
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 25, 1121-1133 (2009)

1121

Mining Top-K Path Traversal Patterns
over Streaming Web Click-Sequences*

HUA-FU LI1,2 AND SUH-YIN LEE2

1Department of Computer Science
Kainan University

Taoyuan, 338 Taiwan
E-mail: hfli@mail.knu.edu.tw

2Department of Computer Science
National Chiao Tung University

Hsinchu, 300 Taiwan
E-mail: {hfli; sylee}@csie.nctu.edu.tw

Online, one-pass mining Web click streams poses some interesting computational

issues, such as unbounded length of streaming data, possibly very fast arrival rate, and
just one scan over previously arrived Web click-sequences. In this paper, we propose a
new, single-pass algorithm, called DSM-TKP (Data Stream Mining for Top-K Path tra-
versal patterns), for mining a set of top-k path traversal patterns, where k is the desired
number of path traversal patterns to be mined. An effective summary data structure,
called TKP-forest (a forest of Top-K Path traversal patterns), is used to maintain the es-
sential information about the top-k path traversal patterns generated so far. Experimental
studies show that the proposed DSM-TKP algorithm uses stable memory usage and
makes only one pass over the streaming Web click-sequences.

Keywords: web usage mining, data streams, path traversal patterns, top-k pattern mining,
single-pass mining

1. INTRODUCTION

In recent years, database and data mining communities have focused on a new data
model, where data arrive in the form of continuous streams. It is often referred to as data
streams or streaming data. Mining such streaming data poses some interesting computa-
tional issues, such as unknown or unbounded length of the streams, possibly very fast
arrival rate, and inability to backtrack over previously arrived data elements [2, 7]. Many
applications generate data streams in real time, such as sensor data generated from sensor
networks, transaction flows in retail chains, Web record and click-streams in Web appli-
cations, performance measurement in network monitoring and traffic management, call
records in telecommunications, and so on.

Recently, online mining of clusters in evolving Web click-streams have been dis-
cussed [10, 11]. In this paper, we study the research issue of mining top-k path traversal
patterns over Web click-streams. The original problem of mining path traversal patterns
from a large static Web click-dataset was proposed by Chen et al. [3]. Li et al. [6] pro-
posed a first single-pass algorithm DSM-PLW to mine the set of all path traversal pat-

Received August 23, 2007; revised April 21, 2008; accepted June 26, 2008.
Communicated by Makoto Takizawa.
* A preliminary version in Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence,

France, September 19-22, 2005. The research was supported in part by the National Science Council of Tai-
wan, R.O.C., Project No. 95-2221-E-009-069-MY3 and NSC 96-2218-E-424-001.

HUA-FU LI AND SUH-YIN LEE

1122

terns over continuous Web click-streams. In the framework of DSM-PLW algorithm, it
requires a user-specified minimum support threshold minsup, and mines the path tra-
versal patterns with estimated support values that are higher than the minimum support
threshold. Unfortunately, the setting of minimum support threshold is quite tricky and it
leads to the following problem that may hinder its popular use.

If the value of minimum support threshold is too small, the frequent pattern mining
algorithm may lead to the generation of thousands of patterns, whereas a too big one may
often generate a few patterns or even no answers. As it is difficult to predict how many
patterns will be mined with a user-defined minimum support threshold, the top-k pattern
mining has been proposed.

The first top-k pattern mining algorithm Itemset-Loop was proposed by Fu et al.
[5]. Based on Apriori property [1], Itemset-Loop algorithm mines the k most frequent
itemsets with lengths shorter than a user-defined value of m. LOOPBACK and BOMO
are FP-tree-based top-k pattern mining algorithms [4], and use the same estimated
mechanism of Itemset-Loop. Moreover, experiments in [4] show that LOOPBACK and
BOMO outperform the Itemset-Loop. TFP algorithm [13] is a FP-tree-based algorithm
and mines the top-k closed frequent itemsets with lengths longer than a user-specified
value of min_l. TSP [12] is the first algorithm to mine the top-k closed sequential pat-
terns of lengths no less than the user-defined minimum length of mined patterns min_l.
All above algorithms are multiple-pass data mining approaches. Therefore, these meth-
ods can not be used to mine patterns from streaming data.

Recently, Metwally et al. [9] proposed a single-pass algorithm to mine the top-k
elements over data streams. However, the top-k elements are top-k items. In this paper,
we propose an efficient single-pass algorithm, called DSM-TKP (Data Stream Mining
for Top-K Path traversal patterns), to mine a set of top-k path traversal patterns over Web
click streams. An effective summary data structure, called TKP-forest (a forest of Top-K
Path traversal patterns), and an efficient memory pruning mechanism, called TKP-for-
est-Maintenance (Maintenance of TKP-forest), are proposed to overcome the issues of
mining data streams such as bounded space requirement and approximation. Based on
our knowledge, DSM-TKP is the first single-pass algorithm for mining top-k path tra-
versal pattern over streaming Web click-sequences.

The remainder of this paper is organized as follows. The problem of mining top-k
path traversal patterns over streaming click-sequences is defined in section 2. In section 3,
the DSM-TKP algorithm is proposed to mine a set of top-k path traversal patterns. Com-
prehensive experiments of the proposed algorithm are discussed in section 4. Finally, we
conclude the work in section 5.

2. PROBLEM DEFINITION

Let S be a continuous steam of Web clicks, where a Web click wc consists of Web
user identifier (Uid) and a Web page reference r accessed by the user, i.e., wc = (Uid, r).
A segment of Web click stream arrived at timestamp ti can be divided into a set of Web
click-sequences (or click-sequences in short). For example, a fragment of stream, S = [ti,
(100, a), (100, b), (200, a), (100, c), (200, b), (200, c), (100, d), (100, e), (200, a), (200,
e)], arrived at timestamp ti, can be divided into two click-sequences: <100, abcde>, and

DSM-TKP: STREAMING MINING TOP-K PATH TRAVERSAL PATTERNS

1123

<200, abcae>, where 100, 200 are identifiers of Web users, and a, b, c, d, e are refer-
ences, i.e. Web pages, accessed by these users.

A click-sequence (CS) consists of a sequence of forward references and backward
references accessed by a Web user. A backward reference (BR) means revisiting a pre-
viously visited reference by the same user. A maximal forward reference (MFR) is a
forward reference path without any backward references. Hence, a click-sequence CS can
be divided into several maximal forward references, i.e., CS = {MFR1, MFR2, …, MFRi},
where i ≥ 1. For example, a click-sequence <abcae> can be divided into two MFRs, i.e.,
<abc> and <ae>. The number of references of a MFR is called the size of MFR. For ex-
ample, the size of MFR <abc> is 3. A MFR stream (MS) is a stream of maximal forward
references, i.e., MS = [MFR1, MFR2, …, MFRN), where N is the identifier of latest in-
coming maximal forward reference MFRN.

Therefore, we can map the problem of mining top-k path traversal patterns into the
one of finding top-k occurring consecutive sequences, called top-k reference sequences,
among a MFR stream.

The estimated support of a reference sequence (RS), denoted as esup(RS), is the
number of maximal forward references in the stream containing RS as a substring. A
reference sequence is called maximal if it is not a substring of any other reference se-
quences. A maximal reference sequence is also called a path traversal pattern. A ref-
erence sequence RS is a top-k maximal reference sequence if there exists1 no more than
(k − 1) maximal reference sequences whose support is higher than that of RS and size is
grater than one.

In this paper, our task is to mine top-k maximal reference sequences by one scan of
a Web click-sequence stream when the value of k is given.

3. DSM-TKP: DATA STREAMS MINING FOR TOP-K PATH
TRAVERSAL PATTERNS

The proposed algorithm, called DSM-TKP (Data Stream Mining for Top-K Path
traversal patterns), is composed of four steps: read a maximal forward reference from the
buffer in the main memory (step 1), construct an in-memory summary data structure
(step 2), prune and maintain the summary data structure (step 3), and find the top-k path
traversal patterns from the current summary data structure (step 4). Steps 1 and 2 are
performed in sequence for a new maximal forward reference. Steps 3 and 4 are usually
performed periodically or when it is needed. Since step 1 is straightforward, we shall
henceforth focus on steps 2, 3 and 4, and devise algorithms for effective construction and
maintenance of summary data structure, and efficient determination of path traversal
patterns.

3.1 Effective Construction of the Summary Data Structure

In this section, an efficient algorithm is proposed to construct the in-memory sum-
mary data structure, called TKP-forest (a forest of Top-K Path traversal patterns).

1 Since there could be more than one pattern having the same support in a stream, to ensure the set mined is
independent of the ordering of the references and MFRs, our method will mine every path traversal pattern
whose support is no less than the kth path traversal patterns.

HUA-FU LI AND SUH-YIN LEE

1124

Definition 1 A TKP-forest is a prefix tree-based summary data structure defined be-
low.

1. TKP-forest consists of a list of K-References (abbreviated as KR-list), such as <r1r2 …

rk>, and a set of Local Path-traversal-pattern trees (abbreviated as LP-trees) of refer-
ences of KR-list, denoted by ri.LP-tree, ∀i = 1, 2, …, k, where ri is the root node of
ri.LP-tree.

2. Each node in the ri.LP-tree, ∀i = 1, 2, …, k, consists of four fields: fid, esup, mfr_id,
and node-link, where fid is the identifier of the incoming maximal forward reference,
esup registers the number of maximal forward references represented by a potion of
the path reaching the node with the fid, the value of mfr_id assigned to a new node is
the identifier of current maximal forward reference, and a pointer node-link points to
the next node in the same LP-tree or null if there is none.

3. Each entry in the KR-list consists of four fields: fid, esup, mfr_id, and head-link, where
fid registers which reference identifier the entry represents, esup records the number of
maximal forward references containing the reference carrying the reference identifier,
the mfr_id assigned to a new entry is the identifier of current maximal forward refer-
ence, and head-link is a pointer, and points to the root node of the fid.LP-tree.

The construction algorithm of TKP-forest is given in Fig. 1. The scenario of TKP-

forest construction is described as follows. First of all, the proposed DSM-TKP algo-
rithm reads a maximal forward reference MFR = <r1r2 … rm>, for example, from the
buffer in the main memory, projects it into m sub-maximal forward references (abbrevi-
ated as sub-MFRs), and inserts these sub-MFRs into the TKP-forest as branches. Note
that m is the size of the maximal forward reference.

Algorithm TKP-forest construction
Input: A stream of maximal forward references, MS = [MFR1, MFR2, …, MFRN), a
user-specified value k.
Output: A TKP-forest generated so far.
1: KR-list = {}; /* initialize the KR-list to empty. */
2: foreach MFRi, = <x1x2 … xm>, do /* m ≥ 1, i = 1, 2, …, N */
3: foreach reference xj ∈ MFRi do
4: if xj ∉ KR-list then
5: create a new entry of form (xj, 1, i, head-link) into the KR-list;
6: else /* the entry already exists in the KR-list */
7: xj.esup = xj.esup + 1;
8: end if
9: end for
10: call MFR-Projection(MFRi);
11: call rs-MFR-insertion(rs-MFRs of MFRi);
12: end for
13: call TKP-forest-Maintenance(TKP-forest, k); /* Step 3 of DSM-TKP algorithm */
14: end for

Fig. 1. Construction algorithm of the proposed summary data structure TKP-forest.

DSM-TKP: STREAMING MINING TOP-K PATH TRAVERSAL PATTERNS

1125

(a) Processing 1st MFR <abcde>. (b) Processing 2nd MFR <acd>.

Fig. 2. Construction of TKP-forest after processing the 1st MFR and 2nd MFR.

The details of projection of each incoming MFR are described as follows. First,
each incoming maximal forward reference, MFR = <r1r2 … rm>, is converted into m sub-
MFRs; that is, <r1r2 … rm>, <r2r3 … rm>, …, and <rm>. These m sequences are called
reference-suffix maximal forward references (abbreviated as rs-MFRs), since the first
reference of each sequence is a suffix of the original maximal forward reference. The
projection is called maximal forward reference projection, and denoted by MFR-projec-
tion (MFR) = {r1 | MFR, r2 | MFR, …, ri | MFR, … , rm | MFR}, where ri | MFR =
<riri+1, …, rm>, ∀i = 1, 2, …, m. Therefore, the cost of MFR-projection(MFR) is (m2 +
m)/2, i.e., m + (m − 1) + … + 2 + 1, where the size of MFR is m.

After performing MFR-projection, DSM-TKP algorithm inserts each reference of
MFR into the KR-list, and removes it from the buffer in the main memory. Next, the set
of rs-MFRs are inserted into the ri.LP-trees (∀i = 1, 2, …, m) as branches. If a MFR
shares a prefix with a MFR already in the LP-tree, the new MFR will share a prefix of
the branch representing that MFR. Furthermore, an estimated support counter is associ-
ated with each node in the LP-tree. The counter is updated when a rs-MFR causes the
insertion of a new branch. The step is called insertion of rs-MFR (rs-MFR-insertion).

Example 1: Let the first six maximal forward references of an example stream be <abcde>,
<acd>, <cef>, <acdf>, <cef>, and <df>, where a, b, c, d, e and f are Web pages accessed
by Web users. After performing MFR-projection(<abcde>) and MFR-projection
(<acd>), five rs-MFRs, i.e., <abcde>, <bcde>, <cde>, <de>, and <e>, of 1st MFR <ab-
cde> and three rs-MFRs, i.e., <acd>, <cd> and <d>, of 2nd MFR <acd> are inserted into
the TKP-forest as shown in Figs. 2 (a) and (b), respectively. The results of TKP-forest
constructed by DSM-TKP algorithm with respect to 3rd MFR <cef> and 4th MFR <acdf>
are given in Figs. 3 (a) and (b), respectively. The final results of TKP-forest construction
with respect to 5th MFR <cef> and 6th MFR <df> of Example 1 are given in Figs. 4 (a)
and (b), respectively.

HUA-FU LI AND SUH-YIN LEE

1126

(a) Processing 3rd MFR <cef>. (b) Processing 4th MFR <acdf>.

Fig. 3. Construction of TKP-forest after processing the 3rd MFR and 4th MFR.

(a) Processing 5th MFR <cef>. (b) Processing 6th MFR <df>.

Fig. 4. Construction of TKP-forest after processing the 5th MFR and 6th MFR.

3.2 Effective Pruning of the Summary Data Structure

The effective pruning mechanism of TKP-forest, called TKP-forest-Maintenance
(Maintenance of TKP-forest), used in the DSM-TKP algorithm is performed when the
number of references in the KR-list is greater than k. The pruning mechanism TKP-forest-
Maintenance is extended from the work [8], and is shown in Fig. 5. The pruning method
is composed of four steps and is described as follows.

DSM-TKP: STREAMING MINING TOP-K PATH TRAVERSAL PATTERNS

1127

First, TKP-forest-Maintenance sorts and reorders the references, for example, r1,
r2, …, rk, of KR-list in an estimated support decreasing order, i.e., esup(r1′) ≥ esup(r2′)
≥ … ≥ esup(rk′). Second, the pruning method find the final kth largest reference, i.e., rKL′,
from the reordered KR-list. Note that if there are more than one reference has the same
kth largest estimated support, we take the right-most reference as rKL′. Third, all informa-
tion about the other references, rj′, where j = KL + 1, KL + 2, …, k′, are removed from the
current TKP-forest, i.e., remove rj′ from the current KR-list and prune the rj.LP-tree. Fi-
nally, the estimated support of each reference of the KR-list is decreased by the estimated
support of the reference rKL-1′. After performing these steps, the set of top-k path traversal
patterns are maintained in the current TKP-forest.

Now, we use the TKP-forest of Fig. 4 (b) of Example 1 to demonstrate the pruning
mechanism TKP-forest-Maintenance. The result of the first two steps of pruning mecha-
nism is shown in Fig. 6. From this figure, we can find that the right-most reference (e)
with esup(e) = 3 where value 3 is the third largest estimated support in the reordered
KR-list. The result of steps 3 and 4 of TKP-forest-Maintenance is given in Fig. 7. From
this figure, we can see that all information about reference (b), i.e., reference (b) of
KR-list and its b.LP-tree, are pruned from the current TKP-forest since reference (b) is
not a candidate of top-k path traversal patterns at this moment.

The next step of DSM-TKP algorithm is to find the set of top-k path traversal pat-
terns from the current TKP-forest. The step is performed only when the analytical results
of the stream of Web click-sequences is requested.

Subroutine TKP-forest-Maintenance(TKP-forest, k)

1: sort the references, r1, r2, …, rk′, in the KR-list and reorder the references in an esti-
mated support decreasing order, i.e., r1′, r2′, …, rk′′, where esup(r1′) ≥ esup(r2′) ≥ …
≥ esup(rk′);

2: find rKL′ in the reordered KR-list;

/* rKL′ be a right-most reference whose estimated support is the k-th largest one in the KR-list; */

3: foreach rj′∈ KR-list, ∀j = KL + 1, KL + 2, …, k′ do
4: delete rj′ from the current KR-list;
5: delete rj′.LP-tree;
6: endfor
7: foreach ri′∈ KR-list, ∀i = 1, 2, …, KL do
8: esup(ri′) = esup(ri′) − esup(rKL′) + 1;
9: endfor

Fig. 5. Pruning algorithm TKP-forest-maintenance of the proposed summary data structure TKP-forest.

3.3 Determination of the Top-k Path Traversal Patterns

Assume that there are k references, namely r1, r2, …, rk, in the current KR-list. For
each entry ri, ∀i = 1, 2, …, k, in the KR-list, the DSM-TKP algorithm traverses the
ri.LP-tree to find the estimated support of each reference sequence with a prefix ri in a

HUA-FU LI AND SUH-YIN LEE

1128

Fig. 6. TKP-forest of example 1 after steps 1 and 2 of TKP-forest-maintenance.

Fig. 7. TKP-forest of example 1 after steps 3 and 4 of TKP-forest-maintenance.

depth-first-search (DFS) manner. Then, DSM-TKP stores these reference sequences into
a temporal list of candidate maximal reference sequences, i.e., path traversal patterns, in
a support decreasing order. The temporal list is called CTKP-list (a list of Candidate
Top-K Path traversal patterns). Finally, DSM-TKP outputs the first k maximal reference
sequences from the CTKP-list. For example, the CTKP-list generated by DSM-TKP is
composed of ten path traversal patterns, i.e., <cd: 3>, <cef: 2>, <df: 2>, <acd: 2>, <cdf:
1>, <cde: 1>, <de: 1>, <acdf: 1>, <abcde: 1>, and <ef: 1>. Note that Since there could be
more than one pattern having the same support in a stream, to ensure the set mined is
independent of the ordering of the references and MFRs, our method will mine every
path traversal pattern whose support is no less than the kth path traversal patterns. Con-
sequently, the top-3 path traversal patterns are <cd: 3>, <cef: 2>, <df: 2>, and <acd: 2>.

3.4 Space Analysis of the Proposed Summary Data Structure TKP-forest

The space upper bound of DSM-TKP algorithm for constructing a prefix tree-based
in-memory summary data structure is discussed in this section. Because the in-memory
data structure TKP-forest used in DSM-TKP is based on the DSM-PLW algorithm [6],

DSM-TKP: STREAMING MINING TOP-K PATH TRAVERSAL PATTERNS

1129

the space upper bound of DSM-TKP algorithm discussed as follows is the same as that of
DSM-PLW algorithm in worst case.

Theorem 1 A prefix tree-based summary data structure has at most 2k nodes for storing
the set of top-k path traversal patterns of Web click streams.

Proof [6]: Let k be the number of frequent references in the current TKP-forest. Accord-
ing to the well-known Apriori property [1], the number of candidate frequent reference
sequences is C(k, 1) regarding path traversal patterns with size 1, C(k, 2) regarding path
traversal patterns with size 2, …, C(k, i) regarding path traversal patterns with size i, ...,
and C(k, k) regarding path traversal patterns with size k references. In a prefix tree-based
summary data structure, a reference sequence is represented by a path and its appearance
support is maintained in the last node of the path. Hence, there are C(k, 1) nodes in the 1st
level, C(k, 2) nodes in the 2nd level, …, C(k, i) nodes in the ith level, …, and C(k, k)
nodes in the kth level. There are totally C(k, 1) + C(k, 2) + … + C(k, i) + … + C(k, k)
nodes in the prefix tree-based summary data structure. Consequently, the space upper
bound of any proposed prefix tree-based summary data structure for mining top-k path
traversal patterns is O(2k) in worst case.

4. PERFORMANCE EVALUATION

4.1 Generation of Synthetic Data

All the experiments are performed on a 1.80 GHz Pentium 4 processor with 1 GB
main memory, running on Microsoft Windows 2000. In addition, all the programs are
written in Microsoft/Visual C++ 6.0. To evaluate the performance of the proposed DSM-
TKP algorithm, two experiments are performed. The experiments were carried out on the
synthetic data generator of Web click-sequences used in [10]. We describe it briefly as
follows [6, 11]. A traversal tree is constructed to mimic Web site structure whose starting
position is a root node of the tree. The traversal tree is composed of internal nodes and
leaf nodes. A traversal path consists of nodes accessed by a Web user. The size of each
traversal path is picked from a Poisson distribution with mean equal to |P|, where |P| is
the average size of reference paths. With the first node being the root node, a traversal
path is generated probabilistically within the traversal tree as follows. Each edge con-
necting to an internal node is assigned with a weight. The weight corresponds to the
probability that each edge will be next accessed by the Web user. The weight to its parent
node is assigned with p0, which is generally 1/(n + 1) where n is the number of child
nodes. The probability of traveling to each child node, pi, is determined from an expo-
nential distribution with unit mean. Moreover, the probability is normalized that the sum
of the weights for all child nodes is equal to 1 − p0. When the path arrives at a leaf node,
the next move would be either to its parent node in backward (with a default probability
0.25) or to any internal node (with an aggregate probability 0.75). More detail about the
generation of synthetic traversal paths can be found in [11].

Two synthetic data streams, denoted by H10.I5.D100K and H10.P15.D100K are
studied in this section. The first one H10.I5 has a traversal tree with height of 10 levels

HUA-FU LI AND SUH-YIN LEE

1130

Fig. 9. Performance comparisons of pruning time and top-k pattern generation time over various k
values, D = 100K.

and has average size of the reference paths with 5 references. The second one H10.P15
has average size of the reference paths with 15 references. Both datasets consist of
100,000 Web click-sequences (D100K). In all experiments, the click-sequences of each
dataset are looked up in sequence to simulate the environment of a continuous data
stream [6].

4.2 Experimental Results of Execution Time and Memory Usages of DSM-TKP

Performance evaluation of execution time and memory usage of the proposed DSM-
TKP algorithm are discussed in this section. We evaluated the effect of various k values
for both synthetic data streams, H10.I5 and H10.I15, with 100K click-sequences.

First, in the experiments of execution time, two parts are evaluated: (a) the con-
struction time of TKP-forest for measure the performance of online processing, (b) the
pruning time and the top-k pattern generation time for measure the performance of
analysis. In Fig. 8, we plot construction time taken by our algorithm for values of k
ranging from 1,000 to 200. The figure shows how decreasing k leads to increase in con-
struction time of TKP-forest. Moreover, in Fig. 9, the execution time of TKP-forest
pruning and top-k pattern generation of DSM-TKP algorithm is evaluated to measure the
performance of analysis. From Figs. 8 and 9, we can find that the proposed DSM-TKP
algorithm has good adaptability for online processing and streaming analysis under vari-
ous k values.

0
10
20
30
40
50
60
70
80
90

1000 800 600 400 200

value k

C
on

st
ru

ct
io

n
tim

e
 (s

ec
.)

H10.P5 H10.P15

Fig. 8. Performance comparisons of construction time of TKP-forest over various k values, D = 100K.

0

10

20

30

40

50

1000 800 600 400 200

value k

E
xe

cu
tio

n
tim

e
(s

ec
.)

H10.P5 H10.P15

DSM-TKP: STREAMING MINING TOP-K PATH TRAVERSAL PATTERNS

1131

To assess the scalability of our algorithm, scale-up experiments were conducted. Fig.
10 shows that the processing time of DSM-TKP algorithm increases linearly as the size
of click-sequences increases, ranging from 100K to 1,000K, where k = 1,000. Processing
time is composed of construction time, pruning time and top-k path traversal pattern gen-
eration time. Hence, from this figure, we can see that the proposed DSM-TKP algorithm
exhibits good linearity in scale-up.

0

200

400

600

800

1000

1200

200K 400K 600K 800K 1000K
D: size of click-sequences

Pr
oc

es
si

ng
 ti

m
e

(s
ec

.)

H10.P5 H10.P15

Fig. 10. Linear scalability of the sizes of click-sequence from 100K to 1,000K (k = 1,000).

0

40

80

120

160

200

1000 800 600 400 200

value k

M
em

or
y

us
ag

e
(M

B
)

H10.P15 H10.P5

Fig. 11. Performance comparisons of memory usages over various k values, D = 200K.

The result of Fig. 11 is the memory requirement of the proposed algorithm for min-
ing top-k path traversal patterns under various k values. From this figure, we can find that
the memory usage of DSM-TKP algorithm is linearly affected by the sized of value k.
The last experiment of DSM-TKP algorithm is the evaluation of precision. In Fig. 12, we
can find that the proposed algorithm has good precision under various k values.

5. CONCLUSIONS

In this paper, we propose an efficient, online algorithm, called DSM-TKP (Data
Stream Mining for Top-K Path traversal patterns), for mining top-k maximal reference
sequences in an infinite sequence of Web click-sequences. An effective summary data

HUA-FU LI AND SUH-YIN LEE

1132

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

200 400 600 800 1000

value k

Pr
ec

is
io

n

H10.P5 H10.P15

Fig. 12. Performance comparisons of precisions (proportion of the output path traversal patterns are

top-k path traversal patterns).

structure, TKP-forest (a forest of Top-K Path traversal patterns), is developed to store
the essential information about the set of top-k path traversal patterns of the stream so far.
An efficient pruning mechanism of TKP-forest, called TKP-forest-Maintenance, is
used to guarantee that the upper bound of the summary data structure is predictable.
Based on our best knowledge, the proposed DSM-TKP algorithm is the first single-pass
algorithm for mining top-k path traversal patterns from streaming Web click-sequences.
Future work includes mining top-k path traversal patterns over stream sliding windows
and mining top-k path traversal patterns over damped sliding windows.

ACKNOWLEDGEMENTS

The authors thank the reviewers’ precious comments for improving the quality of
the paper.

REFERENCES

1. R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in Pro-
ceedings of the 20th International Conference on Very Large Data Based, 1994, pp.
487-499.

2. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in
data stream systems,” in Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, 2002, pp. 1-16.

3. M. S. Chen, J. S. Park, and P. S. Yu, “Efficient data mining for path traversal pat-
terns,” IEEE Transactions on Knowledge and Data Engineering, Vol. 10, 1998, pp.
209-221.

4. Y. L. Cheung and A. W. C. Fu, “Mining association rules without support threshold:
with and without item constraints,” IEEE Transactions on Knowledge and Data En-
gineering, Vol. 16, 2004, pp. 1052-1069.

5. A. W. C. Fu, R. W. W. Kwong, and J. Tang, “Mining N-most interesting itemsets,”
in Proceedings of the 12th International Symposium on Methodologies for Intelli-
gent Systems, 2000, pp. 59-67.

6. H. F. Li, S. Y. Lee, and M. K. Shan, “DSM-PLW: Single-pass mining of path tra-
versal patterns over streaming web click-sequences,” Computer Networks: Special

DSM-TKP: STREAMING MINING TOP-K PATH TRAVERSAL PATTERNS

1133

Issue on Web Dynamics, Vol. 50, 2006, pp. 1474-1487.
7. L. Golab and M. T. Ozsu, “Issues in data stream management,” SIGMOD Record,

Vol. 32, 2003, pp. 5-14.
8. R. M. Karp, S. Shenker, and C. H. Paradimitriou, “A simple algorithm for finding

frequent elements in streams and bags,” ACM Transactions on Database Systems,
Vol. 28, 2003, pp. 51-55.

9. A. Metwally, D. Agrawal, and A. E. Abbadi, “Efficient computation of frequent and
top-k elements in data streams,” in Proceedings of the 10th International Conference
on Database Theory, 2005, pp. 398-412.

10. O. Nasraoui, C. Cardona, C. Rojas, and F. Gonzalez, “Mining evolving user profiles
in noisy web clickstream data with a scalable immune system clustering algorithm,”
in Proceedings of KDD Workshop on Web Mining as a Premise to Effective and In-
telligent Web Applications, 2003, pp. 71-81.

11. O. Nasraoui, C. Cardona, C. Rojas, and F. González, “TECNO-STREAMS: Track-
ing evolving clusters in noisy data streams with a scalable immune system learning
model,” in Proceedings of the 3rd IEEE International Conference on Data Mining,
2003, pp. 235-242.

12. P. Tzvetkov, X. Yan, and J. Han, “TSP: Mining top-k closed sequential patterns,” in
Proceedings of the 3rd IEEE International Conference on Data Mining, 2003, pp.
347-354.

13. J. Wang, J. Han, Y. Lu, and P. Tzvetkov, “TFP: An efficient algorithm for mining
top-k frequent closed itemsets,” IEEE Transactions on Knowledge and Data Engi-
neering, Vol. 17, 2005, pp. 652-664.

Hua-Fu Li (李華富) received his B.S. degree in Computer

Science and Engineering from Tatung Institute of Technology, Tai-
wan, in 1999, the M.S. degree in Computer Science from National
Chengchi University, Taiwan, in 2001, and the Ph.D. degree in
Computer Science from National Chiao Tung University, Taiwan,
in 2006. He has been an assistant processor in the Department of
Computer Science at Kainan University, Taoyuan, Taiwan, since
2007. His research interests include stream data mining, web min-
ing, multimedia data mining and social network mining.

Suh-Yin Lee (李素瑛) received the B.S. degree in Electrical

Engineering from National Chiao Tung University, Taiwan, in
1972, the M.S. degree in Computer Science from University of
Washington, USA, in 1975, and the Ph.D. degree in Computer Sci-
ence from Institute of Electronics, National Chiao Tung University.
She has been a professor in the Department of Computer Science
and Information Engineering at National Chiao Tung University
since 1991, and was the chair of that department in 1991-1993. Her
research interests include multimedia information system, mobile
computing, and data mining.

