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中文摘要 

 
 在此篇論文中，我們研究將以固定通道(Fix Channel Allocation)分配蜂巢式網路鄰近

狀態資訊列入考慮的允入控制機制。在某種程度的假設前提之下，對於每個細胞，我們

使用二維狀態的馬可夫鏈(Markov chain)來模擬此系統。其第一維是代表基礎細胞的 50
個狀態，其第二維是代表周圍細胞的 300 個狀態。因此，我們的模型變成一個總共 15000
狀態數的二維馬可夫鏈。對於以最小化新連線的阻斷率(new call blocking probability)和連

線交遞的失敗率(handoff dropping probability)為目標函數的問題，可用馬可夫決策過程

(Markov Decision Process)來描述。然而，此一龐大的狀態數目使得轉置機率的反矩陣(其

大小為 2.25×108)無法計算出來，也因此複雜化了應用馬可夫決策過程中的「策略疊代法」

(policy-iteration method)來解決我們的問題。於是我們使用把在幾步之內可以到達的狀態

們群集在一起的「狀態聚合法」(state aggregation method)來克服此困難。如此做了之後，

我們的模型變成總共只有 66 個狀態而且可用「策略疊代法」來解。最後，我們證實與熟

知的「保護頻道策略」(Guard Channel policy)相比較之下，我們的策略可以很容易的得到

並且有較低的平均成本。然而，以通道借償並隨方向鎖定(Borrowing with Directional 

Locking)的通道分配方式比固定通道分配方式能有更好的通話失敗率。因此我們多加入

單步決策(One-Step Policy)來改變以上碼可夫決策過程以期待得到更好的效能。 

中華民國九十七年五月 
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Abstract 
 

We study the admission control problem in cellular network when taking the neighboring 
state information into consideration with FA Strategy. For each cell, under certain assumptions, 
we model the system by Markov chain with two-dimensional states where the first dimension 
represents the base cell’s 50 states and the second dimension stands for the adjacent cells’ 300 
states. As a result, the model becomes a two-dimensional Markov chain with 15000 states in 
total. The problem of minimizing a linear objective function of new call blocking and handoff 
call dropping probabilities can then be formulated as a Markov Decision Process. However, the 
enormous number of states makes the inverse of the transition probability matrix (which is of 
size 2.25×108) computation-prohibitive and thus complicates the application of policy iteration 
method in the context of Markov Decision Process to solve our problem. To attack such, we 
use the state aggregation method where we group those states which basically are few steps 
reachable from each other. After doing so, our model turns into involving only 66 states in total 
and solvable by the policy-iteration method. Finally, we show that our policy can be easily 
derived and has lower average cost than the well-known Guard Channel policy. However, we 
find that BDCL strategy outperforms FA strategy. Therefore, we modify the above MDP model 
by adding One-Step policy to it in order to get better efficiency.       
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Chapter 1                          

Introduction 
 

 
 In the cellular system, the entire spectrum is divided into a number of channels. In the 

channel assignment scheme [1], channels then are assigned to a cell, in either static or dynamic 

way, in principle of that adjacent cells cannot share (or reuse) the same channel to reduce the 

co-channel interference. As a result, when a mobile with a call in progress moves from the 

original cell into an adjacent cell, the base stations must perform the handoff operation, i.e., the 

currently-used channel in the original cell should be returned to the cell and the adjacent cell 

attempts to find a new channel for the mobile. 

 

 Though the cellular system in this way boosts the wireless spectrum, yet the cell may still 

drop a handoff call or simply block a new call because available channels in the cell are 

insufficient in FA (Fixed-channel Allocation) scheme. To handle such a limited spectrum 

problem, the Guard Channel policy [2] determines the number of channels reserved for 

handoff calls by only considering the status of the local cell. With certain assumptions, such as 

constant arrival rate of handoff calls, the problem of minimizing a linear objective function 

(MINOBJ) of new call blocking and handoff call dropping probabilities can be formulated and 

solved by using Markov Decision Process (MDP) models. It is worthwhile to stress that the 

Guard Channel policy is obtained without considering neighboring cells’ information.  

 

 In [3], the author found that it is worthwhile to explore the neighboring cell’s information. 

To this end, they proposed a predictive and adaptive scheme for bandwidth reservation for 

handoff calls. By using the ongoing call’s mobility history of neighboring cells to formulate the 

handoff estimation function, the handoff dropping probability can be kept below a target value. 

We can see from the simulation result that although the computation complexity of its best 

scheme is 1.5 times higher than using local cells’ information only, it works well under a 

variety of traffic loads, connection bandwidths, and mobility. Still it isn’t the optimal scheme 

since there is a better scheme in the simulation result for the time-varying case. 

 

 In this thesis, we consider using MDP model to find the optimal admission control in the 
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presence of the neighboring cells’ information. Since the neighboring cells’ ongoing calls are 

encoded in the states of our model, this becomes a two-dimensional MDP problem. We solve 

this problem by the policy-iteration method which includes Gaussian elimination method to 

find the inverse matrix of the transition probability matrix. Since the state-space of 

two-dimensional MDP extends from n to 6n2. The computation complexity of the inverse 

matrix is then increased from 6n2 to 36n4, which is impracticably large. In order to conquer this, 

we use the state aggregation method which groups several states together into a big state to 

reduce the size of the inverse matrix. Finally, as the simulation results shown, our method is 

not only viable but also has average cost lower than Guard Channel policy. 

 

   We find that BDCL (Borrowing with Directional Channel Locking) channel allocation 

strategy outperforms FA in call failure rate, and therefore, we may propose BDCL instead of 

FA to make the efficiency better. However, with BDCL strategy we have to know information 

of all adjacent cells but just that of neighboring cells. In this aspect, we may just modify the 

above MDP model to fit BDCL strategy, because the main difference between FA and BDCL 

scheme is “Borrowing” operation from the neighboring cell. We will just add One-Step-Policy 

to facilitate the computational result, which includes the policies and values, of the original 

MDP model.  

 

However, the parameters, like arrival rate, handoff rate, departure rate, in the MDP model 

varies with time, therefore, we have to adjust the parameters periodically to fit the actually 

ones. For the above purpose, we will measure difference between the system cost that is due to 

rejecting calls and the model cost that is derived from the gain of MDP computational result. 

After getting the difference, we will have our update rule in order to predict the parameters of 

the next duration. Furthermore, our simulation will run under the road topology environment, it 

would be more realistic and closer to the real system. 

 

The rest of the thesis is organized as follows. In chapter 2, we introduce the background 

knowledge of our study. The system specification is presented in chapter 3. The formulation of 

our problem by MDP and the proposed method is described in chapter 4. Modification from FA 

to BDCL by One-Step Policy and update rules of policy with time-varying MDP parameters 

are described in chapter 5. Our simulator design and simulation results are illustrated in chapter 

6. In chapter 7, we make conclusion. 
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Chapter 2                          

Background Knowledge 
 

 
 In this chapter, we will introduce the basic idea of MINOBJ, Guard Channel policy [4], 

Markov Decision Process with rewards, the policy-iteration method [5], the state aggregation 

method [6] and BDCL(Borrowing with Directional Channel Locking) channel allocation 

scheme [22]. In MDP, we will give formal definition to state, transition probability, expected 

immediate rewards, alternatives, policy and gain. 

 

2.1 Minimizing a Linear Objective Function (MINOBJ) 
 

 Consider any policy π that determines the acceptance or rejection of new and handoff 

calls. Let constants A1 and A2 denote the penalties associated with rejecting new and handoff 

calls respectively. Note that we are only interested in values of A1 and A2 such that 0 < A1 < A2 

since we would like to give handoff calls higher priority than new calls. Let π1n (π2n) be 0 or 1 

depending on whether the nth new (handoff) call is accepted or rejected respectively. Then, we 

define 

 

    
1 1

1 1 2 2
0 0

1lim .
N N

n nN n n
E A A

Nπφ π π
− −

→∞
= =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑      (2.1) 

 

 We are interested in determining optimal policy π* over the set of all call admission 

control policies π, i.e., find policy π* such that * min .π ππ
φ φ=  We note that Eq. (2.1) is a 

formulation for the average cost problem [7] with the cost of rejecting a handoff call being A2 

and the corresponding cost for new call rejection being A1. 

 

2.2 Guard Channel Policy 

 
 The notion of guard channels was introduced in the mid-80s, as a call admission 

mechanism to give priority to handoff calls over new calls [8]. In this policy, a set of channels 
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called the guard channels are permanently reserved for handoff calls. In [9], Miller obtains a 

result which can be used to easily show that the Guard Channel policy is optimal for the 

MINOBJ problem. 

 

 Consider a cellular network with C channels in a given cell. The Guard Channel policy 

reserves a subset of these channels (say C − T) for handoff calls. Whenever the channel 

occupancy exceeds a certain threshold T, the Guard Channel policy rejects new calls until the 

channel occupancy goes below the threshold. Note that this policy accepts handoff calls as long 

as channels are available, and is illustrated algorithmically in Fig. 2.1. 

 

 
Fig 2.1 Guard Channel policy 

 

2.3 Markov Decision Process 
 

2.3.1 State 

 

A Markov Process is a mathematical model that is useful in the study of complex systems. 

The basic concepts of the Markov process are those of “state” of a system and state “transition”. 

We say that a system occupies a state when it is completely described by the values of 

variables that define the state. A system makes state transitions when its describing variables 

change from the values specified for one state to those specified for another. 
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2.3.2 Transition Probability 

 

Suppose that there are N states in the system numbered from 1 to N, then the probability of 

a transition from state i to state j during the next time interval, is a function only of i and j and 

not of any history of the system before its arrival in i. In other words, we may specify a set of 

conditional probabilities pij that a system which now occupies state i will occupy state j after its 

next transition. The transition probability matrix P is thus a complete description of the 

Markov process. 

 

2.3.3 Rewards 

 

Suppose that an N-state Markov process earns rij dollars when it makes a transition form 

state i to state j. We call rij the “reward” associated with the transition from i to j. The set of 

rewards for the process may be described by a reward matrix R with elements rij. The Markov 

process now generates a sequence of rewards as it makes transitions from state to state. The 

reward is thus a random variable with a probability distribution governed by the probabilistic 

relations of the Markov process. 

 

One question we might ask concerning is: What will be the player’s expected winning in 

the next n transitions if the process is now in state i? To answer this question, let us define vi(n) 

as the expected total earnings in the next n transitions if the system is now in state i. 

 

Some reflection on this definition allows us to write the recurrence relation 

 

1
( ) [ ( 1)]       1,  2,  ,        1,  2,  3, .

N

i ij ij j
j

v n p r v n i N n
=

= + − = =∑ L L    (2.2) 

 

If the system makes a transition from i to j, it will earn the reward rij plus the amount it 

expects to earn if it starts in state j with one move fewer remaining. As shown in Eq. (2.2), 

these rewards from a transition to j must be weighted by the probability of such a transition, pij, 

to obtain the total expected rewards. 

 

Notice that Eq. (2.2) may be written in the form 
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1 1
( ) ( 1)       1,  2,  ,        1,  2,  3, 

N N

i ij ij ij j
j j

v n p r p v n i N n
= =

= + − = =∑ ∑ L L   (2.3) 

  

so that if a quantity qi is defined by 

 

      
1

      1,  2,  ,  .
N

i ij ij
j

q p r i N
=

= =∑ L          

 

Eq. (2.2) takes the form 

 

1
( ) ( 1)      1,  2,  ,        1,  2,  3, .

N

i i ij j
j

v n q P v n i N n
=

= + − = =∑ L L          (2.4) 

 

2.3.4 Expected Immediate Reward 

 

The quantity qi may be interpreted as the reward to be expected in the next transition out of 

state i; it will be called the “expected immediate reward” for state i. Rewriting Eq. (2.2) as Eq. 

(2.4) shows us that it is not necessary to specify both a P matrix and an R matrix in order to 

determine the expected earnings of the system. All that is needed is a P matrix and a q column 

vector with N components qi. The reduction in data storage is significant when large problems 

are to be solved on a digital computer. In vector form, Eq. (2.4) may be written as 

 

( ) ( 1)      1,  2,  3,  n n n= + − =v q Pv L            (2.5) 

 

where v(n) is a column vector with N components vi(n), called the total-value vector. 

 

2.3.5 Alternatives 

 

 The concept of “alternative” for an N-state system is presented graphically in Fig. 2.2. In 

this diagram, two alternatives have been allowed in the first-state. If we pick alternative 1 (k = 

1), then the transition from state 1 to state 1 will be governed by the probability 1
11p , the 

transition from state 1 to state 2 will be governed by 1
12p , from 1 to 3 by 1

13p , and so on. The 

rewards associated with these transitions are 1
13

1
12

1
11  , , rrr , and so on. If the second alternative in 
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state 1 is chosen (k = 2), then 2
1

2
13

2
12

2
11 , , , , Npppp L  and 2

1
2

13
2

12
2

11  , , , , Nrrrr L , and so on, would be 

the pertinent probabilities and rewards, respectively. In Fig. 2.2, we see that if alternative 1 in 

state 1 is selected, we make transitions according to the solid lines; if alternative 2 is chosen, 

transitions are made according to the dashed lines. The number of alternatives in any state must 

be finite, but the number of alternatives in each state may be different from the numbers in 

other states. 

 

 
Fig. 2.2 Diagram of states and alternatives 

 

2.3.6 Policy 

 

We shall define di(n) as the number of the alternative in the ith state that will be used at 

stage n. We call di(n) the “decision” in state i at the nth stage. When di(n) has been specified for 

all i and all n, a “policy” has been determined. The optimal policy is the one that maximizes 

total expected return (or minimizes total expected cost) for each i and n. 

 

2.3.7 Gain 
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Consider a completely ergodic N-state Markov process described by a transition probability 

matrix P and a reward matrix R. Suppose that the process is allowed to make transitions for a 

very, very long time and that we are interested in the earnings of the process. The total 

expected earnings depend upon the total number of transitions that the system undergoes, so 

that this quantity grows without limit as the number of transitions increases. A more useful 

quantity is the average earnings of the process per unit time. This quantity is meaningful if the 

process is allowed to make many transitions; it was called the “gain” of the process. 

 

 We define a state probability πi(n), the probability that the system will occupy state i after 

n transitions if its state at n = 0 is known. Since the system is completely ergodic, the limiting 

state probabilities πi are independent of the starting state, and the gain g of the system is 

 
1

.
N

i i
i

g qπ
=

=∑          (2.6) 

 

2.4 The Policy-Iteration Method 
 

 The policy-iteration method that will be described will find the optimal policy in a small 

number of iterations. It is composed of two parts; the value-determination operation (see Eq. 

(2.7)) and the policy-improvement routine (see Eq. (2.8)). The derivation of Eq. (2.7) and Eq. 

(2.8) can be seen in [5]. 

 

2.4.1 The Iteration Cycle 

 

 The basic iteration cycle may be diagrammed as shown below in Fig. 2.3. 

The upper box, the value-determination operation, yields the g and vi corresponding to a 

given choice of qi and pij. The lower box yields the pij and qi that increase the gain for a given 

set of vi. In other words, the value-determination operation yields values as a function of policy, 

whereas the policy-improvement routine yields the policy as a function of the values. 

We may enter the iteration cycle in either box. If the value-determination operation is 

chosen as the entrance point, an initial policy must be selected. If the cycle is to start in the 

policy-improvement routine, then a starting set of values is necessary. If there is no a priori  

reason for selecting a particular initial policy or for choosing a certain starting set of values, 
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Fig. 2.3 The iteration cycle  

 

then it is often convenient to start the process in the policy-improvement routine with all vi = 0. 

In this case, the policy-improvement routine will select a policy as follows: 

 

For each i, it will find the alternative k’ that maximizes qi
k and then set di = k’. 

 

 This starting procedure will consequently cause the policy-improvement routine to select 

as an initial policy the one that maximizes the expected immediate reward in each state. The 

iteration will then proceed to the value-determination operation with this policy, and the 

iteration cycle will begin. The selection of an initial policy that maximizes expected immediate 

reward is quite satisfactory in the majority of cases. 

 

At this point it would be wise to say a few words about how to stop the iteration cycle once 

it has done its job. The rule is quite simple: The optimal policy has been reached (g is 

maximized) when the policies on two successive iterations are identical. In order to prevent the 

policy-improvement routine from quibbling over equally good alternatives in a particular state, 

it is only necessary to require that the old di be left unchanged if the test quantity for that di is 

as large as that of any other alternative in the new policy determination. 

 

In summary, the policy-iteration method just described has the following properties: 

Value-Determination Operation 
 Use pij and qi for a give policy to solve 

 
1

        1,  2,  ,            (2.7)
N

i i ij j
j

g v q p v i N
=

+ = + =∑ L  

for all relative values vi and g by setting v0 to zero. 

Policy-Improvement Routine 
 For each stat i, find the alternative k’ that maximizes 
 

 
1

                                                       (2.8)
N

k k
i ij j

j
q p v

=

+∑  

using the relative values vi of the previous policy. Then k’ 
becomes the new decision in the ith state, qi 

k’ becomes qi, 
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1. The solution of the sequential decision process is reduced to solving sets of linear 

simultaneous equations and subsequent comparisons. 

2. Each succeeding policy found in the iteration cycle has a higher gain than the previous one. 

3. The iteration cycle will terminate on the policy that has largest gain attainable within the 

realm of the problem; it will usually find this policy in a small number of iterations. 

 

2.5 The State Aggregation Method 

 
 One of the principal methods for solving the MINOBJ problem is the policy-iteration 

method which iterates between the policy-improvement routine like Eq. (2.8) that yielding a 

new policy, and the value-determination operation that finds the total-value vector v(n) 

corresponding to policy by solving Eq. (2.7). 

 

 But Eq. (2.7) is a linear n × n system which can be solved by a direct method such as 

Gaussian elimination. In the absence of specific structure, the solution requires O(n3) 

operations, and is impractical for large n. An alternative, suggested in [10], [11] and widely 

regarded as the most computationally efficient approach for large problem, is to use an iterative 

technique for the solution for Eq. (2.7), such as the successive approximation method in [12]; 

this requires only O(n2) per iteration for dense matrix P. It appears that the most effective way 

to operate this type of method is not to insist on a very accurate iterative solution of Eq. (2.7). 

 

 The idea here is to solve this system with smaller dimension, which is obtained by 

lumping together the states of the original system into subsets S1, S2, …, Sm that can be viewed 

as aggregate states. These subsets are disjoint and cover the entire state space S. 

 

 Consider the n × m matrix W whose ith column has unit entries at coordinates 

corresponding to states in Si and all other entries equal to zero. Consider also an m × n matrix 

Q such that the ith row of Q is a probability distribution with qis = 0 if s not belongs to Si. The 

structure of Q implies two useful properties: 

 

(a) QW = I. 

(b) The matrix T = QPW is an m × m transition probability matrix. In particular, the  
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ijth component of T is equal to tij and gives the probability that the next state will belong to 

aggregate state Sj given that the current state is drawn from the aggregate state Si according to 

the probability distribution qis. The transition probability matrix T defines a Markov chain, 

called the aggregate Markov chain, whose states are the m aggregate states. Fig. 2.4 illustrates 

an example of aggregate Markov chain. 

5

2 3

1

4

6
S3

S2

S
1

 
Fig. 2.4 An example of aggregate Markov chain  

 

 In this example, the aggregate states are { } { } { }1 2 31, 2, 3 , 4, 5 , and 6 .S S S= = =    The 

matrix W has columns (1, 1, 1, 0, 0, 0)', (0, 0, 0, 1, 1, 0)', and (0, 0, 0, 0, 0, 1)'. The matrix Q is 

chosen so that each of its rows defines a uniform probability distribution over the states of the 

corresponding aggregate state. Thus the rows of Q are (1/3, 1/3, 1/3, 0, 0, 0), (0, 0, 0, 1/2, 1/2, 

0), and (0, 0, 0, 0, 0, 1). The aggregate Markov chain has transition probabilities 

( ) ( ) ( )11 21 23 12 14 34 13 21 42 53 22 45 23 46 31 32 56

33

1 1 1 1 1
= + , = + , = 0, = + , = , = , = 0, = ,

3 3 2 2 2
and = 0.

t p p t p p t t p p t p t p t t p

t
 

Aggregate Markov chains are most useful when their transition behavior captures the 

broad attributes of the behavior of the original chain. This is generally true if the states of each 

aggregation state are “similar” in some sense. Let us describe this problem further in Chapter 4. 

 

2.6 BDCL(Borrowing with Directional Channel Locking) 
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   Before introducing BDCL [22], we need make some definitions:  

1. Base Cell : the cell that the self Base Station is located in, Cell 0 as the below Fig 2.5; 

2. Neighboring Cell : the cells that are neighboring cells of Base Cell, Cell 1,2,…, 6 as the 

below Fig 2.5; 

3. Adjacent Cell : the cells that are adjacent cells of Base Cell, Cell 1,2,…, 6, Cell 1’ , 2’ ,…, 

6’ as the below Fig 2.5; 

4. Co-Channel Cell : the cells that use the co-channels of Base Cell and is in the reuse 

distance of Base Cell, Cell 0’s as the below Fig 2.5 

 

 
Fig 2.5 an example of regular cells 

 

   There are some characteristics for the network of regular cells [23]: 

1. Channels are assigned by the base stations in the Cells; 

2. Base stations do not measure any CIR (Carrier to Interference Ratio) parameters; 

3. The network-wide assumption of the minimum reuse distance of a channel, which is the 
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distance between one co-channel cell and another, is made. 

4. The adjacent cells of the base cell are covered by the interference region of the base cell, 

and, the interference region is the region within the minimum reuse distance designated 

from the base station of the base cell; 

5. The base station of the base cell can exchange information about channel usage status with 

the base stations of the adjacent cells; 

6. A cell may assign a free channel that is not used by any adjacent cells to call in it. 

 

In the BDCL strategy, a set of nominal channels is assigned to each cell, and the co-channel 

cells use the same set of nominal channels. The major difference between BDCL strategy and 

FA strategy is that the base cell can borrow channels from the neighboring cells in the BDCL 

strategy. However, the borrowing operation may cause some side-effect; we will introduce it in 

the following example and illustrated as the above Fig 2.5: 

 

Step 1: Base Cell of Cell 0 attempt to borrow a channel from the neighboring cells; 

Step 2: Before borrowing a channel, Cell 0 has to check which neighboring cell is the richest 

cell that owns the most number of nominal channels not in use and not locked. 

Step 3: If the richest cell of Cell 0 is Cell 3, it has to borrow the channel that is not used by all 

adjacent cells of Cell 0 from Cell 3. 

Step 4: After making the decision of the borrowing channel, the co-channel cells of Cell 3 in 

the interference region of Cell 0, Cell 3 and Cell 3’s as Fig 2.5, have to be locked and to 

lock the channel in the proper directions to the neighboring cells of them. The locking 

of the channel means the cell that owns the channel as the nominal channel can not use 

it and the cell that does not own the channel can not borrow it. 

 

   One more characteristic is that the set of the nominal channels for each cell have different 

priorities, from the highest to the lowest. Each cell uses the self channel with the highest 

priority of them and borrows the channel with the lowest priority of them from the richest 

neighboring cell. 
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Chapter 3                          

System Specification 
 

 
 To analyze the cost induced by call blocking and handoff dropping of the cellular system, 

we consider a mobile communication network with a cellular infrastructure. There are three 

major parts in this model: Base Station (BS), Mobile Station (MS) and the Channel. In the 

following, we describe these three components in detail, respectively. 

 

3.1 Base Station 

 
 The geographical area controlled by a base station is called a cell. Each cell has one base 

station to make call admission control decisions for all mobiles that want to make a connection 

in it, either a new call or a handoff call from adjacent cells. The cellular system uses a dynamic 

channel allocation (BDCL) scheme, and each cell has a wireless link capacity C, but it can 

borrow channels from the neighboring cell if all capacity of it is in use. Because our model is 

based on information from adjacent cells such as call arrival rate, handoff rate and the number 

of ongoing connections, it is very important to maintain inter-BS communications. Thus we 

use the underlying network topology for base stations as shown in Fig. 3.1, where base stations 

are fully connected. In this topology, base stations can communicate directly, not via the 

mobile switching center (MSC), and each base station can perform the admission control test 

for newly-requested and handoff connections in its cell. 

 

 
Fig. 3.1 Fully connected network architecture 
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3.2 Mobile Station 

 
 A mobile, while staying in a cell, communicates with another party, which may be a node 

connected to the wired network or another mobile, through the base station in the same cell. 

When it moves into an adjacent cell in the middle of a communication session, a handoff will 

enable the mobile to maintain connectivity to its communication partner, i.e., the mobile will 

start to communicate through the new base station, hopefully without noticing any difference. 

 

 A handoff call could be dropped due to insufficient bandwidth available in the new cell, 

and in such a case, a cost occurs. Here, we preclude 1) delay-insensitive applications, which 

might be tolerate long handoff delays in case of insufficient bandwidth available in the new 

cell at the time of handoff and 2) soft handoff of the Code Division Multiple Access (CDMA) 

systems [13], [14], in which a mobile can communicate via two adjacent base stations 

simultaneously for a while before the actual handoff takes place. 

 

 We use Guard Channel policy in the comparative case, where we propose to set aside 

some bandwidth in each cell for possible handoffs from its adjacent cells. This reserved 

bandwidth can be used only for handoffs from adjacent cells, but not for admitting 

newly-requested connections in the cell. 

 

3.3 Channel 

 
 In our model, we assume that each cell can support up to C mobiles simultaneously, and 

each mobile use one channel to make the connection. As a result each cell has C channels. In 

our cellular system structure, all cells are surrounded by six cells. So this cell’s C channel and 

its adjacent cells’ total 6C channels evolve as a two-dimensional Markov chain as shown in Fig. 

3.2 below. 

 

 In Fig. 3.2, the first dimension is made of base cell’s channel state, where C1 is the fixed 

link capacity C. The second dimension is made of all adjacent cells’ total channel state, where 

C2 is six times of the fixed link capacity C. The total states of this two-dimensional Markov 

chain are C1 × C2. 
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Fig. 3.2 Total states diagram of the two-dimensional Markov chain 
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Chapter 4                          

Problem Formulation by MDP in FA Strategy 

 And Proposed Method 
 

 
 In this chapter, we introduce how to find the optimal policy under Markov Decision 

Process (MDP). Making a correct decision depends on cost function. We then use the 

policy-iteration method and state aggregation method to solve the problem of MINOBJ.  

 

 In the case of single-service networks, Krishnan and Ott [15], and Lazarev and Starobinets 

[16] have proposed state dependent routing schemes with roots in Markov decision theory. We 

use the separable routing concept defined by Krishnan and Ott which is appropriately modified 

for the case of cellular networks. We also study the problem of call admission control where 

we follow Zachary’s procedure [17] to determine the cost of rejecting new calls and dropping 

handoff calls. 

 

4.1 Our Model 

 
 The cell is described by a two-dimensional Markov chain with the following assumptions: 

 

1. New call arrival in the base cell and adjacent cells are according to a stationary 

Poisson process with mean rate λ1 and λ2, respectively. 

2. Departure rate of both new and handoff call is exponentially distributed with rate μ. 

3. Call handoff form the base cell to adjacent cells and form adjacent cells to base cell 

are also exponentially distributed with rate h1 and h2, respectively. 

 

 We consider a homogeneous system where each radio cell can support up to C calls, the 

cell state vector n(t) which provides the complete state description of the cell at any time 

instant is defined as 

 

      ( ) ( , ),  n t x y n N= ∀ ∈        (4.1) 
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where x is the number of calling mobiles in the base cell at time t, and y is the number of 

calling mobiles in all adjacent cells at time t. The cell space is denoted by N, which contains a 

finite but large number of states. The state transition rate diagram is shown in Fig. 4.1. 

 

 
Fig. 4.1 State transition diagram  

 

4.2 Alternatives and Costs 

 
 The MDP with costs has been the means to an end. This end is the analysis of decisions in 

sequential processes that are Markovian in nature [5]. We at first introduce alternatives and 

costs of sequential decision process and define them in this section. 

 

 In our cell model, we have two alternatives when a new call (or a handoff call) comes: 

 alternatives 1 : accept 

 alternatives 2 : reject (or drop) 

 

 We then define that a cost ω1 (or ω2) is incurred when cell rejects (or drops) the arrival 

call. By these definitions, there are different behaviors with corresponding alternatives. In our 

case, we make a difference in Fig. 4.2 that cell admits a new (or handoff) call incur nothing but 

rejects (or drops) it with cost ω1 (or ω2). These analyses will help us to find the solution of the 

sequential decision process. 
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Fig. 4.2 Transition diagram with alternatives 1 and 2  

 

4.3 Our Policy-Iteration Method 

 
 An optimal policy is defined as a policy that minimizes the cost. It is conceivable that we 

could find the cost for each of these decisions in order to find the policy with the least cost. 

 

 We are interested in infinite-horizon systems and we know that the appropriate objective 

is the average cost optimization. It simply means that our goal is to minimize the expected rate 

of the cost of lost calls. Let us denote by Vπ(t) the lost revenue in the cell during the time 

interval [0, t] under the policy π∈П, where П is the set of all policies. Then, using the result 

from [5], we have the expected value 

 

  ( )0 ( ) (1),  ( )E V t n n g t v n o tπ π π⎡ ⎤= = + + →∞⎣ ⎦       (4.2) 

 

where n∈N is the cell state at time t = 0. In Markov decision theory, vπ(n) is the well-known 

relative value or cost of starting in state n0 = n. In Eq. (4.2), gπ represents the expected cost per 

unit time under the policy π on the original continuous-time scale. Since the system is ergodic, 

we may call gπ the gain of the process. The objective is to minimize the equilibrium expected 

cost per unit time, that is, gπ. The “small o” symbol o(1) means that for both the right hand side 

(RHS) and left hand side (LHS) of the equation go to infinity, and the difference goes to zero. 

 

 Before to find the relative cost values vπ(n), we define two vectors 
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    2 1 0
,

0 1k ke  e
⎡ ⎤

∈ℜ = ⎢ ⎥
⎣ ⎦

         (4.3) 

    2 1 1
,

1 1k kf  f
−⎡ ⎤

∈ℜ = ⎢ ⎥−⎣ ⎦
         (4.4) 

 

Then, in the case of the departure of the call when the cell state is n, the immediately 

subsequent state dk(n)∈N is found as 

 

    ( )k kd n n e= −            (4.5) 

 

 A new call admission decision needs to be made at call attempt epochs: either accept or 

reject. Denoting an alternative taken on the arrival of a call by πk(n) where n∈N is the current 

cell state. In the case of call rejection 

 

    ( )k n nπ =            (4.6) 

 

If the new call is accepted, the subsequent state of the cell will be found as 

 

    ( )k kn n eπ = +            (4.7) 

 

 A handoff call admission decision needs to be made at call cross the cell boundary epochs: 

either accept or drop. Use the same definition above, in the case of dropping a handoff call 

 

    ( ) = −k kn n eπ            (4.8) 

 

If the handoff call is accepted, the subsequent state of the cell will be found as 

 

    ( )k kn n fπ = +            (4.9) 

 

 Now we start to introduce how to find the relative cost values vπ(n) for all n∈N. The same 

equation also governs the asymptotic behavior of the process if we assume that it has started 

immediately after the first event that has occurred after t = 0. This is because of the ergodic 
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nature of the system, where the initial state has no effect on the asymptotic behavior of the 

process far enough in the nature. The first event is either a call termination or a new (handoff) 

call arrival. The expected time τ for the first event after t = 0 is given as 

 

   ( )
2

1
1/ ,   k k k

k
n hτ γ γ λ μ

=

⎡ ⎤= = + +⎣ ⎦∑       (4.10) 

 

where we used the memoryless property of the system. Writing Eq. (4.2) for a starting time t = 

0 and a first event time t = τ (the latter one is conditional on the type of the first event), we 

obtain after some arrangements 
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1
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2
1

( ) ( ( ))  , ( ) ( ( ))

                     , ( ) ( ( )) ,    
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∑
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k
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n h n e n v n n N
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π

τ τ μ τ λ δ π ω π

τ δ π ω π
  (4.11) 

 

where δk( ⋅ ) is the Kronecker symbol as follows 

 

( )
1, ( )

, ( )
0,  otherwise.

k
k k

if  n n
n n

 
π

δ π
=⎧

= ⎨
⎩

       (4.12) 

 

 In the system of linear Eq. (4.11), the unknown variables are vπ(n) for all n∈N, and the 

gain of the process gπ. Obviously, the system has one more variable than the number of 

equations so that vπ( ⋅ )s can be determined up to an additive constant. To solve the system Eq. 

(4.11), we follow the standard procedure by setting vπ(0) = 0. Thus, we get the system 
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1
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2
1
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     (4.13) 

 

4.4 Our State Aggregation Method 

 
 When using Gaussian elimination method to solve Eq. (4.11), we will face the same 
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problem already described in section 2.5. The inverse matrix of transition probability matrix P 

is of complexity O(n3), which is impractical for large n. 

 

 We take the Guard Channel policy mentioned in section 2.2 for an example. The threshold 

T will divide the states of the cell into three groups. From state 0 to T is of group one which 

can accept all kinds of calls. And from state ( T＋1 ) to ( C－1 ) is of group two which can 

accept only handoff calls. Note that there is a group three when the cell state is C. When in this 

group, no call will be accept due to unavailable of the channel. Thus we learn from this 

example that we can group states which are few steps reachable in the neighborhood. 

 

 After that, we use the method like quantization to divide the one-dimensional Markov 

chain into even size, excluding the last state which is an independent group. Finally, in the case 

of taking adjacent cells’ states into consideration, the two-dimensional Markov chain can be 

grouped as shown in Fig. 4.3 below. 

 

 
Fig. 4.3 Make two-dimensional Markov chain into smaller groups 
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Chapter 5                          

Modification from FA to BDCL by One-Step Policy 

And Update Rules of Policy with Time-varying MDP 

Parameters 

 

 
   In this chapter, we will introduce how we modify the previous MDP model of FA strategy 
to BDCL strategy by One-step Policy, which will make use of the previous computational 
result. Because the parameters of MDP model vary with time, we will introduce the update 
rules of time-varying MDP parameters to fit the actual system. 
 
5.1 Effects of Borrowing Operation 
 
  The main difference between FA and BDCL strategies is “Borrowing” operation; therefore, 
we have to define the state transition diagram of MDP model for “Borrowing” operation. 
 

 
Fig 5.1 Transition diagram of 3 alternatives when new call, handoff call arrive for Base 

Cell 

 
   As the above Fig 5.1, in BDCL model, there are three alternatives when a new call (or a 
handoff call) arrives: 
 

 alternatives 1 : accept 
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 alternatives 2 : reject (block or drop) 

 alternatives 3 : borrow 

 

   When a new call arrives, accepting the call will make a channel in use for Base Cell and 
therefore the state will transition right; blocking the call will not make any channel in use or 
released for Base Cell and therefore the state will self transition; borrowing a channel from the 
neighbor will make the neighboring cell one channel in use for Base Cell and therefore the 
state will transition down. It is illustrated as the above Fig 5.1. 
 
   When a handoff call arrives, accepting the call will make a channel in use for Base Cell, a 
channel released for the neighboring cell and therefore the state will transition upward-right; 
dropping the call will make a channel released for the neighboring cell and therefore the state 
will transition up; borrowing a channel from the neighbor will make the neighboring cell one 
channel released for a neighboring cell, a channel in use for another and therefore the state will 
self transition. It is illustrated as the above Fig 5.1. 
 

 
Fig 5.2 Transition diagram for alternatives 1, 2 and 3 
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   As illustrated above in Fig 5.2, we will define a cost ω1 which is incurred with the 
alternative 2 when a new call arrives, a cost ω2 which is incurred with alternative 2 when a 
handoff call arrives, and a cost ω3 which is incurred with alternative 3 when a call (new call 
or handoff call) arrives. The cost ω3 is not fixed but varied with the condition of all adjacent 
cells, and ω3 is introduced by the effect of “Borrowing” operation on all adjacent cells. ω3 is 
derived online, and it depends on the condition which includes the channel to borrow and the 
states of all adjacent cells. After the borrowing, alternative 3 will cause the state transition of 
the adjacent cells of the base cell. There will be an example as illustrated as Fig 5.3 below. 
 

 
Fig 5.3 Effect of borrowing operation on adjacent cells 

 
   If Cell P borrows Channel Ch1 from Cell A1, the state transitions of the adjacent cells will 

be illustrated below as Fig 5.4 and Fig 5.5 
 

 
Fig 5.4 Example of effect by borrowing operation on adjacent cells 
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Fig 5.5 Example of effect by borrowing operation on adjacent cells 

 
   Borrowing cost of ω3 is derived as Eq. (5.1) below: 
 
                                                                                        
                    

                   
                   (5.1)
                   
                   
  

 
   When a call (new call or handoff call) arrives, we have to check all channels of the 
neighboring cells and get the channel that will cause the least cost ω3. The channel that causes 
the least cost of ω3 is selected as the channel to borrow if alternative 3 is the best alternative 
to take. 
 
5.2 One-Step Policy for BDCL Strategy 
 
   There are 9 Policies for both new calls and handoff calls, and it is listed as table 5.1 below. 
In order to get the One-step policy online, we facilitate the MDP computational result, which is 
derived offline, by FA strategy mentioned in chapter 4. And then we use the values of the states 
derived offline in FA strategy to get One-Step Policy, which is the improved policy. The 
improved policy means that the policy derived online is not the optimal policy but the 
improved one. The derivation of One-Step Policy is different from Policy Iteration Routine 
mentioned in chapter 3 because we just make Policy Improvement Routine once and not make 
Value Determination Routine. It is illustrated as Fig 5.6 below. It is proved that One-Step 
Policy although is not the optimal policy but it is closed to the optimal one [5], and since it just 
make Policy Improvement Routine once, it is also economical of computational resources. 
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Table 5.1 Alternatives of One-Step Policy 

 
Alternatives New Call Handoff Call 

0 block drop 

1 use drop 

2 borrow drop 

3 block use 

4 use use 

5 borrow use 

6 block borrow 

7 use borrow 

8 borrow borrow 

 

 
Fig 5.6 One-Step Policy 

 
   One-Step-Policy improvement routine is illustrated above as Fig 5.6, we just make 
Policy-Improvement Routine once but run Value-Determination Operation. 
 
5.3 Update Rules of Policy with Time-varying MDP Parameters 
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   There are six parameters in our MDP model, and they are λ1, λ2, μ1, μ2, h1 and h2. The six 

parameters of the actual system vary with time; therefore, we have to adjust them periodically 

to make our MDP model closer to the actual system and to get the more improved policy. The 

method how we adjust these parameters is to appreciate the system cost that is induced by 

rejecting calls (new calls or handoff calls) and the model cost that is one of the computational 

result in our MDP model, “gain”. The system cost is divided into two parts, and they are 

“Block Cost” that is the cost due to blocking new calls and “Drop Cost” that is due to dropping 

handoff calls. The update rule is derived by appreciating the data of the simulation result. We 

find that the six parameters may be rational to the either Block Cost or Drop Cost, and it is 

listed blow. 

 

Table 5.2 Parameters update rules 
 

Parameters Rational Cost (Block Cost or Drop Cost) 

(+ : positive rational or - : negative rational) 

Base cell’s arrival rate           λ1 Block Cost (+) 

Neighboring cells’ arrival rate    λ2 Drop Cost (+) 

Base cell’s departure rate        μ1 Block Cost (-) 

Neighboring cells’ departure rate  μ2 Drop Cost (-) 

Handoff out rate               h1 Block Cost (-) 

Handoff in rate                h2 Drop Cost (+) 

 

   The system cost is defined as Eq. (5.2), and it is the sum of the cost of rejecting calls. The 

model cost is defined as Eq. (5.2), and is the sum of the gain of the MDP model per update 

period. 

 

1

model cost : ( )
 , t : the t-th period of time

system cost : ( , )−

→⎧⎪
⎨

→⎪⎩

t average t

t t t

C

C C X X

η η
                         (5.2) 

 
   Before the explanation of the update rules, we have to define the difference of model cost 
and system cost as Eq. (5.3) below: 
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   Furthermore, the adjustment factor of parameters is defined as Eq. (5.4) below: 
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   The update rules for the six parameters are listed below as Eq. (5.5), Eq. (5.6), Eq. (5.7): 
 

1

1
1 1

1 2 1

1 2
2 1 2

1 2

1

2

(1 )
:  base cell's arrival rate

,
:  neighboring cells' arrival rate(1 )

+
+

+
+

⎧ = × ×⎪ + ⎧⎪
⎨ ⎨

⎩⎪ = × ×
⎪ +⎩

+

+

t
t

t
t

d

d

ω

ω

λ λ
ω ω λ

λλ λ
ω ω

                   (5.5) 

 

1

1
1 1

1 2 1

1 2
2 1 2

2

1 2

1(1 )
:  base cell's departure rate

,
:  neighboring cells' departure rate(1 )

+
+

+
+

⎧ = × ×⎪ + ⎧⎪
−

−
⎨ ⎨

⎩⎪ = × ×
⎪ +⎩

t
t

t
t

d

d

μ μ
ω
ω

ω
ω μ

μμ μ
ω ω

                (5.6) 

 

1

1
1 1

1 2 1

1 2
2 1 2

1

2

1 2

(1 )
:  base cell's handoff-out rate

,
:  neighboring cells' handoff-in rate(1 )

+
+

+
+

⎧ = × ×⎪ + ⎧⎪
⎨ ⎨

⎩

−

⎪ = ×+ ×
⎪ +⎩

t
t

t
t

h d h
h
hh d h

ω ω

ω

ω

ω
ω

                (5.7) 

 
   The base station of each cell has to update the policy per period of time with the above 
update rules to ensure that the model is closer to the actual system. The update period is 
determined by how fast the system changes. 
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Chapter 6                          

Simulator and Results 

 

 
 
6.1 Simulator Settings 
 
1. The size of the map for simulation is 12.12 km x 24.25 km. The map are composed of nodes 

that contain information about :  
i. the position : (x , y); 
ii. the type of the node : road or not;  
iii. the coverage of the cell. 

2. There are 98 (14 X 7) cells on the map, and the radius of each cell is 2 km 
3. Wrapped-around Map: when mobile reaches the boarder of the map, it will move to the 

opposite side boarder of the map. 
4. There are 50 Channels per cell : the capacity of base cell (the number nominal channels C1) 

is 50, and the capacity of the neighboring cells C2 is 300. 
5. The whole map is spread non-uniform traffic loading 
6. Poisson Arrivals on the whole map with arrival rate λ (arrivals / cell / hour). Arrival Rate of 

mobiles in Base Cell : λ1 ; Arrival Rate of mobiles in Neighboring Cells : λ2. 
7. Exponentially distributed service time per mobile with average service time 180 seconds per 

call. Departure Rate of mobiles in Base Cell : μ1 ; Departure Rate of mobiles in 
Neighboring Cells : μ2. 

8. Handoff rates are determined by the randomized number of mobiles in the base cell, the 
number of mobiles in the neighboring cells, the speeds of mobiles in the base cell and 
neighboring cells, and the road topology spread on the base cell and the neighboring cells, 
and so on. Handoff-in Rate : h1 ; Handoff-out Rate : h2. h1 and h2 are derived by measuring 
in Base Cell. 

9. Mobiles move mainly in one direction and at speeds (20 ~ 90 km/hr) with 5% variance, and 
they do not move back unless there is no way to move forward, right, or left. 

10. We define call failure rate:  
Call Failure Rate = Pb + (1-Pb) x Pd , Pb: Call Blocking Rate, Pd: Call Dropping Rate  (6.1) 
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Fig 6.1 Road Topology Example for Simulation 
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6.2 UML Statechart of Our Model 

 
   We use UML(Unified Machine Language) to simulate the environment. The map is 
transformed from the simulator as illustrated in fig 6.1 above. The OMD (Object Main 
Diagram) is as illustrated in fig 6.2 below. When the simulation starts, one object of CellsGen 
generates objects of Map, of Cell, of Channel, and sets all links between Map-Cells, between 
Cell-Cell, between Cells-Channels. The object of Map generates the map and roads on the map 
in the beginning and produces objects of Mobile non-uniformly on the roads of the object of 
Map at the moment when the call comes. Objects of Mobile move along the roads generated by 
the object of Map, and make the handoff operation from one object of Cell to another when 
they move across the objects of Cell. The object of Cell has three jobs. First, it gets new calls 
and handoff calls from objects of Mobile. Secondly, it sets states of the objects of Channel. 
Finally, it informs the objects of Cell that are affected by the handoff operation, and keeps the 
list of using channels, the list of borrowing channels, and the list of borrowed channels. The 
objects of Channel are passive objects. They just own the records of states of themselves 
recorded by objects of Cell. The object of MDP owned by the object of Cell make calculation 
of Policy Iterations to decide the policy. 
 

 
 

Fig 6.2 OMD of the Simulator 
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   The State Chart of Mobile are illustrated as fig 6.3 below. When it is constructed, it will 
own a randomly generated service time which is exponentially distributed, the speed which is 
randomly selected from 20 km ~ 90 km. Its residual time is determined by the roads and the 
speed at which the object of Mobile moves. 
 

 
Fig 6.3 State Chart of Mobile 

 
   The State Chart of Map is illustrated as Fig 6.4 below. When it is constructed, it produces 
the map in the beginning, and generates the inter-arrival time randomly with exponential 
distribution to determine when the object of Mobile is constructed. 
 
   The State Chart of Cell is illustrated as Fig 6.5 below. It receives events evIn which include 
new call events from objects of Mobile, and handoff-in call events from objects of Cell. It also 
receives events evOut which include call ending events from objects of Mobile and 
handoff-out events from objects of Cell. It also periodically updates parameters including Base 
Cell arrival rateλ1 , Neighboring Cell arrival rateλ2, Base Cell departure rateμ1, Neighboring 
Cell departure rateμ2, Handoff-out rate h1, and Handoff-in rate h2. 
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Fig 6.4 State Chart of Map 

 

 
Fig 6.5 State Chart of Cell 

 
 Because there are total 50 × 300 states which is to difficult to compute and not efficient in 

real-time, we use the aggregation method mentioned to group states into smaller groups. In our 

model, we choose total 6 × 11 states as shown in Table 6.1 below which is a compromise 

between computing complexity and the difference of the result derived. After the offline 

policies are determined, the values of all states are derived. With the values of the states, we 

will then determine the online policies by One-Step policy when events evIn occur. 
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Note that the last column and row (with gray background) of the table is made of only one 

single state. Because no matter there is a new call or a handoff call arrives in that state, it will 

not be accepted due to unavailable of the channel. And the information of adjacent cells’ state 

will be update periodically. When the policy is derived, each cell’s base station can make call 

admission control according to nine actions listed in Table 6.2 below. 

 

Table 6.1 Aggregation of total states 
 

Cell’s States 

(after aggregation)

Base Cell’s Group 

0~9 10~19 20~29 30~39 40~49 50 

1 2 3 4 5 6 

A
dj

ac
en

t C
el

ls
’ G

ro
up

 

0~29 1 0 1 2 3 4 5 

30~59 2 6 7 8 9 10 11 

60~89 3 12 13 14 15 16 17 

90~119 4 18 19 20 21 22 23 

120~149 5 24 25 26 27 28 29 

159~179 6 30 31 32 33 34 35 

180~209 7 36 37 38 39 40 41 

210~239 8 42 43 44 45 46 47 

240~269 9 48 49 50 51 52 53 

270~299 10 54 55 56 57 58 59 

300 11 60 61 62 63 64 65 
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Table 6.2 Alternatives of base cell’s states. 
 

 
 
 
 
 
 
 
 
 
 
 

 

6.3 Simulation Results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6.6 Call Block Rate of different method under different loads 
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   Call blocking Rate is illustrated above as Fig 6.6, there are three methods of BDCL, which 
are BDCL without call admission control, call admission control by MDP, call admission by 
Guard Channel Policy. They are simulated under different loads and cost (block cost-drop cost), 
50% (5-30), 70% (5-30), 90% (5-30), 100% (5-30), 150% (5-40) ,150% (5-45), 200% (5-50), 
200% (5-60). We also simulated it with update periodically and without it. The result shows 
that Block Rate of our MDP method no matter with periodic policy update or not is lower than 
that of Guard Channel of BDCL when traffic load is under 100%. However, Block Rate of our 
MDP method without periodic policy update is higher than that of Guard Channel policy of 
BDCL when traffic load is greater than 100%, but Block Rate of our MDP method with 
periodic policy update is lower than that of Guard Channel policy of BDCL. We can conclude 
that our MDP method with periodic policy update gets better efficiency than Guard Channel 
policy of BDCL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6.7 Call Drop Rate of different method under different loads 

BDCL Drop Rate(Not Updated)

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

Load50 Load70 Load90 Load100 Load150(5-

40)

Load150(5-

45)

Load200(5-

50)

Load200(5-

60)
Load(%)

P
ro

b

Normal DR

Policy DR

Guard DR

BDCL Drop Rate

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

Load50 Load70 Load90 Load100 Load150(5-40) Load150(5-45) Load200(5-50) Load200(5-60)
Load(%)

P
ro

b

Normal DR

Policy DR

Guard DR



 

 - 38 -

   Call Dropping Rate are illustrated above as Fig 6.7. The result shows that call drop rate of 
our MDP method without periodic policy update is almost the same as that of Guard Channel 
policy of BDCL. However, call drop of our MDP method with periodic policy update is higher 
than that of Guard Channel policy of BDCL. We can conclude that our method with periodic 
policy update gets worse efficiency than Guard Channel policy of BDCL and our method 
without periodic policy update. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6.8 Call Failure Rate of different method under different loads 

 
  Call Failure Rate is illustrated above as Fig 6.8. The result shows that call failure rate of our 
MDP method without periodic policy update is higher than that of Guard Channel policy of 
BDCL under all traffic loads. However, call failure rate our MDP method with periodic is 
lower than that of Guard Channel policy under traffic load 100%, but it is higher under traffic 

BDCL Failure Rate(Not Updated)

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

Load50 Load70 Load90 Load100 Load150(5-40) Load150(5-45) Load200(5-50) Load200(5-60)
Load(%)

P
ro

b

Normal FR

Policy FR

Guard FR

BDCL Failure Rate

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

Load50 Load70 Load90 Load100 Load150(5-

40)

Load150(5-

45)

Load200(5-

50)

Load200(5-

60)

Load(%)

P
ro

b

Normal FR

Policy FR

Guard FR



 

 - 39 -

load higher than 100%. We conclude that the efficiency of our method gets better under traffic 
100% than Guard Channel policy of BDCL. 
 

 
Fig 6.9 Map of road topology in Cell 16, Cell 57 and Cell 62 

 

 
Fig 6.10 Parameters update for load 70 Cost 5-30 of period 15 sec 

 

Cell 16 Cell 57 Cell 62
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Fig 6.11 Parameters update for load 70 Cost 5-30 of period 60 sec 

 

 
Fig 6.12 Parameters update for load 70 Cost 5-30 of period 120 sec 
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Fig 6.13 Parameters update for load 70 Cost 5-30 of period 180 sec 

 

 
Fig 6.14 Parameters update for load 70 Cost 5-30 of period 240 sec 
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Fig 6.15 Parameters update for load 70 Cost 5-30 of period 300 sec 

 

 
Fig 6.16 Parameters for load 70 Cost 5-30 without periodic update 

 



 

 - 43 -

   As illustrated above in Fig 6.10, Fig 6.11,…, Fig 6.16, they are curves of six parameters of 
Cell 16, of Cell 57 and of Cell 62 with time varying under different policy update periods, 
which are 15 seconds, 60 seconds, 120 seconds, 180 seconds, 240 seconds, 300 seconds and no 
policy update. Cell 16, as illustrated above in Fig 6.9, is the cell with the most crowded road 
topology among those three cells; Cell 57 is the medium one; Cell 62 is the one with the least 
crowded road topology. The above Figures show that the six parameters of more crowded road 
topology vary more severely with time and vary more frequently with more frequent policy 
update. 
 

 
Fig 6.17 Average cost of Load 70 Cost 5-30 with different update periods 
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Fig 6.18 Average cost of Load 90 Cost 5-30 with different update periods 

 

 
Fig 6.19 Average cost of Load 100 Cost 5-30 with different update periods 
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Fig 6.20 Average cost of Load 150 Cost 5-40 with different update periods 

 

 
Fig 6.21 Average cost of Load 150 Cost 5-45 with different update periods 
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Fig 6.22 Average cost of Load 200 Cost 5-50 with different update period 

 

 
Fig 6.23 Average cost of Load 200 Cost 5-60 with different update period 
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   As illustrated above in Fig 6.17 and Fig 6.18, the result shows that the average cost is not 
lower with more periodic policy update. In Fig 6.17, it is simulated under traffic load 70% for 
different policy update periods, and the average cost of update period 120 seconds is the lowest 
one among those of other update periods. In Fig 6.18, it is simulated under traffic load 90% for 
different policy update periods, and the average cost of update period 180 seconds is the lowest 
one among those of other update periods. It means that the more frequent policy update does 
not get the better efficiency. 
 
   From Fig 6.19, Fig 6.20,…, Fig 6.23 illustrated above, they are simulated under traffic 
loads of 100%, 150% and 200% for different policy update periods. Those figures show that 
the average cost without policy update is lower under traffic loads over 100%. The efficiency is 
better if we do not update policy under over-loaded traffic. Moreover, From Fig 6.17 to Fig 
6.23, we find that the average cost with more frequent policy update does not adjust so 
severely with great dumping. The curve of those average costs is smoother with more frequent 
policy update. 
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Chapter 7                          

Conclusion 

 

 
   In the thesis, we simulated the call admission control problem in cellular networks with 
BDCL strategy by One-Step Policy under the environment of road topology. The result shows 
that the efficiency of call failure rate is better under traffic load of less than 100% than that of 
Guard Channel Policy of BDCL. However, if the traffic load is over 100%, the efficiency gets 
worse than Guard Channel Policy of BDCL. We suppose that our method would preserve some 
channels to borrow before the system reaches the convergence, but this phenomenon causes the 
waste of channels and therefore, the efficiency gets worse than Guard Channel Policy of BDCL. 
As we mentioned, the borrowing takes costs. In the aspect of periodic policy update of six 
parameters, the result shows that the efficiency of call failure rate with policy update is better 
than that without policy update. However, it causes the efficiency of call dropping rate worse. 
This is the trade-off between update and no update. 
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                    



 

 - 49 -

References 
 
[1] S. Tekinay and B. Jabbari, “Handover and Channel Assignment in Mobile Cellular 
 Networks,” IEEE Commun. Mag., vol. 29, no. 11, Nov. 1991. 
 
[2] E. C. Posner and R. Guerin, “Traffic Policies in Cellular Radio that Minimizing 
 Blocking of Handoff Calls,” in Proc. 11th Teletraffic Cong. (ITC 11), Kyoto, Japan,  Sept. 
 1985. 
 
[3] S. Choi and K. G. Shin, “Adaptive Bandwidth Reservation and Admission Control in 
 QoS-Sensitive Cellular Networks,” IEEE Trans. Parallel and Distributed Sys., vol. 13, 
 no. 9, pp. 882–897, Sep. 2002. 
 
[4] R. Ramjee, D. Towsley, and R. Nagarajan, “On Optimal Call Admission Control in 
 Cellular Networks,” Wireless Networks Journal, vol. 3, no. 1, pp. 29-41, March 1997. 
 
[5] R. A. Howard, Dynamic Programming and Markov Processes, MIT Press, 1960. 
 
[6] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 2, 2nd edition, 
 Athena Scientific, Belmont, Massachusetts, 2000. 
 
[7] D. P. Bertsekas, Dynamic Programming: Deterministic and Stochastic Models, 
 Prentice-Hall, Englewood Cliffs, NJ, 1987. 
 
[8] D. Hong and S. S. Rappaport, “Traffic Model and Performance Analysis for Cellular 
 Mobile Radio Telephone Systems with Prioritized and Nonprioritized Handoff 
 Procedures,” IEEE Trans. on Vehicular Tech., vol. 35, no. 3, pp. 77-92, Aug. 1986. 
 
[9] B. L. Miller, “A Queuing Reward System with Several Customer Classes,” 
 Management Science, vol. 16, no. 3, pp. 234-245, 1969. 
 
[10] M. L. Puterman and M. C. Shin, “Modified Policy Iteration Algorithms for Discounted 
 Markov Decision Problems,” Management Science, vol. 24, no. 11, pp. 1127-1137, Jul. 
 1978. 
 
[11] M. L. Puterman and M. C. Shin, “Action Elimination Procedures for Modified  Policy 
 Iteration Algorithms,” Operations Research, vol. 30, no. 2, pp. 301-318, 1982. 
 
[12] E. L. Porteus, “Overview of Iterative Methods for Discounted Finite Markov and 
 Semi-Markov Decision Chains,” in Recent Developments in Markov Decision Process, 
 R. Hartley et. al. (eds.), New York: Academic Press, 1980. 
 
[13] D. Collins and C. Smith, 3G Wireless Networks, McGraw-Hill, 2001. 
 
[14] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication, Reading, Mass.: 
 Addison-Wesley, 1995. 
 
[15] T. J. Ott and K. R. Krishnan, “State Dependent Routing of Telephone Traffic and the Use 



 

 - 50 -

 of Separable Routing Schemes,” in Proc. 11th Teletraffic Cong. (ITC 11), Kyoto, Japan, 
 Sept. 1985. 
 
[16] V. G. Lazarev and S. M. Starobinets, “The Use of Dynamic Programming for 
 Optimization of Control in Networks of Communications of Channels,” Eng. Cyber., 
 vol. 15, pp. 107-116, 1977. 
 
[17] S. Zachary, “Control of Stochastic Loss Networks, with Applications,” J. Roy. Statist. 
 Soc. Ser. B, vol. 50, pp. 61-73, 1988. 
 
[18] A. Jayasuriya, D. Green and J. Asenstorfer, “Modeling Service Time Distribution in 
 Cellular Networks Using Phase-Type Service Distributions, ” in Proc. IEEE Int. Conf. on 
 Communications (ICC 2001), vol. 2, pp. 440-444, Helsinki, Finland, June 2001. 
 
[19] F. Barcelo and J. Jordan, “Channel Holding Time Distribution in Cellular Telephony,” 
 The 9th International Conference on Wireless Communications (Wireless’97), vol. 1, 
 pp. 125-134, Alberta Canada, 9-11 July, 1997. 
 
[21] Chia-Fu Chen, “Markov-Decision-Based Call Admission Control with Neighboring State 

Information in Cellular Networks, ” in NCTU, Dec 2006. 
 
[22] M. Zhang and T.-S. Yum. “Comparisons of channel assignment strategies in cellular 

mobile telephone systems.” IEEE Trans. on Vehicular Technology, Vol. 38, no. 4, pages 
211{215, Nov., 1989. 

 
[23] Kshirasagar Naik and David S.L. Wei and Stephan Olariu, “Channel Assignment in 

Cellular Networks with Synchronous Base Stations, ” PEWASUN’ 05, October 10–13, 
2005, Montreal, Quebec, Canada. 

 


