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摘要 

 

由於現代通訊系統的多樣化應用，愈來愈多的聲訊回音消除(AEC)設計必須

考量非線性特性(喇叭)及立體聲環境(高相關輸入)。已經有許多針對非線性適應

濾波器所提出的演算法，但卻缺少相對應的演算法收斂分析。根據無記憶多項式

適濾波器與 NLMS 演算法，我們提出了非線性聲訊回音消除的收斂分析式；另

一方面，為了尋找非線性聲訊回音消除較佳的收斂方式，我們也提出並比較幾種

不同的係數更新方法。在立體聲回音消除方面，我們利用 Doğancay 在分析單聲

道選擇式係數更新收斂性時所採用的方法，提出應用於立體聲回音消除部分係數

更新之收斂分析式。另外，結合非線性喇叭與立體聲回音消除的實驗驗證了相關

性削減與非線性適應濾波器的功效。最後，電腦模擬用來驗證支持之前的分析。 
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Abstract 
Because of diversity applications of modern communication system, more and 

more acoustic echo cancellation (AEC) designs need to consider the nonlinearity 

characteristic (loudspeaker) and stereophonic environment (high correlated inputs). 

There are many proposed algorithms for nonlinear adaptive filter but lack of 

convergence analysis for these algorithms. We propose the convergence analyses for 

nonlinear AEC based on memoryless polynomial nonlinear filter and NLMS 

algorithm. Several adaptation strategies for nonlinear AEC are also provided and 

compared for finding better convergence behavior. In stereophonic AEC, we analyze 

the convergence of partial update stereophonic AEC by taking use of the Doğancay’s 

method used in selective partial update monophonic AEC study. The combinations of 

nonlinear loudspeaker and stereophonic AEC are demonstrated to verify the 

coherence reduction and nonlinear adaptive filter effect. Finally, computer simulations 

are presented to support the analysis.  
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Chapter 1 

Introduction 
 

Acoustic echo cancellers (AEC) are used to reduce echoes in a wide range of 

applications, such as hands-free telephones and teleconferencing etc. Generally 

speaking, the transmitted-back signals not produced by far end talker are considered 

as “noises” in a hands-free telephony system. These noises include echoes, near end 

local noise and other audio signal. We will concentrate our studies on echoes 

cancellation in some specific conditions and environments in this thesis.  

near end room far end room 

 

Loudspeaker MIC 

talker

B 
A echoes 

MIC
local noise & signals Loudspeaker 
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o signal” efficiently. 
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An application system with AEC is shown in Figure 1.2 to overcome acoustic 

echo and provide satisfactory speech quality. The estimated filter �( )h n  approximates 

to the room equivelent impulse response ( )h n  through AEC system dealing with far 

end signal ( )x n  and residual error signal  iteratively. The residual error 

signal  is obtained by subtracting estimated output 

( )e n

( )e n �( )y n  from the near end 

microphone output signal  which includes the real echo signal , local 

noise  and local signal . 

( )d n ( )y n

( )v n ( )t n

 

 

Many researches of AEC are focus on designing algorithms or system structures 

to maximize “Convergence Rate / Value” ratio or to minimize complexity both in 

applications and theory fields [2] [3]. Recently, there are more and more interesting 

AEC topics could be studied because of the diversity application of modern 

communication system. There are two main topics we studied about AEC application 

in this paper: one is nonlinear AEC system and the other is stereophonic AEC system. 

Loudspeaker 

MIC

( )h n

( )x n

( )v n

( )t n

far end signal 
near end room 

AEC 

�( )y n ( )y n

( )e n ( )d n

�( )h n

Figure 1.2 Application system with AEC 
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AEC in today’s speakerphones or video conferencing systems most rely on the 

assumption of a linear echo path. However, the customer comfort and security are 

improved, and through this, audio equipments or portable communication systems 

should be compatible with the miniaturization trend and cannot be very expensive, all 

of these things result in nonlinearities. The small but inaudible nonlinearities have a 

dramatic influence on classical linear AEC and nonlinear AEC is the first topic we 

will discuss in this thesis; we develop the approximate convergence analyses in 

different conditions and compare several adaptation strategies for specific nonlinear 

AEC system. 

By another way, a stereo teleconferencing system provides a more realistic 

presence than a monophonic system, because listeners can use spatial information to 

help distinguish who is speaking. This is especially important for video 

teleconferencing involving many different talkers. However, in stereophonic AEC the 

acoustic echo cancellation problem is more difficult to solve because of the necessity 

to uniquely identify two acoustic paths. This has led to several approaches to the 

problem that involve techniques to de-correlate the two input signals using 

nonlinearities preprocessing or partial adaptation scheme. For nonlinear de-correlation 

preprocessing, it has the disadvantages of larger computation complexity and possible 

audible sound distortion. Due to that partial adaptation scheme of stereophonic AEC 

provides an alternative to solve the nonuniqueness problem without the disadvantages 

of nonlinear de-correlation preprocessing. We also derive the stereophonic AEC 

partial update scheme convergence analysis in an approximated form in this paper. 

This thesis is organized as follows. There will be more details about nonlinear 

and stereophonic AEC partial update schemes and prepared knowledge in Chapter 2. 

And we propose convergence analyses in different conditions and compare several 

 3



adaptation strategies for nonlinear AEC in Chapter 3. Chapter 4 shows the 

approximated convergence analysis of stereophonic AEC partial update scheme. The 

demonstration of combining nonlinear loudspeaker and stereophonic AEC is also 

given in this Chapter. In Chapter 5, computer simulations verify the results of our 

derivations in Chapter 3 and Chapter 4. Finally, in Chapter 6, we give a conclusion for 

our study. 

The main efforts in this thesis are:  

(1) Individual convergence analyses of the linear and nonlinear coefficient error. 

(2) Joint coefficient error convergence analysis when the other coefficient set is 

estimated adaptively through simulation. 

(3) Discuss and compare several kinds of adaptation strategies for nonlinear AEC. 

(4) Convergence analysis of stereophonic AEC partial update scheme. 

(5) Demonstrate the behavior of nonlinear loudspeaker effect in stereophonic AEC 

and apply the nonlinear adaptive filter in nonlinear-stereophonic AEC. 
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Chapter2  

 

Adaptive Schemes of Nonlinear and 

Stereophonic AEC 

 

 In this Chapter, we will introduce two adaptation schemes for different AEC 

applications by the normalized least mean square (NLMS) algorithm, which belongs 

to the category of stochastic gradient algorithms. First, acoustic echo cancellers in 

today’s speakerphones or video conferencing systems rely on the assumption of a 

linear echo path. Low-cost loudspeakers or audio equipment introduce considerable 

nonlinearities, which limit the echo return loss enhancement achieved by linear 

adaptation schemes. This means that an annoying nonlinearly distorted echo will be 

transmitted back to the far end subscriber. While nonlinearities with memory are of 

concern usually with high-quality audio equipment, the memoryless nonlinearities are 

addressed for fast converging and simplicity in our study. According to gradient-type 

 5



adaptation (i.e., NLMS), joint NLMS adaptation of nonlinear polynomial adaptive 

filter (preprocessor) and FIR filter are further provided in [5], which will be 

introduced in Section 2.2 and adapted for derivation in Chapter 3. 

Stereophonic AEC is another topic discussed in our thesis, which is the scheme 

for controlling echo signals in a stereo teleconferencing system. There are two 

acoustic paths to identify in a stereophonic system, which raises the stereophonic 

AEC fundament problem: nonuniqueness, this problem will be introduced in Section 

2.3 and it can be solved by reduction of inter-channel coherence. Recently, coefficient 

partial update approaches [14] [15] are adapted to overcome the nonuniqueness 

problem; it has advantages including not only less computation complexity in 

coefficient adaptation, but also avoid applying nonlinearities between two channel 

input signals. Some basic partial update scheme of stereophonic AEC also will be 

introduced in final Section. 

 

 

2.1 Configuration and adaptation algorithm 

2.1.1 Configuration of an acoustic echo canceller 

Figure 2.1 shows the configuration of an acoustic echo canceller. The echo 

canceller identifies the impulse response ( )h n  between the loudspeaker and the 

microphone. An adaptive filter �( )h n  is used to identify ( )h n ; if �( )h n  is identical 

to ( )h n , the echo estimated output  will be equal to  and the echo signal can 

be cancelled perfectly ( ) under noise free (

ˆ( )y n ( )y n

( ) 0e n = ( ) 0v n = ) and no double talk 
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( ) situation. For easy implementation and stability consideration, ( ) 0t n = �( )h n  is 

usually implemented by an FIR filter. 

loudspeaker 
( )x n

( )h n

( )y n

( )t n

�( )h n

( )d n

�( )y n
( )e n

 

 

In order to obtain a good replica of the echo, adaptive algorithm is necessary. 

Since the real echo path ( )h n  is usually unknown and time variant. The adaptive 

algorithm should satisfy the following implementation requirements: 

1. Real-time operation. 

2. Fast convergence speed. 

3. High echo return loss enhancement (ERLE) or low residual error power 

where ERLE is defined as the ratio of the real echo signal power to the residual error  

signal power: 

2

10 2

[ ( )]ERLE(dB) 10 log                                                  (2.1.1)
ˆ[( ( ) ( )) ]

E y n
E y n y n

= ⋅
−

 

 

acoustic 
echo path 

adaptive 
filter 

( )v n

far end signal 

adaptive  
algorithm 

MIC

Figure 2.1 Configuration of an acoustic echo canceller 
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2.1.2 Normalized least mean square algorithm 

 The least mean square (LMS) algorithm is an iterative algorithm used to estimate 

the impulse response so as to minimize the mean square error. For LMS algorithm, the 

coefficients adaptive equation and parameters are described as follows [1]: 

� �( 1) ( ) ( ) (h n h n x n e nµ+ = + )                                     (2.1.2) 

�( ) ( ) ( )e n d n y n= −                                            (2.1.3) 

� �

 :  step size

( ) : residual error signal 

( ) ( ) ( ) ( ) ( ) : the signal received by microphone

( ) ( ) ( ) : echo signal

( )  [ ( ), , ( 1)] : far end signal with adaptive filter length 

T

T

T

e n

d n h n x n t n v n

y n h n x n

x n x n x n L

h

L

µ

= + +

=

= − +"

� � �

0 1

0 1

( )   [ ( ), , ( )] : true echo path response

( )   [ ( ), , ( )] : estimated echo path response

T
L

T
L

n h n h n

h n h n h n

−

−

=

=

…

…

 

In order to make the LMS algorithm insensitive to the change of input signal 

power level, the step size is normalized, resulting in the NLMS coefficients adaptive 

equation described as:  

� �
2

2

( 1) ( ) ( ) (
( )

h n h n x n e n
x n

)µ
+ = +                          (2.1.4) 

Convergence of the mean squared error (MSE) is guaranteed [1] when 0 2µ< < . 

The NLMS algorithm has been the main algorithm of most studies due to its 

simplicity for implementation in many applications. We also adapt the NLMS 

algorithm for the further studies of two AEC applications: nonlinear and stereophonic 

AEC schemes. 
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2.2 Nonlinear AEC 

Nonlinearity happens in loudspeaker due to loudspeaker over driven. There are 

two main considerations for nonlinear AEC study, one is finding suitable nonlinear 

system model and the other is how to combine nonlinear and linear system in one 

structure. The Volterra series expansion can model a large class of nonlinear systems 

[18] and it’s attractive in adaptive filtering applications because the expansion is a 

linear combination of nonlinear functions of the input signals. Because of large 

complexity, the Volterra series always only been taken as the first step to find simpler 

nonlinear system [6] [7] [12]. 

There are many kinds of method to build a nonlinear channel before linear 

response. Most studies take the real loudspeaker as the nonlinear device [4] [5]. 

Another study models the nonlinear channel by saturation followed by a linear 

propagation [6]. For simplicity, we set up our nonlinear AEC system consisting of a 

cascade of memoryless nonlinear system and linear systems liked the following 

description.  

 

2.2.1 Cascade nonlinear AEC scheme 

A nonlinear AEC with a cascade of a memoryless nonlinear preprocessor and an 

FIR filter [5] is introduced in this Section; and an LMS-type adaptation is derived for 

a general nonlinear preprocessor. The cascaded nonlinear AEC scheme is shown in 

Figure 2.2, the adaptation of both nonlinear and linear stages has to rely on the joint 

residual error signal . ( )e n

 9



( )x nfar end signal

( )h n

( )y n( )d n
�( )y n

( )e n

 

 

    A general joint adaptation scheme for FIR filter �( )h n  and nonlinear filter �( )a n  

will be introduced in following description [5]. 

The out put of the memoryless nonlinear function �( ( ), ( ))f a n x n  is given by 

        �( ) ( ( ), ( ))s n f a n x n=�                                       (2.2.1) 

With the nonlinear coefficient vector 

        � � � �
1 2( ) ( ), ( ), , ( )

T
Qa n a n a n a n⎡= ⎣ " ⎤

⎦                             (2.2.2) 

Where  represents the nonlinear order Q

By another way, the estimated echo signal reads 

        � � � �( ) ( ) ( ) ( ) ( ( ), ( ))
T T

y n h n s n h n f a n x n= =�                        (2.2.3) 

Where the estimated impulse response 

       � � � �
0 1 1( ) ( ), ( ), , ( )

T
Lh n h n h n h n−⎡= ⎣ " ⎤

⎦                            (2.2.4) 

and the recent ’s outputs of memoryless nonlinear functionL �( ( ), ( ))f a n x n  is 

obtained by 

nonlinear 
model 

echo path

( )v n

�( )h n

memoryless
nonlinear 

preprocessor

( )s n�

�( ( ), ( ))f a n x n

FIR filter
NLMS  

MIC
Figure 2.2 Nonlinear AEC cascade scheme 
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        �

� � �

( ) ( ), ( 1), , ( 1)

      ( ( ), ( ))

      ( ( ), ( )), ( ( ), ( 1)), , ( ( ), ( 1))

T

T

s n s n s n s n L

f a n x n

f a n x n f a n x n f a n x n L

⎡ ⎤= − − +⎣ ⎦

=

⎡ ⎤= −⎣ ⎦

� � � �"

" − +

                        

(2.2.5) 

with the  input vectors 1L×

[ ]( ) ( ), ( 1), , ( 1) Tx n x n x n x n L= − − +"                        (2.2.6) 

The gradient of residual error power e , as derived for linear transversal filters in 

[1] can be calculated according to: 

2 ( )n

�
2 ( )( ) 2 ( ) ( )
( )h

e nn e
h n

∂
∇ = = −

∂
�n s n                               (2.2.7) 

�
� �

2
'( )( ) 2 ( ) ( ( ), ( )) ( )

( )

TT

a
e nn e n a n x n
a n

f∂ ⎡∇ = = − ⎢⎣ ⎦∂
h n⎤

⎥               (2.2.8) 

with the residual error signal 

� �( ) ( ) ( ) ( ( ), ( ))
T

e n d n h n f a n x n= −                             (2.2.9) 

and the  matrix L Q×

�
�

�

�
�

�
�

' ( ( ), ( ))
( ( ), ( ))

( )

( ( ), ( )) ( ( ), ( 1))                         , ,
( ) ( )

T
T

T

T

f a n x n
a n x n

a n

f a n x n f a n x n L
a n a n

f ∂
=

∂

⎡ ⎤∂ ∂ −
= ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
" +

 

(2.2.10) 

If linear coefficient vector is updated with normalized step size ( )h nµ , an NLMS-type 

adaptation results: 

� � �( )( 1) ( ) ( ) ( ) ( ) ( ) (
2

h
h h

nh n h n n h n n s n e n)µ µ+ = − ∇ = + �             (2.2.11) 

where the normalized step size reads 

2

2

( )
( )

h
h n

s n

µµ =
�

                                         (2.2.12) 
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Similarly, the nonlinear coefficient vector is updated with step size aµ  and the 

adaptation equation results: 

� � � � �'( 1) ( ) ( ) ( ) ( ( ), ( )) ( ) ( )
2

TT
a

a aa n a n n a n a n x n h n e nfµ µ ⎡ ⎤+ = − ∇ = + ⎢ ⎥⎣ ⎦
 (2.2.13) 

    Eq.(2.2.11) and Eq.(2.2.13) demonstrate the general form of a joint NLMS 

adaptation of preprocessor and FIR filter. As the normalization of the preprocessor 

depends on the specific realization of f , we distinguish the polynomial case in  

Subsection 2.2.2. 

 

2.2.2 Polynomial adaptive filter 

The preprocessor NLMS adaptation discussed above has been specialized to a 

polynomial adaptive filter in [5] and [10]. The realization, linear filter with 

polynomial preprocessor, was derived in [5] assuming that nonlinearities appear only 

in amplifier and loudspeaker, the nonlinearities are memoryless and room response is 

linear. Because we use the same nonlinear scheme for our convergence analysis in 

Chapter 3, the derivations are introduced again briefly in following description. 

Describing the nonlinear preprocessor by a -th order polynomial and the 

preprocessor output can be simplified by a de-couple form of nonlinear coefficients 

Q

�( )a n and input ( )x n . It reads: 

� �
1

( ( ), ( )) ( ) ( )
Q

q
q

q

f a n x n a n x n
=

=∑                               (2.2.14) 

Where the n-th preprocessor output reads: 

        �( ) ( ) ( )T
Qs n x n a n=�                                         (2.2.15) 

and     � �( ) ( ) ( ) ( )
T

e n d n a n u n= −                                    (2.2.16) 
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where   2( ) ( ), ( ), , ( )
TQ

Qx n x n x n x n⎡ ⎤= ⎣ ⎦"                             (2.2.17) 

        � �( ) ( ) ( )T
Qu n n h nX=                                        (2.2.18) 

        ( ) ( ), ( 1), , ( 1)
T

Q Q QQ n x n x n x n LX ⎡= − −⎣ " ⎤+ ⎦                   (2.2.19) 

Similar to ( )h nµ  in Subsection 2.2.1, the polynomial adaptation is normalized 

with respect to �
2

2
( )u n . It becomes very small, when a single input sample ( )x n is 

close to zero. To avoid a large adaptation step towards to an unknown direction, 

adding a small constant uδ  to the normalized term, so that the nonlinear coefficient 

adaptation equation Eq.(2.2.13) can be written as: 

        � �
�

�
2

2

( 1) ( ) ( ) (
( )

a

u

a n a n u n e n
u n

)µ

δ
+ = +

+
                        (2.2.20) 

    In contrast to �(0)h , �(0)a must never be zero, as then no adaptation can take 

place. A good choice is linear initialization, i.e., � [ ](0) 1,0, ,0 Ta = " . This ensures that 

even if �a  is not adapted, the system performs at least as well as a linear AEC. 

According to the assumption of memoryless polynomial filter, a less or equivalent 

nonlinear order polynomial coupled with a linear system is our nonlinear AEC 

configuration. 

 

 

2.3 Stereophonic AEC  

2.3.1 Stereophonic AEC scheme 

Stereophonic acoustic echo cancellation can be viewed as a straightforward 

generalization of the single channel acoustic echo cancellation principle, as illustrated 
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in Figure 2.3. 
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Figure 2.3 Scheme of stereophonic AEC
 the schematic diagram of stereophonic AEC. For simplicity, the 

ly one microphone are shown in the near end room; it is 

r analysis will apply to the other microphone signal. The far end 

( )n  at time index  are generated from the talker speech 

d room impulse response 

n

1
( )g n and 

2
( )g n  separately from the 

nes. Then, 1( )x n  ( 2 ( )x n ) passes the echo path 1( )h n  ( 2 ( )h n ) 

lent impulse response from the speaker to microphone. The 

1( )h n∗ , 2 2( ) ( )x n h n∗  and local noise  becomes the 

gnal .Similarly, adaptive filters (

( )v n

( )d n �
1( )h n , � 2 ( )h n ) generate an 

( )n  to reduce the residual error signal . The pair of adaptive ( )e n

) are recursively updated with the NLMS algorithm by the 
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residual error signal . The same model applies to the other near end room 

microphone with the acoustic paths replaced by the ones appropriate to that 

microphone. 

( )e n

According to NLMS algorithm and system scheme, the adaptation equation to 

one near end microphone reads: 

        � � ( )1 1 1( 1) ( ) ( ) (h n h n n x n e nµ+ = + )                              (2.3.1) 

        � � ( )2 2 2( 1) ( ) ( ) (h n h n n x n e nµ+ = + )                             (2.3.2) 

Where   2

2

( )
( )i

n
x n
µµ =                                           (2.3.3) 

�( ) ( ) ( )e n d n y n= −                                         (2.3.4) 

        1 1 2 2( ) ( ) ( ) ( ) ( ) ( )T Td n h n x n h n x n v n= + +                          (2.3.5) 

        � � �
1 1 2 2( ) ( ) ( ) ( ) ( )
T T

y n h n x n h n x n= +                              (2.3.6) 

 

2.3.2 The nonuniqueness problem 

    We will show that the solution of normal equation is not as obvious as in the 

single-channel case in this Subsection. Since the two input signals are obtained by 

filtering from a common source, a problem of nonuniqueness is expected [11] in 

stereophonic AEC.  

For simplicity, the near end signal and local noise are assumed to 0 in following 

description. In monophonic AEC system, the residual error signal  is 

represented as: 

( )e n

        � �( ) ( ) ( ) ( ) ( ) ( ) ( )
T TTe n h n x n h n x n h n x n= − =                       (2.3.7) 

When , it also indicates ( ) 0e n → �( ) 0h n → , i.e., The smaller residual error signal the 
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smaller coefficient misalignment we have in monophonic AEC. 

In stereophonic AEC, the residual error signal  reads: ( )e n

        
� �

� �

1 1 2 2 1 1 2 2

1 21 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

      ( ) ( ) ( )

T TT T

T T

e n h n x n h n x n h n x n h n x n

h n h n s nG G

⎡ ⎤⎡ ⎤= + − +⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤= +⎢ ⎥⎣ ⎦

 
(2.3.8) 

iG  is the far end channel matrix which is the combination of far end room impulse 

response  and its shift. In Eq.(2.3.8), the residual error  only indicates ig ( ) 0e n →

� �
1 21 2( ) ( ) 0
T T

h n h nG G⎡ +⎢⎣
⎤ →⎥⎦

. Actually, we hope the coefficient misalignment can 

become small when residual error is small, i.e., � �
1 2( ) 0 and ( ) 0h n h n→ →  when 

. To achieve this requirement, Eq.(2.3.8) can be rewritten as another form: ( ) 0e n →

        � �
1 2( ) ( ) ( )
T T

e n h n k h n r= +                                    (2.3.9) 

and     k  is independent of r  

According to that,  also indicates ( ) 0e n → � �
1 2( ) 0 and ( ) 0h n h n→ → . That’s why 

the nonlinearities or partial update scheme are applied in stereophonic AEC to reduce 

the coherence between two far end input signals. i.e., reducing the coherence between 

1 1( ) ( )n g s nx = ∗  and 2 2( ) ( )n g s nx = ∗ . 

 

2.3.3 Coefficients partial update 

Many partial update schemes for monophonic AEC had been proposed before, 

for example: the MMax-NLMS algorithm [17]. Furthermore, the coefficient error 

convergence behavior of monophonic partial update AEC has also been analyzed [16]. 

In [16], the coefficient block is updated only when the corresponding input block has 

the maximum magnitude, a general representation of the partial adaptation equation in 

monophonic AEC can be represented as follows: 
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� � ( ) 2

21
( 1) ( ) ( ) ( )        arg max  ( )   ji

j B
h n h n n x n e n i x nAµ

≤ ≤
+ = + =      (2.3.10) 

where    : partial update block numbersB

        ( ) 2

2
( )i

n
x n
µµ =  

and iA  is a diagonal matrix defined by L L×

        (0,   ,0,1,   ,1,0,   ,0) i diagA = " " "                        (2.3.11) 

                         '  block i th

    The introduction of iA  combines the effect of selective partial update with 

original NLMS adaptation equation. According to that, Eq.(2.3.10) can be applied in 

other analysis, e.g., stereophonic AEC partial update. 

By the other way, there exists a dual motivation to develop algorithms which 

have improved convergence performance due to reduction of inter-channel coherence 

whilst maintaining computation complexity to be as low as possible for practice 

reasons. For stereophonic partial update AEC, there are also some schemes had been 

demonstrated recently [14] [15]. In [15], the estimated coefficient vector is divided 

into two parts: front and back half. Which part coefficients can be update is decided 

by a certain criterion proposed in [15]. We modify the stereophonic partial update 

scheme in [15] by an equal probability block update assumption. According to this 

assumption and applying the adaptation equation Eq.(2.3.10), we try to give a 

convergence analysis for partial update stereophonic AEC in Chapter 4. 
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Chapter 3 

Nonlinear Adaptive Filter  

 

 Some methods have been studied for nonlinear adaptive filter. Volterra series 

based filters [7]: can model a large class of nonlinear systems and are attractive in 

adaptive filtering applications because the expansion is a linear combination of 

nonlinear functions of the input signals. But it has disadvantage of a high computation 

complexity. The second method is nonlinear state space structure; this is an IIR filter 

model suitable for long memories requirement with lower computation complexity 

than the FIR filter but it has the unstable problem [8]. Neural network is the third 

method; this cascade structure offers a new perspective but need a pre-identification 

procedure [9].  

More recently, cascade filter structures have been proposed [4], [5] and [10]. In 

[4], the nonlinear adaptive filter is composed of two distinct modules organized in a 

cascade structure: a nonlinear module based on polynomial Volterra filters models the 

loudspeaker, and a second module of standard linear filtering identifies the impulse 

response of the acoustic path. In [5], Stenger introduced a nonlinear AEC by 

cascading a memoryless nonlinear preprocessor with a FIR filter, and derived an 
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LMS-type adaptive algorithm for a general nonlinear processor. Two special cases and 

RLS adaptation for speeding up are also discussed in his study. The most important 

thing in this paper is: it provides a general parametric nonlinear function to represent a 

nonlinear preprocessor in mathematical form and gives the general form of a joint 

NLMS-type adaptation of both nonlinear and linear stages. In [10], Niemistö 

proposed another cascade filter structure by swapping the order of the nonlinear 

processor and the linear filter provided in [5], i.e., post-processor. Niemistö compared 

the adaptive polynomial preprocessor and post-processor with traditional Volterra 

filter through simulations on hands-free equipments and showed the ERLE 

improvement with the extra operations of the proposed structure. In [6], Costa 

introduced five general nonlinear structures and made a comparison on complexity 

and ERLEs.  

Although, Stenger [5] and Niemistö [10] both introduced some study results on 

nonlinear cascade structure with adaptive polynomial filter, especially on updating 

algorithm and system structure. The convergent analysis for the adaptive polynomial 

filter remains unclear. We will perform the convergent analysis on the nonlinear AEC 

filter, including the linear FIR and the nonlinear polynomial filter.  

We will introduce the preprocessor of nonlinear adaptive filter in Section 3.1, 

including diagrams, notations and recursively updated equations of both nonlinear and 

linear coefficients. In Section 3.2 and 3.3, we derive the general iteration formula for 

the linear and nonlinear coefficient error variance independently. In real situation, 

linear and nonlinear coefficient estimation errors are mutually related; they are 

dependent. We try to give an approximate equation to predict the error behavior of 

two filter’s coefficients to match the real situation in Section 3.4. Finally, some 

modified adaptation strategies will be introduced in Section 3.5. 
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3.1 Preprocessor of nonlinear adaptive filter 

Stenger has proposed a preprocess structure with cascade of a memoryless 

polynomial filter and a FIR filter [5]. The system diagram is in Figure 3.1. The echo 

signal ( )d n  at time index  is generated by passing the far end signal n ( )x n  with 

nonlinear loudspeaker response a  and echo path h  in a cascade order. For adaptive 

filters, far end signal ( )x n  is powered first then the nonlinear adaptive filter output 

 is the linear combination of the powered input ( )s n� ( )ix n and estimated nonlinear 

coefficients. Finally, the FIR filter’s output �( )y n  is given by �( ) ( )s n h n∗� . Nonlinear 

and linear coefficients are adapted by joint NLMS adaptation (see also Sec. 2.2) with 

the same residual echo  but different powered inputs (( )e n �( )u n , ) at each 

iteration.. 

( )s n�

( )x n

1( )⋅ 2( )⋅ ( )Q⋅......

�
1( )a n �

2 ( )a n � ( )Qa n......

......

( )s n�

 

L Taps 

FIR filter 

h ( )v n

( )d n

( )e n

�( )h n

�( )y n

+

( )T nX

�( )u n

( )e n

�( )h n

a

Nonlinear filter 

_ 

+

 

Figure 3.1 Preprocessor scheme of nonlinear adaptive filter  
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We take this cascade filter structure as our reference model in following 

derivations. It makes sense that nonlinear adaptive filter cascaded in the order of 

linear filter after nonlinear filter corresponding to nonlinear loudspeaker following by 

linear echo path response. This cascaded order is also the Hammerstein model 

described in [6].  

Although the general nonlinear AEC notations have been mentioned before [see 

also Section 2.2], we still organized the necessary notations for the derivations 

convenient in following: 

� �

2 2

2 2

                          
                       [ ( ) ] ,    

                       [ ( ) ] ,  -    

( )                   

v

x

Q memoryless polynomial filter order
E v n noise power

E x n far end input signal power

h n h h

σ

σ

=

=

=

= − � � �

� � � � �

0 1 1

1 2

2

2

( ) [ ( ), ( ), , ( )] ,    

( )                   ( ) [ ( ), ( ), , ( )] ,    

( ) ( ) ( )
( 1) ( 1)

( )                  

T
L

T
Q

Q

n h n h n h n linear coefficient error vector

a n a a n a n a n a n nonlinear coefficient error vector

x n x n x n
x n x n

nX

−=

= − =

− −
=

"

"

"
"

�

� �

2

0 1 1

( 1)
 ,    

( 1) ( 1) ( 1)

( )                   ( ) ( ) [ ( ), ( ), , ( )] ,    

( )                   ( ) (

Q

Q
L Q

T
L

T

x n
powered input matrix

x n L x n L x n L

s n n a n s n s n s n nonlinear powered input vector

u n n h n

X

X

×

−

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥

− + − + − +⎣ ⎦

= =

=

# # % #
"

� � � �"

� � �

�

1 2

2

2

2

2

) [ ( ), ( ), , ( )] ,    

( )                   ,      
( )

( )                   ,      
( )

T
Q

h
h

a
a

u

a n a n a n linear powered input vector

n normalized stepsize of linear coefficient
s n

n normalized stepsize of nonlinear
u n

µµ

µµ
δ

=

=

=
+

"

�

�
� �

�
� �

2

 

( )                   

( )                  [ ( ) ( )],       

( )                  [ ( ) ( )],      

x x

T

h

T

a

coefficient

R n I

R n E h n h n correlation matrix of linear coefficient error

R n E a n a n correlation matrix of nonlinear coef

σ= ⋅

=

=   ficient error  
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 Assuming the input signal ( )x n  is continuous-valued White Gaussian noise 

(WGN) in the following Sections. For simplicity, nonlinear loudspeaker and linear 

echo path responses are assumed to be time invariant. (i.e., ( )a n a=  and ( )h n h= ) 

and the near-end speech  is also assumed. ( ) 0t n =

According to the NLMS algorithm and memoryless polynomial filter [5], [10] 

[see also Sec. 2.2], we write the nonlinear and linear coefficients recursive updating 

equation as follows:  

Nonlinear coefficient updating equation: 

     
� �

�
�

2

2

( 1) ( ) ( ) (
( )

a

u

a n a n u n e n
u n

µ

δ
+ = +

+
) (3.1.1) 

 

where       � �( ) ( ) ( ) ( )
T

e n d n a n u n= −  

Linear coefficient updating equation: 

   

 

where       �( ) ( ) ( ) ( )
T

e n d n h n s n= − �  

� �
2

2

( 1) ( ) ( ) (
( )

       

hh n h n s n e n
s n

µ
+ = + �

�
) (3.1.2) 

The echo signal is the same in one iteration for both linear and nonlinear 

coefficient updating equations, it reads as: 

( )e n

        � � � � �( ) ( ) ( ) ( ) ( ) ( )( )T T T
h n s n h n a n a n u nX n= =�                 (3.1.3) 

In next Section, we derive an equation to predict the variance of linear 

coefficients error first with the assumption: nonlinear coefficients are perfect, i.e., 

�( ) 0a n = . 
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3.2 Linear coefficient error convergence analysis  

 In 3.2, we will derive the variance of linear coefficient error under the 

assumption of perfect nonlinear coefficients. First, express the linear and nonlinear 

coefficient error vector as 

�~
( ) ( )h n h h n= −                                              (3.2.1) 

�~
( ) ( )a n a a n= −                                              (3.2.2) 

Rearranging Eq.(3.1.2), we can have: 

� �

� � �

�

~

~

~ ~

( 1) ( ) ( ) ( ) ( ) ( ) ( )

            ( ) ( ) ( ) ( ( ) ( )) ( ) ( ) ( ) ( )

            ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

            ( ) ( )

T

h

TT T
h

T T
h

h

h n h n n s n d n h n s n

h n n s n a n a n n h v n s n h n

h n n s n s n h n h n a n v n

I n s n

X

X

µ

µ

µ

µ

⎡ ⎤+ = − −⎢ ⎥⎣ ⎦

⎡ ⎤= − + + −⎢ ⎥⎣ ⎦
⎡ ⎤= − + +⎢ ⎥⎣ ⎦

= −

� �

� �

� �

� �~
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T
h hs n h n n s n h n a n n s n v nXµ µ⎡ ⎤ − −⎢ ⎥⎣ ⎦

� � �

 

(3.2.3)

For simplicity, the nonlinear coefficient is assumed perfect. i.e., �( )a n a=  and 

�( ) ( ) ( ) ( ) ( )s n n a n n a s nX X= = =� . Eq.(3.2.3) can be rewritten as follows: 

~ ~
( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )T

h hh n I n s n s n h n n s n v nµ µ⎡ ⎤+ = − −⎣ ⎦                    (3.2.4) 

Secondly, we define the correlation matrix of linear coefficient error by � ( 1hR n + )  

then we have: 

 

�

~ ~

~ ~ ~ ~ ~ ~

~ ~
2 2 2

( 1) ( 1) ( 1)

              ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

T

h

T T
T T

h h

T
T T

h h

R n E h n h n

E h n h n E h n h n n s n s n E n s n s n h n h n

E n s n s n h n h n s n s n E n v

µ µ

µ µ

⎡ ⎤
+ = + +⎢ ⎥

⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤

+ +⎢ ⎥
⎣ ⎦

T

) ( ) ( )Tn s n s n⎡ ⎤⎣ ⎦

 

(3.2.5)

The cross-product terms of 
~

( ) ( ) ( ) ( )T
hI n s n s n h nµ⎡ ⎤−⎣ ⎦  and ( ) ( ) ( )h n s n v nµ  disappear 
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because of the independence and zero mean assumptions of the near-end noise . ( )v n

    It is reasonable to assume the linear coefficients error �( )h n and nonlinear 

powered input vector ( )s n , the linear combination between different powered input 

signal ( )x n  and nonlinear coefficients, are all independent. Eq.(3.2.5) can be 

rearranged as follows: 

� � �

~ ~
2

2 2

( 1) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                 ( ) ( )

T
T T

h s hh h h

h v s

R n R n n R n R n n E s n s n h n h n s n s n

n R n

µ µ

µ σ

⎡ ⎤
+ = − + ⎢ ⎥

⎣ ⎦
+

 

(3.2.6)

    Since � �( ) ( )
T

h n h n is symmetric matrix and ( )s n  is zero mean, approximate 

WGN, the third terms in Eq.(3.2.6 ) can be further simplified. By the other way, its 

input data correlation matrix ( )sR n  is different from the original one ( )xR n . 

Appendix A. gives the detailed mathematical derivation of approximating ( )sR n  

by 2
s LIσ . Then we can obtain 

� � � � �( )
2 2

2
2 2( 1) ( ) 2 ( ) 2 ( ) ( )h h h

vh h h h h
s
2R n R n R n R n tr R n

L L L
Iµ µ µ Iσ

σ
⎡ ⎤+ = − + + +⎣ ⎦

   (3.2.7) 

Taking trace, Eq.(3.2.10) becomes 

� �

2 2

2

2( 1) 1 (2 ) ( )h h
h h

2

2
h v

s

tr R n L tr R n
L L L
µ µ µ σ

σ
⎡ ⎤⎡ ⎤ ⎡ ⎤+ = − + + +⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

          (3.2.8) 

By recursion, Eq.(3.2.8) can be represented as follows: 

� � �
� �

�

�

�

(1 )
( ) (0)      

1 1

n
n h h h

h h h
h h

K C K
T n C T when n

C C
× −

= + ≈ →
− −

∞  (3.2.9) 

where   

�

�

�

2

2
2

2

2 2

2

(0)

21 (2 )

h

h h
h

h v
h

s

T h

C L
L L

K
L

µ µ

µ σ
σ

− + +

=

�

�  
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�hC  is the convergence rate of linear coefficient error variance. It can be 

determined with the knowledge of step size hµ  and linear adaptive filter length . 

Convergence value is determined by  and . Besides 

L

�hC �hK hµ  and , power of the 

local noise (

L

2
vσ ) and the nonlinear input ( 2

sσ ) are necessary for finding . According 

to Eq.(3.2.9), we can easily find the variance of linear coefficient error at the ’th 

iteration for nonlinear adaptive filter under assumption of perfectly known nonlinear 

coefficients. 

�hK

n

 

 

3.3 Nonlinear coefficient error convergence analysis 

The nonlinear coefficient error variance will be derived in this section. Similarly, 

the linear coefficients are assumed to be perfect. The derivation procedure is almost 

the same as section 3.2, but there are still some differences between linear and 

nonlinear derivations. Let’s examine the nonlinear coefficient updated equation in 

Eq.(3.1.1). 

In contrast to 
2

2
( )s n�  in Sec.3.2, �

2

2
( )u n  becomes very small when a single 

input sample ( )x n is close to zero. To avoid a large adaptation step towards a random 

direction in this situation, a small constant uδ (usually is 1) is added to the normalized 

term. Substitute estimated coefficient error vector Eq.(3.2.1) and Eq.(3.2.2) into 

Eq.(3.1.1) and rearrange it as follows: 
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� � � � �

� � � �

� � � � �

~ ~

~

~

( 1) ( ) ( ) ( ) ( ( ) ( )) ( ) ( ) ( ) ( )

            ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

            ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

TT
a

T T T
a

T T T
a a a

a n a n n u n h n h n n a v n u n a n

a n n u n u n a n a n h n v n

n u n u n a n n u n a n h n n u n v n

X

X

I X

µ

µ

µ µ µ

⎡ ⎤+ = − + + −⎢ ⎥⎣ ⎦

⎡ ⎤= − + +⎢ ⎥⎣ ⎦

⎡ ⎤= − − −⎢ ⎥⎣ ⎦

 

(3.3.1) 

Eq.(3.3.1) is an iterative representation of nonlinear coefficient error vector 

under the condition that linear coefficients are not perfect. Assume the linear 

coefficients are perfect first in this section. Because of this assumption, the third term 

in Eq.(3.3.1) can be eliminated and linear powered input vector ( )u n  is only 

produced by product of perfect linear coefficients h  and powered input matrix 

. We have ( )nX

~ ~
( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )T

a aa n n u n u n a n n u n v nI µ µ⎡ ⎤+ = − −⎣ ⎦                   (3.3.2) 

    The correlation matrix of nonlinear coefficient error at ’th iteration 1n +

� ( 1aR n + )  can be written as follows by substituting Eq.(3.3.2) into its definition.  

�

~ ~

~ ~ ~ ~ ~ ~

~ ~
2 2 2

( 1) ( 1) ( 1)

              ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

T

a

T T T
T T

a a

T
T T

a a

R n E a n a n

E a n a n E a n a n n u n u n E n u n u n a n a n

E n u n u n a n a n u n u n E n v

µ µ

µ µ

⎡ ⎤
+ = + +⎢ ⎥

⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤

+ +⎢ ⎥
⎣ ⎦

) ( ) ( )Tn u n u n⎡ ⎤⎣ ⎦

 

(3.3.3) 

    Similarly, the cross-product terms of
~

( ) ( ) ( ) ( )T
aI n u n u n a nµ⎡ ⎤−⎣ ⎦  and 

( ) ( ) ( )a n u n v nµ  disappear because of the independence and zero mean assumptions of 

the near-end noise .Eq.(3.3.3) can be further simplified by assuming the 

independence of 

( )v n

~
( )a n  and ( )u n . It becomes 

� � �

~ ~
2

2 2

( 1) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                 ( ) ( )

T
T T

a u aa a a

a v u

R n R n n R n R n n E u n u n a n a n u n u n

n R n

µ µ

µ σ

⎡ ⎤
+ = − + ⎢ ⎥

⎣ ⎦
+

 

(3.3.4) 
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The third term in Eq.(3.3.4) can not be simplified through the assumption applied 

in Sec. 3.2. Due to the different statistic characteristic between ( )s n  and ( )u n , we 

can not approximate ( )uR n  by the product form between a constant value and 

identity matrix. Taking trace on both side of Eq.(3.3.4) and assuming the correlation 

matrix � ( )aR n  is diagonal, so that we have  

�

{ }
�

2

2 2

( ) ( ) ( ) ( )( )
( 1) 1 2 ( ) ( ) ( )

                        ( ) ( )

T T

u
a aa a

a v u

E tr u n u n u n u ntr R n
tr R n n n tr R n

Q Q

n tr R n

µ µ

µ σ

⎛ ⎞⎡ ⎤⎡ ⎤ ⎣ ⎦⎣ ⎦⎜ ⎟⎡ ⎤ ⎡+ = − +⎣ ⎦ ⎣⎜ ⎟⎜ ⎟
⎝ ⎠

⎡ ⎤+ ⎣ ⎦

⎤⎦  

(3.3.5) 

Substitute the normalized step-size (see also Sec. 3.1) into Eq.(3.3.5), the equation 

reads now 

� �

2 4
2

2 2
22 2 2 2

2 2 2

2 2

2

2

( ) ( )2( 1) 1 ( )
( ) ( ) 2 ( )

                       
( )

a a
a a

u u u

a v

E u n E u n
tr R n tr R n

Q QE u n E u n E u n

E u n

µ µ

δ δ δ

µ σ

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡+ = − +⎜ ⎟⎣ ⎦ ⎣⎡ ⎤ + ⎡ ⎤ ⎡ ⎤⎜ ⎟+ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

+
⎡ ⎤
⎣ ⎦

⎤⎦  

(3.3.6) 

uδ  is a small constant, if it satisfies the condition 2

2
( )u E u nδ ⎡ ⎤

⎣ ⎦� and 

2

2
( ) 1E u n⎡ ⎤ >⎣ ⎦ . Eq.(3.3.6) can be approximated to be 

� �

4
2 2

2
2 22

22

( )2( 1) 1 ( )
( )( )

a a
a a

E u n
tr R n tr R n

Q Q E u nE u n

µ µ µ
⎛ ⎞⎡ ⎤
⎜ ⎟⎣ ⎦⎡ ⎤ ⎡ ⎤+ = − + +⎜ ⎟⎣ ⎦ ⎣ ⎦

2
a vσ

⎡ ⎤⎡ ⎤⎜ ⎟ ⎣ ⎦⎣ ⎦⎝ ⎠

 (3.3.7) 

where 2

2
( )E u n⎡ ⎤

⎣ ⎦ and 4

2
( )E u n⎡

⎣
⎤
⎦ are decided by different order moment value of 

( )x n  and linear coefficient vector h . In order to keep the main object of this section, 

the detail mathematical procedure about them has been given in Appendix B. We 

define another two symbols  and  to represent 2uP 4uP 2

2
( )E u n⎡ ⎤

⎣ ⎦ and 4

2
( )E u n⎡ ⎤

⎣ ⎦  

respectively. Finally, the variance of nonlinear coefficient error becomes 
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n
n a a a

a a a
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K C K
T n C T when n

C C
× −

= + ≈ →
− −

∞  (3.3.8) 

where    

�

�

2
4

2
2

2 2

2

2 4
2 42 2

1 2  

( )     ( )

a a u
a

u

a v
a

u

u u

PC
Q P Q

K
P

P E u n and P E u n

µ µ

µ σ

= − +

=

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣� � ⎦

 

In contrast to the variance of linear coefficient error in Sec. 3.2, the variance of 

nonlinear coefficient error is more complicated. There are two values more needed to 

know ( and ) first for getting the values of nonlinear coefficient error at ’th 

iteration. According to Eq.(3.3.8), we can get the variance of nonlinear coefficient 

error at the ’th iteration in nonlinear adaptive filter under assumption of perfect 

linear coefficients. 

2uP 4uP n

n

 

3.4 Joint coefficient error convergence analysis  

In a real nonlinear AEC environment, the behaviors of linear and nonlinear 

adaptive filters affect each other. We assume the nonlinear and echo responses are 

time invariant for simplicity. The nonlinear coefficients are updated first then the 

linear coefficients follow according to last time parameters in one iteration, we call 

this updating strategy joint. 

3.4.1 Imperfect linear coefficient error convergence analysis 

Different from Section 3.2, we will derive the linear coefficient error variance by 

considering the effect of nonlinear coefficient estimation error in this section. 

Eq.(3.2.3) will be the linear coefficient updating equation by the relationship of 
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�~
( ) ( )h n h h n= −  : 

�~ ~
( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

T T
h h hh n I n s n s n h n n s n h n a n n s n v nXµ µ µ⎡ ⎤+ = − − −⎢ ⎥⎣ ⎦
� � � � )    (3.4.1) 

There are two different terms worthy to note. The third term in Eq.(3.4.1) is 

produced by nonlinear coefficient error �( )a n  which is not present in Section 3.2, and 

the nonlinear powered input ( )s n� is also related to the nonlinear coefficient error, i.e., 

    � �( ) ( ) ( ) ( ) ( )s n n a n n a a nX X ⎡ ⎤= = −⎣ ⎦
�                           (3.4.2) 

Divide the correlation matrix of linear coefficient error into two parts according 

to  the nonlinear coefficient error effect is direct or not, it can be written as follows: 

    

�

( ) �

( ) �

�

~ ~
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~

( 1) ( 1) ( 1)

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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( 1) |
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T T
h h h

T T TT T
h h h

h indire

R n E h n h n

E I n s n s n h n n s n h n a n n s n v n

h n I n s n s n n a n n hs n n s n v n

R n

X

X

µ µ µ

µ µ µ

⎧ ⎫
+ = + +⎨ ⎬

⎩ ⎭
⎧⎡ ⎤= − − −⎨⎢ ⎥⎣ ⎦⎩

⎫⎡ ⎤⎪× − − − ⎬⎢ ⎥
⎪⎣ ⎦⎭

= +

� � � �

� � � �

�

T

� � ( )   ( )   ( 1) |ct a n effect h direct a n effectR n+ +

 

(3.4.3) 

The first term in Eq.(3.4.3) is similar to the Eq.(3.2.7) but the nonlinear powered 

input ( )s n�  is iteration variant now, the nonlinear coefficients are also estimated 

imperfectly. It is equal to: 

� �

� � � �( )
 ( )  

2 2
2

2 2

( 1)

( ) 2 ( ) 2 ( ) ( )
( )2

|h indirect a n effect

h h h
vh h h h

s

R n

R n R n R n tr R n
L L L n

Iµ µ µ Iσ
σ

+

⎡ ⎤= − + + +⎣ ⎦
�

 
(3.4.4) 

where the estimated nonlinear powered input variance 2
s

σ �  can be rewritten as: (see 

also Appendix A) 

( ) � � �2 2 22 2 2 2 4 2 6 2 4
1 2 31 2 1 3 3( ) 2 ( ) ( ) ( )

s
n a X a a a X a X E a n X E a n X E a n Xσ 6⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦�

    (3.4.5) 

    It’s decided by different moment orders of the powered input, as well as perfect 

 29



nonlinear coefficients and nonlinear coefficient estimation error. We assume that 

different nonlinear order coefficient errors have the same error variance which is 

equal to the average power of nonlinear correlation matrix. Eq.(3.4.5) can be 

approximated as follows with 3Q = : 

( ) � ( )

( ) � ( )

2 2 2 2 4 2 6 2 4 6
1 2 1 3 3

2 2 2 4 2 6 2 4 6
1 2 1 3 3

( )
( ) 2

( )
         3 2 15 3 15

a

s

a
x x x x x

tr R n
n a X a a a X a X X X X

Q

tr R n
a a a a a

Q

σ

xσ σ σ σ σ

⎡ ⎤⎣ ⎦≈ + + + + + +

⎡ ⎤⎣ ⎦= + + + + + +

�

σ

 

(3.4.6)

It’s clear to know that the behavior of nonlinear coefficient error variance will be 

introduced in Eq.(3.4.6) to affect the estimation powered input variance ( ) in 

each iteration. Now, let’s look at the second term in Eq.(3.4.3) where the nonlinear 

coefficient estimation error vector are affected directly by multiplication between the 

third term and others in Eq.(3.4.1), it reads as : 

2 ( )
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nσ �
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� � � �{ }
� � � �{
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hs n E s n v n a n n hs n

E s n h n a n s n v n

X

X

⎡ ⎤ ⎡+⎢ ⎥ ⎢⎣ ⎦ ⎣

⎡ ⎤+ ⎢ ⎥⎣ ⎦

� � �

� �

⎤
⎥⎦

 

(3.4.7)

There remains only the fifth term in Eq.(3.4.7) according to the assumption : 

both expectation values of nonlinear and linear coefficient error are zero and local 

noise mean is zero. By eliminating the other terms, we have: 

� �
� �2

 ( )  ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )| TTT T
hh direct a n effectR n n E s n h n a n a n n hs nX Xµ ⎡ ⎤+ = ⎢ ⎥⎣ ⎦

� �       (3.4.8) 

It’s straight forward that nonlinear coefficient errors need to be highlighted in 

this equation to represent its effect in the behavior of linear coefficient error variance. 

Substituting Eq.(3.4.2) and linear powered input into Eq.(3.4.7), we can have: 
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� �
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� � � � � � �

2

2
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⎤
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⎡ ⎤
⎢ ⎥⎣ ⎦

 

(3.4.9)

Because of �( ) 0E a n⎡ ⎤ =⎣ ⎦ , we make an assumption that its third moment terms 

will close to zero, i.e., the second and third terms in Eq.(3.4.9) will be zero. Besides, 

the fourth term in Eq.(3.4.9) is also assumed too small to take account in Eq.(3.4.9). 

Eq (3.4.9) can be approximated as: 

� �
� �2

 ( )  ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )| TT T
hh direct a n effectR n n E s n u u a n a n uµ n s n⎡ ⎤+ = ⎢ ⎥⎣ ⎦

         (3.4.10) 

Re-arrange Eq.(3.4.3) as follows: 

� � � � �
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(3.4.11)

Take trace over both sides of Eq.(3.4.11), it reads as: 
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(3.4.12)

When nonlinear order   3Q =

( ) ( ) ( )2 4 2 2 6 2 2 2 8 2 2 10 2 1
1 1 2 1 3 1 2 3 1 3 3 2 1 3 32 2 2nlP a X a a a a X a a a a a X a a a a X a X= + + + + + + + + + + + 2  

The detail derivation of 2

2
( ) ( )E s n u n 2

2
⎡ ⎤
⎣ ⎦ can be obtained from Appendix 

Eq.(A.9) and Eq.(B.7). According to Eq.(3.4.12), we can find that the behavior of 

linear coefficient error variance is determined not only by linear coefficient error 

variance but also by nonlinear coefficient error (i.e., � ( )atr R n⎡ ⎤⎣ ⎦  and 2
s

σ � ). In order to 
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know behaviors of both nonlinear and linear coefficient error variance in imperfect 

estimation, derivation on nonlinear coefficient error variance convergent behavior is 

also necessary. 

3.4.2 Imperfect Nonlinear Coefficient Error Convergence Analysis 

Similarly, we start from Eq.(3.3.1) with the consideration of linear coefficient 

estimation is imperfect. i.e., � �( ) ( )h n h h n= − ; it reads as: 

� � � � �~ ~
( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T T
a a aa n n u n u n a n n u n a n h n n u n v nI Xµ µ µ⎡ ⎤+ = − − −⎢ ⎥⎣ ⎦

    (3.4.13)

Linear coefficient error effect is introduced by �( )h n  and �( )u n  in Eq.(3.4.13). 

On account of convenient representation, the correlation matrix of nonlinear 

coefficient error is still divided into two parts: one part is similar to Eq.(3.3.3) but the 

linear powered input variance �
2

2
( )u n  is a random variable at each iteration, the 

other part is collection of the terms including linear coefficient error effect directly. 

Through that, the correlation matrix of nonlinear coefficient error can be represented 

as follows: 
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(3.4.14)

Here is the first term in Eq.(3.4.14): 
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(3.4.15)

The correlation matrix of estimated linear powered input �( )u n  has the linear 
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coefficient error vector �( )h n  effect. It also needs to be updated at each iteration. 

The second term in Eq.(3.4.14) is the multiplication between the third term and 

other terms in Eq.(3.4.13). It is represented by: 
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(3.4.16)

Eq.(3.4.16) can be rearranged as follows with the assumption of �( ) 0E h n⎡ ⎤ =⎣ ⎦ , 

�( ) 0E a n⎡ ⎤ =⎣ ⎦ and local noise has zero mean. 

    � �
� � � �2

 ( )  ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )| TTT T
aa direct h n effectR n n E u n a n h n h n n au nX Xµ ⎡ ⎤+ = ⎢ ⎥⎣ ⎦

    (3.4.17) 

Substitute definition of estimation linear powered input �( )u n into Eq.(3.4.17) and it 

extends to the following equation: 
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⎢ ⎥⎣ ⎦

 

(3.4.18)

Due to the estimated linear coefficient error is zero mean, the second and third 

terms of Eq.(3.4.18) will close to zero. And the fourth term is so small compared to 

first term that it can be isolated. Eq.(3.4.18) can be simplified to an approximate 

result. 

� �
� �2

 ( )  ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )| TT TT
aa direct h n effectR n n E u n a n h n h n n au nX Xµ ⎡ ⎤+ ≈ ⎢ ⎥⎣ ⎦

 (3.4.19)

    Combining Eq.(3.4.15) and Eq.(3.4.19), Eq.(3.4.14) will be rewritten as: 
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(3.4.20)

Applying trace operation in Eq.(3.4.20), it becomes 
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(3.4.21)

When nonlinear order  3Q =

( ) ( ) ( )2 4 2 2 6 2 2 2 8 2 2 10 2 1
1 1 2 1 3 1 2 3 1 3 3 2 1 3 32 2 2nlP a X a a a a X a a a a a X a a a a X a X= + + + + + + + + + + + 2  

It is similar to the behavior of linear coefficient error variance in Eq.(3.4.12), the 

current nonlinear coefficient error variance will depend on both linear and nonlinear 

coefficient error variance of last iteration. By the other way, the iteration variant linear 

powered input �( )u n  also plays an important role in the nonlinear coefficient error 

behavior equation. 

 

 

3.5 Modified adaptation strategies 

We hope to give some helpful information about nonlinear and linear coefficient 

adaptation strategies in nonlinear AEC. Because there are two filters, nonlinear 

polynomial filter and FIR filter, work together in the nonlinear AEC system, the 

coefficient error variance behavior will affect each other with the “Joint” adaptation 
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strategy, like the approximated derivations showed in Section 3.4. We start from the 

original “Joint” adaptive update and try to find better adaptation method for nonlinear 

AEC. Besides “Joint” adaptation, there are four more updating strategies which are 

described as follows: 

1. Joint: The straight forward adaptive method achieved by updating nonlinear and 

linear coefficients respectively in one iteration. 

2. Block Interleave: The linear coefficients are updated in first  iterations (128) 

(block), then updating the nonlinear coefficients in next  iterations and so on 

recursively.  

L

L

L

3. Select and Go: Joint adaptation is applied in first  iterations, selecting the 

nonlinear coefficients by the ’th iteration and keep it, only keep updating 

linear coefficients in following iterations. 

L

4. Select and Go, Joint: The first two phases are the same as Select and Go strategy. 

Switching to “Joint” strategy for phase III when iteration numbers larger than 

iteration threshold number (i.e., 5000). 

5. Go, Go, Joint: Only updating linear coefficients in phase I, once the iteration 

number has been satisfied with 1250, switching to phase II, updating nonlinear 

coefficients only. Do not turn into “Joint” mode (phase III) until nonlinear 

coefficients are adapted 50 times recursively.  

We make comparisons between five strategies with respect to echo power 
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Converged rate and final converged value. Comparison results are briefly organized in 

Table 5.1. Simulation results are provided in Section 5.4.  

These adaptation strategy simulations indicate that: 

 In transient phase, linear coefficients dominate the echo power Converged 

rate. Therefore, �( )h n  should have to converge to some degree first, before 

the nonlinear coefficient adaptation is enabled. 

 Nonlinear coefficient adaptation is an important part for achieving the 

reasonable small echo power converged value in steady state phase, i.e., 

they should be updated in steady state phase. 

 No matter what strategies are applied in beginning, the reasonable echo 

power converged value can be approached by applying joint adaptation but 

it should not be too late. 

The simulations results showed that the “Go, Go, Joint” adaptation strategy has 

the fastest converged rate and smallest converged value over five adaptation strategies. 

Through that, linear coefficient adaptation needs to be concerned first and nonlinear 

coefficient adaptation is introduced when the condition is met: the linear coefficients 

stay around “the almost right place”. By the other way, if the nonlinear AEC 

environment is time-variant, the adaptive procedure needs to repeat again once the 

echo paths change. 
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Chapter 4 

Stereophonic Acoustic Echo 

Cancellation 

 

 The fundamental problem of stereophonic acoustic echo cancellation (AEC) is 

the nonuniqueness problem because of remote (far-end) transmission room’s multiple 

high correlated impulse responses [11]. Most methods use the decorrelators to solve 

the nonuniqueness problem by applying some kinds of nonlinear transformation on 

far end microphone input signals [12]. Morgan’s study [13] also shows that the lower 

coherence of input signals, the faster convergence and the lower the coefficient 

misalignment. But it needs some cost on system structure modification and 

computation complexity for employing nonlinearities in stereophonic AEC. 

More recently, using partial update schemes to reduce the coherence in 

stereophonic AEC is an alternative for solving nonuniqueness problem [14] [15]. In 

[14], the MMax-NLMS algorithm has been proposed; it employed an efficient 

technique to determine a tap selection set that gives an approximate joint optimization 
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of maximum absolute sum of the sub-sampled tap-input vectors and minimum 

inter-channel coherence. By the other way, Hirano proposes a stereophonic AEC 

without pre-processing; it is achieved by dividing the filter coefficients into two 

portions (i.e., front and back) and update one part at a time [15].  

In mono AEC, Doğançay has proposed a selective partial updates structure to 

reduce the computation complexity of an adaptive filter by adapting a block of the 

filter coefficients rather than the entire filter at one iteration [16]. Hirano proposes a 

stereophonic AEC partial update scheme but he does not give a detail analysis on 

coefficient error convergence behavior. We are trying to analyze the coefficient error 

convergence of the partial update stereophonic AEC structure according to 

Doğançay’s mono AEC partial update analysis works. 

We will introduce the partial update method of stereophonic AEC in Section 4.1, 

including notations and recursively updated equations. In Section 4.2, we derive the 

general iteration formula for the coefficient error variance. Finally, we try to combine 

the nonlinear loudspeaker with stereophonic AEC to reduce the coherence of input 

signals and to achieve a better coefficient misalignment result. 

 

 

4.1 Partial update of stereophonic AEC [14][15] 

The general stereophonic AEC scheme had been introduced in Section 2.3. We 

only define the configurations used in following derivation and introduce the partial 

update coefficient adaptation equation in this Section. 

In Figure 2.3, assuming the talker’s signal  is continuous-valued White 

Gaussian Noise (WGN) with variance

( )s n

2
sσ  in the following Sections. It is different 
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from the previous configurations in Section 2.3, the far end impulse responses and 

near end echo path are all assumed to be time invariant. (i.e.,
1 1
( )g n g= , 

2 2
( )g n g=  

and 1 1( )h n h= , 2 2( )h n h= ) for simplicity. 

The following notations are necessary for the derivations: 
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For convenience, only echo cancellation for the one microphone signal will be 

discussed here. Similar results will apply to the other microphone signal. Introducing 
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the diagonal matrixL L× iA  [16] to select the half front or half back input block for 

partial (half) coefficient adaptation [15], we write the partial coefficient updating 

equation as follows by NLMS algorithm:  

Partial (half) coefficient updating equation is defined by: 
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where       �( ) ( ) ( )e n d n y n= −                                    (4.1.2) 

� � ( )1 1 1( 1) ( ) ( ) ( )
       

ih n h n n x n e nAµ+ = + (4.1.1)

(1,   ,  1,0,   ,0)  ,  '  1    
2

(0,   ,  0,1,   ,1)  ,   '  1    
2

i

Ldiag i front s in half front part

Ldiag i back s in half back part
A

⎧ =⎪⎪= ⎨
⎪ =
⎪⎩

" "

" "

  (4.1.3) 

� � �
1 1 2 2( ) ( ) ( ) ( ) ( )
T T

y n h n x n h n x n= +                        (4.1.4) 

1 1 2 2( ) ( ) ( ) ( )T Td n h x n h x n v n= + +                         (4.1.5) 

In next section, we try to derive an approximated recursive equation for the 

variance of coefficient error in the partial update stereophonic AEC scheme. 

 

 

4.2 Partial update coefficient error convergence analysis  

Now, we will derivate the variance convergence behavior of coefficient error in 

partial update stereophonic AEC. First, express the coefficient error vector as 

�~

1 1 1( ) ( )h n h h n= −                                           (4.2.1)             

Rearranging Eq.(4.1.1), we can have: 

� � �
1 1 1 1 1
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n v n x n

I A A
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µ µ

µ

⎡ ⎤+ = − −⎣ ⎦
−

2 2 ( )
 

(4.2.2) 

According to the definition of correlation matrix and assumption of error vector 

 



and source signal ( )s n  are independent, the coefficient error correlation matrix reads 

as: 

~

1

~ ~ ~

1 1 1

~ ~

1 2

1 1 1 1 1

~ ~
2 2

1 11 1 1 1 1

~ ~
2 2

1 21 2 1 1 1 1 2

( 1)

 ( ) ( ) ( ) ( ) ( ) ( ) ( )

   ( ) ( ) ( ) ( ) ( ) ( ) ( )

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

h

T T
s s

h h h

T
T TT T

i

T
TT T

s i
h h

i i

i

n

n n n n n n n

n E s n s n h n h n s n s n

n n n n E s n s n h n h n s

R

R A R G R G AG R G R

A G G G G

A R G R G A G G G

µ µ

µ

µ µ

+

= − −

⎡ ⎤
− ⎢ ⎥

⎣ ⎦

− +

~ ~

2 1

1

~ ~
2 2

2 11 1 2 1 1 2 1

~ ~
2 2 2 2 2

2 21 1 2 2 1 1 1 1

( ) ( )

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T

T
T TT T

s i
h h

T
T TT T

i v i s

i

n s n

n n n n E s n s n h n h n s n s n

n E s n s n h n h n s n s n n n

G

AG R G R A G G G G

A G G G G A G R G

µ µ

µ µ

⎡ ⎤
⎢ ⎥
⎣ ⎦
⎡ ⎤

− + ⎢ ⎥
⎣ ⎦

⎡ ⎤
+ +⎢ ⎥

⎣ ⎦

1
T

Tσ

 

(4.2.3) 

where 1 1( ) ( )x n G s n= ⋅ and 2 2( ) ( )x n G s n= ⋅  

The effects of the far end impulse response are introduced by matrixG ; it is 

defined in Section 4.1, which contains 

i

i
g and performs convolution between ( )s n  

and
i

g . Eq.(4.2.3) can be further simplified by defining i �
111

( ) ( )Tf n hG= n , 

i �
222

( ) ( )Tf n hG= n and using Gaussian assumption [see also Appendix C]. It becomes: 
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(4.2.4) 

Define , 1  T
ij i j i j or 2K GG= = , Rewrite Eq.(4.2.4) as follows: 
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Eq.(4.2.5) showed that coefficient error variance of adaptive filter �1( )h n  is  

determined by the interaction of four major terms: its previous coefficient error 

variance ~

1

( )
h

nR , the other channel coefficient error variance ~

2

( )
h

nR , 

cross-correlation of two channel coefficient error ~ ~

1 2

( )
h h

nR  and the far end impulse 

response effect ijK .  

For simplicity, we make another assumption that �1( )h n  and � 2 ( )h n  are 

uncorrelated, i.e., ~ ~

1 2

( ) 0
h h

nR = . Eq.(4.2.5) can be further simplified as follows: 
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Applying the trace operation on both sides and 
2

11 1 2
( )i

Ltr g
B

AK = , B  is the partial 

update block number as mentioned in Section 4.2.1. It is given by 
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(4.2.7) 

Assume that the diagonal elements of ~

1
11 ( )

h
K R n , ~

1
11 11( )

h
K R n K  and 

~

2
12 21( )

h
K R n K  are uniform distributed, due to the fact that ’s effect can be replaced 

by a simple ratio 

iA

1
B

 in 2nd , 3rd ,4th and 5th terms of Eq.(4.2.7). To further 

simplify , denote the SVD decomposition of the far end channel matrix  as: ijK iG

 ,  1  2T
i i i iG Q V i or= ∑ =                                     (4.2.8) 
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then 

  1  2T T
ii i i i i iK G G Q D Q i or= = =                                 (4.2.9) 

where  

:     ,  T
i iQ orthogonal similarity matrix Q Q I ×=   i L L

i,1 , 2 ,
, , ...,{ },    

i i i Li iD diag eigen values of Kλ λ λ=   

Eq.(4.2.7) can be further represented as follows: 
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(4.2.11) 

Substituting Eq.(4.2.8) in to  , 1  2 and T
ij i jK G G i j or i j= = ≠ , the 4th term in 

Eq.(4.2.11) can be represented in 
2
( )d nR  as follows: 
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and ~
2

2
2 2( ) ( )d

h
tr n tr nK R D R⎡ ⎤ ⎡= ⎣⎢ ⎥⎣ ⎦

⎤⎦ , the final iterative formula for the variance 

of the first channel coefficient error reads as: 

 43



    1

1 1 1

2 2

2 2
2

1 12 42
1 12 2

22 2

2 2 1 1 1 2 2 24 2 22
1 12 2

( 1)

2 2( ) ( ) ( )

2  ( ) ( )

d

d d d

T T T v
d d

2

2

1 2
s

tr n

B Btr n tr n tr n
L g L g

B Btr n tr n
L g L g L g

R

R D R D R

V V DV V R D R

µ µ µ

B σµ µ µ
σ

⎡ ⎤+⎣ ⎦
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ + ⎣ ⎦⎣ ⎦∑ ∑ +

 

(4.2.13) 

    According to Eq.(4.2.13), in order to find the values of 
11 ( )dtr nD R⎡ ⎤⎣ ⎦  and 

1

2
1 ( )dtr nD R⎡⎣ ⎤⎦ , it needs to know the matrix information of 

1
( )d nR . 

2
( )d nR  is also 

needed for determining the values of 
22 2 1 1 1 2 2 ( )T T T

dtr nV V DV V R⎡ ⎤⎣ ⎦∑ ∑  and 

22 ( )dtr nD R⎡⎣ ⎤⎦ . We can not know the variance behavior of single channel coefficient 

error only by its last iteration variance.  We need to know the iterative matrix 

information, including 
1
( )d nR and

2
( )d nR . Reorganize Eq.(4.2.6), 
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iteratively by: 
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Similarly,  
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( )d nR  is written as: 
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(4.2.15) 

    Finally, Eq.(4.2.14) and Eq.(4.2.15) are working together iteratively to represent 

the two joint channel coefficient error behavior. We have tried to give efforts on 

transforming the coefficient error behaviors in another domain to make a simpler 

analysis in this section. Unfortunately, these two joint error variance equations can not 

be further derived into a simple form. Even that it can not be further simplified, some 
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meaningful information are given in the convergence analysis equation. The 

convergence iterative value is decided by (respect to
1
( 1d nR )+ ): (1) previous 

convergence value
1
( )d nR , (2) local noise variance 2

vσ , (3) previous convergence 

value of another channel 
2
( )d nR  and the most complicated part of (4) multiplication 

between transmission room effect( 12K , 21K )and previous convergence value of 

another channel 
2
( )d nR . The (1) and (2) effects are similar with the result of 

monophonic AEC convergence analysis [16]. But the local noise variance 2
vσ  will be 

isolated easily, if it is too small to compare with the norm of far end impulse response. 

By the other way, (3) and (4) are the main difference between monophonic and 

stereophonic AEC convergence equations. Especially, (4) highlights the effect of 

transmission room impulse responses in a stereophonic AEC convergence analysis. 

 

 

4.3 Nonlinear loudspeaker and stereophonic AEC  

Applying nonlinearities on the far end input signal is one of the effective 

methods to overcome the nonuniqueness problem in stereophonic AEC. In spite of 

many studies discussing various applications of nonlinear operation in stereophonic 

AEC system, the nonlinearities also exist in loudspeakers of teleconferencing system. 

In this section, we try to verify that the introduction of a nonlinear loudspeaker (NLS), 

simulated by memoryless polynomial filter, will provide a better result on echo power 

behavior than the original stereophonic AEC without NLS. In Figure 4.2, we replace 

the linear loudspeakers and adaptive filters with the nonlinear loudspeaker and 

preprocess scheme (see also Section 3.2) separately, i.e., the NLS / NAF mode. The 
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far end signal ( )ix n  will undergo the “nonlinear operation” before they go through 

echo path ( )ih n , this procedure is similar to the nonlinearities introduced in other 

researches. 
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Figure 4.1 Stereophonic AEC with NLS and Preprocessor
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onstrate the echo power behavior in three “channel/adaptive-filter” 

es (simulations see also Section 5.7). Stereophonic AEC with NLS 

 power behavior than that without NLS. The nonlinearities in 

provide “nonlinear operation” effect on far end input signals to 

nverged result. 

e present the comparisons of misalignment (or echo power) in 

r degree (see also Figure 5.7.6). The more significant nonlinearity is 

rgence value is.  



 

 

Chapter 5 

Computer Simulations 

 

 In this Chapter, computer simulations are introduced to verify the algorithm and 

ergence analysis are 

describe some observations discussed in Chapter 3 and Chapter 4. First, we will 

define some parameters and measure equations used in following simulations In 

Section 5.1. Second, when the other coefficients are perfect and fixed, the linear or 

nonlinear coefficient error convergence analysis will be verified separately in Section 

5.2. Third, the coefficient error convergence analysis will be demonstrated again 

without perfect coefficient assumption in Section 5.3. Fourth, we introduce and 

compare the five adaptive strategies for nonlinear AEC in Section 5.4. Last, there are 

some supplemental simulations for nonlinear AEC in Section 5.5.  

 For stereophonic AEC, verifications of coefficient error conv

given in Section 5.6. Combining stereophonic AEC with nonlinear loudspeaker, three 

different “stereophonic channel/adaptive-filter” modes will be introduced and 

compared in Section 5.7. White Gaussian noise is used as input signal without any 

additional statement in following Sections of this Chapter, and speech signals will 
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also be used for verifying some results in Section 5.5.  

5.1 Simulation parameters and room impulse responses 

 The near end room echo path responses h ( 1h  in stereophonic channel) and 2h  

shown in Figure 5.1.1 and Figure 5.1.2 separately, are generated by comput  

simulations. Similarly, far end room impulse responses

er

1
g  and

2
g used in stereophonic 

AEC simulation are illustrated in Figure 5.1.3 and Figure 5.1.4. Figure 5.1.5 shows 

the speech signal with sampling rate 8K Hz, this speech signal will be used to verify 

the nonlinear AEC scheme in Section 5.5. The nonlinear memoryless polynomial 

channel is defined by the vector a  with nonlinear order 3Q = ; the three nonlinear 

coefficients are fixed by: 

   [ ] [ ]1 2 3, , Ta a a a= 1,0.1,0.3 T=                                (5.1.1) 

The first element can be though

resp

d to compare the performance: 

one 

t as the weight will multiply to the linear 

onse, it is normalized to be 1; the second and third nonlinear harmonic weight are 

decided by the harmonic distortion comparisons in [4]. 

In following simulations, two main remarks are use

is residual error power 2 ( )e n ; the other is misalignment (normalized tap 

coefficients error) ( )nε  or its square value 2 ( )nε . The misalignment is defined by 

following equation: 

�
2

2
2

( )
                  ( )  , : 2

h n
n norm

h
ε

−
⋅ −�                            (5.1.2) 

Residual error power is a value used to measure the echo reduction performance 

of A

h

EC. It is equivalent to misalignment in monophonic AEC; in contrast, it does not 

provide information about misalignment in stereophonic AEC. By the way, 
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misalignment represents system tracking ability of AEC for room impulse response 

(RIR).  

And the system signal to noise ratio is defined as:  

1010 log x

v

pSNR
p

�                                      (5.1.3) 

where xp  and vp  are the average power of far end signal ( )x n and local noise

um

( )v n . 

We ass e both numbers of linear filter tap and length of RIR ( h ) equal to 128. If 

there are not any other statements, the following parameters are used in simulation: 

SNR: 20 dB  

NLMS r  Linea Step Size: 0.05hµ =  

NLMS Nonlinear Step Size: 0.01aµ =  

 

 Figure 5.1.1 Near end room impulse response h  ( 1h ) 
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2h   Figure 5.1.2 Near end room impulse response 

 

1
g Figure 5.1.3 Far end room impulse response  
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2
g  

 
Figure 5.1.4 Far end room impulse response 

 

 
Figure 5.1.5 8K Hz sampling speech signal  
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5.2 Individual coefficient error convergence 

5.2.1 Linear coefficient error convergence  

According to the assumption of nonlinear coefficients are perfect, the behavior 

derivation (i.e., Eq.(3.2.9)) of linear coefficient error convergence will be verified by 

the computer simulation in this Section. Coefficients of the linear filter in echo 

canceller are initialized to zero. Nonlinear coefficients are perfect and fixed. 

The comparison of theoretical derivation and simulation is shown in Figure 5.2.1. 

 
Figure 5.2.1 Linear coefficient error convergence simulation and theory 

 

    The converged line drew by theoretical equation Eq.(3.2.9) almost matches the 

simulation result in Figure 5.2.1. It indicates that the analysis of linear coefficient 

error convergence in Section 3.2 is correct and appropriate. 
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5.2.2 Nonlinear Coefficient Error Convergence  

We verify nonlinear coefficient error convergence analysis Eq.(3.3.8) by 

computer simulation in this Section. The nonlinear coefficients are initialized to 

be [ ]1,0,0 T , it is equivalent to only linear adaptation in the beginning. Linear 

coefficients are perfect and fixed. The comparison of theoretical derivation and 

simulation is shown in Figure 5.2.2. 

 Figure 5.2.2 Nonlinear coefficient error convergence of simulation and theory 

 

The theoretical convergence analysis Eq.(3.3.8) is an approximated result, it 

keeps 2~3 dB away from simulated line in the converged phase. 
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5.3 Joint Coefficient Error Convergence  

    Without the assumption: linear or nonlinear coefficients are perfect, we have 

derived the two analysis equations (i.e., Eq.(3.4.12) and Eq.(3.4.21)) for the joint 

coefficient error convergence in the situation of linear and nonlinear coefficients error 

affect each other. Because the interaction of these two approximated convergence 

analysis equations will lead the convergence behavior to a bigger inaccuracy state. We 

compromise between pure theory and simulation: in stead of depending all the 

iteration of two analysis equations, we take the ’th simulated nonlinear (linear) 

coefficient misalignment as the parameter for calculating the ’th linear 

(nonlinear) coefficient misalignment. We call it “Semi-Theory” mode. Here are the 

verifications for linear coefficients analysis equation (Eq.3.4.12) for different SNR 

values in Figure 5.3.1(20dB), Figure 5.3.2(10dB) and Figure 5.3.3(5dB). 

n

1n +

 
Figure 5.3.1 Linear coefficient error convergence in semi-theory (SNR=20dB) 
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Figure 5.3.2 Linear coefficient error convergence in semi-theory (SNR=10dB) 

 

 
Figure 5.3.3 Linear coefficient error convergence in semi-theory (SNR=5dB) 
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Unlike the linear coefficient convergence behavior under perfect nonlinear 

coefficients, the “Semi-Theory” line (dot-line) can match the slower converged trend 

of simulation and has the almost same value for final convergence results for different 

SNR values in Figure 5.3.1~5.3.3. By the way, the smaller SNR value, the higher 

coefficient error convergence value we have. The increased coefficient error 

convergence value is almost equal to the SNR decrease value. 

 

 
Figure 5.3.4 Nonlinear coefficient error convergence in semi-theory (SNR=20dB) 

 

    Although it has a big inaccuracy in the beginning in Figure 5.3.4, the more 

iterations the smaller inaccuracy can be obtained in the rest part of nonlinear 

coefficient error convergence. Similarly, both “Semi-Theory” and simulation have the 

similar convergence value in the back part of convergence. Nonlinear coefficient error 

convergence for different are shown in Figure 5.3.5~5.3.6.  
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Figure 5.3.5 Nonlinear coefficient error convergence in semi-theory (SNR=10dB) 

 

 
Figure 5.3.6 Nonlinear coefficient error convergence in semi-theory (SNR=5dB) 
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5.4 Adaptation strategies for nonlinear AEC 

5.4.1 Five adaptation strategies 

 Five major adaptation strategies (operation descriptions see also Section 3.5) will 

be compared in this section. These strategies are obtained and modified by 

observations of simulation results. The first starting strategy is the original adaptation 

method: joint update, nonlinear and linear coefficients are updated iteratively in 

cascade order by the preprocess scheme. First of all, we demonstrate the residual error 

power behaviors of five different adaptation strategies. Then, the description will be 

emphasized on how we find the two faster strategies: “Select and Go, Joint” and “Go, 

Go, Joint”. 

 
Figure 5.4.1 Residual error power of five adaptation strategies 
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We will recommend the “Go, Go, Select” adaptation is the appropriate strategy under 

the considerations of convergence rate (fastest) and converged value (smallest). In 

Figure 5.4.1, “Block Interleave” also has a small converged value but it takes a long 

time (140,000 samples, i.e., 17.5 seconds for 8K samples) to converge to the steady 

state. Comparison results are briefly organized in Table 5.1.  

 

Adaptation  
Strategy 

Converged rate 
(Transient Phase) 

Converged value 
(Steady State Phase) 

Joint Slow -27 dB 

Block Interleave Slowest -30 dB 

Select and Go Middle -24 dB 

Select and Go, Joint Fast -29 dB 

Go, Go, Joint Fastest -31 dB 

 
 

 

 

5.4.2 Behaviors of

    The adaptive pr

Joint” strategies is to 

method is modified f

will have a respective

 

Table 5.1 Adaptation strategies comparisons
 nonlinear coefficient misalignment  

ocedure “Select” both in “Select and Go” and “Select and Go, 

select the L’th nonlinear coefficients and keep it for a while; this 

rom the phenomena that the nonlinear coefficient misalignment 

 smallest value in the first  iterations. L
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Figure 5.4.2 Nonlinear coefficient misalignment in a zoom-in scope 

 

    “Select and Go” strategy keeps the selected nonlinear coefficients and only 

updates linear coefficients in the following adaptation. It is different from “Select and 

Go, Joint” stragy, “Select and Go, Joint” strategy restores “Joint” adaptation when 

iteration numbers is greater than the desired threshold iterations: 5000. Because of 

nonlinear coefficients can be further achieved to a smaller misalignment, the “Select 

and Go, Joint” strategy can have a better residual error power behavior than “Select 

and Go” strategy, like the simulations in Figure 5.4.1. 

 

5.4.3 “Go, Go, Joint” adaptation strategy 

    The main idea of “Go, Go, Joint” strategy is giving more weight on linear 

coefficient in transient phase for achieving better residual error power behavior. Only 

the linear coefficients are adapted first, turn into nonlinear coefficient adaptation  
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when the adaptation numbers threshold (1250) is satisfied; finally, applying “Joint” 

adaptation if nonlinear coefficient adaptation number is greater than 50. The residual 

error power behavior of “Go, Go, Joint” adaptation strategy is shown in Figure 5.4.1. 

But it does not give a clear view to tell the different adaptive phases. Three different 

adaptive phases can be recognized more clearly in Figure 5.4.3. 

II

I III

 
Figure 5.4.3 Three phases of “Go, Go, Joint” strategy in nonlinear 

coefficient view  

 

    In phase I, only the linear coefficients are updated, the nonlinear coefficients 

keep fixed. The nonlinear coefficients begin to update and the linear part are kept 

fixed in phase II; this phase has the fewest iterations among the three phases because 

the linear coefficient misalignment had been adjusted to some correct degree. It is 

more efficient for making the nonlinear coefficients approach to the right direction 

than that without any linear coefficient adaptation first. In phase III, the “Joint” 

adaptation are applied; linear and nonlinear coefficients are adapted together in a 
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more correct sense than applying “Joint” strategy directly in beginning iteration. 

According to the simulations, the linear threshold plays an important role in this 

strategy in first phase. Can we have first phase iteration threshold as long as we want 

and get a better convergence result? The answer is “No”, simulations are shown in 

Figure 5.4.4 and 5.4.5. 

 

 
 

 

Figure 5.4.4 Misalignment of nonlinear coefficients in different linear
iteration threshold 
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Figure 5.4.5 Misalignment of linear coefficients in different linear 

iteration threshold  

 

    When the linear iteration threshold is longer, we can not obtain a better 

misalignment behavior both in nonlinear and linear coefficients. In stead of showing 

the residual error power in different linear threshold; here, we take the coefficient 

misalignment for demonstration because it has the equivalent but more direct effect 

than residual error power representation. 

    In Figure 5.4.1, the “Select and Go, Joint” and “Go, Go, Joint” strategies have 

the similar behavior both in transient and steady state phases. Can we have a better 

convergence behavior than that in the “Go, Go, Joint” by tuning the only parameter: 

linear coefficient only adaptation numbers (5000), in the “Select and Go, Joint”?  
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Figure 5.4.6 Echo power comparisons of two adaptation strategies 

 

    In Figure 5.4.6, it shows that no matter what linear coefficient only adaptation 

numbers are used in the “Select and Go, Joint” strategy, the “Go, Go, Joint” strategy 

still has the better convergence behavior than “Select and Go, Joint”. 

 

 

5.5 Extended simulations for nonlinear AEC 

5.5.1 Insufficient order of nonlinear coefficient  

    Tow sets of simulation comparison are provided in this sub-section: one is the 

residual error power comparison between the linear adaptive filter and the sufficient 

order (nonlinear orderQ ) nonlinear adaptive filter; the other is the comparison of 3=
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residual error power performance in sufficient and insufficient order nonlinear 

adaptive filter. In Figure 5.5.1, the order of nonlinear channel 3Q = ; we use linear 

adaptive filter and sufficient order nonlinear adaptive filter to cancel the echo signal 

separately.  

 
Figure 5.5.1 Linear and nonlinear adaptation convergence for  

nonlinear channel 
3Q =

 

 

Figure 5.5.1 tells us that there existing a big difference if only applying linear 

adaptive filter on nonlinear channel instead of applying nonlinear adaptive filter. The 

convergence behavior of sufficient order nonlinear adaptive filter has not only the 

faster converged rate in the beginning but also a significant difference in final residual 
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error power converged value. 

    In Figure 5.5.2, the order of nonlinear channel is changed to ; besides the 

linear adaptive filter and sufficient order nonlinear adaptive filter, we add another 

nonlinear adaptive filter order Q

5

3

Q =

=  to simulate the insufficient order nonlinear 

adaptive filter and compare the performance. 

 

 

 

The residual error power behavior of linear adaptive filter maintains at the same 

level with that one in Figure 5.5.1. Even the nonlinear order is insufficient; the 

nonlinear adaptive filter also has better performance than linear adaptive filter 3Q =

5Q =Figure 5.5.2 Linear and nonlinear adaptation convergence for  
nonlinear channel 
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in this simulation. It is reasonable; the sufficient order nonlinear adaptive filter has the 

best performance. 

 

5.5.2 Speech verification 

( )x nWe replace the original WGN far end input signal  with the speech signal 

introduced in Section 5.1 and verify the echo cancellation performance in the 

nonlinear adaptive filter. The speech signal parameters are: 

Sample Rate: 8K Hz, 16 bits / sample 

Total Length: 39846 samples (4.98 seconds) 

For convenient, the ERLE measurement is used in this performance verification. 

The definition of ERLE is as : 

2

2

( )
10log

( )

E d n
ERLE

E e n

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

�

Q =

                                (5.5.1) 

According to the definition, it is obvious that the larger ERLE value the better 

performance of echo cancellation we have. Nonlinear adaptive filter order is sufficient 

( 3 ) and the simulation results are demonstrated in Figure 5.5.3, Figure 5.5.4 and 

Figure 5.5.5. 
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Figure 5.5.3 ERLE of speech input nonlinear adaptive filter   

 
Figure 5.5.4 Linear coefficient misalignment of speech input  

nonlinear AEC  
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Figure 5.5.5 Nonlinear coefficient misalignment of speech input  

nonlinear AEC  

The two coefficient misalignment figures show that the nonlinear adaptive filter 

worked properly for this speech input signal. We have a not good begging and few 

instable behaviors in the ERLE figure but it returns to a better performance in final 

signal part. 

5.6 Convergence analysis of partial update stereophonic AEC 

    Partial update stereophonic AEC coefficient error convergence analyzed 

equations Eq.(4.2.14) and Eq.(4.2.15) will be verified by simulation in this section. 

Without loss of generality, we let i LA I= , the full coefficient updating is one case of 

partial coefficient updating. The simulation configurations are like follows: 

SNR:  20 dB
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NLMS Step Size: 0.01µ =  

1
g

2
g 128M = and  see also Section 5.1) Numbers:  Far End Impulse Responses (

1h 2h 128N = and  see also Section 5.1) Numbers:  Near End Impulse Responses (

�
1 64Lh ) Tap Numbers: =  Adaptive Filter (

    In stereophonic AEC, coefficients misalignment could represent the echo 

cancellation performance more confidently than residual error power. The simulated 

result is demonstrated in square of misalignment ( ) and is shown in Figure 5.6.1. 

Without loss of generality, this simulation comparison is presented by one coefficient 

error convergence (

2 ( )nε

�
1( )h n �

2 ( )nh ) is similar. ), the other (

 
Figure 5.6.1 Coefficient error convergence of stereophonic AEC in different SNR 

 

In Figure 5.6.1, the simulated lines are almost the same in SNR=10 dB and 20 

dB. When SNR =10 dB, we have a small inaccuracy (1~1.5 dB) between the 
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simulation and theory convergence behaviors. When SNR=20 dB, there is 9-dB 

difference between the simulation and theory final converged value. It is not a small 

inaccuracy that can be isolated. Although big inaccuracy exists in final coefficient 

error converged value for high SNR, but both convergence behavior trend are similar. 

It indicates that the major direction of derivation is not wrong, but some assumptions 

and simplifications need to be reconsidered for larger SNR condition. We have a 

better prediction for low SNR condition. 

 

 

5.7 Nonlinear loudspeaker and stereophonic AEC 

 In this section, we will demonstrate the effect of stereophonic AEC with 

nonlinear loudspeaker in two methods: one is presented in comparisons of three 

different “channel/adaptive-filter” combinations; the other shows how much the 

nonlinearities affect stereophonic AEC in different degrees. 

First, three residual error power behaviors of “channel/adaptive-filter” modes  

are showed in Figure 5.7.1; “channel” means the simulated channel with or without 

nonlinear loudspeaker (NLS and LLS); and “adaptive filter” includes the linear or 

nonlinear adaptive filter (i.e., NAF , see also joint update in section 3.5). Here, we try 

to integrate stereophonic AEC with the preprocessor scheme mentioned in Chapter 3. 

Three “channel/adaptive-filter” modes are NLS/NAF, NLS/Linear Adaptive Filter 

(LAF) and without NLS/LAF. 
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 Figure 5.7.1 Residual error power of three stereophonic AEC modes 

     

Modes Convergence Value 

NLS / NAF -33 dB 

NLS / LAF -33 dB 

Without NLS / LAF

(Original SAEC) 
-22 dB 

 
Table 5.2 Convergence value of three Modes 

 

The converged value comparison results are shown in Table 5.2.The simulation 

results indicate that stereophonic AEC with nonlinear loudspeaker (1. and 2.) have 

better residual error power behavior than that without NLS. Although the reprocess 

integrated mode has the faster convergence rate than the NLS/LAF mode in first 
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10000 iterations, it does not give any obvious difference in final convergence value. 

Misalignments of two linear coefficients are shown in Figure 5.7.2 and Figure 5.7.3.  

 

1hFigure 5.7.2 Misalignment of echo path   
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2h

 
Figure 5.7.3 Misalignment of echo path  

    It also shows that it has better convergence behavior by applying NLS than LLS 

in Figure 5.7.2 and 5.7.3.  

In order to verify the nonlinear adaptive filter scheme also works well in 

stereophonic AEC, nonlinear coefficient misalignments (with two different nonlinear 

coefficient sets, i.e., NLS: 1 2(1,0.1,0.33) and (1,0.12,0.3)a= =a ) are also given in 

Figure 5.7.4 and Figure 5.7.5 individually.  
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Figure 5.7.4 Misalignment of nonlinear coefficients 1a  in 

NLS / NAF mode  

 

 Figure 5.7.5 Misalignment of nonlinear coefficients 2a  
in NLS / NAF mode 
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    For simplicity, the degree of nonlinearity is controlled by the Sigmoid function 

parameters (α , β ) (the larger (α , β ) pair the higher degree of nonlinearity is ) in this 

simulation. Sigmoid function (like Figure 5.7.6, for 1,  2 and 5α = , 1β = ) defined as 

follow: The larger α  the more linearity is. 

2                  ( ) ( 1)  
1 exp( )

f x
x

β
α

= −
− −

                               (5.7.1) 

 

 
Figure 5.7.6 Sigmoid function ( 1,  2 and 5α = 1β =, ) 

 

Finally, the misalignment convergence of different nonlinear degree is shown as 

Figure 5.7.7. 
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 Figure 5.7.7 Misalignment of echo path in different nonlinear degree 

 

Figure 5.7.7 tells us that the higher nonlinear degree the better misalignment 

convergence behavior we can have. But, there is one thing need to note for applying 

nonlinearities: nonlinear operation will generate annoying audible distortion to 

listener in near end room if the level of nonlinearities is too significant. The trade off 

between far end input signal coherence and audio quality is necessary when applying 

nonlinearities in stereophonic AEC. 
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Chapter 6  

Conclusions 
  

 We have developed the linear and nonlinear coefficient error convergence 

analyses based on condition of perfect estimated coefficients for nonlinear AEC. The 

developed convergence analyses are well suited for nonlinear application where the 

scheme is a cascade mode in a memoryless polynomial filter and FIR filter order. We 

also have analyzed the joint coefficient error convergence analysis of nonlinear AEC 

in a semi-theory method. Although the results keep a small difference away from the 

simulated results in transient phase, they meet well in final convergence value of 

steady state fortunately. We have shown several adaptation strategies in nonlinear 

AEC. According to the result of comparisons between adaptation strategies, we make 

a recommendation for nonlinear AEC adaptation: linear coefficients have converged 

to some degree, before the nonlinear coefficients adaptation is enabled. 

    In stereophonic AEC partial update scheme, convergence analysis clarifies the 

behavior for correct echo path identification, which is decided not only by the 

interaction of two estimated linear filters but also by the transmission room impulse 

responses effect. The convergence analysis of stereophonic AEC partial update gives a 

 78



well predict to simulated result in low SNR condition. We also have demonstrated the 

nonlinear loudspeaker effect in a stereophonic AEC and applied the nonlinear 

adaptive scheme in stereophonic AEC. It shows that the coherence can be reduced by 

the nature nonlinearity of loudspeaker and nonlinear adaptive scheme works well in 

nonlinear-stereophonic AEC situation. 

The future work can be followings: (i) verify the cascaded polynomial nonlinear 

AEC scheme in a realistic nonlinear channel, i.e., real loudspeaker, (ii) modify the 

joint coefficient error convergence analysis of nonlinear AEC by a pure theory 

configuration, (iii) propose more accurate convergence analysis in stereophonic AEC 

partial update scheme when the SNR is higher, (iv) modify both schemes (nonlinear 

and partial adaptation stereophonic AEC) for real speech signals. 
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Appendix A 

Approximation of ( )
s

R n�  
 

 In this appendix, we will give the mathematical derivation for finding a simple 

form of ( )sR n ( )
s

R n�. Let’s start from the definition of . 

( ) ( ) ( )
T

s
R n E s n s n⎡ ⎤= ⎢ ⎥⎣ ⎦�

� �                                       (A.1) 

�

0

1

1

( )

( )( ) ( ) ( )

( )L

s n

s ns n n a n

s n

X

−

⎡ ⎤
⎢ ⎥
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

�

��
#

�

                                 (A.2) where   

( )s n�

( )nX

is the nonlinear power input vector, produced by production between power 

input matrix  and estimated nonlinear coefficients �( )a n . Owing to Eq.(A.1) 

and (A.2), correlation matrix of ( )s n�  (i.e. ( )
s

R n�

� � �( )22 2
1 2( ) ( ) ( ) ( )O

i OE s n E a x n i a x n i a x n i⎡ ⎤⎡ ⎤ = − + − + + −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
� "

) is consists of same elements 

product part (diagonal elements) and different elements product part (other elements). 

For generality, the same elements product part can be represented as follows. 

         (A.3) 

For simplicity consideration, let the nonlinear order O =3 which is the same as 

the nonlinear reference channel order. Eq.(A.3) can be rewritten as follows. 
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� � �( )
� � �
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1 2 3

2 2 22 4 6
1 2 3
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1 3
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1 2 3

               2

                  ( ) ( ) ( )

a X a a a X a X

E a n X E a n X E a n X

= + + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

(A.4) 

� � ( ) ( )    ( )k kwhere a n a a n and X E x n⎡ ⎤= + ⎣ ⎦�

( )

 

x nEq.(A.4) can be easily gotten through the assumption  is zero mean and WGN 

signal. It also means that the diagonal terms of ( )
s

R n�

� � �

 are the same value given by 

Eq.(A.4). Similarly, the different elements product part will have the same value and it 

can be written as follows. 

( )
� � �( )

2
1 2

2
1 2

( ) ( )

) ( ) ( )   

O
O

O
O

a x n i a x n i

n j a x n j a x n j i j

+ − + + −

⎤− + − + + − ≠⎦

"

"

( ) ( ) ( )

                                (

i jE s n s n E a x n i

a x

⎡⎡ ⎤ = −⎣ ⎦ ⎣

×
 
(A.5) 

Rearranging the Eq.(A.5) bye the assumption of the nonlinear order O =3. 

� � �( )
� �( )
�

�

( ) �

2 3
1 2 3

2 3
1 2

2
2

2 22 2
22

( ) ( ) ( ) ( ) ( )

                 ( ) ( ) ( )

          ) ( )

                      (

i jE s n s n E a x n i a x n i a x n i

a x n j a x n j a x n j

E a n i E x n j

a X E a n

⎡⎡ ⎤ = − + − + −⎣ ⎦ ⎣
⎤× − + − + − ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

= +

3

2 2

            

            (E x
 

( )2
2) X⎡ ⎤

⎢ ⎥⎣ ⎦

( )

(A.6) 

x nEq.(A.6) is also the result of zero mean and WGN  assumption. Comparing 

diagonal terms in ( )
s

R n�  ( Eq.(A.4) ) with non-diagonal terms in ( )
s

R n�

2 1a a

 ( Eq.(A.6) ), 

non-diagonal terms could be ignored under the conditions of  and <<

( ) ( )2
4 2X X≥ ( )s n� ( )

s
R n�. Ignoring the correlation matrix of ,  can be written as 
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follows. 

2
0

2
1

2
2

( ) 0 0 0

0 ( ) 0 0
( ) 0 0 ( ) 0

2
1

2

2

( )

         ( )      0 1

         

s

L

i L

Ls

s n

s n
R n E s n

s n

E s n i LI

Iσ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

≈ ⎢ ⎥
⎢ ⎥
⎢ ⎥

0 0 0
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤= ⋅ ≤ ≤ −⎢ ⎥⎣ ⎦

= ⋅

�

�

� "
� "

� "
% #

�

�

# # #

"

 

(A.7) 

( )
s

R n�Eq.(A.7) is the simplified result of  correlation matrix . In section 3.2, the 

nonlinear coefficients is assumed to be perfect (i.e. � �( )   ( ) 0a n a and a n= = ). We can 

get the special case of Eq.(A.7) in section 3.2 as follows. 

2 2( ) ( )s i L s LR n E s n I Iσ⎡ ⎤= ⋅ = ⋅⎣ ⎦                                (A.8) 

( )2 2 2 2 2 4 2 6
1 2 1 3 3( ) 2i sE s n a X a a a X a Xσ⎡ ⎤ = = + + +⎣ ⎦                  (A.9) where 
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Appendix B 

Approximated Values of 2

2
( )nE u⎡ ⎤

⎣ ⎦ and 4

2
( )E u n⎡ ⎤

⎣ ⎦  

 

 Let’s start from the definition of ( )u n . 

1

2

( )
( )

( ) ( )

( )

T

O

u n
u n

u n n h

u n

X

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
                                  (B.1) 

and the 2-norm of ( )u n  can be written as  

22 2 2 2
1 22 2

( ) ( ) ( ) ( ) ( )T
OE u n E n h E u n u n u nX⎡ ⎤⎡ ⎤ ⎡ ⎤= = + + +⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦

"

( )

               (B.2) 

and  

22
1 0 1 1

2 2
2

( ) ( ) ( 1) ( 1)

               ( )

LE u n E h x n h x n h x n L

h E x n

−
⎡ ⎤⎡ ⎤ = + − + + − +⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⎣ ⎦

"

( )

             
(B.3) 

    In Eq.(B.3) the cross product terms have been eliminated through the x n

( )

’s 

assumptions of zero mean and WGN. Similarly, we can derivate the other terms like 

follows (O is set to be 3 which is equal to the reference channel nonlinear order.): 

22 2 2 2
2 0 1 1

1 1
2 4 2 2
2

0

( ) ( ) ( 1) ( 1)

               ( ) ( )

L

L L

i j
i j i

E u n E h x n h x n h x n L

h E x n h h E x n

−

− −

= ≠

⎡ ⎤⎡ ⎤ = + − + + − +⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦∑∑

"
 

(B.4) 
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and 

( )22 3 3 3
3 0 1 1

2 6
2

( ) ( ) ( 1) ( 1)

               ( )

LE u n E h x n h x n h x n L

h E x n

−
⎡ ⎤⎡ ⎤ = + − + + − +⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤= ⎣ ⎦

"
 

(B.5) 

Substituting Eq.(B.3), Eq.(B.4) and Eq.(B.5) into Eq.(B.2) with the knowledge of 

O=3, we have: 

( ) ( )
1 1 22 22 4 6 2

2 2
0

           ( )

  ( )

L L

i j
i j i

k k

E u n X X X h h h X

where X E x n

− −

= ≠

⎡ ⎤ = + + +⎣ ⎦

⎡ ⎤⎣ ⎦

∑∑

�

1 1

0

L L

i j
i j i

h h
− −

= ≠

(B.6) 
 

∑∑    The summation of different linear coefficients cross product, , would 

be close to zero since the echo response has the exponential decayed characteristic. 

We can approximate the expected value of 2-norm linear power input vector like this: 

( )2 22 4 6( )
2 2

E u n X X X h⎡ ⎤ ≈ + +⎣ ⎦

( )

 (B.7) 

x n    Now, take advantage of ’s zero mean and WGN properties and the results 

mentioned above, we can find the approximate value of 4( )E u n
2

⎡ ⎤
⎣ ⎦ . Be definition: 

( )
( )

4

2

22 2 2
1 2 3

4 4 4 2 2 2 2 2 2
1 2 3 1 2 1 3 2 3

( )

( ) ( ) ( )

( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( )

E u n

E u n u n u n

E u n u n u n u n u n u n u n u n u n

⎡ ⎤
⎣ ⎦
⎡ ⎤= + +⎢ ⎥⎣ ⎦
⎡ ⎤= + + + + +⎣ ⎦

1 1 1
4 4 2 2 4

L L L

 

(B.8) 

    According to Eq.(B.8), we only need to calculate the six value individually. 

1
0 0

( ) 3 3i i j x
i i j i

E u n h h h σ
− − −⎛ ⎞

11 1 1 1 1 1
4 4 3 2 2 8
2

0 0 0 00

( ) 105 60 27 36( )( )
LL L L L L L

i i j i j i j x
i i j i i j i ji

E u n h h h h h h h

= = ≠

⎡ ⎤ = +⎜ ⎟⎣ ⎦
⎝ ⎠
∑ ∑∑                            (B.9) 

σ
−− − − − − −

= = ≠ = ≠ ==

⎡ ⎤
⎡ ⎤ = + + +⎢ ⎥⎣ ⎦

⎣ ⎦
∑ ∑∑ ∑∑ ∑∏  (B.10) 
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1 1 1
4 4 2 2 12
3 ( ) 10395 675

L L L

i i j xE u n h h h
0 0i i j i

σ
− − −⎛ ⎞

⎡ ⎤ = +⎜ ⎟⎣ ⎦ ∑ ∑∑

-11 1 1 1 1 1
2 2 4 2 2 3 6
1 2

0 0 0 0 0

( ) ( ) 15 3 6 2
LL L L L L L

i i j i j j i x
i i j i i j i j i

E u n u n h h h h h h h

= = ≠⎝ ⎠
                    (B.11) 

σ
− − − − − −

= = ≠ = ≠ = =

⎡ ⎤⎛ ⎞⎛ ⎞⎡ ⎤ = + + +⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑∑ ∑∑ ∑ ∏

1 1 1
2 2 4 2 2 8
1 3

0 0

( ) ( ) 105 33
L L L

i i j x
i i j i

E u n u n h h h

(B.12) 

σ
− − −

= = ≠

⎛ ⎞
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⎝ ⎠
∑ ∑∑

-11 1 1 1 1 1
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LL L L L L L

j i x
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                  (B.13) 

2 2 4 3 2 2
2 3

0 0 0
( ) ( ) 945 210 45 30i i j i j

i i j i i j i
E u n u n h h h h h σ

− − − − − −

= =

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∏    

= = ≠ = ≠

⎡ ⎤ = + + +⎣ ⎦ ∑ ∑∑ ∑∑ (B.14) 

Substituting Eq.(B.9)~ Eq.(B.14) into Eq.(B8) and rearranging it, we have: 

( )12 4

0

1 1
2 2

x i
i

L L

hσ
=
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⎛ ⎞
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6 8                     36 2 30x xσ σ σ+ + + (B.15) 

4

2
( )E u n⎡ ⎤

⎣ ⎦    Similarly, the third and fourth term close to zero, and through this  

can be approximated by follows: 

( )

( )

1
4 4 6 8 10 12 4
2

0

1 1
4 6 8 10 12 2 2

( ) 3 105 210 945 10395

                     3 3 612 45 675

L
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Appendix C 

Gaussian Assumption 

In this appendix, we are trying to give a detail description on Gaussian assumption.  

                

A

 =  [ ( ) ( ) ( ) ( )]                                                                    (C.1)T TE x n x n x n x nB A

where  represents the symmetric matrix ( ) ( )Tv n v n

1 2 3 4, , ,z z z z

1 2 3 4 1 2 3 4 1 3 2 4 1 4 2 3                 [ ] [ ] [ ] [ ] [ ] [ ] [ ]                  (C.2)E z z z z E z z E z z E z z E z z E z z E z z= + +

. 

The Gaussian assumption: If  are real zero-mean, Gaussian random 

variables then 

( )x nUsing subscripts to denote the components of the vectors  and ( )v n , where the 

dependency upon  is momentarily suppressed, we compute the  term in 

Eq.(C.1): 

( )n  thkl

4

                                              ( ) ( ) ( ) ( )]

                                          [ ] [

L L

kl
p q

k q p l k l p q

kl x

E x x E x x E x x E x x

E a Eσ

= =

+ +

= +

∑∑

1
4 4

0

] [ ] ( )                     (C.3)
L

lk x pp x
p

a k l E aσ δ σ
−

=

+ − ∑

2 2[ ]x kE xσ = k

1 1 1 1

0 0 0 0
( ) [ ][ ( ) ( )

L L

k p pq q l pq k p q l
p q

b E x x a x x E a E x x E x x
− − − −

= =

= =∑∑

where . Note that x  and  are assumed to be independent, and pqa

( )p qE x x ( )x np q≠ is zero for  since  is WGN. We can obtain the matrix form of 
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Eq.(C.3) : 

4                  [2 ( ) ( ( )) ]                                                             (C.4)x v vn trace nσ= + ⋅B R R I

According to Eq.(C.4) we can get that:  

~ ~

1 1

~ ~
4

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

T
T T

s
f f

E s n s n f n f n s n s n n tr nR R Iσ
⎧ ⎫ ⎧ ⎫⎛ ⎞= + ⋅⎨ ⎬ ⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭⎩ ⎭
          (C.5) 

~ ~

1 1
( ) ( ) 

T

f n f nwhere is symmetric matrix. 

~

1
( )f n ( )s n are independent ,  is WGN signal. ( )s n  and 

~ ~

1 2
( ) ( ) 

T

f n f n is not symmetric matrix:  By the other way, 

         
~ ~
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4 ( )s
f f

nR R~ ~ ~ ~

2 1 1 2

~ ~

1 2
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

T
T T

f f f f
E s n s n f n f n s n s n tr nn R Iσ
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 (C.6) 
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