http://www.eas.asu.edu/ ptm/),

the dimensions ofR,L,C in the 0.13µm technology are shown as following, whereR =

0.046ohm/µm, L = 1.69pH/µm, C = 0.13011fF/µm, length of each wire segments is

of 100µm. The contributions of the values of2Cn

h
, Gn, andh

2
AT

lnL−1Aln vary from 5E-3

to 8E-3, 2E-1 to 4E-1 and 2E-2 to 5E-2. The contribution of the value of theGn term is

often 10 times larger than other terms ofA. From the aggregation algorithm discussed in

Section 3.5.1, we can know that the determination of the aggregation ofA is dominated by

the effects of the resistances ofGn. Since the on-chip power delivery network is of mesh

structure, most aggregations are of the size of 3 as shown in Fig. 3.6 and the maximum

size of the aggregation is less than 4 with via connected to the structure of Fig. 3.6.

3.5.3 Global Error Estimation

In this subsection, we introduce a global error estimation step. In this thesis, we can

know that the efficiency of multigrid method depends on the complementarity between

relaxation and coarse-grid correction. The error components not efficiently reduced by

relaxation must be represented in the range of interpolation. However, these error com-
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ponents are the quantity we do not know. A simple method to gain information about the

errors that relaxation does not efficiently reduce is applying the relaxation scheme to a

problem with known solution.

The homogeneous equation,Ax = 0, serves us well for this purpose. The real error

of Ax = 0 can be known since the exact solution of this equation is zero. By applying

relaxation several times to this equation with a random initial guess, we can get a error

vector,eG, which can represent the error component that the relaxation can not eliminate

well. This candidate error vector can provide information about troublesome error and be

used to compensate the aggregated matrices in our method. The compensation algorithm

will be introduced in Section 3.5.4.

3.5.4 Matrix Compensation Algorithm

In this subsection, we introduce a matrix compensation algorithm in this thesis. Consider-

ing a linear algebraic system equationAeG = 0 of dimensionN . We begin the discussion

of this algorithm with the concept of global error vectoreG mentioned in Section 3.5.3.
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Algorithm of Matrix Compensation
Input: Original System Matrix A and Aggregations 1, 2, ..., n

Output: Aggregated Sub-matrices A1, A2, ..., An

1 Begin
2 For each aggregationm
3 For each nodei in aggregationm, sweep thei-th row ofA
4 If nodej is within aggregationm
5 Then Amij

= Aij

6 Else
7 If Nodej is a strong node,sweep thej-th row ofA
8 Total = 0
9 For each columnk in row j
10 If nodek is within aggregationm
11 Then total+ = Ajk

12 EndFor
13 For each columnk in row j
14 If nodek is within aggregationm
15 Then Amik

+ = Aij × Ajk/Total
16 EndFor
17 Else
18 EndFor
19 EndFor
20 End.

Table 3.3:Algorithm of Matrix Compensation

Node i is defined as strong node ifeGi
> λmax(eGj

)n
j=1 and defined as weak node if

eGi
< λmax(eGj

)n
j=1. Here,λ is a coeffient from 0 to 1 and is chosen to be 0.25 in our

algorithm.

With this concept, the matrix compensation algorithm is shown in Table 3.3. The weak

connected coefficients related to the strong nodes are approximated with the aggregated

nodes and the effects related to the weak nodes are simply neglected in our algorithm.

By using this algorithm, we can construct a better system for analysis and make each

aggregated sub-matrix independent from other sub-matrix. The compensation procedure

is exactly matched the weight calculation step in traditional AMG. The modified sub-

matrices can be used for coarse grid construction and will be introduced in next section.
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3.5.5 Aggregation-Based AMG Coarse Grid Construction

In this subsection, we introduce the coarse grid construction of our Aggregation-based

AMG method. After the step of matrix compensation, we can get the independent sub-

matrices from the original system. An example of coarse grid construction is shown in

Fig. 3.7, an eigenvalue decomposition procedure is performed in each aggregated sub-

matrix. The eigenvector related to the smallest eigenvalue is used to compose the inter-

grid transfer operatorP and the coarse grid operator can be constructed by the Galerkin

operatorAc = RAP .

A1

A3

P1

P2

P3

A2

A1m

A3m

A2m

Fig. 3.7:Coarse Grid Construction

3.6 Aggregation-Based Multilevel Solver

This section we introduce the overall solver of our proposed method. The system equation

derived in Section 3.4 is shown below

(
2Cn

h
+ Gn +

h

2
AT

lnL−1Aln

)
vn(t + h) =

(
2Cn

h
−Gn −

h

2
AT

lnL−1Aln

)
vn(t)

+B̃(ũ(t + h) + ũ(t)) + 2AT
lnil(t)

+hAT
lnL−1LEVE + 2GEVE (3.6)
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il(t + h) = il(t)−
h

2
L−1Al(vn(t + h) + vn(t))

+hL−1LEVE (3.7)

At first, we apply the aggregation-based AMG cycle construction procedure to the

system matrix of
(

2Cn

h
+ Gn + h

2
AT

lnL−1Aln

)
in Equation 3.5. Then, we apply AbAMG

solver to calculate the value ofvn(t + h). With the value ofvn(t + h), we can get the

value ofil(t + h) from Equation 3.6. Recursive calculating Equation 3.5 and 3.6, we can

solve the power network problem and get the voltage waveform of the analysis voltage

nodes. The mapping operator construction of AbAMG is determined from the global

information of system and only needs to be performed once for all time step calculation.

The experimental results are shown in Chapter 4.
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Chapter 4

Experimental Results

This chapter demonstrates the speed and accuracy of our proposed AbAMG solver and

compares our results with other methods. The power delivery networks are randomly

generated as mesh networks which consist of lumped RLKC segments and many current

sources. This work is implemented in C++ language and test on a Pentium IV 3.4-GHz

machine with 3 GB memory.

First, an efficient and accurate time domain solver InductWise [24] is used to demon-

strate the accuracy of our method. The accuracy of RLKC circuits is shown in Table 4.1.

In Table 4.1, Min V means the minimum voltage drop with respect to each test circuit.

The minimum voltage drop of each test circuit is above 0.832V. The maximum error is

within 0.973% for each RLC test circuit and the average error is less than0.067% for

AbAMG with compensation. These results demonstrate the excellent accuracy of our

algorithm.

To show the efficiency of our AbAMG solver, the analysis of DC and 50 transient

time steps are executed and the results are compared with three state-of-the-art methods,

IEKS [11], InductWise [24] and standard AMG. The comparison results are shown in

Standard AMG AbAMG without compensation AbAMG with compensation
Circuit Size Min V Max Error (%) Avg Error (%) Max Error (%) Avg Error (%) Max Error (%) Avg Error (%)

49.6K 0.85 1.173 0.077 1.165 0.077 0.973 0.067
199.2K 0.832 1.107 0.066 1.059 0.065 0.885 0.058
448.8K 0.835 1.17 0.065 1.072 0.064 0.955 0.056
798.4K 0.842 1.13 0.067 1.081 0.067 0.967 0.059

Table 4.1:Error percentage of RLKC circuits

42



InductWise [24] IEKS [11] Standard AMG Ours Result
Circuit Size RT(s) Mem(MB) RT(s) Mem(MB) RT(s) Mem(MB) RT*(s) RT**(s) Mem(MB)

49.6K 78.34 111 6.25 68 3.953 46 3.593 2.972 40
199.2K 391.7 424 29.76 308 15.875 182 14.235 12.719 156
448.8K 1576 994 82.56 747 38.187 407 32.594 28.312 351
798.4K 2903 1547 131.31 1230 68.219 721 59.328 51.812 624
1.248M × >3000 × × 105.59 1130 93.75 83.156 974
1.7976M × >3000 × × 152.36 1627 137.312 119.36 1401
2.4472M × >3000 × × × × 196.531 167.6 1907

Table 4.2:Runtime of RLKC circuits. “×” denotes this methodology failed.

Speed up
Circuit Size SIn SIEKS SAMG SNo

49.6K 26.36 2.1 1.33 1.21
199.2K 30.8 2.34 1.25 1.12
448.8K 55.7 2.92 1.35 1.15
798.4K 56 2.53 1.32 1.15

Table 4.3:Speed up of AbAMG compared to other methods

Table 4.2 for different RLKC circuits. In Table 4.2, RT is the CPU run time and Mem

means the memory usage. RT* means the run time of AbAMG without compensation and

RT** represents the run time of AbAMG with compensation. The speedup of our method

for each test circuit case is shown in Table 4.3. In Table 4.3,SIn, SIEKS, SAMG andSNo

are the speedup of AbAMG with compensation respect to InductWise, IEKS, standard

AMG and AbAMG without compensation. The significant speed improvement, 26 times

faster than the InductWise [24], 2 times faster than IEKS [11] and 1.27 times faster than

standard AMG, and less memory usage, two fifth of the memory usage in [24] and half of

the memory usage in [11], are observed.

A plot of CPU time versus circuit size for each method is shown in Fig. 4.1, we can

observe that the CPU time of AMG-based methods are proportional to circuit size and the

AbAMG method without compensation has best performance. The memory usage versus

circuit size of each method is plotted in Fig. 4.2. The memory usage of AMG-based

methods are proportional to the circuit size and AbAMG method spends least memory.

The proposed AbAMG solver can solve the DC and transient nodal voltages of a

circuit with the circuit size being 2.4472M in 167.6 CPU seconds, and this indicates that

the proposed simulator is very efficient in solving power delivery networks and capable

of handling more than two million circuit size.
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Fig. 4.1:Run Time versus Circuit Size

Standard AMG AbAMG
Circuit Size Fine Grid NZ Coarse Grid NZ Cycle Coarse NZ Cycle* Cycle**

49.6K 119.5K 92K 118 33.8K 127 101
199.2K 480K 370K 113 135.6K 131 100
448.8K 1082K 834K 111 305.4K 131 101
798.4K 1925K 1484K 114 543K 135 103
1.248M 3009K 2320K 109 849K 131 102
1.7976M 4335K 3342K 108 1223K 132 100

Table 4.4:Comparison between AbAMG and standard AMG

A comparation between standard AMG and AbAMG is shown in Table 4.4, Fine

Grid NZ , Coarse Grid Nz, Cycle* and Cycle** are the non-zero terms of original fine

grid, non-zero terms of coarse grid, total number of multilevel cycle of AbAMG without

compensation and total number of multilevel cycle of AbAMG with compensation. The

plot of non-zero terms versus circuit size and total multilevel cycles versus circuit size

are shown in Fig. 4.3 and Fig. 4.4. The coarse grid Nz of AbAMG is only one third of

standard AMG and the number of cycle of AbAMG with compensation is smaller than

standard AMG.
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Chapter 5

Conclusions

In this thesis, we present an aggregation-based algebraic multigrid solver for the power/ground

distribution network analysis. Different from the traditional algebraic multigrid solver,

our AbAMG solver constructs the inter-grid mapping operators from the global infor-

mation of the original system matrix. By performing an aggregation algorithm, we can

perform an algebraic partition to the original system. With the matrix compensation al-

gorithm and the global error estimation process, we can get the modified sub-matrices

from the original system and calculating the approximated eigenvector to constructed the

global-considering inter-grid mapping operators.

Experimental results show that the proposed methodology can handle circuit size more

than two million in 167.6 CPU seconds. The maximum error of each RLKC test circuit

is less than1%. The significant speed improvement and the less memory usage show

our AbAMG methodology is very suitable for analyzing the power delivery network.

The global construction of mapping operator improves the performance of AbAMG, con-

structs smaller coarse grid and converges with smaller cycles than standard AMG.
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Appendix A

Property of Error Propagation

The property of error propagation of the basic iterative methods and an related prove of it

is shown in the following

• Error in the direction of an eigenvector associated with a large eigenvalue is

rapidly reduced by relaxation and the error in the direction of an eigenvector

associated with a small eigenvalue is reduced by a factor that may approach 1

as the eigenvalue approaches 0

It’s not too difficult to show that standard relaxation methods, such as Richardson,

Jacobi, or Gauss-Seidel, satisfy the property. To see the related prove for Richardson

iteration and assuming that the system matrixA is SPD so that||A||2 = λm, whereλm is

the largest eigenvalue ofA. The iterative formula of Richardson iteration with relaxation

parameterω ∈ (0, 2) is shown in the following

xi+1 = xi +
ω

||A||2
ri (A.1)

Subtracting the exact solutionx to the both sides of Equation A.1, we can get the error

propagation equation as following

ei+1 = (I − ω

λm

A)ei (A.2)

If ei is an eigenvector ofA andλ is its related eigenvalue, then

ei+1 = (1− ω
λ

λm

)ei (A.3)
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We can find that ifλ << λm, then the factor is very close to 1 andei+1 is almost the same

size asei. In the contract, ifλ ≈ λm, then this factor is approximately1−ω, so substantial

error reduction occurs so long asω is not too far from 1. Thus, with proper choice of

relaxation parameterω, Richardson iteration satisfies the property and the related proves

of other iterative methods can be derived in similar ways.
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