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Abstract
Space-time block coded orthogonal frequency division multiplexing (STBC OFDM)

has become popular recently for itsshigh data rate transmission and diversity gain. In
this thesis, we focus on STBCs with four/transmit antennas and discuss about whether
their transmission matrices are erthogonal-and their transmission rate. A novel kind of
complex non-orthogonal STBC called Block Diagonal (BD) will be proposed. The
semi-blind channel estimation proposed by Giannakis is adopted for the STBC
OFDM. To improve the performance of estimator, we use phase direct (PD), which is
to solve phase ambiguities after the channel power response is obtained. We get
channel power response through matrix and vector computation in STBC OFDM. In
complex non-orthogonal STBCs, however, channel power response cannot be
obtained when transmission matrix is singular. To solve this problem, we multiply a
positive real constant k to the diagonal elements of their transmission matrices, not
only in non-orthogonal models but also in all STBCs that can be implemented in the
semi-blind channel estimation. Finally, in computer simulations, we can see that PD
really improves the estimator. The effect of k on channel estimate mean square error,

noise and bit error rate performance will also be exhibited and discussed.



Acknowledgement

FAAL R A g FREHE AR XA T 2 RA R 5 E gy
ToRAEZ AL XEHNE T ERE G LR R B REE B
FeoA A  RAEY A% c I BRMr BL R 2T koo A X
Fro 3 X fef R Mg ko RN U R AR DR R AL G
FY - gL eihd o

LAR MR T NEE SRR F S o gl & ffﬁ?“‘i’f”i%lffﬁ%’
SRS EA
Bofs o d B RO e Ak o B B FIRRenPE i LA B PR R Rl es e

[t

THOLBENMARE- KB G BEESAGHI Vi Ae- o Bk gh

“3\‘.\

h e R AR M s



Contents

Chinese Abstract i
English Abstract i
Acknowledgement ii
Contents 0\
List of Tables Vii
List of Figures viii
1 Introduction 1
2 Classifications of Space-Time Block Codes 5
2.1 BasiC STBC tranCeiViNg PrOCESS. .. ... uuuerene et aeniee e eenetiaeeieaenieneneeeenD
2.2 AlamMOULT STBC.....uiiiiciiic ettt e e e e ee e n e eas 7
2.3 Four-by-four Orthogonal STBC..........cccooiiiiiiii e 208
2.3.1 Real Four-by-four Orthogonal (RO) STBC............ceevvvvennnen 8

2.3.2 Complex Four-by-four Orthogonal (CO) STBC...........cccevvennnns 9



2.4 Four-by-four Non-Orthogonal STBC........coiiiiii i 10
2.4.1 Spaced Diagonal (SD) STBC ......cvvviiiiiiiiiiiiiie e e 11

2.4.2 Dual Diagonal (DD) STBC.......cuuiiii i e e 12

2.4.3 Block Diagonal (BD) STBC......c.oviuuiiie i e 13

2.5 SUMIMAIY .. e et et e et e et e e et e et e e e e eae e e e 14

3 Space-Time Block Code OFDM System Model 15
3.1 STBC Encoder and TranSmitter...........oouuieis it e e e 17
3.2 Channel ... ..o e e e a2 18
B3 RECEIVET ...t el e sy e d e e e et e et e e e 18
3.4 STBC Decoder and EQUAlIZEr. .. .o i i e e 21

4 Subspace-based Channel Estimation and the improved

method Phase Direct 24
4.1 Subspace-Based Multichannel EStimation................c.ocoviieiiiiine s 25
4.1.1 Subspace-Based Multichannel Estimation Method......................... 25
4.1.2 Theoretical Mean Square Error of subspace method........................ 31
4.2 Pase ireCE (PD) ... ...ttt e et e e e e e e e e, 32

4.2.1PD in Conventional OFDM.....oooiiiiiie e

4.2.2 Getting Channel Power Response for PD in STBC OFDM.......



4.2.3 Diagonally Weighted STBC models...........c.coovoviiiiii i, 38

4.24PDin STBC OFDM. .. ..ottt e e e e, 42

4.2.5 Choice of received blocks window size in time-varying channel...... 44

5 Computer Simulations 47
5.1 Channel Estimate Error Performance.............oovviiiine i i e e e eenaas 48
5.1.1 Subspace-based Method............coeviiiiiiiii 48

5.1.2 Performance Of PD.......c.uieiiiiie e e e e e e e 53

5.1.3 Time-varying channel estimation................cccooviiiiiiin i 60

5.2 Bit Error Rate PerfOrmManCe. .. .uumue i sias «eeeeenreereeneeneaeaneaneansaenenn 63
5.3 Summary and the related Work.....ccci 71

6 Conclusions 74
Appendix 76
Bibliography 79

Vi



List of Tables

2.1 Basic properties and comparisons between four-antenna STBCs.................. 14

4.1 Number of symbol pairs make s (n) and Cs_(n) singular in different STBCs

N B P S K e 41

4.2 Number of symbol pairs make s (n) and Cs_(n) singular in different STBCs

I QPSK .ot e e e A

5.1 Performances comparison between three complex non-orthogonal models........ 71

vii



List of Figures

2.1
3.1

3.2

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

5.4
5.5
5.6
5.7

5.8

5.9

5.10

5.11
5.12
5.13

Basic STBC transceiver model in frequency domain...........ccccooevviennee. 5
Four-transmit-antenna STBC OFDM transceiver model with block
0121070 T 1= Pt o
Frequency domain version of four-antenna STBC OFDM transceiver
MOdel. ... e 20

Signal-flow chart of PD in conventional OFDM.............cc.ccocovviin e enn .. 35

Signal-flow chart of getting channel power response H7(p,) in four-antenna

STBC OFDM SYSIEIMS. ..t ettt e e e e et e et ee e e aea e 38
Signal constellations of BPSK and QPSK used inPD..........cccccvvvviveennnnnn. 42
Signal-flow chart of PD in.STBC OEDM insstatic channel........................ 44
Signal-flow chart of PD in STBC OFDM in time-varying channel.............. 46
RO & BD, Theoretical SubspaceNMSCE....cv...oovviiii i, 49
RO, Theoretical and Simulated'Subspace................ccccoiii i e, 50
SD, Theoretical and Simulated Subspace..............ccovviiiiiii i, 50
DD, Theoretical and Simulated Subspace..............c.cccviiiiiiiiiiiiiine e, 51
BD, Theoretical and Simulated Subspace..........c.ccoovvi i, 51
Four models, k=2 (k=1 for RO), Subspace.... ..........cccvviiinnennnnnn. 52

RO, NMSCEvs. kK (SNR=15dB).......ccecviiiiiiiiiiiii i .53

Four models, k=2 (k=1 for RO), Subspace + PD in BPSK.................. 54
Three models, k =2, Subspace + PD in QPSK.........ccoiiiiiiiiiiiinn, 54
RO, k=1,2, Subspace & Subspace + PD in BPSK.............ccvvvivieinnnn. 55
SD, k=2, Subspace & Subspace + PD in BPSK & QPSK.....................56
DD, k=2, Subspace & Subspace + PD in BPSK & QPSK..................... 56
BD, k=2, Subspace & Subspace + PD in BPSK & QPSK..................... 57

viii



5.14

5.15

5.16

5.17

5.18

5.19
5.20
5.21
5.22

5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32

RO, k=2, BPSK, Subspace & Subspace + PD with different multipath

DD, k=2, BPSK, Subspace & Subspace + PD with different multipath
=] T 11 TSP o 1°

BD, k=2, BPSK, Subspace & Subspace + PD with different multipath
LENGENS. .. 59

Four models, k =2, BPSK, Subspace with fd = 10Hz...........................60

Four models, k =2, BPSK, Subspace with fd = 50Hz...........................61
Four models, k =2, BPSK, Subspace with fd = 100Hz..........................61
Four models, k =2, BPSK, Subspace with fd = 200Hz..........................62
Four models, k=2, BPSK, fd = 50Hz, Subspace & Subspace + PD

(window size = 1, 50(RQ; BD)). e et i e e e e e 63
RO, BER VS. SNR (K =1, 2,70.8) civii i it i e e e e e 64
SD,BERVS. SNR (K =172, 0.8) i i e e 64

DD, BER VS. SNR (K =1, 2, 0 8) ittt e e eveeeereeeeeeeeeeeseinsiirasrnnainniBB
BD, BERVS. SNR (K =1, 2, 0.8) sveevveeeveeeereeieeeieeieeeieeiesres i85

Four models, BER vS. SNR (K =1)....ccoiiiiii i e e, 66
Four models, BER VS. SNR (K=2)....ccooiiiiii i e e 2007
RO, the effect of k on power of perturbations (SNR = 10, 15dB)............. 70
BD, the effect of k on power of perturbations (SNR = 10, 15dB)............. 70
Two different kinds of weighted BD, Subspace (K=2).......cccccvvveinninnnn. 72
Two different kinds of weighted BD, BER vs. SNR (k=2)............coeitn. 73



Chapter 1

Introduction

Orthogonal frequency division multiplexing (OFDM) [1,2] has become a popular
technique for transmission of signals over wireless channels. It divides the whole
channel into many narrow parallel subchannels to increase the symbol period and
reducing or eliminating the inter-symbol interference (ISI) caused by the multipath
channel environment. The inter-channel interference (ICI), however, can be
eliminated by the independent and orthogonal among.subcarriers, which is not easy to
obtain in practice. On the other hand,“there-is higher error probability for those
subchannels in deep fades since the dispersive property of wireless channels causes
frequency selective fading. Therefore, techniques such as error correction code and
diversity [2] have to be used to compensate for the frequency selectivity. In this thesis,
we investigate transmitter diversity using space-time block codes for OFDM systems.

Space-time block codes (STBC) [3-9] realize the diversity gains by applying
temporal and spatial correlation to the signals transmitted from different antennas
without increasing the total transmitted power and transmission bandwidth. They have
therefore been attractive means in high data rate transmissions. In fact, there is a
diversity gain that results from multiple paths between base station and user terminal,
and a coding gain that results from how symbols are correlated across transmit
antennas.

Transmitter diversity is an effective technique for combating fading in mobile

1



wireless communications, especially when receiver diversity is expensive or
impractical. Such systems always have more than one transmit-antenna and one
receive-antenna and are so-called multi-input single-output (MISO). With single
receive end, a well known two-transmit-antenna Alamouti STBC is proposed in [4]. In
this thesis, however, we want to look into four-transmit-antenna STBCs. Such model
includes real orthogonal [5], complex orthogonal [6,7], and complex non-orthogonal
[8,9]. In STBCs with more than two transmit antennas, real orthogonal models
guarantee full transmission rate (=1). But the complex orthogonal models cannot
achieve full rate [7]. The complex non-orthogonal ones, however, sacrifice the
orthogonality to achieve this goal [8,9].

For most STBC transceivers, multichannel estimation algorithms are important
issues. Training symbols are transmitted periodically in [10] for the receiver to
acquire the multi-input multi-output’ (MIMO)-channels. However, training sequences
consume bandwidth and, thereby, incur spectral: efficiency and capacity loss. For this
reason, blind channel estimation methods receive ‘growing attention.

A few works have been proposed until now on blind MIMO and MISO channel
estimation that exploits the unique features of STBCs. Blind channel estimation and
equalization for MISO STBC systems has been proposed in [11] and for MIMO
STBC systems in [12,13]. Just like [14], [13] also introduced the semi-blind channel
estimation combining blind method and pilots. A subspace-based semi-blind method
is proposed in [15] for estimating the channel relying on redundant modulus
precoding responses.

In this thesis, unlike the similar system with two transmit antenna and Alamouti [4]
STBC proposed in [15], a linearly precoded STBC OFDM system with four transmit
antennas is introduced. Real orthogonal and complex non-orthogonal STBCs are

given. The semi-blind channel identification algorithm [15] for frequency-selective
2



FIR channels through the subspace method is adopted as the channel estimation for
this system. Distinct redundant precoders insure that the subspace-based method can
estimate multiple channels simultaneously up to one scalar ambiguity [15]. The
theoretical mean square error of this estimator derived in [17] will also be mentioned
and be compared with the simulation results.

To further improve the subspace-based channel estimates, the “Phase direct (PD)”
method based on the finite alphabet property is exploited. The main idea of this
method is to solve the channel phase ambiguities after we have gained the channel
power response. PD originally works in conventional OFDM [16], which we can
acquire the channel power response easily by simple scalar division. But it is quite
different in STBC OFDM, since the received data consists of more than one different
transmitted data, which are not .easy to be separated. So, the main problem we
encounter now is how to get the channel power respense, which is practically hard to
obtain. In this thesis, the method. of-getting the channel power response for
four-antenna STBC OFDM is presented.. The modulation classes we focus on are
BPSK and QPSK systems.

However, the singular transmission matrices produced by some possible symbol
pairs in non-orthogonal STBCs will make getting channel power response unworkable.
To solve this problem we modify the structure of transmission matrices of
non-orthogonal STBCs by multiplying a real constant gain k on its diagonal
elements. Simulation results show that the increase of k will better the subspace
estimator. But this will also increase noise power, which will make bit error rate
performance worse.

Furthermore, in time-varying channel, a proper window size of received data
blocks need to be chosen to get the channel power response and apply it to PD. A

trade off is that a shorter window can catch up the channel variation but makes the
3



system affected by noise more. The preorder form, however, is an issue that should
also be noticed behind the algorithm and will be discussed then.

This thesis is organized as follows. In Chapter 2, we show how data is transmitted
and received through space-time block code (STBC) and introduce several kinds of
STBCs. A novel kind of four-transmit-antenna complex non-orthogonal STBC named
Block Diagonal (BD) will be proposed. Four-antenna STBC combined with OFDM
system is presented in Chapter 3. A semi-blind channel estimation algorithm for
STBC OFDM and its improved method are shown in Chapter 4. Furthermore, Chapter
4 introduces the k -diagonally weighted transmission matrices for complex
non-orthogonal STBCs to prevent them from singular and therefore can be adopted in
PD. Chapter 5 exhibits simulation results and the effect of diagonal weight k on
channel estimate error, noise, and bit error rate. Finally, our conclusions are

summarized in Chapter 6.



Chapter 2
Classifications of Space-Time Block

Codes

In this chapter, the basic concept of space-time block code (STBC) transceiving
process will be given first. We will then introduce several kinds of STBCs. Only the
first kind of STBC (Alamouti) is used in the 2-transmission-antenna system. Others
are used in 4-transmission-antenna systems,-which can be divided into orthogonal and
non-orthogonal models. In complex,non-orthegonal:models, a novel kind of STBC
called Block Diagonal (BD) will be proposed. The structure of transmission matrix

and transceiving process of each STBC system will also be explained briefly.

2.1 Basic STBC tranceiving process

The following steps are all expressed in the frequency domain, as shown in Fig.2.1.

Tx 1
\\\\\\hl g
Tx 2 h N
N A Rx l
— _
[Slsz—snl st | S | 1 A r r | stec | 8
Encoder . o + (.) Decoder
Txn -~ h
hz[hl hzl T hn]T Il
H

Fig. 2.1 Basic STBC transceiver model in frequency domain
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Suppose n transmit antennas are used. STBC transmission matrix is presented as

S. n symbol vectors s, s,, ---, s, and their conjugates make up elements of
S. Symbols in the same column of S stand for symbols sent from the same transmit

antenna, while symbols in its same row stand for symbols sent in the same time slot.

The channel response vector is denoted by h, and the AWGN noise vector by n.
h=[h, h, - h] 2.1)
n=[n, n, -, nJ (2.2)
where h, is the channel response and n; is the AWGN noise. ie{1,2,---,n}.
In the first place, modulated data symbols form the transmission matrices S. Then

they are sent through channels. At.the receiver end, received data symbol vector r
can be presented as:

r=S*h+n (2.3)
in frequency domain, where * is the matrix=vector multiplication.

In Eqg. (2.3), AWGN are added after the symbols summed from different transmit

antennas in the same time slot. In the next step, r is adjusted to r so that only

original data vectors s, s,, --- S, exist here in r after the adjustment. The

n

terms of h and their conjugates are then exchanged with s, . r can be written as:

r =H*s+n (2.4)
where

s=[s, S, - s8] (2.5)
and H is the channel state matrix in which h, h,, ---, h and their conjugates

form its elements. Note that during Eq. (2.3) and Eq. (2.4), the characteristic of S is
6



going to be transferred into H.

Finally, we can recover s from r by

H'*r =H'*H*s+H**n =s+H '*n (2.6)

1@ )
I

s is the soft decision data vector, which is at last sent into decision device to output

the hard decision data vector §

2.2 Alamouti STBC

A simple STBC model had been proposed by Alamouti in [4]. The transmission

matrix of this scheme with two transmission antennas is

S { Sl* Si} (2.7)

—S; S

s, and s, denote two transmitted Symbolvectors that can be any size (including
one). As we mentioned in section 2.1,'the first and the second column of the matrix
denote the data symbol vectors transmitted by the first and the second antenna. While
the first and the second rows represent the two time slots it takes in a transmission
matrix to transmit the data vectors.

One of its important properties is that the transmission matrix is orthogonal. The
word “orthogonal” here means that the product matrix of the multiplication of S"
and S is a diagonal matrix, where S" is the Hermitian matrix (i.e. its transpose

conjugate matrix) of S. Generally, each diagonal element of this product matrix

Num_symbols

equalsto > |s [*. Inthis model:

i=1



s“*sz{al 0} (2.8)
0 &

which corresponds to the definition of orthogonal, and
2
a,=>|s [ (2.9)
i=1

We also call S™*S the correlation matrix of S.

2.3 Four-by-four Orthogonal STBC

In this section, STBCs with four-by-four transmission matrices are introduced. Four
time slots are needed to transmit once (i.e. in a transmission matrix) and four transmit

antennas are used in these schemes.

2.3.1 Real Four-by-four Orthoegonal (RO) STBC

As are the same in section 2.1;s;, S,, Ssyand s, can denote four transmitted
symbol vectors of any size and form the transmission matrix. The STBC scheme
proposed in [5] transmits real symbols, such as PAM and BPSK. Its transmission

matrix is shown below:

S = 2.10
-S, S, S S, (2.10)
-S, —S, S, S
S is also orthogonal. With real symbols, it is true that:
Num_symbols Num_symbols
Z s |2 = Z (Si)2 (2.11)
i=1 i=1

Hence,



a, 0 0 O
0 a 0 O
SH *g = 2 (2.12)
0 0 a O
0 0 0 a
where
2 2
a, = z (s) (2.13)
i=1

Here, integer num_symbois presents the number of transmitted symbol vectors s, in a
transmission matrix. The value of num_symboisiS 4 in this subsection. That means four
symbol vectors are sent during four time slots in a transmission matrix. So, the
transmission rate of this STBC is 1 and it is the maximum achievable transmission
rate in a STBC system. In any arbitrary. real signal system, there must exist STBC
schemes that have maximum transmission rate with any number of transmission

antennas [7].

2.3.2 Complex Four-by-four Orthogonal (CO) STBC

In this subsection, the transmission matrix of STBC is also orthogonal. But the

complex modulation, such as QAM and PSK, is used. For any kind of complex

[log, (N_Tx)]+1

2|—Iogz(N_T><)—| in an

constellation, the maximal achievable transmission rate is

N_Tx -transmit-antenna employed orthogonal STBC system [8]. Here, [x—\ means

the minimum integer larger than the real number x. For instance, the maximal
transmission rate for a 3 or 4-transmit-antenna system is 3/4. The transmission matrix
for a 2-antenna system (section 2.1), however, can always achieves the full

transmission rate (=1) whatever with real or complex constellation signals. For

9



complex signals, it cannot achieve full rate for a STBC when N_Tx>3. But for real

signals, however, full rate can be gained with any number of N_Tx [7].

The scheme introduced here, designed by Tarokh et al in [6,7], is a typical complex

four-by-four orthogonal STBC. A special feature of this scheme is that it only sends

three symbol vectors in every four time slots. Thus, its transmission rate is obviously

3/4, which corresponds to the fact mentioned above. Its transmission matrix structure

is:
Sl
—s;
S=| .
S5
V2
S5
V2
and
a,
SH*S = 0
0
0
where

%“w‘n*

(%2]
N

*

N7

(%2}
[V

N

o o ® o

3
a, :Zl Si |2
i=1

The decoding method for this type of STBC is a little different from that for other

types.

2.4 Four-by-four Non-Orthogonal STBC

o o o

L o o o

(2.14)

(2.15)

(2.16)

If it is not acceptable for a decrease in transmission rate, there must be some



sacrifices in other properties of space-time block codes.

One of these sacrifices is that one may reduce the uncoded diversity gain, and rely
on coding to exploit the diversity provided by the additional antennas.

Another approach is that the requirement of orthogonality of the space-time block
code may be relaxed. Several designs of non-orthogonal space-time block codes will
be introduced in the following. With full transmission rate, these designs are also

based on 4x4 transmission matrices [8,9].

2.4.1 Spaced Diagonal (SD) STBC

This non-orthogonal (also called _quasi-orthogonal) design was proposed by

Tirkkonen, Boariu and Hottinep in [8]."S;,S,:S,,5; are four complex constellation

signals. The STBC transmission matrix is-written as;

S S, S; S,
-s, s, -S, S,
S— 2 V1 4 93 (2.17)
S, S, S, S,
-s, S, -S, S
Thus, its correlation matrix is:
a, 0 b, O
0 a, 0 b
SH*S = ¢ N (2.18)
b, 0 a O
0 b 0 a
where
. 2
a, =) |s| (2.19)
i=1
and
b, =5,S; +5,5, +5,8, +5,S, = 2Re[s;S, +5,5, ] (2.20)

11



Each of the non-orthogonal parts (b,) is separated by 0 from the orthogonal parts
(a,)in S"*S, so the name “Spaced Diagonal” is given. From the location of b,, we

can see that there are two non-orthogonal pairs in this model: the 1 and 3" columns,

the 2" and 4™ columns.

2.4.2 Dual Diagonal (DD) STBC

Another work was proposed in [9] and developed the second Kkind of

non-orthogonal STBC. The transmission matrix is formed as:

N7
w w
w N
w w
N w
N -hm

S
S=| ¢+ (2.21)
s, —S, —S S,
s, -S, -S, S,

Here, each same kind of symbolin s,,S,/5,;,S, .formsa triangle in S. The correlation

matrix of S is:

aa 0 0 Db
0 b. O
grxg—| = % D (2.22)
0 b, a O
b, 0 0 a
where
< 2
a; = |s| (2.23)
i=1
and
b, =SS, +5,S, +5,S, +5,S, = 2Re[S S, +5,5,] (2.24)

The name “Dual Diagonal STBC” comes from that the nonzero elements are
located on the diagonal and reverse diagonal, respectively, in its correlation matrix.

The two non-orthogonal pairs of DD, however, are absolutely 1% and 4™ columns, the
12



2" and 3" columns.

2.4.3 Block Diagonal (BD) STBC
Here, we propose a novel kind of four-by-four non-orthogonal STBC named Block
Diagonal. Its may be generated by the general form in [12]. The transmission matrix

of this model is:

S, S,
-s, -S, S S,
§=| % %S (2.25)
S, S, S, S
-s, -S, S, S,
and
a, by 0 O
b, a2 0 O
SH*g=| ®° ° (2.26)
0 0 a b
0 0 b, a
where
5 2
8, =) |5 | (2.27)
i=1
and
by =S,S, +5,5, +5,8, +5,5; = 2Re[S;S, +5,5,] (2.28)

Eg. (2.26) shows that the two non-orthogonal pairs of S are the 1% and 2"
columns, the 3 and 4™ columns, which are all different from the non-orthogonal

pairs of SD and DD. Any two of four columns are in one non-orthogonal pair.
Therefore, three STBCs in section 2.4 have a total of C;=6 different

non-orthogonal column pairs, which sit on all 12 non-diagonal locations of S™ *S

(each occupies two). So these three STBCs contain all possible conditions of
13



non-orthogonal STBCs with two non-orthogonal pairs.

2.5 Summary

Comparing to the Complex Orthogonal STBC in the same transmission matrix size,
the Complex 4-by-4 Non-orthogonal STBCs have poor SER/BER performances at
low SNR (<15dB) [8,9] and more complicated equalization matrices at the receive
end, in the trade off of higher transmission rate. The basic properties and comparisons

of four-antenna STBCs introduced in this chapter are shown in Table. 2.1.

Properties Real or QOrthogonal ? Transmission
STBC Complex ? Rate
Real Orthogonal Real Yes 1
Complex Orthogonal Complex Yes 3/4
Complex Complex No 1
Non-Orthogonal

Table 2.1 Basic properties and comparisons between four-antenna STBCs

In chapter 3, we will demonstrate how these four-antenna STBCs are combined
with the OFDM system. In chapter 4, channel estimation methods for STBC OFDM
in chapter 3 will be given. Four types of four-antenna STBC models: RO, SD, DD,

BD, will be used.
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Chapter 3
Space-Time Block Code OFDM
System Model

We will combine STBCs with OFDM system in this chapter. The system we use in
this thesis is similar to that in [15,17], which has two transmit antennas, one receive
antenna, and Alamouti STBC (section-2.2).

Four transmit antennas are used here In‘this.system, and its model is depicted in Fig.
3.1. Any kind of schemes in section 2.3 and-section 2.4 can be chosen as the STBC in
this OFDM system.

The symbols are divided into huge block vectors first with size 4K x1 before

transmission. Each block is further separated into four smaller parts with each has K
symbols. s®(n) denotes the first K symbols of s(n), while s?(n), s®(n),

s (n) denotes its second, third, and last K symbols.

() |
(2) (n)
“(n)

s (n) ]

ln

s(n) = (3.1)

n

With each one of size M xK (M >K), four different tall matrices 6,, 0,, 0,

and @, (for input block symbols s®(n), s?(n), s®¥(n), and s“(n), respectively)
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represent four distinct linear block precoders where s(n) is first sent to. After

precoders, the input symbol block becomes

~w, T . r .
s M| |65’ | re, 0 o 0] "M
<@ ) @)
- s (n) 0,57 (n) 0 6, 0 0| s7(n
=" = o Tl e o 6 ol 7O 32
s (n)| [9:87(n) 3 s (n)
_§(4)(n)_ _94§(4’(n)_ 0O 0 0 o, _§(4)(n)_
where
0, 0 0 0
0O 6, 0 O
0= : (3.3)
0 0 0, 0
0 0 0 o,
isa 4M x4K matrixand s(n) isofsize 4Mxdl.
i
si(n) uy(n) u,(n) by
il WFFF : ACP = PS TX2 bz \\\A W(n)
= ~ Y - RX
) 8,(n) u;(n) 4, (n) >
§(n) 91192 §(n) STBC 2 > WFFI' £ Acp 2 PIS 53 /Lj?}’//; +
9 9 d - ~ - // Z
o0 Encoder | 5 (n) u,(n) i,(n) o
Wer Acp S
s,(n) W.. u,(n) A, u,(n) o5
s(n) s(n) (") y(n) y() y(n) '
s(n) | Decision |_S(N z(n STBC | Y P EA <
Device | r Decoder | (') - Weer Ree Sl

Fig. 3.1 Four-transmit-antenna STBC OFDM transceiver model with block precoders
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3.1 STBC Encoder and Transmitter

§(n) is then sent to the space-time encoder. Any four-antenna STBC can be used
to in the system. The four precoded sub-blocks of §(n): §(1)(n), §(Z)(n), §(3)(n),

and §(4)(n) will forma 4M x4 output code matrix of encoder as

—@ —@ —(@ —(@®) 7
5T 57m 50m 5 M)

B B B B 8—1(2)(n) 5(2)(n) g(Z)(n) g(Z)m) 0
[5.(n) 5,00 s, 5,(n]=|Z ~ - — . |=M( (n)=8

—@,, =@, —®,  —0O
ss (N s, (n) s; (n) s, (n)

—(4) —4) —(4 —@
s () s, (n) s3 () s, ()

(3.4)

where 1=1,2,3,4. s @ 3

s (N, so (n), 5(3)(n) and 5(4)(n)are all OFDM symbol.

S is the transmission matrix of:STBC in-chapter 2: Eq. (3.4) shows that the blocks in
s(n) in Eq. (3.2) are transmitted through four different independent channels in four
consecutive time intervals.

After the OFDM symbols encoded by the space-time encoder, they are modulated
by M-point IFFT, where the result equals to multiplied by an IFFT matrix W, .
Vectors u,(n) are produced (i=1,2,3,4), then.

The size of time domain symbol vector u,(n) is then be expanded by a length L
cyclic prefix (CP) to eliminate the effect of inter-block-interference (IBI) caused by
channel, and its size becomes M +L, then. The CP of W,, g(')(n) is the replicas of
its last L elements and will be put in front of it, where 1=1,2,3,4. The channel

order ((number of channel taps)—1) is assumed to be less than or equal to L. The
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insertion of CP is represented by A, in Fig. 2.1, and the outputs are Qi(n). They

are finally sent through transmit antenna i sequentially, i=1,2,3,4.

3.2 Channel

In the following descriptions, the channels between four transmit antennas and the
receive antenna are assumed to be frequency selective and their discrete time
baseband equivalent effect is in the form of the FIR linear time-invariant filter, which
has the impulse response vector

h =[h(0),h (@),...,h(L)]",+31=12,34 (3.5)
where L>max(L,L,,L,,L,). L, vis the channel order of h, i=1234.

The FIR channel H; isa (M +L)x(M=L) lower-triangular Toeplitz matrix and

its (s,t)thelementis h(s-t), site{l,2, --- ,M+L}.

M@© o0 0 0 0 0 O
h() h@© 0 0 0o o
h(2 h@ hO 0 0 0 0

o

_ (3.6)
0 0 0 h() - h@© O
0 0 0 0 h(L - h@O]

3.3 Receiver

At the receiver end, an additive white Gaussian noise vector w(n) is added to the

received block, in the first step. Then the CP is removed by discarding the first L
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received symbols. The removing of CP can Dbe described by the
matrix R, =[0,,, I,,]. And the matrix H; represents the equivalent channel
matrix without 1BI, where
Hi =R_HA_, (3.7)
In Fig. 3.1, the received IBI-free 4M x1 block y(n) can be written as:

_X(l) (n)_
X(Z) (n)

y¥(n) 9
YO |

y(n)=

After removing the CP, the OFDM symbols in y(n) are demodulated by M-point
FFT, which is presented as being‘multiplied by'the M xM FFT matrix W, to
obtain the received block y(n);

(]

@ (n)
® (n) (3.9)

(4 (n)_

<
~
>
j —
I
1
<l 1< I <]

We then adjust y(n) to y(n) by
e
(2)*(n)

“ )

< <

(3.10)

< |

<
=L
=
"
—~~
>
—

and sent to space-time decoder. The output z(n) is a block with diversity gain. After
all, the original data symbol s(n) is recovered from z(n) by applying the equalizer
Ir. §(n) is the soft decision data here, which is perturbed by the noise. It is then put

into a decision device. Finally, the hard decision data appears. The frequency domain
19



version of Fig. 3.1 can then be plotted in Fig. 3.2.

x1

s |

\ 4

] T>2 D(H,) j\
s,(n) D(H,)

0,0, | s T > T
§(n) 1072 §(n) STBC B Tx3 Rx
0.0, Encoder | s.(n) T J I +
Txd »D(H,)
sm | -

D(H,)

S(n)| Decision | S() ()| steC | Y v

Device I Decoder [ () ==

Fig. 3.2. Frequency domain version of four-antenna STBC OFDM transceiver model

The frequency response vector of channel-*h.~in Eq: (3.6) is

ﬂi = Vbi (3-11)

with matrix V is the submatrix of the first L+1 columns of W, .

The equivalent channel matrix in time domain H: can be diagonalized by pre- and

post-multiplication with W, and W, :
Weer ﬁiWIFFT =D(H,) (3.12)
where D(H;) denoting the diagonal matrix with H, on its diagonal.

Combining the fact above, Eq. (3.4) and Eq. (3.9) together, we can rewrite y(n)

in Eq. (3.9) as:
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D(H, )sm(n)]_

I

[D(H,)5®(n) ]

y(n) = +y(n) (3.13)
[
[

2 4
Y[ DH)EOM)]
i=1
4
Y[ DH)FI ()]
L i
where
PG
viin) | (W 0 0 0
)
v (n) 0 W, 0 0
v =|"y " |= Re,w(n) (3.14)
v (n) 0 0 Weer 0
_y(4) (n)_ 0 0 0 WFFT

3.4 STBC Decoder and Equalizer

Here, let us take BD in section 2.4.3 for example, Eq. (3.10) can be written as:
G0

@ (n)

< 1<

y(n)=

<) |
C

)
=}

j —

4y (n)_

I
<

'D(H) D(H,) D(H)) DH,) s ™| [v
D(H;) D(H;) -D(H;) -D(H})|s M| [v? )
D(H,) D(H,) D(H,) DHs) || “m)| | v?(n) (3.15)
[D(H,) D(H:) -D(H;) -D(Hy) || g@ ol [V ()

=D @s(n) +7(n) = As(n) +,(n) = x(n) +7(n)

where
‘D(H,) D(H,) D(H,) D(H,)] V() ]
- - - - @
p_| D(HY) D) -DE) D) | () .16)
D(H,) D(H,) D(H,) DMH,) | T |y
[D(H;) D(H:;) -D(H;) -D(H) VO ()|
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A=D 0O, x(n)=As(n) 3.17)
If the frequency domain channel state vectors H,, H,, H, and H, are

available at the receiver, z(n) can be obtained from g(n) by:

2(n) =D y(n)

=D"D ©s(n)+D" 7(n) (3.18)
=D, s(n)+&(n)
where
D, =D DO (3.19)
and
&(n)=D" 5(n) (3.20)

In above equations, the decoding step D' D. comes from S"*S of STBCs in
chapter 2. Eq. (3.10) will turn thepproperty of orthogonal (or non-orthogonal) of

STBCs from S into D. So the cortelation matrix can be used in decoding, for

simplification. Note that it has been achieved multiantenna diversity of order four.

From Eq. (3.18), we know that D, and the inverse of (D_AH D_A) is needed to
recover s(n) from z(n). It is clear that (D_AHD_A) must be full rank (=4K ). And
thus D_A in Eq. (3.19) should be full column rank (=4K), which means every

M xM submatrix in D_A (except 0:M x K ') must be full column rank (=4K).

So the designing of precoders is a main issue. Two important conditions in [15]

should be taken into consideration, here:

Condition (3.1) M >K+L.

Condition (3.2) 0,,i e{l,2,3,4} is designed so that any K rows of 0, are linearly
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independent.
The form of precoders will be mentioned later in chapter 5.

After going through the equalizer T, the output is the soft decision data:

s(n)=T"z(n)
~inv(D,"D,|D," 2(n)
[ H—\—H— (3.21)
:|nv(DA DA)DA D, s(n)+T"-&(n)
=s(m +inv(D," D, |D," ()
where
r- inv(D_AHD_A)D_A (3.22)

At last, the soft decision data is put into the decision device and projected onto the
finite alphabet to get the hard decision data é(n) -

The channel state information (CSI) in Eq. (3.19) is assumed to be perfectly
available at the receiver end. In the next chapter, wewill exhibit how to get the

channel state information when it is unknown.

23



Chapter 4

Subspace-based Channel
Estimation and the improved
method Phase Direct

In four-antenna STBC OFDM systems, the channel estimation method is based on

the redundancy caused by four M:xK' linear.precoders 6,, 0,, 0,, and 0,, which

is similar to the channel estimation in the two-antenna system in [17].

We will first simply describe. the “main'-idea-of the subspace-based channel
estimation. Similar or same methods: had "been proposed for some two and
four-antenna STBCs in [11-14,15,17]. After the description, the design of precoders in
our systems is introduced. The theoretical mean square error of this algorithm derived
in [17] will then be mentioned.

In section 4.2, an improved finite alphabet method based on the subspace-based
channel estimation named phase direct (PD) [16], will be introduced to make the
channel estimates better. The PD based on subspace method in [17] only focus on
Alamouti STBC [4] with BPSK modulation. Here, we will extend it to four-antenna
STBC OFDM systems in section 2.3.1 and 2.4. We will also extend all these three
systems from BPSK modulation to QPSK modulation, which will also result in more

possible channel power response conditions. Getting channel power is an important
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issue in PD. Such issue in the two-antenna Alamouti STBC OFDM system with
BPSK was also mentioned in [17]. In four-antenna STBC OFDM systems, because
the possible conditions of channel power response become more, the getting of the
channel power response is more complicated than that in a two-antenna system. And
so is that in QPSK than in BPSK in the same system. The algorithm we use in this
thesis to get channel power response is to select the most proper one from all its
possible conditions. So we should find out all the possible conditions of its channel
power response. Such algorithm is going to be discussed in section 4.2.2.

Furthermore, the feasibility for the algorithm in section 4.2.2 depends on that all
possible symbol conditions for S of STBCs are non-singular. To achieve this goal,
we will introduce the diagonally weighted models of STBCs in section 4.2.3. PD for
four-antenna STBCs in static channel' will be expressed in section 4.2.4.

Finally, in time-varying channel,.the choice of.window size of received blocks in
PD will also be mentioned. This will.be-shewnyin section 4.2.5 while the same issue
was also taken in [17]. A longer window.of received blocks can lessen the effect of
noise but cannot follow the varying channel, while a shorter window can follow the

channel variance more precisely than a longer one.

4.1 Subspace-based Multichannel Estimation

In the following description in this method, as the same in chapter 3, we also

choose Block Diagonal (BD) STBC in 2.4.3 to show the estimation algorithm here.

4.1.1 Subspace-based Multichannel Estimation Method

First, the algorithm starts from the received data vectors in Eq. (3.17), neglecting
the noise:
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y(n) = x(n) = As(n) (4.1)
N blocks of g(n) =x(n) are collected and form a matrix X, inthesize 4M xN:
[x@, x(2), -, x(N)]=X, =AS, (4.2)

where
Sy =[s), s(2), -, s(N)] (4.3)
It is impossible to implement this algorithm on the Complex Orthogonal (CO)
STBC system in section 2.3.2, however, because its received data vectors z(n)

cannot be presented in the form of As(n) in Eq. (4.1) [11].

Compared to the condition in the two-antenna system in [15,17] that the number of
received blocks N should be large enough (>2K). N must satisfy the condition
that N >4K here in four-antenna systéms to.guarantee that S, is with full rank
4K .

According to Condition (3.1),”Condition (3.2),-and the condition above. s(n), a
4K x1 independent data vector, will show the fact that rank(X,)=4K, and that the
nullity of X, null(X,)=4M —-4K . Note that the range space of X,
R(X,)=R(XX}y)=R(A). So the singular value decomposition (SVD) of X, can

be written as:

X, =AS, =[U, UH]F“X OMVXH} (4.4)

0 of V'

n

where > =diag(o;, o;, ---, o,) are range eigenvalues of X, , and

ol >0 >-->0} . Thenull eigenvalues (all zeroes) yield null eigenvectors of X,,,
which form the 4M x(4M —4K) matrix U, and column span the null space

N(X,) caused by redundant preorders.
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Next, we use the property that N(X,) is orthogonal to R(X,)=R(A), it appears
that:
u;A=0, k=12,---,4M —4K (4.5)
where u, is the kth column of the null space matrix U, . It is also the kth null
eigenvector of X, .

Then, we separate the 4M x1 u, into four equal size parts:

gk_lst

u
T (4.6)

Uk 3r
Uy s

where all of its four parts are M x1 vectors.

Here, we take BD in OFDM for example. By Eq. (3.15) and Eq. (4.5), it can be

shown that
T\
—D(ﬂl) D(H,) D(H,) D(ﬂ4)_ 6, 0 O
W W Wy U ]| ) D) D) DU 0,
- - - -~ - D(H;) D(H;) D(H,) DH;) ([0 0 6,
[D(H,) D(H;) -D(H,) -D(H;)JL0 0 0
=0
(4.7)
Forany M x1 vectors a and b, itis true that
a"D(b)=bD(a) (4.8)

where D(*) is as defined in chapter 3.

So we can write Eq. (4.7) as
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D(!;_lst) D(!;_Srd) _D(Hk_znd) _D(gk_4th) 6, 0 0 O
[ﬂ'lr ﬂ‘; ﬂ? ﬂ:l:| D(Hl(_Srd) D(Hf_lst) _D(gk_mh) _D(gk_an) 0 92 0* 0 :Q
D(Hk_an) D(Hk_4th) D(Qk_lst) D(Hk_srd) 0 0 6, 0
_D(g;_4th) D(H;_an) D(Qk_srd) D(Qk_lst) ] 00 0 0
~G (o) Y
(4.9)
where
DUy 1) DU 30) DU o) DUy )
G(u) = D(Hk_srd) D(Qk_lst) _D(!k_mh) _D(Hk_znd) (4.10)
2k/J — * * .
D(Qk_znd) D(Hk_zuh) D(Qk_lst) D(Hk_srd)
DUy u) DUy o) DUy 30) DU 1) |
and
6, 0 0 0
0 0, 0 0
Y= P (4.11)
0 0 0, 0
0o 0 o 9;

Using the relationship between™h. and H.“in Eqg: (3.11), Eq. (4.9) is transformed

into
vVi 0 0 0
T T H H 0 VT 0 0
[ ohond N e [GLoY =0 (4.12)
0O o0 o0 V-
=F
where

F= (4.13)
0o o0 o V-

In EQ. (4.12), the channel states are presented in time domain rather than in frequency

domain in Eq. (4.9). The former is adopted because FG(u,)¥ has less number of
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rows (4(L+1)) than G(u,)¥ has (4M ), and it can thus reduce computation
complexity.
Now, we have every null eigenvector u, in Eqg. (4.5) doing all the steps above,

with k=1,2,---,4M —4K . And then put them in a row, we can get

(b by b b [F[GU)¥, GW)¥, - GlUuw )¥]=0 (414)

i Q

The zero vector 0 here in Eq. (4.14) has 1 row and 4(L+1)x[4K x(4M —4K)]

columns, and
' =[h b ' h] (4.15)
Q=F[GW)¥, GU)¥, - GUy_u)¥] (4.16)
So,
Ih"QI*=h"QQ"h=0 (4.17)

In Eq. (4.17), we can see that the estimated-channel can be found as the eigenvector

which corresponds to the smallest eigenvalue of QQ" :

1=

" —argmin|h"QQ" (4.18)

lIbi=2

By Eq. (4.15), the estimated channel is

*

h, (4.19)

|=
Il
|

L0,
This algorithm is named subspace-based channel algorithm since it is based on the
null space U, of received data matrix X, .
However, in the realistic condition, the white noise is added at the receiver end. In

this case, X, Iisreplaced with Y, , and Eq. (4.4) will be in the form as
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Y, :{fjx ﬁn} A (4.20)

The diagonal matrix ZX, just as the relation between ZX and X, in Eq.

(4.4), also has range eigenvalues of Y, in its diagonal elements. Zn, however,
will have the variance of white noise on its diagonal [15].
As it mentioned in [15,17], in order to simplify the computation, we replace Y, in

Eq. (4.20) by the sample covariance matrix of i(n) in Eq. (3.15):

R. = %zg(n)f (n) (4.21)

In Eq. (4.19), the estimated channel is not the final estimate because the solution of
[DI h; hi' h }Q:Q in Eq. (4.14)is not unique. According to the description

about channel identifiability in [15]; if distinct precoders (any of the four precoders is
different from each other) are used, channel identifiability within one scalar « is

guaranteed. For example:

bl a1t 0 0 017h

h,| |0 ar 0 0 |h, .22
Al 10 0 a1 0 |h, '
23 .

Rl Lo 0 o aufh,

holds true in BD, where ﬁi is the final estimate of channels, 1=1,2,3,4. Here, we

use one pair of pre-precoding pilots in [15] to resolve the unknown scalar « .
Other three four-antenna STBCS, however, can also be adopted in the proposed
subspace-based channel estimation algorithm. The major steps of this algorithm in

realistic environment and simulation are as follows:
30



Step 1) Collect N received data blocks g(n) and compute R, in Eq. (4.21).

Note that N >4K is the necessary condition in four-antenna systems.

Step 2) Find out the eigenvectors u,,k=1,2,---,4M —4K, corresponding to the
smallest 4M —4K eigenvalues of the matrix R, by proceeding its SVD.

Step 3) Build Q in Eq. (4.16).

Step 4) Determine the eigenvector corresponding to the smallest eigenvalue of QQ"

in Eq. (4.18) as the initial estimate.

Step 5) Resolve the scalar ambiguity « and determine the final estimate of channels.

4.1.2 Theoretical Mean Square Error of subspace method

The theoretical mean square error (MSE).for the.proposed estimator was derived in
[17]. For high SNR and large sample size (large N ),-an approximation MSE is
E(Ih-hIP) = E(lah|P) = [ trace(sh'ah”)|

_ ou-trace(Q' Q) Ligf Q" I
oZN oZN

(4.23)

This formula can be adopted in four-antenna systems as well as in the two-antenna
system. ﬁ is the estimate of channels and h is the real one. Both signals and noise
are assume to be i.i.d random variables with zero mean and variance o’ and o,
respectively. So we get o’/o> as SNR. N is the number of sampling received

data blocks. And the matrix Q", which comes from Q in Eq. (4.16), will be

explained as follows: With noise is added, assuming Q permits the SVD

T DIP I
Q = |:Uq Unq:| N H (424)



where Q" is computed as

H

Q -U, (Z qj_ Ve (4.25)

4.2 Phase Direct (PD)

PD was proposed in conventional (SISO) OFDM [16]. It was then addressed to
Alamouti STBC OFDM ([4], section 2.2) in [17]. In this thesis, we will combine it
with four-antenna STBC OFDM systems, and based on subspace method to improve

channel estimation.

4.2.1 PD in Conventional OFDM

We first show how PD performs| in ‘conventional OFDM. The signal modulation

types in  discussion  are P-ary- PSK = constellations  with  size
P :{fP —el?P | p=12..., P} , here:.In convention OFDM, the signal at the receive

end can be written as
y(n,m) =H(p,)s(n,m)+n(p,) (4.26)

where s(n,m) and y(n,m) are the transmitted and received data signals,
respectively, through the m th subcarrier on the nth received data block. s(n,m) is
in the form of P. H(p,) is the channel response of the m th subcarrier in
frequency domain and n(p,) is the corresponding noise. A total of M subcarriers
and N received data blocks are taken.

For the simplification of getting the power of P to signal in Eg. (4.26), we neglect
the noise, and take the expectationto n:

E{y" (nm)} = E{[H(p,)s(nm)]" | = H (p,)E{s" (n,m)} (4.27)
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With N received data blocks, the sampling averages of y(n,m) can replace its

N
expectation by E{yp(n,m)}:%ZyP(n,m). Assume that s(n,m) and y(n,m)

n=1

are all known at the receiver, the desired channel power response of H(p,) is

1,
— n,m
N;y( )

H" (pn) =—E”{Sp(n'm)}

(4.28)

Using the property of PSK constellation of size P, expectation of s(n,m) is

E {sp (n, m)} =1. Therefore, Eq. (4.28) turns to

H” (o, =+ 3y () (4.29

One main process in PD is to get the:channel. phase response from the information

of the channel power response inEq!(4.29)..Foreach me {1,2,---, M } , the estimate

of H(p,) Is

A~ p 1/P

H(p,) =[H (o) ] a (4.30)
where [HF’(,om)]“P is the  channel amplitude  response, and

A E{Zm} ={e12”"’P | p=1,2,-~~,P}, however, is the phase ambiguity in taking the

pth root of e'*'". There are P possible values of phase values, so we need to

resolve the phase ambiguity to get the correct channel phase response by comparing
all the possibilities in {An}:
_ R p 1/P ~ 2
A =arg min || Heg (o) =[H" (o) | 2o | (4.31)

H..(p,) here is the frequency-domain initial estimate of channels on the mth

subcarrier by some estimated method. We may improve its accuracy through the
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following PD steps:

Step 1) Let the estimate from some method as the time-domain initial estimate ﬁ(l)
of PD. Transfer it to frequency domain by means of FFT and get E(l). Set

Hest(pm):/H\(l)(pm) and PD_iter:l,for m=12,---,M .

Step 2) Apply Eqg. (4.31) in every iteration to resolve phase ambiguities. Produce the

phase-compensated channel response estimate vector in frequency domain:
1/P 1/P
Hup ={[H7 ()] Ao [H () [ | (4.32)

Note that H_,(p,,) must be replaced by ﬁ(po_ater)(pm) in the (PD_iter )th

iteration.

Step 3) Add 1to PD_iter. Then, update channel estinates in time domain:

A

b(PD_iteH—l) = VH ﬂtemp (433)

and in frequency domain;

~

ﬂ(PD_iter+1) = Vh(PD_iteHl) (4-34)

—~

H e iersyy 1S @n important information to use in the next iteration. Matrix VvV was

defined in section 3. Eq (4.33) and Eq (4.34) together are called denoising. On one

hand, Eq (4.33) means that H,,, is performed an M -point IFFT and keep the first

L+1 entries (i.e. the multipath length) of ﬁ(PD_iterﬂ) through truncation. On the other

hand, Eq. (4.34) signifies that an M -point IFFT is performed on the vector formed

A

by hiep iersyy after zero-padding.
Step 4) Go to the next (( PD_iter +1)th) iteration. Repeat Step 2 and 3 several times

- n ~ 2 - - - -
until || hep ierisy = Dipo ieery I 18 Within some tiny range.

The Signal-flow chart of PD in conventional OFDM is shown in Fig.4.1.
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PD _iter>1
. N A

N received data blocks y(n, m)

H ()= Y ()

PD_iter=PD iter+1

P iter+1)

" HeA[H @] 4[] 4|

Prese-conmpersated frequency response

(multiplied by V)

~ F] P B(PD_itenl)

IFFT

Hroiter)

Yes

Stop and choose N, .y 8 the final estimete

Fig. 4.1 Signal-flew chart of PD in conventional OFDM

4.2.2 Getting Channel Power Response for PD in STBC

OFDM

The final purpose of PD is to solve phase ambiguities after getting the channel

power response from the information of known data. So the obtainment of channel

power response is an important issue in PD. How to get channel power response in

conventional OFDM systems is specified in section 4.1 and it is effortless. In STBC

OFDM systems, it is not as easy as in conventional OFDM systems since the received

data consists of at least two different data. [17] had proposed a sum-difference square

method to obtain it in Alamouti model. In the next section, we want to expand the

algorithm in gaining channel power response to four-antenna models that fit the

subspace method. This algorithm is also theoretically suitable to different kinds of

signal constellations but not only to BPSK.
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First, we start from the initial received data vector in Eq. (3.13) and according to Eq.

(3.4):
—w, ] i i
Y OL o [
? @)
y(n) = %(3)@) _g* 1;2 N Y(S)E”; (4.35)
- y (n) s v
—@ D] | v®n)
30 )]

Here, we let D, =D(H;), i=12,3,4, only focus on data through the mth subcarrier,

and leave out the noise for the purpose of simplication.

s®(n) = mth data of 5 (n)
y@(n) = mth data of g(i)(n) where i=1234 m=12--M (4.36)
H; (p,) = D;(m,m)

So we can write the variables in Eq. (4.36) as

Yo (M) H1(05)
Y ) | BB
Ym(M) = YO (n) =$,(N) H.(0,) =8, (M *H(p,) (4.37)
Yo () H.(on)
H(pn)

* is as defined in chapter 2. s_(n) is obviously in the form of transmission matrix

S we introduced also in chapter 2. And the channel power response corresponds to

mth subcarrier is computed as

HlP (pm)

Hy (p,)
~[H(p. ).~ P 4.38
HE (o) [H(p,)] (4.38)

HY (o)

Her (0,) =

So the key point of getting H .z (p,) is to determine H(p, ), first. We can do this

from Eq. (4.37) by

H(p,)=[s,(M] " *y. (M) (4.39)
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if s_(n) has its own inverse. Here, y_(n) is known at receiver. Next, we have to

find out each condition of s_(n) corresponding to all possible data symbol pairs,

s, (n) . For instance, in BPSK system, there are two conditions (+1) for each symbol.

And will result in a total of 2* =16 possible s_m(n) (see EQ. (4.40)) in four-antenna

STBCs, which has four symbols in one matrix.

s_m(n):[s,ﬁ)(n) s@(n) s (n) sﬁj"(n)]:[l 111111 -1,
SO R

(4.40)

So this model has at most 16 possible conditions ofs_(n), which also yields to at
most 16 possible conditions of H(p,) by Eq. (4.39). If we use QPSK in this model,
there will be 4% =256 maximum possiblescenditions of H(p,) in same models.
H.<(p,,) with many possible:conditions are then acquired by Eq. (4.38).

Finally, we can determine the real. H.”(0,) (i =12,3,4) by comparing each possible

condition of H .z (p,):
. —~P
HY (py) =arg min [[HZ (o) = Hi (o) I (4.41)

where ﬁip(pm) e {ith element of all possible conditions of He.x (0,,)} , and H,, (p,)

is the estimated channel via subspace-based method. The signal-flow of how to find

H' (p,) isasin Fig.4.2 below.
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s (M=) sP) sP(n) sP(n)]
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@, | @
y () Yn (N) v

;» Y

" Coute H(g) =[5, ()] *y, () Get H; (p,,)

> ‘Hipm:arr!in H:s[miﬁipm2 .
()= 1in | HE (2~ ) 1234

4

9(3) ") y ang) ") ﬁ: for all possible H,(2,) E{ﬁi(pm)}

v ) Yo ()

Fig. 4.2 Signal-flow chart of getting channel power response HF (p, )

infour-antenna STBC OFDM systems

4.2.3 Diagonally Weighted STBC models

The most important and necessary condition is that s_(n) must be nonsingular
corresponding to all possible data symbol pairs. Because we do not want to miss
any possible condition of H(p,) if it cannot be obtained for the inverse of the
corresponding s_(n) does not exist.

However, we find out that in three non-orthogonal STBC models (SD, DD, and
BD), s,(n) will be singular in some of the possible symbol pairs. To solve this
problem, we modify S by multiplying their diagonal elements with a positive real
index k. Here, let’s take BD in section 2.4.3 for instance. The transmission matrix
becomes
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—-s.  k*(-s. s s
S=| (=54 N 2 (4.42)
S, S, k*s, s,
-S, —S, s, k*s
and the correlation matrix of S is
a61 b61 CGl O
QH *g = bez 8, 0 —Co2 (4.43)
C61 O a‘62 b61
0 _Cez bez a61
where
4
8, =K’ |5, P +D |5 [ (4.44a)
i=2
3
8 = 2| s F+k*|s, [ (4.44b)
i=1
by, =K(S;'S, +5,8,) + (5,5, +555,) (4.44c)
b, = K(S,S, +5;5,) + (S, S5+ S:S,) (4.44d)
Cop = (K=1)(S;S; +5,5,) (4.44¢)
Cor = (K=1)(s;S; +5,5;) (4.44)

Compare Eqg. (4.43) with Eq. (2.26), we can see that the non-orthogonality of the

modified non-orthogonal STBC (k #1) is severe than the original one (k=1) in

chapter 2.
Next, we will take BD in BPSK system for an example to show how modified

STBC avoid singularity. Let’s start from Eq. (4.37), multiply both sides of the
equation by s (n), we will get

Sm(M*Y, (M) =5, (M*s, (M *H(p,)=Cs,,(0)*H(p,) (4.45)
where Cs_(n) is the correlation matrix of s_(n). Our purpose is to make sure that

Cs,_ (n) are non-singular so that
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H(p,)=[Cs, ()] *sh () *y,u (M) =[5,,(M)]  *y,(n) (4.46)
In BPSK, it is true that  s%"(n) =s!’(n) e {£1}. Then, we have a total number of
16 possible symbol pairs s,(n) in Eq. (4.40) and their corresponding s, (n),

Cs,, (n). From Eq. (4.43), (4.44 a-f) and substituting 16 kinds of s_m(n) , We get:

a b c O
b a 0 -c
Cs,(n) = 4.47
=) o (4.47)
0 c b a
where
a=k*+3 (4.48a)
b=0,c=0
or (4.48b)
b=22(k+1), c=x2(k =1)
Then, we take the determinant of . Cs,_ (i)«
det[Cs,, (n)] = (a® —b* - c?)? (4.49)

According to a,b, and ¢ in functions of k, we discuss about the non-singularity of

Cs_ (n) rather than s_(n) intwo cases:
Casel) a=k*+3, b=0, c=0:

det[Cs,, ()] = {(k2 +3)2 + 0% +07)" = (k2 +3)* %0 (4.50)
Case 1 guarantees that Cs_(n) is non-singular, in which half of 16 possible

conditions satisfy.

Case2) a=k*+3, b=22(k+1), c=22(k-1):
det[Cs,, ()] = {(k2 +3)? +[+2(k + D] +[+2(k —1)]2}2 = (k? —1)* (4.51)

For the purpose of Cs_(n) (also s_(n)) being non-singular, k*-1=0. Hence,
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k=41 (or k=1 for k is positive).

Note that any kind of modulation can be adopted in this algorithm. Nevertheless,
there are some constraints in non-orthogonal STBC OFDM when BPSK and QPSK,
which we would like to focus on, are used. The numbers of possible symbol pairs that

will make s_(n) and Cs_(n) singular in four-antenna STBCs are shown in Table

4.1 (BPSK) and Table 4.2 (QPSK).

STBC
k RO SD DD BD
=1 0 8 8 8
#1 0 0 0 0
Table 4.1 Number of symbol pairssmake. s.(n) and Cs_(n) singular
in different STBCs in BPSK (Total:-16 pairs, k>0)
STBC
k SD DD BD
=1 32 32 32
#1 0 0 0

Table 4.2 Number of symbol pairs make s _(n) and Cs_(n) singular

in different STBCs in QPSK (Total: 256 pairs, k >0)

When k=1, s_(n) is singular, and this makes channel power getting and PD

unavailable. Therefore, the case k =1 of non-orthogonal STBCs can only supply the
subspace method, but cannot take part in PD. So we should avoid this situation by

letting k #1 when performing PD in three non-orthogonal STBC models.
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In RO, however, this problem does not exist (see Table 4.1) because its

transmission matrix certifies the full rank and non-singularity of s_(n) for all

possible signal pairs in BPSK and QPSK. Still, this model can also be modified. We
will have all the four four-antenna STBCs (RO, SD, DD, and BD) diagonally
weighted in computer simulations and set k to the same value when comparing the
performances of all these models. Transmission matrices and their correlation

matrices of these four diagonally weighted STBC will be mentioned in Appendix.

Another important point should be noticed is that s (n), elements of precoders’

output 5" (n), must equal to the original input data symbols in s”(n) in Eq. (3.1)
and (3.2) so that the algorithm above can work. For this reason, precoders should be
designed carefully. We will specify.ithe ‘proper precoders’ form early in the next

chapter.

4.2.4 PD in STBC OFDM
PD has been applied to Alamouti STBC [4] OFDM system in [17], based on BPSK

baseband modulation. In this thesis, according to the algorithm getting channel power
response in the previous section, it can be extended to four-antenna systems, and

applied to both BPSK (P =2) and QPSK ( P = 4) modulations (See Fig.4.3).

BPSK QPSK

Fig. 4.3 Signal constellations of BPSK and QPSK used in PD

Section 4.2.2 exhibits the method how to get H(p, ), which corresponds to ith
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channel and mth subcarrier, where ie{1,2,3,4}, me{1,2,--~,M}. We receive a

total of N data blocks in this algorithm. For the nthblock (ne{1,2,---,N}) and

the ith channel, we should further get all M subcarriers’ frequency channel power

response
ﬂiF,’(n) = |:HiF,)(n) (21, Hil,j(n) (0,) HiF,j(n) (ou )} (4.44)

In static channels (i.e. channel states will always be constant), we average all the

ﬂf «m to getthe average channel power response H’ by

1 N
Hip(pm)zﬁlei?(n)(pm)v m=12,--,M (4.45)
and
HP 1<-,,p
H, :W _lﬂi,(n) (4-46)

Then, we apply from Eq. (4.27) to (4.34) by selecting the proper P to perform PD
and better the channel estimate accuracy. In Fig.4:4; we can see how it works in static

channel, where each received block is

g(n){f)(n) y2m v m g“"(n)T, ne(l2 N}, (4.47)
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Subspace-based
channel estimator

Average to get HF (p,,) s

: 1stPIOck —_— Gt Hip(pm)
j_ji- o :
. . . . - q

Nth Block
Y(N)

—> Gt H(p,)

PD_iter =PD_iter +1

hi(PD_ileHl) = hi(PD_iler) ?

(multiplied by V) Get 4, by (multiplied by V")
N | H.(n) [ ]UP A Phase-compensated frequency response I
hig FFT ™ Ay =arg min || H, () - H (o) | nll ol P TP e o IFFT
T " i Huy =[] "2 [ (0] 2 |
| PD _iter >1 I
| e NO ~ ~ - hl(PD_IIEI‘+1) I

0

Stop and choose ﬁ,(pD_,teM) as the final estimate

PD lteration

Fig. 4.4 Signal-flow chart'of PD-in.STBC OFDM in static channel

Combining with BPSK and QPSK, the simulation in channel estimation MSE of all

the three models will be performed and simulation results will be shown in chapter 5.

4.2.5 Choice of received blocks window size in time-varying

channel

In time-varying channel, however, we use several same system flows instead of

using only one flow in Fig.4.4. The number of system flows depends on how many

received blocks are averaged each time (also called window size). Because the
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channel states change, the received data will then be influenced. The method in
section 4.2.4 thus will cause bigger estimation error. It is apparent that if the length of
window size is N

it will cause a number of (N/N_ . ) system flow. Suppose

win ? win

N, isselectedthat (N/N

win

win) ECOmeS a positive integer.

As the case stands, a system with a shorter window size can follow the changes of
channel. But it cannot fight against the noise as well as the system with a longer
window size does. How to choose a proper window size relies on the changing speed

of channels. Fig.4.5 displays the signal-flow chart of PD in STBC OFDM in

time-varying channels with the window size= (N /3) . Note that the system block “PD

Iteration” here was specified in Fig.4.4.
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Fig. 4.5 Signal-flow chart of PD in STBC OFDM in time-varying channel
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Chapter 5

Computer Simulations

In this chapter, computer simulations are implemented to verify four four-antenna
STBCs: RO, SD, DD, and BD, along with OFDM system and algorithms proposed in

chapter 4. We assume that all of four channels h,h,,h;, andh, are i.i.d and are

4
normalized (i.e. Zl h |’=1) at any time. Channel estimation error performances are
i=1

exhibited in section 5.1. First, simulations of.subspace-based method discussed in
section 4.1 are displayed in section'5.1.1. Next, we will show the performance of PD
in both BPSK and QPSK systems in-section'5.1,2../At last, in section 5.1.3, all these
methods and models are performed in" time-varying channels. Bit error rate
performances of these STBC models are exhibited in section 5.2.

Before simulation results are illustrated, we should determine several things ahead.
First, the figure of performance for channel estimation is defined in frequency

domain:

lh=hIF _llanf (5.1
TG |

where ﬁ is the estimate of channel and h is the real one. We call this in Eq. (5.1)

the normalized mean-squares channel error (NMSCE) in frequency domain. Although
the value of the result in this equation equals to the NMSCE in time domain, we will

compute it in frequency domain.
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Next, we demonstrate the form of our precoders. With M =32, K =24, we design
four M x K linear distinct precoders as
0, =[1,(14:21:);1], 0,=[1,(15:22,);1,]
0, =[1,(16:23,:);I,], 0,=[I(17:24,:);1,] (5.2)
where I, represents a KxK (K =24, here) identity matrix. The matlab form

[I(a:b,});I,] means |:IL(a~b) I T in the matrix form. Where the matrix form

I o Of the matlab form I, (a:b,:) is the submatrix of I, which contains from

the ath to the bth row of I,. 0,, 0,, 0,, and 0, are all used in four-antenna

STBC OFDM systems. Precoders in these forms can keep the algorithm in section

4.2.2 works successfully [17].

5.1 Channel Estimate Error Performance

5.1.1 Subspace-based Method

In section 5.1 and 5.2, static channels are used in examining the estimator error. We
want to see how the subspace method performs in different SNR. Several basic
simulation setups are as follows:

m N =100

m M=32 K=24

m Rayleigh fading channels

m L=4 (5-raychannels)

m BPSK or QPSK (in section 5.2) modulation
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We first illustrate the tests of theoretical and simulated subspace method in four
STBC models. The theoretical result follows Eq. (4.23). Fig.5.1 shows the theoretical
result of subspace method in diagonally weighted RO and BD STBC OFDM. As SNR
becomes higher, the performance becomes better. This property appears in all four
STBCs and will be shown in the following figures. Fig.5.1 also shows that BD

outperforms RO under the same K.

RO & BD, Theoretical Subspace, N=100

10- £ ‘ ‘ ‘ ‘ ‘ ]
: —+ RO (k=1) |
, — — RO (k=2) | |
10°. ~ </ RO (k=3) | -
. —<4—BD (k=1) ||

i . —#—BD (k=2)
10°} ¥ - —~—BD (k=3) |-

NMSCE

|
0 5 10 15 20 25 30 35
SNR(dB)

Fig. 5.1 RO & BD, Theoretical Subspace NMSCE

From Fig.5.2 to Fig.5.5, theoretical and simulated subspace NMSCE are exhibited
in diagonally weighted STBCs RO, SD, DD, and BD. k=1 and 2 is set. In these
figures, we can see that the simulated result is worse than the theoretical one.
However, as SNR increases, the simulated result approaches the theoretical one,

which fits the assumption of Eq. (4.23) in high SNR condition.
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10 = E
b ]
107, .
10% i
A
10'5 | | | | | |
0 5 10 15 20 25 30 35
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Fig. 5.2 RO,~Theoretical and.Simulated Subspace NMSCE
) SD
10 ¢ ; ; 3
4 ©— k=1, Theory ]
—4— k=1, Simulation | ]
—<— k=2, Theory
3 —+H— k=2, Simulation
10 [ -
‘\:f\\\\ :
10_4 E \x‘@;,,xx \\‘E’}n B
ZN
~
107 TO— E
: “?
10'6 I I I I I I
0 5 10 15 20 25 30 35

SNR(dB)

Fig. 5.3 SD, Theoretical and Simulated Subspace NMSCE
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1 0-2 f ‘ ‘ ]
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1031 e — - —/— k=2, Simulation i

P S~ 1
i . _ . ]

10

10

10°

DD

0 5 10 15 20 25 30 35
SNR(dB)
Fig. 5.4 DD, Theoretical and Simulated Subspace NMSCE
BD

—©— k=1, Theory
—<— k=1, Simulation
—~— k=2, Theory

—+F— k=2, Simulation

|
5 10 15 20 25 30 35

SNR(dB)

Fig. 5.5 BD, Theoretical and Simulated Subspace NMSCE
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The performance of Subspace method of four-antenna STBCs in BPSK is shown in
Fig.5.6 (k=2, k=1 also for RO). It shows that RO is worse than three complex

non-orthogonal models.

) 4 models (k=1(RO),2, BPSK) Subspace
10 F T T T T T

NMSCE

L
0 5 10 15 20 25 30 35
SNR(dB)

10

Fig 5.6 Four models, k=2 (k=1 for RO), Subspace

Since the theoretical value of Eq. (4.23) derived in [17] is an approximation for the
channel estimate MSE for high SNR, there is a difference gap between theoretical and
simulated results in all four models, which will become smaller when SNR increases.

Another property of diagonally weighted STBCs shown in Fig.5.1~5.5 is that in the
same kind of STBC, the estimated error performance becomes better when k is

larger. Let’s discuss about it from Eq. (4.23), (4.24), and (4.25), as the diagonal

- -1
elements of Zq in Eq. (4.24) become larger, those of (qu in Eq. (4.25) will

become smaller, and thus will cause the estimated mean square error in Eq. (4.23)
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smaller. We had observed that when k grows, diagonal elements in zq also

increase, which makes a better estimator. NMSCE in different k when SNR = 15 dB
in RO with BPSK is shown in Fig.5.7. The results of three non-orthogonal models are

similar to that of RO.

) RO, NMSCE vs k (SNR = 15 dB)
107 : —y ‘

—<<— Simulation
—<— Theory

107 o

NMSCE

107}

107 ‘ e

Fig. 5.7 RO, NMSCE vs. k (SNR = 15 dB)

5.1.2 Performance of PD

The performance of the improved method on subspace method, PD, will be
illustrated and compared with subspace method both in BPSK and QPSK systems.
First, we demonstrate the performance of PD of four-antenna STBCs in BPSK
(Fig.5.8, k=2, k=1 also for RO) and in QPSK (Fig.5.9, k=2, no RO). Fig.5.8
shows that in BPSK, RO always has the worst performance, while DD has the best at
low SNR. The second is SD and the third BD. At high SNR, however, the better and
the worse performance orders of three non-orthogonal STBCs are different from that

at low SNR. Such situation is the same in QPSK in Fig.5.9.
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NMSCE

NMSCE
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4 models (k=1(R0O),2, BPSK) Subspace + PD

1
5 10 15 20 25 30

SNR(dB)

Fig. 5.8 Four models; k=2 (k=1 for RO), Subspace + PD BPSK

3 models (k=2,7QRSK) Subspace + PD

—— 8D (k=2)
——7— DD (k=2)
— £ BD (k=2)

1
5 10 15 20 25 30

SNR(dB)

Fig. 5.9 Three models, k =2, Subspace + PD in QPSK
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Performance comparisons between subspace method and subspace with PD in four
models are displayed in Fig.5.10~5.13. Note that in RO, only BPSK isused and k =1,
2 is set in simulation. In other three non-orthogonal models, k =2 and both BPSK
and QPSK are used

We can see that PD does improve the subspace method of all the four models in
BPSK and SD, DD, BD in QPSK. Besides, the estimator in BPSK is better than that
in QPSK in same conditions.

RO (k=1 & k=2, BPSK)
Subspace & Subspace + PD

10 ¢ : : : : : ;
B\ —4 — RO, k=1, Subspace + PD |
RN —H& — RO, k=1, Subspace ]

2 L <7 RO, k=2, Subspace + PD

10 AN E
/ —©O— RO, k=2, Subspace ]

10°}

L E
O [
()] L
; I

107} :
i 1]
[ AN

-5 N

10°F \\\

10'6 | | | | | | I
0 5 10 15 20 25 30 35

SNR(dB)

Fig. 5.10 RO, k =1,2, Subspace & Subspace + PD in BPSK
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NMSCE

NMSCE

SD (k=2, BPSK & QPSK)
Subspace & Subspace + PD
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Fig. 5.11 SD, k =2 Subspace & Subspace + PD in BPSK & QPSK
DD (k=2; BPSK & QPSK)
2 Subspace &-Subspace + PD
10 F T T I I T
—— DD, Subspace, BPSK
H__ — < DD, Subspace + PD, BPSK
s a. ——&1 — DD, Subspace, QPSK
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Fig. 5.12 DD, k =2, Subspace & Subspace + PD in BPSK & QPSK
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BD (k=2, BPSK & QPSK)
Subspace & Subspace + PD

10 i ‘ ‘ —— BD, Subspace, BPSK
T —4A— BD, Subspace + PD, BPSK
M —© — BD, Subspace, QPSK
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Fig. 5.13 BD, k =2, Subspace & Subspace + PD in BPSK & QPSK

We also show how PD acts here with different multipath lengths. k =2 and BPSK
are used, here. With L=4 and L =5, subspace method performs in four models
from Fig.5.14 to Fig.5.17. In the model of larger CP length, it will be less sensitive to
channel noise variation, and will lead to a poorer performance. It is shown that PD is

immune to multipath length.
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Fig. 5.14 RO, k=2, BPSK,:Subspace & Subspace + PD

with different multipath lengths

SD (k=2, BPSK)with different.multipath lengths

—© — Subspace, L=

—~ — Subspace, L=4 1
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Fig. 5.15 SD, k=2, BPSK, Subspace & Subspace + PD

with different multipath lengths
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Fig. 5.16 DD, k =2,,BPSK, Subspace & Subspace + PD
with different multipath lengths

BD (k=2; BPSK) with different multipath lengths

—/ — Subspace, L=5
—2A — Subspace, L=4

©&— Subspace + PD, L=5
—+— Subspace + PD, L=4

Al Ll

/

WA il
J

|
5 10 15 20 25 30 35
SNR(dB)

Fig. 5.17 BD, k =2, BPSK, Subspace & Subspace + PD

with different multipath lengths
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5.1.3 Time-varying channel estimation

The time-varying channel environment we use here is based on Jake’s model. In
this simulation, it produces FIR channel taps at sampling rate 1 MHz. BPSK is used
for all simulations in this section.

We first test the performances of subspace method in four STBC models in
time-varying channels with different Maximum Doppler Frequencies (fd): 10Hz (Fig.
5.18), 50Hz (Fig. 5.19), 100Hz (Fig. 5.20), and 200Hz (Fig. 5.21). N =100, k=2

and BPSK are used.

) fd = 10Hz
10 C T T T T il
I ~<7 RO (k=2) Subspace | |
—©O— SD (k=2) Subspace | |
— {7+ DD (k=2) Subspace |
—<— BD (k=2) Subspace |

NMSCE

SNR(dB)

Fig. 5.18 Four models, k =2, BPSK, Subspace with fd = 10Hz
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Fig. 5.19 Four.models, |k = 2, BPSK, Subspace with fd = 50Hz

fd ="100Hz

k=2) Subspace
k=2) Subspace
)
)

k=2) Subspace
k=2) Subspace

5 10 15 20 25 30 35
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Fig. 5.20 Four models, k =2, BPSK, Subspace with fd = 100Hz
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) fd = 200Hz
10 | ‘ ‘ ‘ ‘ ]
I —— RO (k=2) Subspace | ]
Subspace
Subspace
Subspace

(k=2
— 1 DD (k=2
(

)
)
)
k=2)

NMSCE

0 5 10 15 20 25 30 35
SNR(dB)

Fig. 5.21 Four.models, Kk =2, BPSK, Subspace with fd = 200Hz

When fd is higher, the estimator error is worse and all of them bring on error floors,
which are caused by the phase shifting from Doppler Frequencies.

Then, we want to see how PD combined with small windows of received data
blocks performs. Fig.5.22 presents that PD surely improves the subspace method
estimator in time-varying channel, where k=2, fd = 50Hz and N =100 is set. The
performance is better as a smaller window size is used. Since channel varies rapidly, a
smaller window size means that there are more groups of channel information in PD
to update the changing channel. We can see that the case window size = 1 makes the
achievement of following the channel variation and it eliminates error floors in all
STBC models. However, when the window is too small, it will suffer from the noise.
So we choose 50 as a proper window size with which large enough to suppress noise

and can also follow channel variation, as is shown in Fig.5.22 for RO and BD.
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4 models (fd=50Hz, k=2, N=100, BPSK)
Subspace & Subspace + PD (window size = 1, 50(RO, BD))

10 ‘ ‘ | —© — RO, Subspace
—11 — 8D, Subspace
—~< — DD, Subspace
4 —< — BD, Subspace
10 —s— RO, Subspace + PD (win size = 1)
SD, Subspace + PD (win size = 1)
—— DD, Subspace + PD (win size = 1)
20 o ——+— BD, Subspace + PD (win size = 1)
10 £ ~_ —— RO, Subspace + PD (win size = 50)
§ —  BD, Subspace + PD (win size = 50)

NMSCE

|
0 5 10 15 20 25 30 35
SNR(dB)

Fig. 5.22:Four models, k =2, BPSK, fd = 50Hz,

Subspace & Subspace +PD (win'size = 1, 50(RO, BD))

5.2 Bit Error Rate Performance

In this section, we will show the bit error rate performance in four STBCs with
different k. BPSK and static channel are used. We will also discuss about the effect
of k value on estimated channel error and noise.

From Fig. 5.23~5.26, BER performances in four models are exhibited.

k=1, 2, and 0.8 are given. In same k, using the ideal channel state information

(CSI) deservedly gets the best BER. With channel estimate error, subspace CSI gets a
worse BER than ideal CSI. CSI from subspace with PD method, however, is better
than subspace CSI for its improvement in channel estimation but is still worse than

ideal CSI.
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Fig. 5.24 SD, BER vs. SNR (k =1, 2, 0.8)
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Fig. 5.25 DD, BERvs. SNR (k =1, 2, 0.8)
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Fig. 5.26 BD, BER vs. SNR (k =1, 2, 0.8)
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The comparisons of BER between four models are shown in Fig.5.27 (k =1) and
Fig.5.28 (k =2). We can see that the BER performance of RO is the worst and those

of three complex non-orthogonal models are very close to each other.

4 models (k=1) BER vs SNR(dB)

10° ‘ ‘
: —&— RO (k=1)
—5— 8D (k=1) | |
p —&— DD (k=1)
1073 % BD (k=1)
0%}
r i
m L
m L
107}
10*L
10° ‘ ‘
0 5 10 15 20

SNR(dB)

Fig. 5.27 Four models, BER vs. SNR (k =1)
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4 models (k=2) BER vs SNR(dB)
10 ¢ ‘ ‘

BER

L
0 5 10 15 20
SNR(dB)

Fig. 5.28 Four models, BERvs. SNR (k =2)

Note that the BER of k=2 is bigger than that of k=1 (the original STBCs).
This is because the received signal power is enlarged when k >1, and thus increase
the noise power. On the contrary, the BER becomes smaller when k <1 since noise
power is decreased. This is a critical problem because the estimator performs better
with the increase of k. This is a tradeoff. The effect of k is discussed in the
following.

In diagonally weighted STBCs, the value of k affects channel estimate error,
signal and noise power. Theoretically MSE in Eq. (4.23) can be written as a function

of k:

2 + 112 2 + 2
IR _o1Q (] 63

E(lh—h|P?) = E(ah|P) =
(lh=h|*)=E(lah|f) gy >IN
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where k affects matrix Q" and the whole theoretically MSE. However, in

comparison with noise value, the estimated error needs to be modified. Since from Eq.

(2.3), if we substitute estimate ﬁz h+ah for realistic h, we will get:

~

r=S*h+n=S*(h+2h)+n=S*h+S*sh+n (5.4)

Note that k affects both signal and estimated error. So we have to modify the
channel estimated error from ah(k) to the equivalent channel estimate error
S(k)*ah(k) to compare with noise n(k).

Here, using the information in Eqg. (5.3), we want to derive the theoretical average
equivalent channel estimate error power as a function of k in frequency domain.
Pen®=E[|S*sh['] = =E[|S-sh[ ]
:tr{E_(S-Ah S Ah)“ } E[S-sh-sh"-s" ||
~E{tr[S-ah-sh" 8" ]I { r[shon” -s" s ]}
:tr{E ah-ah™:S" .S ]} { [ abeeh" |-E[S" s}}

[ ahah” | T(ke+3). M]}

k?+3)-t { [ 2h-sh" }

(5.5)

k?+3)-E(lah|P)

@ +3). SIQ W
oZN

Il
— /N N

Q

k also influences signal power and noise power. In k diagonally weighted STBCs

with BPSK, the received signal in frequency domain can be written as:

n k 1 1 1||h kh, +h, +h, +h,
r 1 k 1 1 h +kh, +h, +h
2 1= (%) > 1= (D) kb, +h, +h, (5.6)
r 1 1 k 1ih h +h, +kh, +h,
r, 1 1 1 kj/h, h +h, +h, +kh,

For all channels are uncorrelated (i.e. hi**hj =0, Vi# ) and normalized (i.e.
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4
Z| h, [> =1), the average received signal power is:
i=1

4 k?+3
Dnf= [(kz +3)(Z| h | )} (5.7)
i=1
So the theoretical average noise power is:
2 2
P (k)= K 3.9 (5.8)

2
4 o
where o’/ is the signal-to-noise ratio.

The theoretical power of total perturbation of both equivalent channel estimate

error and noise can therefore be written as:

Ptotal (k) =P *sh (k) + Pﬂ (k)

O'S2 =L 4

The effect of k on power of noise; channel estimate error, the total perturbation
and its theoretical value in BPSK at SNR = 10, 15dB in RO and BD are shown in
Fig.5.29 and 5.30, respectively. We can see that low SNR will cause larger total
perturbation. We find out that power of total perturbation becomes smallest when k
is about 0.5. Therefore, to solve the problem that k enlarges the noise, we can

choose k as this value to lessen BER with a little sacrifice of channel estimator.
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5.3 Summary and the related work

In this chapter, we have shown the channel estimate mean square error in some
different conditions and the bit error performances in static channel for all the four
kinds of STBCs. An important issue is to compare these performances of three

complex non-orthogonal models SD, DD and BD. See Table 5.1.

Models SD DD BD
Performance
Subspace MSE Moderate Best (Low SNR) Best (High SNR)

(High & Low SNR) | Worst (High SNR) | Worst (Low SNR)

Subspace+PD MSE Moderate Best (Low SNR) Best (High SNR)

(High & Low SNR) || Worst (High SNR) | Worst (Low SNR)

BER Moderate Moderate Moderate

Table 5.1 Performances comparison between three complex non-orthogonal models

The diagonal weight value k affects channel estimate error, equivalent channel
estimate error power, noise power and bit error rate. The increasing of k will
decrease the first one but enlarge all the others. So the most appropriate value of k
should be selected. From all the simulation results above, k ~0.5 is a proper value.

k will also change the power of probably only some of data symbols in
transmission matrix, and will thus make the change of symbol power not uniform. To
solve this problem, the even weight over each data symbol is also a method to prevent
from singularity in PD for STBCs. Take diagonally weighted BD for example, only

s, and s, on the diagonal are multiplied by k in Eq. (4.42). If we weight s, ~s,

each by one k as in Eq. (5.10), it can ensure nonsingularity when k =1 for PD and
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evenly distribute power to each symbol.

k*s, S, S, S,
-s, k*(-s;) s s,
S — 3 ( 4) 1 *2 (5'10)
S, S, s, k*s,
-S, —S, k*s, s

We name this kind of weighted BD the Uniformly Weighted BD, the comparisons
of performances between Uniformly Weighted BD and Diagonally Weighted BD in
simulated Subspace channel estimation and bit error rate are as follows. We can see

that the performances of two BD models are close to each other.

” 2 kinds of BD, Simulated Subspace NMSCE vs SNR(dB)
10 F T T T T

—— Diagonally Weighted BD (k=2)

—O— Uniformly Weighted BD (k=2)

NMSCE

1 0'6 | | | | | |
0 5 10 15 20 25 30 35

SNR(dB)

Fig. 5.31 Two different kinds of weighted BD, Subspace (k =2)
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2 kinds of BD

, Bit Error Rate vs SNR(dB)

10" ¢ \

BER

—7— Diagonally Weighted BD (k=2)
—O— Uniformly Weighted BD (k=2)

SNR(dB)

Fig. 5.32 Two different kinds of weighted BD, BER vs. SNR (k =2)
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Chapter 6

Conclusions

STBC OFDM offers diversity gain, which is an advantage in high data rate
transmission. In STBCs with more than two transmit antennas, real symbol models
can always achieve full transmission rate. But complex orthogonal models cannot
attain this goal. Complex non-orthogonal models, however, sacrifice orthogonality to
gain the full rate. We focus on four-transmit-antenna models in this thesis.

Multichannel estimation algorithms are important.issues for STBC transceivers. By
blind methods to estimate channels, we can avoid the problem of bandwidth
consumption in using training *sequences. A subspace-based channel estimation
method is shown in which real orthogonal and complex non-orthogonal models can be
adopted.

To further better the subspace channel estimates, we exploit a finite alphabet based
method “PD”. PD is to solve channel phase ambiguities after getting the channel
power response. In STBC OFDM, we need to compare all the possible data symbol
pairs in obtaining the channel power response. Simulations have shown that PD does
improve the NMSCE of subspace method.

However, the singular transmission matrices caused by some possible symbol pairs
in complex non-orthogonal models will make getting channel power response and PD
unavailable. We multiply the diagonal elements of their transmission matrices by a

positive real weight k to solve this problem. Simulation results show that the value
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of k affects both subspace estimator and bit error rate: When k is larger, the
estimator becomes better, but incurs a larger noise and worse bit error performance.
We can choose the value of k about 0.5 for the smallest total perturbation power to
get a better bit error performance and a fairish estimator. The effect of k on power
noise, channel estimate error, and total perturbation of RO and BD are also displayed.
In time-varying channel, received data block window size can be chosen combined
with PD to track channel variation. It can also resolve the error floor of subspace
estimator. A shorter window size can follow the change of channel accurately but will
make the estimator suffer from noise more.
The PD method in this thesis for STBC OFDM is only utilized in BPSK and QPSK
systems. In high-level modulations, it will become much more complex for the
numerous number of possible symbol pairs. Therefore, the simplify mode of this

method may be studied in the future:
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Appendix

Diagonally Weighted STBCs

In this appendix, transmission matrices (S) and their correlation matrices (S" *S)

of k -diagonally weighted four-antenna STBCs are exhibited.

1. Real 4-by-4 Orthogonal (RO) STBC

k*s, s, S, S,
-s, k*s, -s S
§=| 2 1 4 s (A.1.1)
-s, S, k*s, s,
-s, S, s, k*s
and
3 0 0.0
0 a 0 0
QH *g = RO (A.1.2)
0 0 a, O
0 0 0 a
where
Ao = k?S” +872 +82 +57 (A.1.3)
2. Spaced Diagonal (SD) STBC
k*s, s, S, S
-s, k*s —s S,
§=| 2 1 *4 s (A.2.1)
S, s, k*s s,
s, S, -S, k*s

and
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where

ap =k* [, [ +1s, [P+, [ +]s, [

by, =2 Re[k*sls; + sst]

3. Dual Diagonal (DD) STBC

k*s, s, S, S,
- s, k*s, S, S,
S Sy k> (_31 ) S,
s, —S, —sa¥ Hcig
and
Appy bDDl 0 Cop1
QH *g — booz Appy Cop1 0
0 Cop2 Appy _bDDZ
Cop2 0 _bDDl Appy
where

aDD1:k2|51|2 +]s, |2 +]s, |2+|S4
App, =1 S, |2 +s, |2 +k2*| S |2 +s,
bDDl = (k _1)(3552 + 535:)
bDD2 = (k _1)(3132 + 5554)
Copy = K(S;S, +5,5,) + (5,5, +5,S,)

Copz = k(sls: + 5253) + (SIS4 + 523;)

|2

|2
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(A.2.3.1)

(A.2.3.2)

(A.3.1)

(A3.2)

(A.3.3.1)

(A.3.3.2)

(A.3.3.3)

(A.3.3.4)

(A.3.3.5)

(A.3.3.6)



4. Block Diagonal (BD) STBC

*
k*s, S, S, S,
* * * * *
S -s, k*(-s,) s S,
*
S, S, k*s, s,
* * * * *
-S, -S, s, k*s
and
a‘BDl bBDl CBD1 O
SH *Q = bBDZ Aapy 0 —Capy
CBDl 0 a'BD2 bBDl
0 —Cgp2 bBDz Agpy
where

4
agpy = K* |5, +2| s I
i=2
S 2 2 2
Agp; ZZ|Si I"+k*[s, |
i=1
bBDl = k(SISZ + 5332) + (SlS; + 5;54)
bBD2 = k(S1S; + 3234) + (stz + 5332)
Cep1 = (k _1)(3533 + 3234)

Copy = (k _1)(5132 + 5232)
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