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摘要 

時空段碼正交分頻多工系統因擁高傳輸效率與分集增益(diversity gain)等

優勢而於近年來廣受推崇。在本篇論文中，我們針對四根傳輸天線的時空段碼，

討論其傳輸矩陣結構是否正交與其傳輸率，並在此提出一種非正交的複數時空段

碼 Block Diagonal (BD)。在其通道估計方面，我們應用 Giannakis 所提出的時空

正交分頻多工調變之半盲式通道估計，為改善其估計值，phase direct (PD)將被

使用以使此通道估計演算法更趨於理想。PD 是在我們得到通道功率(振幅)響應

之後解得其相角響應，在時空段碼正交分頻多工中，其通道功率響應必須透過矩

陣與向量的運算取得。此外，在非正交複數信號時空段碼中，當傳輸矩陣不可逆

時，會無法求得通道功率響應，為解決此問題，我們對時空段碼傳輸矩陣的對角

線元素統一乘上一正實常數 k，為公平起見，所有可使用此半盲式通道估計之時

空段碼的傳輸矩陣都會經此處理。最後，電腦模擬將會驗證 PD 確實對通道估計

有所改善，展示並討論 k 值對於通道估計均方誤差、雜訊與位元錯誤率等的影響。 
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Abstract 
Space-time block coded orthogonal frequency division multiplexing (STBC OFDM) 

has become popular recently for its high data rate transmission and diversity gain. In 

this thesis, we focus on STBCs with four transmit antennas and discuss about whether 

their transmission matrices are orthogonal and their transmission rate. A novel kind of 

complex non-orthogonal STBC called Block Diagonal (BD) will be proposed. The 

semi-blind channel estimation proposed by Giannakis is adopted for the STBC 

OFDM. To improve the performance of estimator, we use phase direct (PD), which is 

to solve phase ambiguities after the channel power response is obtained. We get 

channel power response through matrix and vector computation in STBC OFDM. In 

complex non-orthogonal STBCs, however, channel power response cannot be 

obtained when transmission matrix is singular. To solve this problem, we multiply a 

positive real constant  to the diagonal elements of their transmission matrices, not 

only in non-orthogonal models but also in all STBCs that can be implemented in the 

semi-blind channel estimation. Finally, in computer simulations, we can see that PD 

really improves the estimator. The effect of  on channel estimate mean square error, 

noise and bit error rate performance will also be exhibited and discussed. 

k
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Chapter 1 

Introduction 

 
Orthogonal frequency division multiplexing (OFDM) [1,2] has become a popular 

technique for transmission of signals over wireless channels. It divides the whole 

channel into many narrow parallel subchannels to increase the symbol period and 

reducing or eliminating the inter-symbol interference (ISI) caused by the multipath 

channel environment. The inter-channel interference (ICI), however, can be 

eliminated by the independent and orthogonal among subcarriers, which is not easy to 

obtain in practice. On the other hand, there is higher error probability for those 

subchannels in deep fades since the dispersive property of wireless channels causes 

frequency selective fading. Therefore, techniques such as error correction code and 

diversity [2] have to be used to compensate for the frequency selectivity. In this thesis, 

we investigate transmitter diversity using space-time block codes for OFDM systems. 

Space-time block codes (STBC) [3-9] realize the diversity gains by applying 

temporal and spatial correlation to the signals transmitted from different antennas 

without increasing the total transmitted power and transmission bandwidth. They have 

therefore been attractive means in high data rate transmissions. In fact, there is a 

diversity gain that results from multiple paths between base station and user terminal, 

and a coding gain that results from how symbols are correlated across transmit 

antennas. 

Transmitter diversity is an effective technique for combating fading in mobile 
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wireless communications, especially when receiver diversity is expensive or 

impractical. Such systems always have more than one transmit-antenna and one 

receive-antenna and are so-called multi-input single-output (MISO). With single 

receive end, a well known two-transmit-antenna Alamouti STBC is proposed in [4]. In 

this thesis, however, we want to look into four-transmit-antenna STBCs. Such model 

includes real orthogonal [5], complex orthogonal [6,7], and complex non-orthogonal 

[8,9]. In STBCs with more than two transmit antennas, real orthogonal models 

guarantee full transmission rate (=1). But the complex orthogonal models cannot 

achieve full rate [7]. The complex non-orthogonal ones, however, sacrifice the 

orthogonality to achieve this goal [8,9]. 

For most STBC transceivers, multichannel estimation algorithms are important 

issues. Training symbols are transmitted periodically in [10] for the receiver to 

acquire the multi-input multi-output (MIMO) channels. However, training sequences 

consume bandwidth and, thereby, incur spectral efficiency and capacity loss. For this 

reason, blind channel estimation methods receive growing attention. 

A few works have been proposed until now on blind MIMO and MISO channel 

estimation that exploits the unique features of STBCs. Blind channel estimation and 

equalization for MISO STBC systems has been proposed in [11] and for MIMO 

STBC systems in [12,13]. Just like [14], [13] also introduced the semi-blind channel 

estimation combining blind method and pilots. A subspace-based semi-blind method 

is proposed in [15] for estimating the channel relying on redundant modulus 

precoding responses. 

In this thesis, unlike the similar system with two transmit antenna and Alamouti [4] 

STBC proposed in [15], a linearly precoded STBC OFDM system with four transmit 

antennas is introduced. Real orthogonal and complex non-orthogonal STBCs are 

given. The semi-blind channel identification algorithm [15] for frequency-selective 



FIR channels through the subspace method is adopted as the channel estimation for 

this system. Distinct redundant precoders insure that the subspace-based method can 

estimate multiple channels simultaneously up to one scalar ambiguity [15]. The 

theoretical mean square error of this estimator derived in [17] will also be mentioned 

and be compared with the simulation results. 

To further improve the subspace-based channel estimates, the “Phase direct (PD)” 

method based on the finite alphabet property is exploited. The main idea of this 

method is to solve the channel phase ambiguities after we have gained the channel 

power response. PD originally works in conventional OFDM [16], which we can 

acquire the channel power response easily by simple scalar division. But it is quite 

different in STBC OFDM, since the received data consists of more than one different 

transmitted data, which are not easy to be separated. So, the main problem we 

encounter now is how to get the channel power response, which is practically hard to 

obtain. In this thesis, the method of getting the channel power response for 

four-antenna STBC OFDM is presented. The modulation classes we focus on are 

BPSK and QPSK systems. 

However, the singular transmission matrices produced by some possible symbol 

pairs in non-orthogonal STBCs will make getting channel power response unworkable. 

To solve this problem we modify the structure of transmission matrices of 

non-orthogonal STBCs by multiplying a real constant gain  on its diagonal 

elements. Simulation results show that the increase of  will better the subspace 

estimator. But this will also increase noise power, which will make bit error rate 

performance worse. 

k

k

Furthermore, in time-varying channel, a proper window size of received data 

blocks need to be chosen to get the channel power response and apply it to PD. A 

trade off is that a shorter window can catch up the channel variation but makes the 
 3



system affected by noise more. The preorder form, however, is an issue that should 

also be noticed behind the algorithm and will be discussed then. 

This thesis is organized as follows. In Chapter 2, we show how data is transmitted 

and received through space-time block code (STBC) and introduce several kinds of 

STBCs. A novel kind of four-transmit-antenna complex non-orthogonal STBC named 

Block Diagonal (BD) will be proposed. Four-antenna STBC combined with OFDM 

system is presented in Chapter 3. A semi-blind channel estimation algorithm for 

STBC OFDM and its improved method are shown in Chapter 4. Furthermore, Chapter 

4 introduces the k -diagonally weighted transmission matrices for complex 

non-orthogonal STBCs to prevent them from singular and therefore can be adopted in 

PD. Chapter 5 exhibits simulation results and the effect of diagonal weight  on 

channel estimate error, noise, and bit error rate. Finally, our conclusions are 

summarized in Chapter 6. 

k
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Chapter 2 

Classifications of Space-Time Block  

Codes 

 
In this chapter, the basic concept of space-time block code (STBC) transceiving 

process will be given first. We will then introduce several kinds of STBCs. Only the 

first kind of STBC (Alamouti) is used in the 2-transmission-antenna system. Others 

are used in 4-transmission-antenna systems, which can be divided into orthogonal and 

non-orthogonal models. In complex non-orthogonal models, a novel kind of STBC 

called Block Diagonal (BD) will be proposed. The structure of transmission matrix 

and transceiving process of each STBC system will also be explained briefly. 

 

2.1 Basic STBC tranceiving process 
The following steps are all expressed in the frequency domain, as shown in Fig.2.1.  

STBC
Encoder

[ ]1 2, , , ns s s"
STBC

Decoder

S i
i
i

i
i
i

1h

2h

nh

Tx 1

Tx 2

Tx n

Rx

n

∑

+

+
r 'r

( )*•

[ ]1 2, , , T
nh h h=h "

Decision
Device

s�s
�

1−H

         Fig. 2.1 Basic STBC transceiver model in frequency domain 
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Suppose  transmit antennas are used. STBC transmission matrix is presented as 

.  symbol vectors  and their conjugates make up elements of 

. Symbols in the same column of  stand for symbols sent from the same transmit 

antenna, while symbols in its same row stand for symbols sent in the same time slot.  

n

S n 1 2, , , ns s s"

S S

The channel response vector is denoted by h , and the AWGN noise vector by n . 

       [ ]1 2, , , T
nh h h=h "                                       (2.1) 

       [ ]1 2, , , T
nn n n=n "                                       (2.2) 

where  is the channel response and  is the AWGN noise. ih in { }1, 2, ,i n∈ " . 

In the first place, modulated data symbols form the transmission matrices . Then 

they are sent through channels. At the receiver end, received data symbol vector 

S

r  

can be presented as: 

      *= +r S h n                                                (2.3) 

in frequency domain, where  is the matrix-vector multiplication. *

In Eq. (2.3), AWGN are added after the symbols summed from different transmit 

antennas in the same time slot. In the next step, r  is adjusted to 'r  so that only 

original data vectors  exist here in 1 2, , ns s s" 'r  after the adjustment. The 

terms of  and their conjugates are then exchanged with . i ih s 'r  can be written as: 

       ' '                                                (2.4) *= +r H s n

where 

       [ ]1 2, , , T
ns s s=s "                                        (2.5) 

and  is the channel state matrix in which  and their conjugates 

form its elements. Note that during Eq. (2.3) and Eq. (2.4), the characteristic of  is 

H 1 2, , , nh h h"

S
 6



going to be transferred into . H

Finally, we can recover s  from 'r  by 

       ' '1 1 1 1* * * *− − − −= = + = +s H r H H s H n s H n '*
�

                    (2.6) 

s
�

 is the soft decision data vector, which is at last sent into decision device to output 

the hard decision data vector s� . 

 

2.2 Alamouti STBC 
A simple STBC model had been proposed by Alamouti in [4]. The transmission 

matrix of this scheme with two transmission antennas is 

                                                   (2.7) 1 2
* *
2 1

s s
s s

⎡
= ⎢−⎣ ⎦

S
⎤
⎥

1s  and  denote two transmitted symbol vectors that can be any size (including 

one). As we mentioned in section 2.1, the first and the second column of the matrix 

denote the data symbol vectors transmitted by the first and the second antenna. While 

the first and the second rows represent the two time slots it takes in a transmission 

matrix to transmit the data vectors. 

2s

One of its important properties is that the transmission matrix is orthogonal. The 

word “orthogonal” here means that the product matrix of the multiplication of HS  

and  is a diagonal matrix, where S HS  is the Hermitian matrix (i.e. its transpose 

conjugate matrix) of . Generally, each diagonal element of this product matrix 

equals to . In this model: 

S
Num_symbols

2

1
| |i

i
s

=
∑
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        1

1

0
*

0
H a

a
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

S S                                           (2.8) 

which corresponds to the definition of orthogonal, and 

                                                      (2.9) 
2

2
1

1
| |i

i
a s

=

= ∑

We also call  the correlation matrix of . *HS S S

 

2.3 Four-by-four Orthogonal STBC  
In this section, STBCs with four-by-four transmission matrices are introduced. Four 

time slots are needed to transmit once (i.e. in a transmission matrix) and four transmit 

antennas are used in these schemes. 

 

2.3.1 Real Four-by-four Orthogonal (RO) STBC  

As are the same in section 2.1, , , , and  can denote four transmitted 

symbol vectors of any size and form the transmission matrix. The STBC scheme 

proposed in [5] transmits real symbols, such as PAM and BPSK. Its transmission 

matrix is shown below: 

1s 2s 3s 4s

                                        (2.10) 

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

s s s s
s s s s
s s s s
s s s s

⎡ ⎤
⎢ ⎥− −⎢=
⎢−
⎢ ⎥− −⎣ ⎦

S ⎥
⎥−

2
is

S  is also orthogonal. With real symbols, it is true that: 

                                      (2.11) 
Num_symbols Num_symbols

2

1 1
| | ( )i

i i
s

= =

=∑ ∑

Hence, 
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0 ⎥
⎥

Num_symbols

2

2

2

2

0 0 0
0 0

*
0 0 0
0 0 0

H

a
a

a
a

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

S S                                 (2.12) 

where 

                                                     (2.13) 
4

2
2

1
( )i

i
a s

=

=∑

Here, integer  presents the number of transmitted symbol vectors  in a 

transmission matrix. The value of is 4 in this subsection. That means four 

symbol vectors are sent during four time slots in a transmission matrix. So, the 

transmission rate of this STBC is 1 and it is the maximum achievable transmission 

rate in a STBC system. In any arbitrary real signal system, there must exist STBC 

schemes that have maximum transmission rate with any number of transmission 

antennas [7]. 

Num_symbols is

 

2.3.2 Complex Four-by-four Orthogonal (CO) STBC 

In this subsection, the transmission matrix of STBC is also orthogonal. But the 

complex modulation, such as QAM and PSK, is used. For any kind of complex 

constellation, the maximal achievable transmission rate is 
( )

( )2

2
log _

log _ 1

2 N Tx

N Tx
⎡ ⎤⎢ ⎥

+⎡ ⎤⎢ ⎥  in an 

-transmit-antenna employed orthogonal STBC system [8]. Here, _N Tx x⎡ ⎤⎢ ⎥  means 

the minimum integer larger than the real number x . For instance, the maximal 

transmission rate for a 3 or 4-transmit-antenna system is 3/4. The transmission matrix 

for a 2-antenna system (section 2.1), however, can always achieves the full 

transmission rate (=1) whatever with real or complex constellation signals. For 



complex signals, it cannot achieve full rate for a STBC when . But for real 

signals, however, full rate can be gained with any number of  [7]. 

_ 3N Tx ≥

_N Tx

The scheme introduced here, designed by Tarokh et al in [6,7], is a typical complex 

four-by-four orthogonal STBC. A special feature of this scheme is that it only sends 

three symbol vectors in every four time slots. Thus, its transmission rate is obviously 

3/4, which corresponds to the fact mentioned above. Its transmission matrix structure 

is: 

         

3 3
1 2

* * 3 3
2 1

* * * * * *
3 3 1 1 2 2 2 2 1 1

* * * * * *
3 3 2 2 1 1 1 1 2 2

2 2

2 2
( ) ( )

2 22 2
( ) ( )

2 22 2

s ss s

s ss s

s s s s s s s s s s

s s s s s s s s s s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥=

− − + − − − + −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + − + + −

− −⎢ ⎥
⎣ ⎦

S         (2.14) 

and 

3

3

3

3

0 0 0
0 0

*
0 0 0
0 0 0

H

a
a

a
a

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

S S
0 ⎥
⎥

                                 (2.15) 

where 
3

2
3

1
| |i

i
a s

=

= ∑                                             (2.16) 

The decoding method for this type of STBC is a little different from that for other 

types. 

 

2.4 Four-by-four Non-Orthogonal STBC 
If it is not acceptable for a decrease in transmission rate, there must be some 
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sacrifices in other properties of space-time block codes. 

One of these sacrifices is that one may reduce the uncoded diversity gain, and rely 

on coding to exploit the diversity provided by the additional antennas. 

Another approach is that the requirement of orthogonality of the space-time block 

code may be relaxed. Several designs of non-orthogonal space-time block codes will 

be introduced in the following. With full transmission rate, these designs are also 

based on  transmission matrices [8,9]. 4 4×

 

2.4.1 Spaced Diagonal (SD) STBC 

This non-orthogonal (also called quasi-orthogonal) design was proposed by 

Tirkkonen, Boariu and Hottinen in [8].  are four complex constellation 

signals. The STBC transmission matrix is written as: 

1 2 3 4, , ,s s s s

 11

⎥
⎥

4 ⎥
⎥

*

1 2 3 4
* * * *
2 1 4 3

3 4 1 2
* * * *
4 3 2 1

s s s s
s s s s

s s s s
s s s s

⎡ ⎤
⎢ ⎥− −⎢=
⎢
⎢ ⎥− −⎣ ⎦

S                                    (2.17) 

Thus, its correlation matrix is: 

4 4

4

4 4

4 4

0 0
0 0

*
0 0

0 0

H

a b
a b

b a
b a

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

S S                                 (2.18) 

where 
4

2
4

1
| |i

i
a s

=

=∑                                             (2.19) 

and 

* * * * *
4 1 3 3 1 2 4 4 2 1 3 2 42Re[ ]b s s s s s s s s s s s s= + + + = +                   (2.20) 
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4 S 4

⎥
⎥

⎥
⎥

*

  Each of the non-orthogonal parts ( ) is separated by  from the orthogonal parts 

( ) in , so the name “Spaced Diagonal” is given. From the location of , we 

can see that there are two non-orthogonal pairs in this model: the 1

4b 0

a *HS b

st and 3rd columns, 

the 2nd and 4th columns. 

 

2.4.2 Dual Diagonal (DD) STBC 

Another work was proposed in [9] and developed the second kind of 

non-orthogonal STBC. The transmission matrix is formed as: 

                                          (2.21) 

1 2 3 4

4 3 2 1
* * * *
3 4 1 2
* * * *
2 1 4 3

s s s s
s s s s
s s s s
s s s s

⎡ ⎤
⎢ ⎥
⎢=
⎢ − −
⎢ ⎥− −⎣ ⎦

S

Here, each same kind of symbol in  forms a triangle in . The correlation 

matrix of  is: 

1 2 3 4, , ,s s s s S

S

5 5

5 5

5 5

5 5

0 0
0 0

*
0 0

0 0

H

a b
a b
b a

b a

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

S S                                    (2.22) 

where 
4

2
5

1
| |i

i
a s

=

= ∑                                                (2.23) 

and 

* * * * *
5 1 4 4 1 2 3 3 2 1 4 2 32Re[ ]b s s s s s s s s s s s s= + + + = +                      (2.24) 

The name “Dual Diagonal STBC” comes from that the nonzero elements are 

located on the diagonal and reverse diagonal, respectively, in its correlation matrix. 

The two non-orthogonal pairs of DD, however, are absolutely 1st and 4th columns, the 



2nd and 3rd columns. 

 

2.4.3 Block Diagonal (BD) STBC 

Here, we propose a novel kind of four-by-four non-orthogonal STBC named Block 

Diagonal. Its may be generated by the general form in [12]. The transmission matrix 

of this model is: 

 13

⎥
⎥

⎥
⎥

*

                                            (2.25) 

1 2 3 4
* * * *
3 4 1 2

2 1 4 3
* * * *
4 3 2 1

s s s s
s s s s

s s s s
s s s s

⎡ ⎤
⎢ ⎥− −⎢=
⎢
⎢ ⎥− −⎣ ⎦

S

and 

                                          (2.26) 

6 6

6 6

6 6

6 6

0 0
0 0

*
0 0
0 0

H

a b
b a

a b
b a

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

S S

where 
4

2
6

1
| |i

i
a s

=

= ∑                                                (2.27) 

and 

* * * * *
6 1 2 2 1 3 4 4 3 1 2 3 42Re[ ]b s s s s s s s s s s s s= + + + = +                      (2.28) 

Eq. (2.26) shows that the two non-orthogonal pairs of S  are the 1st and 2nd 

columns, the 3rd and 4th columns, which are all different from the non-orthogonal 

pairs of SD and DD. Any two of four columns are in one non-orthogonal pair. 

Therefore, three STBCs in section 2.4 have a total of  different 

non-orthogonal column pairs, which sit on all 12 non-diagonal locations of  

(each occupies two). So these three STBCs contain all possible conditions of 

4
2 6C =

*HS S



non-orthogonal STBCs with two non-orthogonal pairs. 

 

2.5 Summary 
Comparing to the Complex Orthogonal STBC in the same transmission matrix size, 

the Complex 4-by-4 Non-orthogonal STBCs have poor SER/BER performances at 

low SNR (< 15dB) [8,9] and more complicated equalization matrices at the receive 

end, in the trade off of higher transmission rate. The basic properties and comparisons 

of four-antenna STBCs introduced in this chapter are shown in Table. 2.1. 
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          Properties 

  STBC 

   Real  or 

   Complex ? 

   Orthogonal ?    Transmission 

       Rate 

  Real Orthogonal      Real        Yes         1 

Complex Orthogonal    Complex        Yes        3/4 

Complex 

Non-Orthogonal 

   Complex        No         1 

Table 2.1 Basic properties and comparisons between four-antenna STBCs 

 

In chapter 3, we will demonstrate how these four-antenna STBCs are combined 

with the OFDM system. In chapter 4, channel estimation methods for STBC OFDM 

in chapter 3 will be given. Four types of four-antenna STBC models: RO, SD, DD, 

BD, will be used. 

 
 
 



 
Chapter 3 
Space-Time Block Code OFDM  
System Model 
 

We will combine STBCs with OFDM system in this chapter. The system we use in 

this thesis is similar to that in [15,17], which has two transmit antennas, one receive 

antenna, and Alamouti STBC (section 2.2).  

Four transmit antennas are used here in this system, and its model is depicted in Fig. 

3.1. Any kind of schemes in section 2.3 and section 2.4 can be chosen as the STBC in 

this OFDM system. 

The symbols are divided into huge block vectors first with size  before 

transmission. Each block is further separated into four smaller parts with each has  

symbols. 

4 1K ×

K

(1) ( )s n  denotes the first  symbols of K ( )s n , while (2) ( )s n , (3) ( )s n , 

(4) ( )s n  denotes its second, third, and last  symbols. K

 

(1)

(2)

(3)

(4)

( )

( )
( )

( )

( )

s n

s n
s n

s n

s n

⎡ ⎤
⎢ ⎥
⎢

= ⎢
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎥
⎥                                               (3.1) 

With each one of size M K×  ( M K> ), four different tall matrices , ,  

and  (for input block symbols 

1θ 2θ 3θ

4θ
(1) ( )s n , (2) ( )s n , (3) ( )s n , and (4) ( )s n , respectively) 
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represent four distinct linear block precoders where ( )s n  is first sent to. After 

precoders, the input symbol block becomes  

      

(1) (1) (1)
1

(2) (2) (2)

(3)(3) (3)

(4) (4)(4)

( ) ( ) ( )

( )( ) ( )
( ) ( )

( ) ( )( )
( ) ( )( )

s n s n s n

s ns n s n
s n s n

s n s ns n
s n s ns n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

1

2 2

33

4
4

θ θ 0 0 0
θ 0 θ 0 0

Θ
0 0 θ 0θ
0 0 0 θθ

�

�
�

�

�

    (3.2) 

where 

                                              (3.3) 

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

1

2

3

4

θ 0 0 0
0 θ 0 0

Θ
0 0 θ 0
0 0 0 θ

⎥
⎥

is a 4 4M K×  matrix and ( )s n�  is of size 4 1M × . 

STBC
Encoder

1 2

3 4

,
,

θ θ
θ θ

( )s n ( )s n�

1( )s n

2( )s n

3( )s n

4( )s n

IFFTW

IFFTW

IFFTW

IFFTW

1( )u n

2( )u n

3( )u n

4( )u n

P/S

P/S

P/S

P/S

�
4( )u n

�
3( )u n

�
2( )u n

�
1( )u n

CPA

CPA

CPA

CPA

Tx1

Tx2

Tx3

Tx4

∑

Rx
( )w n

1h

2h

3h

4h

S/PCPR
( )y n( )y n�( )y n

FFTW( )*•
STBC

Decoder
( )z n

Γ
( )s n
�

Decision
Device

( )s n�

+
+

Fig. 3.1 Four-transmit-antenna STBC OFDM transceiver model with block precoders 
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3.1 STBC Encoder and Transmitter 

( )s n�  is then sent to the space-time encoder. Any four-antenna STBC can be used 

to in the system. The four precoded sub-blocks of ( )s n� : 
(1)

( )s n� , 
(2)

( )s n� , 
(3)

( )s n� , 

and 
(4)

( )s n�  will form a 4 4M ×  output code matrix of encoder as 

      

(1) (1) (1) (1)

1 2 3 4

(2) (2) (2) (2)

( )1 2 3 4

1 2 3 4 (3) (3) (3) (3)

1 2 3 4

(4) (4) (4) (4)

1 2 3 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ( ))

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i

s n s n s n s n

s n s n s n s n
s n s n s n s n s n

s n s n s n s n

s n s n s n s n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ = =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M S� =

                                                                 (3.4) 

where . 1, 2,3,4i =
(1)

( )is n , 
(2)

( )is n , 
(3)

( )is n  and 
(4)

( )is n are all OFDM symbol. 

 is the transmission matrix of STBC in chapter 2. Eq. (3.4) shows that the blocks in S

( )s n�  in Eq. (3.2) are transmitted through four different independent channels in four 

consecutive time intervals. 

After the OFDM symbols encoded by the space-time encoder, they are modulated 

by M-point IFFT, where the result equals to multiplied by an IFFT matrix . 

Vectors 

IFFTW

( )iu n  are produced ( ), then. 1, 2,3, 4i =

The size of time domain symbol vector ( )iu n  is then be expanded by a length  

cyclic prefix (CP) to eliminate the effect of inter-block-interference (IBI) caused by 

channel, and its size becomes 

L

M L+ , then. The CP of 
( )

( )
l

M is nW  is the replicas of 

its last  elements and will be put in front of it, where L 1,2,3,4l = . The channel 

order ((number of channel taps) 1− ) is assumed to be less than or equal to . The L

 17



insertion of CP is represented by  in Fig. 2.1, and the outputs are CPA � ( )iu n . They 

are finally sent through transmit antenna  sequentially, i 1, 2,3, 4i = . 

 

3.2 Channel 
 

In the following descriptions, the channels between four transmit antennas and the 

receive antenna are assumed to be frequency selective and their discrete time 

baseband equivalent effect is in the form of the FIR linear time-invariant filter, which 

has the impulse response vector 

      [ (0), (1), , ( )] ,     1, 2,3, 4T
i i i ih h h h L i= … =

L

                           (3.5) 

where .  is the channel order of 1 2 3 4max( , , , )L L L L≥ iL ih , 1, 2,3, 4i = . 

The FIR channel  is a ( )iH ( )M L M L+ × +  lower-triangular Toeplitz matrix and 

its th element is , ( , )s t ( )ih s t− { }, 1, 2, ,s t M L∈ +" . 

(0) 0 0 0 0 0 0
(1) (0) 0 0 0 0 0
(2) (1) (0) 0 0 0 0

0 0 0 ( ) (0) 0
0 0 0 0 ( ) (0

i

i i

i i i
i

i i

i i

h
h h
h h h

h L h
h L h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H
# # % # # # #

"
" )

              (3.6) 

 

3.3 Receiver 
 

At the receiver end, an additive white Gaussian noise vector ( )w n  is added to the 

received block, in the first step. Then the CP is removed by discarding the first  L
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I

received symbols. The removing of CP can be described by the 

matrix . And the matrix [0   ]CP M L M×=R i iH  represents the equivalent channel 

matrix without IBI, where 

i i CP i CP=H R H A                                              (3.7) 

In Fig. 3.1, the received IBI-free 4 1M ×  block ( )y n  can be written as: 

(1)

(2)

(3)

(4)

( )

( )
( )

( )

( )

y n

y n
y n

y n

y n

⎡ ⎤
⎢ ⎥
⎢

= ⎢
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎥
⎥                                                (3.8) 

After removing the CP, the OFDM symbols in ( )y n  are demodulated by M-point 

FFT, which is presented as being multiplied by the M M×  FFT matrix  to 

obtain the received block 

FFTW

( )y n , 

      

(1)

(2)

(3)

(4)

( )

( )
( )

( )

( )

y n

y n
y n

y n

y n

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎥                                                  (3.9) 

  We then adjust ( )y n  to �( )y n  by  

      �
*

*

(1)

(2)

(3)

(4)

( )

( )
( )

( )

( )

y n

y n
y n

y n

y n

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥                                             (3.10) 

and sent to space-time decoder. The output ( )z n  is a block with diversity gain. After 

all, the original data symbol ( )s n  is recovered from ( )z n  by applying the equalizer 

. Γ ( )s n
�

 is the soft decision data here, which is perturbed by the noise. It is then put 

into a decision device. Finally, the hard decision data appears. The frequency domain 



version of Fig. 3.1 can then be plotted in Fig. 3.2. 

STBC
Encoder

1 2

3 4

,
,

θ θ
θ θ

( )s n ( )s n�

1( )s n

2( )s n

3( )s n

4( )s n

Tx1

Tx2

Tx3

Tx4

1( )HD

2( )HD

3( )HD

4( )HD

∑

Rx

( )nη

+
+

�( )y nSTBC
Decoder

( )z n
Γ

( )s n
�

Decision
Device

( )s n� ( )y n
( )*•

Fig. 3.2. Frequency domain version of four-antenna STBC OFDM transceiver model 

 

 

The frequency response vector of channel ih  in Eq. (3.6) is  

      i iH = Vh                                                   (3.11) 

with matrix  is the submatrix of the first V 1L +  columns of .  FFTW

The equivalent channel matrix in time domain i iH  can be diagonalized by pre- and 

post-multiplication with  and : FFTW IFFTW

      i (i iFFT IFFT H=W H W D )                                        (3.12) 

where ( iHD )  denoting the diagonal matrix with iH  on its diagonal. 

Combining the fact above, Eq. (3.4) and Eq. (3.9) together, we can rewrite ( )y n  

in Eq. (3.9) as: 
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4
(1)

1
4

(2)

1

4
(3)

1

4
(4)

1

( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

i i
i

i i
i

i i
i

i i
i

H s n

H s n
y n

H s n

H s n

=

=

=

=

⎡ ⎤⎡ ⎤⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎡ ⎤⎢ ⎥⎣ ⎦
⎢=
⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

∑

∑

∑

∑

D

D

D

D

v n⎥ +                               (3.13) 

where 

      

(1)

(2)

(3)

(4)

( )

( )
( ) ( )

( )

( )

FFT

FFT
CP

FFT

FFT

v n

v n
v n w n

v n

v n

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢= =⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

W 0 0 0
0 W 0 0

R
0 0 W 0
0 0 0 W

⎥
⎥

           (3.14) 

 

3.4 STBC Decoder and Equalizer 
Here, let us take BD in section 2.4.3 for example, Eq. (3.10) can be written as: 

      �
*

*

(1)

(2)

(3)

(4)

( )

( )
( )

( )

( )

y n

y n
y n

y n

y n

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

      

*

*

(1) (1)
1 2 3 4

(2)* * * * (2)
3 4 1 2

(3) (3)
2 1 4 3
* * * * (4)(4)4 3 2 1

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
       =

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

s n v nH H H H

H H H H s n v n
H H H H v ns n
H H H H v ns n

⎡ ⎤ ⎡⎡ ⎤ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢− −⎢ ⎥ ⎢ ⎥ + ⎢⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥− −⎣ ⎦ ⎢ ⎥ ⎣⎣ ⎦

D D D D

D D D D
D D D D

D D D D

�

�

�

�

       =  ( ) ( ) ( ) ( ) ( ) ( )s n n s n n x n nη η η

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ = + = +D Θ A

     (3.15)                 

where 
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1 2 3 4
* * *
3 4 1

*

2 1 4 3
* * *
4 3 2 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

H H H H

H H H H
H H H H

H H H H

⎡ ⎤
⎢ ⎥

− −⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

D D D D

D D D D
D D D D

D D D D

2

*

D , 
*

*

(1)

(2)

(3)

(4)

( )

( )
( )

( )

( )

v n

v n
n

v n

v n

η

⎡ ⎤
⎢ ⎥
⎢ ⎥

=        (3.16) ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦



       = ΘA D , ( ) ( )x n s= A n                                       (3.17) 

If the frequency domain channel state vectors 1H , 2H , 3H  and 4H  are 

available at the receiver, ( )z n  can be obtained from �( )y n  by: 

      

�( ) ( )

         ( ) ( )

        ( ) ( )

H

H

z n y n

s n n

s n n

η

ξ

=

= +

= +A

D

D D Θ D

D

H
                                 (3.18) 

where 

H
=AD D D Θ                                               (3.19) 

and 

      ( ) ( )
H

nξ η= D n                                              (3.20) 

In above equations, the decoding step 
H

D D  comes from  of STBCs in 

chapter 2. Eq. (3.10) will turn the property of orthogonal (or non-orthogonal) of 

STBCs from  into 

*HS S

S D . So the correlation matrix can be used in decoding, for 

simplification. Note that it has been achieved multiantenna diversity of order four.  

From Eq. (3.18), we know that 
H

AD  and the inverse of ( )H

A AD D  is needed to 

recover ( )s n  from ( )z n . It is clear that ( )H

A AD D  must be full rank ( ). And 

thus 

4K=

AD  in Eq. (3.19) should be full column rank ( 4K= ), which means every 

M M×  submatrix in AD  (except : M K×0 ) must be full column rank ( ).  4K=

So the designing of precoders is a main issue. Two important conditions in [15] 

should be taken into consideration, here: 

Condition (3.1) M K L> + . 

Condition (3.2) { }, 1,2,3,4i i∈θ  is designed so that any K rows of  are linearly iθ
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independent. 

The form of precoders will be mentioned later in chapter 5. 

After going through the equalizer Γ , the output is the soft decision data:  

      
( )
( )

( )

( ) ( )

      ( )

      ( ) ( )

      ( ) ( )

H H

H H

H H

s n z n

inv z n

inv s n n

s n inv n

ξ

ξ

= Γ ⋅

=

= +

= +

A A A

A A A A

A A A

D D D

D D D D

D D D

Γ⋅

�

                       (3.21) 

where 

      ( )H H
invΓ = A A AD D D                                        (3.22) 

At last, the soft decision data is put into the decision device and projected onto the 

finite alphabet to get the hard decision data ( )s n� . 

The channel state information (CSI) in Eq. (3.19) is assumed to be perfectly 

available at the receiver end. In the next chapter, we will exhibit how to get the 

channel state information when it is unknown. 

 

 

 

 
 
 
 
 
 
 
 
 
 

 23



 

 
Chapter 4 
Subspace-based Channel 
Estimation and the improved 
method Phase Direct 
 

In four-antenna STBC OFDM systems, the channel estimation method is based on 

the redundancy caused by four M K×  linear precoders , , , and , which 

is similar to the channel estimation in the two-antenna system in [17].  

1θ 2θ 3θ 4θ

We will first simply describe the main idea of the subspace-based channel 

estimation. Similar or same methods had been proposed for some two and 

four-antenna STBCs in [11-14,15,17]. After the description, the design of precoders in 

our systems is introduced. The theoretical mean square error of this algorithm derived 

in [17] will then be mentioned. 

In section 4.2, an improved finite alphabet method based on the subspace-based 

channel estimation named phase direct (PD) [16], will be introduced to make the 

channel estimates better. The PD based on subspace method in [17] only focus on 

Alamouti STBC [4] with BPSK modulation. Here, we will extend it to four-antenna 

STBC OFDM systems in section 2.3.1 and 2.4. We will also extend all these three 

systems from BPSK modulation to QPSK modulation, which will also result in more 

possible channel power response conditions. Getting channel power is an important 
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issue in PD. Such issue in the two-antenna Alamouti STBC OFDM system with 

BPSK was also mentioned in [17]. In four-antenna STBC OFDM systems, because 

the possible conditions of channel power response become more, the getting of the 

channel power response is more complicated than that in a two-antenna system. And 

so is that in QPSK than in BPSK in the same system. The algorithm we use in this 

thesis to get channel power response is to select the most proper one from all its 

possible conditions. So we should find out all the possible conditions of its channel 

power response. Such algorithm is going to be discussed in section 4.2.2. 

Furthermore, the feasibility for the algorithm in section 4.2.2 depends on that all 

possible symbol conditions for  of STBCs are non-singular. To achieve this goal, 

we will introduce the diagonally weighted models of STBCs in section 4.2.3. PD for 

four-antenna STBCs in static channel will be expressed in section 4.2.4. 

S

Finally, in time-varying channel, the choice of window size of received blocks in 

PD will also be mentioned. This will be shown in section 4.2.5 while the same issue 

was also taken in [17]. A longer window of received blocks can lessen the effect of 

noise but cannot follow the varying channel, while a shorter window can follow the 

channel variance more precisely than a longer one. 

 

 

4.1 Subspace-based Multichannel Estimation 
In the following description in this method, as the same in chapter 3, we also 

choose Block Diagonal (BD) STBC in 2.4.3 to show the estimation algorithm here. 

4.1.1 Subspace-based Multichannel Estimation Method 
First, the algorithm starts from the received data vectors in Eq. (3.17), neglecting 

the noise: 
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      �( ) ( ) ( )y n x n s n= = A                                           (4.1) 

N  blocks of �( ) ( )y n x n=  are collected and form a matrix  in the size NX 4M N× : 

      [ ](1), (2), , ( ) Nx x x N = =X AS" N                            (4.2) 

where 

      [ ](1), (2), , ( )N s s s N=S "                                   (4.3) 

It is impossible to implement this algorithm on the Complex Orthogonal (CO) 

STBC system in section 2.3.2, however, because its received data vectors �( )y n  

cannot be presented in the form of ( )s nA  in Eq. (4.1) [11]. 

Compared to the condition in the two-antenna system in [15,17] that the number of 

received blocks  should be large enough ( ).  must satisfy the condition 

that  here in four-antenna systems to guarantee that  is with full rank 

. 

N 2K≥ N

4N K≥ NS

4K

According to Condition (3.1), Condition (3.2), and the condition above. ( )s n , a 

 independent data vector, will show the fact that 4K ×1 rank( ) 4N K=X , and that the 

nullity of  NX null( ) 4 4N M K= −X . Note that the range space of  

. So the singular value decomposition (SVD) of  can 

be written as: 

NX

( ) ( ) (H
N N NR R R= =X X X )A NX

      [ ]
H
xx

N N x n H
n

⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦

∑ 0 V
X AS U U

V0 0
                          (4.4) 

where  are range eigenvalues of , and 2 2 2
1 2 4diag( , , , )kx

σ σ σ=∑ " NX

2 2
1 2 k

2
4σ σ≥ ≥ ≥" σ  . The null eigenvalues (all zeroes) yield null eigenvectors of , 

which form the 4

NX

(4 4 )M M K× −  matrix  and column span the null space 

 caused by redundant preorders. 

nU

( NN X )
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Next, we use the property that  is orthogonal to ( )NN X ( ) ( )NR R=X A , it appears 

that: 

      0H
ku =A ,                                  (4.5) 1, 2, , 4 4k M= " K−

where ku  is the th column of the null space matrix . It is also the th null 

eigenvector of . 

k nU k

NX

Then, we separate the 4 1M ×  ku  into four equal size parts: 

      

_1

_ 2

_ 3

_ 4

k st

k nd
k

k rd

k th

u
u

u
u
u

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥

                                                (4.6) 

where all of its four parts are 1M ×  vectors.  

Here, we take BD in OFDM for example. By Eq. (3.15) and Eq. (4.5), it can be 

shown that 

1 2 3 4
* * * *
3 4 1 2

_1 _ 2 _ 3 _ 4
2 1 4 3
* * * *
4 3 2 1

   
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

H
k

H H H H
k st k nd k rd k th

u
H H H H

H H H H
u u u u

H H H H

H H H H

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥− − ⎣ ⎦⎣ ⎦

=

1

2

3

4

A
D D D D θ 0 0 0

0 θ 0 0D D D D
0 0 θ 0D D D D
0 0 0 θD D D D

                                                                 (4.7) 

For any 1M ×  vectors a  and b , it is true that 

      *( ) ( )Ha b b a=D D                                              (4.8) 

where  is as defined in chapter 3. (*)D

So we can write Eq. (4.7) as 
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* *
_1 _ 3 _ 2 _ 4

* *
_ 3 _1 _ 4 _ 2

1 2 3 4 * *
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                                                                 (4.9) 

where 

      

* *
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* *
_ 3 _1 _ 4 _ 2

* *
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_ 4 _ 2 _ 3 _1

( ) ( ) ( ) ( )
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( )
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         (4.10) 

and 

                                             (4.11) *
3

*
4

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

1

2

θ 0 0 0
0 θ 0 0

Ψ
0 0 θ 0
0 0 0 θ

Using the relationship between ih  and iH  in Eq. (3.11), Eq. (4.9) is transformed 

into 

      1 2 3 4 ( ) 0

T

T
T T H H

kH

H

h h h h u

=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

F

V 0 0 0
0 V 0 0

G Ψ
0 0 V 0
0 0 0 V�����	����


             (4.12) 

where 

                                          (4.13) 

T

T

H

H

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

V 0 0 0
0 V 0 0

F
0 0 V 0
0 0 0 V

⎥
⎥

In Eq. (4.12), the channel states are presented in time domain rather than in frequency 

domain in Eq. (4.9). The former is adopted because ( )kuFG Ψ  has less number of 
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rows ( ) than 4( 1)L + ( )kuG Ψ  has ( 4M ), and it can thus reduce computation 

complexity. 

Now, we have every null eigenvector ku  in Eq. (4.5) doing all the steps above, 

with . And then put them in a row, we can get 1, 2, , 4 4k M= " K−

      

�

[ ]1 2 3 4 1 2 4 4( ) , ( ) , , ( )
H

T T H H
M K

h

h h h h u u u −
⎡ ⎤ =⎣ ⎦

Q

F G Ψ G Ψ G Ψ"���������	��������
����	���

0    (4.14) 

The zero vector 0  here in Eq. (4.14) has 1 row and 4( 1) [4 (4 4 )]L K M K+ × × −  

columns, and 

      � 1 2 3 4

H T T H Hh h h h h⎡= ⎣ ⎤⎦                                      (4.15) 

      [ ]1 2 4 4( ) , ( ) , , ( )M Ku u u −=Q F G Ψ G Ψ G Ψ"                    (4.16) 

So, 

      � � �2|| || 0
H H Hh h h=Q QQ =                                       (4.17) 

In Eq. (4.17), we can see that the estimated channel can be found as the eigenvector 

which corresponds to the smallest eigenvalue of HQQ : 

      �
�

� �{ }|| || 1
arg min

H H H

h
h h

=
= QQ h                                      (4.18) 

By Eq. (4.15), the estimated channel is 

      �

*
1
*
2

3

4

h

hh
h
h

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                  (4.19) 

This algorithm is named subspace-based channel algorithm since it is based on the 

null space  of received data matrix . nU NX

However, in the realistic condition, the white noise is added at the receiver end. In 

this case,  is replaced with , and Eq. (4.4) will be in the form as NX NY
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0
V

Y U U
0 V

                            (4.20) 

The diagonal matrix 
~

x∑ , just as the relation between 
x∑  and  in Eq. 

(4.4), also has range eigenvalues of  in its diagonal elements. , however, 

will have the variance of white noise on its diagonal [15]. 

NX

NY
~

n∑

As it mentioned in [15,17], in order to simplify the computation, we replace  in 

Eq. (4.20) by the sample covariance matrix of 

NY

�( )y n  in Eq. (3.15): 

      �
� �

1

1 ( ) ( )
N H

y
n

y n y n
N =

= ∑R                                         (4.21) 

In Eq. (4.19), the estimated channel is not the final estimate because the solution of 

1 2 3 4 0T T H Hh h h h⎡ =⎣ Q⎤⎦  in Eq. (4.14) is not unique. According to the description 

about channel identifiability in [15], if distinct precoders (any of the four precoders is 

different from each other) are used, channel identifiability within one scalar α  is 

guaranteed. For example: 
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�

�

�

1 1
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hh
hh
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                              (4.22) 

holds true in BD, where � ih  is the final estimate of channels, 1, 2,3,4i = . Here, we 

use one pair of pre-precoding pilots in [15] to resolve the unknown scalar α . 

Other three four-antenna STBCS, however, can also be adopted in the proposed 

subspace-based channel estimation algorithm. The major steps of this algorithm in 

realistic environment and simulation are as follows: 
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Step 1) Collect  received data blocks N �( )y n  and compute  in Eq. (4.21).  �yR

Note that  is the necessary condition in four-antenna systems. 4N K≥

Step 2) Find out the eigenvectors ku , 1, 2, , 4 4k M K= −" , corresponding to the 

smallest 4 4M K−  eigenvalues of the matrix , by proceeding its SVD. �yR

Step 3) Build  in Eq. (4.16). Q

Step 4) Determine the eigenvector corresponding to the smallest eigenvalue of HQQ  

in Eq. (4.18) as the initial estimate. 

Step 5) Resolve the scalar ambiguity α  and determine the final estimate of channels. 

 

4.1.2 Theoretical Mean Square Error of subspace method 
The theoretical mean square error (MSE) for the proposed estimator was derived in 

[17]. For high SNR and large sample size (large ), an approximation MSE is N

      

� 2 2

2

2 2
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w w
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+ + +2 2
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⋅
≈

Q Q Q

+ +

⋅

+
                    (4.23) 

This formula can be adopted in four-antenna systems as well as in the two-antenna 

system. �h  is the estimate of channels and h  is the real one. Both signals and noise 

are assume to be i.i.d random variables with zero mean and variance 2
sσ  and 2

wσ , 

respectively. So we get 2 / 2
s wσ σ  as SNR.  is the number of sampling received 

data blocks. And the matrix 

N

+Q , which comes from Q  in Eq. (4.16), will be 

explained as follows: With noise is added, assuming  permits the SVD Q
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                            (4.24) 
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where  is computed as +Q

      
1~~ ~ H

q q

−
+ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
∑Q U Vq                                         (4.25) 

 

 

4.2 Phase Direct (PD)  
PD was proposed in conventional (SISO) OFDM [16]. It was then addressed to 

Alamouti STBC OFDM ([4], section 2.2) in [17]. In this thesis, we will combine it 

with four-antenna STBC OFDM systems, and based on subspace method to improve 

channel estimation.  

4.2.1 PD in Conventional OFDM 
We first show how PD performs in conventional OFDM. The signal modulation 

types in discussion are  PSK constellations with size -'aryP

{ }2 /: | 1, 2,j p P
PP e pπξ = = ", P

m

, here. In convention OFDM, the signal at the receive 

end can be written as 

      ( , ) ( ) ( , ) ( )my n m H s n m nρ ρ= +                                 (4.26) 

where  and ( , )s n m ( , )y n m  are the transmitted and received data signals, 

respectively, through the th subcarrier on the th received data block.  is 

in the form of . 

m n ( , )s n m

P ( )mH ρ  is the channel response of the th subcarrier in 

frequency domain and 

m

( )mn ρ  is the corresponding noise. A total of M  subcarriers 

and  received data blocks are taken. N

  For the simplification of getting the power of  to signal in Eq. (4.26), we neglect 

the noise, and take the expectation to : 

P

n

      { } [ ]{ } { }( , ) ( ) ( , ) ( ) ( , )PP P
m mE y n m E H s n m H E s n mρ ρ= = P           (4.27) 
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With  received data blocks, the sampling averages of N ( , )y n m  can replace its 

expectation by { }
1

1( , ) ( , )
N

P

n
E y n m y n m

N =

= ∑ P . Assume that  and ( , )s n m ( , )y n m  

are all known at the receiver, the desired channel power response of ( )mH ρ  is 

      
{ }

1

1 ( , )
( )

( , )

N
P

P n
m P

y n m
NH
E s n m

ρ ==
∑

                                     (4.28) 

  Using the property of PSK constellation of size , expectation of  is P ( , )s n m

{ }( , ) 1PE s n m = . Therefore, Eq. (4.28) turns to 

      
1

1( ) ( , )
N

P P
m

n
H y

N
ρ

=

= ∑ n m                                      (4.29) 

One main process in PD is to get the channel phase response from the information  

of the channel power response in Eq. (4.29). For each { }1, 2, ,m∈ " M , the estimate 

of ( )mH ρ  is 

      l
1/

( ) ( )
PP

m mH H mρ ρ⎡ ⎤= ⎣ ⎦ λ                                      (4.30) 

where 
1/

( )
PP

mH ρ⎡⎣ ⎤⎦  is the channel amplitude response, and 

�{ } { }2 / | 1, 2, ,j p P
mm e pπλ λ∈ = = " P , however, is the phase ambiguity in taking the 

p th root of . There are  possible values of phase values, so we need to 

resolve the phase ambiguity to get the correct channel phase response by comparing 

all the possibilities in 

2 /j Pe π P

�{ }mλ : 

      �

�1/ 2arg min || ( ) ( ) ||
mm

PP
mm est m mH H

λ λ
λ ρ ρ

∈
⎡ ⎤= − ⎣ ⎦ λ

)

                      (4.31) 

(est mH ρ  here is the frequency-domain initial estimate of channels on the th 

subcarrier by some estimated method. We may improve its accuracy through the 

m
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following PD steps: 

Step 1) Let the estimate from some method as the time-domain initial estimate � (1)h  

of PD. Transfer it to frequency domain by means of FFT and get l (1)H . Set 

l
(1)( ) ( )est m mH Hρ ρ=  and _ 1PD iter = , for 1, 2, ,m M= " . 

Step 2) Apply Eq. (4.31) in every iteration to resolve phase ambiguities. Produce the 

phase-compensated channel response estimate vector in frequency domain: 

      { }1/ 1/

1 1( ) , , ( )
PP P

temp MH H H
P

Mρ λ ρ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦"" λ                    (4.32) 

      Note that ( )est mH ρ  must be replaced by l ( _ ) ( )PD iter mH ρ  in the ( )th _PD iter

      iteration. 

Step 3) Add 1 to . Then, update channel estinates in time domain: _PD iter

      � ( _ 1)
H

tempPD iterh + = V H                                          (4.33) 

      and in frequency domain: 

      l �
( _ 1) ( _ 1)PD iter PD iterH h+ += V                                        (4.34) 

l
( _ 1)PD iterH +  is an important information to use in the next iteration. Matrix  was 

defined in section 3. Eq (4.33) and Eq (4.34) together are called denoising. On one 

hand, Eq (4.33) means that 

V

tempH  is performed an M -point IFFT and keep the first 

 entries (i.e. the multipath length) of 1L + �
( _ 1)PD iterh +  through truncation. On the other 

hand, Eq. (4.34) signifies that an M -point IFFT is performed on the vector formed 

by � ( _ 1)PD iterh +  after zero-padding. 

Step 4) Go to the next (( _ 1PD iter + )th) iteration. Repeat Step 2 and 3 several times 

      until � � 2
( _ 1) ( _ )|| ||PD iter PD iterh h+ −  is within some tiny range. 

The Signal-flow chart of PD in conventional OFDM is shown in Fig.4.1. 
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Fig. 4.1 Signal-flow chart of PD in conventional OFDM 

 

4.2.2 Getting Channel Power Response for PD in STBC 

OFDM 
The final purpose of PD is to solve phase ambiguities after getting the channel 

power response from the information of known data. So the obtainment of channel 

power response is an important issue in PD. How to get channel power response in 

conventional OFDM systems is specified in section 4.1 and it is effortless. In STBC 

OFDM systems, it is not as easy as in conventional OFDM systems since the received 

data consists of at least two different data. [17] had proposed a sum-difference square 

method to obtain it in Alamouti model. In the next section, we want to expand the 

algorithm in gaining channel power response to four-antenna models that fit the 

subspace method. This algorithm is also theoretically suitable to different kinds of 

signal constellations but not only to BPSK.  
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First, we start from the initial received data vector in Eq. (3.13) and according to Eq. 

(3.4): 

(1)
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1(2) (2)
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                          (4.35)                

Here, we let ( )ii H=D D , , only focus on data through the  subcarrier, 

and leave out the noise for the purpose of simplication. 
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( )

( )

( )

( )

th data of ( )

th data of ( ) where   1, 2,3, 4     1, 2, ,

( )

)

,

( )

(

( )

i i

i

m

i
m

i m i

s n m

y

s n

y nn m i m M

H m mρ

⎫
⎪
⎪ = =⎬
⎪= ⎪

=

⎭

=

D

�

"       (4.36) 

So we can write the variables in Eq. (4.36) as 

(1)
1

2

3

4

(2)

(3)

(4)

( )
( )

*

( )
( )
( )
( )

*
( )
( )

m

m

m

m

m

m

m m

m

m

H
H
H
H

y n
y n

n n n
y n
y n

ρ

ρ

ρ
ρ
ρ
ρ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

= m

H(

m m

)

s sy ( ) ( ) ( ) H( )

��	�


              (4.37) 

* is as defined in chapter 2.  is obviously in the form of transmission matrix 

 we introduced also in chapter 2. And the channel power response corresponds to 

 subcarrier is computed as 

nms ( )

S

thm

      [ ]
1

CPR
2

3

4

( )
( )
( )
(

.^

)

P
m

P
m

P
m

P
m

m

H
H
H
H

Pρ

ρ
ρ
ρ
ρ

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=H ( ) H( )m                            (4.38) 

So the key point of getting CPR mρH ( )  is to determine mρH( ) , first. We can do this 

from Eq. (4.37) by 

      [ ] 1 *m nρ −= m mH( s) ( ) ny ( )                                     (4.39) 
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if  has its own inverse. Here, nms ( ) nmy ( )  is known at receiver. Next, we have to 

find out each condition of  corresponding to all possible data symbol pairs, nms ( )

( )ms n . For instance, in BPSK system, there are two conditions ( 1± ) for each symbol. 

And will result in a total of  possible 42 16= ( )ms n  (see Eq. (4.40)) in four-antenna 

STBCs, which has four symbols in one matrix. 

      
[ ] [ ]

[ ]

(1) (2) (3) (4)( ) ( ) ( ) ( ) ( ) 1 1 1 1 , 1 1 1 1 ,

                                                        , 1 1 1 1
m m m m ms n s n s n s n s n⎡ ⎤= =⎣ ⎦

− − − −

"

"

−
 

(4.40) 

So this model has at most  possible conditions of , which also yields to at 

most  possible conditions of 

16 nms ( )

16 mρH( )  by Eq. (4.39). If we use QPSK in this model, 

there will be  maximum possible conditions of 44 256= mρH( )  in same models. 

CPR mρH ( )  with many possible conditions are then acquired by Eq. (4.38). 

Finally, we can determine the real ( )P
i mH ρ  ( 1, 2,3,4i = ) by comparing each possible 

condition of CPR mρH ( ) : 

      o 2

( )
( ) arg min || ( ) ( ) ||

P
i m

PP P
ii m est m m

H
H H H

ρ
ρ ρ= − ρ                        (4.41) 

where o { }CPR( ) th element of all possible conditions of 
P
i m mH iρ ρ∈ H ( ) , and ( )est mH ρ  

is the estimated channel via subspace-based method. The signal-flow of how to find 

(P
i mH )ρ  is as in Fig.4.2 below. 
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Fig. 4.2 Signal-flow chart of getting channel power response ( )P
i mH ρ  

in four-antenna STBC OFDM systems 

 

 

4.2.3 Diagonally Weighted STBC models 
The most important and necessary condition is that  must be nonsingular 

corresponding to all possible data symbol pairs. Because we do not want to miss 

any possible condition of 

nms ( )

mρH( )  if it cannot be obtained for the inverse of the 

corresponding  does not exist. nms ( )

However, we find out that in three non-orthogonal STBC models (SD, DD, and 

BD), will be singular in some of the possible symbol pairs. To solve this 

problem, we modify  by multiplying their diagonal elements with a positive real 

index . Here, let’s take BD in section 2.4.3 for instance. The transmission matrix 

becomes 

nms ( )

S

k
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* * *
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s s k s s
s s s k
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⎢
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S                               (4.42) 

and the correlation matrix of  is S

                                     (4.43) 

61 61 61

62 62 62

61 62 61

62 62 61

0
0

*
0

0

H

a b c
b a c
c a

c b a

⎡ ⎤
⎢ ⎥−⎢=
⎢
⎢ ⎥−⎣ ⎦

S S

where 

                                                 (4.44a) 
4

2 2
61 1

2
| | | |i

i
a k s s

=

= +∑

                                                (4.44b) 
3

2 2
62 4

1
| | | |i

i
a s k s

=

= +∑

                                        (4.44c) * * * *
61 1 2 3 4 1 2 3 4( ) (b k s s s s s s s s= + + +

                                        (4.44d) * * * *
62 1 2 3 4 1 2 3 4( ) (b k s s s s s s s s= + + +

                                                (4.44e) * *
61 1 3 2 4( 1)(c k s s s s= − +

                                                (4.44f) *
62 1 3 2 4( 1)(c k s s s s= − +

  Compare Eq. (4.43) with Eq. (2.26), we can see that the non-orthogonality of the 

modified non-orthogonal STBC ( 1)k ≠  is severe than the original one  in 

chapter 2. 

( 1)k =

Next, we will take BD in BPSK system for an example to show how modified 

STBC avoid singularity. Let’s start from Eq. (4.37), multiply both sides of the 

equation by , we will get H nms ( )

      * * * ( )*H H
mn n n n n mρ ρ= =mm m mm( ) y ( ) ( ) (s ) H( ) Css s H( )              (4.45) 

where  is the correlation matrix of . Our purpose is to make sure that 

 are non-singular so that 

( )nmCs nms ( )

( )nmCs



     [ ] [ ]1( ) * * ( ) *m
Hn n n nρ −= =mm m mH( ) Cs ( ) 1 n−

my ( ) s y (s )               (4.46) 

In BPSK, it is true that  { }( )* ( )( ) ( ) 1i i
m ms n s n= ∈ ± . Then, we have a total number of 

16 possible symbol pairs ( )ms n  in Eq. (4.40) and their corresponding , 

. From Eq. (4.43), (4.44 a-f) and substituting 16 kinds of 

nms ( )

( )nmCs ( )ms n , we get: 

      

0
0

( )
0

0

a b c
b a c

n
c a

c b a
b

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

mCs                                    (4.47) 

where 

                                                      (4.48a) 2 3a k= +

                                        (4.48b) 
0 , 0

          or 
2( 1),  2( 1)

b c

b k c k

= =⎧
⎪
⎨
⎪ = ± + = ± −⎩

Then, we take the determinant of : ( )nmCs

      [ ] 2 2 2det ( ) ( )n a b c= − −mCs 2                                  (4.49) 

According to  in functions of , we discuss about the non-singularity of 

 rather than  in two cases: 

, ,  and a b c k

( )nmCs nms ( )

Case 1)  2 3,  0,  0 :a k b c= + = =

      [ ] { }22 2 2 2 2 4det ( ) ( 3) 0 0 ( 3) 0n k k= + + + = + ≠mCs                 (4.50) 

Case 1 guarantees that  is non-singular, in which half of 16 possible 

conditions satisfy. 

( )nmCs

Case 2)  2 3,  2( 1),  2( 1) :a k b k c k= + = ± + = ± −

      [ ] [ ] [ ]{ }22 22 2 2det ( ) ( 3) 2( 1) 2( 1) ( 1)n k k k k= + + ± + + ± − = −mCs 4      (4.51) 

For the purpose of  (also ) being non-singular, . Hence, ( )nmCs ( )nms 2 1 0k − ≠
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1k ≠ ±  (or  for  is positive). 1k ≠ k

  Note that any kind of modulation can be adopted in this algorithm. Nevertheless, 

there are some constraints in non-orthogonal STBC OFDM when BPSK and QPSK, 

which we would like to focus on, are used. The numbers of possible symbol pairs that 

will make  and  singular in four-antenna STBCs are shown in Table 

4.1 (BPSK) and Table 4.2 (QPSK). 

( )nms ( )nmCs

 

       STBC 

  k  

 

     RO 

 

     SD 

 

     DD 

 

     BD 

      1=       0       8       8       8 

      1≠       0       0       0       0 

Table 4.1 Number of symbol pairs make  and  singular ( )nms ( )nmCs

in different STBCs in BPSK (Total: 16 pairs, ) 0k >

 

       STBC 

  k  

 

       SD 

 

       DD 

 

       BD 

      1=        32        32        32 

      1≠         0         0         0 

Table 4.2 Number of symbol pairs make  and  singular ( )nms ( )nmCs

in different STBCs in QPSK (Total: 256 pairs, ) 0k >

 

When ,  is singular, and this makes channel power getting and PD 

unavailable. Therefore, the case 

1k = ( )nms

1k =  of non-orthogonal STBCs can only supply the 

subspace method, but cannot take part in PD. So we should avoid this situation by 

letting  when performing PD in three non-orthogonal STBC models. 1k ≠
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In RO, however, this problem does not exist (see Table 4.1) because its 

transmission matrix certifies the full rank and non-singularity of  for all 

possible signal pairs in BPSK and QPSK. Still, this model can also be modified. We 

will have all the four four-antenna STBCs (RO, SD, DD, and BD) diagonally 

weighted in computer simulations and set  to the same value when comparing the 

performances of all these models. Transmission matrices and their correlation 

matrices of these four diagonally weighted STBC will be mentioned in Appendix. 

nms ( )

k

  Another important point should be noticed is that , elements of precoders’ 

output 

( ) ( )i
ms n

( )
( )

i
s n� , must equal to the original input data symbols in ( ) ( )is n  in Eq. (3.1) 

and (3.2) so that the algorithm above can work. For this reason, precoders should be 

designed carefully. We will specify the proper precoders’ form early in the next 

chapter. 

 

4.2.4 PD in STBC OFDM 
PD has been applied to Alamouti STBC [4] OFDM system in [17], based on BPSK 

baseband modulation. In this thesis, according to the algorithm getting channel power 

response in the previous section, it can be extended to four-antenna systems, and 

applied to both BPSK ( ) and QPSK (2P = 4P = ) modulations (See Fig.4.3). 

•• ••

•

•

1+1− 1+1−

j+

j−

B P S K Q P S K           

Fig. 4.3 Signal constellations of BPSK and QPSK used in PD 

 

Section 4.2.2 exhibits the method how to get ( )P
i mH ρ , which corresponds to  thi
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channel and  subcarrier, where thm { }1, 2,3, 4i∈ , { }1, 2, ,m∈ " M . We receive a 

total of  data blocks in this algorithm. For the block  (N thn { }1, 2, ,n N∈ " ) and 

the  channel, we should further get all thi M  subcarriers’ frequency channel power 

response 

      ,( ) ,( ) 1 ,( ) 2 ,( )( ), ( ), , (P P P P
i n i n i n i n MH H H Hρ ρ ρ⎡= ⎣ " )⎤⎦                       (4.44) 

In static channels (i.e. channel states will always be constant), we average all the 

,( )
P
i nH  to get the average channel power response P

iH  by 

      ,( )
1

1( ) ( ),    1, 2, ,
N

P P
i m i n m

n
H H m

N
ρ ρ

=

= =∑ " M                        (4.45) 

and 

      ,( )
1

1 N
P
i

n
H H

N =

= ∑ P
i n                                             (4.46) 

Then, we apply from Eq. (4.27) to (4.34) by selecting the proper  to perform PD 

and better the channel estimate accuracy. In Fig.4.4, we can see how it works in static 

channel, where each received block is 

P

      {(1) (2) (3) (4)
( ) ( ) ( ) ( ) ( ) ,  1,2, ,

T

y n y n y n y n y n n N⎡ ⎤= ∈⎢ ⎥⎣ ⎦
" } .          (4.47) 
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Fig. 4.4 Signal-flow chart of PD in STBC OFDM in static channel 

 

 

Combining with BPSK and QPSK, the simulation in channel estimation MSE of all 

the three models will be performed and simulation results will be shown in chapter 5. 

 

4.2.5 Choice of received blocks window size in time-varying 

channel 
In time-varying channel, however, we use several same system flows instead of 

using only one flow in Fig.4.4. The number of system flows depends on how many 

received blocks are averaged each time (also called window size). Because the 
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channel states change, the received data will then be influenced. The method in 

section 4.2.4 thus will cause bigger estimation error. It is apparent that if the length of 

window size is , it will cause a number of  system flow. Suppose 

 is selected that  becomes a positive integer. 

winN ( / )winN N

winN ( / )winN N

As the case stands, a system with a shorter window size can follow the changes of 

channel. But it cannot fight against the noise as well as the system with a longer 

window size does. How to choose a proper window size relies on the changing speed 

of channels. Fig.4.5 displays the signal-flow chart of PD in STBC OFDM in 

time-varying channels with the window size ( / 3)N= . Note that the system block “PD 

Iteration” here was specified in Fig.4.4. 
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Fig. 4.5 Signal-flow chart of PD in STBC OFDM in time-varying channel 

 

 

 

 



 

Chapter 5 
Computer Simulations 

 
In this chapter, computer simulations are implemented to verify four four-antenna 

STBCs: RO, SD, DD, and BD, along with OFDM system and algorithms proposed in 

chapter 4. We assume that all of four channels  are i.i.d and are 

normalized (i.e. ) at any time. Channel estimation error performances are 

exhibited in section 5.1. First, simulations of subspace-based method discussed in 

section 4.1 are displayed in section 5.1.1. Next, we will show the performance of PD 

in both BPSK and QPSK systems in section 5.1.2. At last, in section 5.1.3, all these 

methods and models are performed in time-varying channels. Bit error rate 

performances of these STBC models are exhibited in section 5.2. 

1 2 3 4, , ,  and h h h h

4
2

1
| | 1i

i
h

=

=∑

Before simulation results are illustrated, we should determine several things ahead. 

First, the figure of performance for channel estimation is defined in frequency 

domain: 

      
� 2 2

2

|| || || ||
|| || || ||
h h h

h h
− Δ

= 2                                          (5.1) 

where �h  is the estimate of channel and h  is the real one. We call this in Eq. (5.1) 

the normalized mean-squares channel error (NMSCE) in frequency domain. Although 

the value of the result in this equation equals to the NMSCE in time domain, we will 

compute it in frequency domain. 
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Next, we demonstrate the form of our precoders. With 32,   24M K= = , we design 

four M K×  linear distinct precoders as 

  [ ]1 (14 : 21,:);K K=θ I I ,  [ ]2 (15 : 22,:);K K=θ I I  

  [ ]3 (16 : 23,:);K K=θ I I ,  [ ]4 (17 : 24,:);K K=θ I I                     (5.2) 

where KI  represents a  ( 2KK K× 4= , here) identity matrix. The matlab form 

[ ]( : ,:);K Ka bI I ⎤⎦ means in the matrix form. Where the matrix form ( ~ )
T T
K a b K

T
⎡⎣I I

( ~ )
T
K a bI  of the matlab form  is the submatrix of ( : ,:)K a bI KI  which contains from 

the  to the  row of tha thb KI . , , , and  are all used in four-antenna 

STBC OFDM systems. Precoders in these forms can keep the algorithm in section 

4.2.2 works successfully [17]. 

1θ 2θ 3θ 4θ

 

 

5.1 Channel Estimate Error Performance 

5.1.1 Subspace-based Method 
 
  In section 5.1 and 5.2, static channels are used in examining the estimator error. We 

want to see how the subspace method performs in different SNR. Several basic 

simulation setups are as follows: 

  ■  100N =

  ■  32,    24M K= =

  ■ Rayleigh fading channels 

  ■  ( 5 channels) 4L = ray−

■ BPSK or QPSK (in section 5.2) modulation 
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We first illustrate the tests of theoretical and simulated subspace method in four 

STBC models. The theoretical result follows Eq. (4.23). Fig.5.1 shows the theoretical 

result of subspace method in diagonally weighted RO and BD STBC OFDM. As SNR 

becomes higher, the performance becomes better. This property appears in all four 

STBCs and will be shown in the following figures. Fig.5.1 also shows that BD 

outperforms RO under the same . k
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                Fig. 5.1 RO & BD, Theoretical Subspace NMSCE 
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  From Fig.5.2 to Fig.5.5, theoretical and simulated subspace NMSCE are exhibited 

in diagonally weighted STBCs RO, SD, DD, and BD. =1 and 2 is set. In these 

figures, we can see that the simulated result is worse than the theoretical one. 

However, as SNR increases, the simulated result approaches the theoretical one, 

which fits the assumption of Eq. (4.23) in high SNR condition. 

k
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Fig. 5.2 RO, Theoretical and Simulated Subspace NMSCE 
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Fig. 5.3 SD, Theoretical and Simulated Subspace NMSCE 
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Fig. 5.4 DD, Theoretical and Simulated Subspace NMSCE 
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Fig. 5.5 BD, Theoretical and Simulated Subspace NMSCE 
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The performance of Subspace method of four-antenna STBCs in BPSK is shown in 

Fig.5.6 ( , 2k = 1k =  also for RO). It shows that RO is worse than three complex 

non-orthogonal models. 
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Fig 5.6 Four models, 2k =  ( 1k =  for RO), Subspace 

 

Since the theoretical value of Eq. (4.23) derived in [17] is an approximation for the 

channel estimate MSE for high SNR, there is a difference gap between theoretical and 

simulated results in all four models, which will become smaller when SNR increases. 

Another property of diagonally weighted STBCs shown in Fig.5.1~5.5 is that in the 

same kind of STBC, the estimated error performance becomes better when  is 

larger. Let’s discuss about it from Eq. (4.23), (4.24), and (4.25), as the diagonal 

elements of  in Eq. (4.24) become larger, those of 

k

~

q∑
1~

q

−
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  in Eq. (4.25) will 

become smaller, and thus will cause the estimated mean square error in Eq. (4.23) 

 52



smaller. We had observed that when k  grows, diagonal elements in  also 

increase, which makes a better estimator. NMSCE in different  when SNR = 15 dB 

in RO with BPSK is shown in Fig.5.7. The results of three non-orthogonal models are 

similar to that of RO. 

~

q∑

k
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Fig. 5.7 RO, NMSCE vs.  (SNR = 15 dB) k

5.1.2 Performance of PD 
The performance of the improved method on subspace method, PD, will be 

illustrated and compared with subspace method both in BPSK and QPSK systems. 

First, we demonstrate the performance of PD of four-antenna STBCs in BPSK 

(Fig.5.8, ,  also for RO) and in QPSK (Fig.5.9, 2k = 1k = 2k = , no RO). Fig.5.8 

shows that in BPSK, RO always has the worst performance, while DD has the best at 

low SNR. The second is SD and the third BD. At high SNR, however, the better and 

the worse performance orders of three non-orthogonal STBCs are different from that 

at low SNR. Such situation is the same in QPSK in Fig.5.9. 
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Fig. 5.8 Four models, 2k =  ( 1k =  for RO), Subspace + PD BPSK 
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Fig. 5.9 Three models, 2k = , Subspace + PD in QPSK 
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Performance comparisons between subspace method and subspace with PD in four 

models are displayed in Fig.5.10~5.13. Note that in RO, only BPSK is used and , 

2 is set in simulation. In other three non-orthogonal models, 

1k =

2k =  and both BPSK 

and QPSK are used 

We can see that PD does improve the subspace method of all the four models in 

BPSK and SD, DD, BD in QPSK. Besides, the estimator in BPSK is better than that 

in QPSK in same conditions. 
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Fig. 5.10 RO, 1,2k = , Subspace & Subspace + PD in BPSK 
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Fig. 5.11 SD, , Subspace & Subspace + PD in BPSK & QPSK 2k =
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          Fig. 5.12 DD, , Subspace & Subspace + PD in BPSK & QPSK 2k =
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Fig. 5.13 BD, , Subspace & Subspace + PD in BPSK & QPSK 2k =

 

We also show how PD acts here with different multipath lengths.  and BPSK 

are used, here. With  and 

2k =

4L = 5L = , subspace method performs in four models 

from Fig.5.14 to Fig.5.17. In the model of larger CP length, it will be less sensitive to 

channel noise variation, and will lead to a poorer performance. It is shown that PD is 

immune to multipath length. 
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Fig. 5.14 RO, 2k = , BPSK, Subspace & Subspace + PD 

with different multipath lengths 
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Fig. 5.15 SD, 2k = , BPSK, Subspace & Subspace + PD 

with different multipath lengths 
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Fig. 5.16 DD, 2k = , BPSK, Subspace & Subspace + PD 

with different multipath lengths 
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Fig. 5.17 BD, 2k = , BPSK, Subspace & Subspace + PD 

with different multipath lengths 
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5.1.3 Time-varying channel estimation 
 

The time-varying channel environment we use here is based on Jake’s model. In 

this simulation, it produces FIR channel taps at sampling rate 1 MHz. BPSK is used 

for all simulations in this section. 

We first test the performances of subspace method in four STBC models in 

time-varying channels with different Maximum Doppler Frequencies (fd): 10Hz (Fig. 

5.18), 50Hz (Fig. 5.19), 100Hz (Fig. 5.20), and 200Hz (Fig. 5.21). ,  

and BPSK are used. 
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Fig. 5.18 Four models, 2k = , BPSK, Subspace with fd = 10Hz 
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Fig. 5.19 Four models, 2k = , BPSK, Subspace with fd = 50Hz 
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Fig. 5.20 Four models, 2k = , BPSK, Subspace with fd = 100Hz 
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Fig. 5.21 Four models, 2k = , BPSK, Subspace with fd = 200Hz 

 

When fd is higher, the estimator error is worse and all of them bring on error floors, 

which are caused by the phase shifting from Doppler Frequencies. 

Then, we want to see how PD combined with small windows of received data 

blocks performs. Fig.5.22 presents that PD surely improves the subspace method 

estimator in time-varying channel, where 2k = , fd = 50Hz and  is set. The 

performance is better as a smaller window size is used. Since channel varies rapidly, a 

smaller window size means that there are more groups of channel information in PD 

to update the changing channel. We can see that the case window size = 1 makes the 

achievement of following the channel variation and it eliminates error floors in all 

STBC models. However, when the window is too small, it will suffer from the noise. 

So we choose 50 as a proper window size with which large enough to suppress noise 

and can also follow channel variation, as is shown in Fig.5.22 for RO and BD. 

100N =
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Fig. 5.22 Four models, 2k = , BPSK, fd = 50Hz, 

Subspace & Subspace + PD (win size = 1, 50(RO, BD)) 

 

5.2 Bit Error Rate Performance 
In this section, we will show the bit error rate performance in four STBCs with 

different . BPSK and static channel are used. We will also discuss about the effect 

of  value on estimated channel error and noise. 

k

k

From Fig. 5.23~5.26, BER performances in four models are exhibited. 

 are given. In same , using the ideal channel state information 

(CSI) deservedly gets the best BER. With channel estimate error, subspace CSI gets a 

worse BER than ideal CSI. CSI from subspace with PD method, however, is better 

than subspace CSI for its improvement in channel estimation but is still worse than 

ideal CSI. 

1,  2,  and 0.8k = k
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Fig. 5.23 RO, BER vs. SNR ( 1,  2,  0.8)k =  
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Fig. 5.24 SD, BER vs. SNR ( 1,  2,  0.8)k =  
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Fig. 5.25 DD, BER vs. SNR ( 1,  2,  0.8)k =  
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Fig. 5.26 BD, BER vs. SNR ( 1,  2,  0.8)k =  
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The comparisons of BER between four models are shown in Fig.5.27 ( ) and 

Fig.5.28 ( ). We can see that the BER performance of RO is the worst and those 

of three complex non-orthogonal models are very close to each other. 
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Fig. 5.27 Four models, BER vs. SNR ( 1k = ) 
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Fig. 5.28 Four models, BER vs. SNR ( 2k = ) 

 

Note that the BER of  is bigger than that of 2k = 1k =  (the original STBCs). 

This is because the received signal power is enlarged when , and thus increase 

the noise power. On the contrary, the BER becomes smaller when  since noise 

power is decreased. This is a critical problem because the estimator performs better 

with the increase of . This is a tradeoff. The effect of  is discussed in the 

following. 

1k >

1k <

k k

In diagonally weighted STBCs, the value of  affects channel estimate error, 

signal and noise power. Theoretically MSE in Eq. (4.23) can be written as a function 

of : 

k

k

      �
2 2 2

2 2
2 2

|| || || ( ) ||(|| || ) (|| || ) w w

s s

kE h h E h
N N

σ σ
σ σ

+ +

− = ≈ =
Q Q+

2

                (5.3) 
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where  affects matrix  and the whole theoretically MSE. However, in 

comparison with noise value, the estimated error needs to be modified. Since from Eq. 

(2.3), if we substitute estimate 

k +Q

� = +h h h+  for realistic h , we will get: 

      �* *( ) * *= + = + + = + +r S h n S h h n S h S h n+ +                      (5.4) 

Note that  affects both signal and estimated error. So we have to modify the k

channel estimated error from ( )kh+  to the equivalent channel estimate error 

( )* ( )kS h+ k  to compare with noise ( )kn . 

  Here, using the information in Eq. (5.3), we want to derive the theoretical average 

equivalent channel estimate error power as a function of  in frequency domain. k
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k  also influences signal power and noise power. In  diagonally weighted STBCs 

with BPSK, the received signal in frequency domain can be written as: 

k
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              (5.6) 

For all channels are uncorrelated (i.e. * * 0,  i jh h i j= ∀ ≠ ) and normalized (i.e. 
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So the theoretical average noise power is: 
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where 2 / 2
s wσ σ  is the signal-to-noise ratio. 

The theoretical power of total perturbation of both equivalent channel estimate 

error and noise can therefore be written as: 
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The effect of  on power of noise, channel estimate error, the total perturbation 

and its theoretical value in BPSK at SNR = 10, 15dB in RO and BD are shown in 

Fig.5.29 and 5.30, respectively. We can see that low SNR will cause larger total 

perturbation. We find out that power of total perturbation becomes smallest when  

is about 0.5. Therefore, to solve the problem that  enlarges the noise, we can 

choose  as this value to lessen BER with a little sacrifice of channel estimator. 

k

k

k

k
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       Fig. 5.29 RO, the effect of  on power of perturbations (SNR = 10, 15dB) k
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Fig. 5.30 BD, the effect of  on power of perturbations  (SNR = 10, 15dB) k
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5.3 Summary and the related work 
In this chapter, we have shown the channel estimate mean square error in some 

different conditions and the bit error performances in static channel for all the four 

kinds of STBCs. An important issue is to compare these performances of three 

complex non-orthogonal models SD, DD and BD. See Table 5.1. 

 

       Models 

Performances 

       SD DD       BD 

Subspace MSE Moderate 

(High & Low SNR)

Best (Low SNR) 

 Worst (High SNR)

Best (High SNR)

 Worst (Low SNR) 

Subspace+PD MSE Moderate 

(High & Low SNR)

Best (Low SNR) 

 Worst (High SNR)

Best (High SNR)

 Worst (Low SNR) 

BER Moderate Moderate Moderate 

Table 5.1 Performances comparison between three complex non-orthogonal models 

 

The diagonal weight value  affects channel estimate error, equivalent channel 

estimate error power, noise power and bit error rate. The increasing of k  will 

decrease the first one but enlarge all the others. So the most appropriate value of  

should be selected. From all the simulation results above, 

k

k

0.5k ≈  is a proper value. 

k  will also change the power of probably only some of data symbols in 

transmission matrix, and will thus make the change of symbol power not uniform. To 

solve this problem, the even weight over each data symbol is also a method to prevent 

from singularity in PD for STBCs. Take diagonally weighted BD for example, only 

 and  on the diagonal are multiplied by  in Eq. (4.42). If we weight  

each by one  as in Eq. (5.10), it can ensure nonsingularity when  for PD and 

1s 4s k 1 4~s s

k 1k ≠
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evenly distribute power to each symbol. 
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We name this kind of weighted BD the Uniformly Weighted BD, the comparisons 

of performances between Uniformly Weighted BD and Diagonally Weighted BD in 

simulated Subspace channel estimation and bit error rate are as follows. We can see 

that the performances of two BD models are close to each other. 
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Fig. 5.31 Two different kinds of weighted BD, Subspace ( ) 2k =
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Fig. 5.32 Two different kinds of weighted BD, BER vs. SNR ( ) 2k =
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Chapter 6 
Conclusions 
 

STBC OFDM offers diversity gain, which is an advantage in high data rate 

transmission. In STBCs with more than two transmit antennas, real symbol models 

can always achieve full transmission rate. But complex orthogonal models cannot 

attain this goal. Complex non-orthogonal models, however, sacrifice orthogonality to 

gain the full rate. We focus on four-transmit-antenna models in this thesis. 

Multichannel estimation algorithms are important issues for STBC transceivers. By 

blind methods to estimate channels, we can avoid the problem of bandwidth 

consumption in using training sequences. A subspace-based channel estimation 

method is shown in which real orthogonal and complex non-orthogonal models can be 

adopted. 

To further better the subspace channel estimates, we exploit a finite alphabet based 

method “PD”. PD is to solve channel phase ambiguities after getting the channel 

power response. In STBC OFDM, we need to compare all the possible data symbol 

pairs in obtaining the channel power response. Simulations have shown that PD does 

improve the NMSCE of subspace method. 

However, the singular transmission matrices caused by some possible symbol pairs 

in complex non-orthogonal models will make getting channel power response and PD 

unavailable. We multiply the diagonal elements of their transmission matrices by a 

positive real weight  to solve this problem. Simulation results show that the value k
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of  affects both subspace estimator and bit error rate: When  is larger, the 

estimator becomes better, but incurs a larger noise and worse bit error performance. 

We can choose the value of  about 0.5 for the smallest total perturbation power to 

get a better bit error performance and a fairish estimator. The effect of  on power 

noise, channel estimate error, and total perturbation of RO and BD are also displayed. 

k k

k

k

  In time-varying channel, received data block window size can be chosen combined 

with PD to track channel variation. It can also resolve the error floor of subspace 

estimator. A shorter window size can follow the change of channel accurately but will 

make the estimator suffer from noise more. 

The PD method in this thesis for STBC OFDM is only utilized in BPSK and QPSK 

systems. In high-level modulations, it will become much more complex for the 

numerous number of possible symbol pairs. Therefore, the simplify mode of this 

method may be studied in the future. 
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Appendix 

Diagonally Weighted STBCs 

  In this appendix, transmission matrices ( ) and their correlation matrices ( ) 

of -diagonally weighted four-antenna STBCs are exhibited. 

S *HS S

k

 

1. Real 4-by-4 Orthogonal (RO) STBC 
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2. Spaced Diagonal (SD) STBC 
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3. Dual Diagonal (DD) STBC 
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4. Block Diagonal (BD) STBC 
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