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An Aggregation-Based Algebraic Multigrid Method
for On-Chip Power Network Analysis

Student : Huan-Yu Chou Advisor : Dr. Yu-Min Lee

Department of Communication Engineering
National Chiao Tung University

ABSTRACT

As the ultra deep sub-micron technology scales down to 0.18 pm, power
distribution network analysis becomes one of the most critical and challenging
problems in today’s high performance chip design. Lower supply voltage on power
distribution network decreases the circuit noise margin and higher circuit operation
frequency increases the circuit noise from Ldi/dt voltage drop. Those effects increase
the design complexity of power distribution network and also increase the demand of
efficient power distribution network analysis methods.

In this thesis, we present an aggregation-based algebraic multigrid method for
power distribution network analysis. First, we model the original power distribution
network with RLKC segments and piecewise linear current sources. Then we use
modified nodal analysis to transform the problem into an Ax=b linear algebraic
problem where A is a nxn matrix, X and b are nx1 vectors. By performing an
aggregation algorithm, the original system matrix is divided into many small
sub-matrices and an algebraic partition is performed to simplify our problem.

Experimental results show our aggregation-based algebraic multigrid method runs
faster and spend less memory usage than both traditional algebraic multigrid method
and the existing IEKS (Improve Krylov Subspace) method.
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Chapter 1

Introduction

This chapter gives an introduction of this thesis. Since our research topic is to develop
an efficient analysis tool for on-chip power/ground distribution network. We discuss the
basic concepts of on-chip power/ground distribution network in the beginning. The role
of an on-chip power/ground distribution network is to supply stable voltage references to
the on-chip circuitry and ensuring reliable operation of today’s high performance micro-
processors. However, as the ultra deep-sub-micron technology scales below di&

cuits with increasingly higher speed are being integrated with increasingly higher density.
Higher device densities and faster switching frequencies cause large switching currents
to flow in the on-chip power/ground distribution network, and will cause larger voltage
fluctuations due td R drop andLdi/dt noise which degrade the performance and relia-
bility of the circuit. High average currents flowing through the power/ground distribution
network may cause the undesirable electromigration effect which will degrade the cir-
cuit’s reliability. The descriptions of the voltage fluctuations and electromigration effect

are shown in the following [1] [2] [3]

e /R drop voltage noise: An example of the/ R drop voltage noise is shown in
Fig. 1.1. I R drop mainly results from the resistance of the on-chip power network
where! represents current. If large current flows through the power network, an
un-acceptable voltage drop occurs. Lafgedrop results from large current must

be handled carefully during design period.

1



Branch current

Fig. 1.1: An-Example ofl R Drop Voltage Noise

e Ldi/dt voltage noise: Ldi/dt noise.oceurs from a sudden change of current flow-
ing through a power network. With higher operation frequency of today’s high
performance IC design,di/dt voltage noise becomes largekd:/dt noise also
results from mutual inductance coupling effect. Two parallel wires may cause large

Ldi/dt voltage drop noise with each other.

e Electromigration: Electromigration effect results from a conductor with too much
current flowing through it and hence, the displacement of metal atoms due to electron-
flux. This behavior will cause shorts or opens in the metal lines, and degrading the

circuit’s reliability.

As the supply voltage scaling to control the power dissipation in the circuit [4], the
noise margin of the on-chip power/ground distribution network are sensitive to the voltage

fluctuations and excessive voltage drops may cause the functional failures of the circuit.
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With these reasons, the analysis of on-chip power/ground distribution network has be-
come a critical issue of today’s high performance IC design. In order to precisely predict
the voltage distribution and correctly simulate the behavior of the on-chip power/ground
distribution network, we model the active devices between power and ground distribu-
tion networks as time-varying current sources and gate capacitances [14]. By the way,
the power distribution network and ground distribution network can be separated for sim-
plicity. We focus on the simulation of power distribution network in this thesis and this
method can be extended to the ground distribution network analysis in the same manner.
The power distribution network is usually an irregular mesh and is modelét!.&sC'
segments wher®, L, andC represent the stamping matrix of resistors, inductances, and
capacitances, anl represents the susceptance matrix [22] [23] which is defined as the
inversion of L. The structure of power distribution network is shown in Fig. 1.2. Since
mutual inductance coupling has long range effect [5] which means that the coupling be-
tween two parallel wire segments decays very slowly with their separated distance, and
generates a dense matrix of for'simplicity, the mutual inductances coupling effects are
not shown in Fig. 1.2.

The rest of this chapter is organized as following. In Section 1.1, we compare the
existing analysis methods for power network analysis and state our research motivation.

Our contributions and the organization of this thesis are presented in Section 1.2 and 1.3.

1.1 Motivations

In this section, we compare the existing analysis methods for power network and state our
research motivation. With the ultra deep sub-micron technology, several features of chips
(higher operating frequency, larger number of transistors, smaller feature sizes of transis-
tors and lower supply voltages) have made the integrity issues of power delivery network
become a key issue of high performance designs [6][7][8]. Generally, the power deliv-

ery network contains enormous amount of circuit elements and such huge size requires
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Fig. 1.2: The Structure of Power Network

highly efficient analyzers. Thus, the general circuit solvers such as SPICE by using direct
methods are not suitable for the power delivery analysis. In the past years, various efficient
methods have been proposed for the‘power delivery network analysis. The preconditioned
conjugate gradient (PCG) method is"applied for solving power grid analysis in [9]. The
hierarchical methods are developed in [10][11]. The improved extended Krylov subspace
(IEKS) method developed in [11] extends the model order reduction technique to deal
with time-varying current sources without the moment shifting procedure. Multigrid-like
methods are developed in [12][13] to map the original problem to a reduced system with
smaller size by using the circuit's geometry properties. However, these frameworks pro-
posed in [12][13] are hard to handle the coupling effects of mutual inductances. Hence, an
adaptive algebraic multigrid (AMG) method is used in [14] to analyze the power network.
It reformulates the system matrix and views the problem as an algebraic problem which
doesn't need the geometry information. With these properties, the AMG based method
can handle mutual inductance coupling effects.

The mapping operators of AMG in [14] are determined by locally calculating the



equation,Ae ~ 0, whereA is the system matrix anelrepresents the error vector. The
quality of mapping operator strongly depends on the choice of coarse grids and the con-
structed mapping operators only contain the local informatioA.ofhe mapping opera-

tors of AMG may lose a few of important error terms because of the inadequate choice of
coarse grids, hence, degrade the convergence rate. Therefore, an adaptive choice method
of coarse grids is developed in [14] to improve the above undesirable behavior. However,
this method needs to construct the mapping operators at each time step and may boost the
CPU time. To solve this problem, our aggregation-based algebraic multigrid (AbAMG)
method contains a global mapping operator construction procedure.

The idea of our mapping operator construction is based on the aggregation AMG
method used in [25] [26][27]. Aggregation methods originated in economics [28], where
similar products are considered tegether instead of individually. This procedure allows
significant reduction in the problem size, and maintaining accurate representation of the
overall behaviors. In multigrid-terminology, the coarse grid is selected as a collection of
subsets of the fine grid. An algebraic partitionis performed to the original fine grid and the
original system matrix is partitioned’into'several aggregated sub-matrices. The mapping
operators of aggregation AMG method are constructed from the system’s global eigen-
decomposition property. Generally, the error in the direction of an eigenvector associated
with a large eigenvalue is rapidly reduced by relaxation and the error in the direction of an
eigenvector associated with a small eigenvalue is reduced by a factor that may approach 1
as the eigenvalue approaches 0 [20]. The eigenvectors associated with small eigenvalues
of each sub-matrix are calculated to approximate the smooth error components of the
original system matrix and the mapping operakbis composed by these eigenvectors.
With accurate calculation of these eigenvectors, the mapping operator can project the
original system to a better transformed system than traditional AMG in [14] and achieving
better convergence rate. However, the eigen-decomposition complexity of the aggregated

sub-matrix grows rapidly with the matrix size and may boost the CPU time.



In Chapter 3, we will show that the system matrix of the power delivery network
analysis problem has resistance dominate property when determining the aggregation.
The maximum matrix size of each sub-matrix of the original system is less than 4 and
the analysis problem has excellent property for aggregation AMG. The mapping opera-
tor construction of our proposed AbAMG method is based on the concept of aggregation
AMG and an innovative matrix compensation algorithm with a global error estimation
procedure is performed to further improve the quality of the mapping operators. The
mapping operator construction procedure of AbAMG is independent of the choice of
coarse grids and it only needs to be performed once for all time steps. With these prop-
erties, the AbAMG method can construct better mapping operators than the traditional
AMG method, and achieving better performance for solving the power delivery network

problem.

1.2 Our Contributions

This section we discuss our contributions in the following aspects

e The practicability of aggregation AMG to power network analysis: In this the-

sis, we discuss the practicability of the aggregation AMG to power network analy-
sis problem. Although the computation complexities of the eigen-decomposition
procedures of the aggregated sub-matrices grow rapidly with the matrix size. We
discuss the resistance dominate property when determining the aggregation of the
system matrix of the power delivery network. The maximum aggregation size is
only of 4 and the aggregation AMG method is efficient to analysis the power de-
livery network problem. We discovery the practicability of the aggregation AMG

to power network analysis and provide a new idea of AMG method to analysis the

power delivery network problem.

e Global error estimation: Although the real error of the analysis system is un-

known, we propose a global error estimation method in this thesis. By applying the

6



relaxation process to a problem with known solution, we can obtain the information
about the troublesome error. The homogeneous equatiors 0, serves us well

for this purpose wherel is the system matrix and is the solution vector. Our
global error estimation process begins by applying iterative methiodes to the
homogeneous equation with a random initial gu€'ssT'he resulting solution vector

x' can provide us the information about global error distribution. The error vector
contains information of the algebraic property of system matrand improves the
construction of AMG inter-grid mapping operators. The detail discussion of global

error estimation and mapping operators construction will be shown in Section 3.4.

¢ Global mapping operator construction: In contract to AMG, AbAMG constructs
the mapping operator from the global informationAf An aggregation algorithm
is performed to partition the original system matrdxinto many sub-systems and
the approximated eigenvectors dfcan be.calculated from each sub-system lo-
cally. Since each sub-system.is'not totally independent and has weak connections
with each other. An algebraic matrix compensation algorithm is performed to catch
the weak connection effects. The error vector generated during the global error
estimation is used in the matrix compensation algorithm. After the compensation
algorithm, we can construct a better mapping operator from the global information

of system and get better performance than standard AMG.

1.3 Organization of this Thesis

The rest of this thesis is organized as follows. Chapter 2 introduces the Modified Nodal
Analysis method and the mathematical background of multigrid and traditional AMG.
Chapter 3 describes our proposed algorithm flow. In Chapter 4, we compare the ex-
perimental results of AbDAMG, traditional AMG and IEKS methods. Finally, we give a

conclusion in Chapter 5.



Chapter 2

Preliminaries

This chapter introduces several mathematic background knowledge that will be used in
this thesis. The Modified Nodal Analysis (MNA) method [15] is illustrated in Section
2.1. By using MNA, we can get the system equation, and modeling the original problem
as a linear algebraic problem. The direct and iterative methods for solving a linear alge-
braic problem are discussed in“Section2.2. Finally, the theory of the multigrid method is

presented in Section 2.3.

2.1 Modified Nodal Analysis

MNA is very useful for large circuit analysis and is easier to implement algorithmically
on a computer. The analysis principles of it and an exampléfiof’ circuit are shown

below.

e Principles of MNA: To apply the MNA to a circuit witm nodesn voltage sources

andk inductances. We apply the following steps.

Step 1:Name then nodes and currents through each current source.

Step 2:Name the currents through each voltage source and inductance.

Step 3: Apply Kirchoff’s current law to the: nodes. We take currents out of

a node to be positive.

Step 4:Write an equation for the voltage each voltage source and inductance.

8



— Step 5:Solve the system of + m + k& unknowns.

Example: Consider akR LC' circuit shown below:

R, L,

—

WL%:
A i} <> 1Lt V() i)

Fig. 2.1: RLC Circuit

Apply step 1 and step 2:

R

— O]

V,(0) W\ﬁ(o QL%/\l O v,
Vi (1) i} <> 1Lt V() i)

Fig. 2.2: RLC Circuit After Step 1,2

Apply step 3:

Va(t) = Vi(?)

=0
Ry

Node a : i, (t) + I1(t) +

(2.1)



(2.2)
(2.3)
(2.4)
(2.5)
(2.6)

) +ir(t)=0

dVi(t
dt

(t) +

Va(t) = Va(1)
Ve(t) = Va(t)

Ry

(1) = Va
Node ¢ :ipn(t) —in(t) =0

Node b :

Apply step 5:

Apply step 4:
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(2.8)

(2.9)

From Equation (2.8), the MNA circuit equations of a lingakC' circuit can be rep-

resented as following:



where

[ G AT AT
G = | AT 0 0
AL 00
[C 0 0
C =10 L 0
0 0 0

v(t)
z(t) = | ult)
v ()

v(t) corresponds to the unknown nodal voltagést) andiy, (¢) correspond to the
branch currents flowing through inductors and independent voltage sotfcésand L
represent the stamping matrices of the resistors, the conductors and the inddicamg.

Ay, correspond to the coefficient matrices related to the inductors and the independent
voltage sourcesu(t) is the vector, of independent voltage sources and the independent
current sources B is the coefficient matrix related to(¢). Integrating Equation (2.9)

from timet to (¢ + h), we can get the following equation

. [t+h o da(t) t+h
GA mmﬁ+c[ Aaiﬁ»BA u(t)dt (2.10)

Applying trapezoidal approximation [15] with time step h to Equation (2.10), we have

o (M s Ctatis - ot = 5 (MDY

Reformulating Equation (2.11), we have

(é+;ﬁx@+m=—(é—?ﬂm@+3mu+m+mm (2.12)

Equation (2.12) can be viewed as a linear algebraic problemhazof= b, where A
is equal to(@ + %(J) The solution ofz can be solved iteratively with time stépand
each time step encounters dm = b problem which can be solved by direct or iterative

methods.
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2.2 Directand Iterative Methods for Solving Linear Equa-
tion

Direct Methods:

When solving a linear algebraic problem
Az =10 (2.13)

where A is n x n matrix, x andb aren x 1 vectors. The simplest direct method is to

calculate the inverse matrix of and the solution of is
x=A"1D (2.14)

Another direct method is theU decomposition method [16]. Substituting thed matrix

into a product of lower- and upper-triangular matrices:
|
We have
LUz =b (2.16)
In order to solve Equation (2.16), we substitute
y=Ux (2.17)
such that
Ly=b (2.18)

So we first solve the Equation (2.18) yorward Substitution to obtainy and then
solve the Equation (2.17) back Substitution to get the final solution.

Direct methods can always get the answer of a linear algebraic problem with high
computational complexity. Most direct methods have computational complexities in pro-

portion ton? [16]. With the tremendous amounts of transistors in today’s VLSI design,

12



direct analysis methods are prohibitive due to computational complexity.

Iterative Methods:

In contract to direct methods, iterative methods solve a linear algebraic problem it-
eratively [17]. It gets the answer after several iterations. Considering a linear algebraic

problemAz = b, iterative method splits the matrix into the form
A=M-N (2.19)
whereM and N aren x n matrices. So Equation (2.13) becomes
(M =Nz =0 (2.20)
Reformulating Equation (2.20), we have
=M Na+M1'b (2.21)
From Equation (2.19), we can get
MI'NeFE<M A (2.22)
Substituting Equation (2.22) into Equation (2.21), we can get a standard iterative formula:
gt =T - M1 A"+ M b (2.23)

wherez® is the value ofr after: — th iterations.
Substituting the real solutiom to the both sides of Equation (2.23), we can get the

error propagation equation as the following
et = (I - M 1A)e (2.24)

wheree’ = z — 2t

The matrixA can be decomposed ds= D + L + U whereD, L, andU are the ma-
trices of the diagonal, lower triangular, and upper triangular elements dhe decom-
positions ofA are shown in Fig. 2.3. For the Jacobi and Gauss-Seidel iterative methods,
the M matrix are substituted by and D + L [17], and the iterative solving scheme of

the Jacobi and Gauss-Seidel iterative methods can be showing as following

13



e Jacobi Relaxation:
et =g+ D7y (2.25)
e Gauss-Seidel Relaxation:
=2 (D+ L) (2.26)

wherer? means the residual aftétimes iterations and is equal bo- Az’

Fig. 2.3:Decompositions of Matrix A

Iterative method converges to the correct answer after several iterations and the com-
putational complexity is often log n per iteration [17]. The efficiency of iterative method
depends on how fast it can converge to the correct answer. From Appendix A, we can
know that the error in the direction of an eigenvector associated with a large eigenvalue
is rapidly reduced by relaxation and the error in the direction of an eigenvector associated
with a small eigenvalue is reduced by a factor that may approach 1 as the eigenvalue ap-
proaches 0. The smooth error components must be solved by efficient solution methods.

An example of iterative method is shown in Fig. 2.4. We apply the Gauss-Seidel
iterative method to a power network analysis problem of dimension 260 with random

initial error. The supply voltage of this power network problem is 1V. The initial error of

14



each node is shown in (a). The error of each node after 5, 20, 50 times of Gauss-Seidel
relaxations are shown in (b), (c), (d). The error components that are easy to be eliminated
by the iterative methods are defined as the oscillatory errors and the error components
that are hard to be eliminated by the iterative methods are defined as the smooth errors.
We can find that the Gauss-Seidel relaxations eliminates the error slowly and some nodes
have large errors which need 50 times of iterations to eliminate. In order to solve this

stalling behavior and make the problem converge faster, the multigrid method is proposed

[18].

0.10 4 0.10 4
0091 L 009+ Error After 5
Initial Error . .
0.08 0.08 Gauss-Seidel Relaxation
0.07 A 0.07 A
0.06 - 0.06
0.05 4 0.05
5 5
= 0.04 = 0.04 4
w w
0.03 4 0.03 4
0.02 4 0.02 4
0.01 4 0.01 4
0.00 H 0.00 H
0.01 T T T T T T 1 -0.01 T T T T T T 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Node Node
0.10 4 (a') 0.10 4 (b)
0.09
008 ] Error After 20 0084 Error After 50
0.07 ] Gauss-Seidel Relaxation Gauss-Seidel Relaxation
0.06 - 0.06 -
0.05 4
5 s
I.Ij 0.04 4 LI‘] 0.04 H
0.03 4
0.02 4 0.02 A
0.00 0.00 H
-0.01 T T T T T T 1 T T T T T T 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Node Node
(c) (d)

Fig. 2.4: Smoothing of Random Error by Gauss-Seidel Iteration
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2.3 Multigrid Method

The earliest multigrid method is geometry multigrid (GMG) introduced by Brandt in
1973. It uses the geometry properties of system to construct a complementary multilevel
structure to overcome the stalling behavior in general iterative methods. The complemen-
tary multilevel structure is developed with two main ideas.

First, we know that the iterative method quickly eliminates oscillatory errors and we
must look for a process that can efficiently eliminate smooth errors. Since the global com-
putational complexity is proportional to the problem size, we transfer the original problem
from the original domain (fine domain) into a coarser domain such that we can attempt to
solve the problem there with cheaper computational cost. This domain transformation is
called the coarsening procedure and.is, determined by the geometry properties of system
in GMG. A standard geometry coarsening.ef a‘regular mesh is shown in Fig. 2.5. The
original analysis system is fine grid of larger dimension and the transformed system is

coarse grid of smaller dimension.

Fine Grid Coarse Grid

@ \ 4 4 . 4 9

[ > 4 L 4 . 4 @ . 4 ®
[ . \ 4 4 4 9
® L g L < 9 ® < ® [ ®

Fig. 2.5: Standard Geometry Coarsening of a Regular Mesh

16



Second, another difficulty is about how to represent the error on the coarser domain
since it is the quantity we do not know. Considering an algebraic equatior; b, with

an approximationg, the residual is defined as
r=b— Az = A(x — ) = Ae (2.27)

So, although the error is unknown, it can be solved by using the residual equatien; .

If we calculate the residual on the original fine domain and project this residual to the
transformed coarse domain. The residual equation of the coarse domain can be solved
and an error correction terai can be obtained to correct the solution.

Based on these ideas, we can construct a two-level solution method as shown in
Fig. 2.6. First, we apply the iterative method to the equatlan= b to eliminate the
oscillatory error components on the fine grid,of dimenshonThis step is also called the
relazation step and the residual on the fine.grids is calculatea by b — Az. Then,
the residual is-estricted to thezcoarse grids with a:smaller dimensibhby r = Rr,
and the coarse grid operator is constructed-by the Galerkin opetater RAP. Here,
RisaM x N, PisaN x M matrixandR = PT. On the coarse grids, the residual
equation,A°e® = r¢, is solved and the error correction teemis interpolated to the fine
grids bye = Pe¢. The smooth error components not eliminated well by relaxation on the
fine grid can be eliminated by the error correction tefimA complementary two-level
solution scheme can be constructed to overcome the stalling behavior of smooth error
components in general iterative methods. The correct solution is obtainee-=hy + e,
and a post-relaxation step is applied on the fine grids to ensure that the oscillatory error is
not introduced through the coarse-grid correction step.

Applying the two-level solution method recursively, a multilevel solution method is
constructed and the coarsest residual equation can be solved with cheaper computational
cost. The multigrid V-cycle is shown in Fig. 2.7. The fine grid is labeled as level 1 and
the coarsest grid is labeled as level L. A relaxation step is first applied in the fine grid of

level 1 and the residual is restricted to the next level. These steps are repeated until the

17



Fine Grid

Relax on Ax =Db Correct solution
Compute residual X&ExX+e
r=b-Ax Relax again

Interpolatgfe = Pec

Solve Actec= ¢
ec= (Ac)—lrc

P:N*M Coarse Grid

Fig. 2.6: Two-Level Solution Method

coarsest level is reached and theresidual equation.of level L is solved to get the correction
error terme”. Then, the error term is interpolated to the fine grid of level 1 and the
post-relaxation step is performed-at.each level.

Multigrid method constructs a complementary multilevel structure which can effi-
ciently eliminate all error components. The efficiency of multigrid method depends on
how to choose the coarse grid and determine the intergrid mapping opefasodg R.

The mapping mechanism of GMG is easily determined with regular mesh but hard with
irregular mesh. In order to develop a more robust solving method, an algebraic multigrid

method is proposed in Section 2.3.1.

2.3.1 Traditional Algebraic Multigrid Method

AMG method was first introduced by Brandt in [19]. It is developed for solving problems
with irregular or unknown geometry properties. In contract to GMG, AMG uses only
information from the system matrix.

In this section, we focus our discussion on the traditional AMG. Considering an alge-
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Relax @ @ Relax 1

Restrict Interpolate

Relax @ @ Relax 2
Restrict Interpolate

Relax @ @ Relax 3

@ Solve L

Fig. 2.7:The Multigrid V-Cycle

braic equationAz = b, AMG determines the inter-grid mapping operators, coarse grid
from the matrixA and the graph of it. Each row-of the matukcan be represented as
a node and its connection edge.in a graph. The-coefficients of the mhtepresent
the connections of the graph.:For examplégif| =0, there is no edge between node

i andj in the graph ofA. If |a;;| > @a;

, we say that node strongly influences. If

|laij| < 0lag

, hodej weakly influences. Here,f is a coefficient from 0 to 1 and is often
chosen to be 0.25.

With these definitions, we can construct the matrix grapmadnd determine the
coarse grid by theolor scheme algorithm [18]. This method begins by assigning a
measure to each nodef its potential quality to be a coarse node. The weight of node
is determined by counting the number of nodes strongly influenced byinddesn, we
choose the nodewith maximum weight to be the starting coarse grid since it has good
potential to approximate other nodes. The nodes strongly influenced by aoeldefined
as fine nodes since they can be approximated well by nott&s logical that the nodes
strongly influence the new fine nodes should be defined as coarse nodes since they can
approximate the new fine nodes well. Thus ,we increase the weights of the nodes strongly

influence the new fine nodes by 1 and repeat the coarse node selection until all nodes of
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Algorithm of Color Scheme

Input: The Graph of System Matrix A of Nodes 1,2, ....n
and the Related Weights w1, ws, ..., w,, of These Nodes

Output: The Sets of Coarse and Fine Nodes

1 Begin

2 NodeCounter=0

3 While NodeCounter!n

4 MaxWeight=0, StartNode=1

5 For each node

6 If nodei is not defined as a coarse or fine node

7 If w; >MaxWeight

8 Then MaxWeight=w;, StartNode%

9 EndFor

10 StartNode is defined as a coarse node, NodeCounter++
11 For each nodg that is strongly influenced by StartNode
12 If nodej is not defined as a coarse or fine node

13 nodej is defined as a fine node, NodeCounter++

14 For each nodé: that.strongly influences node

15 If nodek isinot defined as a coarse or fine node

16 Wi + +

17 EndFor

18 EndFor

19 End.

Table 2.1:Algorithm' of Color Scheme

the matrix graph of A are defined as coarse or fine nodes. The algorithm of color scheme
Is shown in Table 2.1 and an example of it is given
Fig. 2.8 shows an example of color scheme. The description of each step is shown

below:
e Example of Color Scheme

— Step a: A matrix graph ofA is given with node number 1 to 14.
— Step b: The weight of each nodeis determined.

— Step c: Node 3 is defined as the starting coarse node with maximum weight
of 4 and node 1, 4, 13, 14 are defined as fine nodes. The weights of node 2, 5,

9, 11 are increased.
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— Strong connection  ---- Weak connection

Fig. 2.8: Example of Color-Scheme

— Step d: Node 11 is defined as the new coarse node with maximum weight of
5 and node 12 is defined as new fine node. The weight of node 9 is increased

by 1.

— Step e:Node 9 is defined as the new coarse node with maximum weight of 5

and node 6 is defined as new fine node.

— Step f: Node 5 is defined as the new coarse node with maximum weight of 3
and node 7 is defined as new fine node. The weight of node 8 is increased by

1.

— Step g:Node 8 is defined as the new coarse node with maximum weight of 3

and node 10 is defined as new fine node.

— Step h:Node 2 is defined as the new coarse node with maximum weight of 2.

All nodes in the matrix graph of A are defined and the color scheme finishes.
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By using the color scheme algorithm, we can get the coarse grid and every fine node
can be approximated well by the coarse nodes strongly influeht@wvever, the selected
coarse grid only considers local connections of each r@ie may choose bad coarse
nodes that will decrease the convergence rate. To overcome this defect, we propose a
global mapping operator construction to build the global-considering coarse grids.

To further discuss the inter-grid mapping operator, we continue the discussion of inter-
grid transfer operator. Since the key to the efficiency of the multigrid method depends
on the complementarity of the relaxation and coarse-grid correction steps. We begin
the discussion of inter-grid transfer operator with the property of algebraic smoothness,
(Ae); ~ 0 which means that residual become small after several iterative iterations for
each rowi. The equation can be rewritten as

a4 ~ — Z Qi € (2.28)
JF
We define that the DOFs offine griddsu £, whereC' is the set of coarse-level nodes
andF is the set of remaining fine-level'nodes. Rewriting Equation (2.28), we can get
A€ = — Z a;je; — Z AikCL (2.29)
j€C; keF;
whereC; = C' N N, F; = F N N;, andN; means the neighboring nodes of nade

For further discussion, we divide th€ into F* and F* whereF; is the set of nodes
which strongly influenceé in F;, andF}" is the set of nodes which weakly influencin
F;. Equation (2.29) can be rewritten as

;i€ = — Z a;;€ej — Z AikClr — Z Qi €m (2.30)
J€C; keFy meFy

From Equation (2.30), we can try to define an interpolation structure since foe
each node is approximated by the neighboring coarse nddasd fine nodeg;. If we
can approximate the value &t as a sum of the values 6f;, ¢; can be approximated by

C; only and an interpolation can be defined.
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Since the values of’ nodes are large compareddg, we approximate;, by C; in
the following form

GZC Akj€;
ep ~ S 2.31
k S an (2.31)

leC;
Substituting Equation (2.31) into Equation (2.30) and adding the valug¥ gioints

into a;;, we can get the following equation

(aii + z aim) € = — Z aij + Z C;:ka:] €j (232)
meFY JEC; keFy 1&g, Kl

From Equation (2.32), an interpolation formula foe F', e; = > w;je;, can be
JEC;

defined with

QL Ak
Qi _I_ J
Z'] kGZFiS ( S Akl )

LeCy

s LW

meFry

(2.33)

wij:—

The value ofF? is approximated by asum of the value @f, and the value of”
is simply added ta;. However, the selection af’ and F is fully determined by their
coefficients in Equation (2.30), and this would cause the bad choigg ahd /. Some
nodes ofF}” with large errors should be labeled in the set/sf This behavior will
decrease the convergence rate of standard AMG. One of the main object of our AbAMG
IS to overcome this defect.

After introducing the concepts of color scheme and weights calculation, the flowchart
of traditional AMG is shown in Fig. 2.9. At first, a cycle construction is performed to
construct the multigrid V-cycle. In the fine grid, a color scheme is performed to determine
the coarse grid and the weights of intergrid transfer operator can be calculated by Equation
(2.33). The coarse grid operatdr. can be derived from the Galerkin operatér =
RA¢P. We apply these steps repeatedly until the coarsest grid operator is coarse enough.
After the step of traditional AMG cycle construction, we can derive the multigrid V-cycle

and the answer af can be solved by the multilevel solver mentioned in section 2.3.
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Fig. 2.9: The Flowchart of Traditional AMG

AMG construct the coarse grid andstransfer operator from the property of system
matrix only. It can be applied to various types of problems without additional geometry
information. However, the construction of mapping operdtand P strongly depends
on the choice of coarse grid and contains only local information of the system. Another

algebraic multigrid method using the aggregation concept is introduced in Section 2.3.2.

2.3.2 Aggregation Algebraic Multigrid Method

Aggregation methods originated in economics [28], where similar products are consid-
ered together instead of individually. This procedure allows significant reduction in the

problem size, and maintaining accurate representation of the overall behaviors. In multi-
grid terminology, the coarse grid is selected as a collection of subsets of the fine grid. An

algebraic partition is performed to the original fine grid and the original system matrix is
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partitioned into several aggregated sub-matrices.

The idea of the mapping operator construction of aggregation AMG [25][26][27] is
based on the concept that the smooth error components are in the directions of the sys-
tem’s eigenvectors associated with small eigenvalues [27]. An algebraic partition is per-
formed in the aggregation AMG according to the connections of the nodes in the graph
of the system matrix4 and the nodes with strong influence between them are clustered
together in an aggregation. A node-by-node aggregation algorithm is discussed in Sec-
tion 3.5.1. After the aggregation procedure, an eigen-decomposition procedure is per-
formed in each aggregated sub-matrix and the eigenvector related to the small eigenvalue
Is used to compose the mapping operdtorWith accurate calculation of the system’s
smooth error components, the aggregation AMG can achieve better convergence rate than
traditional AMG. However, the weak connected coefficients of small values between ag-
gregations are simply neglected or added to the diagonal elements in the aggregated sub-
matrices, and decreasing the:convergence rate of aggregation AMG. An innovative ma-
trix compensation algorithm with a‘global‘error.estimation procedure is proposed in our

AbAMG method to improve this defect in Chapter 3.
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Chapter 3
Aggregation-Based Algebraic Multigrid

In this chapter, we will introduce the algorithm flow of our proposed method. We first
state the problem formulation of the research in Section 3.1. In Section 3.2, we show
the algorithm flowchart of AbAMG and compare the main differences between it and
traditional AMG. The overview of our approach .and previous works and the derivation of
analysis system equations are’discussed-in Section 3.3 and Section 3.4. Finally, the cycle

construction of our method and multilevel solver are discussed in Section 3.5 and 3.6.

3.1 Problem Formulation

The problem formulation of AbAMG for on-chip power network analysis can be formu-

lated as follows.

e Input: A RLKC network netlist and the independent voltage sources are given for
on-chip power network. The external current sources are modeled as time varying

piecewise linear current sources.

e Output: The voltage waveform of each node and the current waveform of each

wire segment are shown with respect to time.

e Goal: To develop an efficient analysis method for on-chip power network.
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3.2 Flowchart of Our Proposed Method

This section we show the flowchart of our proposed method and point out the main differ-
ences between our method and traditional AMG. The flowchart of our proposed method

is shown in Fig. 3.1

Aggregation-based AMG cycle construction

Global error | i=i+l
estimation

Coarse grid
construction

Multilevel solver

Output

Fig. 3.1:Flowchart of Our Proposed Method

At first, an aggregation-based AMG cycle construction is performed to construct the
multigrid V-cycle. In the fine grid, a global error estimation gives an estimation of global
null-space error. This information can be used to compensate the following aggregated
sub-matrices. Then, an aggregation algorithm is applied to partition the original system
matrix into many sub-matrices to localize the problem. After that, a matrix compensa-
tion algorithm compensates the sub-matrices and the intergrid transfer operator can be

derived from the sub-matrices locally. The coarse grid opetdtaran be derived from
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the Galerkin operatod, = RA;P. These steps are applied recursively to construct the
multigrid V-cycle and the answer afcan be solved by the multilevel solver.

The main difference between our method and traditional AMG is based on the cycle
construction step. Traditional AMG selects the coarse grid by the color-scheme algorithm
and begins the construction of intergrid transfer operator with the concept of algebraic
smoothnessie ~ 0. Our proposed method begins the cycle construction step with the
aggregation concept. Since most iterative methods quickly eliminate the components of
the error in the directions of the eigenvectors of the system matrix associated with the large
eigenvalues [20]. If we can get the eigenvectors of the system métthe interpolation
operator can be composed by the eigenvectors associated with small eigenvalues and a
multilevel structure that can efficiently eliminate all error components can be constructed.

However, the real eigenvectors of the system matrix can’t be calculated directly. We
apply an aggregation algorithm to the:original 'system matrix to perform an algebraic
partition and try to get the approximated eigenvectors of the system matrix from the ag-
gregated sub-matrices locally. “The error‘estimation and matrix compensation steps are
used to improve the quality of the aggregated sub-matrices. The eigenvector associated
with the small eigenvalue in each aggregated sub-matrix is used to compose the intergrid
transfer operatoR and P. By using aggregation-based AMG, we can project the original
system matrix into another domain to expose the low frequency errors in the original do-
main, and construct a smaller interpolation operator compared to traditional AMG with

the aggregation property.

3.3 Overview of Our Approach and Previous Works

In this section, we compare the existing published multigrid methods on the power net-
work analysis in Fig. 3.2. The multigrid method was first applied to the power network
problem by Nassif in [12][13]. It applied the geometry multigrid method and extended

the mapping operator constructing scheme to the irregular mesh structure. However, this
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method modeled the power network as the RC segments, and had problem with mutual
inductance coupling effects.

The concept of algebraic multigrid method was first applied to power network prob-
lem by Su. It used a geometry-like mapping operator constructing scheme to solve the
problem in short time. However, the model of this method didn't include the mutual
inductance and the rough mapping operator constructing scheme lead to large errors.

Another algebraic multigrid solver is developed in [14]. It used the traditional alge-
braic multigrid method with RLKC model and an adaptive coarsening scheme is applied
to improve the convergence rate. However, the coarsening scheme must construct the
cycle at every time steps and will increase the CPU time.

Our proposed method developed an aggregation-based AMG method for power net-
work problem. Our proposed method used the RLKC model as [14]. We discuss the
practicability of the aggregation AMG to|the problem and an additional matrix compen-
sation algorithm with a global‘error estimation method is applied to further improve the

convergence rate.

3.4 Derivation of System Equations

By using MNA, the system equation of an irregular power network can be formulated as

following
x(t) = Bu(t) (3.1)

where

o
I
o

~~
o
(@n]
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Fig. 3.2: Comparison between Qur Method and Previous Methods

The definitions of7, C' and(t) are the-same as Section 2.1. Since the independent
voltage sources are known, it is not.-necessary to solve the nodes of independent voltage
sources and the currents flowing through them. With this idea, the analysis dimension can

be reduced and the system equation can be rewritten as following

Gﬂw+éiﬂwzémw+ém@m, (3.2)

where

=[], e (]

Here, vg(t), v,(t), andi(t) correspond to the vectors of the independent voltage
sources, the unknown nodal voltages, and the branch currents flowing through inductors,
respectively,G,,, C,, and L represent the stamping matrices of the resistors not con-

necting tovg(t), the capacitors, and the inductors, respectivaly, corresponds to the
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coefficient matrix related to those inductors not connectingg@), u(t) is the vector
of independent current sources, aBdG, and A4, are the coefficient matrices related
to u(t), the stamping of resistors betweent) andvg(t), and the connecting of and
vg(t), respectively.

Applying trapezoidal approximation with time step h, Equation (3.2) can be reformu-

lated as following

e il sl Bl 20
e B e

After the time domain discretion, we can observe that the transient analysis system
matrix in Equation (3.3) is not symmetric and positive definite due to the introduction of
current variables.

Since the Multigrid method requires the matrix to be symmetric positive definite, some
extra processing is needed toireformulate the system matrix [21]. Similar to the method
used in [9], we split the variable vector into nodal voltage vector and branch current vector.
By using block matrix operations, we"can"decompose Equation (3.3) into two iteration

formulas for nodal voltages and branch currents. The system equations are reformulated

as following
2C, h
<h + G, + 2A£L_1Aln> Un(t + h) =
(227" G- Al L‘1A1n> vnlt) + 24T ir(2)
+B(a(t + h) +a(t)) + hAL L7 Ay op(t) + 2G gog(t) (3.4)
h
i(t 4+ h) = i(t) — 5L—lAl (U (t 4+ R) 4+ v, (t)) + RL A vp(t) (3.5)

Since the matrice§,,, C,,, andL~! (or K) are SPD, we can prove that the system ma-
trix of Equation (3.4) is still SPD. Thé ! (K) [22] is sparser than the original matrix,
and the above symmetric property can savi 80 the memory usage. Equation (3.4) is

equivalent to solve arlz = b problem, whered is equal to(2¢= + G, + 4AT L7'4; ),

31



and this problem can be solved by the two-level solution method, and the solutions of

Equation (3.4) and (3.5) are solved iteratively.

3.5 Aggregation-Based AMG Cycle Construction

In this section, a global mapping operator construction of our AbAMG is presented. At
first, a node-by-node aggregation algorithm is shown in Section 3.5.1. The practicability
of the aggregation AMG method to the power network analysis problem is discussed in
Section 3.5.2. The global error estimation procedure and matrix compensation algorithm
are stated in Section 3.5.3 and Section 3.5.4. Finally, the mapping operator construction

procedure is stated in Section 3.5.5.

3.5.1 Aggregation Algorithm

The purpose of the aggregation method:in AMG. is to reformulate the original system
matrix such that the smooth error components of the system can be calculated from the
modified system easily. Different from the difficulty of performing a geometry partition
with the complex mutual inductance ‘coupling effects on the circuit topology, the aggrega-
tion method provides an easy approach to partition the problem in the algebraic manner,
and simplifying the problem.

A node-by-node aggregation algorithm is discussed in this section. The definition of
strong connection between nodesnd; provides a good measurement when determin-
ing aggregations. Nodesand; are defined to have a strong connection if there is any
strongly influence relation between them. If there is no strongly influence relation be-
tween node and nodej, we say that they have a weak connection. Node with maximum
number of strong connections acts a good candidate to be the starting node in the aggre-
gation algorithm and nodes with strong connections between them must be labeled in the
same aggregation since the valueigfis large with respect ta;;. The nodes with weak

connections between them should be labeled in different aggregations and each node can
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only be included in an aggregation. The rules of aggregation can be concluded in the

following

e Aggregation Rules

— Select the node with maximum number of strong connections in the graph as

the starting node when determining an aggregation

— Every node must be included in an aggregation

— Each node can not be labeled to different aggregation

— Let the nodes which have strong connections between them be labeled in same
aggregation

— Let the nodes which have weak connections between them be labeled in dif-

ferent aggregations

Considering a system equatiofi; =", the-aggregation algorithm is shown in Table
3.1and 3.2.

An example of aggregation algorithm is shown in the following. Considering a system
equationAx = b, the original system matrid and the graph of it are shown in Fig. 3.3.

Fig. 3.4 shows an example of aggregation. The description of each step is shown

below:
e Example of Aggregation

— Step a: A matrix graph ofA is given with node number 1 to 12.

— Step b: The weight of each nodeis determined by counting the number of

strong connections.

— Step c: Node 9 is defined as the starting aggregated node with maximum

weight of 4 and labeled to aggregation a.
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Algorithm of Aggregation

Input: The Graph of System Matrix A of Nodes 1,2, ...,n
and the Related Weights w1, ws, ..., w,, of These Nodes
Output: Aggregations 1,2, ..., m
Begin
NodeCounter=0, AggCounter=0
While NodeCounter!n
MaxWeight=0, StartNode=1
For each node
If nodei is not in an aggregation
If w; >MaxWeight
Then MaxWeight=w;, StartNode%
EndFor
0 AggCounter++
11 j=AggCounter, StartNode is labeled in aggregation
12 NodeCounters#+
13 AggreConstruct(StartNede)
14 End.

P OoO~NOoOUoh,WNPE

Table 3.1 :Algorithmof Aggregation

Algorithm of AggreConstruct

Input: The Node ¢ and It’s Strongly Connected Nodes ny,ns, ..., N

1 Begin
2  For Each strongly connected noélef node:

3 If nodek is not in an aggregation
4 Nodek is labeled in aggregation
5 NodeCounter++

6 AggreConstruct(k)

7 EndFor

8 End.

Table 3.2:Algorithm of AggreConstruct
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Original A Matrix Graph of A
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Fig. 3.3: Original System Matrix

— Step d: Node 6, 7, 11,:12 have strong connections to node 9 and are labeled

to aggregation a.

Step e: Node 4 is defined as-the starting aggregated node with maximum

weight of 3 and labeled to.aggregation b.

Step f: Node 2, 8, 10 have strong connections to node 4 and are labeled to

aggregation b.

Step g: Node 1 is defined as the starting aggregated node with maximum

weight of 2 and labeled to aggregation c.

Step h:Node 3, 5 have strong connections to node 1 and are labeled to aggre-
gation c. Every nodes are included in an aggregation and the aggregation step

is finished.

After the aggregation step, the modified system matriss shown in Fig. 3.5. We
can find that the nodes have strong connections between them are clustered together in
the same aggregation. The modified system matrix is reformulated into three aggregated

sub-matrices a,b,c and the smooth error components of the original system can be derived
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— Strong connection  ---- Weak connection

Fig.23.4: Example of Aggregation

by the eigen-decomposition analysis.of these sub-matrices. The weakly connected coef-
ficients between aggregations are simply added to the diagonal elements of the aggrega-
tions or neglected since their value is small compared to the diagonal elements. However,
some nodes with weakly connected coefficient may have large errors in the global view,
and decreasing the convergence rate. A global error estimation procedure is presented in
Section 3.5.3 to give an estimation of these troublesome error components and the related

matrix compensation algorithm is shown in Section 3.5.4 to improve this defeat.

3.5.2 Practicability of Aggregation AMG Method to Power Network
Analysis

In this subsection, we discuss the practicability of the aggregation AMG method to power
network analysis problem. The aggregation AMG method is applied tdthe b prob-

lem in equation (3.4), wherg is equal to(% +G,+2AT L71A;,). From the predictive
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Fig. 3.5: System Matrix After Aggregation

technology model (PTM) developed by the Berkeley university (http://www.eas.asu.edu/ ptm/),
the dimensions oR,L,C in the 0.13un technology are shown as following, wheke=

0.0460hm /pum, L = 1.69pH /um, C' = 043011 F'/ um, length of each wire segments is

of 100um. The contributions of the values éf=,&,, and2 AT L' A, vary from 5E-3

to 8E-3, 2E-1 to 4E-1 and 2E-2 to 5E-2. The contribution of the value ofsthéerm is

often 10 times larger than other termsAfFrom the aggregation algorithm discussed in
Section 3.5.1, we can know that the determination of the aggregatiémsafominated by

the effects of the resistances@f,. Since the on-chip power delivery network is of mesh
structure, most aggregations are of the size of 3 as shown in Fig. 3.6 and the maximum

size of the aggregation is less than 4 with via connected to the structure of Fig. 3.6.

3.5.3 Global Error Estimation

In this subsection, we introduce a global error estimation step. In this thesis, we can
know that the efficiency of multigrid method depends on the complementarity between
relaxation and coarse-grid correction. The error components not efficiently reduced by

relaxation must be represented in the range of interpolation. However, these error com-

37



Fig. 3.6: Structure of Aggregation of the Size of 3

ponents are the quantity we do not know. A’ simple-method to gain information about the
errors that relaxation does not efficiently-reduce is applying the relaxation scheme to a
problem with known solution.

The homogeneous equatiodz = 0, serves us well for this purpose. The real error
of Az = 0 can be known since the exact solution of this equation is zero. By applying
relaxation several times to this equation with a random initial guess, we can get a error
vector,eq, Which can represent the error component that the relaxation can not eliminate
well. This candidate error vector can provide information about troublesome error and be
used to compensate the aggregated matrices in our method. The compensation algorithm

will be introduced in Section 3.5.4.

3.5.4 Matrix Compensation Algorithm

In this subsection, we introduce a matrix compensation algorithm in this thesis. Consider-
ing a linear algebraic system equatidn; = 0 of dimensionV. We begin the discussion

of this algorithm with the concept of global error vecter mentioned in Section 3.5.3.
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Algorithm of Matrix Compensation
Input: Original System Matrix A and Aggregations 1,2,...,n
Output: Aggregated Sub-matrices Ay, As, ..., A,

1 Begin

2 For each aggregatiom

3 For each nodé in aggregationn, sweep the-th row of A
4 If nodej is within aggregationn

5 Then A,,,, = Ay

6 Else

7 If Nodej is a strong node,sweep thieh row of A
8 Total =0

9 For each columrk in row j

10 If nodek is within aggregationn

11 Then total+ = Ajy,

12 EndFor

13 For each columrk in row j

14 If nodek is within aggregatiomn

15 Then A, + =14 x A /Total

16 EndFor

17 Else

18 EndFor

19 EndFor

20 End.

Table 3.3:Algorithm of Matrix Compensation

Node: is defined as strong nodedf;, > Amax(egj);;l and defined as weak node if
eq, < AMmaz(eg,)j—,. Here,\ is a coeffient from 0 to 1 and is chosen to be 0.25 in our
algorithm.

With this concept, the matrix compensation algorithm is shown in Table 3.3. The weak
connected coefficients related to the strong nodes are approximated with the aggregated
nodes and the effects related to the weak nodes are simply neglected in our algorithm.
By using this algorithm, we can construct a better system for analysis and make each
aggregated sub-matrix independent from other sub-matrix. The compensation procedure
is exactly matched the weight calculation step in traditional AMG. The modified sub-

matrices can be used for coarse grid construction and will be introduced in next section.
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3.5.5 Aggregation-Based AMG Coarse Grid Construction

In this subsection, we introduce the coarse grid construction of our Aggregation-based
AMG method. After the step of matrix compensation, we can get the independent sub-
matrices from the original system. An example of coarse grid construction is shown in
Fig. 3.7, an eigenvalue decomposition procedure is performed in each aggregated sub-
matrix. The eigenvector related to the smallest eigenvalue is used to compose the inter-
grid transfer operatoP and the coarse grid operator can be constructed by the Galerkin

operatord. = RAP.

m

A3m Pg

Fig. 3.7:Coarse Grid Construction

3.6 Aggregation-Based Multilevel Solver

This section we introduce the overall solver of our proposed method. The system equation

derived in Section 3.4 is shown below

2 2

( Cn + G, + ﬁA’f L—lAln> vt +h) = < Cn _ G, — EA,T, L‘lAln> U (1)

h 2" h 2 n
+B(a(t + h) +a(t)) + 247 i,(t)

+hA] L7 LV + 2GRVE (3.6)
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Wt h) = at) - ngAz(vn(t 1 R) + va(t))

+hL ' LgVy (3.7)

At first, we apply the aggregation-based AMG cycle construction procedure to the
system matrix ol(% + G, + %A?;L—lAln) in Equation 3.5. Then, we apply AbLAMG
solver to calculate the value of,(t + h). With the value ofv,(t + h), we can get the
value ofi;(t + h) from Equation 3.6. Recursive calculating Equation 3.5 and 3.6, we can
solve the power network problem and get the voltage waveform of the analysis voltage
nodes. The mapping operator construction of AbLAMG is determined from the global
information of system and only needs to be performed once for all time step calculation.

The experimental results are shown in Chapter 4.
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Chapter 4

Experimental Results

This chapter demonstrates the speed and accuracy of our proposed AbAMG solver and
compares our results with other methods. The power delivery networks are randomly
generated as mesh networks which consist of lumped RLKC segments and many current
sources. This work is implemented in C++ language and test on a Pentium IV 3.4-GHz
machine with 3 GB memory.

First, an efficient and accurate time domain solver InductWise [24] is used to demon-
strate the accuracy of our method. The accuraey of RLKC circuits is shown in Table 4.1.
In Table 4.1, Min V means the minimumvoltage drop with respect to each test circuit.
The minimum voltage drop of each test circuit is above 0.832V. The maximum error is
within 0.973% for each RLC test circuit and the average error is less thaéir% for
AbAMG with compensation. These results demonstrate the excellent accuracy of our
algorithm.

To show the efficiency of our AbAMG solver, the analysis of DC and 50 transient
time steps are executed and the results are compared with three state-of-the-art methods,

IEKS [11], InductWise [24] and standard AMG. The comparison results are shown in

Standard AMG AbAMG without compensation AbAMG with compensation
Circuit Size | MinV Max Error (%) | Avg Error (%) || Max Error (%) | Avg Error (%) || Max Error (%) | Avg Error (%)
49.6K 0.85 1.173 0.077 1.165 0.077 0.973 0.067
199.2K 0.832 1.107 0.066 1.059 0.065 0.885 0.058
448.8K 0.835 1.17 0.065 1.072 0.064 0.955 0.056
798.4K 0.842 1.13 0.067 1.081 0.067 0.967 0.059

Table 4.1:Error percentage of RLKC circuits
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InductWise [24] IEKS [11] Standard AMG Ours Result
Circuit Size | RT(s) | Mem(MB) RT(s) | Mem(MB) RT(s) | Mem(MB) RT*(s) | RT**(s) Mem(MB)
49.6K 78.34 111 6.25 68 3.953 46 3.593 2.972 40
199.2K 391.7 424 29.76 308 15.875 182 14.235 | 12.719 156
448.8K 1576 994 82.56 747 38.187 407 32.594 | 28.312 351
798.4K 2903 1547 131.31 1230 68.219 721 59.328 | 51.812 624
1.248M X >3000 X X 105.59 1130 93.75 83.156 974
1.7976M X >3000 X X 152.36 1627 137.312| 119.36 1401
2.4472M X >3000 X X X X 196.531| 167.6 1907

Table 4.2:Runtime of RLKC circuits. «” denotes this methodology failed.

Speed up
Circuit Size S[n SIEKS SAA{G SNo
49.6K 26.36 2.1 1.33 121

199.2K 30.8 2.34 1.25 1.12
448.8K 55.7 2.92 1.35 1.15
798.4K 56 2.53 1.32 1.15

Table 4.3:Speed up of ALAMG compared to other methods

Table 4.2 for different RLKC circuits. In Table 4.2, RT is the CPU run time and Mem
means the memory usage. RT* means the run time of AbLAMG without compensation and
RT** represents the run time of ABAMG with compensation. The speedup of our method
for each test circuit case is shown in Table 4.3. InTable %3, Siexs, Sanc andSy,

are the speedup of ADLAMG with compensation respect to InductWise, IEKS, standard
AMG and AbAMG without compensation. The significant speed improvement, 26 times
faster than the InductWise [24], 2 times faster than IEKS [11] and 1.27 times faster than
standard AMG, and less memory usage, two fifth of the memory usage in [24] and half of
the memory usage in [11], are observed.

A plot of CPU time versus circuit size for each method is shown in Fig. 4.1, we can
observe that the CPU time of AMG-based methods are proportional to circuit size and the
AbAMG method without compensation has best performance. The memory usage versus
circuit size of each method is plotted in Fig. 4.2. The memory usage of AMG-based
methods are proportional to the circuit size and AbAMG method spends least memory.

The proposed AbAMG solver can solve the DC and transient nodal voltages of a
circuit with the circuit size being 2.4472M in 167.6 CPU seconds, and this indicates that
the proposed simulator is very efficient in solving power delivery networks and capable

of handling more than two million circuit size.
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Fig. 4:1: Run Time versus Circuit Size
Standard AMG AbAMG
Circuit Size | Fine Grid NZ | Coarse Grid NZ| Cycle | Coarse NZ| Cycle* | Cycle**
49.6K 119.5K 92K 118 33.8K 127 101
199.2K 480K 370K 113 135.6K 131 100
448.8K 1082K 834K 111 305.4K 131 101
798.4K 1925K 1484K 114 543K 135 103
1.248M 3009K 2320K 109 849K 131 102
1.7976M 4335K 3342K 108 1223K 132 100

Table 4.4:Comparison between AbAMG and standard AMG

A comparation between standard AMG and AbAMG is shown in Table 4.4, Fine
Grid NZ , Coarse Grid Nz, Cycle* and Cycle** are the non-zero terms of original fine
grid, non-zero terms of coarse grid, total number of multilevel cycle of AbLAMG without
compensation and total number of multilevel cycle of ADAMG with compensation. The
plot of non-zero terms versus circuit size and total multilevel cycles versus circuit size
are shown in Fig. 4.3 and Fig. 4.4. The coarse grid Nz of AbAMG is only one third of

standard AMG and the number of cycle of ADAMG with compensation is smaller than

standard AMG.
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Chapter 5

Conclusions

In this thesis, we present an aggregation-based algebraic multigrid solver for the power/ground
distribution network analysis. Different from the traditional algebraic multigrid solver,
our AbAMG solver constructs the inter-grid mapping operators from the global infor-
mation of the original system matrix. By perferming an aggregation algorithm, we can
perform an algebraic partition to the original system. With the matrix compensation al-
gorithm and the global error estimation process, we can get the modified sub-matrices
from the original system and calculating the approximated eigenvector to constructed the
global-considering inter-grid mapping operators.

Experimental results show that the proposed methodology can handle circuit size more
than two million in 167.6 CPU seconds. The maximum error of each RLKC test circuit
is less thanl%. The significant speed improvement and the less memory usage show
our AbAMG methodology is very suitable for analyzing the power delivery network.
The global construction of mapping operator improves the performance of ADAMG, con-

structs smaller coarse grid and converges with smaller cycles than standard AMG.
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Appendix A

Property of Error Propagation

The property of error propagation of the basic iterative methods and an related prove of it

is shown in the following

e Error in the direction of an eigenvector associated with a large eigenvalue is
rapidly reduced by relaxation and. the error.in the direction of an eigenvector
associated with a small eigenvalueis reduced by a factor that may approach 1

as the eigenvalue approaches 0

It's not too difficult to show that standard relaxation methods, such as Richardson,
Jacobi, or Gauss-Seidel, satisfy the property. To see the related prove for Richardson
iteration and assuming that the system mattils SPD so thaf| A||> = .., where),, is
the largest eigenvalue of. The iterative formula of Richardson iteration with relaxation
parametetw € (0, 2) is shown in the following

i+l _ i W A1l
T x+||AH2T (A1)

Subtracting the exact solutionto the both sides of Equation A.1, we can get the error

propagation equation as following

etl = (I — %A)ei (A.2)

If ¢’ is an eigenvector ofl and )\ is its related eigenvalue, then

= (1 - w/\)\)ei (A.3)

e
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We can find that if\ << ),,, then the factor is very close to 1 aed? is almost the same
size as'. In the contract, if\ ~ \,,, then this factor is approximately-w, so substantial
error reduction occurs so long asis not too far from 1. Thus, with proper choice of
relaxation parametey, Richardson iteration satisfies the property and the related proves

of other iterative methods can be derived in similar ways.
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