
Hardware Architecture for High-Performance
Regular Expression Matching

Tsern-Huei Lee, Senior Member, IEEE

Abstract—This paper presents a bitmap-based hardware architecture for the Glushkov nondeterministic finite automaton (G-NFA),

which recognizes a given regular expression. We show that the inductions of the functions needed to construct the G-NFA can be

generalized to include other special symbols commonly used in extended regular expressions such as the POSIX 1003.2 format.

Our proposed implementation can detect the ending positions of all substrings of an input string T , which start at arbitrary positions of T

and belong to the language defined by the given regular expression. To achieve high performance, the implementation is generalized

to the NFA, which processes K symbols in each operation cycle. We provide an efficient solution for the boundary condition when the

length of the input string is not an integral multiple of K. Compared with previous designs, our proposed architecture is more flexible

and programmable because the pattern matching engine uses memory rather than logic.

Index Terms—Hardware acceleration, nondeterministic finite automaton, regular expression.

Ç

1 INTRODUCTION

DEEP packet inspection is an important component in
network security appliances such as content firewall,

intrusion detection, and antivirus systems. The function of
deep packet inspection is to search for predefined patterns in
packet payloads. Since a pattern may occur at any position of
the payload, it is very time consuming especially when
patterns are specified with regular expressions. According to
some report [3], the pattern matching module can consume
up to 70 percent of CPU computation power in an intrusion
detection system. As a consequence, pure software-based
pattern matching is not suitable for high-speed networks.

There are hardware accelerators for pattern matching,
which can achieve multigigabits-per-second throughput
performance. However, most of high-performance hardware
accelerators handle only plain strings [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12]. The architectures proposed in [3], [4], [5],
[6], [7], [8], and [9] are based on the famous Aho-Corasick
(AC) algorithm [2], which has the advantages of matching
multiple patterns simultaneously and providing determi-
nistic performance guarantee under all circumstances. These
designs use different approaches such as bitmap [3] and bit-
split [4] to tackle the problem of potentially huge amount of
memory space required by the AC algorithm. The architec-
tures presented in [10], [11], and [12] are based on the highly
efficient Shift-OR algorithm [13]. A pattern boundary vector
is adopted in [10] and [11] while parallel shift registers are
used in [12] so that multiple patterns can be handled
simultaneously. There are other interesting architectures.
A good summary of various architectures and their

performance can be found in [9]. The architecture based on
the Shift-OR algorithm will be reviewed in Section 2 because
our design bears some resemblance to it.

Since security attack signatures can be better specified
with regular expressions, there is increasing demand of high-
speed hardware accelerators for regular expression match-
ing. It is well known that a regular expression can be
recognized with a nondeterministic finite automaton (NFA),
which is equivalent to a deterministic finite automaton
(DFA). Therefore, all hardware accelerators were designed
either based on NFA or DFA. In [14], it was shown that an
NFA can be efficiently realized with programmable logic
array. A high-performance space-efficient FPGA-based im-
plementation of NFA was proposed in [15]. In this design, the
NFA is directly converted into logic gates and registers. The
drawback of such a design is that the circuit has to be
resynthesized when the regular expression is changed. A
DFA-based implementation was presented in [16]. It achieves
significant improvement in performance but may require
large memory space. In [17], a Delayed Input DFA ðD2FAÞ,
which uses default transitions, an idea similar to the failure
transition of the AC algorithm, was proposed to reduce the
number of state transitions and hence the space requirement
of a DFA. The pattern matching engine of this scheme uses
memory rather than logic. A reduction of state transitions for
more than 95 percent was achieved with different sets of
regular expressions used in real products. Therefore, the
number of expressions that can be supported by a single chip
is largely increased. Although the idea works for selected sets
of regular expressions, it still has the risk of resulting in a
huge number of states.

In this paper, we present a different approach to imple-
ment an NFA. The pattern matching engine of our proposed
architecture uses memory, which is more desirable than logic
circuit because it provides better programmability. Our
implementation is for the Glushkov NFA (G-NFA) [19]. We
show that the implementation can handle special symbols
commonly used in extended regular expressions such as

984 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 7, JULY 2009

. The author is with the Department of Communication Engineering,
National Chiao Tung University, Hsinchu 300, Taiwan, R.O.C.
E-mail: tlee@banyan.cm.nctu.edu.tw.

Manuscript received 6 Dec. 2006; revised 13 July 2008; accepted 28 July 2008;
published online 6 Aug. 2008.
Recommended for acceptance by M. Gokhale.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0454-1206.
Digital Object Identifier no. 10.1109/TC.2008.145.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

those conforming to the POSIX 1003.2 format [20]. To achieve
high performance, we generalize the implementation so that
multiple symbols are processed in an operation cycle.

The rest of this paper is organized as follows: In Section 2,
we review the architecture based on the Shift-OR algorithm
for plain string matching. Sections 3 and 4 contain,
respectively, the construction procedure of the G-NFA and
inductions of some functions needed in translating an
extended regular expression into a G-NFA. The proposed
bitmap-based architecture for the G-NFA is presented in
Section 5. Generalization for the K-step NFA, where
K symbols are processed in each operation cycle, is provided
in Section 6. Two example regular expressions are studied in
Section 7. Finally, we draw conclusion in Section 8.

2 THE SHIFT-OR ARCHITECTURE

In this section, we briefly review the Shift-OR algorithm and
the architecture proposed in [10]. We only describe the
architecture that matches a single pattern. Multiple patterns
can be handled simultaneously by cascading the patterns
[10] or using multiple shift registers [12].

Let P ¼ p0 . . . pN�1 be the pattern and T ¼ . . . tiþj . . . be
the input string. A state vector R ¼ R½0�R½1� . . .R½N � 1� is
maintained during the scanning process such that, after tiþj
is processed, R½i� ¼ 0 if ti . . . tiþj matches p0 . . . pj or 1
otherwise. In addition to the state vector, an array of symbol
position vectors is required by the Shift-OR algorithm. Let
Sc ¼ Sc½0�Sc½1� . . .Sc½N � 1� denote the position vector for
symbol c such that Sc½i� ¼ 0 if pi ¼ c or 1 otherwise. Given
R½j� after tiþj is processed, we have, after processing tiþjþ1,

R½0� ¼Sc½0�;
R½jþ 1� ¼R½j� OR Sc½jþ 1�;

where c ¼ tiþjþ1. A pattern occurrence, which ends at
position k of input string T , is found if R½N � 1� ¼ 0 after
tk is processed.

Fig. 1 shows the single-pattern version of the Shift-OR-
based architecture proposed in [10]. In this figure, we
assume that three symbols are processed in one operation
cycle. The operation is given as follows: First, the current
state vector is shifted to the right by 1 bit and bitwise ORed
with S0 to generate intermediate state vector X0. Second, X0

is shifted to the right by 1 bit and ORed with S1 to obtain

intermediate state vector X1. Finally, X1 is shifted to the
right by 1 bit and ORed with S2 to obtain intermediate state
vector X2, which represents the new state vector for the next
cycle computation and is stored back to R. The contents of
intermediate state vectors can be expressed as the following
equations:

Xk½0� ¼Sk½0� for all k;

X0½i� ¼R½i� 1� OR S0½i� for i > 0;

Xk½i� ¼Sk½i� OR Xk�1½i� 1� for k > 0; i > 0:

It is clear that multiple matches are possible if more than
one symbol is processed in an operation cycle. To detect all
the matches, the rightmost bit of each intermediate state
vector is checked. A pattern occurrence, which ends at the
ðkþ 1Þth symbol processed in the current operation cycle, is
found if Xk½N � 1� ¼ 0.

The number of distinct symbols appeared in the pattern
could be much smaller than the size of the alphabet. In this
case, a symbol encoder can be used to reduce the number of
symbol position vectors stored [12]. If no multiport memory
is used, then K symbol encoders are needed if K symbols
are to be encoded simultaneously.

3 CONSTRUCTION OF GLUSHKOV-NFA

Let � denote the alphabet and consider a regular expression

RE that consists of N symbols in �. Let LðREÞ represent the

language defined by RE. To construct the G-NFA that

recognizes all strings belonging toLðREÞ (for brevity, we say

the NFA recognizes RE), the positions of the symbols in RE

are marked, counting only symbols, i.e., excluding special

symbols such as (,), � (concatenation), j (or), and � (Kleene

star). Denote the marked expression by dRE and let LðdREÞ
represent its language. As an example, if RE ¼
ðABjCAÞðADBjCEFÞ�, then we have dRE ¼ ðA1B2jC3A4Þ
ðA5D6B7jC8E9F10Þ� and LðdREÞ¼fA1B2;C3A4; A1B2A5D6B7;

A1B2C8E9F10;C3A4A5D6B7;C3A4C8E9F10; . . .g. Let PosðdREÞ
be the set of positions in dRE and �̂ the marked symbol

alphabet. Since RE consists of N symbols, we have

PosðdREÞ ¼ f1; 2; . . . ; Ng. The G-NFA is first built for the

marked expression dRE and then for RE by erasing the

position indices of all the symbols.
To construct a G-NFA that recognizes dRE, we build

N þ 1 states labeled from 0 to N , where state 0 denotes the
initial state. We need to know which positions can be
entered from state i when a new symbol � is processed. To
answer this question, the following definitions are neces-
sary. In these definitions, �k represents the indexed symbol
of dRE at position k and �̂� denotes the set of all strings of
symbols in �̂.

D e f i n i t i o n 1 . FirstðdREÞ ¼ fx 2 PosðdREÞ; 9 u 2 �̂�;

�xu 2 LðdREÞg. In our example , dRE ¼ ðA1B2jC3A4Þ
ðA5D6B7jC8E9F10Þ�, and thus, we have FirstðdREÞ ¼ f1; 3g.

D e f i n i t i o n 2 . LastðdREÞ ¼ fx 2 PosðdREÞ; 9 u 2 �̂�;

u �x 2 LðdREÞg. For convenience, state x is called a final

state if x 2 LastðdREÞ. In our example, we have LastðdREÞ ¼
f2; 4; 7; 10g.

LEE: HARDWARE ARCHITECTURE FOR HIGH-PERFORMANCE REGULAR EXPRESSION MATCHING 985

Fig. 1. The Shift-OR architecture for plain string matching.

Definition 3. FollowðdRE; xÞ ¼ fy 2 PosðdREÞ; 9 u; v 2 �̂�;

u�x�yv2LðdREÞg. In our example, we have FollowðdRE; 2Þ ¼
FollowðdRE; 7Þ ¼ f5; 8g.
The G-NFA for dRE, denoted by McRE , is given by

McRE ¼ ðS; �̂; I; F ; �̂Þ, where S ¼ f0; 1; . . . ; Ng is the set of

states, �̂ represents the marked symbol alphabet, I ¼ f0g
denotes the set of initial state, F ¼ LastðdREÞ is the set of

final states, and �̂ is the state transition function defined by

8 x 2 S, 8 y 2 FollowðdRE; xÞ; �̂ ðx; �yÞ ¼ fyg. One can easily

construct McRE as long as FirstðdREÞ, LastðdREÞ, and

FollowðdRE; xÞ are known. The G-NFA for dRE ¼
ðA1B2jC3A4ÞðA5D6B7jC8E9F10Þ� is shown in Fig. 2, where

every final state is represented by double circle.

As mentioned before, the G-NFA of the original un-

marked regular expression, denoted byMRE ¼ ðS;�; I; F ; �Þ,
can be obtained by erasing the position indices in the marked

automaton. The major differences betweenMRE andMcRE are

1) � is for unmarked symbols and 2) the state transition

function � is defined by y 2 �ðx; �Þ if y 2 �̂ðx; �yÞ and �y ¼ � if

the index y is removed. Fig. 3 illustrates the G-NFA of our

example regular expression RE ¼ ðABjCAÞðADBjCEFÞ�.
Note that, in Fig. 3, there is an edge from state x to state y

that is labeled with � if y 2 �ðx; �Þ.
Before leaving this section, we state some well-known

properties of the G-NFA.

Property 1. The G-NFA is "-free, i.e., there is no "-transitions,
where " represents the empty string.

Property 2. For any state y, if �̂ðx; �Þ ¼ fyg, then it is true that
� ¼ �y.

4 INDUCTIONS OF FirstðREÞ, LastðREÞ, AND

FollowðRE; xÞ
As mentioned previously, the G-NFA for regular expression
RE can be constructed if FirstðREÞ, LastðREÞ, and
FollowðRE; xÞ are known. In this section, we present the
inductions of FirstðREÞ, LastðREÞ, and FollowðRE; xÞ,
where RE ¼ RE1jRE2, RE1 �RE2, or RE�. These results
can be found in [21].

Consider the inductions of FirstðREÞ and LastðREÞ.
We have:

RE ¼ RE1jRE2 : FirstðREÞ ¼ FirstðRE1Þ [FirstðRE2Þ;
LastðREÞ ¼ LastðRE1Þ [LastðRE2Þ.

RE ¼ RE1 �RE2: FirstðREÞ ¼ FirstðRE1Þ [FirstðRE2Þ if

" 2 LðRE1Þ or FirstðRE1Þ otherwise;

LastðREÞ ¼ LastðRE1Þ [LastðRE2Þ if

" 2 LðRE2Þ or LastðRE2Þ otherwise.

RE¼RE�: FirstðREÞ¼FirstðREÞ; LastðREÞ¼LastðREÞ.

Induction of FollowðRE; xÞ is given as follows:

RE ¼ RE1jRE2: FollowðRE; xÞ ¼ FollowðRE1; xÞ if

x 2 PosðRE1Þ or FollowðRE2; xÞ if

x 2 PosðRE2Þ.
RE ¼ RE1 �RE2: FollowðRE; xÞ ¼ FollowðRE1; xÞ if

x2PosðRE1Þ � LastðRE1Þ or
FollowðRE1; xÞ [FirstðRE2Þ if

x 2 LastðRE1Þ or FollowðRE2; xÞ if

x 2 PosðRE2Þ.
RE ¼ RE�: FollowðRE; xÞ ¼ FollowðRE; xÞ if

x2PosðREÞ-LastðREÞ or FollowðRE; xÞ[
FirstðREÞ if x 2 LastðREÞ.

The following inductions answer whether or not " 2 LðREÞ.

RE ¼ RE1jRE2: " 2 LðREÞ if " 2 LðRE1Þ or " 2 LðRE2Þ.
RE ¼ RE1 �RE2: " 2 LðREÞ if " 2 LðRE1Þ and " 2 LðRE2Þ.
RE ¼ RE�: " 2 LðREÞ.

Note that the above inductions can be generalized to
include special symbols ? (zero or one repetition), þ (one
or more repetitions), and fmin;maxg (minimum of min,
maximum of max repetitions), which are commonly used
in various extended regular expressions such as the
POSIX 1003.2 format. The inductions for RE ¼ RE? and
RE ¼ REþ are given below.

RE ¼ RE?: FirstðREÞ ¼ FirstðREÞ; LastðREÞ ¼ LastðREÞ;
FollowðRE; xÞ ¼ FollowðRE; xÞ; " 2 LðREÞ.

RE¼REþ: FirstðREÞ¼FirstðREÞ; LastðREÞ¼LastðREÞ;
FollowðRE; xÞ ¼ FollowðRE; xÞ if

x 2 PosðREÞ-LastðREÞ or FollowðRE; xÞ [
FirstðREÞ if x 2 LastðREÞ; " 2 LðREÞ if

" 2 LðREÞ.
The induction for RE ¼ RE? is obviously true

because RE? is equivalent to "jRE. The correctness of
the induction for RE ¼ REþ can be seen as follows:
S i n c e FirstðREÞ ¼ FirstðREÞ; LastðREÞ ¼ LastðREÞ;
FollowðRE; xÞ¼ FollowðRE; xÞ if x 2 PosðREÞ�LastðREÞ
or FollowðRE; xÞ[FirstðREÞ if x 2 LastðREÞ, a string T
is accepted if and only if (iff) it can be written as
T1 � T2 � � � � � Tk, where Ti 2 LðREÞ for all i, 1 � i � k,
which is exactly the condition for T 2 LðREþÞ. It is clear
that REþ ¼ RE �RE�, and therefore, one can use the
inductions for RE ¼ RE1 �RE2 and RE ¼ RE�. How-
ever, compared with the above induction, it requires
double the number of states.

Consider the induction of the bound special symbol

fmin;maxg. Let RE ¼ REfmin;maxg and assume that the

length of RE is equal to N . Instead of creating N states,

we need to generate maxN states, which are numbered

from 1 to maxN . Partition these maxN states into max

equal-sized groups so that the ith group contains

986 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 7, JULY 2009

Fig. 2. The G-NFA for dRE ¼ ðA1B2jC3A4ÞðA5D6B7jC8E9F10Þ�. Fig. 3. The G-NFA for RE ¼ ðABjCAÞðADBjCEFÞ�.

states ði� 1ÞN þ 1; ði� 1ÞN þ 2; . . . , and iN , 1 � i � max.

The inductions for RE ¼ REfmin;maxg are given below.

RE¼REfmin;maxg: FirstðREÞ¼fði�1ÞNþx; x2
FirstðREÞ; 1� i�maxg if "2LðREÞ or

FirstðREÞ otherwise; LastðREÞ ¼
fði� 1ÞN þ x; x 2 LastðREÞ;
min � i � maxg; for ði� 1ÞN þ 1 �
x� iN , 1� i�max�1, FollowðRE; xÞ ¼
fði�1ÞNþy; y2FollowðRE; x�ði�
1ÞNÞg [fiN þ y; y 2 FirstðREÞg if

x�ði�1ÞN2LastðREÞ or fði�1ÞNþ
y; y 2 FollowðRE; x� ði� 1ÞNÞg
otherwise; for ðmax� 1ÞN þ
1�x�maxN , FollowðRE; xÞ¼
fðmax� 1ÞN þ y; y 2 FollowðRE;
x�ðmax�1ÞNÞg; "2LðREÞ if

"2LðREÞ.
Roughly speaking, the above construction creates max

copies of an NFA, which recognizes RE. For convenience,

we call state x a candidate last state of the jth copy iff

ðj� 1ÞN þ 1 � x � jN and x� ðj� 1ÞN is in LastðREÞ of

the first copy, which recognizes RE. Similarly, state x is

called a candidate first state of the jth copy iff ðj� 1ÞN þ
1 � x � jN and x� ðj� 1ÞN is in FirstðREÞ of the first

copy. The above construction assigns y 2 FollowðRE; xÞ,
where y is any candidate first state of the jth copy and x is

any candidate last state of the ðj� 1Þth copy. Furthermore,

state x is a final state iff state x is a candidate last state of the

jth copy, where j satisfies min � j � max. The correctness

of the above inductions can be argued as follows: Assume

that " 2 LðREÞ and consequently " 2 LðREÞ. A string T is

accepted iff it can be written as T1 � T2 � � � � � Tk for some k,

min � k � max, such that Ti 2 LðREÞ for all i, 1 � i � k,

and tj�1 ¼ " if tj ¼ ", which is exactly the condition for

T 2 LðREÞ. Therefore, the inductions are correct for the

case " 2 LðREÞ. The arguments of correctness for the case

" =2 LðREÞ is similar and thus is omitted.
It is easy to see that fming (repetitions of exactly min

times) is a special case of fmin;maxg with max ¼ min. In

case max ¼ 1, i.e., the bound special symbol is just fmin; g,
we need to only create min copies of the NFA, which

recognizes RE with a total of minN states. The inductions

for this case are shown below.

RE¼REfmin; g: FirstðREÞ¼fði�1ÞNþx; x2FirstðREÞ;
1 � i � ming if " 2 LðREÞ or FirstðREÞ
otherwise; LastðREÞ¼fðmin�1ÞNþx; x2
LastðREÞg; for ði� 1ÞN þ 1 � x � iN ,

1� i�min�1,FollowðRE; xÞ¼fði�1ÞNþy;
y 2 FollowðRE; x� ði� 1ÞNÞg [fiN þ y;
y2FirstðREÞg if x�ði�1ÞN2LastðREÞ or

fði�1ÞNþy; y2FollowðRE; x�ði�1ÞNÞg
otherwise; for ðmin� 1ÞN þ 1 � x � iN ,
FollowðRE; xÞ¼fðmin�1ÞN þ y; y2
FollowðRE; x�ði�1ÞNÞg[fðmin�
1ÞNþy; y 2 FirstðREÞg if x 2 LastðREÞ or

fði�1ÞNþy; y2FollowðRE; x�ði�1ÞNÞg
otherwise; " 2 LðREÞ if " 2 LðREÞ.

Note that in the last copy, state y 2 FollowðRE; xÞ if state
x is a final state and state y is a candidate first state.
According to the induction, a string T is accepted iff it can
be written as T1 � T2 � � � � � Tk for some k � min, such that
Ti 2 LðREÞ for all i, 1 � i � k, which is exactly the condition
for T 2 LðREÞ. Therefore, the above inductions are correct.

5 A BITMAP-BASED ARCHITECTURE

For convenience, we define FollowðRE; 0Þ ¼ FirstðREÞ. Let
Enterð�Þ ¼

S
x2S �ðx; �Þ. According to Property 2, it holds

that �ðx; �Þ ¼ FollowðRE; xÞ \Enterð�Þ. Let B denote the
set of active states after the last symbol of input string T is
processed. The string T is accepted, i.e., T 2 LðREÞ, iff
B \ LastðREÞ 6¼ ;. As a consequence, one can implement
MRE with bitmaps and simple logical operations. Fig. 4
illustrates the architecture of the bitmap-based implementa-
tion of our running example regular expression.

The symbol 	, which appears in the Enterð�Þ table,
means any symbol other than A, B, C, D, E, and F. In fact,
one can define an equivalence relation so that two symbols
� and � are in the same equivalence class iff
Enterð�Þ ¼ Enterð�Þ. In our example, there are seven
equivalence classes denoted by A, B, C, D, E, F, and 	.
The initial content of B is set to zero. The switch connected
to FirstðREÞ is closed when the first symbol is processed
and then remains open. To find the active states after an
input symbol � is processed, the content of B is used to fetch
the bitmaps of the FollowðRE; xÞ table. The bitmap
representing FollowðRE; xÞ is fetched iff the xth bit of B is
a 1. The fetched bitmaps are bitwise ORed together and the
result is bitwise ANDed with Enterð�Þ to obtain the updated
content of B. Let FollowðRE;XÞ ¼

S
x2X FollowðRE; xÞ for

all X
 S. As a result, the updated set of active states after
input symbol � is processed is FollowðRE;BÞ \ Enterð�Þ. In
Fig. 4, the content of FollowðRE;BÞ is reset to zero before an
input symbol is processed. Note that the FollowðRE; xÞ
table may have to be accessed up to N times if all bits of B
are 1’s. It is possible to reduce this number by precomputa-
tion. For example, if the length of RE is equal to 32, then the
number of memory accesses and bitwise OR operations
could be as many as 32. To reduce this number, one can
partition the states into groups and precompute unions of
FollowðRE; xÞ for all possible combinations. Assume that
the states are partitioned into four groups so that group i
ð1 � i � 4Þ contains states 8ði� 1Þ þ 1; 8ði� 2Þ þ 2; . . . ;
and 8i. As a consequence, there are 256 combinations within
each group. We can store FollowðRE;XÞ for all possible
values of X. As an example, consider the first group. If
X ¼ 19 ¼ ð1 1 0 0 1 0 0 0Þ (states 1, 2, and 5 are active), then
we have FollowðRE;XÞ ¼ FollowðRE; 1Þ [FollowðRE; 2Þ [
FollowðRE; 5Þ. By doing so, the number of memory accesses
and bitwise OR operations is reduced to four. The trade-off
is an increase of memory requirement by 32 times. To
further improve system performance, the four groups can be
stored in separate memories and fetched simultaneously.
After B is updated, a bitwise AND operation is performed
for B and LastðREÞ. The operation repeats until all the
symbols of input string T are processed. To decide whether
T 2 LðREÞ or not, we examine the Output register after the
last symbol of input string T is processed. The input string T

LEE: HARDWARE ARCHITECTURE FOR HIGH-PERFORMANCE REGULAR EXPRESSION MATCHING 987

is accepted iff the final content of Output register is not zero.
Note that since the Output register is updated after each
input symbol is processed, the proposed architecture can
actually detect the ending positions of all substrings of T ,
which start from the first symbol of T and belong to LðREÞ.

It is not hard to see that the above implementation for
MRE does not consider " 2 LðREÞ. The architecture can be
easily modified by adding another bit (for state 0) to each
bitmap and performing the bitwise AND operation before
updating the content of B to include the possibility of
" 2 LðREÞ. The initial content of B is set to 1 for the bit
representing state 0 and 0 elsewhere. Also, the implementa-
tion only detects all substrings, which start from the first
symbol of input string T and belong to LðREÞ. Let �MRE ¼
ðS0;�; I 0; F 0; �0Þ be the NFA, which can detect all substrings

of T that start from any symbol of T and belong to LðREÞ.
Clearly, one can obtain �MRE from MRE by letting the initial
state to be always active. Consequently, we have S0 ¼ S,
I 0 ¼ I, F 0 ¼ F , and for every � 2 �, �0 ðx; �Þ ¼ �ðx; �Þ for all
x 2 S, x 6¼ 0 and �0ð0; �Þ ¼ �ð0; �Þ [f0g. To realize �MRE , the
switch connected to FirstðREÞ is always closed.

6 A HIGH-PERFORMANCE BITMAP-BASED

ARCHITECTURE

In this section, we generalize the architecture so that Kð� 2Þ
symbols are processed in each operation cycle. For an integer
d � 2, let Md

RE ¼ ðSd;�d; Id; Sd � �d; �dÞ denote the d-step
NFA, which processes d symbols per operation cycle and
accepts all substrings of input string T , which start from
the first symbol of T and belong to LðREÞ. Here,
�d ¼ fu 2 ��; juj ¼ dg, where juj represents the length of u.
For convenience, we call u a d-symbol if u 2 �d. The state
transition function �d is defined by �dðx; uaÞ ¼�ð�d�1ðx; uÞ; aÞ,
for all x 2 S, ua 2 �d, and a 2 �, where � is generalized to
become �ðX; aÞ ¼

S
x2X �ðx; aÞ for all X
 S. For two states x

and y in MRE , we say state y can be accessed by state x in
d steps if y 2 �dðx; uÞ for some d-symbol u. The set Sd is a
subset of S such that 0 2 Sd and x 2 Sd if x 2 S and can be
accessed by state 0 in qd steps for some integer q. The set Id is
the same as I. Different from MRE , the current state is not
sufficient for Md

RE to decide whether or not a substring of T ,
which starts from the first symbol of T , belongs to
LðREÞ. Instead, we need to know the current state and the
input d-symbol. Hence, the set of final states F in MRE is
replaced by Sd��d in Md

RE . For x2Sd and a d-symbol
u ¼ u1u2 . . .ud, the pair ðx; uÞ 2 Sd � �d iff �iðx; u1 . . .uiÞ \
LastðREÞ 6¼ ; for some i, 1 � i � d. Note that it is
possible to find multiple matches with current state x and
input d-symbol u. From x and u, we are able to determine the
number of matches and their ending positions as long as
MRE is available. One can easily prove that Md

RE is able to
find all substrings of T , which start from the first symbol of
T and belong to LðREÞ. For the purpose of processing
K symbols per operation cycle, we need MK

RE .

The NFA �MK
RE has to be modified if the goal is to find all

substrings of input stringT , which start from any symbol ofT

and belong to LðREÞ. Let �MK
RE ¼ ðS0K;�K; I 0K; S

0
K � �K; �0KÞ

denote such an NFA. For K � 2, it is not true to obtain �MK
RE

from MK
RE by letting the initial state to be always active

because, by doing so, one can only detect all substrings of T ,

which start at the ðqK þ 1Þth symbol of T and belong to

LðREÞ. To have a correct �MK
RE , we need to assign S0K ¼ S;

I 0K ¼ IK ; �0Kðx; u1u2 . . .uKÞ ¼ �K ðx; u1u2 . . .uKÞ for all x 2 S,

x 6¼ 0, �0Kð0; u1u2 . . .uKÞ ¼
SK
i¼1 �ið0; uK�iþ1 . . .uKÞ [f0g for

a l l u1u2 . . .uK 2 �K ; a n d ðx; u1u2 . . .uKÞ 2 S0K � �K i f

�iðx; u1u2 . . .uiÞ \ LastðREÞ 6¼ ; for some i, 1 � i � K. The

correctness of �MK
RE can be argued as follows: Let T ¼

t1t2 . . . tL and T1¼ te . . . tf , where e¼q1Kþr1, f¼q2Kþr2,

0 � r1, r2 � K � 1, is a substring of T , which belongs to

LðREÞ. Assume that L is an integral multiple of K. We will

handle the case when L is not an integral multiple ofK later.

Let us consider the case that r1, r2 > 0. (The other cases can be

argued similarly.) Since T1 2 LðREÞ, MRE accepts T1, and

therefore, there is a sequence of state transitions, which ends

988 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 7, JULY 2009

Fig. 4. (a) The bitmap-based architecture for RE ¼ ðABjCAÞ
ðADBjCEFÞ�. (b) The FollowðRE; xÞ table. (c) The Enterð�Þ table.

at a final state when the symbols of T1 are completely

processed. Let x be the state in the sequence of transitions

after the ðK � r1 þ 1Þth symbol of T1 is processed. Also, let y

be the state in the sequence of transitions after the ððq2�q1�1Þ
K þK � r1 þ 1Þth symbol of T1 is processed. Consider the

NFA �MK
RE . With our assignment of �0K ð0; u1u2 . . .uKÞ, state x

is active after the ðq1 þ 1Þth K-symbol is processed.

Moreover, state y is active after the subsequent

ðq2 � q1 � 1Þ K-symbols are processed. Finally, when the

ðq2 þ 1Þth K-symbol is processed, a match is found and

the substring T1 can be detected if MRE is available.
For �MK

RE , define EnterðuÞ as the set of states in S0K ,
which can be entered after processing input K-symbol u
and FollowðRE; xÞ as the set of states in S0K such that
y 2 FollowðRE; xÞ if there exists a K-symbol v such that
y 2 �0Kðx; vÞ. Since state 0 is always active, we assign
x 2 EnterðuÞ for any K-symbol u if x 2 �0Kð0; uÞ The
equality �0Kðx; uÞ ¼ FollowðRE; xÞ \EnterðuÞ for any pair
of state x and input K-symbol u is in general not true
for �MK

RE when K > 1. As an example, for the running
example regular expression with K ¼ 4, we have
FollowðRE; 0Þ¼f0; 1; 2; 3; 4; 5; 6; 8g, EnterðEFADÞ¼f0; 6g,
and FollowðRE; 0Þ\EnterðEFADÞ¼f0; 6g, which is dif-
ferent from �04ð0; EFADÞ ¼ f0g. As a consequence, the
architecture shown in Fig. 4 is not applicable and we
need a bitmap table Hðx; uÞ ¼ �04ðx; uÞ for all pairs of
state x and 4-symbol u.

The bitmap-based implementation of �M4
RE for RE ¼

ðABjCAÞðADBjCEFÞ� is shown in Fig. 5a. In addition to the

Hðx; uÞ table, we need another bitmap table for F ðuÞ whose

xth bit is a 1 iff ðx; uÞ 2 S04 � �4. For convenience, the

bitmaps are replaced with a set of integers in Fig. 5b. To save

space, Hðx; uÞ is not presented. Since the total number of

possible K-symbols could be huge, it is important to

define equivalence classes for them. For our purpose, two

K-symbols u and v are in the same equivalence class iff

Hðx; uÞ ¼ Hðx; vÞ for all states x and F ðuÞ ¼ F ðvÞ. As

illustrated in Fig. 5b, there are 58 equivalence classes, which

are represented by different integers called equivalence class

ID (ECID). These equivalence classes are partitioned into

five groups: Group 1 (ECIDs 1-14), Group 2 (ECIDs 15-21),

Group 3 (ECIDs 22-27), Group 4 (ECIDs 28-57), and Group 5

(ECID 58). For ease of description,	 represents any symbol.

Moreover, a K-symbol, which contains at least one 	 , is

called a generalized K-symbol. The ECID of the

equivalence class, which contains the most specific (general-

ized) K-symbol, is selected if an input K-symbol matches

multiple (generalized) K-symbols in different equivalence

classes. A (generalized) K-symbol u is said to be more

specific than another generalized K-symbol v if v can be

obtained from u by changing one or more symbols, which

are not 	 into 	 . For example, the input 4-symbol ADBA

matches the (generalized) 4-symbols in equivalence classes

5, 15, 19, 22, and 58. ECID 5 is selected because ADBA is

more specific than ADB	 , A			 , 			A, and 				 .

Symbol ui of the (generalized) 4-symbol u1u2u3u4 is under-

lined if �i ðx; u1u2 . . .uiÞ\ LastðREÞ 6¼ ; for some state x 2 S.

(To be precise, we define �ðx;	Þ ¼ f0g for all states x 2 S.)

A 4-symbol u is in Group 1 iff it satisfies �4ðx; uÞ \ S 6¼ ;
for some state x 2 S. Every generalized 4-symbol in Group 2

contains at least one 	 at the end. A generalized 4-symbol

u ¼ u1u2 . . .ui 	 . . . 	 , where u1u2 . . .ui 2 �i, is in Group 2

iff �i ðx; u1 . . .uiÞ \ LastðREÞ 6¼ ; for some state x 2 S. Note

that, for a generalized 4-symbol u in Group 2, Hðx; uÞ ¼ f0g
for all states x. Besides, for u in Group 1 and v in Group 2, we

haveF ðvÞ
 F ðuÞ if u is more specific than v. The generalized

4-symbols in Group 3 contain at least one	 at the beginning

and are necessary for the states that can be accessed by state 0

in less than four steps. A generalized 4-symbol u ¼ 	 . . . 	
ui . . .u4 is in Group 3 iff �5�ið0; ui . . .u4Þ \ S 6¼ ;. For a

generalized 4-symbol u in Group 3, F ðuÞ is either ; or {0}.

Moreover, for a (generalized) 4-symbol u in Group 1 or

Group 3 and another generalized 4-symbol v in Group 3, we

have Hðx; vÞ
 Hðx; uÞ for every state x and F ðvÞ
 F ðuÞ if u

is more specific than v. The equivalence classes that form

Group 4 are obtained by “intersecting” the equivalence

classes of Group 2 with those of Group 3. Consider a

LEE: HARDWARE ARCHITECTURE FOR HIGH-PERFORMANCE REGULAR EXPRESSION MATCHING 989

Fig. 5a. The bitmap architecture of �M4
RE forRE ¼ ðABjCAÞðADBjCEFÞ�.

generalized 4-symbol u ¼ u1 . . .ui 	 . . . 	 in Group 2 and

another generalized 4-symbol v ¼ 	 . . . 	 vj . . . v4 in

Group 3. A generalized 4-symbol w ¼ u1 . . .ui 	 . . . 	
vj . . . v4 is created in Group 4 if j� i > 1. If j� i ¼ 1, then

the 4-symbol w ¼ u1 . . .ui vj . . . v4 is created in Group 4 if it

does not appear in Group 1. It is worth to be pointed out that

Hðx;wÞ ¼ Hðx; vÞ and F ðwÞ ¼ F ðuÞ [F ðvÞ if w (in Group 4)
is created by intersecting u (in Group 2) and v (in Group 3).
For example, DBAB (ECID 34) is derived from DB		
(ECID 17) and 		AB (ECID 24) and thus Hðx;DBABÞ ¼
Hðx; 		ABÞ a n d F ðDBABÞ ¼ F ðDB		Þ [F ð		ABÞ.
Group 5 only contains one generalized 4-symbol,
i.e., 				 , and represents the complement of the other
groups.

The operation of the NFA engine shown in Fig. 5a is
given as follows: The bitwise AND operation for B and F ðuÞ
is performed before updating the content of B. Matches are
found if the outcome is not zero. The initial content of B is
set to 1 for the bit representing state 0 and 0 elsewhere. To
update the set of active states after input K-symbol u is
processed, the content of B and the ECID of u are used to
fetch the bitmaps of Hðx; uÞ and obtain HðB; uÞ ¼S
x2B Hðx; uÞ with the bitwise OR operation. The result of

HðB; uÞ is then saved as new content of B. Note that the
content of HðB; uÞ is reset to zero before processing an input
K-symbol. The operation repeats until all the K-symbols of
the input string T are processed. Clearly, the length of input
string T may not be an integral multiple of K. This case will
be handled later.

The hierarchical architecture proposed in [5], which is
shown in Fig. 6, can be used to find the ECID of an input
K-symbol. In this figure, for the input 4-symbol
u ¼ u1u2u3u4, table Cð1; iÞ, i ¼ 1; 2; 3, and 4, is used to find
the ECID of ui. Table Cð2; iÞ, i ¼ 1; 2, is used to find the
ECID of u2i�1u2i using the ECIDs of u2i�1 and u2i as inputs.
Finally, table C(4,1) is used to find the ECID of u using the
ECIDs of u1u2 and u3u4 as inputs. Fig. 6 also shows the
pipelined architecture of the overall NFA, which includes
the component of finding the ECID for the input 4-symbol
and the NFA engine. With the pipelined design, the
throughput performance can be improved by four times.

As mentioned previously, the length of input string T
may not be an integral multiple of K. Let the length of T be
qK þ r, 0 � r � K � 1. There is no problem if r ¼ 0.
Assume that r > 0 and let u ¼ u1 . . .ur be the last r symbols
of T . A simple solution is to pad ðK � rÞ symbols at the end
of u. For example, one can pad ðK � rÞ z’s to make u zK�r a
K-symbol, where zd means symbol z repeats d times. Since
the active states after u zK�r is processed is irrelevant, all
we need to modify is the set S0K � �K . The pair ðx; u zK�rÞ is
added to S0K � �K if �i ðx; u1 . . .uiÞ \ LastðREÞ 6¼ ; for
some i, 1 � i � r. It is possible to create false positives if
ðx; u zK�rÞ was in S0K � �K and �i ðx; u zjÞ \ LastðREÞ 6¼ ;
for some j, 1 � i � K � r. However, the false positives can
be eliminated because we know the value of r.

Let us now compare the complexity of the Shift-OR
architecture for plain string matching with that of our
proposed architecture for regular expression matching. The
comparison is for a single pattern of length N . We will
emphasize on comparison of memory space requirements.
Consider the architectures that process one symbol in each
operation cycle. For the Shift-OR architecture, it requires
one N-bit register for the state vector R, j�j �N (j�j
denotes the size of �) bits memory space to store symbol
position vectors, and N OR gates. For our proposed
architecture, it requires five N-bit registers for FirstðREÞ,
LastðREÞ, B, FollowðRE;BÞ, and Output, N2 bits memory

990 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 7, JULY 2009

Fig. 5b. The F ðuÞ table.

space for the FollowðRE; xÞ table, j�j �N bits for the
Enterð�Þ table, 2N OR gates, and 2N AND gates. Register B
plays the role of state vector and has to be saved to memory
if data arrives in small segments such as packets. If symbol
encoder is adopted, then the memory space required by the
symbol position vectors of the Shift-OR architecture and the
Enterð�Þ table of our proposed architecture reduces to
j�j �N bits, where � is the set of equivalence classes whose
size is equal to the number of distinct symbols that appear
in the pattern plus 1. The trade-off is more logic for the
symbol encoder, which can be implemented with table
lookup. If every symbol appears in any position of the
pattern with equal probability, then the expected size of �
is given by j�jf1� ½ðj�j � 1Þ=j�j�Ng þ 1.

Assume that Kð� 2Þ symbols are processed in each

operation cycle. Assume further that no multiport memory

is used. The memory space required by the Shift-OR

architecture becomes j�j �N �K bits if symbol encoders

are not adopted or j�j �N �K bits otherwise. As for our

proposed architecture, the hierarchical symbol encoders

are needed. Otherwise, the number of K-symbols would

become prohibitively large when K is large. The F ðuÞ table

requires j�j � ðN þ 1Þ bits and the Hðx; uÞ table needs

j�j x ðN þ 1Þ2 bits. Obviously, the space requirement

highly depends on j�j. How to derive the expected value

of j�j is an interesting but challenging work. We provide

an upper bound here. Let li, 1 � i � K � 1, denote the

number of i-symbols u 2 �i such that �ið0; uÞ \ S 6¼ ; and

Li ¼
Pi

j¼1 lj. Let ni, 1 � i � K � 1, represent the number

of i-symbols u such that �i ðx; uÞ \ LastðREÞ 6¼ ; for some

state x 2 S. Finally, let g be the number of K-symbols u

such that �Kðx; uÞ \ S 6¼ ; for some x 2 S. The number of

equivalence classes is upper bounded by gþ LK�1 þPK�1
i¼1 ni þ

PK�1
i¼1 niLK�i þ 1. For our running example,

we have g ¼ 18, l1 ¼ 2, l2 ¼ 2, l3 ¼ 4, n1 ¼ 3, n2 ¼ 4, and

n3 ¼ 2. As a result, the number of equivalence classes is

upper bounded by 18þ8þ9þ3�8þ4�4þ2�2þ1¼80,

which does not differ a lot from the actual number 58.
It is clear that the space complexity of our proposed

architecture is higher than that of the Shift-OR architecture.
This is the price paid for matching regular expressions
rather than plain strings.

7 SOME EXAMPLE REGULAR EXPRESSIONS

In this section, we study two extended regular expressions
selected from Snort [1]. It is possible to reduce the number
of states in a G-NFA if we allow an edge to be labeled with
multiple symbols. Two states m and n can be merged into
one, called state m [n, if

1. both are final states or both are nonfinal states,
2. m 2 FollowðRE; xÞ implies n 2 FollowðRE; xÞ,
3. x 2 FollowðRE;mÞ implies x 2 FollowðRE; nÞ, and
4. n 2 FollowðRE;mÞ implies m 2 FollowðRE; nÞ.

After states m and n are merged, state m [n satisfies the
following conditions:

1. state m [n is a final state if both states m and n are
final states,

2. m [n 2 �ðx; �Þ if m 2 � ðx; �Þ or n 2 �ðx; �Þ,
3. x 2 � ðm [n; �Þ if x 2 �ðm;�Þ and x 2 � ðn; �Þ, and
4. m [n 2 �ðm [n; �Þ if m 2 �ðm;�Þ or n 2 �ðn; �Þ.

Clearly, the process of merging states can be performed
iteratively. For convenience, the resulting NFA when no
more merging is possible is called the reduced G-NFA.
As an example, Figs. 7a and 7b illustrate, respectively, the
G-NFA and the reduced G-NFA of the regular expression
AðAjBÞþC. In Fig. 7b, [A, B] represents AjB.

Example 1. Consider the extended regular expression
^rcptn sþton x3an s�½j; nx3b�=mi. The symbol ^ means
match the beginning of the line. The symbol ns denotes
white space. Symbols nx3a and nx3b represent 3a and
3b in hexadecimal, which are “:” and ”;”, respectively.
The options m and i indicate match on all line breaks
and case insensitive, respectively. Let us consider the
case of K ¼ 1. There are 11 states in the reduced G-NFA
and the set of equivalence classes for input symbols are
f½r;R�; ½c;C�; ½p;P�; ½t;T�; ½o;O�; ns; nx3a; ½j; nx3b�;	g. To
implement option m, we reset the G-NFA whenever a
newline symbol is encountered. We implemented the
architecture presented in Section 5 with Xilinx ML 310
platform. Note that there is at most one active state at
any moment, and therefore, the bitwise OR logic can be
removed. Also, there is only one final state, which
means that the Last bitmap is not needed. Hardware
resources used in the implementation are two slices,
three slice flip flops, four (input) LUTs, and one BRAM.
The NFA constructed with the approach proposed in
[15] uses 20 slices, four slice flip flops, and 36 LUTs. For
K ¼ 4, we have �ðx; uÞ ¼ FollowðRE; xÞ \EnterðuÞ for
any state x and 4-symbol u. Therefore, the architecture

LEE: HARDWARE ARCHITECTURE FOR HIGH-PERFORMANCE REGULAR EXPRESSION MATCHING 991

Fig. 7. (a) The G-NFA and (b) the reduced G-NFA of AðAjBÞþC.

Fig. 6. The pipelined architecture for �M4
RE .

presented in Section 5 is applicable. For this example,
there are 22 equivalence classes for all the 4-symbols.
We used 14 slices, 16 slice flip flops, 25 LUTs, and four
BRAMs in the implementation.

Example 2. Consider the extended regular expression
^PRIVMSGn sþ½ n̂ s�þn sþn x3an s�n x01SENDLINK n
x7c½^nx7c�f69g=smi. The symbol ½^ns� represents any
symbol, which is not white space. The bound special
symbol {69} can be handled with the inductions described
in Section 4. The total number of states in the reduced
G-NFA is 92. The option s means that the dot metachar-
acter includes newline. However, it is redundant for this
example because the dot metacharacter does not appear
in the regular expression. Again, there is at most one
active state at any moment and exactly one final state. For
K ¼ 1, there are 17 equivalence classes for input symbols.
To reduce memory requirement, bitmap B is replaced
with a register to store the current active state. Besides,
states are classified into two groups. State x is in Group 1 if
there exists only one equivalence class, denoted by ECðxÞ,
such that �ðx; uÞ 6¼ ; only if u is in ECðxÞ. State x is in
Group 2 if it is not in Group 1. For this example, Group 1
contains 87 states. For convenience, we renumber the
states so that state x 2 Group 1 iff x � 86. For state
x 2 Group 1, we use 2 bytes to store ECðxÞ and �ðx; uÞ
for any u in ECðxÞ. For state y 2 Group 2, we store an array
of 17 elements where the ith entry is �ðx; uÞ for any u in
ECID i. With such modifications, the total memory
requirement for the NFA engine is about 2 Kbits. The
ECID decoder requires 2 Kbits of memory (we use 1 byte
for ECID). The implementation uses 43 slices, 45 slice
flip flops, 63 LUTs, and two BRAMs. The NFA con-
structed with the approach proposed in [15] uses
128 slices, 32 slice flip flops, and 227 LUTs. For K ¼ 4,
the equality �ðx; uÞ ¼ FollowðRE; xÞ \EnterðuÞ does not
always hold, and thus, we need to use the architecture
presented in Section 6. Implementation for K ¼ 4 is
similar to that for K ¼ 1. For this example, Group 1
contains 84 states. The memory requirement for the
NFA engine is about 4.5 Kbits and that for the
ECID decoder is about 7.5 Kbits. In our implementation,
we use 45 slices, 47 slice flip flops, 75 LUTs, and
five BRAMs.

The above two examples are studied only for proof of
concept. The clock rates for our proposed architectures are
slightly larger than that for the logic-based design proposed
in [15]. We achieved more than 4 Gbps throughput for both
examples with K ¼ 4. With some manipulations, it is
possible to reduce the required hardware resources. For
example, both the FollowðRE; xÞ and the Enterð�Þ tables
can be compressed. As another example, one can imple-
ment the bound special symbol {69} shown in Example 2
with a counter. By doing so, the number of states is reduced
to 24. Compared with logic-based designs, our proposed
architectures require additional memory but less logic
circuit. One major advantage of our proposed architectures
is that they can process data that arrives in small segments,
such as packets while logic-based designs cannot.

8 CONCLUSION

We have presented in this paper a bitmap-based hardware

architecture for G-NFA. The architecture is generalized to an

NFA that processes multiple symbols per operation cycle to

improve system performance. Our proposed bitmap-based

architecture is suitable for regular expressions of small and

moderate lengths.
We prototyped the proposed NFA engine with Xilink

ML310 platform and achieve more than 4 Gbps throughput

for K ¼ 4. In our experiment, we only selected a few regular

expressions from Snort rules to prove our design concept. A

hardware-accelerated intrusion detection system based on

Snort is currently under development. In the system, we

will implement a four-step NFA in hardware to achieve

high system throughput and another one-step NFA in

software for match verifications. After deeply examining

the rules, we can hopefully develop efficient implementa-

tion techniques specifically for Snort and generate some

guidelines for writing rules to facilitate efficient hardware

acceleration.

ACKNOWLEDGMENTS

This work was supported by the National Science Council

(NSC) under Contract NSC96-2221-E-009-018-MY2. The

author would like to thank the anonymous referees for

their helpful suggestions.

REFERENCES

[1] SNORT, http://www.snort.org, 2008.
[2] A.V. Aho and M.J. Corasick, “Efficient String Matching: An Aid to

Bibliography Search,” Comm. ACM, vol. 18, no. 6, pp. 333-340,
1975.

[3] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
Memory-Efficient String Matching Algorithms for Intrusion
Detection,” Proc. IEEE INFOCOM ’04, pp. 333-340, 2004.

[4] L. Tan and T. Sherwood, “A High Throughput String Matching
Architecture for Intrusion Detection and Prevention,” Proc. Int’l
Soc. Computers and Their Applications (ISCA), 2005.

[5] Y. Sugawara, M. Inaba, and K. Hiraki, “Over 10 Gbps String
Matching Mechanism for Multi-Stream Packet Scanning Systems,”
Proc. 14th Int’l Conf. Field Programmable Logic and Applications
(FPL), 2004.

[6] T.H. Lee and J.C. Liang, “A High-Performance Memory-Efficient
Pattern Matching Algorithm and Its Implementation,” Proc. IEEE
Technical Conf. (TENCON), 2006.

[7] I. Sourdis and D. Pnevmatikatos, “Pre-Decoded CAMs for
Efficient and High-Speed NIDS Pattern Matching,” Proc. 12th
Ann. IEEE Symp. Field-Programmable Custom Computing Machines
(FCCM), 2004.

[8] S. Dharmapurikar and J. Lockwood, “Fast and Scalable Pattern
Matching for Content Filtering,” Proc. ACM/IEEE Symp. Architec-
ture for Networking and Comm. Systems (ANCS), 2005.

[9] S. Yusuf and W. Luk, “Bitwise Optimized CAM for Network
Intrusion Detection Systems,” Proc. 15th Int’l Conf. Field Program-
mable Logic and Applications (FPL), 2005.

[10] S. Kim, “Pattern Matching Acceleration for Network Intrusion
Detection Systems,” Proc. Fifth Int’l Workshop Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), 2005.

[11] D. Kim, S. Kim, L. Choi, and H. Kim, “A High-Throughput System
Architecture for Deep Packet Filtering in Network Intrusion
Prevention,” Proc. 19th Int’l Conf. Architecture of Computing Systems
(ARCS), 2006.

[12] H.C. Roan, W.J. Hwang, and C.T. Lo, “Shift-Or Circuit for Efficient
Network Intrusion Detection Pattern Matching,” Proc. 16th Int’l
Conf. Field Programmable Logic and Applications (FPL), 2006.

992 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 7, JULY 2009

[13] R.A. Baeza-Yates and G.H. Gonnet, “A New Approach to Text
Searching,” Proc. ACM 12th Int’l Conf. Research and Development in
Information Retrieval (SIGIR), 1989.

[14] R.W. Floyd and J.D. Ullman, “The Compilation of Regular
Expression into Integrated Circuits,” J. ACM, vol. 29, no. 3,
pp. 603-622, July 1982.

[15] R. Sidhu and V.K. Prasanna, “Fast Regular Expression Matching
Using FPGAs,” Proc. Ninth IEEE Symp. Field-Programmable Custom
Computing Machines (FCCM), 2001.

[16] C.R. Clark and D.E. Schimmel, “Efficient Reconfigurable Logic
Circuit for Matching Complex Network Intrusion Detection
Patterns,” Proc. 13th Int’l Conf. Field Programmable Logic and
Applications (FPL), 2003.

[17] J. Moscola et al., “Implementation of a Content-Scanning Module
for an Internet Firewall,” Proc. IEEE Workshop FPGAs for Custom
Computing Machines, Apr. 2003.

[18] S. Kumar et al., “Algorithms to Accelerate Multiple Regular
Expressions Matching for Deep Packet Inspection,” Proc. ACM
SIGCOMM, 2006.

[19] V.M. Glushkov, “The Abstract Theory of Automata,” Russian
Math. Surveys, vol. 16, pp. 1-53, 1961.

[20] POSIX 1003.2 Regular Expressions, ISO/IEC 9945, 2003.
[21] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory,

Languages, and Computation. Addison Wesley, 1979.

Tsern-Huei Lee received the BS degree in
electrical engineering from the National Taiwan
University, Taipei, in 1981, the MS degree in
electrical engineering from the University of
California, Santa Barbara, in 1984, and the
PhD degree in electrical engineering from the
University of Southern California, Los Angeles, in
1987. Since 1987, he has been a member of the
faculty of the National Chiao Tung University,
Hsinchu, Taiwan, where he is a professor in the

Department of Communication Engineering and a member of the Center
for Telecommunications Research. He serves as a consultant of various
research institutes and local companies. His current research interests
are in network security, broadband switching systems, network traffic
management, and wireless communications. He received an Outstand-
ing Paper Award from the Institute of Chinese Engineers in 1991. He is a
senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LEE: HARDWARE ARCHITECTURE FOR HIGH-PERFORMANCE REGULAR EXPRESSION MATCHING 993

