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Abstract

Recently, embedded systems such as mobile phones adopt heterogeneous dual-core or
multi-core processors to improve'the performance and reduce the cost and power. One of the
critical issues for such an embedded system wusing heterogeneous dual-core processor is the
software and system designs while maximize the computation power of a heterogeneous
dual-core and minimize the power consumption of a system. Hence, the software design for
heterogeneous dual-core is very important for a low power embedded system using dual-core
processors. In order to evaluate the power consumption of the embedded software, a number
of power modeling and analysis techniques and tools were proposed. Unfortunately, these
models and tools are designed for single core processor, and there is no suitable mythology
for modeling and analyzing power consumption for a heterogeneous embedded dual-core
processor. In this thesis, an instrument-based tool for energy consumption estimation and
analysis of the embedded software running on a dual-core processor is proposed and

developed. This tool not only estimates the total consumed energy/time but also analyzes the



energy/time distribution of dual-core applications. With the aid of this tool, dual-core
application designers could observe and diagnose the power consumption of the applications
efficiently and easily. It also provides an opportunity for further software energy optimization.
In this work, we apply hybrid high-level modeling techniques and profile the energy and time

through hardware timers. Experimental results demonstrate that the max error is less than 5%.
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l. Introduction

The performance requirement of embedded system grows persistently in order to support
modern mobile multimedia applications. More and more embedded system designers are
turning toward dual-core processors rather than higher-frequency processors to achieve better
performance without incurring significant power consumption penalty. Therefore, embedded
application programmers are expected to have increasing opportunities to develop
applications on such dual-core embedded platforms that typically contain a general-purpose
processor (GPP) running control-oriented task and a digital signal processor (DSP) processing
high computation tasks. Considering asymmetric hardware architecture, inter-processor
communication overhead between heterogeneous cores, and even the presence of operating
system, software energy optimization fordual-core applications becomes a tough work.
Without any support, currently, 'dual-core “application programmers could only design
applications depending on their “own-experiences and knowledge, and verify if the power
consumption is beyond what can be tolerated through physical current measurement. However,
the results from physical measurement could neither explain the power/energy consumption
behavior nor indicate the power/energy consumption problem of the dual-core program. It is
difficult and inefficient for further power optimization due to lack of information. Thus it can
be seen that there is a high demand for dual-core energy estimation and analysis tool that
helps to save much time wasted on optimizing the insignificant part of the program.

Previous works on software power estimation typically integrated processor power
models into available performance simulators and can be roughly classified into two
categories: the cycle-level and instruction-level methods. In cycle-level methods, the power
models for each sub-component in the processor are constructed. Power is estimated by

calculating the consumption of every component in the target processor cycle by cycle



through execution-driven cycle-accurate simulators. Tools implemented with these methods
require detailed information about the micro-architecture [1, 2, 3]. However, such low-level
information for off-the-shelf processors is generally unable to be obtained by user.

Measurement based instruction level power analysis approach was first presented in [4, 5]
to model the power of a given instruction sequence. The basic idea is that the total energy of a
program can be modeled as the sum of base energy cost for each instruction. Furthermore,
inter-instruction effect, cache misses and pipeline stalls are also taken into consideration for
more accurate result. The base cost for an instruction is the average current obtained by
executing this instruction repeatedly in an infinite loop. The inter-instruction effect is incurred
from extra switches of circuit when two different instructions are executed consecutively.
Instruction level power estimation tools are often based on instruction set simulators or tracers
that output complete trace of the program during.execution. The main drawback is that it
takes a lot of measurement for processor with complex instruction set. To solve this problem,
a technique to group the instructions into’classes:is proposed in [6].

Power simulators implemented with above two approaches are quite useful for software
energy analysis and optimization in the early design phase. However, they are often too slow
for large programs and do not support operating systems. Sinha [7] demonstrated that the
variation in the current consumption across different instructions is quite low in some RISC
processors such as ARM processors and the energy consumption varies only about 8% among
the different programs. It is unnecessary to perform detail instruction trace and
inter-instruction analysis when estimating software energy consumption on such platforms. A
flat power model for all instructions in the program is applied. And the energy prediction for
applications or operating system running on such general purpose processors is simplified to
timing estimation or profiling [8].

Software macromodeling [9] and function level [10] power estimation are also strategies

proposed to speed up power simulation by means of pre-characterization of programs. The



precharacterized macro-operations such as application functions [10], operating system calls
[11,12,13], and even for whole tasks obtained form measurement or low level power
simulation are stored as energy library in the forms of a constant, a table or equations.
Software profilers or simulators are responsible to collect the parameters for these models
during execution.

Software profiling is also an old research topic to gather the statistics of interest during
execution for performance or energy optimization. Energy profiling is typically used to
associate energy consumption to the source code and identify the energy hotspots of the
program. EXxisting energy profiling techniques can be roughly classified into two categories:
monitoring-based and modeling-based profiling. Monitoring-based energy profiling [14, 15]
frequently interrupts the target platform at runtime to access the program execution context
such as program counter and process identifier. /At.the same time, the current measured from
digital multimeter is mapped to- software procedures or functions. Modeling-based energy
profiling models the energy cost of specific_events -and then counts the occurrence of the
events during execution. The common.ways to track the activation events can be done by
executing instrumented program, sampling system’s state periodically, or modified simulator.

Although a lot techniques and tools on software energy estimation and profiling have
been proposed before, none of them targeted towards heterogeneous dual-core processor. In
this paper, we propose an energy estimation and analysis tool for dual-core programs and
implement it on the popular dual-core embedded processor: OMAP5912. Our work focuses
on providing programmers with insight into high-level energy consumption and grouping the
information according to the characteristics of dual-core programs. The output of this tool
shows both energy and timing profiling. Our aim is to help designer perform high level
power-performance tradeoff and optimization rather than functions or algorithms on local
processor.

Without available tools which can simulate and trace the behavior of whole dual-core



program, we applied hybrid high-level approaches such as reduced instruction level modeling,
function level modeling and even physical measurement to model different parts of the
dual-core program according to their power consumption behavior. The parts of energy which
are hard to be obtained from traditional simulation or measurement are estimated by the
power models built in our tool. For example, Linux-side operating system, DSP driver
functions, and DSP-side library functions are built in our tool. On the other hand, we leave
power model of the task-dependent DSP algorithm which can be pre-characterized easily by
traditional approaches as input of the tool. All these high-level power models are represented
in the form of average current/power. Finally, we profile the time spent on them through code
instrumented in application, kernel and DSP driver. Implementation details are described in
Section I1I.

The rest of the paper is organized as follows.In Section Il, we introduce the background
technologies of the hardware ~architecture of dual-core processors, the inter-processor
communication mechanism and-procedures,-and the schedule mechanism in DSP kernel.
Section 111 presents the design and‘implementation details of this tool. Section IV discusses

the experiment results. Finally, conclusions are made in Section V.

I1. Background

A. Introduction to OMAP5912

OMAP 5912 Start Kit (OSK5912) includes a dual-core processor OMAP 5912
[16] .OMAP 5912 processor integrates an ARM926EJ-S RISC core and a TMS320C55x DSP
core. The C55x DSP core features high performance and low power consumption and is
usually in charge of high-computation and real-time jobs. The ARMS9 core, which OS
typically runs on it, generally performs user interfacing and other house keeping functions.

Taking the advantages of both ARM and DSP cores makes OMAP5912 become a powerful



multimedia embedded processor.

Peripherals
OMAP™ v3.2 Core

CH5x DSP
Subsystem Timers (x3)

‘—> fInstruction Cache, Watchdog Timer
SARAN, DARAM, Interrupt hiandler
DMA) McBSP (x2)
MCSI (x2)

I 1 UART (%3) Sp|

SDRAM UARTIFDA  GP Timer (x8)
{DDR) ~ Traffic ARM 926TEJ Mailbox GPID

Controller / sub ; 2 32k-Counter
Flash " ubpsystem McBSF2 MME/SDI G2
SRAM Memony I/F = 2ok e

(Instruction Cache,

Data Cache, MNMU)
Timer (x3) LPG (x2)
Watchdog Timer  PYWILIPYWT
RTC SDIMMC (x2)
Int. Ctrl Memery,
ulire Stick 1™
LCD ARMIT / Key: OCP
Controller; Camera llF  USB! Controller

Figure 1. The OMAP5912 hardware architecture
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memory interfaces which separé’wﬁy c_o_rme(if/ ‘to synchronous DRAM and standard
asynchronous memories devices such as SRAM or FLASH. There is an internal memory
interface that connects to on chip SRAM to save time/power for frequently used data, such as
LCD frame buffer. The OMAP platform contains rich peripherals and peripheral interfaces to
support media application. Some of the peripherals are shared and the others are own by

either ARM or DSP privately. A LCD controller is also included to support a direct connection

to the LCD panel.

B. Inter-processor communication mechanism of OMAP 5912
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Figure 2. Inter-processor communication mechanism and procedures

For embedded multi-processors such as OMAP, the most frequently used communication
mechanism is to implement message, passing on shared memory architecture and
synchronization via inter-processor interrupt:-Figure 2 is an example to illustrate the IPC
mechanism and procedures on TI OAMP. In-OMAP, there is a global memory that MPU see
and control. Both MPU and DSP:have local-memories. MPU can read and write DSP local
memories. Mailbox is the hardware that serves as the synchronization mechanism. It is
composed of a set of registers and can generate interrupt to the other processor. When ARM
transfers a block of data to DSP, the steps are as follow: 1.ARM writes data to shared memory.
2. ARM writes some information about the size or address of the shared data into registers in
mailbox. 3. The mailbox automatically generates an interrupt to DSP and correspondent
Interrupt Service Routine (ISR) runs. 4. ISR reads data from registers in mailbox 5. ISR reads
data from shared memory and executes the request task.

Many high-level communication primitives provide APIs for inter-processor
communication and synchronization. Programmers can directly use the communication
primitives to implement parallel programs without handling underlying hardware directly. For

OMAP, there is an IPC software, DSPGateway [17], which supports popular Linux operating



system.

C. Introduction to DSP Gateway

DSP Gateway [18] is a software and mechanism which provides high level programming
model to help programmers easily use ARM and DSP at the same time. DSP Gateway
includes Linux driver and DSP-side libraries. They are responsible for hardware settings,
interrupt handlings, and communications in between. With the help from DSP Gateway,
dual-core applications can be developed without low-level hardware knowledge. From ARM
side, Linux applications can communicate with DSP tasks through device files. On DSP side,

tasks can easily be synchronized with ARM side by using the API provided by DSP Gateway.

C.1. Introduction to DSP/BIOS and DSP System-Kernel (tokliBIOS)

DSP/BIOS [19] is a scalable real-time multi-tasking kernel which manages scheduling
and hardware resources on DSP. It is_designed for applications that require real-time
scheduling and synchronization. DSP/BIOS provides several types of program threads with
different priorities. Each thread type has different characteristics. The thread types are:
hardware interrupts (HWI), software interrupts (SWI), tasks (TSK), and background thread
(IDL), as shown in Figure 3.

HWI functions are the threads with the highest priority in a DSP/BIOS application. An
HWI function, also called an interrupt service routine, is triggered after a hardware interrupt
occurs. Software interrupts which have priorities lower than hardware interrupts are triggered
by calling SWI functions from the program. Both HWI and SWI threads always run to
completion. Tasks own lower priority than software interrupts and higher priority than the
background thread. Unlike HWI and SWI, Tasks can be suspended during execution when
waiting specific events and necessary resources. Background thread which executes the idle

loop (IDL) has the lowest priority in a DSP/BIOS application. The background thread runs



continuously until it is preempted by higher-priority threads.

A Watchdog Interrupt (INT 13)
Hardware Interrupts Hardware Interrupts
(HWI) (HWI)
Mailbox Interrupt (INT 5)
Hardware Interrupts Software Interrupts
(SWI) (SWI)
14 Levels 14 Levels
Priority Super task (Priority 15)
Tasks User Tasks
(TSK) (TSK)
15 Levels 13 Levels
Idle task (Priority 1)
Background Thread Background Thread
(IDL) (IDL)

Figure 3. Priority‘of DSP/BIOS threads and TokliBIOS threads

TokliBIOS is a library developed._on the basis of DSP/BIOS. It is provided by
DSPGateway to enable inter-processor. communication. All user tasks are created as
DSP/BIOS task threads. Their priority can be set in the range of 2 to 14. By default, there are
two system tasks named supertask and idle task are created. The supertask performs
housekeeping jobs such as managing shared buffers for system. The priority of the supertask
is 15, higher than any user tasks. The Sleep/Idle task is the task which is executed when all

other tasks have nothing to do. The priority of the idle task is 1, lower than any user tasks.

C.2. Thread Scheduling

Each TSK object is always in one of four possible states, as shown in Figure 4: 1.
Running state, which means the task is the one actually executing on the processor; 2. Ready
state, which means the task is scheduled for execution in case processor is available; 3.

Blocked state, which means the task cannot execute until a particular event occurs within the



system; or 4. Terminated state, which means the task is terminated and does not execute again.

TSK create() TSK_tick().
task is created SEM posl()
FIRREALY lask is readied

TSK_vield(),

TSK_delete() | task is deleted preemplion

TSK TERMINATED )u—Lask exits task suspends " roi g OCKED
TSK exil() TSK sleep(),...
SEM pend()....

TSK delete()
lask is deleted

Figure 4. Execution states of DSP/BIOS tasks

Tasks are scheduled for execution according to a priority level assigned to the application.
Unlike many time-sharing operating systems,-DSP/BIOS immediately preempts the current
task whenever a task of higher priority becomes ready:to run. There can be no more than one
running task. Hence, no ready task has a priority level greater than that of the currently
running task. When a task is preempted by a software or hardware interrupt, the task is still
TSK_RUNNING because the task will run when the preemption ends. The running task
becomes TSK_BLOCKED when it calls a function such as SEM_pend or TSK_sleep that
causes the current task to suspend its execution. Tasks can move into this state when they are
performing certain I/O operations, awaiting availability of some shared resource, or idling.
The running task becomes TSK_TERMINATED by calling TSK_exit, which is automatically
called if and when a task returns from its top-level function.

A task that is currently TSK_BLOCKED transitions to the ready state in response to a
particular event. After becoming TSK_READY, this task is scheduled for execution according

to its priority.



C.3.DSPGateway IPC procedures

ARM(Linux) DSP
User application
“task 1” “task 2”
Open(/dev/dsptask/task1) Rev_snd() Rev_snd()
Rev_req() Rev_req()
Write(+++++eeee )
Rev_tcetl() Rev_tetl()
Read(---++-+ ) - -
Close(/dev/dsptask/task1)
i Sem_pend()
/dev/dsptask/task1 ‘. S O
1 task API |
DSP task devicel’F's | | | || -—-——f7T7TT———F—"———————T————
R(lezr;(e)() DSP/BIOS | | DSP/BIOS DSP/BIOS |
Read() TSK TSK I'SK | DSP/BIOS
Write() (supertask) {  (user task) (user task) TSK
Poll() | queue i (idle task)
Toctl() i —
- TSem_post()
DSP Gateway Driver T |
Mailbox INT handler I
- _ 1

DSP system kernel (tokliBIOS)

Figure 5. DSPGateway IPC procedures and software block chart

Figure 5 shows the inter-processor communication procedures. There is one user
application in Linux and there are two dsp tasks in DSP. In Linux side, the IPC system calls
are called by user application to communicate with DSP. In dsp tasks, Rcv_snd(), Rcv_req()
and Rcv_tctl() are corresponding functions implemented to respond write(), read(), and ioctl()
system calls from Linux-side application. When a Linux user application calls an system call
such and accesses to the DSP task device, /dev/dsptask/taskl for example, the driver generates
a Mailbox command to DSP. In DSP side, the system kernel receives the Mailbox command
and registers it into the queue of the corresponding DSP/BIOS TSK and call Sem_post() to
increase semaphore count. If taskl is in TSK_BLOCKED state originally, it would switch to
TSK_READY state in respond of the semaphore event. After all threads or tasks that have

higher priorities than task1 finish, taskl is scheduled and runs. After getting a command from

10



mailbox queue, it would decrease the semaphore counts and then process the commands by
calling corresponding task function. The task functions can send back Mailbox commands to
ARM by calling task API functions in the tokliBIOS. Until mailbox queue is empty, taskl
would switch to TSK_BLOCKED state again and the next lower priority task is scheduled

and run. If there are no other tasks to run, the defaulted idle task runs.

[11. Design and Implementation

In this section, we describe the design and implementation of the proposed tool.

A. Design overview

ARM Energy

Total Energy Total Time =?

DSP Energy

Figure 6. The output information of the tool

Before going into implementation details, we first describe about what information are

1



provided by this tool. Figure 6 shows the output information of this tool. First of all, the tool
shows the total energy and execution time consumed by entire dual-core processor during the
execution period of the dual-core program. And it also shows the percentages of total energy
that spends on ARM and DSP. After understanding the energy/power consumed by ARM and
DSP, the energy/time information is further mapped to the each portion of the software of
interest.

On ARM side, the dual-core application runs on multitask environment. The energy/time
is necessary to be divided into the dual-core application part, denoted as Dual_core_ap, and
the other part, denoted as Non_dual_core_ap. The information about how much IPC overhead
it takes to communicate with DSP is also important. It can be used to design a more
energy/time efficient way for inter-processor communication. The energy/time overhead when
performing blocking read/write with:IPC system-call, named Block_IPC, is also isolated from
Non_daul_core_ap part to find out the synchronization problem. It indicates the time/energy
consumed by waiting for the responseiform DSP.

On DSP side, high-computation-algorithms:such as audio/video codec are implemented
inside dsp task in the form of function calls. These algorithms typically consume high energy,
so it is isolated as an independent part, named algorithm part. When there is no command or
data sent from Linux-side application, DSP executes sleeptask and consumes lower energy.
The energy/time consumed by sleep task is aggregated into the Sleep part. This is important
information to understand the workload of DSP. There are still some operations to interact
with Linux-side application such as IPC functions, IPC-related interrupt service routine, and

functions to maintain IPC-related resources. So we group all of them into IPC-related part.

B. Implementation overview
B.1. Measurement Environment

OSK5912 supports individual power measurement capabilities. The current consumed by

12



various components such as entire OMAP5912 core, DSP core, SDRAM, and IOs can be
measured separately. The power sources are split into groups and fed through individual
jumpers. The current consumption of whole OMAP5912 core and DSP core can be measured
by inserting a digital oscilloscope into these jumpers. So we can characterize the power

consumption of DSP and MCU domain individually and construct model for them.

B.2. Hardware Timers

Most embedded platforms today provide hardware timers that are user programmable for
profiling use. For instance, OSK5912 comes with eight general purpose timers and six
operating system timers. General timers are on the shared bus, and both the ARM and DSP
can use them. Operating system timers are private peripherals own by either ARM or DSP.
Three of the operating system timers are controlled by the MPU, and the other three are
controlled by the DSP. All these-timer counters can be read and written while counting. They
also can be started and stopped ‘at anytime, The clock source fed into these counters can be
selected and configured as needed: Profiling. with these timers incurs low overhead, high

resolution and high accuracy.

B.3. Develop Environment and Software architecture
The implementation is based on Linux 2.6.16 kernel and DSPGateway is configured as
default DSP driver. For simplification, we assume that the preemptible kernel option in kernel

configuration is not selected. Both ARM and DSP run at 96M Hz.
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User level program developed in this tool

Dual Core Power DSP
Applications Analyzer/Emulator p Applications
- - DSP Gateway | Dynamic
Dynamic library Tracer
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Drivers DSPGateway

Peripherals

Kernel level extension developed in this tool Dynamic Tracer for DSP

Figure 7. Software architecture of the develop environment and the tool

Figure 7 shows the software architecture of the tool. Embedded operating system runs on
ARM processor. Applications on the top level access underlying hardware through operating
system and drivers in the middle layers. In thé same way, dual-core applications communicate
with DSP through OS and DSP driver, DSPGateway. On the other hand, a micro-kernel,
named DSP/BIOS which manages the;hardware.and schedules the tasks also runs on the DSP.
Applications running on DSP communicate with application running on ARM by calling
DSPGateway library API. The energy estimation and analysis tool we develop is composed of
the three components, the three yellow blocks in Figure 7. The Energy Analyzer/Estimator
running at user level is the primary program that main functions, such as power consumption
models and user interface, are implemented in it. The Dynamic Trace Extension is the patches
in both Linux kernel and DSPGateway, while the Dynamic Tracer in DSP is the instrumented
version DSPGateway library. They profile the events which occur in runtime and provide the

information to the Energy Analyzer/Estimator.

C. Energy Estimation and Analysis for dual-core application on ARM processor

C.1. Power modeling for ARM processor

The power consumption model for ARM core is based on Sinha’s work [7]. After testing

14



the free embedded benchmarks, MiBench, it shows the similar result that the current/power
variations among different programs running in ARM9 core are low. Therefore, the power
consumption of the ARM core is simply divided into active state and idle state. When a task
in active queue is scheduled, the processor enters active state. Otherwise, the processor

executes idle task and enters idle state. The power in idle state is lower.

Current (mA) Power (mW)
Active state 135 216
Idle state 95 152

Table 1. The current and power consumption of active and idle states of ARM processor

C.2. Energy estimation for dual-core ‘application running on ARM processor

E_ipc

| E_dual_core ap Z Power_active

E_non_ipc

Power_active l

r——!  Eide :
E_total — E | e o —

E_block ipe [ — | Z Power _idle
I fm—————— A
L ——1 E non_idle |
L __ I
Power_active
“— E_non_dual_core_ap
r—-————- B
——1 E_idle I
LTl |
| .
E_non_block_ipc — —{ Z Power_idle
l ——————
I r .
———1  E_non_idle |
L

Power_active

Figure 8. The partition tree for energy profiling

The energy of the each component shown in Figure 8 needs to be collected in the
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runtime. What we need to do is to profile the time spend on each component. We can get the
energy of the most underlying blocks by multiplying the time and the power. Finally, energy
of the upper layer components can be obtained by summing the energy of the branching

blocks.

Timer3 : [PC_system_call_time_from_entry_to_return Timer5 : Total idle time

T _ipc

1 T dual_core_ap Timer3-Timer4

Timer2 T_non_ipc
lNmer2-Timer3+Timer4 T idle
T total —
—1 T_block_ipc — Timer6
Timerl '
Timer4 T non_idle
Timer4-Timer6

“— T _non_dual core_ap —

) ) T idle
Timerl-Timer2

Timer5-Timer6

L—— T non_block ipc

(Timer1-Timer2)-Timer4 T non_idle

Timer1-Timer2-Timer4-Timer5+Timer6

Figure 9. The configuration of the timers for time profiling

As shown in Figure 9, we configure six timers to perform time profiling. Each timer
delicately tracks one execution path. The functions which start and stop the timers are injected
into proper positions in kernel and DSP drivers. And all necessary time information can be
derived by these six timers.

Following we are going to explain the implementation details about where the timers
are injected in kernel and DSP driver and how them work.

Total execution time (T_total)

Function Kernel file Description
Fork() Our tool calls fork() function to create
a new process
execve() libc function is called
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sys_execve() libc calls kernel system call

sys_execve() arch/arm/kernel/process.c Arrive to kernel side
do_execve() fs/exec.c open file and do some preparation
search_binary_handler() fs/exec.c find out type of executable
load_elf_binary() fs/binfmt_elf.c load execut::;;zr:: Create User
start_thread() include/asm-arm/processor.h pass control to program code

Table 2. Startup process of an ELF binary

The dual-core application is executed by our tool. First of all, the tool forks a child
process, and the child process is added to run queue [20]. When the child process is scheduled
by scheduler and starts to run, it calls execve() function to execute the dual-core application.
As shown in table 2, a series of functions are triggered in the kernel to initialize the execution
environment of the dual-core application. At last; start thread() function is called to start
executing the dual-core application..So we starts the timer1 just after calling the start_thread()
function. After the dual-core application-finishes and returns, it calls do_exit() function to
enter zombie state. We inject timerl_stop(). function in do_exit() function in exit.c to stop
timerl. After reading the number of the counter, total time period during the execution of the

dual-core program is obtained.

Dual-core  application  time  (T_dual_core_ap), IPC  system call time

(T _ipc_system_call_time_from_entry to_return) and Blocking IPC time (T_block ipc)
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Dual-core_ap Other process Dual-core_ap  Other process Dual-core_ap  Other process

User Kernel User Kernel
T_2 start() -« — — —Centext Switch -+« g —————— 4—1———————
T_2_stop()
{ ISR
T_2 stop() <= — Y—Gentext Switch - T2 start) et
T_2_start() -« — — —Centext Switch 4—][—————— “«—q———a————
T 3 start() - e - — -
IPC|System call L
T 3 stop() & — —V— - -
T_2_stop()
ISR
T_2 stop() -« — Y—Centext Switch - T_2_start() ————
T_2 start() -« — - —Centext Switch “+«—q——gq—-——-——--% 4« —g——1———- —

T_2_stop() -—F—-
T_2_start() - — Y —

T 3 start() - ¥ —|—
IPdLSystem call
T 2 stop() -« — “Y—Context Switch —— T 4 start() <+ — - — — Y— — — —

T_2 start() -« — — —Context Switch ¢~ T 4 stop() < —————————%—  <@4——|———}————

ISR

IPC{System call T 283 start() <«—|- — = —
':' T_3 stop) - — —Y-—
M
E T_2_stop() -
T_2_stop() = — Y-Context Switch- — e | v A A T2 - __—F@R_ -
Schedule() in sched.c IPC System calls in task.c asm_do_IRQ in irq.c
STEP 1 STEP:2 STEP 3

Figure 10. The steps to inject timers'in ‘kernel and DSP drivers for time profiling

Figure 10 shows how we get these three time information in following three steps:

Stepl: The execution time of dual-core application is recorded by Timer2. Each time when
dual-core application is scheduled to run, Timer2 starts counting. And in the same way,
Timer2 stops when dual-core application is preempted by other processes. The
T_2 start() and T_2_stop() functions are injected in schedule() function in kernel source
file sched.c.

Step2: Timer3 is responsible to accumulate the time spent on IPC system calls such as read(),
write(), open() and close(). All we need is to start/stop Timer3 at the entry/exit of every

function that implements the IPC system calls in DSP drivers. However, it is possible to
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block and call schedule() function when waiting the response from DSP. After receiving
the response signal from DSP, dual-core application will be waken up and scheduled to
finish the remaining job in IPC system call. So we need to start/stop Timer4 before/after
calling schedule() function.

Step3: Various interrupts could occur and run corresponding ISRs in the period of dual-core
application and IPC system calls. However the time/energy should be classified into
non-dual-core application part. In Linux kernel, all interrupts are handled by
asm_do_IRQ() function. So codes are injected to stop/start timer2 and timer3 at the

entry/exit of the asm_do_IRQ() function.

Idle time in dual-core application and idle time in blocking IPC

Like the way to record the execution time of dual-core application, we need to inject
code to schedule() function to start/stop these two timer when idle task is scheduled in/out. Of
course, asm_do_IRQ() function-is also-modified to stop/start the timers when interrupts

occurs during execution period of idle task.

D. Energy estimation and analysis for dual-core application on DSP processor

Because DSP/BIOS is not an open source kernel, we could not fully control the runtime
behavior in DSP through instrumentation. Some assumptions and simplifications are
necessary. DSPGateway supports static task and on-demand task. We assume that only single
user task which is linked with the tokliBIOS kernel statically runs on DSP. Along with the
defaulted supertask and idle task, there are three tasks on DSP. The way these tasks are
partitioned is according to the implementation and design of DSPGateway. However, we
analyze the jobs they performed and regroup them according to the information we are

interested in. Following we are going to introduce the jobs performed by these three tasks.
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Sleeptask

Sleeptask is the task which is executed when there is no other task to run. The behavior
of sleeptask is close related to power management mechanism of DSP. Therefore, we
introduce the power management of DSP first. The DSP CPU and peripherals contain several
clock domains that can be turned off individually to conserve power. The active/idle status of
the various domains is controlled by the idle control register. When the DSP software
executes the IDLE instruction, the clock domains are configured according to the settings of
the idle control register. DSPGateway also implements mailbox command about power
management for ARM to control these domains through DSP. By default, DSPGateway driver
turns off all idle domains to save power when sleeptask is executed. However, when ARM
needs to access to DSP internal memories, DSP is not allowed to turn all domains off. Before
ARM accesses to DSP internal ‘memories, ~it sends a mailbox command with
PMCMD=ENABLE to DSP. DSP then sets all domains enable and perform idle loop when
sleeptask is executed next time. Another-mailbox command with PMCMD=ENABLE is sent
to DSP if the access to DSP internal memories 1S no need anymore. Figure 11 shows the
pseudo code of the sleep_dsp() function which is executed when sleeptask is scheduled. When
entering sleep_dsp() function, all hardware interrupts are disabled. If all idle domains are
enabled, it performs idle loop until interrupt occurs. Otherwise, it turns off all idle domains
and enter sleep mode. When interrupts occur, DSP is wakening up and turns on all idle

domains. At last, it enables and handles the interrupts.
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sleep_dsp()
{

HWI_disable();

if (Idle_domains_all active) {

do {} while (No_Interupt_Occurs); ‘ —— Perform idle loop

goto restore;

}

Enter sleep mode
By default ,

outw(icr_idle, ICR); . .
all idle domains off !!

// DSP is waken up by interrupt!!!
outw(0, ICR);
restore:
HWI_restore(intm_saved);

-

Figure 11%Pseudo.code of sleep_dsp() function

Dsptask

Dsptask is the task that'~user should implement. DSP typically executes
computation-intensive algorithms or jobs which partitioned form Linux-side application to
enable real-time services. Figure 12 shows that dsptasks implemented with different
communication types can be roughly divided into algorithm part and IPC-related part. The
behavior in IPC-related part typically prepares the data for algorithm by calling memcpy()
function provided by standard C library and IPC functions implemented by DSPGateway.
After executing the algorithm, the code inside IPC-related part sends the data back actively or

passively by calling memcpy() function provided by C library and IPC functions.
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Executed when receive bksnd

static Uns t2_rcv_bksnd(struct dsptask *task, Uns bid, Uns cnt)
{ static Uns t2_rcv_bksnd(struct dsptask *task, Uns bid, Uns cnt)
memcpy(task->udata, ipbuf_d[bid], cnt): {
unuse_ipbuf{task, bid); memcpy(task->udata, ipbuf_d[bid], cnt);
unuse_ipbuf(task, bid);
/*Algorithm part*/ /
FFT_1024(task->udata,......); ™ /*Algorithm part*/
return 0; IPC-related part FFT_1024(task->udata,.....);
1
static Uns t2_rcv_bkreq(struct dsptask *task, Uns cnt) bid = get_free_ipbuf(task);
{ / if (bid == MBCMD_BID_NULL)
Uns bid; return MBCMD_EID_STVBUF;
memcpy(ipbuf_d[bid], task->udata, cnt);
bid = get_free_ipbufitask); bksnd(task, bid, cnt);
if (bid == MBCMD_BID_NULL)
return MBCMD_EID_STVBUF: return 0;
memcpy(ipbuf _d[bid], task->udata, cnt); }
bksnd(task, bid, cnt);
return 0;
)
Passive Sending task Executed when receive bkreq Active Sending task
Figure 12. Overview of the behavior of Dsptask
Supertask

Supertask is the task which-performs system services. Functions implemented inside are
for different purposes such as-system initialization and debug. Only two of them are
commonly executed in the runtime:“One_of themis power management function which set
idle control register when receiving MBCMD_PM command. The other one is release_ipbuf()
function which yield the ownership of a Global IPBUF line to the other processor in order to

keep the numbers of Global IPBUF balance between ARM and DSP.

Reclassification according to software behavior of DSP
Form above observation, we find that DSP almost works for algorithm and IPC-related
job when awake. So we reclassified them into sleep, IPC-related, and algorithm parts and

profile the energy/time for them.

D.1. Power characterization for DSP processor

In order to understand the power consumption behavior of DSP and pre-analyze the
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power consumption of DSP algorithm, we take instruction level power analysis approach to
characterize the power consumption of DSP. We group the instructions into common classes
on the basis of the previous work [22] which studied on power consumption characterization
of the same TMS320C55x DSP. The experiment result shows that the current consumption
varies high among different instructions. This is due to different CPU utilization by different
instructions. Some DSP instructions designed for specific algorithms usually trigger several
arithmetic units and perform several memory accesses within a cycle. These
computation-based instructions highly utilize CPU and consume high current, while
control-related instructions generally consume far less current. The algorithms run on DSP are
generally highly optimized. The energy behavior of these algorithms is dominated by several
instructions executing in a loop. Hence, the current consumption between different algorithms
varies high. On the other hand, the instructions designed for specific algorithms are not shown
in control-based functions. So we expect that.the variation between control-based functions
should be low.
Power modeling for IPC-related functiens

We take software function level power modeling approaches to establish energy library
for these IPC-related functions. The results show that the current consumption among them
varies low. It is not necessary to distinguish from them. So we applied a flat power model

between them.

IPC Functions Average Current(mA)
get_free_ipbuf() 50.04
unuse_ipbuf() 50.37
Wdsnd() 49.63
Bksnd() 49.03
Bksndp() 50.14
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Wdreq() 48.73

Bkreq() 49.47

Bkreqp() 49.91

Table 3. The current and power consumption of IPC-related functions

Power modeling for Sleeptask
The power consumption of the sleeptask falls into two states. One is the idle state when
executing idle loop. The other is sleep state when all idle domains are turned off. We found

that the current consumption of DSP is almost zero when all idle domains are off.

Current (mA) Power (mW)
Idle 39 62.4
Sleep 0~1 0~1.6

Table 4. The current and power eonsumption-of idle and sleep state of DSP

D.2. Energy estimation and analysis for-dualcore application on DSP

E_algorithm

| E_wake_up Z Power_algorithm <e=== |nput by user

E_ipc_related

Power_ipc_related «egm== Built-in

E_total — z

E_idle_loop

Power_idle_loop = Built-in

— E_sleeptask Z

E_sleep

Power_sleep=0 <= Built-in
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Figure 13. The partition tree for energy profiling on DSP

The figure 13 shows the energy information we need to know. With the three build-in
power models and the one inputted by user, energy profiling can be obtained through time

profiling.

T_algorithm

Timer9

— T_wake_up

Timer7 T_ipc_related

Timer7-Timer9

T_total —1
Timerl
T_idle_loop
Timer8
— T_sleeptask
T_sleep
Timerl-Timer7

Timerl-Timer7-Timer8

Figure 14. The configuration-of timers for time profiling on DSP

As shown in Fig 14, we configure three timers to get all necessary information.

Following we explain where to inject the timers.

DSP wake up time(T_wake_up) and DSP idle loop time(T_idle_loop)
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sleep_dsp()
{
HWI_disable();

Timer7_stop()

if (Idle_domains_all_active) {
Timer8_start()

| do {} while (No_interupt Oceurs); | —~ Perform idle loop
Timer8 stop()

goto restore;

}

Enter sleep mode
outw(icr_idle, ICR); — ) BY defaUIt ’
all idle domains off !!

outw(0, ICR);
// DSP is waken up by interrupt!!!

Timer7_start()
restore:

HWI restore(intm_saved);
Figure 15. The configuration of timers:for time profiling on DSP

As shown in Figurel5, we start TimerZ each time-it wakes up and exits the sleep_dsp()

function. And stop it when it enter sleep..dsp() function. Also we start timer8 whenever it

starts to execute idle loop, and stop it when it exits.

DSP algorithm total time(Time_algorithm_total)
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static Uns t2_rcv_bksnd(struct dsptask *task, Uns bid, Uns cnt)

{
memcpy(task->udata, ipbuf d[bid], cnt);
unuse_ipbuf(task, bid);
/* Algorithm part*/
Timer9_start() - N . |
FFT_1024(task->udata,.....); . Injected by User!!
Timer9_stop() =
return O;
¥
static Uns t2_rcv_bkreq(struct dsptask *task, Uns cnt)
{
Uns bid;
bid = get free_ipbuf(task);
if (bid == MBCMD_BID NULL)
return MBCMD_EID STVBUF;
memcpy(ipbuf d[bid], task->udata, cnt);
bksnd(task, bid, cnt);
return O;
¥

Figure 16. The configurationoftimers for time profiling on DSP

As shown in Figure 16, the users insert the timer9_start()/timer9_stop() function to

start/stop profiling the algorithm by them.

V. Experiments Results

A. An Example of energy/time profile
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Figure 17. Example energy/time profile

Figure 17 shows an example of the energy/time profile. The results are

text-mode.

B. Error analysis

presented in

Following we are going to analyze. the error-between physical current measurement and the

current estimated by this tool. First of all; we choose various often used algorithms and assign

them to ARM and DSP. The average current of the DSP algorithm are obtained form

measurement in advance and feed it into the tool. To make the current measurable, the test

programs are also executed in a loop.

In table 5, it shows that the max error is less than 5%.

Description Average current (mA)
ARM DSP E M %E
Programl Bubble Radix-2 complex 159.80 1543 | 3.44
Sort forward FFT
Program?2 FFT Forward and Inverse 165.57 164.48 | 0.6
DCT
Program3 Convolution Sum of absolute 168.85 163.1 3.2
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differences on a single

16x16 block
Program4 Matrix JPEG variable length 159.41 157.4 1.2
Transform coding following
ITU-T
(CCITT) T.81 standard
Program5 | Find minimum Hw_dct_idct 167.26 164.1 | 1.88
value in an array

Program6 | Autocorrelation FIR direct form 168.55 mA 164.5 24
Program? Square root Matrix multiplication 160.44 156 2.77
Program8 Matrix Double-precision IR 168.31 165.3 | 1.79

multiplication filter

Table!5. Error-analysis of:the tool

V. Conclusions

In this work, a tool for energy consumption estimation and analysis of the embedded software
running on a dual-core processor is proposed and developed. This tool can provide
energy/time information of dual-core program with low overhead and high accuracy. With the
help of this tool, dual-core program designers could easily understand the energy/time
distribution and then optimize the most critical part of software more efficiently.
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