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Abstract

In orthogonal frequency-division multiplexing (OFDM) systems, it is generally
assumed that the channel response is static in an OFDM symbol period. However, the
assumption does not hold in high-mobility environments. As a result, intercarrier
interference (ICI) is induced and the system performance is degraded. A simple
remedy for this problem is the application of the zero-forcing (ZF) and minimum
mean square error (MMSE) equalizers. Unfortunately, the direct ZF method requires
the inversion of an N x N ICI matrix, where N is the number of subcarriers. When N
is large, the computational complexity can become prohibitively high. As for the
direct MMSE method, in addition to an N xN matrix inverse, it requires an extra
N x N matrix multiplication, making the required computational complexity higher
compared to the direct ZF method. In this dissertation, we first propose a
low-complexity ZF method to solve the problem in single-input-single-output (SISO)

OFDM systems. The main idea is to explore the special structure inherent in the ICI



matrix and to apply Newton's iteration for matrix inversion. With our formulation, fast
Fourier transforms (FFTs) can be used in the iterative process, reducing the
complexity from O(N®) to O(Nlog, N). Also, the required number of the iteration
is typically one or two. We also analyze the convergence behavior of the proposed
method and derive the theoretical output signal-to-interference-noise-ratio (SINR).
For the MMSE method, we first reformulate the MMSE solution in a way that the
extra matrix multiplication can be avoided. Similar to the ZF method, we then exploit
the structure of the ICI matrix and apply Newton's iteration to reduce the complexity
of the matrix inversion. For a multiple-input-multiple-output (MIMO) OFDM system,
the required complexity of the ZF and MMSE methods becomes more intractable. We
then manage to extend the proposed ZF and MMSE methods for SISO-OFDM
systems to MIMO-OFDM systems: It turns out that the computational complexity can
be reduced even more significantly. Simulatien results show that the performance of
the proposed methods is almost-as geod-as-that-of the direct ZF and MMSE methods,
while the required computational” complexity Is reduced dramatically. Finally, we
explore the application of the proposed methods in mobility-induced ICI mitigation
for OFDM multiple access (OFDMA) systems, and in carrier frequency offset (CFO)
induced ICI mitigation for OFDMA uplink systems. As that in OFDM systems, the

proposed methods can reduce the required computational complexity, effectively.
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Chapter 1

Introduction

§ 1.1 ICI Problem

N wireless single-carrier (SC) communication systems, data transmission occupies the whole
I available bandwidth. Due to-the multipath channel, a SC system usually suffers from the
severe intersymbol interference (ISI). Consequently,a SC system requires a complicated time-
domain equalizer to combat the ISI effect.” Compared to a SC system, a conventional multi-
carrier (MC) system divides the whole available bandwidth into many non-overlapped narrow
subchannels and subcarriers are used simultaneously to transmit data on these narrow subchan-
nels. Since each data stream is transmitted on a narrow subchannel, it is subject to little ISI
which makes the channel equalizer simpler. Moreover, since the data streams are transmitted
on independent subchannels, different modulation schemes can be used for the subchannels.
Since the subchannels are non-overlapped in conventional MC systems, guard bands are re-
quired between these subchannels to avoid inter-channel interference. Owing to the extra guard
bands, the conventional MC system is bandwidth-inefficient.
To solve the problem, a bandwidth-efficient MC technique, called orthogonal frequency-
division multiplexing (OFDM), was developed. The technique, dating back to the 1960’s, over-

laps subchannels in an orthogonal way such that bandwidth efficiency can be greatly improved.
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In 1971, Weinstein and Ebert used IDFTs/DFTs to perform the OFDM baseband modulation
and demodulation instead of a bank of subcarrier oscillators [1]. This method provides an
efficient digital implementation of OFDM systems. In 1980, Peled and Ruiz introduced the
concept of cyclic prefix (CP) which fills the vacant guard interval with a cyclic extension of
an OFDM symbol [2]. This results in a circular convolution between the transmit data and the
channel response. With the CP, OFDM can convert a frequency-selective channel into a set of
frequency non-selective channels, and only a one-tap frequency-domain equalizer is required
for each subcarrier signal. This greatly reduces the complexity of the channel equalization in
the OFDM receiver. Nowadays, OFDM is known to be an effective and successful technique
to cope with the multipath channel effect in wireless communications [3]. Since all subcar-
rier signals overlap orthogonally in the spectrum, an ideal OFDM system has no intercarrier
interference (ICI). Thus, OFDM can be easily developed as a frequency-division multiple ac-
cess (FDMA) scheme. An OFDM-based FDMA system is generally referred to as an OFDMA
system [4], [5]. In an OFDMA system; subcarriets are divided into exclusive groups, and
each group is assigned to a user for simultaneousdata transmission. The OFDM technique
has been adopted in many systems, e.g. “Asymmetric-Digital Subscriber Line (ADSL), IEEE
802.11a/g, IEEE 802.16e-2005 [6], IEEE 802.16m, 3GPP Long Term Evolution (LTE), Digital
Audio Broadcasting (DAB), and Terrestrial Digital Video Broadcasting (DVB-T).

For conventional OFDM systems, it is usually assumed that the channel is static during
an OFDM symbol. However, in high-speed mobile environments, this assumption does not
hold anymore. If the channel is time-variant in an OFDM symbol period, orthogonality will be
destroyed. As a result, ICI is induced and the system performance is degraded. The behavior of
mobility-induced ICI has been extensively investigated in the literature [7], [8], [9], [10], [11],
[12]. In [7], [8], it is shown that the interference on a subcarrier mainly comes from neighboring

subcarriers. Also, the interference level is proportional to the Doppler frequency.

Another factor that affects orthogonality in an OFDM system is carrier frequency offset

(CFO). In OFDM systems, CFO is always present due to imperfect oscillators. In the presence
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of CFO, the orthogonal property of an OFDM system is also destroyed and the ICI is induced,
degrading the system performance significantly [13]. Different from the CFO-induced ICI in
OFDM systems, CFO in OFDMA uplink systems causes not only the self-interference but also
the multiuser interference (MUI), degrading the system performance even more severely [14],
[15]. ICI mitigation has been studied by many researchers and this will be the focus of the

dissertation.

§ 1.2 ICI Mitigation

Since an OFDM system is vulnerable to mobility and CFO, various techniques have been pro-
posed to cope with these two kinds of ICL. First, we discuss the mobility-induced ICI problem.
Two algorithms are well-known, namely, 1) the zero-forcing (ZF) method and 2) minimum
mean square error (MMSE) method. Unfortunately, these methods require the inversion of an
N x N ICI matrix, where NV isthe numbeér of subcartiers. Except for a matrix inversion, the
MMSE method also needs to conduct an extra /N.x- N matrix multiplication. Thus, its com-
putational complexity is even higher than that of the ZF method. The payoff for the higher
complexity is its enhanced performance. If N is large, the computational complexity of both
algorithms can become prohibitively high. Systems with a lot of subcarriers are not uncommon
in real-world applications. For example, for the application of DVB, the number of subcarriers
can be as large as 8192. To solve the problem of a large ICI matrix inversion, a simpler ICI
equalizer for the ZF method was developed in [16]. As mentioned, ICI on a subcarrier mainly
comes from a few neighboring subcarriers. Thus, ICI from the other subcarriers can then be
ignored. This method has good performance in low-mobility environments. In high-mobility
environments, however, the number of insignificant ICI terms will be decreased and the com-
putational complexity will be significantly increased.

Successive interference cancellation (SIC) and parallel interference cancellation (PIC) are

two well-known multiuser interference (MUI) cancellation techniques in code-division-multiple-
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access (CDMA) systems. Since the characteristic of ICI is similar to that of MUI, these methods
can be directly applied to ICI mitigation in OFDM systems. A method combining the MMSE
and SIC techniques was first proposed in [17]. Later, it was improved with a recursive method
in [18], reducing the required complexity further. Although good performance can be achieved
with these methods, the required complexity is still high and the time delay can be intolerably
large. The PIC technique was then employed to solve the problem [19], [20], [21], [22], [23].
Although the processing delay is greatly reduced, the performance is discounted as well. Other
approaches use transmitter frequency-domain coding or beamforming to reduce ICI or to en-
hance the received signal-to-interference-noise-ratio (SINR). Interested readers may see [24],

[25], [26], [27].

Apart from the processing in the frequency, domain, some researchers also explore that in
the time domain. In [28], a time-domain.filtering.technique maximizing the signal-to-ICI-plus-
noise ratio was proposed for single-input-single-output(SISO)/multiple-input-multiple-output
(MIMO) OFDM systems. One disadvantage of this method is that it requires matrix operations
to solve a generalized eigenvalue problem. Another approach involves the use of a time-variant
time-domain equalizer, making the time-variant channel less variant. Transferring the equalizer
from time-domain to frequency-domain, one can obtain a frequency-domain per-tone equalizer
(PTEQ). The PTEQ was originally proposed to deal with the insufficient CP problem in OFDM
systems. Lately, it is extended to suppress ICI in SISO/MIMO-OFDM systems [29], [30], [31],
[32], [33]. The PTEQ is well-known for its good performance; however, its implementation
complexity and storage requirement can be high. In [34], a two-stage equalizer was proposed.
In the first stage, a time-domain windowing technique is used to shorten the ICI response in
the frequency domain. In the second stage, an iterative MMSE method is used to suppress the
residual ICI. Although the windowing approach is simple, the iterative MMSE processing is not
trivial. To further enhance the system performance, another approach called turbo equalization
can be applied to mitigate ICI [35], [36], [37]. In [37], a block turbo MMSE method was

proposed. The main feature is that this method uses the whole ICI matrix to obtain the MMSE
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solution although it ignores some insignificant ICI terms.

Next, we discuss the CFO-induced ICI mitigation problem. For OFDM and OFDMA down-
link systems, the CFO can be easily estimated and compensated in the receiver [38], [39]. How-
ever, for OFDMA uplink systems, the problem is more involved. In the literature, various ICI
mitigation methods have been proposed to solve the problem. One direct method is to estimate
CFO in the base station and transmit the information back to mobile stations for CFO correc-
tion. Another approach is to transmit redundant information in subcarriers such that ICI can
be cancelled with a simple method in the receiver end. This approach is called the self-ICI-
cancellation [24], [40], [41], [42], [43], [44]. However, these methods mentioned above will

sacrifice the transmission rate.

Yet another viable approach eliminates the need for extra transmission overhead by com-
pensating for ICI in the receiver. CFO compensationmethods for OFDMA uplink systems have
been reported [45], [46], [47], [48],.[49], [50],{51]. The simplest method is to treat the CFO-
induced ICI as that in OFDM systems_ and‘to compensate for ICI with a time-domain phase de-
rotation operation for each user [45].. This approach.can suppress self-ICI, but it does not take
MUTI into account. In [46], a post-FFT CFO compensation method was proposed, improving the
performance of the phase de-rotation approach. Unfortunately, the MUI problem still remains.
In [47], a scheme combining the method in [46] with the PIC technique was developed. Other
PIC-related works can be found in [48], [49]. It is simple to observe that the CFO-induced ICI
on a subcarrier mainly comes from neighboring subcarriers. Thus, the method in [50] modifies
the CFO-induced ICI matrix into a banded matrix, and reduces the computational complexity
of the ZF and MMSE methods. However, its performance may be compromised due to the sim-
plification. Taking advantage of an interleaved-OFDMA structure, the authors in [51] proposed
a method that divides the whole system into several smaller subsystems, after which the MMSE
method was applied to the subsystems. This method has good performance, and it requires
low computational complexity; however, it is only applicable to an ideal interleaved structure

(i.e., uniform subcarrier-spacing for each user). The aforementioned methods were developed
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for CFO-compensation. CFO estimation methods have also been reported for OFDMA uplink
systems [52], [53], [54], [55].

§ 1.3 Proposed Approach

As mentioned, the main problem in the ZF and MMSE methods is the matrix inversion. Thus,
how to conduct this operation efficiently becomes the main concern. It is found that some
iterative methods can be much more efficient than the direct matrix inversion method. We
first discuss the mobility-induced ICI problem. In [56], the Gauss-Seidel iteration was used to
conduct the matrix inversion. However, it still needs a matrix inverse in its iterative process.
Another method called operator-perturbation was. recently proposed [57]. Similar to [56], this
method also requires a matrix inverse in,its iterations.. Thus, the computational complexity for
the methods in [56] and [57] is still high. In [S8]; it.-was discovered that the ICI matrix for a
linear time-variant (LTV) channel modgl exhibits‘a'special struicture, allowing the application of
fast Fourier transforms (FFTs) in the matrix inversion. The LTV channel model was proposed
in [16] and its original purpose is for the time-variant channel estimation [59]. Exploiting this
structure, a power-series expansion (PSE) method was proposed for the ICI matrix inversion
[58], [60]. Although the PSE method can greatly reduce the computational complexity, it does

not perform well in high-mobility environments.

In this dissertation, we propose low-complexity ZF and MMSE methods to solve the mobility-
induced ICI problem in SISO/MIMO-OFDM(A). Similar to [58], we exploit the special struc-
ture inherent in the LTV channel model. For the ZF method, we first develop a method that
can implement Newton’s iteration for the ICI matrix inversion in SISO-OFDM systems. With
our specially designed architecture, FFTs can be used in the iterative process, reducing the
computational complexity effectively. We also propose a method for the calculation of initial
values. With those values, Newton’s iteration can converge very fast, usually within a couple

of iterations. Unlike the PSE method [58], our method works well even in high-mobility en-
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vironments. Simulation results show that the performance of the proposed low-complexity ZF
method can be as good as that of the direct ZF method. However, the required computational
complexity is reduced from O(N?) to O(Nlog, N). We also analyze the convergence behavior
of the proposed low-complexity ZF algorithm and derive the theoretical output SINR. Using a
new MIMO-OFDM system formulation, we then extend the proposed method to ICI mitigation
in MIMO-OFDM systems. It is shown that in MIMO-OFDM systems, the computational com-
plexity can be reduced even more significantly. For an M x M system, where M is the number
of transmit (receive) antennas, the proposed algorithm can reduce the computational complexity

from O(M3N?) to O(M Nlog,N).

As mentioned, the matrix inversion is the main obstacle in the ZF method, and some re-
searchers try to use iterative methods to overeeme this problem [56], [57], [58]. Although these
methods can reduce the computational complexity of:the ZF method, they are not applicable for
the MMSE method. As mentioned above, the MMSE-method has to conduct an extra N x N
matrix multiplication which cannot be aveided in these approaches. Using the basic idea in the
proposed low-complexity ZF method, we further develop an efficient low-complexity MMSE
method. The main contribution in the proposed ZF method is to develop an efficient ICI mit-
igation scheme using Newton’s iteration. With the approach, we can use FFTs/IFFTs in the
computation of the matrix inversion, dramatically reducing the computational complexity. The
proposed MMSE algorithm inherits this property, and further eliminates the requirement of the
N x N matrix multiplication. Simulation results show that the performance of the proposed
low-complexity MMSE method is similar to that of the direct MMSE method. However, the re-
quired computational complexity is reduced from O(N?) to O(2N log, N). We also extend the
proposed method to ICI mitigation in MIMO-OFDM systems. For an M x M system, the pro-
posed algorithm can reduce the computational complexity from O(M?3N?) to O(2M Nlog, N).
It is simple to see that for MIMO-OFDM systems, the proposed method can reduce the compu-
tational complexity even more significantly. Moreover, we apply the proposed ZF and MMSE

methods to ICI mitigation in SISO/MIMO-OFDMA systems.
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Next we discuss the CFO-induced ICI problem in OFDMA uplink systems. The ZF method
is known to be a simple yet effective method for CFO compensation. However, it has to invert
the CFO-induced ICI matrix whose dimension equals the number of subcarriers. As a result,
the computational complexity can become prohibitively high when the number of subcarriers
is large, a case commonly found in OFDMA systems. As we can see, this problem is similar
to ICI mitigation in high-mobility environments. We then propose a low-complexity iterative
ZF method to cope with the problem. Following the idea described above, we use Newton’s
method to iteratively perform the matrix inversion. Taking advantage of the special structure
of the CFO-induced ICI matrix, we develop a method that can implement Newton’s method
with FFTs. With our specially designed initial matrix, the proposed iterative method can stop
within two to three iterations. From simulation results, we find that the performance of the
proposed method is similar to that of the direct ZF method. However, the required compu-
tational complexity is reduced from O(N?) tof@(Nlog, V). We also analyze the theoretical
SINR enhancement of the proposed algorithm. Two approaches are used for the analysis; one
is simple but approximated, and the other is ‘complicated but exact. The issue of convergence is

also discussed.

§ 1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we first describe an LT V-based
SISO-OFDM signal model. This signal model involves DFT/IDFT and diagonal matrices which
can be used to develop low-complexity ICI mitigation algorithms. Since the PSE method also
exploits the LTV-based SISO-OFDM signal model, it is briefly reviewed. Then we describe the
proposed ZF method and present the complexity and performance analysis. Lastly, we show
simulation results to corroborate the proposed algorithm. Except for the ZF method, we also
consider the MMSE method. We reformulate the MMSE solution and extend the proposed ZF

method to avoid the extra matrix multiplication and matrix inversion.

8



In Chapter 3, we focus on ICI mitigation in a MIMO-OFDM system. For this system,
conducting the matrix inversion is more difficult since the dimension of the ICI matrix can be
huge. To solve the problem, we derive a MIMO-OFDM signal model that allows the application
of the proposed low-complexity ZF and MMSE methods developed in Chapter 2. It can be
shown that the reduction in computational complexity is even more significant in MIMO-OFDM
systems.

In Chapter 4, we further consider the ICI mitigation problem in an OFDMA uplink system.
Based on the LTV channel model, we derive a SISO-OFDMA signal model from which the
low-complexity algorithms developed in Chapter 2 can be applied. This signal model can be
viewed as a generalized SISO-OFDM signal model. When the number of users is one, the
SISO-OFDMA signal model is degenerated to the SISO-OFDM signal model. We also extend
the model from SISO-OFDMA systems'to MIMO-OFDMA systems. Chapters 2, 3 and 4 give
a complete treatment for mobility=«induced ICI mitigation in SISO/MIMO-OFDM(A) systems.

In Chapter 5, we discuss low-complexity algorithms for CFO-induced ICI mitigation in
OFDMA uplink systems. We first deseribe-the;OFDMA uplink signal model that is composed
of diagonal and DFT/IDFT matrices.Applying:the low-complexity algorithms developed in
Chapter 2, we obtain low-complexity CFO-induced ICI mitigation methods. We also propose
a pre-compensation method to further enhance the performance of the low-complexity meth-
ods. Complexity and performance analyses are also provided to verify the effectiveness of the
proposed method.

In Chapter 6, we draw some conclusions for the dissertation and outline possible topics for

further research.
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Chapter 2

Mobility-induced ICI Mitigation for
SISO-OFDM Systems

§ 2.1 Signal Model

Consider a mobile OFDM system whose ‘channel variation is large such that the mobility-
introduced ICI cannot be ignored. It"was shown in [59] that the LTV channel model can be
used to approximate a time-variant channel for the normalized Doppler frequency up to 20%,
where the normalized Doppler frequency is defined as the maximum Doppler frequency divided
by subcarrier spacing. Using the LTV channel model, we can approximate the time-variant

channel in a specific OFDM symbol period as
hj(n) = hO,j +n X th, (21)

where n is the time index, h;(n) is the jth-tap channel response at time instant n, hg ; is its
constant term, and /; ; is its variation slope. We assume that 7 is 0 at the midpoint of an OFDM
symbol. Let hg = [hoo, ho, -, hon—1]", by = [hig, b1, .., hin—1]T, Hy = cir(hg), and
H, = cir(h;), where cir(c) denotes a circulant matrix with the first column vector being c.

Also, we define vi = [(—=N +1)/2, (=N +3)/2,...,(N —1)/2]" and V, = diag(v,), where
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the notation, diag(d), denotes a diagonal matrix with the diagonal vector of d. According to
(2.1), we can express the receive time-domain signal in the OFDM symbol (after CP removal)

as
y = (Ho+ ViH)x + z, (2.2)

where y and x are the receive and transmit time-domain /V X 1 signal vectors, respectively, and
z is the noise vector (additive white Gaussian). Let G be a unitary discrete Fourier transform
(DFT) matrix with the property that GG = Iy, where Iy is an N x N identity matrix.
Moreover, let y = vVNGy, X = VNGx, z = VNGaz, ﬂo = v/ NGhy,, El = /NGh,,
ﬁg = dz'ag(flg), and ﬁl = dz’ag(fll). Multiplying both sides of (2.2) by v NG, we can express

the receive signal in the frequency domain as

y = VNGy
= VNG (H # ViH)G"Gx £ VNGz
- ﬁ0+GV1GHﬁ1 §+§

= MX + 7, (2.3)

where M = ﬁg +GV,GH ﬁl is the so-called ICI matrix. Note that M can also be rewritten as
M = H,+V,H,, where V, = GV, G = [cir(¥1)]T and v, = (1/v/N)Gv,. Since the ICI
matrix is not a diagonal matrix, the ICI exists. If the channel is time-invariant, the frequency-
domain ICI term, \71, will disappear. Thus, the signal model will become the traditional OFDM

signal model.

§ 2.2 ZF Method

Among the ICI mitigation methods, the simplest remedy for ICI is the ZF method. Denote

the ZF equalized signal as X;r. Then, we can obtain the equalized signal as Xzp = M‘li

From the above formulation, it is simple to see that direct implementation of the ZF method
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will require high computational complexity if N is large. Thus, it is a critical problem for the
ZF method. Then, the PSE method was introduced in [58] to solve the problem. The idea is to

express M~ as

M= [(IN + GVlGHﬁlﬁgl> ﬁo} -
=H;'(Iy-P)", (2.4)

where P = GV,GYH and H = —ﬁlﬁgl. Next, (Iy — P)_1 is expanded with a power
series and the high order terms are truncated, i.e., (Iy — P)f1 ~ Zg:o P?, where U is the
highest order retained in the expansion. The convergence condition for this expansion is that
|| P ||< 1[58], where || P || indicates the p-norm of P [60]. Finally, the equalized X, denoted
as Xpgp, is equal to ﬁal ZZUZO a;, where a; = P'y. Note that a,,; = Pa; = GV,;G (Ha;).
Thus, a; can be recursively calculated., Also;swith the special structure of P, FFTs/IFFTs can
be used to calculate a;. Although the computational complexity can be reduced effectively,
the performance of the PSE method is unsatisfactory in high-mobility environments. This will
be verified from simulation results. In the-following subsection, we will present the proposed

method to solve the problem.

§ 2.2.1 Proposed Newton-ZF Method

As mentioned, the performance of the PSE method is unsatisfactory in high-mobility environ-
ments. To solve the problem, we seek for a more flexible and powerful iterative method for
matrix inversion. Specifically, we find Newton’s iteration is useful. Newton’s iteration is well-
known for its fast convergence [61], [62], and it has been investigated extensively [63], [64],
[65], [66]. Let W}, be the estimated matrix inverse of M at the kth iteration. The (k + 1)th

Newton’s iteration can be described as follows:
Wit = Iy — W,M)W,, k=0,1,2,..., . (2.5)

Let f{k =1y — Wkﬁ represent the estimation residual. Equation (2.5) implies that || Iy —
WM I<|| Iy — WM 12" for all k. If || Iy — WM ||< 1, we then have a quadratic
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convergence [67]. From (2.5), we can clearly see that Newton’s iteration requires matrix-to-
matrix multiplications whose computational complexity is O(N?3). Thus, the computational
complexity is high. As a matter of fact, its complexity is even higher than that of the direct ZF
method when £ is large. Thus, direct application of Newton’s iteration for matrix inversion is
not feasible. In what follows, we propose a method to solve the problem.

Iterating (2.5), we obtain a sequence of matrices {Wy, Wy, ..., W;}. The relationship

between W and W, can be found straightforwardly in

2k_1

Wi = hom(WoM)" W, (2.6)
m=0

where ¢, ,,, is the coefficient of the mth summation term in (2.6). The expression in (2.6) can be
seen as an expansion form of Newton’s iteration,swhile that in (2.5) an iterative form. It turns
out that to obtain a low-complexity algorithm, we-have touse the expansion form. Assign ¢y, ,,’s
as coefficients of a polynomial function of 2, i.€.; fx(2) = G02° + Cp12' + ... + Emk,lek_l.
Then, the polynomial f;,1(z) can be-derived from f;(z) as fri1(2) = 2fu(2) — 2 [fu(2)]’,
where fy(z) = 1. This is to say that ¢ ;' can be recursively calculated. Note that our objective
is to obtain the equalized result Wy, not the matrix inverse Wy, itself. Multiplying both sides

of (2.6) by y and letting X, = W,y and u,, = (W M)™W,y, we have the equalized result as

2k_1

X, = Z CrmTnm. (2.7)

m=0
From the definition of u,,, we can then have the following relationship:

ﬁm—l—l == (W(]M)ﬁm (28)

As aresult, u,, can be recursively calculated as well. Using this approach, we have transformed
matrix-to-matrix multiplications in (2.6) into matrix-to-vector multiplications in (2.7) and (2.8).
To complete our low-complexity algorithm, we make use of the special structure inherent in

the ICI matrix. From the foregoing derivation, we know that M = ﬁo + GV,GH ﬁl. Using
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this structure, we can then rewrite (2.8) as
ﬁm—l—l = [WO <ﬁ0 + leGHﬁl)] ﬁm

— W, [ﬁoﬁm +GV,GY (ﬁlﬁm)} . 2.9)

Note that ﬁo, ﬁl, and V; are all diagonal matrices. If we further pose a constraint that W,
is a diagonal matrix, we can transform matrix-to-matrix operations into vector-to-vector and
DFT/IDFT operations as shown in (2.9). As we know, DFTs/IDFTs can be efficiently imple-
mented with FFTs/IFFTs whose complexity is O(N log, N). As a result, the computational
complexity of the proposed algorithm is O(N log, N). The constraint on W, may not always
yield satisfactory performance in all scenarios. Instead of a diagonal matrix, we may let W be
a low-bandwidth banded matrix. Let the (4, j)th entry of a matrix B be denoted as B(i, j). The
banded matrix is defined as follows<'B(z, j) # 0if |i — j| < D, and B(i,j) = 0, otherwise.
Here, D is the bandwidth of the banded miatrix; If 'D. = 0, the banded matrix is reduced to a
diagonal matrix. If D = 1, the banded matrix will'have three non-zero diagonal vectors. With
this type of Wy, the computational complexity-in (2:9) will only be increased slightly. For later
simulations, we will only consider the ¢ases-of D= 0 and D = 1. It turns out that for D = 1,
the performance of the proposed algorithm is good enough. For easy reference, we denote the

proposed low-complexity ZF method as the Newton-ZF (N-ZF) method.

§ 2.2.2 Derivation of the Initial Matrix

In Subsection 2.2.1, we have proposed the N-ZF method to reduce the complexity of the direct
ZF method using FFTs. However, we still have to determine the initial matrix W for the N-ZF
method. A good initial matrix can reduce the number of iterations significantly and provide
good mitigation performance. As known, the main function of ZF is to invert the ICI matrix,
and in the ideal case, Iy — Wkﬁ = Op, where Oy is an NV X N zero matrix. As a result, if
Iy— WUM can be made as close to 0y as possible, fast convergence in Newton’s algorithm can

be obtained. Based on this idea, we propose to minimize the Frobenius norm of Iy — W M,
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1.€.,
W, = argmin ||Iy — WM]|[2, (2.10)
w

where |R|| means the Frobenius norm of R and W is a banded matrix with bandwidth D.

Before the derivation of the optimal solution in (2.10), we first observe a property in a
banded matrix. Fig. 2.1 shows an example of a banded initial matrix for N = 8 and D = 1.
In the figure, only the data in the shaded area are non-zeros. Note that the number of the non-
zero elements in each row may not be the same. For the Oth and the 7th rows, the number of
the non-zero elements is 2. For the rest of rows, the number of the non-zero elements is 3.
For a general case, the number of the non-zero elements in the ¢th row first increases, remains
the same, and finally decreases (as ¢ increases). Dueto this property, we need to consider
the three cases when solving (2.10). Define ;- = M(i,j), w;; = Wy(i,7), and a;; =

2711\7;01 m;,m;,. Differentiating (2.10)-with'respeetto w; ; and setting the result to zero, we can

A
Y

Figure 2.1: An example of the structure of a banded initial matrix for N = 8 and D = 1. The

elements in the shaded area are non-zeros, while the others are zeros.
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obtain the following equation:
Aiwi:mi, iZO,l,...,N—l, (211)

where w; consists of the non-zero elements in the ¢th row vector of the optimum W. A;, w;,

and m; for the above-mentioned three cases are defined as follows:

1. Fortr=D,D+1,... N—1—-D,

G;—pDi—-D *°° Qi—Di+D
A= : : : (2.12)

Q;+Di—D *°° Qi+Di+D
Wi = [Wii—D> Wii—D41,- -, wi,i—i—D]T, (2.13)
m; = [m:fD,z'a m:—DJrl,z‘a . am;'kJrD,i]T' (2.14)

2. Fori=0,1,...,D —1,

A, =Ap0D +4,0: D+1), (2.15)
Wi [wi,O: Wity - - - wz‘,z‘+D]T, (2.16)
m; = [mg,ia ﬁf{,z’a sy m:JrD,i]Ta (217)

where C(i; : s, j1 : j2) indicates a submatrix of C, obtained from the 7th row to the ioth

row and from the 7;th column to the jsth column of C.

3. Fori=N—-D,N—-D+1,...,N—1,

Aj=Ay  p(i—N+1+D:2D,i— N+1+D:2D), (2.18)
Wi = [Wiie Dy Wi D1y - WiN—1] 5 (2.19)
[mz D,i» m;_ D+149 "> ﬁ/L*Nfl,i]T' (220)

Note that A; in the second case is an upper left submatrix of A p in (2.12), while that in the

third case is a lower right submatrix of Ay _; p in (2.12). Now, we can obtain the optimum
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Figure 2.2: An example of A; for N = 8 and,D.=, 1. Note that A; overlaps with A; | and
A

solution for (2.10) by w; = A; 'm,. For clearly understanding the structure of A;, we show
an example in Fig. 2.2 for N = 8 and*D =1, where A (i) = a; ;. From the figure, we can
see that A is the upper left 2 x 2 submatrix of Ay For: = 1,2,...,5, the lower right 2 x 2
submatrix of A; is exactly the same as the upper left 2 x 2 submatrix of A, ;. The lower right
2 x 2 submatrix of Ag is A;. Using this property, we can obtain a recursive algorithm for fast
computation of A,

Since a;; = aj;, A;is a Hermitian matrix. Forv = D, D+ 1,...,N — 2 — D, we can

further partition A; into the following form

S; S;q
A, = , (2.21)
s; U,
and A, into the following form
U. u,
A= " T (2.22)
Uk Uit



where s; and u;, | are scalars, s; and 1, are column vectors, and Uj is a square matrix whose
dimension is smaller than that of A; by one. Since A; is a Hermitian matrix, we can write its

inverse as

(2.23)

where v; is a scalar, v; is a column vector, and V; is a square matrix with dimension smaller

-1

than that of A;" by one. From the block matrix inversion formula [68], we can obtain A}

from A" via the following formula

U; ' +bi1b Biv1 by fi

Al = i - , (2.24)
bit1Bis1 Bit1
where Ei—l—l = (U1 — ﬁﬁ1Uflﬁi+1)fla gi+1 = _U;Iﬁiﬂa and
H
ViV
L tet e, bl 2.25
; - (2.25)
For:=0,1,...,D — 1, A, includes A; as its submatrix. We then have
A, u,
A= 0 T (2.26)
U, Uit

Consequently, A, can be obtained by (2.24), where U;' = A;'. Fori = N—-D,...,N—1,

A, becomes a submatrix of A;_; given by

S; SZH
S; Az
Thus, A, ! can be obtained with (2.25) as follows,
- vH
Al=v, - TV (2.28)
Vi—1

Thus, we only have to conduct one matrix inversion, explicitly, i.e., A ! and its dimension is

(D+1) x (D+1).
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To further reduce the complexity, we can make an approximation when calculating a; ;.
From the definition, we have a;; = ij;ol m;,mjn. We can reduce the number of terms in-
cluded in the summation. We let a;; =~ ), M, Mjn, Where Q@ =< i—S : i+ SN >
N<j—8:74+5 N >,and S is the number of one-sided ICI terms taken into considera-
tion (0 < S < N/2 — 1). The notation < i : j, N > denotes a sequence of {i — N|L| i+
1— N[ZL, ..., — N|£]} (i and j are integers and i < j). With this approach, a; ; is ap-
proximately evaluated, so is A; in (2.11). The value of .S then determines the accuracy of the
solution in (2.11). A small S can greatly reduce the complexity, but results in low accuracy of
the solution. Recall that ICI on a subcarrier mainly comes from a few neighboring subcarriers.
As a result, we can always find a small S only affecting the final result slightly. For the deter-
mination of S, it depends on the value of ICI; the larger the ICI, the larger S we should use. In
our simulations, the largest S we use is two.

As mentioned, if D = 0, W, will become a diagonal matrix. In this case, the initial values
can be approximated as

e

Wi A (2.29)
ZnEQ’ |mi,n

where ' =< i— S : 17+ S, N >. There is an interesting property in (2.29). If we only take
the diagonal terms of the ICI matrix into account (i.e., S = 0), the initial values will degenerate
into the coefficients of the conventional one-tap frequency-domain equalizer (FEQ). If there is

no ICI, Newton’s iteration with (2.29) will stop after initialization (k = 0).

§ 2.2.3 Complexity Analysis

In Subsections 2.2.1 and 2.2.2, we have completed the derivation of the N-ZF method in SISO-
OFDM systems. In this subsection, we will analyze the required computational complexity of
the N-ZF method, and compare it with that of the PSE and direct ZF methods.

From (2.7) and (2.8), it is clear that the computational complexity of the N-ZF method

mainly consists of the following three parts:
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1. u,, iteration, where u,,, = (Woﬁ)ﬁm,l and Uy = Wyy,
2. Banded M construction, where M = H, + GV,GH,,
3. Banded W, calculation.

Since the diagonal and DFT/IDFT structures in M, u,, can be obtained using (2.9). As aresult,
we require [N log, N + (2 + 2D + 3/2)N — D(D + 1)] complex multiplications (CMs) and
[2N logy(N) + (2D + 1/2)N — D(D + 1)] complex additions (CAs). In addition, we need
[(1+2D)N — D(D + 1)] CMs and [2DN — D(D + 1)] CAs for uy = W,y and 2N real
additions (RAs) for each ¢ ,,1,, in (2.7). As to the construction of the banded I\Z, we require
(S+1/2)N CMs and (S + 1/2) N CAs. For calculating W, we need to construct matrices A;
fori =0,1,..., N—1andthey require [(—2D?*+ D+4SD+S+1/2)N+(8/3)D*—(2/3)D—
4SD?*—2SD] CMs and [(S+4SD +2D* — DYN+.(8/3)D*+2D?*+(1/3)D —4SD?*— 25 D]
CAs. For solving w; = A7 'm;, it requires{(37/2)N = 97/4] CMs, [(7/2) N — 21/4] CAs, and
(2N — 2) real divisions (RDs) for the case of D = 1.-For the PSE method, it can be obtained
in the same way. Finally, we summarize the required computational complexity for the N-ZF
method, the PSE method, and the direct ZF method [69] for a SISO-OFDM system in Table
2.1. We also summarize the computational complexity for calculating the initial matrix in the

N-ZF method in Table 2.2.
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Table 2.1: Complexity comparison among N-ZF, PSE, and direct ZF methods in a SISO-OFDM

system.
Methods Real multiplications Real divi- | Real additions
sions

Direct ZF SN® 4+ 7N? — IN N?+ N SN*+ N2 BN

PSE 4UN logy(N) + (6U + 12)N | 4N 6UN logy,(N) + (4U + 6)N

N-ZF (D = 0) | (2¥*2—4)N log, (N)+[2k+*+ | 2N 3(2F1 —2)Nlog,(N) + [5 x
8S — 8|N 2k+1 188 — 5N

N-ZF (D = 1) | (2¥*2—4)Nlog,(N)+[24S+ | 2N — 2 3(2k+1 2)Nlog,(N) +
3x2F3 L 62] N —245—2ki8 (245 + 9 x 2F1 4+ 31)N —
89 248 — 2k+3 _ 45

Table 2.2: Complexity of the initial matrix calculation for.the N-ZF method in a SISO-OFDM

system.
Methods Real multiplications Real divisions Real additions
N-ZF (D =1) (24S + 7T4)N — 245 — 89 | (24S+39)N —24S—45 | 2N — 2

§ 2.2.4 Performance Analysis

For the proposed N-ZF algorithm, the iteration number is usually preset. Unlike other iterative

algorithms, the convergence is not a concern here. The reason we can use a preset iteration

number is due to the fast convergence property of Newton’s iteration and our good initial values.

If the proposed algorithm converges, only a small number of iterations is necessary. On the
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other hand, if the proposed algorithm diverges, the preset number of iterations will limit the
performance degradation. As a matter of fact, even for divergence cases, we can still have
improved SINRs if the iteration number is set properly. We will provide intuitive statements to
explain why this is true. It turns out that the determination of the iteration number is simple and

straightforward.

Now we start with the analysis of convergence behavior. After that, we will derive theoreti-
cal SINRs the proposed algorithm can provide. We first perform the eigenvalue decomposition

for f{O as follows:

R, = UDU ', (2.30)
where U = [ug, u, ..., uy_] is amatrix composed of eigenvectors of Rg, and D = diag([\
ALy -5 Av—1]T) consists of eigenvalues,“\:’s.- We assume that |\;| > |\;| for i < j. Since

f{k = f{%_l, then we can decompose f{k as
R, =UD>U .. (2.31)

If [\g| < 1, then f{k — Oy as k — oo. Thus, we can have the convergence condition for
Newton’s iteration as p(Rg) < 1, where p(Rg) denotes the spectral radius of Ry; the spectral
radius indicates the largest absolute value of all eigenvalues [62]. That is to say, for Newton’s
iteration to converge, the amplitudes of all eigenvalues of ﬁo have to be smaller than one. For
a moderate mobile speed, this condition holds for most cases. If not, the number of eigenvalues
with amplitudes greater than one is small and their amplitudes does not deviate from one too
much. These results can be easily observed from simulations though difficult to be proved
theoretically. In what follows, we will first show that even for divergence cases, we may still
benefit from Newton’s iteration. Let U™! = [pg, Py, ..., pn_1)7, |Ni| > 1 fori =0,1,..., P—
land |\;| < 1fori = P,P+1,...,N — 1. By definition, Ry, = Iy — WM. Then, we can
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represent the ICI matrix as
- N-1
WM =1Iy— Y Mup/
i=0
P-1 N-1
=Iy—> Mup! - Mupl. (2.32)

1=0 j=P

As for W, we can reformulate it as

Wk - (IN + IN - kal/—\M/)kal
= (Iy + Ree))(Ix + Ris) ... (Iy + Ro)Wo. (2.33)

Using (2.31), we can further express Wy, as

D U U@y + D¥ YU ... U(Iy + D)U 'W,

=U(Iy +
N-1
7=0
N-1
= ¢ D) W, (2.34)
7=0
where ¢, ; = Hf;ol (1+ )\31) With (2.32) and (2.34), the ZF-equalized signal can be expressed
as
M-1 N—1
~ k ~ k ~ ~
=X — Z M uplx — Z A? uijTX + 2z,
i=0 j=M
P-1 N—1 N—
~ k ~ k ~ ~
=X- > Nup/x— > N wp/X+ Y ¢jxup] %, (2.35)
i=0 =P i=0
where z;, = W;z. Since the eigenvectors {ug, uy, ..., uy_1} span the N-dimensional space,

- ~ . . ~ N-1 ~ N-1
we can decompose X and z, using these eigenvectors. Letx = >, ;" fiwyandzp = > ", yw,

where [By, 81, - ., Bnv_1]T = U~ 'y and [y, 71, - - -, 7v_1]" = U~'z are the corresponding co-
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efficients in the decomposition of y and zg, respectively. Then, we can rewrite (2.35) as

P-1 N-1 N-1 N-1 N-1 N-1
= B 2k T 2k T T
Xk =X — Z Aj w;p; Z pra | — Z A} u;p; Z Ba | + Z OFFALY) oF Z Mw
i=0 1=0 j=P 1=0 j=0 1=0
P-1 N—1 N-1
~ k k
=X — )\12 ,81'111' - Z )\? ﬂjuj + Z ¢j,k*yjuj. (236)
=0 j=P j=0
Let X = [Th.0, Thi1s- - > Thon—1) and X = [To, T1,...,ZTn—1]" . Thus, the mth subcarrier signal
after equalization can be expressed as
Ek,m — gm + fl,k,m + f2,k,m + fS,k,’ma (237)
2 P—1 ok i N-1 ok 2 N-1
where firm = — > A Biwi(m), form = —D;mp A Bjui(m), and fypm = D07,

¢;.k7ju;(m). From (2.37), we can see that the equalized signal suffers from three interference
terms. For ka,m, it will become large when.k-incteases; however, for ﬁ,k7m, it will become
small when £ increases. As for.the noise terms f~3,k,m, its dependence on £ is not strong. As
mentioned, only a few eigenvalues’ amplitudes will be larger than one (i.e., P is small) and their
amplitudes often do not deviate from one too much.."Then, it is easy to see that the decreasing
amount of f;km will be larger than the increasing amount of ﬁkm in the early iteration. Thus,
for divergence cases, the interference will decrease first and then increase as the iteration pro-
ceeds. If we can stop the iteration before the overall interference increases, we can still have
the performance gain even though the iteration diverges eventually. Additionally, we can in-
crease D to make the initial matrix closer to the exact matrix inverse. By this way, P may be
minimized and J?lkm will decrease, which makes the proposed method work better. Because of
the fast convergence property of Newton’s method, the number of iterations required is small.
For example, it can be as small as one or two when D = 1. For divergent cases, the overall
interference is still decreasing in the first one or two iterations.

Since the performance of an OFDM system depends on each subcarrier SINR, we will
analyze the subcarrier SINR of the proposed algorithm in the sequel. From (2.3), we can express

. . ~ ~ ~ . ok _1 _ NT\mA+1
the equalized signal as W,y = Tyx + W,z, where T, = >~/ € n(WoM) is the
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equalized ICI matrix. Ideally, T; will be an identity matrix. Let z = [20, 21,..., 2n_1]7,
02 = E{|Z;|*}, 02 = E{|Z|*} (0 <i < N — 1), and o = 02/02. The subcarrier SINR for the

proposed method with £ iterations in the ith subcarrier, denoted as SINRy, ;, can be shown as

E{|t§ 7]}
SINRy,; = T
BT P+ BT wh 5
B ‘7%|tz‘,i|2
N—-1 N-1
O%Zﬁ? [t + 023050 [wh?
|t5 5]

- (2.38)
S P a X Tk

where ¢} ; = Ty (i,7) and wf; = W(i, j). For comparison, we also calculate the SINR in the

1th subcarrier before equalization, denoted as SINR,, as follows:

E ~ii~i2
SINR, = D N
B2 im0 gy 7))
Oi|miZ|2
1

Z |m 2t . (2.39)
i,

As aresult, we must calculate each element in T, and W, for SINRy, ;. To make the following
derivation more compact, we rewrite the ICI matrix as M = Zf:o Vrﬁr, where \70 = Iy and

R =1. Since M = Zf:o \N/—,IfI,, the equalized ICI matrix T, can be expanded as

2k 1 R R R
T, = E Chm E WoV,. . H. ., E WoV,. . H. ... E WoV,,. .He

m=0 T'm,0=1 Tm,1=1 Tm,m=1
2k 1 R R R m

= g EIc,'m E E E : HW fHTm,f
m=0 T'm,0=0 7, 1=0 Tm,m=0 f=0
2k 1 R R R

= TGmg > D> > Ay, (2.40)
m=0 T'm,0=0 7m,1=0 T'm,m=0



where A,, = H;’;O WO\N/',NW fﬁ and A_; = Iy. Using the same way, we also expand W

T, f
as
2k—1
— m
W, = E Ce.m(WoM)"W,
m=0
2k 1 R R R
- Ek,m E E E Am,1W0
m=0 Tm,0=0 7m,1=0 Tm,m—1=0
2k —1 R R R
=Y @md . > .. > Bay, (2.41)
m=0 Tm,0=0 7m,1=0 Tm,m—1=0

where B,, = A,, {W,. We then calculate each element A, (i, jm). For brevity of presen-
tation, we consider the case of D = 0. To compact and simplify the notation, we redefine
= [ho By, By )T, and ¥, = [@§aBiites, 0% ,)7, and let w; = w;;. Since \~f,um,f is a

circulant matrix, it can be expressed as V= [¢ix(¥,,, )]". Also, from the definition, we

Tm.f

have H, , = diag(ﬂrm,f). For 11 =0, we havé Ag(7gsjo) as

Tm, f

AO (i07 ]0) = [WOVTO oHTo O]iO:jO

~70,0 7'00
= WiV oo N>y - (2.42)

Then, we can obtain A = (WOVT1 IH,n1 )Ag, and A, = (WOV” QH” ,)A1, accordingly. Re-
peating this process, we can obtain a formula for m > 1. For m > 1, we formulate Am(z’m, Jm)

as

N-1
A ~T'm,m
A Zma]m - E E . E Wy Wy - - - Wk, _ 1w1mv<3m km—1,N>

m 1= Okm 2= =0 k():O

~T'm,m—1 "/’"ml "‘/’"mO 7'mm Tmm 1 NTm,O
Vb 1—km—2,N> * * * V<ky—ko,N>V<ko—ipm, N>V, h’ km—1 "'hko : (2.43)

With M = Zf:o V,H,, we can expand m; ; as
Mij = Z Vi - (2.44)
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From (2.29) and (2.44), we can express w; as

Y-
Thr *
w; ~ (2= 0% ) (2.45)
Z]EQ’|ZT 0 <j i, N> ]|2

Since we have derived '7723 and Ef , we can then calculate w;. Thus, we have Am(im, Jm)- Using

(2.40) and A, (%yn, jm ), We can obtain T. Using the relation of B,, = A,,_; W, (2.43), and

(2.45), we can compute B, (i, jm) as

B (i i)— Am—l(imajm)(Zr Ovohr )t
m(Zma]m) - Z |ZR |2
JEQ! r=0 <j—jm,N> J

where Q" =< j, — S : jm + S, N >. From (2.41) and (2.46), we can then calculate W.

(2.46)

Having T) and W, ready, we can finally evaluate SINR;; in (2.38). With (2.44), we can
further express SINR; in (2.39) as

R "’r~r 2
SINR; = | 20 U0 | (2.47)
|Zr0 <J—4,N> ]|2+CY

As for the case of D # 0, it can be derived by the same way.

§ 2.2.5 Simulation Results

In this subsection, we report simulation results to demonstrate the effectiveness of the proposed
method. We consider an OFDM system with N = 128 and the CP size of 16. The modu-
lation scheme is 16-QAM. The channel length is set to L = 15 and the power delay profile

is characterized by an exponential function, i.e., 07 = = ¢ UL / ZL Le—i/L

where [ is the tap
index. Each channel tap is generated by Jakes’ model [70]. Here, we assume that the channel
response is exactly known for the direct ZF method. For the proposed method, the parameters
of the LTV channel model are obtained by least-squares (LS) fittings. Define the normalized
Doppler frequency as fy = fpNTs, where fp is the maximum Doppler frequency and 7’ is the
sampling period. Since the N-ZF method with S = 2 have the similar performance to that with

S = N/2 -1, we set S = 2 for all simulations.
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First, we evaluate the validity of the analytic output SINRs for the proposed method. Two
cases are considered; case 1 meets the convergence condition derived in Subsection 2.2.4,
whereas case 2 doesn’t. We let f; = 0.1, SNR = 35dB, S = 2, and D = 0. Figure 2.3
shows the analytic subcarrier SINRs for case 1. Since the simulated SINRs are identical to the
analytic SINRs, they are not shown in the figure. From this figure, we find that each subcarrier
exhibits a different SINR due to the characteristic of the frequency-selective channel. Also,
subcarrier SINRs are all increased as the number of iterations is increased. The performance of
the proposed method with two iterations is similar to that with three iterations. We also can find
that the output SINRs of the proposed method are very close to those of the direct ZF method.
Fig. 2.4 shows analytic subcarrier SINRs for case 2. We see that even in this divergence case,
SINRs are still increased for the first two or three iterations. For the fourth iteration, subcarrier
SINRs start to fall. The result for D_==1"is similar to that for D = 0 except that the required

number of iterations is reduced to:one ortwo.

Next, we consider the performance comparison among the proposed and conventional meth-
ods. Here, f,; is set to 0.1. Specifically, the bit-ertor-rate (BER) is used as the performance
measure. For the purpose of benchmark; ‘we ‘also show the result of the direct MMSE method,
and that of the direct ZF method with f; = 0 (ICI-free). From extensive simulations, we also
find that the performance of the PSE method cannot be further enhanced when U > 2. For this
reason, we only show the result for U = 2. Fig. 2.5 shows the BER performance comparison
for D = 0. As we can see, the performance of the PSE method is limited and has an error floor
phenomenon. The N-ZF method outperforms the PSE method even with one iteration only.
As mentioned, there is a convergence condition for the PSE method. This condition is totally
dependent on the channel. The N-ZF method also has its convergence condition. However, it
depends on the initial matrix as well as the channel. It is then possible to reduce the probability
of divergence through the determination of Wy,. This is the main reason why the N-ZF method
can outperform the PSE method. The required complexity of the N-ZF method is lower than

that of the PSE method (this can be seen later). Moreover, the performance of the N-ZF method
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with three iterations can approach to that of the direct ZF method. Here, the performance of
the direct ZF method is only slightly worse than that of the direct MMSE method. Figure 2.6
shows the BER performance comparison for ) = 1. It is obvious that the N-ZF method can
quickly approach to the direct ZF method with one or two iterations. Note that the N-ZF method
with two iterations can even perform slightly better than the direct ZF method. This behavior is
interesting and it needs further discussions. Since the LTV model instead of the Jakes” model is
used, one may be curious if the result is due to the modeling error. We then conduct a simula-
tion, in which the Jake’s model is used, to answer the question. Fig. 2.7 shows the result. From
this figure, we see that the performance of the ZF and MMSE methods using the exact Jakes’
channel is almost the same as that of the ZF and MMSE methods using the LTV channel. This
indicates the behavior observed in Fig. 2.6 is not due to the modeling error. The reason for the
behavior is explained as follows. The N-ZF method only, iterates Newton’s method two or three
times, and it may not converge completely in-all cases: As+known, the direct ZF method has a
noise enhancement problem. It is then possible that the noise’.enhancement caused by the N-ZF
method is smaller. As a result, the performance-of-the-N-ZF method can be better than that of
the direct ZF method. If the convergence condition is.met and the number of iterations is large
enough, the performance of the N-ZF method and the direct ZF method will be the same. This
phenomenon has been verified by simulations, but the result is not shown here. Compared to
Fig. 2.5, we see that the N-ZF method with D = 1 has the better performance than that with

D = 0, and it can approach to the direct ZF method more quickly.

To test the limitation of all algorithms, we consider a severer case in which f; = 0.2. Figure
2.8 shows the simulation result. From this figure, we see that the N-ZF method can still work,
but its performance is degraded since ICI is much larger than that in the previous cases. Also,
we can see that the degradation of the MMSE method is smaller, and the performance gap
between the ZF and MMSE methods become larger. We also conduct simulations to evaluate
the robustness of all algorithms to the variation of the normalized Doppler frequency. Figure

2.9 shows the results for f; varying from O to 0.2. Here, the SNR is set to 30 dB. From this
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figure, we can see that the performance of all methods is degraded as the normalized Doppler
frequency is increased. Also, the MMSE method is the most robust method while the N-ZF

method is the second.

Table 2.3 summarizes the required computational complexity of the direct ZF method, the
PSE method, and the N-ZF method for the simulation setting shown above. In this table, the
ratios in the parenthesis indicate the number of operations required for the N-ZF method divided
by those for the direct ZF and PSE methods. The first ratio is for the direct ZF method and the
second one is for the PSE method. From the above simulations, we can say that for D = 0, the
required iteration number for the N-ZF method is two or three, whereas for D = 1, it is one
or two. From Table 2.3, we can see that the N-ZF method with D = 0 can save tremendous
computations compared to the direct ZF method. With two (three) iterations, its multiplication
complexity is only 0.007 (0.015) tinies that of the direct ZF method. As for the case of D =
1, it also saves a lot of computdtions compared to the direct ZF method. We find that the
multiplication complexity of the:N-ZF method with one (two) iterations is only 0.008 (0.013)
times that of the direct ZF method. As fo additions, the complexity ratios are similar to those
of multiplications. As to divisions, theé ratios are 0.016 and 0.015 for D = 0 and D = 1,
respectively. Compared to the PSE method (U = 2), the N-ZF method (£ = 1 and D = 0) also
has lower complexity and better performance. Its required multiplications (additions, divisions)
is 0.85 (0.745, 0.5) times those of the PSE method. For various N, we show the required
computational complexity for the direct ZF method and the N-ZF method (k = 2, 3) in Figs.
2.10 and 2.11, respectively. In these two figures, RM, RD, and RA denote real multiplication,

real division, and real addition, respectively.

Another important property of the proposed N-ZF method is that it can trade the desired
performance for the required complexity. However, the direct ZF method doesn’t have such a
choice. This property will make the N-ZF method a more efficient method since it can adapt
itself to various SNR environments. If the operated SNR is not high, the iteration number can

be reduced. For example, in Fig. 2.5, it only requires one iteration to approach the direct ZF
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method when SNR is less than 25 dB.
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Figure 2.3: SINR analysis of N-ZF method (D,=07and S = 2) for case 1, where f; = 0.1 and
SNR =35 dB.
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Figure 2.4: SINR analysis of N-ZF method (D = 0 and S = 2) for case 2, where f; = 0.1 and
SNR =35 dB.
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Figure 2.5: BER comparison among one-tap FEQ, PSE, N-ZF (D = 0 and S = 2), direct ZF,
and direct MMSE methods in a SIS@-OFDM systém; f, = 0.1 and 16-QAM modulation.
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Figure 2.6: BER comparison among one-tap FEQ, N-ZF (D = 1 and S = 2), direct ZF, and
direct MMSE methods in a SISO-OFDM system; f; = 0.1 and 16-QAM modulation.
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Figure 2.7: BER comparison between the direct ZFrand MMSE methods using the exact Jakes
and LTV channels in a SISO-OFDM system; f,=0:l"and 1.6-QAM modulation.

BER

FH{ —©—One-tap FEQ |
—8— Direct ZF
—— Direct MMSE
—&6— N-ZF (k=0)
—¢— N-ZF (k=1)
—p— N-ZF (k=2)
1073 L| —¥— Direct ZF (IClfree)|. . ...

0 5 10 15 20 25 30 35
SNR (dB)

Figure 2.8: BER comparison among one-tap FEQ, N-ZF (D = 1 and S = 2), direct ZF, and
direct MMSE methods in a SISO-OFDM system; f; = 0.2 and 16-QAM modulation.
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Figure 2.9: BER comparison among one-tap FEQ, N-ZF (D = 1 and S = 2), direct ZF, and
direct MMSE methods in a SISO-OFDM system; f; = 0 ~ 0.2, 16 QAM modulation, and SNR
=30dB.
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Figure 2.10: Complexity comparison between N-ZF (D = 1, S = 2, and k = 2) and direct ZF
methods in a SISO-OFDM system for various N.
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Figure 2.11: Complexity comparison between N-ZE (D = 1, S = 2, and k = 3) and direct ZF
methods in a SISO-OFDM system for vatious N

§ 2.3 MMSE Method

Except for the ZF method, the MMSE method is-another effective ICI mitigation method. The
MMSE method minimizes the mean square error (MSE) between the equalized and desired

signal vectors. The cost function can be expressed as
min E {||x — F7'y||*}, (2.48)
F

where F is an N x N matrix. Using the optimum F#, we then obtain the optimum estimated

signal, denoted as Xy;y/s5, shown as

-1 —

Rusursm = (K/IHK/E i aIN) M7y, (2.49)

where a = O'»Z%/ O'% [17]. From (2.49), it is obvious that the direct MMSE method requires
the matrix multiplication and inverse operations. When N is large, the required computational

complexity can be very high.
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Table 2.3: Complexity comparison among N-ZF, PSE, and direct ZF methods in a SISO-OFDM

system (N = 128 and S = 2).

Methods Real multiplications | Real divisions (ratio) | Real additions (ratio)
(ratio)

Direct ZF 2910848 16512 2885824

PSE (U = 2) 10240 512 12544

N-ZF (D = 0, | 8704 (0.003, 0.85) 256 (0.016, 0.5) 9344 (0.003, 0.745)

k=1)

N-ZF (D = 0, | 19968 (0.007, 1.95) | 256 (0.016, 0.5) 22656 (0.008, 1.806)

k=2)

N-ZF (D = 0, | 42496 (0.015;4.15) | 256 (0.016, 0.5) 49280 (0.017, 3.929)

k=3)

N-ZF (D = 1, | 17007 (0.006, 1.661) | 254 (0.015, 0.496) 12315 (0.004, 0.982)

k=0)

N-ZF (D = 1, | 23655 (0.008, 2.310)" | 254 (0.015, 0.496) 19987 (0.007, 1.593)

k=1)

N-ZF (D = 1, | 36951 (0.013, 3.609) | 254 (0.015, 0.496) 35331 (0.012, 2.817)

k=2)

§ 2.3.1 Proposed Newton-MMSE Method

Now, we know that the MMSE method has a problem of high-complexity. Although existing
iterative methods [58] can reduce the complexity of the matrix inversion, the matrix multipli-

cation operation remains. Motivated by this issue, we develop a method to solve the problem.
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First, we rewrite the direct MMSE solution with a new form as
— —_ -1 _
XMMSE = [M_H (MHM + ozIN)] y
— — -1
= (M+aM ")y

= Qly, (2.50)

where Q - M + oM~ As we can see, (2.50) has to conduct the matrix inversion twice.
The key idea to avoid the matrix multiplication and inversion is to apply an efficient iterative
matrix inversion method twice in (2.50). In Chapter 2, we have shown that the ZF method with
Newton’s iteration has good performance and its performance is almost as good as that of the
direct ZF method. Here, we extend the idea to reduce the computational complexity of the
direct MMSE method.

Let the estimated Qfl at the kth iteration be W . Then from Newton’s iteration, W, can

be described as follows [61]— [66]:
Wi = 20y = W QIW,, & =0;1,..., 0. (2.51)

From (2.51), it is obvious that Newton’s ‘iteération réquires matrix-to-matrix multiplications.
Thus, direct application of Newton’s iteration for matrix inversion is not feasible.

As we did in the N-ZF method, we can iterate (2.51) to obtain a sequence of matrices
{Wy, Wiy, ..., W;} and then W, can be derived from W and Q in the following form

2k_1

Wi = n(WeQ)" W, (2.52)

m=0
where ¢}, is the coefficient of the mth summation term in (2.52). It turns out that to obtain a
low-complexity algorithm, we have to use the expanded form.
Note that the matrix inverse W, is not the desired result, whereas W,y is the desired result.

Letx, = W,y and v, = (WOQ)mW(&. Then, multiplying (2.52) by y, we have

Xp = ComVim. (2.53)



From the definition of v,,,, it is simple to see that v,,, can be recursively calculated as
Vit = WoQVi,. (2.54)

Recall that Q - M + aM !, Thus, to obtain v,,, M must be calculated. Once again, we
apply Newton’s method described above to expand M-~ Let the estimated M~ at the pth

iteration be B,. We then have
— —~ .\ J
B,= > d,; (WOMH) B, (2.55)

where EM and By are defined the same as ¢, ,, and Wy in (2.52), respectively. From (2.54), we

then have
- 271 BN
M+ay d, (WOMH) B,

J=0

Vm—i—l = W(] Vm- (256)

As we can see, the number of theseéxpansion térms in Newton’s iteration grows exponentially.
Now, we have two iterative processes, 1.€., (2.53) and the summation terms in (2.56), the former
for the approximation of Q_l and the latter-for the approximation of M-, The required
computational complexity will be high:if we fully iterate these two processes. From (2.50), we
can see that M~ is weighted by o which will be much less than one in high SNR scenarios.
As aresult, the approximation of M~ is less critical. For simplicity, we only use the first-order

expansion for the approximation of M~ in (2.56), i.e., p = 1. From (2.56), we then have
Verl = WO [/M—/ + « (EI,OIN + El’lBO/M/H> Bo] Vm
- WO |:/1\\/.[—/ + El,OBO + 5171B0/1\\/.[—/HB0i| Vm, (257)

wheree; ; = a X E@ ;- Let t,, = ByV,,. Exploring the structure of the ICI matrix, we can further

rewrite (2.57) as follows:
Vot = Wo{(Ho+GVIG"H,) + 101y +€1,Bs (HY + AIGV,G" )| Bo} ¥
- W, {ﬁovm + GV (G"H ¥,,) + €10t + 11Bo [ﬁgffm + ﬁ{IGVI(GHEm)] } .
(2.58)
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Note that ﬁo, ﬁl, and V, are all diagonal matrices. If we further let W and B, be diago-
nal matrices, (2.58) will only involve vector-to-vector and DFT/IDFT operations. It is well-
known that DFTs/IDFTs can be efficiently implemented with FFTs/IFFTs, whose complexity
is O(Nlogy N). Thus, the computational complexity of the proposed MMSE algorithm is
O(2N log, N). The diagonal constraint on W and By may not always yield satisfactory per-
formance in all scenarios. To obtain higher performance and at the same time to retain the
low-complexity property, we can relax the constraint slightly. We may let W and B, be low-
bandwidth circular band matrices. The structure of a circular band matrix is depicted in Fig.
2.12. Let the (7, j)th entry of a circular band matrix B be denoted as b;; = B(,j). Given
a fixed index ¢, b; ; is non-zero only for j € {i — D,i — D +1,...,i+ D}. Here, D is the
bandwidth of a circular band matrix. Note that the index, 7, is calculated with modulo-/V arith-
metic. Thus, from Fig. 2.12, we can see thatthere ar€ non-zero elements in the upper right and
lower left corners of a circular band matrix If D = 0,:the eircular band matrix is reduced to a
diagonal matrix. If D = 1, the circular band matrix ' will have three non-zero diagonal vectors.
With this type of Wy and B, the computational-complexity in (2.58) will only be increased
slightly. Thus, we only consider the case where D ="1. For easy reference, we denote the

proposed low-complexity MMSE method as the Newton-MMSE (N-MMSE) method.

§ 2.3.2 Derivation of the Initial Matrix

In the previous subsection, we have proposed the N-MMSE method to solve the problems of
the matrix multiplication and inversion. However, we have to determine the initial matrices W
and By. Good initial matrices can reduce the number of iterations significantly and provide

good mitigation performance.

First, we discuss the determination of W,. As we did in the N-ZF method, we also adopt

the minimum-Frobenius-norm criterion to obtain optimal initial matrices. Let W be a circular
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A
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Figure 2.12: The structure of a circular band initial matrix is depicted for N = 8 and D = 1.

The elements in the shaded area are non-zeros;-while the others are zeros.
band matrix with bandwidth D,. Then W-can be.obtained by the following criterion
Wy =argminlly =WQ|%, (2.59)
W

where Q =M+aM#, Obviously, we have to evaluate M~ in order to obtain Q However,
M~—# itself is the target we want to find out in (2.55). Since Wy, is only an initial matrix, it
turns out that we only have to calculate M- roughly. We will discuss this problem later. For
the time being, we can simply assume that (:) is known as a priori.

Define a vector consisting of non-zero elements in the ;th row of Wy as w,, i.e.,
= [w;; y it Dal” 2.60
Ww; = [wz,z—Dg7 ceey Wiy .- le,Z+D2] y ( . )

where w; ; = W (i, 7). Furthermore, define A = Q*QT and ¢;; = Q(z, 7). Differentiating

(2.59) with respect to w;;, and setting the corresponding result to zero, we can obtain the

following equations:
Aw,=q;, 1=0,1,...,N—1, (2.61)
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where

A1:A(Z—DQZ+D2,Z—D22+D2), (262)

q; = [a;k—D27z’7"'7aZi7"'7Z]\;k+D27i]T- (263)

Note that the indices in A;, w;, and q; are calculated with modulo-N arithmetic. Now, we can

1 |
<y AAAAAA,
v

A | A

Figure 2.13: The structure of A; is presented for N = 8 and D = 1. Note that A; overlaps

A, for modulo-8 : (i.e., the relationship is circular).

obtain the optimum solution of (2.59) by w; = A; 'q;. For easily understanding the structure
of A;, we show an example in Fig. 2.13 for N = 8 and D = 1. From Fig. 2.13, we can see
that the lower right 2 x 2 submatrix of A; is exactly the same as the upper left 2 x 2 submatrix
of A;.;. Note that this relationship is circular. The circular relationship means that the lower
right 2 x 2 submatrix of A7 is exactly the same as the upper left 2 x 2 submatrix of A,. Thus,

A, overlaps A, for all modulo-8 i. Using this property, we can use the recursive algorithm
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mentioned in Subsection 2.2.2 for fast computation of A;'. Consequently, we can obtain A"
recursively. Using this approach, we only have to actually calculate one matrix inversion, i.e.,
A", and its matrix dimension is (2D3 + 1) x (2D; + 1). Note that as mentioned, A; has the
circular relationship, we can start out from any .

To further reduce the computational complexity in the calculation of the initial matrix, we
can use a circular band matrix derived from Q to calculate A. Define a matrix operation
cirb(-,-) as follows. If C = cirb(C, D), C is a circular band matrix such that ¢;; = & ;
forje {i—D,i—D+1,...,i+ D} and ¢;; = 0, otherwise. Here, ¢; ; and ¢; ; denote the
(4, 7)th element of C(i, j) and C(i, j), respectively. The index, j, is calculated with modulo-N
arithmetic. Using the operation, we define Q = cirb(é, Sy) and A = Q*QT. Moreover, let
a;j = A(i,7) and then a; ; ~ A(i,j) = > et GinGjns Where T =<i — Sy 1i+ S5, N >N <
j—S9: 7+ 55, N >. Here, S, is themumber of one-sided ICI terms that we want to take into
calculation (0 < Sy < N/2 — 1)z SincefICI ona subcarrier mainly comes from a few neigh-
boring subcarriers, we can make:such an approximation safely. Note that this approximation is
used only for the calculation of the initial-matrix:

To obtain By, we can use the same approach, namely, By = argmin_ [[Iy — BM"|[2.
Recall that Q is needed in (2.59). A simple way to approximate Q is to use a zeroth-order
expansion for Q, ie., Q ~ M + aBy. The reason why we can use the zeroth-order expansion
for Q is that the precision for initial values can be lower. Thus, its computational complexity
can be reduced with limited performance loss. Note that B is used twice; one is for the iterative

step (2.57) and the other is for the initial matrix calculation.

§ 2.3.3 Complexity Analysis

In Subsections 2.3.1 and 2.3.2, we reformulate the MMSE solution and then obtain a low-
complexity N-MMSE method. In this subsection, we analyze the required computational com-
plexity of the proposed N-MMSE method and make a comparison between the N-MMSE and
direct MMSE methods.
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From Subsection 2.3.1, we know that the major computational load results from Eqgs. (2.53),

(2.54), and (2.56) shown as follows:
1. v,, iteration, where v,,, = (WOQ)Vm_l and Vo = Wyy,
2. M and Q construction, where (NQ = |M+a Z?;l Ep,j (WOMH )j BO] ,
3. Bg and Wy, calculation.

Due to the diagonal and DFT/IDFT structures in Q, V., can be obtained using (2.58). As a
result, we require [2?N log, N + (2P*1D; + 2D, + 2P*2 + 1/2)N] CMs and [2°N log, N +
(2°71Dy + 2Dy + 27 — 1/2)N] CAs for m > 1. In addition, we need (1 + 2D;) N CMs and
2D, N CAs for Vg = Wiy and 2N RAs for each ¢, V,,. As to the construction of M for B,
we require (S + 1/2)N CMs and (S} + 1/2)N CAs: For calculating By, we need to construct
matrices A; fori = 0,1, ..., N —1 and they require (S}, +4S, D, —2D?+ D, +1/2) N CMs and
(S, +4S,D, — 2D? — D;) CAs. For solving w; = A; 'm;,it requires [(37/2)N + 1/2] CMs,
[(7/2)N +3/2] CAs, and (2N — 1) RDs fonthe case of Dy = 1. To obtain Q, we need (3/2)N
CMs and (3/2)N CAs for D, = 1. For ecalculating Wy, we require (Sy + 452Dy — 2D3 +
Dy +1/2)N CMs and (Sy + 455Dy — 2D2 — Do) CAs to construct A; fori = 0,1,..., N — 1.
To solve w; = A; 'm,, it requires [(37/2)N + 1/2] CMs, [(7/2)N + 3/2] CAs, and (2N — 1)
RDs for the case of Dy = 1. As for the direct MMSE method, the matrix inversion can be
implemented by Gaussian elimination [69]. Finally, we summarize the required complexity of
the N-MMSE method and the direct MMSE method for a SISO-OFDM system in Table 2.4.
We also summarize the complexity of calculating the initial matrix in the N-MMSE method in

Table 2.5.
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Table 2.4: Complexity comparison between the N-MMSE and direct MMSE methods in a
SISO-OFDM system.

Methods Real multiplications Real divi- | Real additions
sions

Direct SN® + 5N? + 4Nlogy, N + | N>+ N | $N3 + AN? 4 6Nlog, N +
MMSE IN UN

N-MMSE | (2++2 4)2?Nlogy N + | 4N —2 3(2F1 — 2)2?Nlog, N +
(Dy = [24S) + 208, + 3 x 2k+PH3 4 [245] + 205, +9 x 2kFPHL 4
D, =1) 3x 282 3% 2P+3 L 152]N + 5x 2kl 9 x 2P+l 8IIN +8

2P +3

Table 2.5: Complexity of the inifial matrices calculation for the N-MMSE method in a SISO-
OFDM system.

Methods Real multiplications Real divisions Real additions
(Dy =Dy=1) | 152)N +4 82)N +8

§ 2.3.4 Simulations

In this subsection, we report simulation results to demonstrate the effectiveness of the proposed
N-MMSE method. The simulated system parameters are the same as those in Subsection 2.2.5.
We compare the performance of the N-MMSE, one-tap FEQ, and direct MMSE methods. Here,
we set fy = 0.05, and use the BER as the performance measure. Fig. 2.14 shows the simulation
results. From this figure, we see that the performance of the one-tap FEQ method suffers from

an error floor phenomenon. However, the N-MMSE method effectively avoids this phenomenon
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and successfully mitigates ICI. With one or two iterations (k = 1 or 2), the performance of the
N-MMSE method can closely approach to that of the direct MMSE method. Figure 2.15 further
shows the BER comparison for f; = 0.1. Due to the larger f,, the performance of the one-tap
FEQ method is further degraded. The N-MMSE method can still work very well. Compared
to the direct MMSE method, the N-MMSE method has a little performance loss. However,
we can have a significant complexity reduction. We further investigate the impact of f; on the
BER performance. Figure 2.16 shows the results for f; varying from O to 0.2 when the SNR
is set to 30 dB. From this figure, we see that the performance of all methods is degraded as the
normalized Doppler frequency is increased. Also, the N-MMSE method has larger performance

loss (compared to the direct MMSE method) when f, gets larger.

Table 2.6 summarizes the required computational complexity for the direct MMSE method
and the N-MMSE method using the same simulation Settings. In this table, the number in
a parenthesis shows the ratio of the number of fequired operations for the N-MMSE method
divided by that for the direct MMSE method. As‘we can see, in the case of f; = 0.05, k = 1
or 2 is sufficient for the N-MMSE method.~When-one (two) iteration is used, the complexity
ratio for multiplication, division, and addition is-enly 0.008 (0.014), 0.031 (0.031) and 0.007
(0.013), respectively. In the case of f; = 0.1, the required iteration number is two or three.
When two (three) iterations are used, the ratio for multiplication, division, and addition turns
out to be 0.016 (0.027), 0.031 (0.031), and 0.016 (0.028), respectively. From the comparison,
we clearly see that the N-MMSE method dose save a lot of computations while its performance
is comparable to that of the direct MMSE method. For other values of /V, we show the required
computational complexity for the direct MMSE method and the N-MMSE method (k = 2, 3)

in Figs. 2.17 and 2.18, respectively.

Another advantage of the N-MMSE method is that its computational complexity can be eas-
ily controlled with the iteration number. In other words, we can always trade the performance
for the lower complexity. Also, for different SNR environments, the required number of itera-

tions may be different. If the received SNR is not high, the iteration number can be lower. For
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example, in Fig. 2.15, the N-MMSE method only requires one iteration to approach the direct
MMSE method when SNR is less than 25 dB. The direct MMSE method, however, does not

have this option.

BER

—P— One-tap FEQ
—7— Direct MMSE
—>— Proposed (k=0)
_3| | —©— Proposed (k=1)
[| —8— Proposed (k=2)

0 5 10 15 20 25 30 35
SNR (dB)

Figure 2.14: BER comparison among the one-tap FEQ, N-MMSE ({D;, D>} = {1,1} and
{S1, So} = {2,2}), and direct MMSE methods in @ SISO-OFDM system; f; = 0.05 and 16-
QAM modulation.
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Figure 2.15: BER comparison among the onestap FEQ, N-MMSE ({D;, D,} = {1,1} and
{S1, 82} = {5,5}), and direct MMSE miethods-in-a-SISO-OFDM system; f; = 0.1 and 16-
QAM modulation.
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Figure 2.16: BER comparison among one-tap FEQ, N-MMSE (D; = Dy, =1, 51 = S, = 5,
and £ = 3), and direct MMSE methods in a SISO-OFDM system; f; = 0 ~ 0.2, 16 QAM
modulation, and SNR = 30 dB.
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Figure 2.17: Complexity comparison between N-MMSE (D = Dy, = 1, S5; = S, = 5, and
k = 2) and direct MMSE methods in.a SISO-OFDM system for various /V.
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Figure 2.18: Complexity comparison between N-MMSE (D, = D, = 1, 5, = S, = 10, and
k = 3) and direct MMSE methods in a SISO-OFDM system for various N.
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Table 2.6: Complexity comparison between the N-MMSE and direct MMSE methods in a
SISO-OFDM system (N = 128, and { Dy, Do} = {1,1}).

Methods Real multiplications | Real ~ divisions | Real  additions
(ratio) (ratio) (ratio)

Direct MMSE 5679488 16512 5664128

N-MMSE (k = 1, | 47109 (0.008) 510 (0.031) 39688 (0.007)

{51, 5} ={2,2})

N-MMSE (k = 2, | 76805 (0.014) 510(0.031) 72968 (0.013)

{51, 5} ={2,2})

N-MMSE (k = 2, | 93701 (0.016) 510 (0.031) 89864 (0.016)

{51, 5} = {5,5})

N-MMSE (k = 3, | 153093 (0.027) 510 (0.031) 156424 (0.028)

{Sl; 52} = {5, 5})
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Chapter 3

Mobility-induced ICI Mitigation for
MIMO-OFDM Systems

§ 3.1 Signal Model

The MIMO technique is a proniising method'to further improve the transmission data rate.
Combined with OFDM, a MIMO-OFDM system has been adopted in many systems. In the
application of spatial multiplexing, inter-antenna interference is further introduced. Operating
in a high-mobility environment, MIMO-OFDM systems will be subject to both ICI and inter-
antenna interference. Thus, ICI mitigation is more challenging in MIMO-OFDM systems. It
is possible to formulate the whole system with a linear model and to apply the ZF or MMSE
equalizer to suppress all interference. However, the dimension of a MIMO-OFDM ICI matrix
becomes much larger than that in a SISO-OFDM system and then the required complexity is
even more intractable. In this chapter, we extend the method proposed in Chapter 2 to solve the
problem. Considering an M x M system and using the signal model in SISO-OFDM systems,
we can express the frequency-domain signal for the sth receive antenna as

M
Vi=» MyX; +2; (3.1)

=1
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where y; is the frequency-domain signal in the ith receive antenna, X is the frequency-domain
signal in the jth transmit antenna, z; is the frequency-domain noise in the ith receive antenna,
and M” is the ICI matrix for the jth transmit antenna and the ith receive antenna. By stacking
all the receive frequency-domain signals from all antennas in a column vector, we have the

following signal model

¥ = MX +7, 3.2)
where y = [yL, 3T ... ¥%]T is the receive frequency-domain signal, x = [x7,xI,...,x%,]T
is the transmit frequency-domain signal, z = [z, 22, ..., 2T,]7 is the frequency-domain noise,

and the frequency-domain ICI channel matrix can be expressed as follows,

Ml,l Mm ce M1,M
i | o g T | o
i MM,I MM,2 o MM,M |

For the ease of description, we only consider-a-2_x-2 MIMO-OFDM system in the following
derivation. However, the proposed algorithm (presenteéd later) can be extended to a general
M x M MIMO-OFDM system without any difficulties. Similar to the adopted channel model
in SISO-OFDM systems, we also use the LTV model for MIMO-OFDM channels. Thus, we
can obtain the MIMO-OFDM ICI matrix given by
N — gm gm
i M;; Mjy
[ A,+ GV,GYA, B, +GV,G"B,
Co+GV,G"C; Dy +GV,G"D,

A, ﬁo-‘Jr[GVIGH ov | [A B

i 60 ]50 J [ Oy GV,GH J [ 61 ]51 J ) (3.4)

where Ki, ]§Z-, éi, and IN)Z play the same role as ﬁz in a SISO-OFDM system. Note that the

derived signal model is obtained by grouping together subcarrier signals in the same antenna.
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§ 3.2 ZF Method

As mentioned, the ZF equalized signal, X, can be obtained as Xzp = M_lﬁ. Clearly, the di-
rect implementation of the ZF method will require higher computational complexity in MIMO-
OFDM systems. For the purpose of comparison, we consider a simple ZF equalizer ignoring

the ICI effect in (3.4). In this case, the ICI channel matrix turns out to be

— [A B ]

M, = [ &, Dy J . (3.5)

Thus, the equalized signal can be obtained with X, = M;'y. Using the block matrix inversion
formula, we know that to obtain the sth subcarrier equalized signal for antenna one or two, the
method will require two weights. For'the ease of réference, we denote this equalization method

as a two-tap FEQ method.

§ 3.2.1 Proposed Newton-ZF Method

Since the direct ZF method will require higher computational complexity in MIMO-OFDM
systems, in this subsection, we will propose a low-complexity ZF method to solve this problem.
Using the derived MIMO-OFDM ICI matrix in (3.4), we now can apply Newton’s iteration to

implement the ZF equalizer. With (2.6) and (3.2), we can obtain the equalized result as

Xe =Y ChmVim: (3.6)

where Xy, ¢y ,, and V,,, are defined as those in (2.7). Let the initial matrix W be composed of

four N x N matrices expressed as

W, W
W, = e 3.7)
W, W,
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T T ]T

m1s Vmol - Recall that v, = Woﬁvm. According to this definition of v,,,, we

andv,, = [V

can obtain v, ;1 as

_ w. Wy | [[ A& B | [avie oy |[A B ||| ¥ |
Vm+1: ~ ~ + ~ ~
W, W, G Dy | | ov aviarh || ¢ Db |f ||
. Wa Wﬂ :&Ova—f—ﬁovm,Q I leGH(;&lvm,l‘f‘ﬁlvmﬂ)
W, W, CoVim1 + DoV GV, G (CVp1 + D1 Vo)
(3.8)

Note that ;&i, ]§1-, (~31-, f)z-, and V are all diagonal matrices. It is obvious that if we let W,
W;, W, and W,, be low-bandwidth banded matrices, (3.8) can be implemented by vector
and FFTs/IFFTs operations. Note that the FFT size is NV instead of 2/N. Thus, the required
computational complexity is O(M N log, N). Tt is straightforward to see that the computational
complexity of the direct ZF method is Q( M2 N?).: The complexity reduction achieved by the
proposed method in MIMO-OFDM systems can be greater compared to that in SISO-OFDM
systems.

Note that the proposed method can be extended to a general My x Mprp MIMO-OFDM
system, where M is the number of transmit antennas, My is the number of receive antennas,
and My < Mpg. In such a system, we have to use the LS method to mitigate ICI instead of ZF.

Using the LS method, we have the equalized signal vector formulated as
% = (M7TM)" M7y
=Q'y, (3.9)

where Q = M¥M and ¥ = M*¥y. The matrix Q, inheriting the properties of M, consists
of diagonal and DFT/IDFT matrices too. As a result, the proposed method discussed above
can be applied. Since the derivation is simple and straightforward, it is omitted here. Due to
the application of the LS method, the required complexity in this scenario will be somewhat

higher.
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§ 3.2.2 Derivation of the Initial Matrix

To complete the proposed N-ZF method, we have to determine the 2N x 2N initial matrix,
optimally. As we did in SISO-OFDM systems, we adopt the minimum-Frobenius-norm cri-
terion to obtain the initial matrix. Note that the initial matrix for the MIMO-OFDM sce-
nario is no longer a banded matrix. Instead, it is a matrix composed of four banded sub-
matrices. Let a;; = W,(4,7), Bi; = Wg(i,7), 7, = W,(4,7), and w;; = W(3,7).
Also define gi; = Y0, (@ m + binbin)s Tig = Xong (GaCim + dindjn), and 555 =
S0 (@ Cin + bndyn), where @iy = My (i, ), bij = Mua(i, ), &j = Ma,(i, ), and
671-’]- = M2,2 (,7). It turns out that we can obtain the optimum initial values by solving the

following equations
Tibi:cia ’i:O,l,...,2N—1, (310)

where b; consists of the non-zero elements in‘the sth row of the optimum W. Definitions of
T;, b;, and c; may be different for different.i.. Note that we have two sets of banded matrices
to deal with; one is forz = 0,1,.7,; N — 1 and the other is for: = NN +1,...,2N — 1.
Moreover, we need to consider three cases for each set. Fortunately, they are similar. For the

setof7 =0,1,..., N — 1, we have the following definitions:

1. Fore=D,D+1,...,. N—1—-D,

Qi S,
T, = ’ (3.11)
Sfl R,
¢i-Di—D *°* {Gi—-Di+D
Q; = : : , (3.12)
| %+Di-D " qit+D,i+D
bi = [@iipy s iy, Biimpy - Bigrnl” (3.13)
C; = a;LD,z'a s 76;(+D,z‘a5;:D,iﬂ te 7/5:+D,z']T' (3'14)
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Matrices R; and S; can be obtained by replacing ¢, , in Q; with r,, , and sy, ,,, respec-

tively.

2. Fori=0,1,...,D —1,

T, = Qi S : (3.15)
s’ R,

Qi=Qp(0:D+i,0:D+1), (3.16)

Ri=Rp(0:D+4,0:D+4), 3.17)

S, =Sp(0: D+i,0: D +1), (3.18)

b, = [ig, s Qiiip, Bigs - Biisn] s (3.19)

Ci = [ag4, - - - ARIBEEC0 > - - - ’Ej+D,i]T' (3.20)

3. Fori=N—D,N-D+1,.. 5N +1,

T, | & %L (3:21)
SI R,

Q=Qn 1 p(i—N+1+D:2D,i— N+1+ D :2D), (3.22)

Ri=Ry 1 p(i—N+1+D:2D,i— N+1+ D :2D), (3.23)

Si=Sy_1p(i—N+14+D:2D,i— N+1+D:2D), (3.24)

b; =[aii—p,...,%N-1,Bii-D;--- ;ﬂz‘,Nfl]T; (3.25)

¢ = a/ij,i? s 75*Nfl,z'7fc\;;D,1'7 s 7’5*N71,z']T‘ (3.26)

Note that Q;, R;, and S; in the second case correspond to upper left submatrices of Q p, Rp, and
Sp, respectively. Also, Q;, R;, and S; in the third case correspond to lower right submatrices
of Qv 1 p,Ry_1 p,and Sy p, respectively.

Fori = N,N 4+ 1,...,2N — 1, we can use the same equations shown in (3.11)—(3.26).

However, we have to let T; = T,_y, replace «; ; and f3; ; in b; with v; ; and w; ;, respectively,
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and ¢} ; in ¢; with b} ; and d
b 3

;;» respectively. Since the initial matrix is no longer a

and a; ;
banded matrix, we are not able to obtain a recursive relationship in solving (3.10). Gaussian
elimination may be a good choice for this problem. As mentioned, T; = T, x; we need only
to construct T; and perform Gaussian elimination of T; fors = 0,1,..., N — 1. Also, T; is a
Hermitian matrix, making the complexity of Gaussian elimination even lower.

To further reduce the computational complexity, we can make some approximations in the
calculation of g; j, 75, and s; ;. Wecanletq; ; = > o (@], @50 + angjn), Tij D nea(CinCin
i ydyn), and s~ Y o (@5, + bl uda), Where Q =< i — S : i+ S,N >N <j—9:
Jj+ S, N >. Again, this approximation makes use of the property that elements in MZJ close

to the main diagonal has larger values than the others.

§ 3.2.3 Complexity Analysis

Up to now, we have extended the'N-ZF method from SISO-OFDM systems to MIMO-OFDM
systems. In this subsection, we further discuss the required computational complexity of the N-
ZF method and compare it with that of the direct ZEF method in a 2 x 2 MIMO-OFDM system.

From (3.6) and (3.8), we find that the computational complexity of the N-ZF method mainly

consists of the following three parts:
1. v,, iteration, where v,,, = (WOM)Vm,l and vy = Wyy,
2. M construction,
3. 'Wj calculation.

Since we adopt the LTV channel model, the MIMO-OFDM ICI matrix M has the special struc-
ture of diagonal and DFT/IDFT matrices. Consequently, v,, can be obtained using (3.8). As a
result, we require [2N log, N+ (8D +13)N —4D? — 4D] CMs and [4N logy, N+ (8D +7)N —
4D?*—4D] CAs. In addition, we need [(8 D+4) N —4D?*—4D] CMs and [(8 D+2) N —4D?—4D]
CAs for vy = Wyy and 2N RAs for each ¢ ,,V,, in (3.6). As to the construction of M,
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we require (4S5 + 2)N CMs and (4S + 2)N CAs. For calculating Wy, we need to con-
struct matrices T; for i = 0,1,..., N — 1 and they require [(8S + 32SD — 16D? + 8D +
4)N — 328D? — 16SD + (64/3)D* — (16/3)D] CMs and [(8S + 32SD — 16D? — 8D)N —
325D* — 16SD + (64/3)D? + 16D?* + (8/3)D] CAs. For solving T;b; = c;, it requires
{[(32/3)D* + 44D? + (85/3)D + 9/2] N — (34/3)D* — (138/3)D® — (271/6)D? — (21/2) D}
CMs, {[(32/3) D3+44D2+(85/3) D+9/2) N—(34/3) D' —(138/3) D3— (271/6) D2— (21/2) D}
CAs, [(8D+4)N + (56/3)D* — 4D? — (20/3) D] CDs, and [(16D? + 12D +2)N — (40/3) D? —
18D? — (14/3) D] RDs. Finally, we summarize the required complexity for the N-ZF method
and the direct ZF method [69] operating in a 2 x 2 MIMO-OFDM system in Table 3.1. Further-
more, we summarize the complexity for calculating the initial matrices in the N-ZF method in

Table 3.2.

Table 3.1: Complexity comparison between N-ZF and direct ZF methods in a 2 x 2 MIMO-
OFDM system.

Methods Real multiplications Real  +divi- | Real additions
sions
Direct ZF ZN3 +28N? — 2N AN? +2N | 2N3422N? - BN
N-ZFE(D =1) | (273 — 8)Nlogy(N) + | 54N —20 | 3(2¥2 — 4)Nlogy(N) +
(176S + 11 x 2k 4 (1765 + 17 x 22 4
L2)N — 1925 — 2F+5 — 1020 322)N — 1925 — 2F+5 — 316
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Table 3.2: Complexity of the initial matrix calculation for the N-ZF method in a 2 x 2 MIMO-
OFDM system.

Methods Real multiplications | Real divisions Real additions

N-ZF (D =1) (176S + 414)N — | (176S + 338)N — | 564N —20
1925 — 340 1925 — 316

§ 3.2.4 Simulations

In this subsection, we report simulations to demonstrate the effectiveness of the proposed
method. We consider a 2 x 2 MIMO-OFDM system with N = 128 and the CP size of 16.
The modulation scheme is 16-QAM. The channel length is set to L = 15 and the power delay

L-1 /L
i=0 ©

profile is characterized by an exponential fanctionyi.e., 07 = e /7 /3" , where [ is the
tap index. Each channel tap is generated by Jakes’ miodel [70]. We assume that the channel
response is exactly known for the'direct’ZF method. -For the proposed method, the parameters
of the LTV channel model are obtained'by LS fittings. Since the N-ZF method with S = 2 have

the similar performance to that with S = N/2—1,.S = 2 is set for all the following simulations.

From the previous simulations in a SISO-OFDM system, we see that the computational
complexity of the N-ZF method with D = (0 and D = 1 is similar when the required number
of iterations is taken into account. However, the N-ZF method with D = 1 tends to have
better results. Thus, we will only consider the N-ZF method with D = 1. Here, we consider
two environments, i.e., f; = 0.05 and 0.1. Figure 3.1 depicts the BER performance comparison
among the proposed method, the direct ZF method, and the direct MMSE method for f; = 0.05.
From this figure, we find that the two-tap FEQ method has an irreducible error floor due to ICIL.
It is obvious that the N-ZF method can effectively mitigate the ICI and its performance can
quickly approach to that of the direct ZF method. As we can see, the iteration number can be

as small as one. Also note that the direct MMSE method does not give too much performance
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enhancement compared to the direct ZF method. Figure 3.2 illustrates the BER performance
for the case of f; = 0.1. The N-ZF method still effectively mitigates the interference and
its performance can approach to that of the direct ZF method quickly. In this case, one or
two iterations are sufficient for the N-ZF method. Also note that with two iterations, the N-
ZF method can outperform the direct ZF method. We further show the BER performance for
various f,. Figure 3.3 shows the results when f,; varies from O to 0.2 and the SNR is set to 30
dB. From this figure, we see that all the methods are degraded as f; becomes larger. Again, the
N-ZF method (k = 2) has better performance than the direct ZF method.

Table 3.3 summarizes the required computational complexity of the direct ZF method and
the N-ZF method. With one iteration, the multiplication (addition) complexity of the N-ZF
method (k = 1) is only 0.0053 (0.005) times that of the direct ZF method. With two iterations,
the complexity ratios of multiplications and-additions is 0.0069 and 0.0067. For various /N, we
show the the required computational complexity of the direct ZF method and the N-ZF method
(k = 2,3) in Figs. 3.4 and 3.5, respectively.

Comparing SISO-OFDM in Chapter 2 and MIMO-OFDM systems, we find that the reduc-
tion in computational complexity is greater-in a MIMO-OFDM system than that in a SISO-
OFDM system. In a SISO-OFDM system, the ratio of multiplications is 0.013, while that in a
MIMO-OFDM system is 0.0069 (D = 1, and k£ = 2). This is because the complexity of the di-
rect ZF method is proportional to O(M? N?), whereas that of the N-ZF method is in proportion
to O(M N log, N). As a result, we can save more computations as M increases. Also when N

gets larger, the reduction in computations becomes more apparent too.
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Figure 3.1: BER comparison among two-tap FEQ, N-ZF (D = 1 and S = 2), direct ZF, and
direct MMSE methods in a 2 x 2 MIMO-OFDM:system; f,; = 0.05 and 16-QAM modulation.
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Figure 3.2: BER comparison among two-tap FEQ, N-ZF (D = 1 and S = 2), direct ZF, and
direct MMSE methods in a 2 x 2 MIMO-OFDM system; f; = 0.1 and 16-QAM modulation.
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Figure 3.3: BER comparison among one-tap FEQ, N-ZF (D = 1 and S = 2), direct ZF, and
direct MMSE methods in a 2 x 2 SISO-OEDM system; fz = 0 ~ 0.2, 16 QAM modulation, and
SNR =30 dB.
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Figure 3.4: Complexity comparison between N-ZF (D = 1, S = 2, and k = 2) and direct ZF
methods in a 2 x 2 MIMO-OFDM system for various V.
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Figure 3.5: Complexity comparison between N=ZF (D = 1, S = 2, and k£ = 3) and direct ZF
methods in a 2 x 2 MIMO-OFDM system for. various-/V.

Table 3.3: Complexity comparison between N-ZF and direct ZF methods in a 2 x 2 MIMO-
OFDM system (/N = 128 and S =.2).

Methods Real multiplications | Real ~ divisions | Real  additions
(ratio) (ratio) (ratio)
Direct ZF 22828288 65792 22728576

N-ZF (D =1, | 103436 (0.0045) 6892 (0.1048) 94244 (0.0041)
k=0)

N-ZF (D =1, | 121836 (0.0053) 6892 (0.1048) 113668 (0.0050)
k=1)

N-ZF (D =1, | 158636 (0.0069) 6892 (0.1048) 152516 (0.0067)
k=2)

63



§ 3.3 MMSE Method

§ 3.3.1 Proposed Newton-MMSE Method

As mentioned, the MMSE solution can be expressed as Xy/ys5r = (/MH/M + aIN> - MHy.
From this formula, it is clear that the computational complexity is even more intractable in
MIMO-OFDM systems since the system dimension becomes larger. This situation may limit
its application. In view of this problem, we are devoted to proposing a method which will make
the MMSE method applicable in real-world implementation.

As we did in the SISO-OFDM system, the MMSE solution can be expressed in another form
as Xy MsE = (I\Z + QM’H> : y. Using the derived MIMO-OFDM ICI matrix in (3.4), we
now apply Newton’s iteration to facilitate the MMSE method in a 2 x 2 MIMO-OFDM system.

With (2.52) and (3.2), we can obtain the equalized signal as

ok_1

k= Y Vi (3.27)

where Xj, ¢k, and V,,, are defined the same as those in (2.53). Note that in this case, X} and
Vi are 2N % 1 column vectors. Let the initial matrix W, be composed of four N x N circular

band matrices formulated as

W, W
W, = an (3.28)
W, W,

We also let By have the same structure as Wy,. Thus, By is expressed as

B, B
By=| © . (3.29)
B, B,
Moreover, we partition ¥,,, into ¥, = [V} |, ¥] ,]”, where ¥, ; and ¥, , are N x 1 column

vectors. Define Em,l = BanJ + Bﬂvm’g, Em,2 = BWVmJ -+ Bwvm’Q, ﬁm,l = leGHEmJ,
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and U, = GV, GH Em,Q. With the definition of v,,,, v,;,11 can be decomposed as follows:

B W, W; A, B . GV.G" oy A, B
Vm+1 = ~ ~ ~ ~
W,y Wu.) CO DO ON leGH Cl D1
Iy Oy B, Bj Al CI Al CH
+ €10 + e o~ 1~ <
Oy Iy B, B, Bl DI BY DX
leGH Oy Ba Bﬂ vm,l
On leGH B»y Bw vm,2
W, W; AoV + BoVins GV G (A V1 + B1Vs)
== ~ ~ + ~ - + él,O
W, W, CoVin1 + DoV 0 GV,G#(C\¥v,,1 +DV,,2)
ot B, B; A, | + Clt,,, Afu, , + Clu,,,
_ +é . . + | - _
2 B, B, Bl + D't Biu,,; + D1,

(3.30)

Note that Ki, ]§i, éi, ]~Di, and Vj are all diagonal matrices. It is obvious that if W,, Wz, W,
W, B,, Bs, B,, and B,, are assumed to be-low-bandwidth circular band matrices, (3.30) can
be implemented with vector and FFT/IFFT eperations. Note that the FFT size is /V instead of
2N. Thus, the required computational complexity is O(2M N log, N). It is straightforward to
see that the computational complexity of the direct MMSE method in this case is O(M3N?).
As a result, the complexity reduction in MIMO-OFDM systems can be greater than that in
SISO-OFDM systems. This will be verified with simulations.

§ 3.3.2 Derivation of the Initial Matrix

To complete the proposed algorithm, we have to determine the two 2N x 2NN initial matrices,
W, and By, optimally. As we did before, we again use the minimum-Frobenius-norm crite-
rion. Note that the initial matrices in the MIMO-OFDM scenario are not circular band matrices
anymore. Instead, they are matrices composed of four circular band submatrices. We first dis-

cuss Wy. As for By, it can be obtained in the same way. Let each circular band submatrix of
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W, have bandwidth D,. Then define o, j; = W (4, 7), fi; = Wg(i,7), vij = W,(i,7), and

w;,j = Wy (4, j). We partition Q into the following format

g= | d Qe (3.31)

Qa1 Q2o
where Q” is an N X N submatrix of Q Then we define three matrices as Q = Qil QlTl +
Qi2Qf R = Q;,Q], + Q3,Q%,. and S = Qi ,QF, + Q1,Q7,. Note that since Q" = Q
and R” = R, then Q and R are Hermitian matrices. Following the procedure in the SISO-

OFDM system, we can obtain the optimum initial values by solving the following equations:
Tz'bi:CZ', i:O,l,...,QN—l, (332)

where b! is composed of the non-zero elements in the ith non-zero row vector of Wy, as
defined in (2.61). Note that we have two sets:of'circiilar band matrices to deal with; one is for
i =0,1,...,N — 1 and the other is for'i = NJN'31, . . 2N — 1. Define @;; = Qy.1(i, ),
gi,j = (NQLQ(i,j), Cij = (3271(i,j), and 67” = (5272(2',]'). For the set of i € {0,1,..., N — 1},

we have T, b;, and c¢; defined as:

T,= | & % ; (3.33)
S? R,
Q; = Qi — Dy :i+ Dy,i — Dy i+ Dy), (3.34)
R;=R(i — Dy:i+ Dy,i— Dy i+ Dy), (3.35)
S, =S(i— Dy :i+ Dy,i— Dy :i+ Dy), (3.36)
b; = [bj;, by,]", (3.37)
¢ =[c];, 0], (3.38)
bii = [Qii Dy Qids - s Qi Dy (3.39)
boi = [BisieDas -+« Bisis -+ Bisie D) s (3.40)
Cli = [0 _pyise s Giis s Uiipys) s (3.41)
Coi = [C_pyir- s Cogse s Coypod) - (3.42)
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Fori € {N,N+1,...,2N — 1}, Egs. (3.33)—(3.42) are still valid but we need some modifica-

tions. We have to let T; = Ty, and replace «; ;, 3; j, and ¢ ¢ 1n by, bas, €14, and ¢y ;

a; ]’
with 7; ;, w; j, bz o and d* respectively. Since the initial matrix is not a circular band matrix
anymore, we are not able to obtain a recursive formula solving (3.32). In this case, Gaussian
elimination can be chosen to solve this problem. As mentioned, T; = T,_y; we only need to
construct T; and conduct Gaussian elimination for i € {0,1,..., N — 1}. Note that T, is a
Hermitian matrix, making the complexity of Gaussian elimination lower.

Again, we can further reduce the computational complexity when evaluating Q, R, and
S. As mentioned, the elements close to the main diagonal of QH have dominative values.
Thus, the terms far from the main diagonal can be ignored. Let Q” = cirb(ém, Ss), Q =
Q;,Qf,+Q1.Ql,. R = Q;,Q],+Q5,Q7,, and S = Q; Q7 +Q; ,QF ,- Moreover, define
¢,; = Q(i,7), ri; = R(4,7), and s, j+=8(4,4)1:Now, we have the approximation as follows:
Gij ® Qi.d) = Toer (@, nF Vb FHGS R ) = er (GaCin + dfdya). and
Sij R é(z’,j) = ner (Ei;-"nEj,n +Zjn67]n), where I' =< i — Sy : i+ Sy, N >N <j—855:
Jj+ S, N >.

§ 3.3.3 Complexity Analysis

So far, we have derived a low-complexity algorithm, namely, N-MMSE that is suitable for a
MIMO-OFDM system. In this subsection, we focus on analyzing the required computational
complexity of the proposed N-MMSE method and then make a comparison between the N-
MMSE and direct MMSE methods.

From Subsections 3.3.1, we know that the major computational load results from Egs. (3.27)

and (3.30) and it can be summarized as follows:
1. v,, iteration, where v,,, = (WOQ)Vm_l and v) = Wyy,
2. M and Q construction, where Q = |M + « ZZP Yd (WOMH>j Bo} ,
3. By and Wy, calculation.
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The iterative step (3.30) involves [2PT'Nlog, N + (2°*3D; + 8Dy + 7 x 27! + 3)N] CMs
and [2°72Nlog, N + (2P*3D; + 8Dy + 9 x 2P + 3) N] CAs for m > 1. Furthermore, we need
(8D3y+4)N CMs and (8D +2) N CAs for vy = Wiy and 4N RAs for each ¢ ,,, V. As to the
construction of Mfl for By, we require (457 +2) N CMs and (4S; 4+ 2) N CAs. For calculating
By, we need to construct matrices T; fori = 0,1, ..., N — 1 and they require (85 +325;D; —
16D2+8D, +4)N CMs and (85, +325,D; — 16D? —8D;) N CAs. To solve T;b; = ¢; for By,
it requires [(32/3)D3? + 44D? + (85/3) Dy + 9/2] CMs, [(32/3) D3 + 44D? + (85/3) D +9/2]
CAs, (8D, +4) CDs, and (16 D2 + 12D, + 2) N RDs. To obtain Q, we need (4D; + 2)N CMs
and (4D; +2) N CAs. Before calculating W, we require (85 +32S5,Dy — 16 D2 + 8D, +4) N
CMs and (855 + 3255D9 — 16 D3 — 8Dy) N CAs to construct T; fori = 0,1,..., N — 1. To
obtain W, we have to solve T;b; = ¢; which requires [(32/3) D3 + 44D3 + (85/3) Dy + 9/2]
CMs, [(32/3)D3 + 44D2 + (85/3) Dy + 9/2J\CASI(8D, + 4) CDs, and (16D2 + 12D, + 2)
RDs. As for the direct MMSE method,*the matrix inversion can be implemented by Gaussian
elimination [69]. Finally, we summarize the required complexity of the N-MMSE method and
the direct MMSE method for a 2 x 2 MIMO-OFDM-system in Table 3.4. We also summarize

the complexity for calculating the initial matrices in the N-MMSE method in Table 3.5.
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Table 3.4: Complexity comparison between the N-MMSE and direct MMSE methods in a 2 x 2

MIMO-OFDM system.

112D? + [(2F — 1)2rt5 +
(592/3)] Dy + (128/3)E14:
112D3 + (255 + 580/3) Dy
7 % 2k+p+3 + 2k+4 st )

2P L 126} N + (2F —1i1)

Methods Real multiplications Real divisions | Real additions

Direct 8N3+20N?+16N log, N+ | 4AN? + 2N 8EN3+16N?+24N log, N+

MMSE N BN

N-MMSE | (2¢ — 1)2?**Nlog, N + | (16D? + | 3(2* 1)2°*2Nlog, N +
{485, + 1285, D, + 325, + | 28D, +16D2+ | {485, 4 1285, D; + 325, +
128590, + (128/3)D} + | 28Dy +20)N | 1285,Dy + (128/3)D} +

112D? + [(2F — 1)2rt5 +
(424/3)]Dy + (128/3)D3 +
112D3 + (255 +412/3) Dy +
23 x kTPl 4 ok+d _ 93
2Pt 4+ 821N

Table 3.5: Complexity of the initial matrices calculation for the N-MMSE method in a 2 x 2

MIMO-OFDM system.

Methods Real multiplications Real divisions Real additions
N-MMSE (176 % S; + 160 % Sy + | (176 % Sy + 160 % Sy + | 108N

§ 3.3.4 Simulations

We report the simulation results in a MIMO-OFDM system whose settings are the same as

those in a SISO-OFDM system. Specifically, we consider a 2 x 2 MIMO-OFDM system. We
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also consider two cases, f; = 0.05 and 0.1. Figure 3.6 shows the corresponding BER result for
fa = 0.05. From this figure, we observe the similar result to that in a SISO-OFDM system. The
N-MMSE method can still approach to the direct MMSE method within one or two iterations.
Figure 3.7 shows the result for f; = 0.1. It is apparent that the performance of the two-tap
FEQ method becomes even poorer than that in a SISO-OFDM system. This is because the
inter-antenna interference is introduced in addition to ICI. By contrast, the performance of the
N-MMSE method remains similar to that in a SISO-OFDM system. Both ICI and inter-antenna
interference are mitigated. To understand the impact of f;, we show the BER performance for
various f,. Figure 3.8 shows the results when f,; varies from O to 0.2 and the SNR is set to 30
dB. From this figure, we see that the N-MMSE method (k = 3) has larger performance loss

when f; becomes larger.

Table 3.6 shows the complexity comparisonfor.the N-MMSE and direct MMSE methods.
For the case of f; = 0.05, the required number of iterations is one or two. When one (two)
iteration is used, the complexity ratio for multiplication, division, and addition is 0.005 (0.007),
0.210 (0.210), and 0.005 (0.007), respectively. For f, = 0.1, the required iteration number
is two or three. When two (three) iterations are used, the complexity ratio for multiplication,
division, and addition turns out to be 0.015 (0.019), 0.210 (0.210), and 0.015 (0.019), respec-
tively. Although the ratio of division is increased in MIMO-OFDM systems, the number of
divisions is minor compared to that of multiplications. From Tables 2.6 and 3.6, we can see
that the major computational load is the multiplication. Thus, in MIMO-OFDM systems, the
N-MMSE method can achieve more complexity reduction. For example, in the SISO-OFDM
system, the complexity ratio for multiplication is 0.014, while that in the MIMO-OFDM system
is 0.007 (f; = 0.05 and k£ = 2). This is because the computational complexity of the direct
MMSE method is O(M?3N?), whereas that of the N-MMSE method is O(2M N log, N). Con-
sequently, the complexity of the direct MMSE method grows faster as M increases. From the
complexity analysis, we can infer that when /N becomes larger, the computational complexity

reduction achieved with the N-MMSE method will be more apparent. For various /N, we show
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the required computational complexity for the direct MMSE method and the N-MMSE method
(k = 2,3)in Figs. 3.9 and 3.10, respectively.

BER

—p— Two-tap FEQ
—— Direct MMSE
—>— Proposed (k=0)
—O— Proposed (k=1)
—8— Proposed (k=2)

0 5 10 15 20 25 30 35
SNR (dB)

Figure 3.6: BER comparison among the two-tap FEQ, N-MMSE ({D,, D,} = {1,1} and
{S1, 5.} = {2,2}), and direct MMSE methods’in a 2 x 2 MIMO-OFDM system; f; = 0.05
and 16-QAM modulation.
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Figure 3.7: BER comparison among the two-tap FEQ, N-MMSE ({ D1, D} = {1,1} and
{S1, S2} = {10,10}), and direct MMSE.methods in a 2°x 2 MIMO-OFDM system; f; = 0.1
and 16-QAM modulation.

—6— One-tap FEQ
—P— N-MMSE (k=3)
—— Direct MMSE

BER

0 0.05 0.1 0.15 0.2

Figure 3.8: BER comparison among one-tap FEQ, N-MMSE (D, = D, = 1, 57 = 53 = 10,
and £ = 3), and direct MMSE methods in a 2 x 2 MIMO-OFDM system; f; =0 ~ 0.2, 16
QAM modulation, and SNR = 30 dB.
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Figure 3.9: Complexity comparison between-N-MMSE (D, = Dy = 1, S; = Sy = 5, and
k = 2) and direct MMSE methods in.a 2 X 2 MIMO-OFDM system for various V.

—6— RM of N-MMSE (k=3)
—P— RD of N-MMSE (k=3) |
—— RA of N-MMSE (k=3)
- © - RM of direct MMSE
- P>- RD of direct MMSE
- ¥ — RA of direct MMSE
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Number of subcarriers

Number of mathematical operations

Figure 3.10: Complexity comparison between N-MMSE (D, = Dy, = 1, 5 = S, = 10, and
k = 3) and direct MMSE methods in a 2 x 2 MIMO-OFDM system for various V.
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Table 3.6: Complexity comparison between the N-MMSE and direct MMSE methods ina 2 x 2
MIMO-OFDM system (N = 128, and { Dy, Do} = {1,1}).

Methods Real multiplica- | Real  divisions | Real  additions
tions (ratio) (ratio) (ratio)
Direct MMSE 45086976 65792 45027072

N-MMSE (¢ = 1, | 240897 (0.005) 13824 (0:210) 225536 (0.005)
{51,5:} =122}
N-MMSE (kK = 2, 326913 (0.007) 13824 (0.210) 320768 (0.007)
{S51,5:} ={2,2})
N-MMSE (k = 2,| 670977 (0.015) 13824 (0.210) 664832 (0.015)
{S1, 8.} = {10,10})
N-MMSE (kK = 3, | 843009 (0.019) 13824 (0.210) 855296 (0.019)
{S1,S9} = {10,10})
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Chapter 4

Mobility-induced ICI Mitigation for
SISO/ MIMO-OFDMA Systems

§ 4.1 SISO-OFDMA Signal Model

In Chapters 2 and 3, we have diseussed ICI mitigation in SISO/MIMO-OFDM systems. In
recent years, OFDMA have been a promising multiple access scheme and has been extensively
investigated. For now on, we will focus on ICI mitigation in a SISO/MIMO-OFDMA system.
Based on the previous SISO/MIMO-OFDM signal model, we will derive the SISO/MIMO-
OFDMA signal model for high-mobility environments. Using the model, we can then apply the
low-complexity ICI mitigation methods developed in Chapter 2.

A SISO-OFDMA system is a multicarrier system and the available bandwidth is divided
into NV equally spaced subbands. Each subcarrier uses a subband with a bandwidth of 1/(NT5).
Furthermore, a SISO-OFDMA system is also a multiuser system and all active users share the N
subcarriers. Without loss of generality, we assume that each user is assigned the same number
of subcarriers, Ny, and N, = N/Q, where () is the number of active users. Let T, be the set
of indices indicating subcarriers assigned to user ¢ and Z] be the user’s transmit signal at the

kth subcarrier, where k£ € T,. To avoid multiple-access interference, it is usually assumed that
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T,NYy =0ifq+# ¢ and U?Zl T,={0,1,..., N — 1}. An OFDMA system usually uses an
interleaved structure, i.e., ¥, = {¢—1,¢ -1+ Q,...,¢ — 1+ (N/Q — 1) x Q}. Since the
subcarriers assigned to a user are evenly distributed in the transmission band, this scheme can
achieve the maximum frequency diversity.

For all users, we assume that the CP length NV, is long enough to prevent the ISI effect.
Consider a specific OFDMA symbol of user g. After CP removal, the receive time-domain

signal can be expressed as
y¢ = Hix?, (4.1)

where y? is the gth user’s receive time-domain /N x 1 signal vector and x? is the ¢th user’s
transmit time-domain IV x 1 signal vector, i.e., x? = (1/v/N)GX%, where X is the gth user’s
frequency-domain signal vector. The matrix, HY, is the ¢oerresponding time-domain time-variant
N x N channel matrix for user ¢q. Note that since this is a multiuser system, elements of x?
are nonzero only in the designated subcarrier positions. Then the overall receive time-domain

signal from () users can be expressed as

Q
y=>» HX'+z (4.2)

qg=1
where y is the overall receive time-domain signal vector and z denotes the noise vector. After

the FFT operation, we obtain the corresponding frequency-domain signal as
y= VN Gy
Q ~
=Y HX+7, (4.3)
q=1
where H = GHYG is the frequency-domain ICI channel matrix of user ¢ and z = vV NGz is
the frequency-domain noise vector. Define a diagonal selection matrix S? such that S9(i, 1) =

1,i € T, and S%(i,i) = 0, otherwise and a composite transmit frequency-domain signal vector

as X = [T, Z1,...,Zn-1)", where T = I} if k € T,. Based on these definitions, we then have
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x7 = S9%x. Also, we can further express the receive signal in (4.3) as
Q ~
y = <ZHqu> X+ 2
q=1

— Mx 1 Z. (4.4)

where M = Z(?:l H?S? is the mobility-induced multiuser ICI channel matrix. If all users are
static, M will become a diagonal matrix. For each user, the channel matrix HY is time-variant.
As we did in a SISO/MIMO-OFDM system, we also use the LTV channel model to approximate
a time-variant channel [59]. According to the LTV channel model, the time-domain time-variant

channel for user ¢ in a specific OFDMA symbol period is then approximated as
hi(n) = hg, +n x hi, 4.5)

where n is the time index, h}(n) is'the [th-tap channel response at time instant n for user ¢,
hg, is its constant term, and h{, is its [variation rate. We assume that n is 0 for the midpoint of
an OFDMA symbol. Let h§ = {Af o, hg oo hg vy, b = [hf g, b, ... B |7, Hf =
cir(hl), and Hf = cir(h?). Using theabove definitions and (4.5), we can express the time-

domain channel matrix of the ¢th user'as
H‘=H} + V H]i. (4.6)

From (4.6), we see that H? consists of two circulant matrices and a diagonal matrix. The

corresponding frequency-domain ICI channel matrix of the gth user is then expressed as

H’ = GH'G"
= H! + GV,G"HY, (4.7)
where HY = GH!G" and H! = GH!G". Since HY s a circulant matrix, H? can be further

expressed as ﬁf = diag(fl;’) for i = 0, 1. Thus, the ICI matrix can be further rewritten as

Q Q
M =) H{S’+GV,G"> HIs". (4.8)

g=1 g=1
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Let hy = vV NGh! and h! = v/ NGh?. Also, let the kth component of h! and that of h? be
denoted as 7137  and 71‘{’16, respectively. Now, we can define two composite channel vectors l~10
and fll such that their k£th components, denoted as %O,k and ?Ll’k, have the following property:
Eo,k = Eg’k and Eu@ = E‘fk if k € T,. With these definitions, we then have H, = diag(ﬂo) =
ZqQ:1 H!S and H, = diag(h,) = ZQQ:1 HS?. Finally, we can rewrite (4.8) as

M = H, + GV,G"H,. (4.9)

From (4.9), we see that the ICI matrix is decomposed into a combination of diagonal and
DFT/IDFT matrices. Note that the ICI matrix is a composite matrix; it describes interfer-
ence generated from all active users. If () = 1, the signal model in (4.9) will be degener-
ated into the SISO-OFDM signal model. Moreover, the ICI matrix can also be expressed as
M = H, + V,H,, where V; = GV,G” <2leir(¥)]%and v, = (1/vVN)Gv,.

We find that the derived signal model for a-SISO-OFDMA system in (4.9) has the same
structure as that in a SISO-OFDM system. That-is to say, they both consist of diagonal and
DFT/IDFT matrices. As a result, the proposed N=ZF and N-MMSE methods in Chapter 2 can
be applied to ICI mitigation in a SISO-OEDMA system. Thus, the required computational
complexity is the same as that in SISO-OFDM systems.

§ 4.1.1 Simulations

In Section 4.1, we have derived a SISO-OFDMA signal model to facilitate ICI mitigation.
In this subsection, we report simulation results to demonstrate the effectiveness of the pro-
posed low-complexity ZF and MMSE methods. We consider a SISO-OFDMA system with
N = 128, N, = 32, and ) = 4. A fast-fading channel is used in simulations and the
power delay profile for the gth user is characterized by an exponential function, i.e., 012,:1 =
e~txad/L / Zf;ol e "%/l where [ is the tap index, ¢ is the user index, and L is the number of
channel taps. For the following simulations, we let a; = 1, s = 3, a3 = 2, a3 = 1.5, and

L = 15. Each channel tap is generated by Jakes’ model [70]. For the direct ZF and MMSE
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methods, we assume that the channel response is exactly known. For the N-ZF and N-MMSE
methods, the parameters of the LTV channel model are obtained by LS fittings. The modulation
scheme is chosen as 16-QAM.

First, we will present the simulation results of the ZF method and then we report the results
for the MMSE method. We assume that f,; of each user is different. For a SISO-OFDMA
system, fy’s are set to {0.05,0.02,0.04,0.03}. Figure 4.1 shows the BER comparison among
the one-tap FEQ method, the direct ZF method, and the N-ZF method. Again, we see that the
one-tap FEQ method has an error floor phenomenon which is due to the ignored ICI effect.
However, the N-ZF method effectively mitigates this phenomenon and outperforms the one-tap
FEQ method. Moreover, with two iterations, the N-ZF method can have a similar performance
to that of the direct ZF method. Figure 4.2 shows the BER performance comparison for another
case, where f;’s are set to {0.05,0.13°0.04, 0.03}.2In this case, f; of user 2 is increased up to
0.1, implying more ICI generated from user 2." From-this figure, it is obvious that the one-tap
FEQ method has an even severer error floor phenomenon. Again, the N-ZF method with two

iterations has a similar performance to that of the direct ZF method.

Table 4.1 summarizes the computational complexity comparison for the direct ZF and N-ZF
methods under the same settings shown above. In this table, the ratio in a parenthesis indicates
the number of additions/multiplications/divisions required for the N-ZF method divided by that
for the direct ZF method. From the above simulation results, we can say that the required
iteration number for the N-ZF method is two. From Table 4.1, we see that the multiplica-
tion/division/addition complexity of the N-ZF method is 0.007/0.016/0.008 times that of the
direct ZF method. From Figs. 4.1 and 4.2, we can then conclude that while the performance of
the N-ZF method is comparable to that of the direct ZF method, the computational complexity

is much lower.

Next we report the BER performance of the MMSE method. Figure 4.3 shows the result
when f;’s are set to {0.05,0.02,0.04,0.03}. In this case, we clearly see that the N-MMSE

method with two iterations has the same performance with the direct MMSE method. Increasing
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the f4 of user 2 up to 0.1, we have the result shown in Fig. 4.4. Owing to the increasing amount
of ICI from user 2, the N-MMSE method need three iterations to approach the performance of
the direct MMSE method.

Table 4.2 compares the computational complexity of the direct MMSE and N-MMSE meth-
ods under the same settings shown above. In this table, the ratio in a parenthesis indicates
the number of additions/multiplications/divisions required for the N-MMSE method divided
by that for the direct MMSE method. The simulation results imply that the required itera-
tion number for the N-MMSE method is two. From Table 4.2, we see that the multiplica-
tion/division/addition complexity of the N-MMSE method (k¢ = 2) is 0.0135/0.0309/0.0129
times that of the direct MMSE method. Consequently, we can conclude that the N-MMSE
method can approach the direct MMSE method while at the same time the N-MMSE method

saves a lot of computations.
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Figure 4.1: BER comparison among onestap FEQ, direct ZF, and N-ZF (D = 0, S = 2) methods
in a SISO-OFDMA system; f; = {0.05, 0.02,0:04, 0.03} and 16-QAM modulation.
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Figure 4.2: BER comparison among one-tap FEQ, direct ZF, and N-ZF (D = 0, S = 2) methods
in a SISO-OFDMA system; f; = {0.05, 0.1, 0.04, 0.03} and 16-QAM modulation.
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Figure 4.3: BER comparison among one-tap FEQ, direct MMSE, and N-MMSE (D; = Dy, = 0,
S1 = S5 = 2) methods in a SISO-OFDM Assystem; fy={0.05, 0.02, 0.04, 0.03} and 16-QAM

modulation.
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Figure 4.4: BER comparison among one-tap FEQ, direct MMSE, and N-MMSE (D, = D, = 0,
S1 = S = 2) methods in a SISO-OFDMA system; f; = {0.05, 0.1, 0.04, 0.03} and 16-QAM

modulation.
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Table 4.1: Complexity comparison between direct ZF and N-ZF methods in a SISO-OFDMA

system (N = 128, D = 0, and S = 2).

Methods Real multiplications | Real divisions (ratio) | Real additions (ra-
(ratio) tio)

Direct ZF 2910848 16512 2885824

N-ZF (k =1) 8704 (0.003) 256 (0.016) 9344 (0.003)

N-ZF (k = 2) 19968 (0.007) 256 (0.016) 22656 (0.008)

Table 4.2: Complexity comparison between direct MMSE and N-MMSE methods in a SISO-

OFDMA system (N = 128, D; = Dy = 0,and S; = S5 = 2).

Methods Real multiplications|-Realdivisions (ratio) | Real additions (ra-
(ratio) tio)

Direct MMSE 5679488 16512 5664128

N-MMSE (k =1) | 47109 (0.0083) 510.¢0.0309) 39688 (0.0070)

N-MMSE (k = 2) | 76805 (0.0135) 510 (0.0309) 72968 (0.0129)

N-MMSE (k = 3) | 136197 (0.0240) 510 (0.0309) 139528 (0.0246)

§ 4.2 MIMO-OFDMA Signal Model

In the previous section, we have derived the SISO-OFDMA signal model and applied the low-
complexity algorithms developed in Chapter 2 for ICI mitigation. Next we will further tackle
the ICI problem in MIMO-OFDMA systems. In this section, we will develop a MIMO-OFDMA
signal model facilitating the application of the proposed low-complexity algorithms. First, we
will generalize the signal model derived in Section 4.1 to the scenario of MIMO-OFDMA sys-

tems. Let xg be the transmit symbol vector of user ¢ from its jth antenna and yZ ; be the cor-

83



responding receive OFDMA symbol vector in the ith receive antenna (without CP and noise).

Based on these definitions, we have the signal model as follows:

yi; = H{ ;%] (4.10)

1,507

Note that both y{; and x} are time-domain signals of dimension N x 1. Moreover, X} =

HZq %7 ; : ; q
(1/vV/N)G x;, where xj is the corresponding frequency-domain symbol vector of xj. The

q

matrix, H; .,
N

is the time-domain channel matrix for user ¢ consisting of the time-variant channel
response between the jth transmit antenna and the 7th receive antenna. Note that only in the
designated subcarrier positions are the elements of ig non-zeros. We then have the receive time-
domain OFDMA signal, for the channel between the jth transmit antenna and the ith receive

antenna, as
Q
yig=y HIx @.11)
gt

where y; ; is the receive time-domain signal vector in the-ith receive antenna contributed from
the jth transmit antenna of all users. Transforming (4.11) with DFT, we have the corresponding

frequency-domain signal as
Q ~
Vij = HLX! (4.12)
q=1

where y; ; is the corresponding frequency-domain signal vector of y; ; and ﬁf = GH;{ jGH .
For user ¢, we define 5313 as the transmit signal at the kth subcarrier from its jth transmit
antenna. Then we let X; = [T, Zj1,-..,T;n-1]" , Where T;j = gj’,k if k € T,. Thus, we have

ig = S9%,. Now we can express the receive signal in (4.12) as

Q
Yij = (Z H?,jsq) X;
= M,,%;, (4.13)
where MH = ZQQ:1 ITI;?’J-S‘J. The matrix, M

represents the mobility-induced composite ICI

R

channel matrix between the ith receive antenna and the jth transmit antenna (for all users). With

84



(4.13), we can further express the receive frequency-domain signal in the sth receive antenna
(from all transmit antennas of all users) as
M —~—
yi= Z M, ;X; + z;, (4.14)
j=1
where z; is the receive frequency-domain noise vector in the ith receive antenna. By stacking

all the receive signal vectors into a column vector, we finally obtain the following signal model

¥ = MX + 7, (4.15)
where y = [yI,y2,..., 3717 is the overall receive frequency-domain signal vector, X =
x7,%3,...,X3]" is the transmit frequency-domain signal vector, z = [z] ,Z ,...,Z,|" is the

frequency-domain noise vector, and M is the frequency-domain ICI channel matrix expressed
as
Ml,l Ml,Q - MI,M
M — : : : ) (4.16)
MM,l MM,Q o MM,M
Using the LTV channel model and (4.15), we can further derive a model facilitating ICI mit-
igation in MIMO-OFDMA systems. With the LTV model, we again express the channel in a

specific OFDMA symbol as
hijg,j(n) = hogi5+n < B 4.17)
where hf; ;(n) is the Ith-tap channel response at time instant  between the ith receive antenna

and the jth transmit antenna for user ¢, hg Lis 18 its constant term, and h‘l’ Lis 18 its variation rate.

q — q q q T q — q q q T q —

Let hU,i,j B [hU,O,i,j’ hU,l,i,j’ T hO,N—l,i,j] ’ hl,i,j - [hl,oﬂ',j’ hl,lﬂ}j’ T hl,N—l,i,j] ’ Hovivj -
g ¢ g . .

cir(hg, ;), and HY, ; = cir(h{, ;). Using these definitions and (4.17), we can express the gth

user’s time-domain channel matrix representing the channel between the ith receive antenna

and the jth transmit antenna as

qu,j = Hj

0.4 T ViH{

1yi,°

(4.18)
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Transforming Hg’ ; from the time domain to the frequency domain and denoting the result as

ﬁf’j, we have
H; = H{,; + GVIG"H{ . (4.19)

where ﬁgw = GH{, ;G" and ﬁ‘{w = GHY, ;G". Asaresult, we then come to the following
composite channel matrix

— @ . Q

M;; =Y H{, S"+GV,G") H!, s (4.20)

q=1 q=1

Let Eg,i,j = \/Nth’i’j and ﬂ‘f’i’j = \/NGh‘fﬂ-’j. Also denote the kth component of Egﬂ.’j

as ?Lg,“ ; and that of ﬂ‘f” as ﬁ‘{,” ;- As aresult, we then define two composite vectors hy.;
and ﬂlm such that their kth components, denoted as ?LO,k,i,j and ?LL,CM-, have the following
property: TLOMJ = Eg’kﬂ.’j and ﬁl,k,i,j = ﬁfk” if k& € A4 With the above definitions, we then
have IfIO,Z-,j = diag(flo,i,j) and ﬁl’i’j = diag(ﬂl,i,j). Finally, we can rewrite (4.20) as

M;,; = ﬁﬂﬂ',j e GVIGHﬁl,i,j; 4.21)

where IfIS,Z-,j = Zle ItI‘jﬂ-’qu for s = 0,1, Nete that ﬁg” can be further rearranged as
HY, . = diag(h’

s ¢i,) for s = 0,1. More importantly, we can see that each submatrix MH isa
combination of diagonal and DFT/IDFT matrices.

So far, we have derived the signal model for MIMO-OFDMA systems in (4.15), (4.16), and
(4.21). Its signal structure is the same as that in MIMO-OFDM systems. Again, we can exploit
this special structure to reduce the required computational complexity as we did in Chapter 3.

Thus, we can have low-complexity algorithms for MIMO-OFDMA systems. As for the required

computational complexity, it is the same as that in MIMO-OFDM system:s.

§ 4.2.1 Simulations

In this subsection, we provide simulation results to demonstrate the effectiveness of the pro-

posed method. We consider a 2 x 2 MIMO-OFDMA system with N = 128, N, = 32,
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and () = 4. The simulated fading channel is generated by Jakes’ model [70]. In addi-
tion, the power delay profile of the gth user is characterized by an exponential function, i.e.,
aiq = e~xad/l ) Zf:_ol e~"*/L where [ is the tap index, ¢ is the user index, and L is the
number of channel taps. For the setting of channel parameters, we let ay = 1, as = 3, a3 = 2,
a3 = 1.5, and L = 15. For the direct ZF and MMSE methods, we assume that the channel
response is exactly known. For the N-ZF and N-MMSE methods, the parameters of the LTV

channel model are obtained by LS fittings. The chosen modulation scheme is 16-QAM.

In the beginning, we discuss the ZF method. We consider two cases here; in the first case,
fa’sare setto {0.02,0.05,0.03,0.04} and in the second case, they are set to {0.04, 0.1, 0.08,0.07}.
Figure 4.5 shows the BER performance of case 1. In this figure, the performance of a two-tap
FEQ method is also compared. The f;’s in Fig. 4.1 and Fig. 4.5 are the same. From both
figures, we find that the behavior of'the BER eurves is similar except that the BER is higher
in Fig. 4.5. This is because the mter-antenna interference is introduced in a MIMO-OFDMA
system. Figure 4.6 shows the BER "performance in case 2. In this case, f;’s are larger. As a

result, we find that the N-ZF method needs three iterations to approach the direct ZF method.

Table 4.3 summarizes the required computational complexity for the direct ZF method and
the N-ZF method in a 2 x 2 MIMO-OFDMA system. For case 1, two iterations are suffi-
cient. The complexity ratio for multiplication/division/addition is 0.003/0.002/0.003. For case
2, three iterations are needed. The complexity ratio for multiplication/division/addition be-
comes 0.005/0.002/0.006. As we can see from these figures, significant complexity reduction

can still be obtained even though the iteration number is three.

We now compare the required computational complexity for ICI mitigation in MIMO-
OFDMA systems and in SISO-OFDMA systems. From Tables 4.1 and 4.3, we see that the
multiplication complexity of the direct ZF method is increased up to almost eight times from
SISO-OFDMA to 2 x 2 MIMO-OFDMA. For the N-ZF method, it is only increased about three
times. Thus, the complexity reduction achieved by the N-ZF method is greater in a 2 x 2 MIMO-
OFDMA system. In a SISO-OFDMA system, the ratio of multiplication is 0.007 (k = 2 and
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fis = {0.05,0.02,0.04,0.03}), while that in a 2 x 2 MIMO-OFDMA system is 0.003 (k = 2
and f}s = {0.02,0.05,0.03,0.04}). This is because the complexity of the direct ZF method is
proportional to O( M3 N?), whereas that of the N-ZF method is proportional to O(M N log, N).
Even with three iterations, the complexity reduction achieved by the N-ZF method is still larger
in MIMO-OFDMA systems. It can be inferred that the N-ZF method can save more computa-
tions when M or N becomes larger.

Now, we report simulation results for the MMSE method. We also consider the above
two cases; case 1 is that f;’s are set to {0.02,0.05,0.03,0.04} and in case 2, they are set to
{0.04,0.1,0.08,0.07}. Figure 4.7 shows the BER performance of case 1. We find that the N-
MMSE method with two iterations can avoid the error floor phenomenon of the two-tap FEQ
method and in the meanwhile the N-MMSE method approaches the direct MMSE method.
Figure 4.8 shows the result of case 2. In this'figure, the behavior of the N-MMSE method is
similar to that in Fig. 4.7 except the required number of iterations is three.

Table 4.4 summarizes the required .computational complexity for the direct MMSE method
and the N-MMSE method in a 2 x 2 MIMO-OFDPMA: system. For case 1, two iterations are
enough. The complexity ratio of multiplication/division/addition is 0.0029/0.0389/0.0031. For
case 2, three iterations are needed. The complexity ratio for multiplication/division/addition
becomes 0.0056/0.0389/0.0062. From the above reports, it is clear that significant complexity
reduction can be obtained by the N-MMSE method.
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Figure 4.5: BER comparison among one-tap. FEQ, direct ZF, and N-ZF (D = 0, S = 2) methods
in a 2 x 2 MIMO-OFDMA system: f; = {0,02,.0.05, 0.03, 0.04} and 16-QAM modulation.

BER

SNR (dB)

Figure 4.6: BER comparison among one-tap FEQ, direct ZF, and N-ZF (D = 0, S = 2) methods
in a 2 x 2 MIMO-OFDMA system; f; = {0.04, 0.1, 0.08, 0.07} and 16-QAM modulation.
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BER

Figure 4.7: BER comparison among two-tap FEQ, direct MMSE, and N-MMSE (D, = D, = 0,
S1 = Sy = 2) methods in a 2 x 2 MIMO-QEDMA system; f; = {0.02, 0.05, 0.03, 0.04} and

16-QAM modulation.

BER

Figure 4.8: BER comparison among two-tap FEQ, direct MMSE, and N-MMSE (D, = D, = 0,
S1 = S5 = 2) methods in a 2 x 2 MIMO-OFDMA system; f; = {0.04, 0.1, 0.08, 0.07} and

16-QAM modulation.
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Table 4.3: Complexity comparison between direct ZF and N-ZF methods in a 2 x 2 MIMO-

OFDMA system (N = 128, D = 0, and S = 2).

Methods Real multiplications | Real divisions (ratio) | Real additions (ra-
(ratio) tio)

Direct ZF 22828288 65792 22728576

N-ZF (k =1) 35712(0.002) 128(0.002) 34560(0.002)

N-ZF (k = 2) 64384(0.003) 128(0.002) 65280(0.003)

N-ZF (k = 3) 121728(0.005) 128(0.002) 126720(0.006)

Table 4.4: Complexity comparison between the N-MMSE and direct MMSE methods in a 2 x 2

MIMO-OFDMA system (N = 128, {D1, Do} = {0,0}, and {S1, S2} = {2, 2}).

Methods Real multiplications | Real divisions (ratio) | Real additions (ra-
(ratio) tio)

Direct MMSE 45086976 65792 45027072

N-MMSE (k = 1) | 69377 (0.0015) 2560 (0.0389) 68352 (0.0015)

N-MMSE (k = 2) | 130817 (0.0029) 2560 (0.0389) 139008 (0.0031)

N-MMSE (k = 3) | 253697 (0.0056) 2560 (0.0389) 280320 (0.0062)

91




92



Chapter 5

CFO-induced ICI Mitigation for OFDMA
Uplink Systems

§ 5.1 Signal Model

In the previous chapters, we discuss the mobility-induced ICI in SISO/MIMO-OFDM(A). Ex-
cept for mobility, CFO also induces ICI‘in"an OFDM-based system. In this chapter, we will
focus on the CFO-induced ICI in an OFDMA uplink system. In an OFDMA uplink system
with () active users, the available bandwidth is divided into N equally spaced subbands. Each
subcarrier uses a subband with bandwidth 1/(NT}), where T is the sampling period. In such a
system, () users share the N subcarriers. Without loss of generality, we assume that each user
uses Ny = N/(Q subcarriers. For the gth user, the transmitted frequency-domain signal at the
kth subcarrier is denoted by Z7, where k € T, and Y, is the set of the subcarrier indices for
the gth user. It is assumed that Y; (Y, = (0 for i # j and U?:l T,=1{0,1,2,...,N — 1}
Usually OFDMA adopts the interleaved subcarrier allocation scheme. In other words, T, =
{¢g—1,¢q—-14Q,...,¢q— 1+ (N/Q —1) x Q}. Since the subcarriers assigned to the different
users are interleaved in the whole bandwidth, this scheme can achieve the maximum frequency

diversity. For each user, we assume that the CP length is long enough to prevent the ISI effect.
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Note that the channel we consider here is quasi-static, i.e., it is time-invariant in one OFDMA
symbol period.
Consider a specific OFDMA symbol for the gth user. The channel output signal, after CP

removal, can be expressed as
y? = H%9, (5.1)

where xY is the vector representation of the gth user’s time-domain OFDMA symbol, i.e., x¢ =
(1/v/N)Gx9. Here X7 is the corresponding frequency-domain signal vector. The matrix, HY,
is a circulant channel matrix with the first column vector being h? which is the channel response
x9 experiences. Zeros are padded in h? since the channel length is assumed to be smaller than
the CP length. Note that HY can be decoupled as G H’G, where H is a diagonal matrix with
the diagonal vector of h? = /NGh? and elements of X? are nonzeros only in the designated
subcarrier positions. The receive time-domaintfOFDMA symbol from () active users can be

expressed as
Q
r= Z E%y! 4 v
q=1

1
VN

In (5.2), E? denotes a diagonal matrix and its diagonal elements consist of U, 5, 0<k<N-1,

Q
> EH'GTR 4 v, (5.2)
q=1

j2meqk
where U(f — ¢ ¥ and €4 1s the normalized CFO (with respect to the subcarrier spacing) for

user ¢. Also, v denotes the noise vector. After the FFT operation, we have the corresponding

frequency-domain signal as

= E'y+7, (5.3)

where v = vV NGv, E! = GE‘GY, and y? = HI%9, Note that EY is a circulant matrix.
Denote its first column as €7. Then, €7 = (1/vN)Ge?, where e? = [U°, U}, ..., UN~']". Let
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X = [0, 71, ..., Tn_1]T be the composite transmit data (for all users), h = [hq, hy, ..., hy_1]T
be the composite channel frequency response (for all users), and h! = [Eg,?f{, e ’E?V—l]T'
Then, 7;, = fz and l~zk = ?Lz when £ € T,. We also define a diagonal selection matrix S¢ such

that

. L, JjeTy,
S(j, j) = ! (5.4)
0, otherwise.

Thus we can express the receive signal in (5.3) as [50], [51]
Q o~ o~
T= (Z Equ> HX + v
q=1

=My + v, (5.5)

where H is a diagonal matrix with the diagonalvectorbeing h, y = HX, and M = Zqul E7S¢ =
Zqul GE?G*8? is the CFO-induced ICI matrix. From the above formulation, we can see that
the ICI matrix is composed of diagonal ‘and DFT/IDFT matrices. This ICI matrix structure will

be exploited in the developed low-complexity method.

§ 5.2 Previous Methods

§ 5.2.1 Conventional Method

Since CFO induces the self-ICI and MUI, the system performance can be seriously affected.
Thus it is crucial either to correct CFOs or to mitigate the ICI effect. Several ICI mitigation
methods have been proposed in the literature [45], [46], [47]. In this subsection, we will first
review the work in [45].

In a single-user OFDM system, CFO is an important factor affecting the system perfor-
mance. Since CFO produces a phase rotation on the receive time-domain signal, the conven-

tional method compensates for the effect by a phase de-rotation operation. In an OFDMA uplink
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system, this method can also be used to compensate for the CFO effect [45]. From (5.2), the

compensated signal for user ¢ by the conventional method can be written as

Yo = (E)r
Q
=> (E)"E%y!+ (E)"v
q=1
Q
=y + ) (E)Ey +(E)"v. (5.6)
por
MUI

From (5.6), we can see that the first term is the desired signal and the second term is the MUIL.
Note that the MUI after CFO compensation can becomes smaller or larger. If the CFO compen-
sation for the sth user makes the resultant CFO,of the gth user, ¢, — ¢;, become larger, a larger
MUI from the gth user will be induced..”We then.conclude that the conventional method can

compensate for the self-induced ICI, but not MUL

§ 5.2.2 CLJL Method

Since the time-domain conventional method in [45] may induce a larger MUI, the method in
[46], called the CLJL method, compensates for the CFO-induced ICI in the frequency domain.

From (5.3), the CFO-compensated signal for the ith user can be written as follows:

Yorm = Si(ﬁi)HSi?
= S'(E)"S') "E% + S'(E)"S'V
q=1
= S'(E)S'EY + ) S'(E)'S'EY +S(E)"S'V, (5.7)
q=1

q#i
N

J/

MUT
From (5.7), we can see that the first term is the desired signal after CFO compensation, and

the second term is the MUL It is apparent that the desired signal suffers from an amplitude
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reduction, and the MUTI still exists. When the CFO is large, the performance of the CLJL

method will be unsatisfactory.

§5.2.3 CLJL-PIC Method

Since the methods in [45], [46] suffer from the MUI, the method in [47], called the CLJL-PIC
method, further suppress the MUI using the PIC technique. The CLJL-PIC method can be

summarized in the following steps:
1. Using the CLJL method to obtain the initial estimate ¥ for all active users
y, = S{EHISTE, i=1,2,...,Q, (5.8)
where ?; is the estimated data of user ¢ at the pth iteration.

2. Regenerate the MUI by E' and y;',_l obtained at the (p — 1)th stage. Then cancel the

regenerated MUI from the received-signal

Q
’f;):’f-—Zqugfl, i=1,2,...,Q, (5.9)
g=1

qFi

where Y'; is the output signal after the PIC processing at the pth stage.
3. Using the CLJL method to compensate for the CFO for each active user

v, =SUE)ST, i=12....0Q. (5.10)

4. Repeat Step 2 and Step 3.

The main drawback of this method is that its performance is affected by the initial estimate
v, used for the PIC processing. When a large CFO occurs, the performance improvement by

the PIC technique with the poor initial estimates (owing to the large MUI) will be limited. If
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the modulation scheme has a large QAM-size such as 64-QAM, the performance will become

sensitive to the residual MUI. Note that Step 2 can be implemented more efficiently as follows:
T = <?-ZEng_1> +Ey,_,, i=12,...,Q. (5.11)
q=1

This formula will be used to evaluate its computational complexity in a comparison described

later.

§ 5.3 ZF Method

§ 5.3.1 Proposed Newton-ZF Method

From (5.5), we can see that a straightforward methed:.to ¢Compensate for the CFO effect is the

ZF method given by [51]
S VB (5.12)

Although the direct ZF method can completely suppress the CFO effect, it needs to invert the
ICI matrix with dimension N, the FFT size. When the size is large, the required computa-
tional complexity can become prohibitively high. Unfortunately, in real-world applications, the
symbol size is usually large. For example, for IEEE 802.16e, the size can be as large as 2048.
Here, we propose a low-complexity ZF method to solve the problem. The main idea is to use
an iterative procedure such that the direct matrix inversion can be avoided. Specifically, we use
Newton’s method as we did in the case of mobility-induced ICI.

Base on the previous discussion on the mobility-induced ICI, we also approximate the ma-
trix inversion of M via the expanded form of Newton’s iteration as

2k—1

Wi=Y_ Thom(WeM)" W, (5.13)

m=0

98



Moreover, our final objective is to obtain the CFO-compensated result W, r not the matrix

inversion Wy, itself. Multiplying both sides of (5.13) by the receive signal r, we then have

2k _1

WiF = Y T (WoM) "W, (5.14)
m=0

Lety, = Wir and §,, = (W M)™W,r. According to these definitions, we can rewrite (5.14)
as

2k_1

Ve =Y CknSm. (5.15)
m=0

Based on the definition of §,,, it is simple to see that

Sma1.= (WoM)5,. (5.16)
As a result, S, can be recursively calculated. With'this approach, we have transformed the
matrix-to-matrix multiplications®in"(3.13) into the matrix-to-vector multiplications in (5.15)
and (5.16).
To complete our low-complexity: algorithm; we further let W be a diagonal matrix and
explore the special structure inherent in the CFO-induced ICI matrix, M. Recall that M =
Zqul GE?G!SY. Thus, we can then rewrite (5.16) as

Q
Smi1 = WoG ) _E’(G"8%,,). (5.17)

g=1
Note that operations in (5.17) only involve vector multiplications, IDFTs, and a DFT. It is well-
known that DFT/IDFT can be implemented with FFT/IFFT and then the required computational
complexity can be greatly reduced. Thus, evaluation of (5.15) only involves vector multiplica-
tions, FFTs, and IFFTs. The required computational complexity is reduced from O(N?) to
O((Q + 1)N log, N).

With the interleaved-OFDMA structure, the computational complexity can be reduced fur-

ther. LetS,, = [5,,(0),5,u(1),...,5n(N—1)]" and ud, = S%,,, = [u,(0),ud (1),...,ud (N —
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1)]7. From the definition of SY, we have

, Sm(i), 1€,
ul (i) = (5.18)
0 , otherwise.
This is to say that uf, corresponds to an upsampled sequence of the desired elements in S,,,. The
nonzero elements in u?,, denoted by d?, = [5,,(¢ —1),5m(¢— 14+ Q),...,Sm(¢— 1+ (N/Q —
1) x Q)]", can be obtained by circularly shifting u?, with ¢ — 1 elements and downsampling the

result with a factor of Q. Let d;, = (1//Q)GX d¢,, where Gy, is an N, x N, DFT matrix,

. . 9 .
and construct an NV x 1 vector by duplicating d,,, (7 times shown as

al =[(d)7,....(d)"". (5.19)

m m m

Consequently, we can obtain G S%s,, by the:féllowing method

GPsts,, = C7%al, (5.20)
where C? is a diagonal matrix with the'diagonalvectorof ¢4 = [Z0,Z,, ..., Z)~']" and Z} =
e . Note that the operation C? results from the-circlur shift of u?,. Equation (5.20)

implies that we can implement G S%s,,, by an IDFT with dimension N/ instead of N. Using

this approach, we can reduce the computational complexity further by rewriting (5.16) as

Q
Sms1 = WoG ) _EC’l,. (5.21)

q=1
Note that al, is a column vector and both C? and EY are complex diagonal matrices. As as-
sumed, W is a diagonal matrix. Equation (5.21) only involves one DFT with size N, () IDFTs
with size N/(@, and some vector operations. As mentioned, DFT/IDFT can be efficiently imple-
mented with FFT/IFFT. Finally, the required computational complexity is reduced from O(N?)
to O(N log,(N?/Q)).

The final thing we have to deal with is how to determine the initial matrix W,. A well-

designed initial values can reduce the number of iterations significantly and provide good mit-
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igation performance. Let Wy = diag([wo, wy, ..., wy_1]7). Again, we adopt the minimum-

Frobenius-norm criterion to obtain optimum initial values. The criterion is given by

Wopio = arg min [Ty — WoM|3. (5.22)

Wo

We can expand ||Iy — WOMHQF as follows:
N-1N-1

Ty — WoM|% =33 [6(i — §) — w2, (5.23)

i=0 j=0
where m; ; = M(z, 7). Then, the optimum initial values for minimizing (5.23) can be obtained
by setting the first derivative of ||Iy — WOMH% with respect to wj, to zero. The first derivative

of [Ty — WJ\ZH% with respect to wj can be found in

P - . No1 o
oz {1y = WoMI5 b = =i s + wopte 3 [ | (5.24)

As aresult, we can have the optimal initial yalue wy; denoted as wopy k., as

Wopt,k = ﬁl—z’f“ (525)
> jo | ;]
For further complexity reductionzwe can makeran approximation to (5.25) as
,",',"L*
L (5.26)

Horth = Zj:<k—5:k+S,N> |T~”k,j |2 ’
where S is a parameter controlling the number of ICI terms considered (0 < S < N/2—1). The
approximation is based on the fact that the CFO-induced ICI on a subcarrier mainly comes from
neighboring subcarriers. Moreover, this approximation is only for the initial matrix calculation.
The final result will be updated by Newton’s method. For easy reference, we denote this method
as the N-ZF method.

For the direct ZF method, the matrix inversion is obtained by solving a set of linear equations
as M?Z » = T, where ¥, is the ZF-compensated y. This can be implemented by triangular
factorization (Gaussian elimination), and forward and backward substitution [69]. Finally, for
signal detection, a conventional one-tap FEQ is applied to each subcarrier (compensating for

the channel effect). We can express the result as X = ﬁ_l?, where X is the estimate of x while

y is the CFO-compensated y.
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§ 5.3.2 Pre-compensation Method

If CFOs are large, the performance of the proposed method may be affected. The larger the
CFO, the worse the performance it will result. In OFDM systems, we can compensate for the
CFO effect with a phase de-rotation operation. Although the same method cannot be used to
compensate for all CFOs here, it can be used to reduce their magnitudes in some cases. Note
that this is equivalent to a pre-compensation (PC) approach. Let the receive signal be pre-
compensated by a normalized CFO value e. Thus, the resultant CFO for the ¢th user, denoted

as g, 1s now changed to
Pg = €4 — €. (5.27)

Here, we propose a minimum square error criterion, shown below, to obtain optimum e, i.e.,
Q
€t — Min E gog. (5.28)
€
g=1

Setting the first derivative of Zqul gag with respect to € to zero, we can obtain the optimum e

for (5.28) as

1 Q
w =5 3 e (5.29)
q=1

From this result, it is simple to see that the optimum ¢ is just the mean of all CFOs. Compen-

sating for a pre-determined CFO can be implemented by windowing the receive time-domain

. . . . 2mkeopt
signal with the windowing vector w = [U, U!, ..., UN=1" where U* = e~~~ . Thus, the

PC method will need extra N complex multiplications which is minor compared to other oper-
ations. In simulations, we will show that the PC method can greatly enhance the performance

of the proposed algorithm in some cases.

§ 5.3.3 Complexity Analysis

In the previous subsections, we have proposed the N-ZF method for an interleaved-OFDMA

uplink system. In this subsection, we will analyze the computational complexity of the proposed
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method, and compare it with that of existing methods. From (5.15) and (5.16), we can clearly
see that the computational complexity of the proposed method mainly consists of the following

three parts:

1. s, iteration, where S, .1 = (WoM)S,, and 5o = Wr,
2. M construction with M = ZqQ:1 f)qu,
3. ‘W calculation with (5.26).

Since the operations in S, iteration can be implemented by (5.21), we only need one FFT
operation with size N, Q IFFT operations with size N/, and a couple of vector operations. As
aresult, we require (IV/2)[log, N+log,(N/Q)+4Q)] CMs and N [log, N+log,(N/Q)+(Q—1)]
CAs. In addition, we need N CMs for Sq=: Wy, and 2N RMs for each cfn§m in (5.15). As
to the construction of M, we first Have to,obtain E€by &7 = (1/v/N)Ge? for each user. This
will require (1/2)QN log,(N) CMs, and QN Jog, (N} CAs. Despite the diagonal property of
W, we can use the special structure of M to reduce the complexity further. To see this, we can

rewrite M as

M(;,j) = C;(€<9>) j=0,1,...,N — 1, (5.30)

where C;(a) denotes the circular shift of a column vector a downwards or a row vector a left-

wards by j elements. From (5.30), it is straightforward to see that

M(i,:) = Cjq (M(z‘ﬂ@,:)), i=0,1,...,Q0—1, j=01,....,N,—1. (530
As a result, we only have to calculate Wq(i, i) fori = 0,...,Q — 1. This is because

Wo(i,i) = Wo(i +jQ,i 4+ jQ), i=0,1,....,Q0—1, j=0,1,...,N,—1. (532)

As mentioned, we can only take some neighboring ICI terms into account for W, calculation.
Lete? = [e,ef,...,e% |]7. Thus, we only need the following values: {E?Nfs), . E{(IN—I) , €0,

€f,...,et}forg=1,2,...,Q. As aresult, we require Q(2S + 1) CMs, QS CAs, and 2¢) RDs
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for Wy, calculation. The required computational complexity is summarized in Table 5.1. For
the proposed method with PC, only extra N complex multiplications are required. Table 5.1
also shows the required computational complexity of the CLJL-PIC method and the direct ZF
method [69].

Table 5.1: Complexity comparison among proposed method, CLJL-PIC method, and direct ZF

method.

Complexity | Proposed method CLJL-PIC method Direct ZF method

Real multi- | 2(2* =1+ Q)N logy(N)+ | 4[p+(p+1)/QIN?+ | $N* + 5N?  +

plications | 2(2¥ — 1)Nlog,(N/Q) + | 2QN log,(N) 2QNlogy(N) — 3N
[8(2F—1)Q+2(2F+1)]N+
4Q(25 + 1)

Real divi- | 2Q) 0 N2+ N

sions

Real addi- | 3(2" —1+Q)Nlogy (N Va[pHpr/QIN?+ | 3N°  +  IN?  +

tions 3(2F — 1)N'log,(N/Q) + 1"3QN10g,(N) — 2N | 3QN logy(N) — &N
[6(2F — 1)Q + 2]N +
20(35 + 1)

§ 5.3.4 Performance Analysis

For an iterative algorithm, the convergence problem is usually a main concern. The proposed
algorithm uses Newton’s iterative algorithm; however, the convergence is less critical here.
This is due to two facts described below. The first one is that for the application considered
here, the proposed algorithm converges for most of the cases; only in few cases, will it diverge.

The second is that the required number of iterations is pre-determined. Thanks to the fast
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convergence property of Newton’s iteration and good initial values we developed, only two or
three iterations are necessary if it converges. Since the iteration number is finite, the proposed
algorithm will never diverge. As shown below, even for divergence cases, SINR can still be
increased for the designated iteration number. We will provide two analysis approaches mainly
based on the analysis in Chapter 2. The first one is simpler, but the result is only approximated;
the other one is complicated, but the result is exact. The first approach can provide an intuitive
understanding of the convergence behavior of Newton’s method. Here, we start with the simpler

one. We first perform the eigenvalue decomposition for ﬁo as follows:

R, = UDU ', (5.33)
where U = [ug, uy, ..., uy_1] is a matrix composed of eigenvectors of Rg, and D = diag([\o,
Ayeey A N,l]T) is a diagonal matrix having the ith €igenvalue, \;, as its ith diagonal element.

We assume that |\;| > |);| for i < j.'Since Ry = R2_, we can then decompose Ry, as

Ry = B2

—uUD?'Uu-, (5.34)

If |Ao] < 1, then R), — Oy as k — co. Thus, we can have the convergence condition for
Newton’s iteration as p(Ry) < 1, where p(Ry) denotes the spectral radius of Ry. This is to say,
for Newton’s iteration to converge, the amplitudes of all eigenvalues of f{O have to be smaller
than one. As mentioned, this condition holds for most of the cases. In few cases, the condition
dose not hold; however, the number of eigenvalues with amplitudes greater than one is small
and their amplitudes do not deviate from one much. These results can be easily observed from
simulations though difficult to be proved theoretically. In what follows, we will show that even

for divergence cases, we may still benefit from Newton’s iteration.

Let U™! = [po,p1,---,Pn_1] . By definition, f{k =1Iy— Wkﬁ We can represent the
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CFO-compensated ICI matrix as
WM =Iy - Ry
N—
=Iy— Y Mup]. (5.35)

Let |\;] > 1fori=0,1,...,P—1and || < 1fori=P,P+1,...,N — 1. Thus, we can
rewrite (5.35) as

P-1 N—-1
WM=1Iy-> Xup! - Aupl. (5.36)

1=0

As for W, we can reformulate it as

W, = 2Ly — W, M)W,

= (Iy + Ry ){In + Riues) . oIy + Ro)Wo. (5.37)

Using (5.34), we can further express Wy, as

= U(Iy+D¥ YU 'Ufy + D* U'... UIy +D)U'W,
N—-1 (k—
— Z {H (1 +)\2 }ujpTWO
j= 0
N—
= d> #1;P) W, (5.38)

=0

b

where ¢; ), = Hf;ol (1+ )\fl) With (5.36) and (5.38) , the CFO-compensated signal can be

expressed as

¥, = WMy + W,v

P-1

k k
=y-> Mup/y- ZA2 wp!y + Vi
=0 j=P
N P-1 g o N-1 " . N—1 .
=y - ) N uwp/y—> N wp[y+ > 6up;vo, (5.39)
i=0 j=P §=0
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where v, = W, v. Since the eigenvectors {ug, uy, ..., uy_1} span the N-dimensional space,
~ ~ . ~ N-1 ~ N-1
we can decompose y and Vv, using these vectors. Lety = > ," " fiw; and vy = >, yu,

respectively. Then, we can rewrite (5.39) as

N—

P—-1 N—-1 1 N—-1 N—-1 N—-1

_ ~ k k

Se—§ - S W up! (z ﬁ) Y ! (z ﬁ) +3 b (z 7>
i=0 1=0 P 1=0 =0 1=0

j:
P-1 N-1 N-1
~ k k
=5 -3 NG - Y M Bu+ Y g
i=0 j=P Jj=0

=Y +Yiit+ Yin (5.40)

- P-1 ok N1 yok - N-1 - .
where ¥y, = — >0 AP Biwy — D000 p A Bjuy, and ¥y, = 3000 ¢4, Note that ¥y ; is
the residual interference term and ¥, ,, is the noise term. The average SINR for the kth iteration,
denoted as SINR}, can be expressed as

E{y'y}
EAY Tt T BT T int

SINRE — (541)

Assume that cross-correlations of u;’s are-small, ‘and can be ignored. Then, the powers of the

desired signal, interference, noise can be approximated as

N-1N-1
E{y"y} =)  E{5 6w w
1=0 I'=0
N—1
~ Y E{I6%, (5.42)
1=0
P-1 N-1 H /p_q N-1
—H — k k k k
E{ka,iyk,i} =F (Z )\12 ﬁiui + Z )\? ﬁjuj) (Z )\12, ﬁi,ui/ + Z )\?/ /Bj’uj’>
1=0 j=P =0 j'=P
P-1 N-1
k+1 k+1
Y NPT BB+ D NPT E(BI%, (5.43)
1=0 I=P
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and

N-1 H /Ny
E{?ﬁn?k,n} =E (Z ¢j,k'yjuj) (Z ¢j',k%"ua">
j=0 §'=0
N—-1
~ ) bk
j=0

Finally, the average SINR can be approximated as
N—
o E{5I"}
S50 NPT BB+ S5 N BLAR + 5 i

B SP
1P, 4+ IPy + NP’

where SP = 350" E{|A}, 1Py = 00 NPT B{GPY 1P = 05 NPT E{IAP,

*E{|v;’}- (5.44)

SINR? ~

2E{|vil*}

(5.45)

and NP = ij;ol |, k|>E{|7,|*}. Now, we can examine the three terms in the denominator of
(5.45). The first term IP4, involving eigenivalues,with.amplitudes greater than one, is monoton-
ically increased, and the second term,-involving eigenvalues with amplitudes less than one, is
monotonically decreased as k is increased. Recall that only:few eigenvalues’ amplitudes will
be greater than one (i.e., P is small), and their amplitudes often do not deviate from one too
much. Also, from the definition of NP, it can be shown that the third term tends to be increased
when £ is increased and its variation is not large (see the definition of ¢, ;). Then, it is simple to
see that in the first several iterations, the amount of decreasing in IP, will be larger than that of
increasing in IP;. We then conclude that for typical divergence cases, SINR will be increased
and then decreased as the iteration is proceeded. Thus, if we can stop the iteration before SINR
is degraded, we can still have the performance gain even though the iteration diverges eventu-
ally. Due to the fast convergence property of Newton’s method, the number of iterations can be
as small as two or three for convergent cases. For divergent cases, SINR is still increasing in
the first two or three iterations. Note that the magnitudes of eigenvalues are related to those of
CFOs. The proposed method with CFO pre-compensation can reduce the magnitudes of CFOs.
Thus, it can improve the performance of the proposed method. As an example, we let N = 64,

@ = 4, S = 2, and the normalized CFO (for each user) be randomly sampled from the interval
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[—p, p], where p < 0.5. After exhaustive simulations, we found that without PC, the largest p
rendering the amplitudes of all eigenvalues smaller than one is 0.36, and with PC, it can be as
large as 0.5.

We now develop the second method to analyze the convergence behavior of the proposed

algorithm. Recalling (5.5) and (5.14), we can rewrite the receive signal after CFO compensation

as
2k—1 - 2k—1
Wit =Y T (WoM)" 5 + > 8 (WoM)" W
m=0 m=0
= Tyy + Wi, (5:46)

where T, = 23:;01 Ckm(WoM)™ " is the CFO-compensated ICI matrix. Define B = B,(Z)
as a banded matrix with upper bandwidth b'and lower bandwidth b, i.e., B(i, j) = 0 whenever
|j —i| > b, and B(i,j) = Z(i, j) otherwise;In addition, B = B,(Z) is the complement of
By(Z), i.e., B(i,j) = Z(i,j) whenever |j —i|"> b; and B(i, j) = 0 otherwise. Then, we can

rewrite (5.46) as
Wt = Bo(TR)§ + Bo(T1)y + Wyv. (5.47)

The first term, By(T})y, is the desired signal, the second term, B,(T})y, is the interference,

and the last term, WV, is the noise. Let y = [40, 71, .. ., yn—1)%, and vV = [T, 01, ..., On_1]T.
Then we can define the average SINR for the proposed method with £ iterations as follows:
E{||Bo(Tw)y]|?
E{lBo(Ti)y |} + E{I[Wiv|3}
BT}
oG |1Bo(Tw) |7 + o3[ Will%
By(T4)]|?
BTl 5.48)

1Bo(Tw)I[% + 2| Wil[%

where 02 = E{|[7i|’}(0 < i < N —1),02 = E{[t;|*}(0 <i < N — 1), and ¢ = 03 /02 =
IM||%/(N x SNR) = 1/SNR. For comparison, the average SINR of the receive signal without

109



CFO-compensation is also calculated as

snpe - PAIB(M)F3}
E{[|Bo(M)y2} + E{[IV]12}
B3

02| Bo(M) |2 + No?
B3
IE + Ny

— (5.49)
[Bo(M
To obtain the SINR}, in (5.48), we must calculate each element in T, and W. Since

M = Zqul E7S9 , the CFO-compensated ICI matrix T, can be expanded as

ok 1 Q m+1
Te= ) Cim (Z WOE‘IS‘1>

m=0 q=1
2k 1 Q Q m

Q
=) Gmd > Yo [fWeEs st
m=0 m,m=

qm,0=1 qm,1:1 (] 1.f=0
2k 1 Q Q Q
= Tmq D ey Y AL, (5.50)
m=0 m,0=1 gmi1=1 Gz ==

as

m=0 q=1
2k_1 Q Q Q
= Z Ck,m Z Z Ce Z Am_1W0
m=0 qm,0=1 gm,1=1 gm,m—-1=1
2k_1 Q Q Q
=Y Gm{ >, > - > Buy, (5.51)
m=0 qm,0=1 gm,1=1 gm,m—-1=1

where B,,, = A,, 1 W. In what follows, we calculate each element of A, (i, jm). To make

the expression simpler, we denote w,,;; as w;. First, we compute A(ig,jo) which can be
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expressed as

Ay (i, o) = [WoE©S©o]; o
= U}<1‘0’Q>,é(?£,jo’]v>6(q0,0 -1-< jUa Q >) (552)

Next, we express A (i, ji) as

Al(ilajl) — [(Woﬁql’osql’o)(Woﬁql’lsql’l)]il,jl

N—-1

— ~q1,0 ~q1,1 1 .

= E w<i1,Q>w<k0,Q>e<i1fko,N>e<kofj1,N>5(q171 1- <ji,Q>). (5.53)
k=0
kOequ,O

Furthermore, A,(is, j2) can be presented by

As(iz, o) = [(WoE®0S®0) (WE®1S%1) (W E®?S%)];, ;,

N-1 N-1
_ ) ~(q2,0 ~q2,1 ~(q2,2
= E E W<ini@>W<ke,Q3W<k1,Q>C iy ko N>C<lo—ki,N>C<ki—jo,N>
k1=0 ko=0
k1€Tq9 1 k0€Tag g
0(go — 1= < k1, Q@ >)o(gop = 1— < 7o, Q >). (5.54)

Finally, we can formulate A, (7,5 s )-form->.1 as

A (i, jm) = [(WOEQm,OSQm,O)(WOEQm,I SeY (Woﬁqm,msqm,m)].

TmsJm

N—-1 N-1 N—-1

- Z Z e Wi, @>W<ko,Q>W<ky,Q> - - - W<ky_1,Q>
ko —1=0 km—2=0 ko=0
km_leTqm,m—l km—2€Tqp, m_o ko€Yqp, o
~(qm,0 ~qm,1 ~qm,2 ~Gm.m
€ i ko NSC ko ki NSCehs—ka N>+ Cabm 1 jr N5O0(@ma — 1= < k1, Q >)
8(qmo — 1= < ko, Q >) .6 (qmm—1 — 1= < kpm_1,Q >)
5(qm,m — 1= < jm,Q >). (5.55)

Since & = (1/v/N)Ge?, we can further express ¢} as

| V-l
~ _ L j2mneq —j2znk
€}, N el N e N
n=0
_ sinfr(k —€)] jroe(5h), (5.56)
N sin [W(k]?q)}



By (5.56), we can expand m, ; as

~<J,Q>+1
mZJ e<z -7, N>
_ Sln{7[< i—j, N> _6<]'7Q>+1]}efjvr[<ifj,N>fe<j,Q>+1}(%)_ (5.57)

. m[<i—j,N>—ec;j 0>+1]
N sin { ~

With m; ;, we can further formulate w.y, o~ as

ok
M k,Q>,<k,Q>

Wek,Q> = o~
’ |2
Zj:<<k,Q>fS:<k,Q>+S,N> [M<k@> 4

(~<k,Q>+1)*

Z |~<j ,Q>+1 |2
j=<<k,Q>—S:<k,Q>+S,N> €<k Q>—3,N>

N—-1
TE
NSID[7T6<k Q>+1] —J <k Q>+1( )

= ’ , . (5.58)

Sin |:7r€<k’Q>+1j| Z sinz{ﬂ'[<<k,Q>*j,N>*6<j,Q>+1]}
N ‘]:<<k7Q>*SZ<kaQ>+SyN> Sinz{ 7r|:<<k‘,Q>—j,N>—6<j’Q>+1j|

N

By (5.56) and (5.58), we can completely.expressii (i, . Jns) in (5.55). From (5.55) and (5.58),

we can formulate B,,, (i, j, ) as

Bm(zma ]m) - Amfl (Zm; jm)w<jm,Q>

A1 (im, ) NSidregs 0> +1 e ImC<im: o>+1(75")

TeimQri] SN . sin® {71[< <jm,@>—j, N>—€<jpn.@>+11} °
N J:<<JW’Q>7S:<JW7Q>+S’N> . 2{7"[<<jm’Q>j’N>E<jm,Q>+1]}
sin
N

sin [

(5.59)

Now we can calculate each term in (5.48) by (5.55) and (5.59). The term || Bo(T})||% related to

the desired signal can be formulated as

2

N-1 |2k—1 Q Q Q
IBoTZ =D 1D my D D oo > Aulimim) ¢l - (5.60)
1m=0 [m=0 qm,0=1qm,1=1 qm,m=1

the interference-related ||Bo(T})||% is expressed as

2

N-1 N-1 |[2kF-1 Q Q
Jm=0 im=0 qm,0=1 qm,m=1

im#im
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and ||[W||% can be calculated by

2
N—1 N—-1 [2F-1

Q Q
IWillE =D 31> @md Y. - Y, Bulimjm) | - (5.62)

Jm=0tm=0 | m=0 qm,0=1 qm,m—1=1

Thus, the average SINR of the proposed method with £ iterations can be explicitly calculated
by (5.55), (5.59), (5.60), (5.61), and (5.62). As for (5.49), we can further express the result by
m; ; in (5.57) as

Z]'Vfl sin2{7re<j,Q>+1}
3=0 N2Sin2{76<]}\?>+1}
) — - .
Z sin?{7w[<i—j,N>—e<; 0>+1]} + N’(,b
= sin2{”[<i_j’N>_€<fsQ>+1]}
N

SINR® =

(5.63)

We also evaluate the SINR for each subcarrier. The SINR for the proposed algorithm with

k iterations in the ith subcarrier, denoted as SINR} 5.is shown to be

Bt "}
E{IZ S} B0 whv

SINR},; =

Z o' It |2+ Z w2
i |2

Z o' [t |2+¢Z ! fwk

(5.64)

where t¥, = T}, (4, j) and w}; = W(i, 7). Here, Ty (i, j) and W(i, j) are defined in (5.50) and
(5.51), respectively. The ith subcarrier SINR of the received signal without CFO-compensation,

denoted as SINR}, can be described as

E{|mimil*}
E{] Zﬁvol miy;l*} + E{|oi|*}

sin®{me<i,0>+1}

N7 sin?{ T T
N:Ol sin? {7[<i—j,N>—e<j,@>+1]}
i stiHQ{W[<”’N>E<J*Q>+1]

SINRS =

(5.65)

N

.
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§ 5.3.5 Simulations

In this subsection, we report simulation results to demonstrate the effectiveness of the proposed
method. We consider an interleaved-OFDMA uplink system with N = 64, () = 4, and the CP
length N, = 16. The adopted modulation scheme is 16-QAM or 64-QAM. The length of the
channel response, L, is set to 15 for all users, and the power delay profile of user ¢ is described
with an exponential function, i.e., 03,5 = e l/ ZZL:_Ol e’ where [ is the tap index, and o is
a parameter of the function. For later simulations, we let {1, as, a3, ay} = {0.1,0.2,0.3,0.4}
for each user. Each channel tap is generated according to Rayleigh distribution. Also, we have

found that the performance of the proposed algorithm with S = 2 is similar to that with S' = 31.

Thus, in the following experiments, we will only consider the setting of S = 2.

First, we evaluate the validity of our.output SINR"analytic results. Two cases are consid-
ered. Case 1 corresponds to the case that the amplitudes of all eigenvalues of R are smaller
than one, and in case 2 some eigenvalues” amplitudes are larger than one. In case 1, CFOs
= {0.1,-0.2,—-0.05,0.2} and SNR = 30.dB, while‘in case 2, CFOs = {0.49,0.49,0.15,0.4}
and SNR = 15 dB. Note that most of the CEOQjvalues in case 2 are quite large and positive.
Figure 5.1 shows the average SINRs calculated for the proposed method with the approaches
in Subsection 5.3.4. From this figure, we find that the simulated output SINRs are identical to
the results of the exact analysis, which verifies the correctness of the exact analysis. We also
see that in both cases, the average SINR obtained by the approximated analysis is close to that
by the exact analysis, especially when the iteration number gets larger. Just as mentioned in
Subsection 5.3.4, even in the divergent case, the SINR increases for first two iterations. In case

1, the SINR is saturated at the second iteration.

Next, we investigate the effect of input SNR on output SINR. We assume that CFOs are set
to {0.1, —0.2, —0.05,0.2}, and use the result of exact analysis. Figure 5.2 shows the average
SINR for the proposed method. In this figure, we also plot the theoretical average SINR without

CFO compensation using (5.63). From this figure, we can see that the average output SINR is
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improved when the number of iterations increases. For the proposed method with two iterations,
the theoretical average output SINR is almost the same as the input SNR. This result indicates
that the proposed method almost cancels the CFO-induced ICI thoroughly. The theoretical
subcarrier SINR analysis for the proposed method is also shown in Fig. 5.3. Here, the input
SNR is set to 30 dB. From this figure, we can see that different subcarriers have different SINRs
and the SINRs are improved when the number of iterations is increased. When the number
of iterations is two, all subcarriers almost have the same output SINR which is close to the
input SNR (30 dB). We have also tried other scenarios and obtained the similar result. We then
conclude that when amplitudes of CFOs are moderate, a suitable choice for the iteration number

18 two.

Now, we present simulation results to evaluate the BER performance of the proposed method.
We consider a 16-QAM modulation’scheme and set CFOs to {0.1, —0.2, —0.05,0.2}. Figure
5.4 shows the simulation result. “From the figure, itis obvious that the conventional method
and the CLJL method both have a serious.error floor phenomenon. This is because when the
gth user’s CFO is compensated, other users’-CEOs may be enlarged, magnifying MUI. We can
also see that the CLJL method performs slightly better than the conventional method. Since the
CLJL-PIC method further processes the MUI, it improves the performance of the CLJL method.
The CLJL-PIC method with a 2-stage PIC can perform similarly as that with a 3-stage PIC. The
performance bound, in which no CFOs are added, is also shown in the figure. Even with a 3-
stage PIC, the CLJL-PIC method still cannot approach the performance bound. In higher SNR
regions, the performance loss is larger. With only two iterations, the proposed method performs
as well as the direct ZF method. Also, its performance closely approaches the performance

bound.

We also consider a 64-QAM modulation scheme for the same CFO setting in Fig. 5.4 (CFOs
={0.1,—-0.2,—-0.05,0.2}). Figure 5.5 shows the BER performance comparison. We can see
that the performance of the CLJL-PIC method degrades. This is because in high QAM-size

modulation, the performance of an OFDMA system is more sensitive to the residual MUI. The
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performance of the proposed method can still approach that of the direct ZF method.

We further consider a worse scenario, where the CFO of some user is large. Specifically,
we set CFOs to {0.1, —0.4,—0.05,0.2} and use a 16-QAM modulation scheme. Figure 5.6
shows the BER performance comparison. In addition to the conventional method and the CLJL
method, the CLJL-PIC method (even with a 3-stage PIC) performs poorly. In this case, the
PIC method fails to cancel MUI. This may be due to an error propagation effect inherent in the
PIC scheme. The performance of the proposed method is slightly affected. This performance
loss results from the insufficient iteration number. We have shown the result for the proposed
method with three iterations in the figure. It can be seen that the performance can be further

enhanced at the expense of the increased computational complexity.

To clearly see the impact of the CFO magnitude, we consider a scenario that the fourth
user’s CFO is increased from 0 to 0.5. If the CFO of the fourth user is increased, the MUI from
the fourth user will be increased. The CFOs of other thrée users are set to 0.1, —0.2, and —0.05,
respectively. The adopted modulationsscheme 1s'16-QAM and the simulated SNRs are 25 dB
and 35 dB. We simulate the average BER of the firstthree users. Figure 5.7 shows the simulation
result. From this figure, we can see that the' CLLJL-PIC method (with p = 3) is sensitive to the
CFO variation. For SNR = 35 dB, we find that the BER for the CLJL-PIC method begins to
increase when the fourth user’s CFO is 0.1. When the CFO is increased further, its performance
is degraded rapidly. For the proposed method, only little performance loss is observed. If the
iteration number is three, the proposed method almost does not have performance degradation
compared to the direct ZF method. As the results observed above, the proposed method can

have the same performance as the direct ZF method.

Since OFDMA is a multiuser system, the near-far phenomenon may occur. In such a case,
some users may have stronger receive power than others. To realize the impact of the near-far
effect, we report simulations with a scenario that the powers of the first three users are equal
and fixed and that of the fourth user is varied. The power ratio of the fourth user to anyone

of the first three users is defined as the near-far power ratio x ranging from —15 dB to 15
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dB. Let CFOs be {0.1,—0.2, —0.05, 0.2} and modulation be 16-QAM. Similar to the previous
simulation setting, we calculate the average BER of the first three users. Figure 5.8 shows the
result. From the figure, we find that both the CJLJ-PIC and proposed algorithms are affect by

the near-far problem. However, the CJLJ-PIC is more sensitive in the near-far environment.

We consider an extreme case, in which most CFOs are very large and positive. Here, we
set CFOs to {0.49,0.49,0.1,0.4} and use a 16-QAM modulation scheme. In this case, €
is calculated as 0.37, which is large. We compare the performance of all methods mentioned
above. For the proposed method, we also try the PC technique. Figure 5.9 shows the simulation
results. In this case, the conventional method, the CLJL method, and the CLJL-PIC method all
have bad performance. Note that the conventional method can even have better performance
than the CLJL-PIC method. The proposed method without PC does not perform well either.
Only does the proposed method with PC perform'well. Its performance is almost identical to
that of the direct ZF method. The result shows.the effectiveness of the proposed PC method.
We also consider another case that CFOs.are not all positive. Specifically, CFOs are set to
{-0.1,0.3,0.4,—0.2}. Figure 5.10. shows the-:BER:result. We again see that the proposed
method with PC has similar performance with the direct ZF method. These results show that

the PC method can always be applied to improve the performance of the proposed method.

Finally, we present simulation results in an interleaved-OFDMA uplink system with the
large number of subcarriers and more users. Specifically, N = 2048, () = 16, and N, = 128.
The modulation scheme is 16-QAM. The channel length is set to 127 for all users and let
{a1,09,...,a0} = {0,0.2,04,...,3}. CFOs for all users are set to {0.1, -0.2, -0.05, 0.2,
-0.3, 0, -0.1, 0.4, -0.3, 0.05, 0, -0.1, 0.05, -0.1, 0.3, 0.15}. The performances of five methods,
namely, the conventional, CLJL, direct ZF, banded ZF, and proposed methods, are compared in
our simulations. The banded ZF method indicates that it modifies the ICI matrix into a banded
matrix with bandwidth B. Figure 5.11 shows the simulation results. From this figure, we find
that the conventional and CLJL methods both have a serious error floor phenomenon. The

performance of the proposed method with three iterations can approach that of the direct ZF

117



method. The complexity of the banded ZF method depends greatly on its matrix bandwidth.
For a fair comparison, we let B be 16 for the banded ZF method. In this case, the complexity of
the banded ZF method and the proposed method (£ = 3) are roughly equal. Figure 5.11 shows
that the proposed method performs much better than the banded ZF method (B = 16).

From the above simulations, we can see that the proposed method is more robust to the
large modulation QAM-size and CFOs compared to the CLJL-PIC method. In what follows,
we will compare the computational complexity of the direct ZF method, the CLJL-PIC method,
and the proposed method in an OFDMA system shown above (N = 64, () = 4). Substituting
the required parameters into Table 5.1, we then derive the computational complexity of each
method, and show the result in Table 5.2. The number of iterations for the proposed method
is set to two here. Note that the number inside the parenthesis of the forth row indicate the
ratio of the required number of mathematic operations for the proposed algorithm divided by
that of other methods. From the table, we can-seé that.the réal multiplications/additions for the
proposed method is 0.286/0.306 times those for the CLJL-PIC method (with a 2-stage PIC), and
1s 0.037/0.041 times those for the direct-ZF method:-The required number of divisions is small
(for three methods) compared with that of multiplications/additions. For example, the proposed

method only needs 8 real divisions.

Table 5.3 shows the computational complexities of the direct ZF, banded ZF, and proposed
algorithms in an OFDMA uplink system with 2048 subcarriers and 16 users. In this table, the
two numbers inside each set of parentheses (in the forth row) are the ratios of the number of
operations (indicated by each column) required for the proposed method to those of the direct
ZF and banded ZF methods, respectively. From this table, we can see that the real multipli-
cations/additions/divisions required for the proposed method are 0.000271/0.000282/0.000008
times those for the direct ZF method. It is apparent that the proposed method requires a much
lower complexity. Although the banded ZF method can have low complexity, its performance
is not satisfactory. At a similar complexity, the proposed method outperforms the banded ZF

method.
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From the results shown above, we can have following conclusions. Compared to the CLJL-
PIC method, the proposed method not only performs better, but also requires lower computa-
tional complexity. Compared to the direct ZF method, the proposed method has similar perfor-

mance, but requires much lower computational complexity.
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Table 5.2: Complexity comparison among direct ZF method, CLJL-PIC method, and proposed

method when N = 64 and () = 4.

k=2)

0.286)

Methods Real multipli- | Real divisions | Real additions
cations

Direct ZF 373056 4160 368352

CLIJL-PIC (p = 2) | 48128 0 49536

Proposed (S = 2, | 13776 (0.037, | 8 (0.002, -) 15160 (0.041,

0.306)

Table 5.3: Complexity comparison of the direct ZF method, the banded ZF method, and the

proposed method when N = 2048 and () = 16.

Methods Real multiplications | Real divisions | Real additions
Direct ZF 11474937856 4196352 11469003776
Banded ZF | 3275760 69360 3532168

(B =16)

Proposed 3109184 (0.000271, | 32 (0.000008, | 3236064 (0.000282,
(S = 2,0.949150) 0.000461) 0.916170)

k=3)
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Figure 5.11: BER performance comparison for the conventional, CLJL, banded ZF, and direct

ZF and proposed methods (16-QAM modulation, and CFOs = {0.1, -0.2, -0.05, 0.2, -0.3, 0,
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Chapter 6

Conclusions

In this dissertation, we investigate ICI mitigation methods in high-mobility SISO/MIMO-OFDM(A)
and CFO-presented OFDMA uplink systems. Conventional ZF and MMSE methods require the
inversion of a large ICI matrix, and the computational complexity is usually very high. This pre-
cludes the real-world application of the ICI mitigation:methods. This is the motivation of our
development of low-complexity ZF and MMSE algorithms. The main idea is to explore the spe-
cial structure inherent in the ICI matrix resulting from mobility or CFO and to apply Newton’s
iteration for matrix inversion. Using our formulation, we can use FFTs/IFFTs in the iteration ,
and this can reduce the computational complexity dramatically. Note that the FFT/IFFT mod-
ule is embedded in OFDM/OFDMA transceiver, and the required circuitries to implement the
proposed algorithms are limited. We also analyze the convergence behavior of the proposed
methods and derive theoretical output SINRs for some scenarios. Simulations show that the
performances of the proposed ZF and MMSE methods are almost as good as those of the direct
ZF and MMSE methods. In concluding the dissertation, we suggest some possible topics for

further research.

1. In the dissertation, we only consider the ZF and MMSE methods for ICI mitigation. As
described in Chapter 5, other nonlinear methods can be combined with the proposed

methods to obtain further performance improvement. For example, we can use the pro-
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posed ZF or MMSE method to obtain initial estimates of the desired data, and apply SIC
for further processing. Note that in the scenario, we will have two iterative processes.
How to allocate the iteration numbers to obtain the optimum results will be the main

issue.

. For MIMO-OFDM systems, we only consider the application of spatial multiplexing. As
we know, an important class of the MIMO technology is the space-time coding. The as-
sumption for the application of an orthogonal space-time code is that the channel response
must be static during the transmission of a codeword. However, in high-mobility MIMO-
OFDM environments, this assumption no longer holds. As a result, the orthogonality is
destroyed, and the performance is degraded. The proposed ZF and MMSE methods can

then be used to solve the problem.

. Except for OFDMA, there exist other more efficient methods for multiple access. For
example, for MIMO systems we-cafi conduct the ZF method in the transmitter side (other
than the receiver side) to cancel the MUL_This.is usually referred to as the multiuser
downlink technology. The proposéd low-complexity methods may find applications in

the area.

. In this dissertation, we do not consider channel coding. In real-world applications, chan-
nel coding is an essential operation conducted in the transmitter side. If we treat the ICI
as the result of an inner code, and the channel encoder as an outer code, we can then
apply turbo equalization at the receiver. Turbo equalization involves an iteration between
equalization and decoding. The equalization can be realized with the MMSE method.
Note that the input of the MMSE method includes priori signal information. How to
extend the proposed low-complexity ZF and MMSE methods to include the priori infor-
mation will be the main issue. Note that we have two iterative processes, and how to

allocate the iteration number will be another issue.
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