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Online, one-pass mining Web click streams poses some interesting computational 

issues, such as unbounded length of streaming data, possibly very fast arrival rate, and 
just one scan over previously arrived Web click-sequences. In this paper, we propose a 
new, single-pass algorithm, called DSM-TKP (Data Stream Mining for Top-K Path tra-
versal patterns), for mining a set of top-k path traversal patterns, where k is the desired 
number of path traversal patterns to be mined. An effective summary data structure, 
called TKP-forest (a forest of Top-K Path traversal patterns), is used to maintain the es-
sential information about the top-k path traversal patterns generated so far. Experimental 
studies show that the proposed DSM-TKP algorithm uses stable memory usage and 
makes only one pass over the streaming Web click-sequences.  
 
Keywords: web usage mining, data streams, path traversal patterns, top-k pattern mining, 
single-pass mining  
 
 

1. INTRODUCTION 
 

In recent years, database and data mining communities have focused on a new data 
model, where data arrive in the form of continuous streams. It is often referred to as data 
streams or streaming data. Mining such streaming data poses some interesting computa-
tional issues, such as unknown or unbounded length of the streams, possibly very fast 
arrival rate, and inability to backtrack over previously arrived data elements [2, 7]. Many 
applications generate data streams in real time, such as sensor data generated from sensor 
networks, transaction flows in retail chains, Web record and click-streams in Web appli-
cations, performance measurement in network monitoring and traffic management, call 
records in telecommunications, and so on. 

Recently, online mining of clusters in evolving Web click-streams have been dis-
cussed [10, 11]. In this paper, we study the research issue of mining top-k path traversal 
patterns over Web click-streams. The original problem of mining path traversal patterns 
from a large static Web click-dataset was proposed by Chen et al. [3]. Li et al. [6] pro-
posed a first single-pass algorithm DSM-PLW to mine the set of all path traversal pat-
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terns over continuous Web click-streams. In the framework of DSM-PLW algorithm, it 
requires a user-specified minimum support threshold minsup, and mines the path tra-
versal patterns with estimated support values that are higher than the minimum support 
threshold. Unfortunately, the setting of minimum support threshold is quite tricky and it 
leads to the following problem that may hinder its popular use.   

If the value of minimum support threshold is too small, the frequent pattern mining 
algorithm may lead to the generation of thousands of patterns, whereas a too big one may 
often generate a few patterns or even no answers. As it is difficult to predict how many 
patterns will be mined with a user-defined minimum support threshold, the top-k pattern 
mining has been proposed.  

The first top-k pattern mining algorithm Itemset-Loop was proposed by Fu et al. 
[5]. Based on Apriori property [1], Itemset-Loop algorithm mines the k most frequent 
itemsets with lengths shorter than a user-defined value of m. LOOPBACK and BOMO 
are FP-tree-based top-k pattern mining algorithms [4], and use the same estimated 
mechanism of Itemset-Loop. Moreover, experiments in [4] show that LOOPBACK and 
BOMO outperform the Itemset-Loop. TFP algorithm [13] is a FP-tree-based algorithm 
and mines the top-k closed frequent itemsets with lengths longer than a user-specified 
value of min_l. TSP [12] is the first algorithm to mine the top-k closed sequential pat-
terns of lengths no less than the user-defined minimum length of mined patterns min_l. 
All above algorithms are multiple-pass data mining approaches. Therefore, these meth-
ods can not be used to mine patterns from streaming data. 

Recently, Metwally et al. [9] proposed a single-pass algorithm to mine the top-k 
elements over data streams. However, the top-k elements are top-k items. In this paper, 
we propose an efficient single-pass algorithm, called DSM-TKP (Data Stream Mining 
for Top-K Path traversal patterns), to mine a set of top-k path traversal patterns over Web 
click streams. An effective summary data structure, called TKP-forest (a forest of Top-K 
Path traversal patterns), and an efficient memory pruning mechanism, called TKP-for-  
est-Maintenance (Maintenance of TKP-forest), are proposed to overcome the issues of 
mining data streams such as bounded space requirement and approximation. Based on 
our knowledge, DSM-TKP is the first single-pass algorithm for mining top-k path tra-
versal pattern over streaming Web click-sequences. 

The remainder of this paper is organized as follows. The problem of mining top-k 
path traversal patterns over streaming click-sequences is defined in section 2. In section 3, 
the DSM-TKP algorithm is proposed to mine a set of top-k path traversal patterns. Com-
prehensive experiments of the proposed algorithm are discussed in section 4. Finally, we 
conclude the work in section 5. 

2. PROBLEM DEFINITION 

Let S be a continuous steam of Web clicks, where a Web click wc consists of Web 
user identifier (Uid) and a Web page reference r accessed by the user, i.e., wc = (Uid, r). 
A segment of Web click stream arrived at timestamp ti can be divided into a set of Web 
click-sequences (or click-sequences in short). For example, a fragment of stream, S = [ti, 
(100, a), (100, b), (200, a), (100, c), (200, b), (200, c), (100, d), (100, e), (200, a), (200, 
e)], arrived at timestamp ti, can be divided into two click-sequences: <100, abcde>, and 
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<200, abcae>, where 100, 200 are identifiers of Web users, and a, b, c, d, e are refer-
ences, i.e. Web pages, accessed by these users.  

A click-sequence (CS) consists of a sequence of forward references and backward 
references accessed by a Web user. A backward reference (BR) means revisiting a pre-
viously visited reference by the same user. A maximal forward reference (MFR) is a 
forward reference path without any backward references. Hence, a click-sequence CS can 
be divided into several maximal forward references, i.e., CS = {MFR1, MFR2, …, MFRi}, 
where i ≥ 1. For example, a click-sequence <abcae> can be divided into two MFRs, i.e., 
<abc> and <ae>. The number of references of a MFR is called the size of MFR. For ex-
ample, the size of MFR <abc> is 3. A MFR stream (MS) is a stream of maximal forward 
references, i.e., MS = [MFR1, MFR2, …, MFRN), where N is the identifier of latest in-
coming maximal forward reference MFRN. 

Therefore, we can map the problem of mining top-k path traversal patterns into the 
one of finding top-k occurring consecutive sequences, called top-k reference sequences, 
among a MFR stream.  

The estimated support of a reference sequence (RS), denoted as esup(RS), is the 
number of maximal forward references in the stream containing RS as a substring. A 
reference sequence is called maximal if it is not a substring of any other reference se-
quences. A maximal reference sequence is also called a path traversal pattern. A ref-
erence sequence RS is a top-k maximal reference sequence if there exists1 no more than 
(k − 1) maximal reference sequences whose support is higher than that of RS and size is 
grater than one.  

In this paper, our task is to mine top-k maximal reference sequences by one scan of 
a Web click-sequence stream when the value of k is given. 

3. DSM-TKP: DATA STREAMS MINING FOR TOP-K PATH 
TRAVERSAL PATTERNS 

The proposed algorithm, called DSM-TKP (Data Stream Mining for Top-K Path 
traversal patterns), is composed of four steps: read a maximal forward reference from the 
buffer in the main memory (step 1), construct an in-memory summary data structure 
(step 2), prune and maintain the summary data structure (step 3), and find the top-k path 
traversal patterns from the current summary data structure (step 4). Steps 1 and 2 are 
performed in sequence for a new maximal forward reference. Steps 3 and 4 are usually 
performed periodically or when it is needed. Since step 1 is straightforward, we shall 
henceforth focus on steps 2, 3 and 4, and devise algorithms for effective construction and 
maintenance of summary data structure, and efficient determination of path traversal 
patterns. 

3.1 Effective Construction of the Summary Data Structure 

In this section, an efficient algorithm is proposed to construct the in-memory sum-
mary data structure, called TKP-forest (a forest of Top-K Path traversal patterns). 

1 Since there could be more than one pattern having the same support in a stream, to ensure the set mined is 
independent of the ordering of the references and MFRs, our method will mine every path traversal pattern 
whose support is no less than the kth path traversal patterns. 
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Definition 1  A TKP-forest is a prefix tree-based summary data structure defined be-
low. 
 
1. TKP-forest consists of a list of K-References (abbreviated as KR-list), such as <r1r2 … 

rk>, and a set of Local Path-traversal-pattern trees (abbreviated as LP-trees) of refer-
ences of KR-list, denoted by ri.LP-tree, ∀i = 1, 2, …, k, where ri is the root node of 
ri.LP-tree. 

2. Each node in the ri.LP-tree, ∀i = 1, 2, …, k, consists of four fields: fid, esup, mfr_id, 
and node-link, where fid is the identifier of the incoming maximal forward reference, 
esup registers the number of maximal forward references represented by a potion of 
the path reaching the node with the fid, the value of mfr_id assigned to a new node is 
the identifier of current maximal forward reference, and a pointer node-link points to 
the next node in the same LP-tree or null if there is none. 

3. Each entry in the KR-list consists of four fields: fid, esup, mfr_id, and head-link, where 
fid registers which reference identifier the entry represents, esup records the number of 
maximal forward references containing the reference carrying the reference identifier, 
the mfr_id assigned to a new entry is the identifier of current maximal forward refer-
ence, and head-link is a pointer, and points to the root node of the fid.LP-tree. 

 
The construction algorithm of TKP-forest is given in Fig. 1. The scenario of TKP-  

forest construction is described as follows. First of all, the proposed DSM-TKP algo-
rithm reads a maximal forward reference MFR = <r1r2 … rm>, for example, from the 
buffer in the main memory, projects it into m sub-maximal forward references (abbrevi-
ated as sub-MFRs), and inserts these sub-MFRs into the TKP-forest as branches. Note 
that m is the size of the maximal forward reference.  
 
 
Algorithm TKP-forest construction 
Input: A stream of maximal forward references, MS = [MFR1, MFR2, …, MFRN), a 
user-specified value k. 
Output: A TKP-forest generated so far. 
1:  KR-list = {};  /* initialize the KR-list to empty. */ 
2:  foreach MFRi, = <x1x2 … xm>, do  /* m ≥ 1, i = 1, 2, …, N */  
3:     foreach reference xj ∈ MFRi do   
4:        if xj ∉ KR-list then 
5:           create a new entry of form (xj, 1, i, head-link) into the KR-list;  
6:        else /* the entry already exists in the KR-list */ 
7:               xj.esup = xj.esup + 1;  
8:        end if 
9:     end for 
10:    call MFR-Projection(MFRi);  
11:    call rs-MFR-insertion(rs-MFRs of MFRi); 
12:  end for 
13:  call TKP-forest-Maintenance(TKP-forest, k);  /* Step 3 of DSM-TKP algorithm */ 
14:  end for 

Fig. 1. Construction algorithm of the proposed summary data structure TKP-forest. 
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(a) Processing 1st MFR <abcde>.              (b) Processing 2nd MFR <acd>. 

Fig. 2. Construction of TKP-forest after processing the 1st MFR and 2nd MFR. 
 

The details of projection of each incoming MFR are described as follows. First, 
each incoming maximal forward reference, MFR = <r1r2 … rm>, is converted into m sub- 
MFRs; that is, <r1r2 … rm>, <r2r3 … rm>, …, and <rm>. These m sequences are called 
reference-suffix maximal forward references (abbreviated as rs-MFRs), since the first 
reference of each sequence is a suffix of the original maximal forward reference. The 
projection is called maximal forward reference projection, and denoted by MFR-projec-
tion (MFR) = {r1 | MFR, r2 | MFR, …, ri | MFR, … , rm | MFR}, where ri | MFR = 
<riri+1, …, rm>, ∀i = 1, 2, …, m. Therefore, the cost of MFR-projection(MFR) is (m2 + 
m)/2, i.e., m + (m − 1) + … + 2 + 1, where the size of MFR is m. 

After performing MFR-projection, DSM-TKP algorithm inserts each reference of 
MFR into the KR-list, and removes it from the buffer in the main memory. Next, the set 
of rs-MFRs are inserted into the ri.LP-trees (∀i = 1, 2, …, m) as branches. If a MFR 
shares a prefix with a MFR already in the LP-tree, the new MFR will share a prefix of 
the branch representing that MFR. Furthermore, an estimated support counter is associ-
ated with each node in the LP-tree. The counter is updated when a rs-MFR causes the 
insertion of a new branch. The step is called insertion of rs-MFR (rs-MFR-insertion). 
 
Example 1: Let the first six maximal forward references of an example stream be <abcde>, 
<acd>, <cef>, <acdf>, <cef>, and <df>, where a, b, c, d, e and f are Web pages accessed 
by Web users. After performing MFR-projection(<abcde>) and MFR-projection 
(<acd>), five rs-MFRs, i.e., <abcde>, <bcde>, <cde>, <de>, and <e>, of 1st MFR <ab-
cde> and three rs-MFRs, i.e., <acd>, <cd> and <d>, of 2nd MFR <acd> are inserted into 
the TKP-forest as shown in Figs. 2 (a) and (b), respectively. The results of TKP-forest 
constructed by DSM-TKP algorithm with respect to 3rd MFR <cef> and 4th MFR <acdf> 
are given in Figs. 3 (a) and (b), respectively. The final results of TKP-forest construction 
with respect to 5th MFR <cef> and 6th MFR <df> of Example 1 are given in Figs. 4 (a) 
and (b), respectively. 



HUA-FU LI AND SUH-YIN LEE 

 

1126 

 

 
(a) Processing 3rd MFR <cef>.              (b) Processing 4th MFR <acdf>. 

Fig. 3. Construction of TKP-forest after processing the 3rd MFR and 4th MFR. 

 
(a) Processing 5th MFR <cef>.              (b) Processing 6th MFR <df>. 

Fig. 4. Construction of TKP-forest after processing the 5th MFR and 6th MFR. 

3.2 Effective Pruning of the Summary Data Structure  

The effective pruning mechanism of TKP-forest, called TKP-forest-Maintenance 
(Maintenance of TKP-forest), used in the DSM-TKP algorithm is performed when the 
number of references in the KR-list is greater than k. The pruning mechanism TKP-forest- 
Maintenance is extended from the work [8], and is shown in Fig. 5. The pruning method 
is composed of four steps and is described as follows. 
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First, TKP-forest-Maintenance sorts and reorders the references, for example, r1, 
r2, …, rk, of KR-list in an estimated support decreasing order, i.e., esup(r1′) ≥ esup(r2′) 
≥ … ≥ esup(rk′). Second, the pruning method find the final kth largest reference, i.e., rKL′, 
from the reordered KR-list. Note that if there are more than one reference has the same 
kth largest estimated support, we take the right-most reference as rKL′. Third, all informa-
tion about the other references, rj′, where j = KL + 1, KL + 2, …, k′, are removed from the 
current TKP-forest, i.e., remove rj′ from the current KR-list and prune the rj.LP-tree. Fi-
nally, the estimated support of each reference of the KR-list is decreased by the estimated 
support of the reference rKL-1′. After performing these steps, the set of top-k path traversal 
patterns are maintained in the current TKP-forest. 

Now, we use the TKP-forest of Fig. 4 (b) of Example 1 to demonstrate the pruning 
mechanism TKP-forest-Maintenance. The result of the first two steps of pruning mecha-
nism is shown in Fig. 6. From this figure, we can find that the right-most reference (e) 
with esup(e) = 3 where value 3 is the third largest estimated support in the reordered 
KR-list. The result of steps 3 and 4 of TKP-forest-Maintenance is given in Fig. 7. From 
this figure, we can see that all information about reference (b), i.e., reference (b) of 
KR-list and its b.LP-tree, are pruned from the current TKP-forest since reference (b) is 
not a candidate of top-k path traversal patterns at this moment. 

The next step of DSM-TKP algorithm is to find the set of top-k path traversal pat-
terns from the current TKP-forest. The step is performed only when the analytical results 
of the stream of Web click-sequences is requested. 
 

Subroutine TKP-forest-Maintenance(TKP-forest, k) 

1: sort the references, r1, r2, …, rk′, in the KR-list and reorder the references in an esti-
mated support decreasing order, i.e., r1′, r2′, …, rk′′, where esup(r1′) ≥ esup(r2′) ≥ … 
≥ esup(rk′); 

2: find rKL′ in the reordered KR-list;  

/* rKL′ be a right-most reference whose estimated support is the k-th largest one in the KR-list; */ 

3: foreach rj′∈ KR-list, ∀j = KL + 1, KL + 2, …, k′ do 
4:      delete rj′ from the current KR-list; 
5:      delete rj′.LP-tree; 
6: endfor 
7: foreach ri′∈ KR-list, ∀i = 1, 2, …, KL do  
8:      esup(ri′) = esup(ri′) − esup(rKL′) + 1; 
9: endfor 

Fig. 5. Pruning algorithm TKP-forest-maintenance of the proposed summary data structure TKP-forest. 

3.3 Determination of the Top-k Path Traversal Patterns 

Assume that there are k references, namely r1, r2, …, rk, in the current KR-list. For 
each entry ri, ∀i = 1, 2, …, k, in the KR-list, the DSM-TKP algorithm traverses the 
ri.LP-tree to find the estimated support of each reference sequence with a prefix ri in a  
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Fig. 6. TKP-forest of example 1 after steps 1 and 2 of TKP-forest-maintenance. 

 
Fig. 7. TKP-forest of example 1 after steps 3 and 4 of TKP-forest-maintenance. 

 
depth-first-search (DFS) manner. Then, DSM-TKP stores these reference sequences into 
a temporal list of candidate maximal reference sequences, i.e., path traversal patterns, in 
a support decreasing order. The temporal list is called CTKP-list (a list of Candidate 
Top-K Path traversal patterns). Finally, DSM-TKP outputs the first k maximal reference 
sequences from the CTKP-list. For example, the CTKP-list generated by DSM-TKP is 
composed of ten path traversal patterns, i.e., <cd: 3>, <cef: 2>, <df: 2>, <acd: 2>, <cdf: 
1>, <cde: 1>, <de: 1>, <acdf: 1>, <abcde: 1>, and <ef: 1>. Note that Since there could be 
more than one pattern having the same support in a stream, to ensure the set mined is 
independent of the ordering of the references and MFRs, our method will mine every 
path traversal pattern whose support is no less than the kth path traversal patterns. Con-
sequently, the top-3 path traversal patterns are <cd: 3>, <cef: 2>, <df: 2>, and <acd: 2>. 

3.4 Space Analysis of the Proposed Summary Data Structure TKP-forest 

The space upper bound of DSM-TKP algorithm for constructing a prefix tree-based 
in-memory summary data structure is discussed in this section. Because the in-memory 
data structure TKP-forest used in DSM-TKP is based on the DSM-PLW algorithm [6], 
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the space upper bound of DSM-TKP algorithm discussed as follows is the same as that of 
DSM-PLW algorithm in worst case. 

 
Theorem 1  A prefix tree-based summary data structure has at most 2k nodes for storing 
the set of top-k path traversal patterns of Web click streams. 
 
Proof [6]: Let k be the number of frequent references in the current TKP-forest. Accord-
ing to the well-known Apriori property [1], the number of candidate frequent reference 
sequences is C(k, 1) regarding path traversal patterns with size 1, C(k, 2) regarding path 
traversal patterns with size 2, …, C(k, i) regarding path traversal patterns with size i, ..., 
and C(k, k) regarding path traversal patterns with size k references. In a prefix tree-based 
summary data structure, a reference sequence is represented by a path and its appearance 
support is maintained in the last node of the path. Hence, there are C(k, 1) nodes in the 1st 
level, C(k, 2) nodes in the 2nd level, …, C(k, i) nodes in the ith level, …, and C(k, k) 
nodes in the kth level. There are totally C(k, 1) + C(k, 2) + … + C(k, i) + … + C(k, k) 
nodes in the prefix tree-based summary data structure. Consequently, the space upper 
bound of any proposed prefix tree-based summary data structure for mining top-k path 
traversal patterns is O(2k) in worst case.  

4. PERFORMANCE EVALUATION 

4.1 Generation of Synthetic Data 

All the experiments are performed on a 1.80 GHz Pentium 4 processor with 1 GB 
main memory, running on Microsoft Windows 2000. In addition, all the programs are 
written in Microsoft/Visual C++ 6.0. To evaluate the performance of the proposed DSM-  
TKP algorithm, two experiments are performed. The experiments were carried out on the 
synthetic data generator of Web click-sequences used in [10]. We describe it briefly as 
follows [6, 11]. A traversal tree is constructed to mimic Web site structure whose starting 
position is a root node of the tree. The traversal tree is composed of internal nodes and 
leaf nodes. A traversal path consists of nodes accessed by a Web user. The size of each 
traversal path is picked from a Poisson distribution with mean equal to |P|, where |P| is 
the average size of reference paths. With the first node being the root node, a traversal 
path is generated probabilistically within the traversal tree as follows. Each edge con-
necting to an internal node is assigned with a weight. The weight corresponds to the 
probability that each edge will be next accessed by the Web user. The weight to its parent 
node is assigned with p0, which is generally 1/(n + 1) where n is the number of child 
nodes. The probability of traveling to each child node, pi, is determined from an expo-
nential distribution with unit mean. Moreover, the probability is normalized that the sum 
of the weights for all child nodes is equal to 1 − p0. When the path arrives at a leaf node, 
the next move would be either to its parent node in backward (with a default probability 
0.25) or to any internal node (with an aggregate probability 0.75). More detail about the 
generation of synthetic traversal paths can be found in [11].   

Two synthetic data streams, denoted by H10.I5.D100K and H10.P15.D100K are 
studied in this section. The first one H10.I5 has a traversal tree with height of 10 levels 
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Fig. 9. Performance comparisons of pruning time and top-k pattern generation time over various k
values, D = 100K. 

 

and has average size of the reference paths with 5 references. The second one H10.P15 
has average size of the reference paths with 15 references. Both datasets consist of 
100,000 Web click-sequences (D100K). In all experiments, the click-sequences of each 
dataset are looked up in sequence to simulate the environment of a continuous data 
stream [6].  

 
4.2 Experimental Results of Execution Time and Memory Usages of DSM-TKP  
 

Performance evaluation of execution time and memory usage of the proposed DSM-  
TKP algorithm are discussed in this section. We evaluated the effect of various k values 
for both synthetic data streams, H10.I5 and H10.I15, with 100K click-sequences.  

First, in the experiments of execution time, two parts are evaluated: (a) the con-
struction time of TKP-forest for measure the performance of online processing, (b) the 
pruning time and the top-k pattern generation time for measure the performance of 
analysis. In Fig. 8, we plot construction time taken by our algorithm for values of k 
ranging from 1,000 to 200. The figure shows how decreasing k leads to increase in con-
struction time of TKP-forest. Moreover, in Fig. 9, the execution time of TKP-forest 
pruning and top-k pattern generation of DSM-TKP algorithm is evaluated to measure the 
performance of analysis. From Figs. 8 and 9, we can find that the proposed DSM-TKP 
algorithm has good adaptability for online processing and streaming analysis under vari-
ous k values.  
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Fig. 8. Performance comparisons of construction time of TKP-forest over various k values, D = 100K. 

0

10

20

30

40

50

1000 800 600 400 200

value k

E
xe

cu
tio

n 
tim

e 
(s

ec
.)

H10.P5 H10.P15

 



DSM-TKP: STREAMING MINING TOP-K PATH TRAVERSAL PATTERNS 

 

1131 

 

To assess the scalability of our algorithm, scale-up experiments were conducted. Fig. 
10 shows that the processing time of DSM-TKP algorithm increases linearly as the size 
of click-sequences increases, ranging from 100K to 1,000K, where k = 1,000. Processing 
time is composed of construction time, pruning time and top-k path traversal pattern gen-
eration time. Hence, from this figure, we can see that the proposed DSM-TKP algorithm 
exhibits good linearity in scale-up. 
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Fig. 10. Linear scalability of the sizes of click-sequence from 100K to 1,000K (k = 1,000). 
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Fig. 11. Performance comparisons of memory usages over various k values, D = 200K. 

 

The result of Fig. 11 is the memory requirement of the proposed algorithm for min-
ing top-k path traversal patterns under various k values. From this figure, we can find that 
the memory usage of DSM-TKP algorithm is linearly affected by the sized of value k. 
The last experiment of DSM-TKP algorithm is the evaluation of precision. In Fig. 12, we 
can find that the proposed algorithm has good precision under various k values.  

5. CONCLUSIONS 

In this paper, we propose an efficient, online algorithm, called DSM-TKP (Data 
Stream Mining for Top-K Path traversal patterns), for mining top-k maximal reference 
sequences in an infinite sequence of Web click-sequences. An effective summary data  
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Fig. 12. Performance comparisons of precisions (proportion of the output path traversal patterns are 

top-k path traversal patterns). 
 

structure, TKP-forest (a forest of Top-K Path traversal patterns), is developed to store 
the essential information about the set of top-k path traversal patterns of the stream so far. 
An efficient pruning mechanism of TKP-forest, called TKP-forest-Maintenance, is 
used to guarantee that the upper bound of the summary data structure is predictable. 
Based on our best knowledge, the proposed DSM-TKP algorithm is the first single-pass 
algorithm for mining top-k path traversal patterns from streaming Web click-sequences. 
Future work includes mining top-k path traversal patterns over stream sliding windows 
and mining top-k path traversal patterns over damped sliding windows. 
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