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高速移動單輸入單輸出/多輸入多輸出正交

分頻多工系統的子載波間干擾消除:低複雜

度演算法及效能分析 
 
 
 

研究生：許兆元                 指導教授：吳文榕 博士 

 
 

國立交通大學 

電信工程學系博士班 

 

摘要 

 

在正交分頻多工系統中，一個基本的假設是在一個正交分頻多工符元時間內通道

是靜止不變的。然而，在高速移動的環境下，這假設就不再成立了。因此會造成

子載波間干擾且使系統效能降低。強制歸零(zero-forcing, ZF)及最小均方差

(minimum mean square error, MMSE)等化器是兩個簡單的干擾消除方法。不幸

的，強制歸零等化器需要執行 N N× 子載波間干擾矩陣的反矩陣運算，此處 N是

正交分頻多工系統的子載波數目。當子載波數目變大時，計算複雜度將會變得很

高。對於最小均方差等化器，除了子載波間干擾矩陣的反矩陣運算之外，還需要

一個矩陣與矩陣的乘法運算。這將使得最小均方差等化器的複雜度變得比強制歸

零等化器還高。在本論文中，我們首先提出一個低複雜度的強制歸零等化器來解

決單輸入單輸出正交分頻多工系統中的問題。主要的概念是探究子載波間干擾矩

陣的特殊結構及應用牛頓反矩陣疊代法。依據我們的演算法結構，快速傅立葉轉

換(fast Fourier transform, FFT)可以被結合到疊代過程中，進而使得複雜度
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從 3( )O N 降到 2( log )O N N 。此外，疊代次數約略為一或兩次。我們亦分析所提

方法的收斂行為及推導其訊號干擾雜訊比(signal to interference noise ratio, 

SINR)。對於最小均方差方法，我們首先改寫其數學表示式，使矩陣與矩陣的乘

法運算可以被避免。與先前提出的低複雜度強制歸零方法相似，我們也將探究子

載波間干擾矩陣的特殊結構及應用牛頓反矩陣疊代法來降低最小均方差方法中

反矩陣的高運算複雜度。在多輸入多輸出正交分頻多工系統中，強制歸零及最小

均方差等化器所需的複雜度問題將變得更難以解決。有鑑於此，我們將延伸在單

輸入單輸出正交分頻多工系統中所提出的演算法至多輸入多輸出正交分頻多工

系統中。這樣的延伸應用，使得所降低的複雜度比在單輸入單輸出正交分頻多工

系統中還大。模擬結果顯示，所提出的低複雜度強制歸零及最小均方差等化器效

能跟直接強制歸零(direct ZF)及直接最小均方差(direct MMSE)等化器的效能相

當，但是所需的複雜度卻是大幅降低。最後，我們也將所提的高速移動干擾消除

方法再延伸應用到正交分頻多工存取(OFDMA)上傳系統中並將此概念進一步應用

來消除子載波偏移所引起的干擾。模擬結果顯示，所提方法可以大幅降低所需複

雜度。 
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Abstract 

 

In orthogonal frequency-division multiplexing (OFDM) systems, it is generally 

assumed that the channel response is static in an OFDM symbol period. However, the 

assumption does not hold in high-mobility environments. As a result, intercarrier 

interference (ICI) is induced and the system performance is degraded. A simple 

remedy for this problem is the application of the zero-forcing (ZF) and minimum 

mean square error (MMSE) equalizers. Unfortunately, the direct ZF method requires 

the inversion of an N N×  ICI matrix, where N is the number of subcarriers. When N 

is large, the computational complexity can become prohibitively high. As for the 

direct MMSE method, in addition to an N N×  matrix inverse, it requires an extra 

N N×  matrix multiplication, making the required computational complexity higher 

compared to the direct ZF method. In this dissertation, we first propose a 

low-complexity ZF method to solve the problem in single-input-single-output (SISO) 

OFDM systems. The main idea is to explore the special structure inherent in the ICI 
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matrix and to apply Newton's iteration for matrix inversion. With our formulation, fast 

Fourier transforms (FFTs) can be used in the iterative process, reducing the 

complexity from 3( )O N  to 2( log )O N N . Also, the required number of the iteration 

is typically one or two. We also analyze the convergence behavior of the proposed 

method and derive the theoretical output signal-to-interference-noise-ratio (SINR). 

For the MMSE method, we first reformulate the MMSE solution in a way that the 

extra matrix multiplication can be avoided. Similar to the ZF method, we then exploit 

the structure of the ICI matrix and apply Newton's iteration to reduce the complexity 

of the matrix inversion. For a multiple-input-multiple-output (MIMO) OFDM system, 

the required complexity of the ZF and MMSE methods becomes more intractable. We 

then manage to extend the proposed ZF and MMSE methods for SISO-OFDM 

systems to MIMO-OFDM systems. It turns out that the computational complexity can 

be reduced even more significantly. Simulation results show that the performance of 

the proposed methods is almost as good as that of the direct ZF and MMSE methods, 

while the required computational complexity is reduced dramatically. Finally, we 

explore the application of the proposed methods in mobility-induced ICI mitigation 

for OFDM multiple access (OFDMA) systems, and in carrier frequency offset (CFO) 

induced ICI mitigation for OFDMA uplink systems. As that in OFDM systems, the 

proposed methods can reduce the required computational complexity, effectively. 
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Chapter 1

Introduction

§ 1.1 ICI Problem

IN wireless single-carrier (SC) communication systems, data transmission occupies the whole

available bandwidth. Due to the multipath channel, a SC system usually suffers from the

severe intersymbol interference (ISI). Consequently, a SC system requires a complicated time-

domain equalizer to combat the ISI effect. Compared to a SC system, a conventional multi-

carrier (MC) system divides the whole available bandwidth into many non-overlapped narrow

subchannels and subcarriers are used simultaneously to transmit data on these narrow subchan-

nels. Since each data stream is transmitted on a narrow subchannel, it is subject to little ISI

which makes the channel equalizer simpler. Moreover, since the data streams are transmitted

on independent subchannels, different modulation schemes can be used for the subchannels.

Since the subchannels are non-overlapped in conventional MC systems, guard bands are re-

quired between these subchannels to avoid inter-channel interference. Owing to the extra guard

bands, the conventional MC system is bandwidth-inefficient.

To solve the problem, a bandwidth-efficient MC technique, called orthogonal frequency-

division multiplexing (OFDM), was developed. The technique, dating back to the 1960’s, over-

laps subchannels in an orthogonal way such that bandwidth efficiency can be greatly improved.
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In 1971, Weinstein and Ebert used IDFTs/DFTs to perform the OFDM baseband modulation

and demodulation instead of a bank of subcarrier oscillators [1]. This method provides an

efficient digital implementation of OFDM systems. In 1980, Peled and Ruiz introduced the

concept of cyclic prefix (CP) which fills the vacant guard interval with a cyclic extension of

an OFDM symbol [2]. This results in a circular convolution between the transmit data and the

channel response. With the CP, OFDM can convert a frequency-selective channel into a set of

frequency non-selective channels, and only a one-tap frequency-domain equalizer is required

for each subcarrier signal. This greatly reduces the complexity of the channel equalization in

the OFDM receiver. Nowadays, OFDM is known to be an effective and successful technique

to cope with the multipath channel effect in wireless communications [3]. Since all subcar-

rier signals overlap orthogonally in the spectrum, an ideal OFDM system has no intercarrier

interference (ICI). Thus, OFDM can be easily developed as a frequency-division multiple ac-

cess (FDMA) scheme. An OFDM-based FDMA system is generally referred to as an OFDMA

system [4], [5]. In an OFDMA system, subcarriers are divided into exclusive groups, and

each group is assigned to a user for simultaneous data transmission. The OFDM technique

has been adopted in many systems, e.g. Asymmetric Digital Subscriber Line (ADSL), IEEE

802.11a/g, IEEE 802.16e-2005 [6], IEEE 802.16m, 3GPP Long Term Evolution (LTE), Digital

Audio Broadcasting (DAB), and Terrestrial Digital Video Broadcasting (DVB-T).

For conventional OFDM systems, it is usually assumed that the channel is static during

an OFDM symbol. However, in high-speed mobile environments, this assumption does not

hold anymore. If the channel is time-variant in an OFDM symbol period, orthogonality will be

destroyed. As a result, ICI is induced and the system performance is degraded. The behavior of

mobility-induced ICI has been extensively investigated in the literature [7], [8], [9], [10], [11],

[12]. In [7], [8], it is shown that the interference on a subcarrier mainly comes from neighboring

subcarriers. Also, the interference level is proportional to the Doppler frequency.

Another factor that affects orthogonality in an OFDM system is carrier frequency offset

(CFO). In OFDM systems, CFO is always present due to imperfect oscillators. In the presence
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of CFO, the orthogonal property of an OFDM system is also destroyed and the ICI is induced,

degrading the system performance significantly [13]. Different from the CFO-induced ICI in

OFDM systems, CFO in OFDMA uplink systems causes not only the self-interference but also

the multiuser interference (MUI), degrading the system performance even more severely [14],

[15]. ICI mitigation has been studied by many researchers and this will be the focus of the

dissertation.

§ 1.2 ICI Mitigation

Since an OFDM system is vulnerable to mobility and CFO, various techniques have been pro-

posed to cope with these two kinds of ICI. First, we discuss the mobility-induced ICI problem.

Two algorithms are well-known, namely, 1) the zero-forcing (ZF) method and 2) minimum

mean square error (MMSE) method. Unfortunately, these methods require the inversion of an�=�^�
ICI matrix, where

�
is the number of subcarriers. Except for a matrix inversion, the

MMSE method also needs to conduct an extra
�����

matrix multiplication. Thus, its com-

putational complexity is even higher than that of the ZF method. The payoff for the higher

complexity is its enhanced performance. If
�

is large, the computational complexity of both

algorithms can become prohibitively high. Systems with a lot of subcarriers are not uncommon

in real-world applications. For example, for the application of DVB, the number of subcarriers

can be as large as 8192. To solve the problem of a large ICI matrix inversion, a simpler ICI

equalizer for the ZF method was developed in [16]. As mentioned, ICI on a subcarrier mainly

comes from a few neighboring subcarriers. Thus, ICI from the other subcarriers can then be

ignored. This method has good performance in low-mobility environments. In high-mobility

environments, however, the number of insignificant ICI terms will be decreased and the com-

putational complexity will be significantly increased.

Successive interference cancellation (SIC) and parallel interference cancellation (PIC) are

two well-known multiuser interference (MUI) cancellation techniques in code-division-multiple-
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access (CDMA) systems. Since the characteristic of ICI is similar to that of MUI, these methods

can be directly applied to ICI mitigation in OFDM systems. A method combining the MMSE

and SIC techniques was first proposed in [17]. Later, it was improved with a recursive method

in [18], reducing the required complexity further. Although good performance can be achieved

with these methods, the required complexity is still high and the time delay can be intolerably

large. The PIC technique was then employed to solve the problem [19], [20], [21], [22], [23].

Although the processing delay is greatly reduced, the performance is discounted as well. Other

approaches use transmitter frequency-domain coding or beamforming to reduce ICI or to en-

hance the received signal-to-interference-noise-ratio (SINR). Interested readers may see [24],

[25], [26], [27].

Apart from the processing in the frequency domain, some researchers also explore that in

the time domain. In [28], a time-domain filtering technique maximizing the signal-to-ICI-plus-

noise ratio was proposed for single-input-single-output(SISO)/multiple-input-multiple-output

(MIMO) OFDM systems. One disadvantage of this method is that it requires matrix operations

to solve a generalized eigenvalue problem. Another approach involves the use of a time-variant

time-domain equalizer, making the time-variant channel less variant. Transferring the equalizer

from time-domain to frequency-domain, one can obtain a frequency-domain per-tone equalizer

(PTEQ). The PTEQ was originally proposed to deal with the insufficient CP problem in OFDM

systems. Lately, it is extended to suppress ICI in SISO/MIMO-OFDM systems [29], [30], [31],

[32], [33]. The PTEQ is well-known for its good performance; however, its implementation

complexity and storage requirement can be high. In [34], a two-stage equalizer was proposed.

In the first stage, a time-domain windowing technique is used to shorten the ICI response in

the frequency domain. In the second stage, an iterative MMSE method is used to suppress the

residual ICI. Although the windowing approach is simple, the iterative MMSE processing is not

trivial. To further enhance the system performance, another approach called turbo equalization

can be applied to mitigate ICI [35], [36], [37]. In [37], a block turbo MMSE method was

proposed. The main feature is that this method uses the whole ICI matrix to obtain the MMSE
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solution although it ignores some insignificant ICI terms.

Next, we discuss the CFO-induced ICI mitigation problem. For OFDM and OFDMA down-

link systems, the CFO can be easily estimated and compensated in the receiver [38], [39]. How-

ever, for OFDMA uplink systems, the problem is more involved. In the literature, various ICI

mitigation methods have been proposed to solve the problem. One direct method is to estimate

CFO in the base station and transmit the information back to mobile stations for CFO correc-

tion. Another approach is to transmit redundant information in subcarriers such that ICI can

be cancelled with a simple method in the receiver end. This approach is called the self-ICI-

cancellation [24], [40], [41], [42], [43], [44]. However, these methods mentioned above will

sacrifice the transmission rate.

Yet another viable approach eliminates the need for extra transmission overhead by com-

pensating for ICI in the receiver. CFO compensation methods for OFDMA uplink systems have

been reported [45], [46], [47], [48], [49], [50], [51]. The simplest method is to treat the CFO-

induced ICI as that in OFDM systems and to compensate for ICI with a time-domain phase de-

rotation operation for each user [45]. This approach can suppress self-ICI, but it does not take

MUI into account. In [46], a post-FFT CFO compensation method was proposed, improving the

performance of the phase de-rotation approach. Unfortunately, the MUI problem still remains.

In [47], a scheme combining the method in [46] with the PIC technique was developed. Other

PIC-related works can be found in [48], [49]. It is simple to observe that the CFO-induced ICI

on a subcarrier mainly comes from neighboring subcarriers. Thus, the method in [50] modifies

the CFO-induced ICI matrix into a banded matrix, and reduces the computational complexity

of the ZF and MMSE methods. However, its performance may be compromised due to the sim-

plification. Taking advantage of an interleaved-OFDMA structure, the authors in [51] proposed

a method that divides the whole system into several smaller subsystems, after which the MMSE

method was applied to the subsystems. This method has good performance, and it requires

low computational complexity; however, it is only applicable to an ideal interleaved structure

(i.e., uniform subcarrier-spacing for each user). The aforementioned methods were developed
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for CFO-compensation. CFO estimation methods have also been reported for OFDMA uplink

systems [52], [53], [54], [55].

§ 1.3 Proposed Approach

As mentioned, the main problem in the ZF and MMSE methods is the matrix inversion. Thus,

how to conduct this operation efficiently becomes the main concern. It is found that some

iterative methods can be much more efficient than the direct matrix inversion method. We

first discuss the mobility-induced ICI problem. In [56], the Gauss-Seidel iteration was used to

conduct the matrix inversion. However, it still needs a matrix inverse in its iterative process.

Another method called operator-perturbation was recently proposed [57]. Similar to [56], this

method also requires a matrix inverse in its iterations. Thus, the computational complexity for

the methods in [56] and [57] is still high. In [58], it was discovered that the ICI matrix for a

linear time-variant (LTV) channel model exhibits a special structure, allowing the application of

fast Fourier transforms (FFTs) in the matrix inversion. The LTV channel model was proposed

in [16] and its original purpose is for the time-variant channel estimation [59]. Exploiting this

structure, a power-series expansion (PSE) method was proposed for the ICI matrix inversion

[58], [60]. Although the PSE method can greatly reduce the computational complexity, it does

not perform well in high-mobility environments.

In this dissertation, we propose low-complexity ZF and MMSE methods to solve the mobility-

induced ICI problem in SISO/MIMO-OFDM(A). Similar to [58], we exploit the special struc-

ture inherent in the LTV channel model. For the ZF method, we first develop a method that

can implement Newton’s iteration for the ICI matrix inversion in SISO-OFDM systems. With

our specially designed architecture, FFTs can be used in the iterative process, reducing the

computational complexity effectively. We also propose a method for the calculation of initial

values. With those values, Newton’s iteration can converge very fast, usually within a couple

of iterations. Unlike the PSE method [58], our method works well even in high-mobility en-
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vironments. Simulation results show that the performance of the proposed low-complexity ZF

method can be as good as that of the direct ZF method. However, the required computational

complexity is reduced from �
	 ���� to �
	 ������������ . We also analyze the convergence behavior

of the proposed low-complexity ZF algorithm and derive the theoretical output SINR. Using a

new MIMO-OFDM system formulation, we then extend the proposed method to ICI mitigation

in MIMO-OFDM systems. It is shown that in MIMO-OFDM systems, the computational com-

plexity can be reduced even more significantly. For an g � g system, where g is the number

of transmit (receive) antennas, the proposed algorithm can reduce the computational complexity

from �
	hg �*���� to �
	hg ������� � �� .
As mentioned, the matrix inversion is the main obstacle in the ZF method, and some re-

searchers try to use iterative methods to overcome this problem [56], [57], [58]. Although these

methods can reduce the computational complexity of the ZF method, they are not applicable for

the MMSE method. As mentioned above, the MMSE method has to conduct an extra
���7�

matrix multiplication which cannot be avoided in these approaches. Using the basic idea in the

proposed low-complexity ZF method, we further develop an efficient low-complexity MMSE

method. The main contribution in the proposed ZF method is to develop an efficient ICI mit-

igation scheme using Newton’s iteration. With the approach, we can use FFTs/IFFTs in the

computation of the matrix inversion, dramatically reducing the computational complexity. The

proposed MMSE algorithm inherits this property, and further eliminates the requirement of the�����
matrix multiplication. Simulation results show that the performance of the proposed

low-complexity MMSE method is similar to that of the direct MMSE method. However, the re-

quired computational complexity is reduced from �
	 � �  to �
	 ���!����� � �� . We also extend the

proposed method to ICI mitigation in MIMO-OFDM systems. For an g � g system, the pro-

posed algorithm can reduce the computational complexity from �
	hg �*���� to �
	 � g ������� � �� .
It is simple to see that for MIMO-OFDM systems, the proposed method can reduce the compu-

tational complexity even more significantly. Moreover, we apply the proposed ZF and MMSE

methods to ICI mitigation in SISO/MIMO-OFDMA systems.
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Next we discuss the CFO-induced ICI problem in OFDMA uplink systems. The ZF method

is known to be a simple yet effective method for CFO compensation. However, it has to invert

the CFO-induced ICI matrix whose dimension equals the number of subcarriers. As a result,

the computational complexity can become prohibitively high when the number of subcarriers

is large, a case commonly found in OFDMA systems. As we can see, this problem is similar

to ICI mitigation in high-mobility environments. We then propose a low-complexity iterative

ZF method to cope with the problem. Following the idea described above, we use Newton’s

method to iteratively perform the matrix inversion. Taking advantage of the special structure

of the CFO-induced ICI matrix, we develop a method that can implement Newton’s method

with FFTs. With our specially designed initial matrix, the proposed iterative method can stop

within two to three iterations. From simulation results, we find that the performance of the

proposed method is similar to that of the direct ZF method. However, the required compu-

tational complexity is reduced from �
	 ���� to �
	 �!�������F�� . We also analyze the theoretical

SINR enhancement of the proposed algorithm. Two approaches are used for the analysis; one

is simple but approximated, and the other is complicated but exact. The issue of convergence is

also discussed.

§ 1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we first describe an LTV-based

SISO-OFDM signal model. This signal model involves DFT/IDFT and diagonal matrices which

can be used to develop low-complexity ICI mitigation algorithms. Since the PSE method also

exploits the LTV-based SISO-OFDM signal model, it is briefly reviewed. Then we describe the

proposed ZF method and present the complexity and performance analysis. Lastly, we show

simulation results to corroborate the proposed algorithm. Except for the ZF method, we also

consider the MMSE method. We reformulate the MMSE solution and extend the proposed ZF

method to avoid the extra matrix multiplication and matrix inversion.
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In Chapter 3, we focus on ICI mitigation in a MIMO-OFDM system. For this system,

conducting the matrix inversion is more difficult since the dimension of the ICI matrix can be

huge. To solve the problem, we derive a MIMO-OFDM signal model that allows the application

of the proposed low-complexity ZF and MMSE methods developed in Chapter 2. It can be

shown that the reduction in computational complexity is even more significant in MIMO-OFDM

systems.

In Chapter 4, we further consider the ICI mitigation problem in an OFDMA uplink system.

Based on the LTV channel model, we derive a SISO-OFDMA signal model from which the

low-complexity algorithms developed in Chapter 2 can be applied. This signal model can be

viewed as a generalized SISO-OFDM signal model. When the number of users is one, the

SISO-OFDMA signal model is degenerated to the SISO-OFDM signal model. We also extend

the model from SISO-OFDMA systems to MIMO-OFDMA systems. Chapters 2, 3 and 4 give

a complete treatment for mobility-induced ICI mitigation in SISO/MIMO-OFDM(A) systems.

In Chapter 5, we discuss low-complexity algorithms for CFO-induced ICI mitigation in

OFDMA uplink systems. We first describe the OFDMA uplink signal model that is composed

of diagonal and DFT/IDFT matrices. Applying the low-complexity algorithms developed in

Chapter 2, we obtain low-complexity CFO-induced ICI mitigation methods. We also propose

a pre-compensation method to further enhance the performance of the low-complexity meth-

ods. Complexity and performance analyses are also provided to verify the effectiveness of the

proposed method.

In Chapter 6, we draw some conclusions for the dissertation and outline possible topics for

further research.
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Chapter 2

Mobility-induced ICI Mitigation for

SISO-OFDM Systems

§ 2.1 Signal Model

Consider a mobile OFDM system whose channel variation is large such that the mobility-

introduced ICI cannot be ignored. It was shown in [59] that the LTV channel model can be

used to approximate a time-variant channel for the normalized Doppler frequency up to
��3�i

,

where the normalized Doppler frequency is defined as the maximum Doppler frequency divided

by subcarrier spacing. Using the LTV channel model, we can approximate the time-variant

channel in a specific OFDM symbol period asj�k 	ml n� jporq kts l � j ' q k ) (2.1)

where l is the time index,
jfk 	ml  is the u th-tap channel response at time instant l ,

jvorq k
is its

constant term, and
j ' q k is its variation slope. We assume that l is

3
at the midpoint of an OFDM

symbol. Let w o �`x jporq o ) jporq '*) JWJWJ ) jporq y AB'{zE| , wt' �`x j ' q o ) j ' q '*) JWJWJ ) j ' q y AB'{zE| , } o �8~*Uh� 	�w o  , and}1' �`~*Uh� 	�wt'  , where
~*Uh� 	��  denotes a circulant matrix with the first column vector being � .

Also, we define �t' �Sx 	�b � s ��r��� )�	�b � s R�r��� ) JWJWJ )�	 � b ��r��� zE| and ��' �4��U���� 	���'  , where
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the notation,
��U���� 	��  , denotes a diagonal matrix with the diagonal vector of � . According to

(2.1), we can express the receive time-domain signal in the OFDM symbol (after CP removal)

as

� � 	�} ots ��'�}1' {� s�� ) (2.2)

where � and
�

are the receive and transmit time-domain
�>���

signal vectors, respectively, and�
is the noise vector (additive white Gaussian). Let � be a unitary discrete Fourier transform

(DFT) matrix with the property that ����� ��� y
, where

� y
is an

�����
identity matrix.

Moreover, let �� ��� � � � , � �Z�=� � � � , � � ��� � � � , �w o �=� � �
w o , � wt' ��� � �
wt' ,�} o �4��U���� 	 � w o  , and �}1' �4��U���� 	 � wt'  . Multiplying both sides of (2.2) by
� � � , we can express

the receive signal in the frequency domain as

�� � � � � �� � � �7	�} o�s ��'�}1'  � � � � s � � � ��N� �} o�s �(��'�� � �}1'{�t�� s � ��4�� �� s � � ) (2.3)

where
� ��� �} oBs �(��'r�
� �}1' is the so-called ICI matrix. Note that

� �
can also be rewritten as� ��� �} oKs ���' �}1' , where ���' � �(��'��
� �Sx ~*Uh� 	m���'  zE| and ���' � 	 ����� �1 �
����' . Since the ICI

matrix is not a diagonal matrix, the ICI exists. If the channel is time-invariant, the frequency-

domain ICI term, ���' , will disappear. Thus, the signal model will become the traditional OFDM

signal model.

§ 2.2 ZF Method

Among the ICI mitigation methods, the simplest remedy for ICI is the ZF method. Denote

the ZF equalized signal as
�¡ £¢

. Then, we can obtain the equalized signal as
�� £¢¤�`�� AB' �� .

From the above formulation, it is simple to see that direct implementation of the ZF method

12



will require high computational complexity if
�

is large. Thus, it is a critical problem for the

ZF method. Then, the PSE method was introduced in [58] to solve the problem. The idea is to

express
�� AB' as � � AB' � �,¥ � y1s �(��'�� � �}1' �} AB'o�¦ �} o � AB'� �} AB'o 	 � y b�§  AB' ) (2.4)

where § � �(��'��
� } and } � b �}1' �} AB'o . Next, 	 � y b�§  AB' is expanded with a power

series and the high order terms are truncated, i.e., 	 � y b^§  AB'�¨ª©G«@E¬ o § @ , where  is the

highest order retained in the expansion. The convergence condition for this expansion is that® § ®�¯ � [58], where
® § ® indicates the p-norm of § [60]. Finally, the equalized �� , denoted

as
�±°v²�³

, is equal to �} AB'o © «@E¬ ov´ @ , where ´ @ � § @ �� . Note that ´ @EDF' � § ´ @ � �(��'��
�µ	 } ´ @  .
Thus, ´ @ can be recursively calculated. Also, with the special structure of § , FFTs/IFFTs can

be used to calculate ´ @ . Although the computational complexity can be reduced effectively,

the performance of the PSE method is unsatisfactory in high-mobility environments. This will

be verified from simulation results. In the following subsection, we will present the proposed

method to solve the problem.

§ 2.2.1 Proposed Newton-ZF Method

As mentioned, the performance of the PSE method is unsatisfactory in high-mobility environ-

ments. To solve the problem, we seek for a more flexible and powerful iterative method for

matrix inversion. Specifically, we find Newton’s iteration is useful. Newton’s iteration is well-

known for its fast convergence [61], [62], and it has been investigated extensively [63], [64],

[65], [66]. Let ¶"· be the estimated matrix inverse of
� �

at the Q th iteration. The 	hQ s �� th
Newton’s iteration can be described as follows:¶�·�DF' � 	 �&� y b�¶�· ��� ¶�·&)�Q �53 ) � ) � ) JWJWJ )*¸ J (2.5)

Let �¹ · �P� y b[¶�· �� represent the estimation residual. Equation (2.5) implies that
® � y b¶�· �� ®�º»® � y b5¶ o � � ® ��¼

for all Q . If
® � y b4¶ o �� ®�¯ �

, we then have a quadratic

13



convergence [67]. From (2.5), we can clearly see that Newton’s iteration requires matrix-to-

matrix multiplications whose computational complexity is �
	 �1�� . Thus, the computational

complexity is high. As a matter of fact, its complexity is even higher than that of the direct ZF

method when Q is large. Thus, direct application of Newton’s iteration for matrix inversion is

not feasible. In what follows, we propose a method to solve the problem.

Iterating (2.5), we obtain a sequence of matrices $<¶ o )r¶�'*) JWJWJ )r¶�· + . The relationship

between ¶ o and ¶�· can be found straightforwardly in

¶�· � � ¼ AB'½¾ ¬ o ~ · q ¾ 	�¶ o � �� ¾ ¶ o ) (2.6)

where
~ · q ¾ is the coefficient of the ¿ th summation term in (2.6). The expression in (2.6) can be

seen as an expansion form of Newton’s iteration, while that in (2.5) an iterative form. It turns

out that to obtain a low-complexity algorithm, we have to use the expansion form. Assign
~ · q ¾ ’s

as coefficients of a polynomial function of À , i.e., H�·�	�À Á� ~ · q o À o s ~ · q '�À ' s JWJWJ s ~ · q � ¼ AB' À � ¼ AB' .
Then, the polynomial H&·�DF',	�À  can be derived from H&·�	�À  as H�·�DF'�	�À ��=� H�·�	�À  b!À x H�·�	�À  z � ,
where H o 	�À Â�M� . This is to say that

~ · q ¾ can be recursively calculated. Note that our objective

is to obtain the equalized result ¶"·��� , not the matrix inverse ¶"· itself. Multiplying both sides

of (2.6) by �� and letting
� · � ¶�·��� and Ã ¾ � 	�¶ o ��S ¾ ¶ o �� , we have the equalized result as

� · � � ¼ AB'½¾ ¬ o ~ · q ¾ Ã ¾ J (2.7)

From the definition of Ã ¾ , we can then have the following relationship:

Ã ¾ DF' � 	�¶ o ��S Ã ¾ J (2.8)

As a result, Ã ¾ can be recursively calculated as well. Using this approach, we have transformed

matrix-to-matrix multiplications in (2.6) into matrix-to-vector multiplications in (2.7) and (2.8).

To complete our low-complexity algorithm, we make use of the special structure inherent in

the ICI matrix. From the foregoing derivation, we know that
��Ä� �} ons �(��'��
� �}1' . Using
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this structure, we can then rewrite (2.8) as

Ã ¾ DF' � � ¶ o ¥ �} o�s �(��'�� � �}1' ¦ � Ã ¾� ¶ o � �} o Ã ¾ s �(��'�� � ¥ �}1' Ã ¾ ¦ � J (2.9)

Note that �} o , �}1' , and ��' are all diagonal matrices. If we further pose a constraint that ¶ o
is a diagonal matrix, we can transform matrix-to-matrix operations into vector-to-vector and

DFT/IDFT operations as shown in (2.9). As we know, DFTs/IDFTs can be efficiently imple-

mented with FFTs/IFFTs whose complexity is �
	 �G�����f�F�� . As a result, the computational

complexity of the proposed algorithm is �
	 �!�����f�F�� . The constraint on ¶ o
may not always

yield satisfactory performance in all scenarios. Instead of a diagonal matrix, we may let ¶ o
be

a low-bandwidth banded matrix. Let the 	 U ){u  th entry of a matrix Å be denoted as Å
	 U ){u  . The

banded matrix is defined as follows. Å
	 U ){u »Æ�83 , if Ç U b�uÈÇ º % , and Å
	 U ){u \�83 , otherwise.

Here, % is the bandwidth of the banded matrix. If % �]3
, the banded matrix is reduced to a

diagonal matrix. If % �8� , the banded matrix will have three non-zero diagonal vectors. With

this type of ¶ o , the computational complexity in (2.9) will only be increased slightly. For later

simulations, we will only consider the cases of % �#3 and % �8� . It turns out that for % �8� ,
the performance of the proposed algorithm is good enough. For easy reference, we denote the

proposed low-complexity ZF method as the Newton-ZF (N-ZF) method.

§ 2.2.2 Derivation of the Initial Matrix

In Subsection 2.2.1, we have proposed the N-ZF method to reduce the complexity of the direct

ZF method using FFTs. However, we still have to determine the initial matrix ¶ o
for the N-ZF

method. A good initial matrix can reduce the number of iterations significantly and provide

good mitigation performance. As known, the main function of ZF is to invert the ICI matrix,

and in the ideal case,
� y bÉ¶�· ��Ê�PË y

, where
Ë y

is an
�����

zero matrix. As a result, if� y b0¶ o � � can be made as close to
Ë y

as possible, fast convergence in Newton’s algorithm can

be obtained. Based on this idea, we propose to minimize the Frobenius norm of
� y b�¶ o �� ,
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i.e.,

¶ o �5Ì�Ír�nÎ6Ï�ÐÑ ® � y b^¶ �� ® �¢ ) (2.10)

where
® �¹ ® ¢ means the Frobenius norm of �¹ and ¶ is a banded matrix with bandwidth % .

Before the derivation of the optimal solution in (2.10), we first observe a property in a

banded matrix. Fig. 2.1 shows an example of a banded initial matrix for
���]�

and % �`�
.

In the figure, only the data in the shaded area are non-zeros. Note that the number of the non-

zero elements in each row may not be the same. For the 0th and the 7th rows, the number of

the non-zero elements is 2. For the rest of rows, the number of the non-zero elements is
R
.

For a general case, the number of the non-zero elements in the
U
th row first increases, remains

the same, and finally decreases (as
U

increases). Due to this property, we need to consider

the three cases when solving (2.10). Define �¿
@ q k � �� 	 U ){u  , ÒÓ@ q k � ¶ o 	 U ){u  , and
� @ q k �© y AB'Ô ¬ o �¿
Õ@ q Ô �¿ k�q Ô . Differentiating (2.10) with respect to ÒÖÕ@ q k and setting the result to zero, we can

×{ØtÙ
×�ØÁÚÜÛ¡Ý

×�Ø�Þ

ß\ØÂÚ

Figure 2.1: An example of the structure of a banded initial matrix for
�T�S�

and % �Z�
. The

elements in the shaded area are non-zeros, while the others are zeros.
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obtain the following equation:

?C@�à»@ �5á @h) U��43 ) � ) JWJWJ ) � b � ) (2.11)

where à»@ consists of the non-zero elements in the
U
th row vector of the optimum ¶ o

. ?C@ , à»@ ,
and

á @ for the above-mentioned three cases are defined as follows:

1. For
U�� %�)�% s � ) JWJWJ ) � b � b�% ,

?C@ �
âããã
ä
� @�AKå q @�AKåçæ<æ<æ � @�AKå q @EDBå

... . . . ...� @EDBå q @�AKåçæ<æ<æ � @EDBå q @EDBå
èêééé
ë ) (2.12)

à»@ �Mx ÒÓ@ q @�AKåÁ)�ÒÓ@ q @�AKå±DF'*) JWJWJ )�ÒÓ@ q @EDBå-z | ) (2.13)á @ �Mx �¿ Õ@�AKå q @ ) �¿ Õ@�AKå±DF' q @ ) JWJWJ ) �¿ Õ@EDBå q @ z | J (2.14)

2. For
U��43 ) � ) JWJWJ )�%8b � ,

?C@ � ?Yåì	 30í % s U ) 30í % s U{ ) (2.15)à»@ �Sx ÒÓ@ q o )�ÒÓ@ q '*) JWJWJ )�ÒÓ@ q @EDBå-z | ) (2.16)á @ �Sx �¿ Õorq @ ) �¿ Õ ' q @ ) JWJWJ ) �¿ Õ@EDBå q @ z | ) (2.17)

where îY	 U ' í�U � ){u&' í u �  indicates a submatrix of î , obtained from the
U ' th row to the

U �
th

row and from the u�' th column to the u � th column of î .

3. For
U��4� b�%�) � b�% s � ) JWJWJ ) � b � ,

?C@ � ? y AB'{AKåì	 U b � s � s % í£� %�) U b � s � s % í£� %  ) (2.18)à»@ �Sx ÒÓ@ q @�AKåÂ)�ÒÓ@ q @�AKå±DF'�) JWJWJ )�ÒÓ@ q y AB'�z | ) (2.19)á @ �Sx �¿ Õ@�AKå q @ ) �¿ Õ@�AKå±DF' q @ ) JWJWJ ) �¿ Õy AB' q @ z | J (2.20)

Note that ?C@ in the second case is an upper left submatrix of ?�å in (2.12), while that in the

third case is a lower right submatrix of ? y AB'{AKå in (2.12). Now, we can obtain the optimum

17



0A 3A

7A

5A4A 6A1A 2A

ï(ð0ñ

A

Figure 2.2: An example of ?(@ for
���>�

and % �ò�
. Note that ?(@ overlaps with ?(@�AB' and?C@EDF' .

solution for (2.10) by à6@ � ? AB'@ á @ . For clearly understanding the structure of ?Y@ , we show

an example in Fig. 2.2 for
���8�

and % �a�
, where ?2	 U ){u \�8� @ q k . From the figure, we can

see that ? o is the upper left
�6���

submatrix of ?�' . For
UÓ�]� ) � ) JWJWJ ) X , the lower right

�6�^�
submatrix of ?(@ is exactly the same as the upper left

�»�2�
submatrix of ?Y@EDF' . The lower right�»���

submatrix of ?Yó is ?Yô . Using this property, we can obtain a recursive algorithm for fast

computation of ? AB'@ .

Since
� k�q @ ��� Õ@ q k , ?C@ is a Hermitian matrix. For

Uõ� %�)�% s � ) JWJWJ ) � b � b¤% , we can

further partition ?(@ into the following form

?C@ � âä»ö @>÷W�@÷ @aø(@
èë ) (2.21)

and ?C@EDF' into the following form

?C@EDF' � âä ø(@ �Ã @EDF'�Ã¡�@EDF' �ù @EDF'
èë ) (2.22)
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where ö @ and �ù @EDF' are scalars, ÷,@ and �Ã±@EDF' are column vectors, and ø @ is a square matrix whose

dimension is smaller than that of ?(@ by one. Since ?(@ is a Hermitian matrix, we can write its

inverse as

? AB'@ � âäYú @����@� @ � @
èë ) (2.23)

where ú @ is a scalar, �È@ is a column vector, and �
@ is a square matrix with dimension smaller

than that of ? AB'@ by one. From the block matrix inversion formula [68], we can obtain ? AB'@EDF'
from ? AB'@ via the following formula

? AB'@EDF' � âä ø AB'@ s �û @EDF' �û �@EDF' �ü @EDF' �û @EDF' �ü @EDF'�û �@EDF' �ü @EDF' �ü @EDF'
èë ) (2.24)

where �ü @EDF' � 	 �ù @EDF'�b��Ã¡�@EDF'�ø AB'@ � Ã @EDF'  AB' , �û @EDF' � b ø AB'@ �Ã±@EDF' , and

ø AB'@ � �Y@vb �È@����@ú @ J (2.25)

For
U��43 ) � ) JWJWJ )�%8b � , ?C@EDF' includes ?C@ as its submatrix. We then have

? @EDF' � âä ? @ � Ã @EDF'�Ã¡�@EDF' �ù @EDF'
èë J (2.26)

Consequently, ? AB'@EDF' can be obtained by (2.24), where ø AB'@ � ? AB'@ . For
U��5� b�%�) JWJWJ ) � b � ,?C@ becomes a submatrix of ?(@�AB' given by

?C@�AB' � âä»ö @a÷W�@÷�@a?C@
èë J (2.27)

Thus, ? AB'@ can be obtained with (2.25) as follows,

? AB'@ � �Y@�AB'�b �È@�AB'����@�AB'ú @�AB' J
(2.28)

Thus, we only have to conduct one matrix inversion, explicitly, i.e., ? AB'o , and its dimension is	�% s ��Ó� 	�% s �� .
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To further reduce the complexity, we can make an approximation when calculating
� @ q k .

From the definition, we have
� @ q k � © y AB'Ô ¬ o �¿
Õ@ q Ô �¿ k�q Ô . We can reduce the number of terms in-

cluded in the summation. We let
� @ q k ¨N© Ô&ýWþ �¿
Õ@ q Ô �¿ k�q Ô , where ÿ � ¯ U b5 ínU s  �) ���� ¯ u6b4 í u s  �) ���

, and  is the number of one-sided ICI terms taken into considera-

tion (
3 º  º �»��� b � ). The notation

¯ UÖí u�) ���
denotes a sequence of $ U b ��� @y�� ) U s� b ��� @EDF'y � ) JWJWJ ){u»b ��� ky � + (

U
and u are integers and

U º u ). With this approach,
� @ q k is ap-

proximately evaluated, so is ?(@ in (2.11). The value of  then determines the accuracy of the

solution in (2.11). A small  can greatly reduce the complexity, but results in low accuracy of

the solution. Recall that ICI on a subcarrier mainly comes from a few neighboring subcarriers.

As a result, we can always find a small  only affecting the final result slightly. For the deter-

mination of  , it depends on the value of ICI; the larger the ICI, the larger  we should use. In

our simulations, the largest  we use is two.

As mentioned, if % �!3 , ¶ o
will become a diagonal matrix. In this case, the initial values

can be approximated as

ÒÓ@ q @ ¨ �¿
Õ@ q @© Ô&ýWþ
	 Ç �¿(@ q Ô Ç � ) (2.29)

where ÿ�� � ¯ U b� íÜU s  �) ��
. There is an interesting property in (2.29). If we only take

the diagonal terms of the ICI matrix into account (i.e.,  �53 ), the initial values will degenerate

into the coefficients of the conventional one-tap frequency-domain equalizer (FEQ). If there is

no ICI, Newton’s iteration with (2.29) will stop after initialization ( Q �43 ).
§ 2.2.3 Complexity Analysis

In Subsections 2.2.1 and 2.2.2, we have completed the derivation of the N-ZF method in SISO-

OFDM systems. In this subsection, we will analyze the required computational complexity of

the N-ZF method, and compare it with that of the PSE and direct ZF methods.

From (2.7) and (2.8), it is clear that the computational complexity of the N-ZF method

mainly consists of the following three parts:
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1. Ã ¾ iteration, where Ã ¾ � 	�¶ o � �� Ã ¾ AB' and Ã o � ¶ o �� ,

2. Banded
��

construction, where
� ��� } o�s �(��'��
�Á}1' ,

3. Banded ¶ o
calculation.

Since the diagonal and DFT/IDFT structures in
� �

, Ã ¾ can be obtained using (2.9). As a result,

we require
x �!�������F� s 	 � s � % s R������� b�%1	�% s �� z complex multiplications (CMs) andx ���!����� � 	 �� s 	 � % s �������� b4%1	�% s �� z complex additions (CAs). In addition, we needx 	 � s � % �� b5%1	�% s �� z CMs and

x � % � b4%1	�% s �� z CAs for Ã o � ¶ o �� and
���

real

additions (RAs) for each
~ · q ¾ Ã ¾ in (2.7). As to the construction of the banded

� �
, we require	h s �������� CMs and 	h s �������� CAs. For calculating ¶ o

, we need to construct matrices ?(@
for
U��53 ) � ) JWJWJ ) � b � and they require

x 	�b � % � s % s :  �% s  s �������� s 	 ����R� % � b
	 ����R� %�b:  �% � b �  �%6z CMs and
x 	h s :  �%�b � % � bY% �� s 	 ����R� % �Ks � % � s 	 ����R� %�b :  �% � b �  �%6z

CAs. For solving à6@ � ? AB'@ á @ , it requires
x 	 R
�������� b d
���&: z CMs,

x 	 �������� b �£���&: z CAs, and	 ��� b �� real divisions (RDs) for the case of % �]�
. For the PSE method, it can be obtained

in the same way. Finally, we summarize the required computational complexity for the N-ZF

method, the PSE method, and the direct ZF method [69] for a SISO-OFDM system in Table

2.1. We also summarize the computational complexity for calculating the initial matrix in the

N-ZF method in Table 2.2.
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Table 2.1: Complexity comparison among N-ZF, PSE, and direct ZF methods in a SISO-OFDM

system.

Methods Real multiplications Real divi-

sions

Real additions

Direct ZF � � ��� s ��� � b '� � � � s � � � ��� s '{'� � � b � �ó �
PSE

:  �!������� 	 �� s 	 9  s ������ :�� 9  �G������� 	 �� s 	 :  s 9���
N-ZF ( % �43 ) 	 � ·�D � b :f��G����� � 	 �� s x � ·�D � s�  1b � z �

��� R 	 � ·�DF' b ����5����� � 	 �� s x X_�� ·�DF' s �  1b X z �
N-ZF ( % �#� ) 	 � ·�D � b :f��!������� 	 �� s x �&:  sR±�Ó� ·�D �*s 9�� z � b �&:  ìb � ·�D � b��d

��� b � R 	 � ·�DF' b ����!������� 	 �� s	 �&:  s d1�/� ·�DF' s RK���� b�&:  1b � ·�D � b :fX
Table 2.2: Complexity of the initial matrix calculation for the N-ZF method in a SISO-OFDM

system.

Methods Real multiplications Real divisions Real additions

N-ZF ( % �#� ) 	 �&:  s �&:f�� b �&:  2b ��d 	 �&:  s R�d��� b �&:  6b :fX ��� b �

§ 2.2.4 Performance Analysis

For the proposed N-ZF algorithm, the iteration number is usually preset. Unlike other iterative

algorithms, the convergence is not a concern here. The reason we can use a preset iteration

number is due to the fast convergence property of Newton’s iteration and our good initial values.

If the proposed algorithm converges, only a small number of iterations is necessary. On the
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other hand, if the proposed algorithm diverges, the preset number of iterations will limit the

performance degradation. As a matter of fact, even for divergence cases, we can still have

improved SINRs if the iteration number is set properly. We will provide intuitive statements to

explain why this is true. It turns out that the determination of the iteration number is simple and

straightforward.

Now we start with the analysis of convergence behavior. After that, we will derive theoreti-

cal SINRs the proposed algorithm can provide. We first perform the eigenvalue decomposition

for �¹ o as follows:

�¹ o � ø��
ø AB' ) (2.30)

where ø �Mx Ã o )�Ãt'�) JWJWJ )�Ã y AB'�z is a matrix composed of eigenvectors of �¹ o , and � �!��U���� 	 x � o) � '*) JWJWJ ) � y AB'{zE|  consists of eigenvalues,
� @ ’s. We assume that Ç � @rÇ��NÇ � k Ç for

U º u . Since�¹ · � �¹ �·�AB' , then we can decompose �¹ · as

�¹ · � ø�� ��¼ ø AB' J (2.31)

If Ç � o Ç ¯ �
, then �¹ ·�� Ë y

as Q�� ¸ . Thus, we can have the convergence condition for

Newton’s iteration as �F	 �¹ o  ¯ � , where �F	 �¹ o  denotes the spectral radius of �¹ o ; the spectral

radius indicates the largest absolute value of all eigenvalues [62]. That is to say, for Newton’s

iteration to converge, the amplitudes of all eigenvalues of �¹ o have to be smaller than one. For

a moderate mobile speed, this condition holds for most cases. If not, the number of eigenvalues

with amplitudes greater than one is small and their amplitudes does not deviate from one too

much. These results can be easily observed from simulations though difficult to be proved

theoretically. In what follows, we will first show that even for divergence cases, we may still

benefit from Newton’s iteration. Let ø AB' �Sx � o ) � '*) JWJWJ ) � y AB'�zE| , Ç � @�Ç �5� for
U��43 ) � ) JWJWJ )���b�

and Ç � @rÇ ¯ � for
UÂ� �ì)�� s � ) JWJWJ ) � b � . By definition, �¹ · ��� y b�¶�· �� . Then, we can
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represent the ICI matrix as

¶�· ����4� y b y AB'½ @E¬ o � � ¼@ Ã±@ � | @�4� y b ° AB'½ @E¬ o � ��¼@ Ã±@ � | @ b y AB'½k ¬ ° � ��¼k Ã k � |k J (2.32)

As for ¶�· , we can reformulate it as

¶�· � 	 � y1s � y b^¶�·�AB' ��S ¶�·�AB'� 	 � y1s �¹ ·�AB'  	 � y1s �¹ ·�A � ÜJWJWJ 	 � y1s �¹ o  ¶ o J (2.33)

Using (2.31), we can further express ¶ò· as

¶�· � ø 	 � y1s � � ¼����  ø AB' ø 	 � y1s � � ¼��!  ø AB' JWJWJ ø 	 � y2s �  ø AB' ¶ o� y AB'½ k ¬ o
" ·�AB'# @E¬ o 	 � s � �%$k '& Ã k � |k ¶ o� y AB'½ k ¬ o)( k�q ·�Ã k � |k ¶ o ) (2.34)

where ( k�q · �+* ·�AB'@E¬ o 	 � s � �%$k  . With (2.32) and (2.34), the ZF-equalized signal can be expressed

as � · � ¶�· �� �� s ¶�·�� �� �� b-, AB'½ @E¬ o � ��¼@ Ã±@ � | @ �� b y AB'½k ¬ , �
��¼k Ã k � |k �� s � � ·

� �� b ° AB'½ @E¬ o � � ¼@ Ã±@ � | @ �� b y AB'½k ¬ ° � � ¼k Ã k � |k �� s y AB'½ k ¬ o�( k�q ·,Ã k � |k � ��o ) (2.35)

where � � · � ¶�·�� � . Since the eigenvectors $&Ã o )�Ãt'*) JWJWJ )�Ã y AB' + span the
�

-dimensional space,

we can decompose �� and � ��o using these eigenvectors. Let ��1� © y AB'. ¬ o ü . Ã . and � ��o � © y AB'. ¬ o0/ . Ã . ,
where

x ü o ) ü '*) JWJWJ ) ü y AB'{zE| � ø AB' �� and
x / o ) / '*) JWJWJ ) / y AB'�zE| � ø AB' � ��o are the corresponding co-
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efficients in the decomposition of �� and � ��o , respectively. Then, we can rewrite (2.35) as

� · � �� b ° AB'½ @E¬ o � � ¼@ Ã±@ � | @21 y AB'½ . ¬ o ü . Ã .43 b y AB'½k ¬ ° � � ¼k Ã k � |k 1 y AB'½ . ¬ o ü . Ã .53 s y AB'½ k ¬ o�( k�q ·,Ã k � |k 1 y AB'½ . ¬ o / . Ã .43� �� b ° AB'½ @E¬ o � ��¼@ ü @mÃ±@vb y AB'½k ¬ ° � ��¼k ü k Ã k�s y AB'½ k ¬ o ( k�q · / k Ã k J (2.36)

Let
� · �Mx 6 · q o ) 6 · q '*) JWJWJ ) 6 · q y AB'{z | and � �^�Sx �6 o ) �6 '�) JWJWJ ) �6 y AB'�z | . Thus, the ¿ th subcarrier signal

after equalization can be expressed as6 · q ¾ � �6 ¾ s �H�' q · q ¾ s �H � q · q ¾ s �H � q · q ¾ ) (2.37)

where �H�' q · q ¾ � b © ° AB'@E¬ o � � ¼@ ü @�Ã±@�	m¿  , �H � q · q ¾ � b © y AB'k ¬ ° � � ¼k ü k Ã k 	m¿  , and �H � q · q ¾ � © y AB'k ¬ o( k�q · / k Ã k 	m¿  . From (2.37), we can see that the equalized signal suffers from three interference

terms. For �H�' q · q ¾ , it will become large when Q increases; however, for �H � q · q ¾ , it will become

small when Q increases. As for the noise term, �H � q · q ¾ , its dependence on Q is not strong. As

mentioned, only a few eigenvalues’ amplitudes will be larger than one (i.e., � is small) and their

amplitudes often do not deviate from one too much. Then, it is easy to see that the decreasing

amount of �H � q · q ¾ will be larger than the increasing amount of �H�' q · q ¾ in the early iteration. Thus,

for divergence cases, the interference will decrease first and then increase as the iteration pro-

ceeds. If we can stop the iteration before the overall interference increases, we can still have

the performance gain even though the iteration diverges eventually. Additionally, we can in-

crease % to make the initial matrix closer to the exact matrix inverse. By this way, � may be

minimized and �H�' q · q ¾ will decrease, which makes the proposed method work better. Because of

the fast convergence property of Newton’s method, the number of iterations required is small.

For example, it can be as small as one or two when % ���
. For divergent cases, the overall

interference is still decreasing in the first one or two iterations.

Since the performance of an OFDM system depends on each subcarrier SINR, we will

analyze the subcarrier SINR of the proposed algorithm in the sequel. From (2.3), we can express

the equalized signal as ¶"·��� �87 ·*�� s ¶�·�� � , where
7 · � © ��¼ AB'¾ ¬ o ~ · q ¾ 	�¶ o � �� ¾ DF' is the
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equalized ICI matrix. Ideally,
7 · will be an identity matrix. Let � � � x � À o ) � À&'*) JWJWJ ) � À y AB'{zE| ,9 �:; �=< $BÇ �6 @rÇ � + , 9 �: > �=< $BÇ �À,@rÇ � + (
3 º U º � b � ), and ? � 9 �: > � 9 �:; . The subcarrier SINR for the

proposed method with Q iterations in the
U
th subcarrier, denoted as @BA�CEDµ· q @ , can be shown as@BA�CED.· q @ � < $BÇ F ·@ q @ �6 @rÇ � +< $BÇ © y AB'GIH!JGLKH $ F ·@ q k �6 k Ç � + s < $BÇ © y AB'k ¬ o Ò ·@ q k � À k Ç � +� 9 �:; Ç F ·@ q @ Ç �9 �:; © y AB'GIH!JGLKH $ Ç F ·@ q k Ç � s 9 �: > © y AB'k ¬ o Ç Ò ·@ q k Ç �� Ç F ·@ q @ Ç �© y AB'GIH!JGLKH $ Ç F ·@ q k Ç � s ? © y AB'k ¬ o Ç Ò ·@ q k Ç � ) (2.38)

where F ·@ q k �M7 ·�	 U ){u  and Ò ·@ q k � ¶�·�	 U ){u  . For comparison, we also calculate the SINR in theU
th subcarrier before equalization, denoted as @BA�CEDV@ , as follows:@BA�CEDì@ � < $BÇ �¿(@ q @ �6 @rÇ � +< $BÇ © y AB'GIH!JGLKH $ �¿(@ q k �6 k Ç � + s < $BÇ �À,@rÇ � +� 9 �:; Ç �¿(@ q @rÇ �9 �:; © y AB'GIH!JGLKH $ Ç �¿(@ q k Ç � s 9 �: >� Ç �¿(@ q @rÇ �© y AB'GIH!JGLKH $ Ç �¿(@ q k Ç � s ? J (2.39)

As a result, we must calculate each element in
7 · and ¶�· for @BA�CED.· q @ . To make the following

derivation more compact, we rewrite the ICI matrix as
� � � ©+NO ¬ o �� O �} O , where �� o �4� y andP!�#�

. Since
� ��� © NO ¬ o �� O �} O , the equalized ICI matrix

7 · can be expanded as7 · � � ¼ AB'½¾ ¬ o ~ · q ¾RQS T N½OIUWV J ¬F' ¶ o �� OIUWV J �} OIUWV J N½OIUWV � ¬F' ¶ o �� OIUWV � �} OIUWV � JWJWJ N½O UWV U ¬F' ¶ o �� O UWV U �} O UWV UYX Z[� � ¼ AB'½¾ ¬ o ~ · q ¾RQS T N½OIUWV J ¬ o N½OIUWV � ¬ o JWJWJ N½O UWV U ¬ o ¾#\ ¬ o ¶ o �� O UWV ] �} O UWV ] X Z[� � ¼ AB'½¾ ¬ o ~ · q ¾RQS T N½OIUWV J ¬ o N½OIUWV � ¬ o JWJWJ N½O UWV U ¬ o_^? ¾ X Z[ ) (2.40)
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where ^? ¾ �`* ¾ \ ¬ o ¶ o �� O UWV ] �} O UWV ] and ^?�AB' �G� y . Using the same way, we also expand ¶ò·
as

¶�· � ��¼ AB'½¾ ¬ o ~ · q ¾ 	�¶ o ��S ¾ ¶ o� ��¼ AB'½¾ ¬ o ~ · q ¾ QS T N½OIUWV J ¬ o N½OIUWV � ¬ o JWJWJ N½OIUWV U ��� ¬ o ? ¾ AB'{¶ o X Z[� � ¼ AB'½¾ ¬ o ~ · q ¾RQS T N½OIUWV J ¬ o N½OIUWV � ¬ o JWJWJ N½OIUWV U ��� ¬ oa^Å ¾ X Z[ ) (2.41)

where ^Å ¾ � ^? ¾ AB'{¶ o . We then calculate each element ^? ¾ 	 U ¾ ){u ¾  . For brevity of presen-

tation, we consider the case of % ��3
. To compact and simplify the notation, we redefine�w O �òx � j O o ) � j O ' ) JWJWJ ) � j O y AB' zE| , and �� O ��x � ú Oo ) � ú O' ) JWJWJ ) � ú Oy AB' zE| , and let ÒÓ@ � ÒÓ@ q @ . Since �� O UWV ] is a

circulant matrix, it can be expressed as �� O UWV ] �Nx ~*Uh� 	m�� O UWV ]  z | . Also, from the definition, we

have �} O UWV ] �5��U���� 	 � w O UWV ]  . For ¿ �53 , we have ^? o 	 U o ){u o  as^? o 	 U o ){u o cb8x ¶ o �� O J V J �} O J V J zL@ J q k J� ÒÓ@ J � ú O J V Jd k J Af@ J q yfe � j O J V Jk J J (2.42)

Then, we can obtain ^?�' � 	�¶ o �� O � V � �} O � V �  ^? o , and ^? � � 	�¶ o �� O  V  �} O  V   ^?�' , accordingly. Re-

peating this process, we can obtain a formula for ¿R� � . For ¿R� � , we formulate ^? ¾ 	 U ¾ ){u ¾ 
as ^? ¾ 	 U ¾ ){u ¾ �� y AB'½· U ��� ¬ o y AB'½· U �! ¬ o JWJWJ y AB'½· J ¬ o Òì· J Òì· � JWJWJ Òì· U ��� ÒÓ@ U � ú O UWV Ud k U A£· U ��� q yfe� ú OIUWV U ���d · U ��� A£· U �! q yfe JWJWJ � ú OIUWV �d · � A£· J q yfe � ú OIUWV Jd · J Af@ U q yfe � j O UWV Uk U � j OIUWV U ���· U ��� JWJWJ � j OIUWV J· J J (2.43)

With
���� ©+NO ¬ o �� O �} O , we can expand �¿Y@ q k as

�¿(@ q k � N½ O ¬ o � ú Od k Af@ q yfe � j Ok J (2.44)
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From (2.29) and (2.44), we can express Ò.@ as

ÒÓ@ ¨ 	 © NO ¬ o � ú Oo � j O@  Õ© k ýWþ 	KÇ ©gNO ¬ o � ú Od k Af@ q yfe � j Ok Ç � J (2.45)

Since we have derived � ú k@ and � j k @ , we can then calculate Òì@ . Thus, we have ^? ¾ 	 U ¾ ){u ¾  . Using

(2.40) and ^? ¾ 	 U ¾ ){u ¾  , we can obtain
7 · . Using the relation of ^Å ¾ � ^? ¾ AB'�¶ o , (2.43), and

(2.45), we can compute ^Å ¾ 	 U ¾ ){u ¾  as^Å ¾ 	 U ¾ ){u ¾ �� ^? ¾ AB'W	 U ¾ ){u ¾  	 ©+NO ¬ o � ú Oo � j Ok U  Õ© k ýWþ
	 	 Ç © NO ¬ o � ú Od k A k U q yfe � j Ok Ç � J (2.46)

where ÿ�� � � ¯ u ¾ b5 í u ¾ s  �) �h�
. From (2.41) and (2.46), we can then calculate ¶ò· .

Having
7 · and ¶�· ready, we can finally evaluate @BA�CEDV· q @ in (2.38). With (2.44), we can

further express @BA�CED.@ in (2.39) as@BA�CEDì@ � Ç ©gNO ¬ o � ú Oo � j O@ Ç �© y AB'GIH!JGLKH $ Ç ©gNO ¬ o � ú Od k Af@ q yfe � j Ok Ç � s ? J (2.47)

As for the case of % Æ�43
, it can be derived by the same way.

§ 2.2.5 Simulation Results

In this subsection, we report simulation results to demonstrate the effectiveness of the proposed

method. We consider an OFDM system with
� �������

and the CP size of 16. The modu-

lation scheme is 16-QAM. The channel length is set to i � ��X
and the power delay profile

is characterized by an exponential function, i.e., 9 �. �Rj A . kml � © l AB'@E¬ o j Af@ kml , where n is the tap

index. Each channel tap is generated by Jakes’ model [70]. Here, we assume that the channel

response is exactly known for the direct ZF method. For the proposed method, the parameters

of the LTV channel model are obtained by least-squares (LS) fittings. Define the normalized

Doppler frequency as H&I � H&å ��oqp , where H&å is the maximum Doppler frequency and
orp

is the

sampling period. Since the N-ZF method with  �!� have the similar performance to that with �5�»��� b � , we set  �!� for all simulations.
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First, we evaluate the validity of the analytic output SINRs for the proposed method. Two

cases are considered; case
�

meets the convergence condition derived in Subsection 2.2.4,

whereas case
�

doesn’t. We let H&I �T3KJL�
, SNR

�TR�X
dB,  � �

, and % �T3
. Figure 2.3

shows the analytic subcarrier SINRs for case
�
. Since the simulated SINRs are identical to the

analytic SINRs, they are not shown in the figure. From this figure, we find that each subcarrier

exhibits a different SINR due to the characteristic of the frequency-selective channel. Also,

subcarrier SINRs are all increased as the number of iterations is increased. The performance of

the proposed method with two iterations is similar to that with three iterations. We also can find

that the output SINRs of the proposed method are very close to those of the direct ZF method.

Fig. 2.4 shows analytic subcarrier SINRs for case 2. We see that even in this divergence case,

SINRs are still increased for the first two or three iterations. For the fourth iteration, subcarrier

SINRs start to fall. The result for % �>�
is similar to that for % �Z3

except that the required

number of iterations is reduced to one or two.

Next, we consider the performance comparison among the proposed and conventional meth-

ods. Here, H&I is set to
3KJL�

. Specifically, the bit-error-rate (BER) is used as the performance

measure. For the purpose of benchmark, we also show the result of the direct MMSE method,

and that of the direct ZF method with H�I �83 (ICI-free). From extensive simulations, we also

find that the performance of the PSE method cannot be further enhanced when  �¤� . For this

reason, we only show the result for  �8� . Fig. 2.5 shows the BER performance comparison

for % �43 . As we can see, the performance of the PSE method is limited and has an error floor

phenomenon. The N-ZF method outperforms the PSE method even with one iteration only.

As mentioned, there is a convergence condition for the PSE method. This condition is totally

dependent on the channel. The N-ZF method also has its convergence condition. However, it

depends on the initial matrix as well as the channel. It is then possible to reduce the probability

of divergence through the determination of ¶ o
. This is the main reason why the N-ZF method

can outperform the PSE method. The required complexity of the N-ZF method is lower than

that of the PSE method (this can be seen later). Moreover, the performance of the N-ZF method
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with three iterations can approach to that of the direct ZF method. Here, the performance of

the direct ZF method is only slightly worse than that of the direct MMSE method. Figure 2.6

shows the BER performance comparison for % ���
. It is obvious that the N-ZF method can

quickly approach to the direct ZF method with one or two iterations. Note that the N-ZF method

with two iterations can even perform slightly better than the direct ZF method. This behavior is

interesting and it needs further discussions. Since the LTV model instead of the Jakes’ model is

used, one may be curious if the result is due to the modeling error. We then conduct a simula-

tion, in which the Jake’s model is used, to answer the question. Fig. 2.7 shows the result. From

this figure, we see that the performance of the ZF and MMSE methods using the exact Jakes’

channel is almost the same as that of the ZF and MMSE methods using the LTV channel. This

indicates the behavior observed in Fig. 2.6 is not due to the modeling error. The reason for the

behavior is explained as follows. The N-ZF method only iterates Newton’s method two or three

times, and it may not converge completely in all cases. As known, the direct ZF method has a

noise enhancement problem. It is then possible that the noise enhancement caused by the N-ZF

method is smaller. As a result, the performance of the N-ZF method can be better than that of

the direct ZF method. If the convergence condition is met and the number of iterations is large

enough, the performance of the N-ZF method and the direct ZF method will be the same. This

phenomenon has been verified by simulations, but the result is not shown here. Compared to

Fig. 2.5, we see that the N-ZF method with % �`�
has the better performance than that with% �53 , and it can approach to the direct ZF method more quickly.

To test the limitation of all algorithms, we consider a severer case in which H�I �53KJc� . Figure

2.8 shows the simulation result. From this figure, we see that the N-ZF method can still work,

but its performance is degraded since ICI is much larger than that in the previous cases. Also,

we can see that the degradation of the MMSE method is smaller, and the performance gap

between the ZF and MMSE methods become larger. We also conduct simulations to evaluate

the robustness of all algorithms to the variation of the normalized Doppler frequency. Figure

2.9 shows the results for H&I varying from 0 to 0.2. Here, the SNR is set to 30 dB. From this
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figure, we can see that the performance of all methods is degraded as the normalized Doppler

frequency is increased. Also, the MMSE method is the most robust method while the N-ZF

method is the second.

Table 2.3 summarizes the required computational complexity of the direct ZF method, the

PSE method, and the N-ZF method for the simulation setting shown above. In this table, the

ratios in the parenthesis indicate the number of operations required for the N-ZF method divided

by those for the direct ZF and PSE methods. The first ratio is for the direct ZF method and the

second one is for the PSE method. From the above simulations, we can say that for % �!3 , the

required iteration number for the N-ZF method is two or three, whereas for % �ò�
, it is one

or two. From Table 2.3, we can see that the N-ZF method with % �>3
can save tremendous

computations compared to the direct ZF method. With two (three) iterations, its multiplication

complexity is only 0.007 (0.015) times that of the direct ZF method. As for the case of % ��
, it also saves a lot of computations compared to the direct ZF method. We find that the

multiplication complexity of the N-ZF method with one (two) iterations is only 0.008 (0.013)

times that of the direct ZF method. As to additions, the complexity ratios are similar to those

of multiplications. As to divisions, the ratios are 0.016 and 0.015 for % ��3
and % � �

,

respectively. Compared to the PSE method (  �!� ), the N-ZF method ( Q ��� and % �53 ) also

has lower complexity and better performance. Its required multiplications (additions, divisions)

is 0.85 (0.745, 0.5) times those of the PSE method. For various
�

, we show the required

computational complexity for the direct ZF method and the N-ZF method ( Q �`� ) R ) in Figs.

2.10 and 2.11, respectively. In these two figures, RM, RD, and RA denote real multiplication,

real division, and real addition, respectively.

Another important property of the proposed N-ZF method is that it can trade the desired

performance for the required complexity. However, the direct ZF method doesn’t have such a

choice. This property will make the N-ZF method a more efficient method since it can adapt

itself to various SNR environments. If the operated SNR is not high, the iteration number can

be reduced. For example, in Fig. 2.5, it only requires one iteration to approach the direct ZF
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method when SNR is less than
��X

dB.
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Figure 2.3: SINR analysis of N-ZF method ( % �G3 and  �G� ) for case 1, where H�I �!3KJL� and

SNR = 35 dB.

0 20 40 60 80 100 120

−10

0

10

20

30

40

Subcarrier index

S
IN

R
 (d

B
)

Direct ZF
No equalization
N−ZF (k=0, R=1)
N−ZF (k=1, R=1)
N−ZF (k=2, R=1)
N−ZF (k=3, R=1)
N−ZF (k=4, R=1)

Figure 2.4: SINR analysis of N-ZF method ( % �G3 and  �G� ) for case 2, where H�I �!3KJL� and

SNR = 35 dB.
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Figure 2.5: BER comparison among one-tap FEQ, PSE, N-ZF ( % �83
and  �Z� ), direct ZF,

and direct MMSE methods in a SISO-OFDM system; H�I = 0.1 and 16-QAM modulation.
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Figure 2.6: BER comparison among one-tap FEQ, N-ZF ( % �"�
and  �`� ), direct ZF, and

direct MMSE methods in a SISO-OFDM system; H�I = 0.1 and 16-QAM modulation.
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Figure 2.7: BER comparison between the direct ZF and MMSE methods using the exact Jakes

and LTV channels in a SISO-OFDM system; H�I = 0.1 and 16-QAM modulation.
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Figure 2.8: BER comparison among one-tap FEQ, N-ZF ( % �"�
and  �>� ), direct ZF, and

direct MMSE methods in a SISO-OFDM system; H�I = 0.2 and 16-QAM modulation.
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Figure 2.9: BER comparison among one-tap FEQ, N-ZF ( % �"�
and  �`� ), direct ZF, and

direct MMSE methods in a SISO-OFDM system; H�I = 0 O 0.2, 16 QAM modulation, and SNR
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Figure 2.10: Complexity comparison between N-ZF ( % �M� ,  �#� , and Q ��� ) and direct ZF

methods in a SISO-OFDM system for various
�

.
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Figure 2.11: Complexity comparison between N-ZF ( % �M� ,  �#� , and Q �GR ) and direct ZF

methods in a SISO-OFDM system for various
�

.

§ 2.3 MMSE Method

Except for the ZF method, the MMSE method is another effective ICI mitigation method. The

MMSE method minimizes the mean square error (MSE) between the equalized and desired

signal vectors. The cost function can be expressed asÎ6Ï�Ðs <�t ® �� b-u � �� ® �'v ) (2.48)

where uì� is an
�ò���

matrix. Using the optimum u.� , we then obtain the optimum estimated

signal, denoted as
� ,w, ²�³ , shown as� ,w, ²�³��`¥<�� � �� s ? � y ¦ AB' �� � �� ) (2.49)

where ? � 9 �: > � 9 �:; [17]. From (2.49), it is obvious that the direct MMSE method requires

the matrix multiplication and inverse operations. When
�

is large, the required computational

complexity can be very high.
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Table 2.3: Complexity comparison among N-ZF, PSE, and direct ZF methods in a SISO-OFDM

system (
���������

and  �!� ).
Methods Real multiplications

(ratio)

Real divisions (ratio) Real additions (ratio)

Direct ZF 2910848 16512 2885824

PSE (  �!� ) 10240 512 12544

N-ZF ( % � 3
,Q �#� ) 8704 (0.003, 0.85) 256 (0.016, 0.5) 9344 (0.003, 0.745)

N-ZF ( % � 3
,Q �5� ) 19968 (0.007, 1.95) 256 (0.016, 0.5) 22656 (0.008, 1.806)

N-ZF ( % � 3
,Q �4R ) 42496 (0.015, 4.15) 256 (0.016, 0.5) 49280 (0.017, 3.929)

N-ZF ( % �Ä�
,Q �43 ) 17007 (0.006, 1.661) 254 (0.015, 0.496) 12315 (0.004, 0.982)

N-ZF ( % �Ä�
,Q �#� ) 23655 (0.008, 2.310) 254 (0.015, 0.496) 19987 (0.007, 1.593)

N-ZF ( % �Ä�
,Q �5� ) 36951 (0.013, 3.609) 254 (0.015, 0.496) 35331 (0.012, 2.817)

§ 2.3.1 Proposed Newton-MMSE Method

Now, we know that the MMSE method has a problem of high-complexity. Although existing

iterative methods [58] can reduce the complexity of the matrix inversion, the matrix multipli-

cation operation remains. Motivated by this issue, we develop a method to solve the problem.
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First, we rewrite the direct MMSE solution with a new form as� ,w, ²�³Ä� � �� A � ¥<�� � �� s ? � y ¦ � AB' ��� ¥<�� s ? � � A � ¦ AB' ��� �x AB' �� ) (2.50)

where �x �"�� s ? � � A � . As we can see, (2.50) has to conduct the matrix inversion twice.

The key idea to avoid the matrix multiplication and inversion is to apply an efficient iterative

matrix inversion method twice in (2.50). In Chapter 2, we have shown that the ZF method with

Newton’s iteration has good performance and its performance is almost as good as that of the

direct ZF method. Here, we extend the idea to reduce the computational complexity of the

direct MMSE method.

Let the estimated �x AB' at the Q th iteration be ¶"· . Then from Newton’s iteration, ¶"·�DF' can

be described as follows [61]– [66]:

¶�·�DF' � 	 �&� y b�¶�· �x  ¶�·&)�Q �53 ) � ) JWJWJ )*¸ J (2.51)

From (2.51), it is obvious that Newton’s iteration requires matrix-to-matrix multiplications.

Thus, direct application of Newton’s iteration for matrix inversion is not feasible.

As we did in the N-ZF method, we can iterate (2.51) to obtain a sequence of matrices$<¶ o )r¶�'*) JWJWJ )r¶�· + and then ¶�· can be derived from ¶ o
and �x in the following form

¶�· � ��¼ AB'½¾ ¬ o ~ · q ¾ 	�¶ o �x  ¾ ¶ o ) (2.52)

where
~ · q ¾ is the coefficient of the ¿ th summation term in (2.52). It turns out that to obtain a

low-complexity algorithm, we have to use the expanded form.

Note that the matrix inverse ¶"· is not the desired result, whereas ¶ò·��� is the desired result.

Let
� · � ¶�·��� and � ¾ � 	�¶ o �x  ¾ ¶ o �� . Then, multiplying (2.52) by �� , we have

� · � ��¼ AB'½¾ ¬ o ~ · q ¾ � ¾ J (2.53)
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From the definition of � ¾ , it is simple to see that � ¾ can be recursively calculated as

� ¾ DF' � ¶ o �x � ¾ J (2.54)

Recall that �x � � � s ? � � A � . Thus, to obtain � ¾ ,
�� A � must be calculated. Once again, we

apply Newton’s method described above to expand
� � A � . Let the estimated

�� A � at the e th

iteration be Å_y . We then have

Å_y � �{z AB'½ k ¬ o � y q k ¥ ¶ o � � � ¦ k Å o ) (2.55)

where
� y q k and Å o are defined the same as

~ · q ¾ and ¶ o in (2.52), respectively. From (2.54), we

then have

� ¾ DF' � ¶ o}| � � s ? � z AB'½ k ¬ o � y q k ¥ ¶ o � � � ¦ k Å o�~ � ¾ J (2.56)

As we can see, the number of the expansion terms in Newton’s iteration grows exponentially.

Now, we have two iterative processes, i.e., (2.53) and the summation terms in (2.56), the former

for the approximation of �x AB' and the latter for the approximation of
� � A � . The required

computational complexity will be high if we fully iterate these two processes. From (2.50), we

can see that
� � A � is weighted by ? which will be much less than one in high SNR scenarios.

As a result, the approximation of
� � A � is less critical. For simplicity, we only use the first-order

expansion for the approximation of
� � A � in (2.56), i.e., e �#� . From (2.56), we then have

� ¾ DF' � ¶ o ���� s ? ¥ � ' q o � y1s � ' q '�Å o � � � ¦ Å o � � ¾� ¶ o ���� s j ' q o Å o�s j ' q '�Å o � � � Å o � � ¾ ) (2.57)

where
j @ q k � ? � � @ q k . Let � ¾ � Å o � ¾ . Exploring the structure of the ICI matrix, we can further

rewrite (2.57) as follows:

� ¾ DF' � ¶ of� ¥ �} o�s �(��'�� � �}1' ¦ s � j ' q o � y1s j ' q '�Å o ¥ �} �o s �} � ' �(��'�� � ¦ �nÅ o�� � ¾� ¶ of� �} o � ¾ s �(��',	�� � �}1' � ¾  s j ' q o � ¾ s j ' q '�Å o � �} �o � ¾ s �} � ' �(��',	�� � � ¾  � � J
(2.58)
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Note that �} o , �}1' , and ��' are all diagonal matrices. If we further let ¶ o
and Å o be diago-

nal matrices, (2.58) will only involve vector-to-vector and DFT/IDFT operations. It is well-

known that DFTs/IDFTs can be efficiently implemented with FFTs/IFFTs, whose complexity

is �
	 �!����� � �� . Thus, the computational complexity of the proposed MMSE algorithm is�
	 ���!�������F�� . The diagonal constraint on ¶ o
and Å o may not always yield satisfactory per-

formance in all scenarios. To obtain higher performance and at the same time to retain the

low-complexity property, we can relax the constraint slightly. We may let ¶ o
and Å o be low-

bandwidth circular band matrices. The structure of a circular band matrix is depicted in Fig.

2.12. Let the 	 U ){u  th entry of a circular band matrix Å be denoted as ��@ q k � Å
	 U ){u  . Given

a fixed index
U
, ��@ q k is non-zero only for u2�#$ U b�%�) U b¤% s � ) JWJWJ ) U s % + . Here, % is the

bandwidth of a circular band matrix. Note that the index, u , is calculated with modulo-
�

arith-

metic. Thus, from Fig. 2.12, we can see that there are non-zero elements in the upper right and

lower left corners of a circular band matrix. If % ��3 , the circular band matrix is reduced to a

diagonal matrix. If % �8� , the circular band matrix will have three non-zero diagonal vectors.

With this type of ¶ o
and Å o , the computational complexity in (2.58) will only be increased

slightly. Thus, we only consider the case where % ���
. For easy reference, we denote the

proposed low-complexity MMSE method as the Newton-MMSE (N-MMSE) method.

§ 2.3.2 Derivation of the Initial Matrix

In the previous subsection, we have proposed the N-MMSE method to solve the problems of

the matrix multiplication and inversion. However, we have to determine the initial matrices ¶ o
and Å o . Good initial matrices can reduce the number of iterations significantly and provide

good mitigation performance.

First, we discuss the determination of ¶ o
. As we did in the N-ZF method, we also adopt

the minimum-Frobenius-norm criterion to obtain optimal initial matrices. Let ¶ be a circular
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Figure 2.12: The structure of a circular band initial matrix is depicted for
�=�Z�

and % �>�
.

The elements in the shaded area are non-zeros, while the others are zeros.

band matrix with bandwidth % � . Then ¶ o can be obtained by the following criterion

¶ o �5Ì�Ír�nÎ6Ï�ÐÑ ® � y b�¶ �x ® �¢ ) (2.59)

where �x �4�� s ? � � A � . Obviously, we have to evaluate
�� A � in order to obtain �x . However,� � A � itself is the target we want to find out in (2.55). Since ¶ o

is only an initial matrix, it

turns out that we only have to calculate
� � A � roughly. We will discuss this problem later. For

the time being, we can simply assume that �x is known as a priori.

Define a vector consisting of non-zero elements in the
U
th row of ¶ o

as à»@ , i.e.,

à»@ �Mx ÒÓ@ q @�AKå  ) JWJWJ )�ÒÓ@ q @h) JWJWJ )�ÒÓ@ q @EDBå  z | ) (2.60)

where ÒÓ@ q k � ¶ o 	 U ){u  . Furthermore, define ? � �x Õ �x | and �� @ q k � �x 	 U ){u  . Differentiating

(2.59) with respect to Ò Õ@ q k , and setting the corresponding result to zero, we can obtain the

following equations:

?C@Là»@ �g� @�) U��43 ) � ) JWJWJ ) � b � ) (2.61)
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where

?C@ � ?2	 U b�% � í�U s % � ) U b�% � í�U s % �  ) (2.62)� @ �Sx �� Õ@�AKå  q @ ) JWJWJ ) �� Õ@ q @ ) JWJWJ ) �� Õ@EDBå  q @ z | J (2.63)

Note that the indices in ?(@ , à»@ , and
� @ are calculated with modulo-

�
arithmetic. Now, we can

0A

3A 7A5A4A 6A1A 2A

�Y���
N0

A

N0 AA

A

A

A A

Figure 2.13: The structure of ?(@ is presented for
� ���

and % �N�
. Note that ?(@ overlaps?C@EDF' for modulo-

�.U
(i.e., the relationship is circular).

obtain the optimum solution of (2.59) by àC@ � ? AB'@ � @ . For easily understanding the structure

of ?C@ , we show an example in Fig. 2.13 for
���P�

and % �>�
. From Fig. 2.13, we can see

that the lower right
�0�1�

submatrix of ?(@ is exactly the same as the upper left
�0�1�

submatrix

of ?C@EDF' . Note that this relationship is circular. The circular relationship means that the lower

right
�0�7�

submatrix of ?
ô is exactly the same as the upper left
�»�2�

submatrix of ? o . Thus,?C@ overlaps ?C@EDF' for all modulo-
�ÖU

. Using this property, we can use the recursive algorithm
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mentioned in Subsection 2.2.2 for fast computation of ? AB'@ . Consequently, we can obtain ? AB'@
recursively. Using this approach, we only have to actually calculate one matrix inversion, i.e.,? AB'o , and its matrix dimension is 	 � % � s ��.� 	 � % � s �� . Note that as mentioned, ?(@ has the

circular relationship, we can start out from any
U
.

To further reduce the computational complexity in the calculation of the initial matrix, we

can use a circular band matrix derived from �x to calculate ? . Define a matrix operation~*Uh� �&	�æ�)Wæ  as follows. If î �ª~*Uh� �&	 ^îC)�%  , î is a circular band matrix such that
~ @ q k � ^~ @ q k

for u��¤$ U b/%�) U b/% s � ) JWJWJ ) U s % + and
~ @ q k �Z3 , otherwise. Here, ^~ @ q k and

~ @ q k denote the	 U ){u  th element of ^îY	 U ){u  and îY	 U ){u  , respectively. The index, u , is calculated with modulo-
�

arithmetic. Using the operation, we define �x �a~*Uh� �&	 �x )* �  and �? � �x Õ �x | . Moreover, let� @ q k � ?2	 U ){u  and then
� @ q k ¨ �?2	 U ){u n� © Ô&ý�� �� Õ@ q Ô �� k�q Ô , where � � ¯ U bÉ � ífU s  � ) ��� � ¯uõb[ � í u s  � ) ���

. Here,  � is the number of one-sided ICI terms that we want to take into

calculation (
3 º  � º �»��� b � ). Since ICI on a subcarrier mainly comes from a few neigh-

boring subcarriers, we can make such an approximation safely. Note that this approximation is

used only for the calculation of the initial matrix.

To obtain Å o , we can use the same approach, namely, Å o ��Ì�Ír�ÁÎ6Ï�Ð�� ® � y b5Å �� � ® �¢ .

Recall that �x is needed in (2.59). A simple way to approximate �x is to use a zeroth-order

expansion for �x , i.e., �x ¨ �� s ?�Å o . The reason why we can use the zeroth-order expansion

for �x is that the precision for initial values can be lower. Thus, its computational complexity

can be reduced with limited performance loss. Note that Å o is used twice; one is for the iterative

step (2.57) and the other is for the initial matrix calculation.

§ 2.3.3 Complexity Analysis

In Subsections 2.3.1 and 2.3.2, we reformulate the MMSE solution and then obtain a low-

complexity N-MMSE method. In this subsection, we analyze the required computational com-

plexity of the proposed N-MMSE method and make a comparison between the N-MMSE and

direct MMSE methods.
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From Subsection 2.3.1, we know that the major computational load results from Eqs. (2.53),

(2.54), and (2.56) shown as follows:

1. � ¾ iteration, where � ¾ � 	�¶ o �x  � ¾ AB' and � o � ¶ o �� ,

2.
� �

and �x construction, where �x ��� �� s ? © � z AB'k ¬ o � y q k ¥ ¶ o �� � ¦ k Å o�  ,
3. Å o and ¶ o calculation.

Due to the diagonal and DFT/IDFT structures in �x , � ¾ can be obtained using (2.58). As a

result, we require
x � y �G����� � � s 	 � y�DF' %C' s � % � s � y�D � s �������� z CMs and

x � y �!����� � � s
	 � y�DF' %C' s � % � s � y b �������� z CAs for ¿¡� � . In addition, we need 	 � s � % � �� CMs and� % � � CAs for � o � ¶ o �� and

���
RAs for each

~ · q ¾ � ¾ . As to the construction of
�� � for Å o ,

we require 	h -' s �������� CMs and 	h -' s �������� CAs. For calculating Å o , we need to construct

matrices ?C@ for
U��53 ) � ) JWJWJ ) � b � and they require 	h ¡' s :  -'�%C'�b � % �' s %C' s �������� CMs and	h -' s :  -'r%C'�b � % �' b�%C'  CAs. For solving à6@ � ? AB'@ á @ , it requires

x 	 R
�������� s ����� z CMs,x 	 �������� s R���� z CAs, and 	 ��� b �� RDs for the case of %(' �#� . To obtain �x , we need 	 R�������
CMs and 	 R������� CAs for % � �N�

. For calculating ¶ o
, we require 	h � s :  � % � b � % �� s% � s �������� CMs and 	h � s :  � % � b � % �� b7% �  CAs to construct ?(@ for

U��43 ) � ) JWJWJ ) � b � .
To solve à»@ � ? AB'@ á @ , it requires

x 	 R
�������� s ����� z CMs,
x 	 �������� s R���� z CAs, and 	 ��� b ��

RDs for the case of % � ���
. As for the direct MMSE method, the matrix inversion can be

implemented by Gaussian elimination [69]. Finally, we summarize the required complexity of

the N-MMSE method and the direct MMSE method for a SISO-OFDM system in Table 2.4.

We also summarize the complexity of calculating the initial matrix in the N-MMSE method in

Table 2.5.

44



Table 2.4: Complexity comparison between the N-MMSE and direct MMSE methods in a

SISO-OFDM system.

Methods Real multiplications Real divi-

sions

Real additions

Direct

MMSE ¢� ��� s X�� � s :��!����� � � s� ô� �
� � s � ¢� ��� s :�� � s 9��!����� � � s'{£� �

N-MMSE

( % � �
%C' ��� )

	 � ·�D � b :fr� y �!�������F� sx �&:  -' s ��3  � s Rõ��� ·�D¤y�D �±sRÂ� � ·�D � b RÂ� � y�D � s ��X�� z � s� y s R
:�� b � R 	 � ·�DF' b ��r� y �!�������F� sx �&:  -' s ��3  � s dõ��� ·�D¤y�DF' sXn�Ö� ·�DF' b dÁ�Ö� y�DF' s ��� z � s �

Table 2.5: Complexity of the initial matrices calculation for the N-MMSE method in a SISO-

OFDM system.

Methods Real multiplications Real divisions Real additions

N-MMSE

( %C' � % � ��� ) 	 �&:¦¥  -' s ��3§¥  � s��X����� s : 	 �&:§¥  -' s ��3¨¥  � s������ s � :�� b �

§ 2.3.4 Simulations

In this subsection, we report simulation results to demonstrate the effectiveness of the proposed

N-MMSE method. The simulated system parameters are the same as those in Subsection 2.2.5.

We compare the performance of the N-MMSE, one-tap FEQ, and direct MMSE methods. Here,

we set H�I �43KJ 3�X , and use the BER as the performance measure. Fig. 2.14 shows the simulation

results. From this figure, we see that the performance of the one-tap FEQ method suffers from

an error floor phenomenon. However, the N-MMSE method effectively avoids this phenomenon
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and successfully mitigates ICI. With one or two iterations ( Q = 1 or 2), the performance of the

N-MMSE method can closely approach to that of the direct MMSE method. Figure 2.15 further

shows the BER comparison for H&I ��3KJL� . Due to the larger H&I , the performance of the one-tap

FEQ method is further degraded. The N-MMSE method can still work very well. Compared

to the direct MMSE method, the N-MMSE method has a little performance loss. However,

we can have a significant complexity reduction. We further investigate the impact of H�I on the

BER performance. Figure 2.16 shows the results for H�I varying from 0 to 0.2 when the SNR

is set to 30 dB. From this figure, we see that the performance of all methods is degraded as the

normalized Doppler frequency is increased. Also, the N-MMSE method has larger performance

loss (compared to the direct MMSE method) when H�I gets larger.

Table 2.6 summarizes the required computational complexity for the direct MMSE method

and the N-MMSE method using the same simulation settings. In this table, the number in

a parenthesis shows the ratio of the number of required operations for the N-MMSE method

divided by that for the direct MMSE method. As we can see, in the case of H�I �83KJ 3�X , Q �a�
or
�

is sufficient for the N-MMSE method. When one (two) iteration is used, the complexity

ratio for multiplication, division, and addition is only 0.008 (0.014), 0.031 (0.031) and 0.007

(0.013), respectively. In the case of H�I �ò3KJL�
, the required iteration number is two or three.

When two (three) iterations are used, the ratio for multiplication, division, and addition turns

out to be 0.016 (0.027), 0.031 (0.031), and 0.016 (0.028), respectively. From the comparison,

we clearly see that the N-MMSE method dose save a lot of computations while its performance

is comparable to that of the direct MMSE method. For other values of
�

, we show the required

computational complexity for the direct MMSE method and the N-MMSE method ( Q �]� ) R )
in Figs. 2.17 and 2.18, respectively.

Another advantage of the N-MMSE method is that its computational complexity can be eas-

ily controlled with the iteration number. In other words, we can always trade the performance

for the lower complexity. Also, for different SNR environments, the required number of itera-

tions may be different. If the received SNR is not high, the iteration number can be lower. For
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example, in Fig. 2.15, the N-MMSE method only requires one iteration to approach the direct

MMSE method when SNR is less than
��X

dB. The direct MMSE method, however, does not

have this option.
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Figure 2.14: BER comparison among the one-tap FEQ, N-MMSE ( $&%
'�)�% �,+ � $ � ) � + and$� -'*)* �,+ � $ � ) � + ), and direct MMSE methods in a SISO-OFDM system; H�I �P3KJ 3�X and 16-

QAM modulation.
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Figure 2.15: BER comparison among the one-tap FEQ, N-MMSE ( $&%
'*)�% �,+ � $ � ) � + and$� -'*)* �,+ � $ X ) X + ), and direct MMSE methods in a SISO-OFDM system; H�I ��3KJL� and 16-

QAM modulation.
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Figure 2.16: BER comparison among one-tap FEQ, N-MMSE ( %
' � % � �a� ,  -' �  � �PX ,
and Q �TR

), and direct MMSE methods in a SISO-OFDM system; H�I = 0 O 0.2, 16 QAM

modulation, and SNR = 30 dB.
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Figure 2.17: Complexity comparison between N-MMSE ( %
' � % � ���
,  -' �  � �`X , andQ �5� ) and direct MMSE methods in a SISO-OFDM system for various
�

.
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Figure 2.18: Complexity comparison between N-MMSE ( %
' � % � �>� ,  -' �  � �>�<3 , andQ �4R ) and direct MMSE methods in a SISO-OFDM system for various
�

.
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Table 2.6: Complexity comparison between the N-MMSE and direct MMSE methods in a

SISO-OFDM system (
�"�#�����

, and $&%('*)�% �W+ � $ � ) � + ).
Methods Real multiplications

(ratio)

Real divisions

(ratio)

Real additions

(ratio)

Direct MMSE 5679488 16512 5664128

N-MMSE ( Q �T�
,$� -'*)* �W+ � $ � ) � + ) 47109 (0.008) 510 (0.031) 39688 (0.007)

N-MMSE ( Q �ò�
,$� -'*)* �W+ � $ � ) � + ) 76805 (0.014) 510 (0.031) 72968 (0.013)

N-MMSE ( Q �ò�
,$� -'*)* �W+ � $ X ) X + ) 93701 (0.016) 510 (0.031) 89864 (0.016)

N-MMSE ( Q �"R
,$� -'*)* �W+ � $ X ) X + ) 153093 (0.027) 510 (0.031) 156424 (0.028)
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Chapter 3

Mobility-induced ICI Mitigation for

MIMO-OFDM Systems

§ 3.1 Signal Model

The MIMO technique is a promising method to further improve the transmission data rate.

Combined with OFDM, a MIMO-OFDM system has been adopted in many systems. In the

application of spatial multiplexing, inter-antenna interference is further introduced. Operating

in a high-mobility environment, MIMO-OFDM systems will be subject to both ICI and inter-

antenna interference. Thus, ICI mitigation is more challenging in MIMO-OFDM systems. It

is possible to formulate the whole system with a linear model and to apply the ZF or MMSE

equalizer to suppress all interference. However, the dimension of a MIMO-OFDM ICI matrix

becomes much larger than that in a SISO-OFDM system and then the required complexity is

even more intractable. In this chapter, we extend the method proposed in Chapter 2 to solve the

problem. Considering an g � g system and using the signal model in SISO-OFDM systems,

we can express the frequency-domain signal for the
U
th receive antenna as

�� @ � ,½ k ¬F' �� @ q k �� k�s � � @�) (3.1)
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where �� @ is the frequency-domain signal in the
U
th receive antenna, �� k is the frequency-domain

signal in the u th transmit antenna, � � @ is the frequency-domain noise in the
U
th receive antenna,

and
� � @ q k is the ICI matrix for the u th transmit antenna and the

U
th receive antenna. By stacking

all the receive frequency-domain signals from all antennas in a column vector, we have the

following signal model

�� � �� �� s � � ) (3.2)

where �� �]x �� | ' )r�� |� ) JWJWJ )r�� | , zE| is the receive frequency-domain signal, ��^�]x �� | ' )��� | � ) JWJWJ )r�� | , zE|is the transmit frequency-domain signal, � � �Mx � � | ' )h� � | � ) JWJWJ )h� � | , zE| is the frequency-domain noise,

and the frequency-domain ICI channel matrix can be expressed as follows,

����
âãããããã
ä
� � ' q ' � � ' q � æ<æ<æ �� ' q ,� � � q ' � � � q � æ<æ<æ �� � q ,...

... . . . ...� � , q ' � � , q � æ<æ<æ �� , q ,
è éééééé
ë J (3.3)

For the ease of description, we only consider a
�(���

MIMO-OFDM system in the following

derivation. However, the proposed algorithm (presented later) can be extended to a generalg � g MIMO-OFDM system without any difficulties. Similar to the adopted channel model

in SISO-OFDM systems, we also use the LTV model for MIMO-OFDM channels. Thus, we

can obtain the MIMO-OFDM ICI matrix given by� ��� âä �� ' q ' � � ' q ��� � q ' � � � q �
èë

� âä �? ots �(��'��
� �?�' �Å ots �(��'��
� �Å6'�î ots �(��'�� � �î»' �� ots �(��'�� � �� ' èë� âä �? o �Å o�î o �� o èë s âä �(��'��
� Ë yË y �(��'��
�
èë � âä �?�' �Å6'�î»' �� ' èë ) (3.4)

where �?C@ , �Åõ@ , �î @ , and �� @ play the same role as �}
@ in a SISO-OFDM system. Note that the

derived signal model is obtained by grouping together subcarrier signals in the same antenna.
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§ 3.2 ZF Method

As mentioned, the ZF equalized signal,
�� £¢

, can be obtained as
�¡ £¢��4�� AB' �� . Clearly, the di-

rect implementation of the ZF method will require higher computational complexity in MIMO-

OFDM systems. For the purpose of comparison, we consider a simple ZF equalizer ignoring

the ICI effect in (3.4). In this case, the ICI channel matrix turns out to be

� �©p�� âä �? o �Å o�î o �� o èë J (3.5)

Thus, the equalized signal can be obtained with
�ªpn�5�� AB'p �� . Using the block matrix inversion

formula, we know that to obtain the
U
th subcarrier equalized signal for antenna one or two, the

method will require two weights. For the ease of reference, we denote this equalization method

as a two-tap FEQ method.

§ 3.2.1 Proposed Newton-ZF Method

Since the direct ZF method will require higher computational complexity in MIMO-OFDM

systems, in this subsection, we will propose a low-complexity ZF method to solve this problem.

Using the derived MIMO-OFDM ICI matrix in (3.4), we now can apply Newton’s iteration to

implement the ZF equalizer. With (2.6) and (3.2), we can obtain the equalized result as

� · � � ¼ AB'½¾ ¬ o ~ · q ¾ � ¾ ) (3.6)

where
� · , ~ · q ¾ , and � ¾ are defined as those in (2.7). Let the initial matrix ¶ o

be composed of

four
�N���

matrices expressed as

¶ o � âä ¶¬« ¶®¶°¯�¶°± èë ) (3.7)
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and � ¾ �Mx � |¾ q ' ) � | ¾ q � zE| . Recall that � ¾ DF' � ¶ o �� � ¾ . According to this definition of � ¾ , we

can obtain � ¾ DF' as

� ¾ DF' � âä ¶¬« ¶®¶°¯ ¶°± èë QS T âä �? o �Å o�î o �� o èë s âä �(��'�� � Ë yË y �(��'��
�
èë âä �?�' �Å6'�î»' �� ' èë X Z[ âä � ¾ q '� ¾ q �

èë
� âä ¶¬« ¶®¶°¯ ¶°± èë QS T âä �? o � ¾ q ' s �Å o � ¾ q ��î o � ¾ q ' s �� o � ¾ q � èë s âä �(��'��
�\	 �?�' � ¾ q ' s �Å6' � ¾ q � �(��'��
�µ	 �î»' � ¾ q ' s �� ' � ¾ q �  èë X Z[ J

(3.8)

Note that �?C@ , �Åõ@ , �î @ , �� @ , and ��' are all diagonal matrices. It is obvious that if we let ¶²« ,¶® , ¶°¯ , and ¶°± be low-bandwidth banded matrices, (3.8) can be implemented by vector

and FFTs/IFFTs operations. Note that the FFT size is
�

instead of
���

. Thus, the required

computational complexity is �
	hg �G����� � �� . It is straightforward to see that the computational

complexity of the direct ZF method is �
	hg �*���� . The complexity reduction achieved by the

proposed method in MIMO-OFDM systems can be greater compared to that in SISO-OFDM

systems.

Note that the proposed method can be extended to a general g | � g³N MIMO-OFDM

system, where g | is the number of transmit antennas, g-N is the number of receive antennas,

and g | ¯ g³N . In such a system, we have to use the LS method to mitigate ICI instead of ZF.

Using the LS method, we have the equalized signal vector formulated as�1� 	 � � � ��� AB' �� � ��� �x AB' � ) (3.9)

where �x � � � � � � and � � �� �Á�� . The matrix �x , inheriting the properties of
� �

, consists

of diagonal and DFT/IDFT matrices too. As a result, the proposed method discussed above

can be applied. Since the derivation is simple and straightforward, it is omitted here. Due to

the application of the LS method, the required complexity in this scenario will be somewhat

higher.

54



§ 3.2.2 Derivation of the Initial Matrix

To complete the proposed N-ZF method, we have to determine the
��� �[���

initial matrix,

optimally. As we did in SISO-OFDM systems, we adopt the minimum-Frobenius-norm cri-

terion to obtain the initial matrix. Note that the initial matrix for the MIMO-OFDM sce-

nario is no longer a banded matrix. Instead, it is a matrix composed of four banded sub-

matrices. Let ?-@ q k � ¶¬«v	 U ){u  , ü @ q k � ¶®B	 U ){u  , / @ q k � ¶°¯K	 U ){u  , and ´¡@ q k � ¶°±È	 U ){u  .
Also define � @ q k � © y AB'Ô ¬ o 	 � � Õ@ q Ô � � k�q Ô s � �*Õ@ q Ô � � k�q Ô  , � @ q k � © y AB'Ô ¬ o 	 � ~ Õ@ q Ô � ~ k�q Ô s �� Õ@ q Ô �� k�q Ô  , and ö @ q k �© y AB'Ô ¬ o 	 � � Õ@ q Ô � ~ k�q Ô s � �*Õ@ q Ô �� k�q Ô  , where � � @ q k ���� ' q 'W	 U ){u  , � ��@ q k ���� ' q � 	 U ){u  , � ~ @ q k ���� � q 'W	 U ){u  , and�� @ q k � � � � q � 	 U ){u  . It turns out that we can obtain the optimum initial values by solving the

following equations 7 @ û @ � ��@�) U��53 ) � ) JWJWJ ) ��� b � ) (3.10)

where û @ consists of the non-zero elements in the
U
th row of the optimum ¶ o

. Definitions of7 @ , û @ , and ��@ may be different for different
U
. Note that we have two sets of banded matrices

to deal with; one is for
U_�`3 ) � ) JWJWJ ) � b � and the other is for

UÖ�`� ) � s � ) JWJWJ ) ��� b � .
Moreover, we need to consider three cases for each set. Fortunately, they are similar. For the

set of
U��43 ) � ) JWJWJ ) � b � , we have the following definitions:

1. For
U�� %�)�% s � ) JWJWJ ) � b � b�% ,7 @ � âä x @¶µÜ@µ±�@ ¹ @

èë ) (3.11)

x @ � âããã
ä
� @�AKå q @�AKåçæ<æ<æ � @�AKå q @EDBå

... . . . ...� @EDBå q @�AKåçæ<æ<æ � @EDBå q @EDBå
è ééé
ë ) (3.12)

û @ �Mx ?±@ q @�AKåÂ) JWJWJ )�?±@ q @EDBåÂ) ü @ q @�AKåÁ) JWJWJ ) ü @ q @EDBå-z | ) (3.13)��@ �Mx � � Õ@�AKå q @ ) JWJWJ ) � � Õ@EDBå q @ ) � ~ Õ@�AKå q @ ) JWJWJ ) � ~ Õ@EDBå q @ z | J (3.14)
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Matrices
¹ @ and µÜ@ can be obtained by replacing � ¾ q Ô in

x @ with
� ¾ q Ô and ö ¾ q Ô , respec-

tively.

2. For
U��43 ) � ) JWJWJ )�%8b � ,7 @ � âä x @·µÜ@µ±�@ ¹ @

èë ) (3.15)x @ � x åì	 3»í % s U ) 3»í % s U{ ) (3.16)¹ @ �¤¹ åì	 30í % s U ) 30í % s U{ ) (3.17)µÜ@ � µ±åì	 3»í % s U ) 3»í % s U{ ) (3.18)û @ �Sx ?±@ q o ) JWJWJ )�?±@ q @EDBåÁ) ü @ q o ) JWJWJ ) ü @ q @EDBå-z | ) (3.19)��@ �Sx � � Õorq @ ) JWJWJ ) � � Õ@EDBå q @ ) � ~ Õorq @ ) JWJWJ ) � ~ Õ@EDBå q @ z | J (3.20)

3. For
U��4� b�%�) � b�% s � ) JWJWJ ) � b � ,7 @ � âä x @¶µÜ@µ±�@ ¹ @

èë ) (3.21)x @ � x6y AB'{AKåì	 U b � s � s % í£� %�) U b � s � s % í£� %  ) (3.22)¹ @ �4¹ y AB'{AKåÓ	 U b � s � s % í£� %�) U b � s � s % í£� %  ) (3.23)µÜ@ � µ y AB'{AKåì	 U b � s � s % í£� %�) U b � s � s % í£� %  ) (3.24)û @ �Mx ?±@ q @�AKåÁ) JWJWJ )�?±@ q y AB'*) ü @ q @�AKåÁ) JWJWJ ) ü @ q y AB'{z | ) (3.25)��@ �Mx � � Õ@�AKå q @ ) JWJWJ ) � � Õy AB' q @ ) � ~ Õ@�AKå q @ ) JWJWJ ) � ~ Õy AB' q @ z | J (3.26)

Note that
x @ , ¹ @ , and µÜ@ in the second case correspond to upper left submatrices of

x å ,
¹ å , andµ±å , respectively. Also,

x @ , ¹ @ , and µÜ@ in the third case correspond to lower right submatrices

of
x6y AB'{AKå ,

¹ y AB'{AKå , and µ y AB'{AKå , respectively.

For
U»��� ) � s � ) JWJWJ ) ��� b � , we can use the same equations shown in (3.11)–(3.26).

However, we have to let
7 @ �M7 @�A y , replace ?±@ q k and

ü @ q k in û @ with / @ q k and ´¡@ q k , respectively,
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and � � Õ@ q k and � ~ Õ@ q k in ��@ with � �*Õ@ q k and �� Õ@ q k , respectively. Since the initial matrix is no longer a

banded matrix, we are not able to obtain a recursive relationship in solving (3.10). Gaussian

elimination may be a good choice for this problem. As mentioned,
7 @ �`7 @�A y ; we need only

to construct
7 @ and perform Gaussian elimination of

7 @ for
UÁ��3 ) � ) JWJWJ ) � b � . Also,

7 @ is a

Hermitian matrix, making the complexity of Gaussian elimination even lower.

To further reduce the computational complexity, we can make some approximations in the

calculation of � @ q k , � @ q k , and ö @ q k . We can let � @ q k ¨#© Ô&ýWþ 	 � � Õ@ q Ô � � k�q Ô s � �*Õ@ q Ô � � k�q Ô  , � @ q k ¨G© Ô&ýWþ 	 � ~ Õ@ q Ô � ~ k�q Ôs �� Õ@ q Ô �� k�q Ô  , and ö @ q k ¨ © Ô&ýWþ 	 � � Õ@ q Ô � ~ k�q Ô s � �*Õ@ q Ô �� k�q Ô  , where ÿ � ¯ U b� í�U s  �) ��� � ¯ u b� íu s  �) �¡�
. Again, this approximation makes use of the property that elements in

� � @ q k close

to the main diagonal has larger values than the others.

§ 3.2.3 Complexity Analysis

Up to now, we have extended the N-ZF method from SISO-OFDM systems to MIMO-OFDM

systems. In this subsection, we further discuss the required computational complexity of the N-

ZF method and compare it with that of the direct ZF method in a
�0�2�

MIMO-OFDM system.

From (3.6) and (3.8), we find that the computational complexity of the N-ZF method mainly

consists of the following three parts:

1. � ¾ iteration, where � ¾ � 	�¶ o � �� � ¾ AB' and � o � ¶ o �� ,

2.
� �

construction,

3. ¶ o calculation.

Since we adopt the LTV channel model, the MIMO-OFDM ICI matrix
��

has the special struc-

ture of diagonal and DFT/IDFT matrices. Consequently, � ¾ can be obtained using (3.8). As a

result, we require
x ���!�������F� s 	 � % s �<R��� b : % � b : %6z CMs and

x :��!�������F� s 	 � % s ���� b: % � b : %6z CAs. In addition, we need
x 	 � % s :f�� b : % � b : %6z CMs and

x 	 � % s ���� b : % � b : %6z
CAs for � o � ¶ o �� and

���
RAs for each

~ · q ¾ � ¾ in (3.6). As to the construction of
��

,
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we require 	 :  s ���� CMs and 	 :  s ���� CAs. For calculating ¶ o
, we need to con-

struct matrices
7 @ for

U»�N3 ) � ) JWJWJ ) � b � and they require
x 	 �  s R��  �%`b �<9 % � s � % s:f�� b R��  �% � b �<9  �% s 	 9�:f��R� % � b5	 �<9���R� %6z CMs and

x 	 �  s R��  �%Zb �<9 % � b � % �� bR��  �% � b �<9  �% s 	 9�:f��R� % � s �<9 % � s 	 ����R� %6z CAs. For solving
7 @ û @ � ��@ , it requires$ x 	 R�����R� % � s :�: % � s 	 ��X���R� % s d���� z � b[	 R�:f��R� % � bÉ	 �<R�����R� % � bÉ	 �¤�£����9� % � bÉ	 �£������ % +

CMs, $ x 	 R�����R� % � s :�: % � s 	 ��X���R� % s d���� z � b0	 R�:f��R� % � b0	 �<R�����R� % � b0	 �¤�£����9� % � b0	 �£������ % +
CAs,

x 	 � % s :f�� s 	 X�9���R� % � b : % � b1	 ��3���R� %6z CDs, and
x 	 �<9 % � s ��� % s ���� b1	 :�3���R� % � b�<� % � b!	 �W:f��R� %6z RDs. Finally, we summarize the required complexity for the N-ZF method

and the direct ZF method [69] operating in a
�\�C�

MIMO-OFDM system in Table 3.1. Further-

more, we summarize the complexity for calculating the initial matrices in the N-ZF method in

Table 3.2.

Table 3.1: Complexity comparison between N-ZF and direct ZF methods in a
�
���

MIMO-

OFDM system.

Methods Real multiplications Real divi-

sions

Real additions

Direct ZF
� �� ��� s ����� � b �� � :�� � s ��� � �� ��� s ����� � b �%¸� �

N-ZF ( % �#� ) 	 � ·�D � b ����5������� 	 �� s
	 �!��9  s ��� � � ·�D �=s'{' �{�� �� b �<d��  
b � ·�D ¸ b ' o � o�

X&:�� b ��3 R 	 � ·�D � b :f��!������� 	 �� s	 �!��9  s �!� � � ·�D � sR������� b �<d��  1b � ·�D ¸ b RK�<9
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Table 3.2: Complexity of the initial matrix calculation for the N-ZF method in a
�0�2�

MIMO-

OFDM system.

Methods Real multiplications Real divisions Real additions

N-ZF ( % �#� ) 	 �!��9  s :p�W:f�� b�<d��  1b R�:�3 	 �!��9  s R�R����� b�<d��  2b RK�<9
X&:�� b ��3

§ 3.2.4 Simulations

In this subsection, we report simulations to demonstrate the effectiveness of the proposed

method. We consider a
���[�

MIMO-OFDM system with
��� �����

and the CP size of 16.

The modulation scheme is 16-QAM. The channel length is set to i �P��X and the power delay

profile is characterized by an exponential function, i.e., 9 �. �gj A . kml � © l AB'@E¬ o j Af@ kml , where n is the

tap index. Each channel tap is generated by Jakes’ model [70]. We assume that the channel

response is exactly known for the direct ZF method. For the proposed method, the parameters

of the LTV channel model are obtained by LS fittings. Since the N-ZF method with  �5� have

the similar performance to that with  �4�»��� b � ,  �5� is set for all the following simulations.

From the previous simulations in a SISO-OFDM system, we see that the computational

complexity of the N-ZF method with % �Z3
and % �>�

is similar when the required number

of iterations is taken into account. However, the N-ZF method with % � �
tends to have

better results. Thus, we will only consider the N-ZF method with % �`�
. Here, we consider

two environments, i.e., H&I �53KJ 3�X and
3KJL�

. Figure 3.1 depicts the BER performance comparison

among the proposed method, the direct ZF method, and the direct MMSE method for H�I �43KJ 3�X .
From this figure, we find that the two-tap FEQ method has an irreducible error floor due to ICI.

It is obvious that the N-ZF method can effectively mitigate the ICI and its performance can

quickly approach to that of the direct ZF method. As we can see, the iteration number can be

as small as one. Also note that the direct MMSE method does not give too much performance
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enhancement compared to the direct ZF method. Figure 3.2 illustrates the BER performance

for the case of H&I �ª3KJL�
. The N-ZF method still effectively mitigates the interference and

its performance can approach to that of the direct ZF method quickly. In this case, one or

two iterations are sufficient for the N-ZF method. Also note that with two iterations, the N-

ZF method can outperform the direct ZF method. We further show the BER performance for

various H�I . Figure 3.3 shows the results when H�I varies from 0 to 0.2 and the SNR is set to 30

dB. From this figure, we see that all the methods are degraded as H�I becomes larger. Again, the

N-ZF method ( Q �5� ) has better performance than the direct ZF method.

Table 3.3 summarizes the required computational complexity of the direct ZF method and

the N-ZF method. With one iteration, the multiplication (addition) complexity of the N-ZF

method ( Q �S� ) is only 0.0053 (0.005) times that of the direct ZF method. With two iterations,

the complexity ratios of multiplications and additions is 0.0069 and 0.0067. For various
�

, we

show the the required computational complexity of the direct ZF method and the N-ZF method

( Q �5� ) R ) in Figs. 3.4 and 3.5, respectively.

Comparing SISO-OFDM in Chapter 2 and MIMO-OFDM systems, we find that the reduc-

tion in computational complexity is greater in a MIMO-OFDM system than that in a SISO-

OFDM system. In a SISO-OFDM system, the ratio of multiplications is 0.013, while that in a

MIMO-OFDM system is 0.0069 ( % ��� , and Q �!� ). This is because the complexity of the di-

rect ZF method is proportional to �
	hg � � �  , whereas that of the N-ZF method is in proportion

to �
	hg �G�������F�� . As a result, we can save more computations as g increases. Also when
�

gets larger, the reduction in computations becomes more apparent too.
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Figure 3.1: BER comparison among two-tap FEQ, N-ZF ( % �"�
and  �a� ), direct ZF, and

direct MMSE methods in a
�0�2�

MIMO-OFDM system; H�I = 0.05 and 16-QAM modulation.
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Figure 3.2: BER comparison among two-tap FEQ, N-ZF ( % �"�
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MIMO-OFDM system; H�I = 0.1 and 16-QAM modulation.
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Figure 3.5: Complexity comparison between N-ZF ( % �a�
,  �Z� , and Q �MR ) and direct ZF
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MIMO-OFDM system for various
�

.

Table 3.3: Complexity comparison between N-ZF and direct ZF methods in a
�
���

MIMO-

OFDM system (
�"�#�����

and  �5� ).
Methods Real multiplications

(ratio)

Real divisions

(ratio)

Real additions

(ratio)

Direct ZF 22828288 65792 22728576

N-ZF ( % �#� ,Q �43 ) 103436 (0.0045) 6892 (0.1048) 94244 (0.0041)

N-ZF ( % �#� ,Q �#� ) 121836 (0.0053) 6892 (0.1048) 113668 (0.0050)

N-ZF ( % �#� ,Q �5� ) 158636 (0.0069) 6892 (0.1048) 152516 (0.0067)
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§ 3.3 MMSE Method

§ 3.3.1 Proposed Newton-MMSE Method

As mentioned, the MMSE solution can be expressed as
� ,w, ²�³�� ¥W�� � � � s ? � y ¦ AB' �� �n�� .

From this formula, it is clear that the computational complexity is even more intractable in

MIMO-OFDM systems since the system dimension becomes larger. This situation may limit

its application. In view of this problem, we are devoted to proposing a method which will make

the MMSE method applicable in real-world implementation.

As we did in the SISO-OFDM system, the MMSE solution can be expressed in another form

as
� ,w, ²�³¤� ¥ �� s ? � � A � ¦ AB' �� . Using the derived MIMO-OFDM ICI matrix in (3.4), we

now apply Newton’s iteration to facilitate the MMSE method in a
�µ�(�

MIMO-OFDM system.

With (2.52) and (3.2), we can obtain the equalized signal as

� · � � ¼ AB'½¾ ¬ o ~ · q ¾ � ¾ ) (3.27)

where
� · , ~ · q ¾ , and � ¾ are defined the same as those in (2.53). Note that in this case,

� · and� ¾ are
���"�2�

column vectors. Let the initial matrix ¶ o
be composed of four

�"���
circular

band matrices formulated as

¶ o � âä ¶¬« ¶®¶°¯ ¶°± èë J (3.28)

We also let Å o have the same structure as ¶ o
. Thus, Å o is expressed as

Å o � âä Å¹«�ÅºÅY¯ ÅY± èë J (3.29)

Moreover, we partition � ¾ into � ¾ �òx � |¾ q ' ) � | ¾ q � zE| , where � ¾ q ' and � ¾ q � are
�=�[�

column

vectors. Define � ¾ q ' � Å¹« � ¾ q ' s Åº � ¾ q � , � ¾ q � � ÅY¯ � ¾ q ' s ÅY± � ¾ q � , Ã ¾ q ' � �(��'��
� � ¾ q ' ,
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and Ã ¾ q � � �(��'��
� � ¾ q � . With the definition of � ¾ , � ¾ DF' can be decomposed as follows:

� ¾ DF' � âä ¶¬« ¶®¶°¯ ¶°± èë QS T âä �? o �Å o�î o �� o èë s âä �(��'��
� Ë yË y �(��'�� �
èë âä �?�' �Å6'�î»' �� ' èës âä j ' q o âä � y Ë yË y � y

èë s j ' q ' âä Å¹«�ÅºÅY¯ ÅY± èë¼»½ âä �?Y�o �î �o�Å0�o �� �o èë s âä �?Y�' �î � '�Å0�' �� � ' èëâä �(��'��
� Ë yË y �(��'��
�
èë�¾¿ èë âä Å¹«�ÅºÅY¯ ÅY± èë X Z[ âä � ¾ q '� ¾ q �

èë
� âä ¶¬« ¶®¶°¯ ¶°± èë QS T âä �? o � ¾ q ' s �Å o � ¾ q ��î o � ¾ q ' s �� o � ¾ q � èë s âä �(��'��
�\	 �?�' � ¾ q ' s �Å6' � ¾ q � �(��'�� � 	 �î»' � ¾ q ' s �� ' � ¾ q �  èë s j ' q oâä � ¾ q '� ¾ q � èë s j ' q ' âä Å¹«�ÅºÅY¯ ÅY± èë »½ âä �?Y�o � ¾ q ' s �î �o � ¾ q ��Å0�o � ¾ q ' s �� �o � ¾ q � èë s âä �?Y�' Ã ¾ q ' s �î � ' Ã ¾ q ��Å0�' Ã ¾ q ' s �� � ' Ã ¾ q � èë ¾¿ X Z[ J

(3.30)

Note that �?C@ , �Åõ@ , �î @ , �� @ , and ��' are all diagonal matrices. It is obvious that if ¶²« , ¶® , ¶°¯ ,¶°± , Å¹« , Åº , ÅY¯ , and ÅY± are assumed to be low-bandwidth circular band matrices, (3.30) can

be implemented with vector and FFT/IFFT operations. Note that the FFT size is
�

instead of���
. Thus, the required computational complexity is �
	 � g �G����� � �� . It is straightforward to

see that the computational complexity of the direct MMSE method in this case is �
	hg �*���� .
As a result, the complexity reduction in MIMO-OFDM systems can be greater than that in

SISO-OFDM systems. This will be verified with simulations.

§ 3.3.2 Derivation of the Initial Matrix

To complete the proposed algorithm, we have to determine the two
��� �����

initial matrices,¶ o and Å o , optimally. As we did before, we again use the minimum-Frobenius-norm crite-

rion. Note that the initial matrices in the MIMO-OFDM scenario are not circular band matrices

anymore. Instead, they are matrices composed of four circular band submatrices. We first dis-

cuss ¶ o . As for Å o , it can be obtained in the same way. Let each circular band submatrix of
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¶ o have bandwidth % � . Then define ?-@ q k � ¶¬«v	 U ){u  , ü @ q k � ¶®B	 U ){u  , / @ q k � ¶°¯K	 U ){u  , and´¡@ q k � ¶°±È	 U ){u  . We partition �x into the following format

�x � âä �x ' q ' �x ' q ��x � q ' �x � q � èë ) (3.31)

where �x @ q k is an
�=���

submatrix of �x . Then we define three matrices as
x � �x Õ ' q ' �x | ' q ' s�x Õ ' q � �x | ' q � , ¹`� �x Õ� q ' �x | � q ' s �x Õ� q � �x | � q � , and µ � �x Õ ' q ' �x | � q ' s �x Õ ' q � �x | � q � . Note that since

x � � x
and

¹ � �>¹ , then
x

and
¹

are Hermitian matrices. Following the procedure in the SISO-

OFDM system, we can obtain the optimum initial values by solving the following equations:7 @ û @ � ��@�) U��43 ) � ) JWJWJ ) ��� b � ) (3.32)

where û | @ is composed of the non-zero elements in the
U
th non-zero row vector of ¶ o

, as

defined in (2.61). Note that we have two sets of circular band matrices to deal with; one is forU.�83 ) � ) JWJWJ ) � b � and the other is for
Uì�Z� ) � s � ) JWJWJ ) ��� b � . Define � � @ q k � �x ' q 'W	 U ){u  ,� ��@ q k � �x ' q � 	 U ){u  , � ~ @ q k � �x � q 'W	 U ){u  , and �� @ q k � �x � q � 	 U ){u  . For the set of

U ��$ 3 ) � ) JWJWJ ) � b � + ,
we have

7 @ , û @ , and ��@ defined as:7 @ � âä x @¶µÜ@µ±�@ ¹ @
èë ) (3.33)x @ � x 	 U b�% � í�U s % � ) U b�% � í�U s % �  ) (3.34)¹ @ �4¹ 	 U b�% � í�U s % � ) U b�% � í�U s % �  ) (3.35)µÜ@ � µn	 U b�% � í�U s % � ) U b�% � í�U s % �  ) (3.36)û @ �Mx û | ' q @ ) û | � q @ z | ) (3.37)��@ �Mx � | ' q @ )�� | � q @ z | ) (3.38)û ' q @ �Mx ?±@ q @�AKå  ) JWJWJ )�?±@ q @h) JWJWJ )�?±@ q @EDBå  z | ) (3.39)û � q @ �Mx ü @ q @�AKå  ) JWJWJ ) ü @ q @h) JWJWJ ) ü @ q @EDBå  z | ) (3.40)�£' q @ �Mx � � Õ@�AKå  q @ ) JWJWJ ) � � Õ@ q @ ) JWJWJ ) � � Õ@EDBå  q @ z | ) (3.41)� � q @ �Mx � ~ Õ@�AKå  q @ ) JWJWJ ) � ~ Õ@ q @ ) JWJWJ ) � ~ Õ@EDBå  q @ z | J (3.42)
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For
U ��$ � ) � s � ) JWJWJ ) ��� b � + , Eqs. (3.33)–(3.42) are still valid but we need some modifica-

tions. We have to let
7 @ �À7 @�A y , and replace ?-@ q k , ü @ q k , � � Õ@ q k , and � ~ Õ@ q k in û ' q @ , û � q @ , �£' q @ , and � � q @

with / @ q k , ´¡@ q k , � �*Õ@ q k , and �� Õ@ q k respectively. Since the initial matrix is not a circular band matrix

anymore, we are not able to obtain a recursive formula solving (3.32). In this case, Gaussian

elimination can be chosen to solve this problem. As mentioned,
7 @ �Á7 @�A y ; we only need to

construct
7 @ and conduct Gaussian elimination for

U ��$ 3 ) � ) JWJWJ ) � b � + . Note that
7 @ is a

Hermitian matrix, making the complexity of Gaussian elimination lower.

Again, we can further reduce the computational complexity when evaluating
x

,
¹

, andµ . As mentioned, the elements close to the main diagonal of �x @ q k have dominative values.

Thus, the terms far from the main diagonal can be ignored. Let �x @ q k ��~*Uh� �&	 �x @ q k )* �  , �x ��x Õ ' q ' �x | ' q ' s �x Õ ' q � �x | ' q � , �¹]� �x Õ� q ' �x | � q ' s �x Õ� q � �x | � q � , and �µ � �x Õ ' q ' �x | � q ' s �x Õ ' q � �x | � q � . Moreover, define� @ q k � x 	 U ){u  , � @ q k �S¹ 	 U ){u  , and ö @ q k � µn	 U ){u  . Now, we have the approximation as follows:� @ q k ¨ �x 	 U ){u (� © Ô&ý�� 	 � � Õ@ q Ô � � k�q Ô s � �*Õ@ q Ô � � k�q Ô  , � @ q k ¨ �¹ 	 U ){u C� © Ô&ý�� 	 � ~ Õ@ q Ô � ~ k�q Ô s �� Õ@ q Ô �� k�q Ô  , andö @ q k ¨ �µn	 U ){u _� © Ô&ý�� 	 � � Õ@ q Ô � ~ k�q Ô s � � Õ@ q Ô �� k�q Ô  , where � � ¯ U b¤ � íÈU s  � ) �� � ¯ u»b� � íu s  � ) �Â� .

§ 3.3.3 Complexity Analysis

So far, we have derived a low-complexity algorithm, namely, N-MMSE that is suitable for a

MIMO-OFDM system. In this subsection, we focus on analyzing the required computational

complexity of the proposed N-MMSE method and then make a comparison between the N-

MMSE and direct MMSE methods.

From Subsections 3.3.1, we know that the major computational load results from Eqs. (3.27)

and (3.30) and it can be summarized as follows:

1. � ¾ iteration, where � ¾ � 	�¶ o �x  � ¾ AB' and � o � ¶ o �� ,

2.
� �

and �x construction, where �x �Ã�m�� s ? © �{z AB'k ¬ o � y q k ¥ ¶ o � � � ¦ k Å o�  ,
3. Å o and ¶ o calculation.
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The iterative step (3.30) involves
x � y�DF' �!�������F� s 	 � y�D � %C' s � % � s �
�É� y�DF' s R��� z CMs

and
x � y�D � �!����� � � s 	 � y�D � %C' s � % � s d6�2� y s R��� z CAs for ¿²� � . Furthermore, we need	 � % � s :f�� CMs and 	 � % � s ���� CAs for � o � ¶ o �� and

:��
RAs for each

~ · q ¾ � ¾ . As to the

construction of
� � �k�q @ for Å o , we require 	 :  ¡' s ���� CMs and 	 :  -' s ���� CAs. For calculatingÅ o , we need to construct matrices

7 @ for
U��53 ) � ) JWJWJ ) � b � and they require 	 �  ¡' s R��  -'�%C'Bb�<9 % �' s � %C' s :f�� CMs and 	 �  -' s R��  -'�%C'fb �<9 % �' b � %C' �� CAs. To solve

7 @ û @ � ��@ for Å o ,
it requires

x 	 R�����R� % �' s :�: % �' s 	 ��X���R� %C' s d���� z CMs,
x 	 R�����R� % �' s :�: % �' s 	 ��X���R� %C' s d���� z

CAs, 	 � %C' s :f CDs, and 	 �<9 % �' s ��� %C' s ���� RDs. To obtain �x , we need 	 : %(' s ���� CMs

and 	 : %C' s ���� CAs. Before calculating ¶ o
, we require 	 �  � s R��  � % � b �<9 % �� s � % � s :f��

CMs and 	 �  � s R��  � % � b �<9 % �� b � % � �� CAs to construct
7 @ for

UÓ�83 ) � ) JWJWJ ) � b � . To

obtain ¶ o , we have to solve
7 @ û @ � ��@ which requires

x 	 R�����R� % �� s :�: % �� s 	 ��X���R� % � s d���� z
CMs,

x 	 R�����R� % �� s :�: % �� s 	 ��X���R� % � s d���� z CAs, 	 � % � s :f CDs, and 	 �<9 % �� s ��� % � s ��
RDs. As for the direct MMSE method, the matrix inversion can be implemented by Gaussian

elimination [69]. Finally, we summarize the required complexity of the N-MMSE method and

the direct MMSE method for a
�6���

MIMO-OFDM system in Table 3.4. We also summarize

the complexity for calculating the initial matrices in the N-MMSE method in Table 3.5.
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Table 3.4: Complexity comparison between the N-MMSE and direct MMSE methods in a
�ì�0�

MIMO-OFDM system.

Methods Real multiplications Real divisions Real additions

Direct

MMSE

ó �� ��� s ��3�� � s �<9��!�������F� s' � �� � :�� � s ��� ó �� ��� s �<9�� � s �&:��5�������F� s£ ¢� �N-MMSE 	 � · b ��r� y�D ���!�������F� s
$ :��  -' s �����  -'�%C' s R��  � s�����  � % � s 	 ��������R� % �' s����� % �' s x 	 � · b ��r� y�D ¸ s	 X�d�����R� z %C' s 	 ��������R� % �� s����� % �� s 	 � ·�D ¸ s X���3���R� % � s�!�>� ·�D¤y�D � s � ·�D � b �!�� y�D � s ����9 + � s 	 � y b ��

	 �<9 % �' s��� %C' s �<9 % �� s��� % � s ��3���
R 	 � · b ��r� y�D � �!�������F� s
$ :��  -' s �����  -'�%C' s R��  � s�����  � % � s 	 ��������R� % �' s����� % �' s x 	 � · b ��r� y�D ¸ s	 :f�&:f��R� z %C' s 	 ��������R� % �� s����� % �� s 	 � ·�D ¸ s :p������R� % � s��R1�¤� ·�D¤y�DF' s � ·�D � b ��R2�� y�DF' s ��� + �

Table 3.5: Complexity of the initial matrices calculation for the N-MMSE method in a
�(���

MIMO-OFDM system.

Methods Real multiplications Real divisions Real additions

N-MMSE

( %C' � % � ��� ) 	 �!��9Ä¥  -' s �<9�3Ä¥  � s����9��� 	 �!��9)¥  -' s �<9�3)¥  � s9
�&:f�� �<3����

§ 3.3.4 Simulations

We report the simulation results in a MIMO-OFDM system whose settings are the same as

those in a SISO-OFDM system. Specifically, we consider a
�6���

MIMO-OFDM system. We
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also consider two cases, H&I �53KJ 3�X and
3KJL�

. Figure 3.6 shows the corresponding BER result forH�I �53KJ 3�X . From this figure, we observe the similar result to that in a SISO-OFDM system. The

N-MMSE method can still approach to the direct MMSE method within one or two iterations.

Figure 3.7 shows the result for H&I �ò3KJL�
. It is apparent that the performance of the two-tap

FEQ method becomes even poorer than that in a SISO-OFDM system. This is because the

inter-antenna interference is introduced in addition to ICI. By contrast, the performance of the

N-MMSE method remains similar to that in a SISO-OFDM system. Both ICI and inter-antenna

interference are mitigated. To understand the impact of H�I , we show the BER performance for

various H�I . Figure 3.8 shows the results when H�I varies from 0 to 0.2 and the SNR is set to 30

dB. From this figure, we see that the N-MMSE method ( Q ��R ) has larger performance loss

when H�I becomes larger.

Table 3.6 shows the complexity comparison for the N-MMSE and direct MMSE methods.

For the case of H&I ��3KJ 3�X , the required number of iterations is one or two. When one (two)

iteration is used, the complexity ratio for multiplication, division, and addition is 0.005 (0.007),

0.210 (0.210), and 0.005 (0.007), respectively. For H�I �T3KJL�
, the required iteration number

is two or three. When two (three) iterations are used, the complexity ratio for multiplication,

division, and addition turns out to be 0.015 (0.019), 0.210 (0.210), and 0.015 (0.019), respec-

tively. Although the ratio of division is increased in MIMO-OFDM systems, the number of

divisions is minor compared to that of multiplications. From Tables 2.6 and 3.6, we can see

that the major computational load is the multiplication. Thus, in MIMO-OFDM systems, the

N-MMSE method can achieve more complexity reduction. For example, in the SISO-OFDM

system, the complexity ratio for multiplication is 0.014, while that in the MIMO-OFDM system

is 0.007 ( H&I �`3KJ 3�X and Q ��� ). This is because the computational complexity of the direct

MMSE method is �
	hg ������ , whereas that of the N-MMSE method is �
	 � g �G����� � �� . Con-

sequently, the complexity of the direct MMSE method grows faster as g increases. From the

complexity analysis, we can infer that when
�

becomes larger, the computational complexity

reduction achieved with the N-MMSE method will be more apparent. For various
�

, we show
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the required computational complexity for the direct MMSE method and the N-MMSE method

( Q �!� ) R ) in Figs. 3.9 and 3.10, respectively.
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Figure 3.6: BER comparison among the two-tap FEQ, N-MMSE ( $&%
'�)�% �,+ � $ � ) � + and$� -'*)* �,+ � $ � ) � + ), and direct MMSE methods in a
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MIMO-OFDM system; H�I �]3KJ 3�X
and 16-QAM modulation.
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Figure 3.7: BER comparison among the two-tap FEQ, N-MMSE ( $&%
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Figure 3.9: Complexity comparison between N-MMSE ( %Y' � % � � �
,  -' �  � �NX

, andQ �5� ) and direct MMSE methods in a
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MIMO-OFDM system for various
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Table 3.6: Complexity comparison between the N-MMSE and direct MMSE methods in a
�ì�0�

MIMO-OFDM system (
���������

, and $&%('*)�% �,+ � $ � ) � + ).
Methods Real multiplica-

tions (ratio)

Real divisions

(ratio)

Real additions

(ratio)

Direct MMSE 45086976 65792 45027072

N-MMSE ( Q � �
,$� -'*)* �W+ � $ � ) � + ) 240897 (0.005) 13824 (0.210) 225536 (0.005)

N-MMSE ( Q � �
,$� -'*)* �W+ � $ � ) � + ) 326913 (0.007) 13824 (0.210) 320768 (0.007)

N-MMSE ( Q � �
,$� -'*)* �W+ � $ �<3 ) �<3 + ) 670977 (0.015) 13824 (0.210) 664832 (0.015)

N-MMSE ( Q � R
,$� -'*)* �W+ � $ �<3 ) �<3 + ) 843009 (0.019) 13824 (0.210) 855296 (0.019)
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Chapter 4

Mobility-induced ICI Mitigation for

SISO/MIMO-OFDMA Systems

§ 4.1 SISO-OFDMA Signal Model

In Chapters 2 and 3, we have discussed ICI mitigation in SISO/MIMO-OFDM systems. In

recent years, OFDMA have been a promising multiple access scheme and has been extensively

investigated. For now on, we will focus on ICI mitigation in a SISO/MIMO-OFDMA system.

Based on the previous SISO/MIMO-OFDM signal model, we will derive the SISO/MIMO-

OFDMA signal model for high-mobility environments. Using the model, we can then apply the

low-complexity ICI mitigation methods developed in Chapter 2.

A SISO-OFDMA system is a multicarrier system and the available bandwidth is divided

into
�

equally spaced subbands. Each subcarrier uses a subband with a bandwidth of
��� 	 ��oªpr .

Furthermore, a SISO-OFDMA system is also a multiuser system and all active users share the
�

subcarriers. Without loss of generality, we assume that each user is assigned the same number

of subcarriers,
�¹p

, and
�ºpµ�Z�»� ; , where ; is the number of active users. Let ÅÇÆ be the set

of indices indicating subcarriers assigned to user � and �6 Æ· be the user’s transmit signal at theQ th subcarrier, where QÈ�2ÅwÆ . To avoid multiple-access interference, it is usually assumed that
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Å_ÆÊÉËÅ_Æ 	 �gÌ if � Æ� � � and ÍÏÎÆ{¬F' Å_Æ � $ 3 ) � ) JWJWJ ) � b � + . An OFDMA system usually uses an

interleaved structure, i.e., ÅwÆ � $ � b � ) � b � s ;») JWJWJ ) � b � s 	 �»� ;�b ��V� ; + . Since the

subcarriers assigned to a user are evenly distributed in the transmission band, this scheme can

achieve the maximum frequency diversity.

For all users, we assume that the CP length
�ºÐ

is long enough to prevent the ISI effect.

Consider a specific OFDMA symbol of user � . After CP removal, the receive time-domain

signal can be expressed as

� Æ � } Æ � Æ ) (4.1)

where � Æ is the � th user’s receive time-domain
� �¤�

signal vector and
� Æ is the � th user’s

transmit time-domain
�����

signal vector, i.e.,
� Æ � 	 ����� �� �
���� Æ , where �� Æ is the � th user’s

frequency-domain signal vector. The matrix, } Æ , is the corresponding time-domain time-variant�����
channel matrix for user � . Note that since this is a multiuser system, elements of �� Æ

are nonzero only in the designated subcarrier positions. Then the overall receive time-domain

signal from ; users can be expressed as

� � Î½ Æ{¬F' } Æ � Æ s�� ) (4.2)

where � is the overall receive time-domain signal vector and
�

denotes the noise vector. After

the FFT operation, we obtain the corresponding frequency-domain signal as

�� � � � � �� Î½ Æ{¬F' �} Æ � � Æ s � � ) (4.3)

where �} Æ � �
} Æ �
� is the frequency-domain ICI channel matrix of user � and � � � � � � � is

the frequency-domain noise vector. Define a diagonal selection matrix µ Æ such that µ Æ 	 U ) U{\�� ) U �ÑÅ_Æ and µ Æ 	 U ) U{Á�53 , otherwise and a composite transmit frequency-domain signal vector

as ��1�Sx �6 o ) �6 '�) JWJWJ ) �6 y AB'{zE| , where �6 · � �6 Æ· if Q¦��Å_Æ . Based on these definitions, we then have
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�� Æ � µ Æ �� . Also, we can further express the receive signal in (4.3) as

�� � 1 Î½ Æ{¬F' �} Æ µ Æ 3 �� s � ��4�� �� s � � ) (4.4)

where
� � � © ÎÆ{¬F' �} Æ µ Æ is the mobility-induced multiuser ICI channel matrix. If all users are

static,
� �

will become a diagonal matrix. For each user, the channel matrix } Æ is time-variant.

As we did in a SISO/MIMO-OFDM system, we also use the LTV channel model to approximate

a time-variant channel [59]. According to the LTV channel model, the time-domain time-variant

channel for user � in a specific OFDMA symbol period is then approximated asj Æ. 	ml �� j Æorq . s l � j Æ ' q . ) (4.5)

where l is the time index,
j Æ. 	ml  is the n th-tap channel response at time instant l for user � ,j Æorq . is its constant term, and
j Æ ' q . is its variation rate. We assume that l is

3
for the midpoint of

an OFDMA symbol. Let w Æo �"x j Æorq o ) j Æorq ' ) JWJWJ ) j Æorq y AB' zE| , w Æ ' �"x j Æ ' q o ) j Æ ' q ' ) JWJWJ ) j Æ ' q y AB' zE| , } Æo �~*Uh� 	�w Æo  , and } Æ ' �`~*Uh� 	�w Æ '  . Using the above definitions and (4.5), we can express the time-

domain channel matrix of the � th user as

} Æ � } Æo s ��'�} Æ ' J (4.6)

From (4.6), we see that } Æ consists of two circulant matrices and a diagonal matrix. The

corresponding frequency-domain ICI channel matrix of the � th user is then expressed as�} Æ � �
} Æ � �� �} Æo s �(��'�� � �} Æ ' ) (4.7)

where �} Æo � �
} Æo �
� and �} Æ ' � �
} Æ ' �
� . Since } Æ@ is a circulant matrix, �} Æ@ can be further

expressed as �} Æ@ �4��U���� 	 � w Æ@  for
U��43 ) � . Thus, the ICI matrix can be further rewritten as� ��� Î½ Æ{¬F' �} Æo µ Æ s �(��'�� � Î½ Æ{¬F' �} Æ ' µ Æ J (4.8)
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Let �w Æo �>� � �
w Æo and � w Æ ' �>� � �
w Æ ' . Also, let the Q th component of � w Æo and that of � w Æ ' be

denoted as � j Æorq · and � j Æ ' q · , respectively. Now, we can define two composite channel vectors � w o
and � wt' such that their Q th components, denoted as � jporq · and � j ' q · , have the following property:� jporq · � � j Æorq · and � j ' q · � � j Æ ' q · if QÒ�-Å_Æ . With these definitions, we then have �} o �#��U���� 	 � w o ì�© ÎÆ{¬F' �} Æo µ Æ and �}1' �4��U���� 	 � wt' n� © ÎÆ{¬F' �} Æ ' µ Æ . Finally, we can rewrite (4.8) as���� �} o�s �(��'�� � �}1' J (4.9)

From (4.9), we see that the ICI matrix is decomposed into a combination of diagonal and

DFT/IDFT matrices. Note that the ICI matrix is a composite matrix; it describes interfer-

ence generated from all active users. If ; � �
, the signal model in (4.9) will be degener-

ated into the SISO-OFDM signal model. Moreover, the ICI matrix can also be expressed as� ��� �} ots ���' �}1' , where ���' � �(��'��
� �Mx ~*Uh� 	m���'  zE| and ���' � 	 ����� �� �
����' .
We find that the derived signal model for a SISO-OFDMA system in (4.9) has the same

structure as that in a SISO-OFDM system. That is to say, they both consist of diagonal and

DFT/IDFT matrices. As a result, the proposed N-ZF and N-MMSE methods in Chapter 2 can

be applied to ICI mitigation in a SISO-OFDMA system. Thus, the required computational

complexity is the same as that in SISO-OFDM systems.

§ 4.1.1 Simulations

In Section 4.1, we have derived a SISO-OFDMA signal model to facilitate ICI mitigation.

In this subsection, we report simulation results to demonstrate the effectiveness of the pro-

posed low-complexity ZF and MMSE methods. We consider a SISO-OFDMA system with� � �����
,
�ÇÐ¤� R��

, and ; � :
. A fast-fading channel is used in simulations and the

power delay profile for the � th user is characterized by an exponential function, i.e., 9 �. q Æ �j A .ÔÓ «ÖÕ kml � © l AB'@E¬ o j Af@ Ó «ÖÕ kml , where n is the tap index, � is the user index, and i is the number of

channel taps. For the following simulations, we let ?n' �"�
, ? � �aR , ? � �`� , ? � �"��JcX

, andi ����X
. Each channel tap is generated by Jakes’ model [70]. For the direct ZF and MMSE
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methods, we assume that the channel response is exactly known. For the N-ZF and N-MMSE

methods, the parameters of the LTV channel model are obtained by LS fittings. The modulation

scheme is chosen as 16-QAM.

First, we will present the simulation results of the ZF method and then we report the results

for the MMSE method. We assume that H�I of each user is different. For a SISO-OFDMA

system, H�I ’s are set to $ 3KJ 3�X ) 3KJ 3�� ) 3KJ 3�: ) 3KJ 3�R + . Figure 4.1 shows the BER comparison among

the one-tap FEQ method, the direct ZF method, and the N-ZF method. Again, we see that the

one-tap FEQ method has an error floor phenomenon which is due to the ignored ICI effect.

However, the N-ZF method effectively mitigates this phenomenon and outperforms the one-tap

FEQ method. Moreover, with two iterations, the N-ZF method can have a similar performance

to that of the direct ZF method. Figure 4.2 shows the BER performance comparison for another

case, where H&I ’s are set to $ 3KJ 3�X ) 3KJL� ) 3KJ 3�: ) 3KJ 3�R + . In this case, H&I of user 2 is increased up to

0.1, implying more ICI generated from user 2. From this figure, it is obvious that the one-tap

FEQ method has an even severer error floor phenomenon. Again, the N-ZF method with two

iterations has a similar performance to that of the direct ZF method.

Table 4.1 summarizes the computational complexity comparison for the direct ZF and N-ZF

methods under the same settings shown above. In this table, the ratio in a parenthesis indicates

the number of additions/multiplications/divisions required for the N-ZF method divided by that

for the direct ZF method. From the above simulation results, we can say that the required

iteration number for the N-ZF method is two. From Table 4.1, we see that the multiplica-

tion/division/addition complexity of the N-ZF method is 0.007/0.016/0.008 times that of the

direct ZF method. From Figs. 4.1 and 4.2, we can then conclude that while the performance of

the N-ZF method is comparable to that of the direct ZF method, the computational complexity

is much lower.

Next we report the BER performance of the MMSE method. Figure 4.3 shows the result

when H�I ’s are set to $ 3KJ 3�X ) 3KJ 3�� ) 3KJ 3�: ) 3KJ 3�R + . In this case, we clearly see that the N-MMSE

method with two iterations has the same performance with the direct MMSE method. Increasing
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the H�I of user
�

up to 0.1, we have the result shown in Fig. 4.4. Owing to the increasing amount

of ICI from user
�
, the N-MMSE method need three iterations to approach the performance of

the direct MMSE method.

Table 4.2 compares the computational complexity of the direct MMSE and N-MMSE meth-

ods under the same settings shown above. In this table, the ratio in a parenthesis indicates

the number of additions/multiplications/divisions required for the N-MMSE method divided

by that for the direct MMSE method. The simulation results imply that the required itera-

tion number for the N-MMSE method is two. From Table 4.2, we see that the multiplica-

tion/division/addition complexity of the N-MMSE method ( Q ���
) is 0.0135/0.0309/0.0129

times that of the direct MMSE method. Consequently, we can conclude that the N-MMSE

method can approach the direct MMSE method while at the same time the N-MMSE method

saves a lot of computations.
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Figure 4.1: BER comparison among one-tap FEQ, direct ZF, and N-ZF ( % �43 ,  �!� ) methods

in a SISO-OFDMA system; H&I = {0.05, 0.02, 0.04, 0.03} and 16-QAM modulation.
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Figure 4.2: BER comparison among one-tap FEQ, direct ZF, and N-ZF ( % �43 ,  �!� ) methods

in a SISO-OFDMA system; H&I = {0.05, 0.1, 0.04, 0.03} and 16-QAM modulation.
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Figure 4.3: BER comparison among one-tap FEQ, direct MMSE, and N-MMSE ( %
' � % � �53 , -' �  � �G� ) methods in a SISO-OFDMA system; H&I = {0.05, 0.02, 0.04, 0.03} and 16-QAM

modulation.
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Figure 4.4: BER comparison among one-tap FEQ, direct MMSE, and N-MMSE ( %
' � % � �53 , -' �  � �M� ) methods in a SISO-OFDMA system; H&I = {0.05, 0.1, 0.04, 0.03} and 16-QAM

modulation.
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Table 4.1: Complexity comparison between direct ZF and N-ZF methods in a SISO-OFDMA

system (
���������

, % �53 , and  �5� ).
Methods Real multiplications

(ratio)

Real divisions (ratio) Real additions (ra-

tio)

Direct ZF 2910848 16512 2885824

N-ZF ( Q �#� ) 8704 (0.003) 256 (0.016) 9344 (0.003)

N-ZF ( Q �5� ) 19968 (0.007) 256 (0.016) 22656 (0.008)

Table 4.2: Complexity comparison between direct MMSE and N-MMSE methods in a SISO-

OFDMA system (
�"�#�����

, %(' � % � �53 , and  -' �  � �5� ).
Methods Real multiplications

(ratio)

Real divisions (ratio) Real additions (ra-

tio)

Direct MMSE 5679488 16512 5664128

N-MMSE ( Q �#� ) 47109 (0.0083) 510 (0.0309) 39688 (0.0070)

N-MMSE ( Q �5� ) 76805 (0.0135) 510 (0.0309) 72968 (0.0129)

N-MMSE ( Q �4R ) 136197 (0.0240) 510 (0.0309) 139528 (0.0246)

§ 4.2 MIMO-OFDMA Signal Model

In the previous section, we have derived the SISO-OFDMA signal model and applied the low-

complexity algorithms developed in Chapter 2 for ICI mitigation. Next we will further tackle

the ICI problem in MIMO-OFDMA systems. In this section, we will develop a MIMO-OFDMA

signal model facilitating the application of the proposed low-complexity algorithms. First, we

will generalize the signal model derived in Section 4.1 to the scenario of MIMO-OFDMA sys-

tems. Let
� Æk be the transmit symbol vector of user � from its u th antenna and � Æ@ q k be the cor-
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responding receive OFDMA symbol vector in the
U
th receive antenna (without CP and noise).

Based on these definitions, we have the signal model as follows:� Æ@ q k � } Æ@ q k � Æk J (4.10)

Note that both � Æ@ q k and
� Æk are time-domain signals of dimension

� �5�
. Moreover,

� Æk �
	 ����� �1 �
���� Æk , where �� Æk is the corresponding frequency-domain symbol vector of

� Æk . The

matrix, } Æ@ q k , is the time-domain channel matrix for user � consisting of the time-variant channel

response between the u th transmit antenna and the
U
th receive antenna. Note that only in the

designated subcarrier positions are the elements of �� Æk non-zeros. We then have the receive time-

domain OFDMA signal, for the channel between the u th transmit antenna and the
U
th receive

antenna, as � @ q k � Î½ Æ{¬F' } Æ@ q k � Æk ) (4.11)

where � @ q k is the receive time-domain signal vector in the
U
th receive antenna contributed from

the u th transmit antenna of all users. Transforming (4.11) with DFT, we have the corresponding

frequency-domain signal as

�� @ q k � Î½ Æ{¬F' �} Æ@ q k �� Æk ) (4.12)

where �� @ q k is the corresponding frequency-domain signal vector of � @ q k and �} Æ@ q k � �
} Æ@ q k � � .

For user � , we define �6 Æk�q · as the transmit signal at the Q th subcarrier from its u th transmit

antenna. Then we let �� k �Mx �6 k�q o ) �6 k�q '*) JWJWJ ) �6 k�q y AB'{z | , where �6 k�q · � �6 Æk�q · if Q¦��Å_Æ . Thus, we have�� Æk � µ Æ �� k . Now we can express the receive signal in (4.12) as

�� @ q k � 1 Î½ Æ{¬F' �} Æ@ q k µ Æ 3 � � k� � � @ q k �� k ) (4.13)

where
� � @ q k � © ÎÆ{¬F' �} Æ@ q k µ Æ . The matrix,

�� @ q k , represents the mobility-induced composite ICI

channel matrix between the
U
th receive antenna and the u th transmit antenna (for all users). With
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(4.13), we can further express the receive frequency-domain signal in the
U
th receive antenna

(from all transmit antennas of all users) as

�� @ � ,½ k ¬F' �� @ q k �� k�s � � @�) (4.14)

where � � @ is the receive frequency-domain noise vector in the
U
th receive antenna. By stacking

all the receive signal vectors into a column vector, we finally obtain the following signal model

�� �4�� �� s � � ) (4.15)

where �� � x �� | ' )r�� |� ) JWJWJ )��� | , zE| is the overall receive frequency-domain signal vector, ����x �� | ' )r�� | � ) JWJWJ )r�� | , zE| is the transmit frequency-domain signal vector, � � �Sx � � | ' )h� � | � ) JWJWJ )h� � | , zE| is the

frequency-domain noise vector, and
� �

is the frequency-domain ICI channel matrix expressed

as

���� âããã
ä
� � ' q ' � � ' q � æ<æ<æ �� ' q ,...

... . . . ...� � , q ' �� , q � æ<æ<æ �� , q ,
èêééé
ë J (4.16)

Using the LTV channel model and (4.15), we can further derive a model facilitating ICI mit-

igation in MIMO-OFDMA systems. With the LTV model, we again express the channel in a

specific OFDMA symbol as j Æ. q @ q k 	ml n� j Æorq . q @ q k s l � j Æ ' q . q @ q k ) (4.17)

where
j Æ. q @ q k 	ml  is the n th-tap channel response at time instant l between the

U
th receive antenna

and the u th transmit antenna for user � , j Æorq . q @ q k is its constant term, and
j Æ ' q . q @ q k is its variation rate.

Let w Æorq @ q k �Nx j Æorq orq @ q k ) j Æorq ' q @ q k ) JWJWJ ) j Æorq y AB' q @ q k zE| , w Æ ' q @ q k �Nx j Æ ' q orq @ q k ) j Æ ' q ' q @ q k ) JWJWJ ) j Æ ' q y AB' q @ q k zE| , } Æorq @ q k �~*Uh� 	�w Æorq @ q k  , and } Æ ' q @ q k �M~*Uh� 	�w Æ ' q @ q k  . Using these definitions and (4.17), we can express the � th
user’s time-domain channel matrix representing the channel between the

U
th receive antenna

and the u th transmit antenna as

} Æ@ q k � } Æorq @ q k s ��'�} Æ ' q @ q k J (4.18)
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Transforming } Æ@ q k from the time domain to the frequency domain and denoting the result as�} Æ@ q k , we have

�} Æ@ q k � �} Æorq @ q k s �(��'�� � �} Æ ' q @ q k ) (4.19)

where �} Æorq @ q k � �
} Æorq @ q k �
� and �} Æ ' q @ q k � �
} Æ ' q @ q k �
� . As a result, we then come to the following

composite channel matrix� � @ q k � Î½ Æ{¬F' �} Æorq @ q k µ Æ s �(��'�� � Î½ Æ{¬F' �} Æ ' q @ q k µ Æ J (4.20)

Let � w Æorq @ q k ��� � �
w Æorq @ q k and �w Æ ' q @ q k �=� � �
w Æ ' q @ q k . Also denote the Q th component of �w Æorq @ q k
as � j Æorq · q @ q k and that of �w Æ ' q @ q k as � j Æ ' q · q @ q k . As a result, we then define two composite vectors �w orq @ q k
and �wt' q @ q k such that their Q th components, denoted as � jporq · q @ q k and � j ' q · q @ q k , have the following

property: � jporq · q @ q k � � j Æorq · q @ q k and � j ' q · q @ q k � � j Æ ' q · q @ q k if QÒ�0Å_Æ . With the above definitions, we then

have �} orq @ q k �4��U���� 	 � w orq @ q k  and �}1' q @ q k �4��U���� 	 � wt' q @ q k  . Finally, we can rewrite (4.20) as� � @ q k � �} orq @ q kts �(��'�� � �}1' q @ q k ) (4.21)

where �} p q @ q k � © ÎÆ{¬F' �} Æ p q @ q k µ Æ for ö ��3 ) � . Note that �} Æ p q @ q k can be further rearranged as�} Æ p q @ q k �S��U���� 	 � w Æ p q @ q k  for ö �S3 ) � . More importantly, we can see that each submatrix
� � @ q k is a

combination of diagonal and DFT/IDFT matrices.

So far, we have derived the signal model for MIMO-OFDMA systems in (4.15), (4.16), and

(4.21). Its signal structure is the same as that in MIMO-OFDM systems. Again, we can exploit

this special structure to reduce the required computational complexity as we did in Chapter 3.

Thus, we can have low-complexity algorithms for MIMO-OFDMA systems. As for the required

computational complexity, it is the same as that in MIMO-OFDM systems.

§ 4.2.1 Simulations

In this subsection, we provide simulation results to demonstrate the effectiveness of the pro-

posed method. We consider a
�7�5�

MIMO-OFDMA system with
� � �����

,
�¹Ð¤� R��

,
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and ; ��:
. The simulated fading channel is generated by Jakes’ model [70]. In addi-

tion, the power delay profile of the � th user is characterized by an exponential function, i.e.,9 �. q Æ �Ãj A .ÔÓ «ÖÕ kml � © l AB'@E¬ o j Af@ Ó «ÖÕ kml , where n is the tap index, � is the user index, and i is the

number of channel taps. For the setting of channel parameters, we let ?Á' �S� , ? � �GR , ? � �G� ,? � �N��JcX
, and i �N��X

. For the direct ZF and MMSE methods, we assume that the channel

response is exactly known. For the N-ZF and N-MMSE methods, the parameters of the LTV

channel model are obtained by LS fittings. The chosen modulation scheme is 16-QAM.

In the beginning, we discuss the ZF method. We consider two cases here; in the first case,H�I ’s are set to $ 3KJ 3�� ) 3KJ 3�X ) 3KJ 3�R ) 3KJ 3�: + and in the second case, they are set to $ 3KJ 3�: ) 3KJL� ) 3KJ 3�� ) 3KJ 3
� + .
Figure 4.5 shows the BER performance of case 1. In this figure, the performance of a two-tap

FEQ method is also compared. The H�I ’s in Fig. 4.1 and Fig. 4.5 are the same. From both

figures, we find that the behavior of the BER curves is similar except that the BER is higher

in Fig. 4.5. This is because the inter-antenna interference is introduced in a MIMO-OFDMA

system. Figure 4.6 shows the BER performance in case 2. In this case, H�I ’s are larger. As a

result, we find that the N-ZF method needs three iterations to approach the direct ZF method.

Table 4.3 summarizes the required computational complexity for the direct ZF method and

the N-ZF method in a
�1���

MIMO-OFDMA system. For case 1, two iterations are suffi-

cient. The complexity ratio for multiplication/division/addition is 0.003/0.002/0.003. For case

2, three iterations are needed. The complexity ratio for multiplication/division/addition be-

comes 0.005/0.002/0.006. As we can see from these figures, significant complexity reduction

can still be obtained even though the iteration number is three.

We now compare the required computational complexity for ICI mitigation in MIMO-

OFDMA systems and in SISO-OFDMA systems. From Tables 4.1 and 4.3, we see that the

multiplication complexity of the direct ZF method is increased up to almost eight times from

SISO-OFDMA to
�.�»�

MIMO-OFDMA. For the N-ZF method, it is only increased about three

times. Thus, the complexity reduction achieved by the N-ZF method is greater in a
���\�

MIMO-

OFDMA system. In a SISO-OFDMA system, the ratio of multiplication is 0.007 ( Q �a� and

87



HÊ�I ö � $ 3KJ 3�X ) 3KJ 3�� ) 3KJ 3�: ) 3KJ 3�R + ), while that in a
�6���

MIMO-OFDMA system is 0.003 ( Q �8�
and HÊ�I ö � $ 3KJ 3�� ) 3KJ 3�X ) 3KJ 3�R ) 3KJ 3�: + ). This is because the complexity of the direct ZF method is

proportional to �
	hg �*���� , whereas that of the N-ZF method is proportional to �
	hg �G�����f�F�� .
Even with three iterations, the complexity reduction achieved by the N-ZF method is still larger

in MIMO-OFDMA systems. It can be inferred that the N-ZF method can save more computa-

tions when g or
�

becomes larger.

Now, we report simulation results for the MMSE method. We also consider the above

two cases; case 1 is that H&I ’s are set to $ 3KJ 3�� ) 3KJ 3�X ) 3KJ 3�R ) 3KJ 3�: + and in case 2, they are set to$ 3KJ 3�: ) 3KJL� ) 3KJ 3�� ) 3KJ 3
� + . Figure 4.7 shows the BER performance of case 1. We find that the N-

MMSE method with two iterations can avoid the error floor phenomenon of the two-tap FEQ

method and in the meanwhile the N-MMSE method approaches the direct MMSE method.

Figure 4.8 shows the result of case 2. In this figure, the behavior of the N-MMSE method is

similar to that in Fig. 4.7 except the required number of iterations is three.

Table 4.4 summarizes the required computational complexity for the direct MMSE method

and the N-MMSE method in a
�Y���

MIMO-OFDMA system. For case 1, two iterations are

enough. The complexity ratio of multiplication/division/addition is 0.0029/0.0389/0.0031. For

case 2, three iterations are needed. The complexity ratio for multiplication/division/addition

becomes 0.0056/0.0389/0.0062. From the above reports, it is clear that significant complexity

reduction can be obtained by the N-MMSE method.
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Figure 4.5: BER comparison among one-tap FEQ, direct ZF, and N-ZF ( % �43 ,  �!� ) methods

in a
�0�1�

MIMO-OFDMA system; H&I = {0.02, 0.05, 0.03, 0.04} and 16-QAM modulation.
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Figure 4.6: BER comparison among one-tap FEQ, direct ZF, and N-ZF ( % �43 ,  �!� ) methods

in a
�0�1�

MIMO-OFDMA system; H&I = {0.04, 0.1, 0.08, 0.07} and 16-QAM modulation.
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Figure 4.7: BER comparison among two-tap FEQ, direct MMSE, and N-MMSE ( %
' � % � �53 , -' �  � �P� ) methods in a
�C�^�

MIMO-OFDMA system; H&I = {0.02, 0.05, 0.03, 0.04} and

16-QAM modulation.

0 5 10 15 20 25 30 35
10−3

10−2

10−1

100

SNR (dB)

B
E

R

 

 

Two−tap FEQ
Direct MMSE
N−MMSE (k=0)
N−MMSE (k=1)
N−MMSE (k=2)
N−MMSE (k=3)

Figure 4.8: BER comparison among two-tap FEQ, direct MMSE, and N-MMSE ( %
' � % � �53 , -' �  � �>� ) methods in a
�Y���

MIMO-OFDMA system; H&I = {0.04, 0.1, 0.08, 0.07} and

16-QAM modulation.
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Table 4.3: Complexity comparison between direct ZF and N-ZF methods in a
�
���

MIMO-

OFDMA system (
�"�#�����

, % �43 , and  �!� ).
Methods Real multiplications

(ratio)

Real divisions (ratio) Real additions (ra-

tio)

Direct ZF 22828288 65792 22728576

N-ZF ( Q �#� ) 35712(0.002) 128(0.002) 34560(0.002)

N-ZF ( Q �5� ) 64384(0.003) 128(0.002) 65280(0.003)

N-ZF ( Q �4R ) 121728(0.005) 128(0.002) 126720(0.006)

Table 4.4: Complexity comparison between the N-MMSE and direct MMSE methods in a
�ì�0�

MIMO-OFDMA system (
���������

, $&%('*)�% �,+ � $ 3 ) 3 + , and $� -'*)* �,+ � $ � ) � + ).
Methods Real multiplications

(ratio)

Real divisions (ratio) Real additions (ra-

tio)

Direct MMSE 45086976 65792 45027072

N-MMSE ( Q �#� ) 69377 (0.0015) 2560 (0.0389) 68352 (0.0015)

N-MMSE ( Q �5� ) 130817 (0.0029) 2560 (0.0389) 139008 (0.0031)

N-MMSE ( Q �4R ) 253697 (0.0056) 2560 (0.0389) 280320 (0.0062)
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Chapter 5

CFO-induced ICI Mitigation for OFDMA

Uplink Systems

§ 5.1 Signal Model

In the previous chapters, we discuss the mobility-induced ICI in SISO/MIMO-OFDM(A). Ex-

cept for mobility, CFO also induces ICI in an OFDM-based system. In this chapter, we will

focus on the CFO-induced ICI in an OFDMA uplink system. In an OFDMA uplink system

with ; active users, the available bandwidth is divided into
�

equally spaced subbands. Each

subcarrier uses a subband with bandwidth
��� 	 ��orpr , where

oqp
is the sampling period. In such a

system, ; users share the
�

subcarriers. Without loss of generality, we assume that each user

uses
�ºp_�P�»� ; subcarriers. For the � th user, the transmitted frequency-domain signal at theQ th subcarrier is denoted by �6 Æ· , where Q×�ØÅ_Æ and Å_Æ is the set of the subcarrier indices for

the � th user. It is assumed that Åµ@�ÉËÅ k �ÙÌ for
UCÆ� u and ÍÏÎÆ{¬F' Å_Æ � $ 3 ) � ) � ) JWJWJ ) � b � + .

Usually OFDMA adopts the interleaved subcarrier allocation scheme. In other words, ÅºÆ �$ � b � ) � b � s ;») JWJWJ ) � b � s 	 �»� ;/b ��t� ; + . Since the subcarriers assigned to the different

users are interleaved in the whole bandwidth, this scheme can achieve the maximum frequency

diversity. For each user, we assume that the CP length is long enough to prevent the ISI effect.
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Note that the channel we consider here is quasi-static, i.e., it is time-invariant in one OFDMA

symbol period.

Consider a specific OFDMA symbol for the � th user. The channel output signal, after CP

removal, can be expressed as � Æ � } Æ � Æ ) (5.1)

where
� Æ is the vector representation of the � th user’s time-domain OFDMA symbol, i.e.,

� Æ �	 ��� � �1 � � �� Æ . Here �� Æ is the corresponding frequency-domain signal vector. The matrix, } Æ ,
is a circulant channel matrix with the first column vector being w Æ which is the channel response� Æ experiences. Zeros are padded in w Æ since the channel length is assumed to be smaller than

the CP length. Note that } Æ can be decoupled as ��� �} Æ � , where �} Æ is a diagonal matrix with

the diagonal vector of �w Æ � � � �
w Æ and elements of �� Æ are nonzeros only in the designated

subcarrier positions. The receive time-domain OFDMA symbol from ; active users can be

expressed as Ú � Î½ Æ{¬F'�Û Æ � Æ s �� �� � Î½ Æ{¬F' Û Æ } Æ � � �� Æ s � J (5.2)

In (5.2), Û Æ denotes a diagonal matrix and its diagonal elements consist of  ·Æ , 3 º Q º � b � ,
where  ·Æ �¼j G  ÔÜLÝ Õ ¼Þ and ßLÆ is the normalized CFO (with respect to the subcarrier spacing) for

user � . Also, � denotes the noise vector. After the FFT operation, we have the corresponding

frequency-domain signal as

�
Ú � � � � Ú� Î½ Æ{¬F' �Û Æ �� Æ s ��n) (5.3)

where �� �=� � �(� , �Û Æ � � Û Æ �
� , and �� Æ � �} Æ �� Æ . Note that �Û Æ is a circulant matrix.

Denote its first column as � à Æ . Then, � à Æ � 	 ����� �� �¦à Æ , where à Æ �Zx  oÆ )� 'Æ ) JWJWJ )� y AB'Æ zE| . Let
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��1�Sx �6 o ) �6 '�) JWJWJ ) �6 y AB'{zE| be the composite transmit data (for all users), � w �Sx � jpo ) � j '*) JWJWJ ) � jBy AB'�zE|
be the composite channel frequency response (for all users), and �w Æ ��x � j Æo ) � j Æ ' ) JWJWJ ) � j Æ y AB' zE| .

Then, �6 · � �6 Æ· and � j · � � j Æ· when Qá�2Å_Æ . We also define a diagonal selection matrix µ Æ such

that µ Æ 	Lu�){u n� QS T � ) u¨��Å_Æ,)3 ) otherwise
J (5.4)

Thus we can express the receive signal in (5.3) as [50], [51]

�
Ú � 1 Î½ Æ{¬F' �Û Æ µ Æ 3 �}Y�� s ���4�� �� s ��Á) (5.5)

where �} is a diagonal matrix with the diagonal vector being �w , �� � �}
�� , and
� ��� © ÎÆ{¬F' �Û Æ µ Æ �© ÎÆ{¬F' � Û Æ �
�)µ Æ is the CFO-induced ICI matrix. From the above formulation, we can see that

the ICI matrix is composed of diagonal and DFT/IDFT matrices. This ICI matrix structure will

be exploited in the developed low-complexity method.

§ 5.2 Previous Methods

§ 5.2.1 Conventional Method

Since CFO induces the self-ICI and MUI, the system performance can be seriously affected.

Thus it is crucial either to correct CFOs or to mitigate the ICI effect. Several ICI mitigation

methods have been proposed in the literature [45], [46], [47]. In this subsection, we will first

review the work in [45].

In a single-user OFDM system, CFO is an important factor affecting the system perfor-

mance. Since CFO produces a phase rotation on the receive time-domain signal, the conven-

tional method compensates for the effect by a phase de-rotation operation. In an OFDMA uplink
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system, this method can also be used to compensate for the CFO effect [45]. From (5.2), the

compensated signal for user
U

by the conventional method can be written as� @ â � 	 Û @  �
Ú

� Î½ Æ{¬F' 	 Û @  � Û Æ � Æ s 	 Û @  � �� � @ s Î½ Õ H �Õ KH $ 	 Û @  � Û Æ � Æã ä�å æçfèBé s 	 Û @  � � J (5.6)

From (5.6), we can see that the first term is the desired signal and the second term is the MUI.

Note that the MUI after CFO compensation can becomes smaller or larger. If the CFO compen-

sation for the
U
th user makes the resultant CFO of the � th user, ßêÆÂb×ß�@ , become larger, a larger

MUI from the � th user will be induced. We then conclude that the conventional method can

compensate for the self-induced ICI, but not MUI.

§ 5.2.2 CLJL Method

Since the time-domain conventional method in [45] may induce a larger MUI, the method in

[46], called the CLJL method, compensates for the CFO-induced ICI in the frequency domain.

From (5.3), the CFO-compensated signal for the
U
th user can be written as follows:� @ â l
ë�l � µ @ 	 �Û @  � µ @ �

Ú
� µ @ 	 �Û @  � µ @ Î½ Æ{¬F' �Û Æ �� Æ s µ @ 	 �Û @  � µ @ ��� µ @ 	 �Û @  � µ @ �Û @ �� @ s Î½ Õ H �Õ KH $ µ @ 	 �Û @  � µ @ �Û Æ �� Æã ä�å æçfèBé s µ @ 	 �Û @  � µ @ ��Á) (5.7)

From (5.7), we can see that the first term is the desired signal after CFO compensation, and

the second term is the MUI. It is apparent that the desired signal suffers from an amplitude
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reduction, and the MUI still exists. When the CFO is large, the performance of the CLJL

method will be unsatisfactory.

§ 5.2.3 CLJL-PIC Method

Since the methods in [45], [46] suffer from the MUI, the method in [47], called the CLJL-PIC

method, further suppress the MUI using the PIC technique. The CLJL-PIC method can be

summarized in the following steps:

1. Using the CLJL method to obtain the initial estimate � @ o for all active users

� @ o � µ @ 	 �Û @  � µ @ �
Ú
) U��#� ) � ) JWJWJ )�;») (5.8)

where � @y is the estimated data of user
U

at the e th iteration.

2. Regenerate the MUI by �Û @ and � @yWAB' obtained at the 	êe�b �� th stage. Then cancel the

regenerated MUI from the received signal

�
Ú @y � � Ú b Î½ Õ H �Õ KH $ �Û Æ � ÆyWAB' ) U��#� ) � ) JWJWJ )�;») (5.9)

where �
Ú
@y is the output signal after the PIC processing at the e th stage.

3. Using the CLJL method to compensate for the CFO for each active user

� @y � µ @ 	 �Û @  � µ @ �
Ú @y ) U��#� ) � ) JWJWJ )�; J (5.10)

4. Repeat Step 2 and Step 3.

The main drawback of this method is that its performance is affected by the initial estimate� @ o used for the PIC processing. When a large CFO occurs, the performance improvement by

the PIC technique with the poor initial estimates (owing to the large MUI) will be limited. If
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the modulation scheme has a large QAM-size such as 64-QAM, the performance will become

sensitive to the residual MUI. Note that Step 2 can be implemented more efficiently as follows:

�
Ú @y � 1 � Ú b Î½ Æ{¬F' �Û Æ � ÆyWAB' 3 s �Û @ � @yWAB' ) U��#� ) � ) JWJWJ )�; J (5.11)

This formula will be used to evaluate its computational complexity in a comparison described

later.

§ 5.3 ZF Method

§ 5.3.1 Proposed Newton-ZF Method

From (5.5), we can see that a straightforward method to compensate for the CFO effect is the

ZF method given by [51]

�  £¢ �4�� AB' �
Ú J

(5.12)

Although the direct ZF method can completely suppress the CFO effect, it needs to invert the

ICI matrix with dimension
�

, the FFT size. When the size is large, the required computa-

tional complexity can become prohibitively high. Unfortunately, in real-world applications, the

symbol size is usually large. For example, for IEEE 802.16e, the size can be as large as 2048.

Here, we propose a low-complexity ZF method to solve the problem. The main idea is to use

an iterative procedure such that the direct matrix inversion can be avoided. Specifically, we use

Newton’s method as we did in the case of mobility-induced ICI.

Base on the previous discussion on the mobility-induced ICI, we also approximate the ma-

trix inversion of
��

via the expanded form of Newton’s iteration as

¶�· � ��¼ AB'½¾ ¬ o ~ · q ¾ 	�¶ o � �� ¾ ¶ o J (5.13)

98



Moreover, our final objective is to obtain the CFO-compensated result ¶�·{�
Ú

not the matrix

inversion ¶�· itself. Multiplying both sides of (5.13) by the receive signal �
Ú
, we then have

¶�·��
Ú � � ¼ AB'½¾ ¬ o ~ · q ¾ 	�¶ o � �� ¾ ¶ o �

Ú J
(5.14)

Let � · � ¶�·{�
Ú

and ÷ ¾ � 	�¶ o ��S ¾ ¶ o �
Ú
. According to these definitions, we can rewrite (5.14)

as

� · � � ¼ AB'½¾ ¬ o ~ · q ¾ ÷ ¾ J (5.15)

Based on the definition of ÷ ¾ , it is simple to see that

÷ ¾ DF' � 	�¶ o ��S ÷ ¾ J (5.16)

As a result, ÷ ¾ can be recursively calculated. With this approach, we have transformed the

matrix-to-matrix multiplications in (5.13) into the matrix-to-vector multiplications in (5.15)

and (5.16).

To complete our low-complexity algorithm, we further let ¶ o
be a diagonal matrix and

explore the special structure inherent in the CFO-induced ICI matrix,
� �

. Recall that
� � �© ÎÆ{¬F' � Û Æ �
�)µ Æ . Thus, we can then rewrite (5.16) as

÷ ¾ DF' � ¶ o � Î½ Æ{¬F'qÛ Æcì � � µ Æ ÷ ¾)í J (5.17)

Note that operations in (5.17) only involve vector multiplications, IDFTs, and a DFT. It is well-

known that DFT/IDFT can be implemented with FFT/IFFT and then the required computational

complexity can be greatly reduced. Thus, evaluation of (5.15) only involves vector multiplica-

tions, FFTs, and IFFTs. The required computational complexity is reduced from �
	 � �  to�
	r	�; s ����!�������F�� .
With the interleaved-OFDMA structure, the computational complexity can be reduced fur-

ther. Let ÷ ¾ �Mx ö ¾ 	 3� ) ö ¾ 	 �� ) JWJWJ ) ö ¾ 	 � b �� zE| and Ã Æ¾ � µ Æ ÷ ¾ �Sx ù Æ¾ 	 3� ) ù Æ¾ 	 �� ) JWJWJ ) ù Æ¾ 	 � b
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�� zE| . From the definition of µ Æ , we have

ù Æ¾ 	 U{n� QS T ö ¾ 	 U{ ) U ��Å_Æ,)3 )ÙîïF j jW� Ò U ö j�J (5.18)

This is to say that Ã Æ¾ corresponds to an upsampled sequence of the desired elements in ÷ ¾ . The

nonzero elements in Ã Æ¾ , denoted by � Æ¾ �Mx ö ¾ 	 � b �� ) ö ¾ 	 � b � s ;  ) JWJWJ ) ö ¾ 	 � b � s 	 �»� ;Éb��-� ;  zE| , can be obtained by circularly shifting Ã Æ¾ with � b � elements and downsampling the

result with a factor of ; . Let � Æ¾ � 	 ��� � ;  �
�yñð � Æ¾ , where � yñð is an
�ºpV���ºp

DFT matrix,

and construct an
���^�

vector by duplicating � Æ¾ , ; times shown as´ Æ¾ �Mx 	 � Æ¾  | ) JWJWJ )�	 � Æ¾  | z | J (5.19)

Consequently, we can obtain � � µ Æ ÷ ¾ by the following method

� � µ Æ ÷ ¾ � î Æ ´ Æ¾ ) (5.20)

where î Æ is a diagonal matrix with the diagonal vector of � Æ �Mx ò oÆ ) ò 'Æ ) JWJWJ ) ò y AB'Æ zE| and
ò ·Æ �j G  ÔÜêó Õ ���õôc¼Þ . Note that the operation î Æ results from the circlur shift of Ã Æ¾ . Equation (5.20)

implies that we can implement ���)µ Æ ÷ ¾ by an IDFT with dimension
�»� ; instead of

�
. Using

this approach, we can reduce the computational complexity further by rewriting (5.16) as

÷ ¾ DF' � ¶ o � Î½ Æ{¬F'qÛ Æ î Æ ´ Æ¾ J (5.21)

Note that ´ Æ¾ is a column vector and both î Æ and Û Æ are complex diagonal matrices. As as-

sumed, ¶ o is a diagonal matrix. Equation (5.21) only involves one DFT with size
�

, ; IDFTs

with size
�»� ; , and some vector operations. As mentioned, DFT/IDFT can be efficiently imple-

mented with FFT/IFFT. Finally, the required computational complexity is reduced from �
	 �2�*
to �
	 �!������� 	 � � � ; r .

The final thing we have to deal with is how to determine the initial matrix ¶ o
. A well-

designed initial values can reduce the number of iterations significantly and provide good mit-
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igation performance. Let ¶ o �a��U���� 	 x Ò o )�Ò\'*) JWJWJ )�Ò y AB'{zE|  . Again, we adopt the minimum-

Frobenius-norm criterion to obtain optimum initial values. The criterion is given by¶¬öÔy�÷ q o �4Ì�Ír�ÁÎ6Ï�ÐÑ J ® � y b^¶ o � � ® �¢ J (5.22)

We can expand
® � y b�¶ o �� ® �¢ as follows:® � y b�¶ o �� ® �¢ � y AB'½ @E¬ o

y AB'½ k ¬ o Ç øK	 U b2u  b^ÒÓ@ �¿(@ q k Ç � ) (5.23)

where �¿(@ q k � � � 	 U ){u  . Then, the optimum initial values for minimizing (5.23) can be obtained

by setting the first derivative of
® � y b^¶ o � � ® �¢ with respect to Ò_Õ· to zero. The first derivative

of
® � y b^¶ o � � ® �¢ with respect to Ò Õ· can be found inùù Ò Õ· � ® � y b^¶ o � � ® �¢ ��� b �¿ Õ· q · s ÒÄöÔy�÷ q · y AB'½ k ¬ o Ç �¿Y· q k Ç � J (5.24)

As a result, we can have the optimal initial value ÒV· , denoted as ÒaöÔy�÷ q · , asÒÄöÔy�÷ q · � �¿
Õ· q ·© y AB'k ¬ o Ç �¿Y· q k Ç � J (5.25)

For further complexity reduction, we can make an approximation to (5.25) asÒÄöÔy�÷ q · ¨ �¿
Õ· q ·© k ¬ d ·�A ²¤ú ·�D ² q yfe Ç �¿Y· q k Ç � ) (5.26)

where  is a parameter controlling the number of ICI terms considered (
3 º  º �»��� b � ). The

approximation is based on the fact that the CFO-induced ICI on a subcarrier mainly comes from

neighboring subcarriers. Moreover, this approximation is only for the initial matrix calculation.

The final result will be updated by Newton’s method. For easy reference, we denote this method

as the N-ZF method.

For the direct ZF method, the matrix inversion is obtained by solving a set of linear equations

as
� � �  £¢ � �

Ú
, where �  £¢ is the ZF-compensated �� . This can be implemented by triangular

factorization (Gaussian elimination), and forward and backward substitution [69]. Finally, for

signal detection, a conventional one-tap FEQ is applied to each subcarrier (compensating for

the channel effect). We can express the result as
�1� �} AB' � , where

�
is the estimate of �� while� is the CFO-compensated �� .
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§ 5.3.2 Pre-compensation Method

If CFOs are large, the performance of the proposed method may be affected. The larger the

CFO, the worse the performance it will result. In OFDM systems, we can compensate for the

CFO effect with a phase de-rotation operation. Although the same method cannot be used to

compensate for all CFOs here, it can be used to reduce their magnitudes in some cases. Note

that this is equivalent to a pre-compensation (PC) approach. Let the receive signal be pre-

compensated by a normalized CFO value ß . Thus, the resultant CFO for the � th user, denoted

as û�Æ , is now changed to û�Æ � ßLÆnb0ß J (5.27)

Here, we propose a minimum square error criterion, shown below, to obtain optimum ß , i.e.,ßLöÔy�÷ �4Î6Ï�Ðü Î½ Æ{¬F' û �Æ J (5.28)

Setting the first derivative of
© ÎÆ{¬F' û �Æ with respect to ß to zero, we can obtain the optimum ß

for (
X£Jc���

) as ßLöÔy�÷ � �; Î½ Æ{¬F' ßLÆ J (5.29)

From this result, it is simple to see that the optimum ß is just the mean of all CFOs. Compen-

sating for a pre-determined CFO can be implemented by windowing the receive time-domain

signal with the windowing vector à �Mx  oö )� 'ö ) JWJWJ )� y AB'ö zE| , where  ·ö �gj A k  ÔÜ�¼IÝþý z%ÿÞ . Thus, the

PC method will need extra
�

complex multiplications which is minor compared to other oper-

ations. In simulations, we will show that the PC method can greatly enhance the performance

of the proposed algorithm in some cases.

§ 5.3.3 Complexity Analysis

In the previous subsections, we have proposed the N-ZF method for an interleaved-OFDMA

uplink system. In this subsection, we will analyze the computational complexity of the proposed
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method, and compare it with that of existing methods. From (5.15) and (5.16), we can clearly

see that the computational complexity of the proposed method mainly consists of the following

three parts:

1. ÷ ¾ iteration, where ÷ ¾ DF' � 	�¶ o � �� ÷ ¾ and ÷ o � ¶ o �
Ú
,

2.
� �

construction with
� ��� © ÎÆ{¬F' �Û Æ µ Æ ,

3. ¶ o calculation with (5.26).

Since the operations in ÷ ¾ iteration can be implemented by (5.21), we only need one FFT

operation with size
�

, ; IFFT operations with size
�»� ; , and a couple of vector operations. As

a result, we require 	 �»����,x ����� � � s ����� � 	 �»� ;  s : ;_z CMs and
�^x ����� � � s ����� � 	 �»� ;  s 	�;Cb �� z

CAs. In addition, we need
�

CMs for ÷ o � ¶ o �� , and
���

RMs for each
~ ·¾ ÷ ¾ in (5.15). As

to the construction of
� �

, we first have to obtain �Û Æ by � à Æ � 	 ����� �� �¦à Æ for each user. This

will require 	 ������ ; �!����� � 	 �� CMs, and ; �!����� � 	 �� CAs. Despite the diagonal property of¶ o , we can use the special structure of
� �

to reduce the complexity further. To see this, we can

rewrite
� �

as � � 	 í ){u ���� k 	E� à d k�q Î e DF'  ) u �43 ) � ) JWJWJ ) � b � ) (5.30)

where
� k 	 ´  denotes the circular shift of a column vector ´ downwards or a row vector ´ left-

wards by u elements. From (5.30), it is straightforward to see that� � 	 U ) ícn��� k Î ¥W�� 	 U s uf;») íc ¦ ) U��43 ) � ) JWJWJ )�;5b � ) u �53 ) � ) JWJWJ ) �ºp b ��J (5.31)

As a result, we only have to calculate ¶ o 	 U ) U{ for
U��53 ) JWJWJ )�;!b � . This is because

¶ o 	 U ) U{n� ¶ o 	 U s uf;») U s uf;  ) U��53 ) � ) JWJWJ )�;5b � ) u �43 ) � ) JWJWJ ) �ºp b ��J (5.32)

As mentioned, we can only take some neighboring ICI terms into account for ¶ o
calculation.

Let � à Æ �Sx � j Æo ) � j Æ ' ) JWJWJ ) � j Æ y AB' zE| . Thus, we only need the following values: $ � j Æ � y A ²�� ) JWJWJ ) � j Æ � y AB' � ) � j Æo )� j Æ ' ) JWJWJ ) � j Æ ² + for � �#� ) � ) JWJWJ )�; . As a result, we require ;C	 �  s �� CMs, ;õ CAs, and
� ; RDs

103



for ¶ o calculation. The required computational complexity is summarized in Table 5.1. For

the proposed method with PC, only extra
�

complex multiplications are required. Table 5.1

also shows the required computational complexity of the CLJL-PIC method and the direct ZF

method [69].

Table 5.1: Complexity comparison among proposed method, CLJL-PIC method, and direct ZF

method.

Complexity Proposed method CLJL-PIC method Direct ZF method

Real multi-

plications

� 	 � · b � s ; ��G����� � 	 �� s� 	 � · b ����!������� 	 �»� ;  sx � 	 � · b �� ; s � 	 � · s �� z � s: ;C	 �  s ��
:vx e s 	êe s ��r� ;_z � � s� ; �!������� 	 �� � � � � s X�� � s� ; �!������� 	 �� b '� �

Real divi-

sions

� ; 0
� � s �

Real addi-

tions

R 	 � · b � s ; ��G����� � 	 �� sR 	 � · b ����!������� 	 �»� ;  sx 9 	 � · b �� ; s � z � s� ;C	 R  s ��
:vx e s 	êe s ��r� ;_z � � sR ; �!������� 	 �� b ��� � � ��� s ô� � � sR ; �!������� 	 �� b '{'ó �

§ 5.3.4 Performance Analysis

For an iterative algorithm, the convergence problem is usually a main concern. The proposed

algorithm uses Newton’s iterative algorithm; however, the convergence is less critical here.

This is due to two facts described below. The first one is that for the application considered

here, the proposed algorithm converges for most of the cases; only in few cases, will it diverge.

The second is that the required number of iterations is pre-determined. Thanks to the fast
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convergence property of Newton’s iteration and good initial values we developed, only two or

three iterations are necessary if it converges. Since the iteration number is finite, the proposed

algorithm will never diverge. As shown below, even for divergence cases, SINR can still be

increased for the designated iteration number. We will provide two analysis approaches mainly

based on the analysis in Chapter 2. The first one is simpler, but the result is only approximated;

the other one is complicated, but the result is exact. The first approach can provide an intuitive

understanding of the convergence behavior of Newton’s method. Here, we start with the simpler

one. We first perform the eigenvalue decomposition for �¹ o as follows:

�¹ o � ø��
ø AB' ) (5.33)

where ø �Mx Ã o )�Ãt'*) JWJWJ )�Ã y AB'{z is a matrix composed of eigenvectors of
¹ o

, and � �4��U���� 	 x � o )� '*) JWJWJ ) � y AB'{zE|  is a diagonal matrix having the
U
th eigenvalue,

� @ , as its
U
th diagonal element.

We assume that Ç � @rÇ �MÇ � k Ç for
U º u . Since �¹ · � �¹ �·�AB' , we can then decompose �¹ · as

�¹ · � �¹ ��¼o� ø�� � ¼ ø AB' J (5.34)

If Ç � o Ç ¯ �
, then �¹ ·�� Ë y

as Q�� ¸ . Thus, we can have the convergence condition for

Newton’s iteration as �F	 �¹ o  ¯ � , where �F	 �¹ o  denotes the spectral radius of �¹ o . This is to say,

for Newton’s iteration to converge, the amplitudes of all eigenvalues of �¹ o have to be smaller

than one. As mentioned, this condition holds for most of the cases. In few cases, the condition

dose not hold; however, the number of eigenvalues with amplitudes greater than one is small

and their amplitudes do not deviate from one much. These results can be easily observed from

simulations though difficult to be proved theoretically. In what follows, we will show that even

for divergence cases, we may still benefit from Newton’s iteration.

Let ø AB' ��x � o ) � '�) JWJWJ ) � y AB'�zE| . By definition, �¹ · �8� y bÉ¶�· �� . We can represent the
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CFO-compensated ICI matrix as

¶�· ����4� y b �¹ ·�4� y b y AB'½ @E¬ o � � ¼@ Ã±@ � | @ J (5.35)

Let Ç � @rÇ �8� for
UÓ�M3 ) � ) JWJWJ )��!b � and Ç � @rÇ ¯ � for

UÓ� �ì)�� s � ) JWJWJ ) � b � . Thus, we can

rewrite (5.35) as

¶�· ����4� y b ° AB'½ @E¬ o � � ¼@ Ã±@ � | @ b y AB'½k ¬ ° � � ¼k Ã k � |k J (5.36)

As for ¶�· , we can reformulate it as

¶�· � 	 �&� y b�¶�·�AB' ��� ¶�·�AB'� 	 � y1s �¹ ·�AB'  	 � y1s �¹ ·�A � ÜJWJWJ 	 � y1s �¹ o  ¶ o J (5.37)

Using (5.34), we can further express ¶ò· as

¶�· � ø 	 � y1s � ��¼����  ø AB' ø 	 � y1s � ��¼��!  ø AB' JWJWJ ø 	 � y2s �  ø AB' ¶ o� y AB'½ k ¬ o
" ·�AB'# @E¬ o 	 � s � � $k  & Ã k � |k ¶ o� y AB'½ k ¬ o)( k�q ·�Ã k � |k ¶ o ) (5.38)

where ( k�q · �Â* ·�AB'@E¬ o 	 � s � �%$k  . With (5.36) and (5.38) , the CFO-compensated signal can be

expressed as � · � ¶�· �� �� s ¶�·���� �� b ° AB'½ @E¬ o � � ¼@ Ã±@ � | @ �� b y AB'½k ¬ ° � � ¼k Ã k � |k �� s ��±·� �� b ° AB'½ @E¬ o � � ¼@ Ã±@ � | @ �� b y AB'½k ¬ ° � � ¼k Ã k � |k �� s y AB'½ k ¬ o)( k�q ·�Ã k � |k �� o ) (5.39)
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where ��±· � ¶�·��� . Since the eigenvectors $&Ã o )�Ãt'�) JWJWJ )�Ã y AB' + span the
�

-dimensional space,

we can decompose �� and �� o using these vectors. Let �� � © y AB'. ¬ o ü . Ã . and �� o � © y AB'. ¬ o0/ . Ã . ,
respectively. Then, we can rewrite (5.39) as

� · � �� b ° AB'½ @E¬ o � ��¼@ Ã±@ � | @21 y AB'½ . ¬ o ü . Ã .43 b y AB'½k ¬ ° � ��¼k Ã k � |k 1 y AB'½ . ¬ o ü . Ã .43 s y AB'½ k ¬ o)( k�q ·�Ã k � |k 1 y AB'½ . ¬ o / . Ã .53� �� b ° AB'½ @E¬ o � ��¼@ ü @�Ã±@Fb y AB'½k ¬ ° � ��¼k ü k Ã k�s y AB'½ k ¬ o ( k�q · / k Ã k� �� s � · q � s � · q � ) (5.40)

where � · q � � b © ° AB'@E¬ o � ��¼@ ü @mÃ±@Fb © y AB'k ¬ ° � ��¼k ü k Ã k , and � · q � � © y AB'k ¬ o ( k�q · / k Ã k . Note that � · q � is

the residual interference term and � · q � is the noise term. The average SINR for the Q th iteration,

denoted as @BA�CED��· , can be expressed as@BA�CED	�· � < $��� �n�� +< $ � �· q � � · q � + s < $ � �· q � � · q � + J (5.41)

Assume that cross-correlations of Ã . ’s are small, and can be ignored. Then, the powers of the

desired signal, interference, noise can be approximated as< $��� � �� + � y AB'½ . ¬ o y AB'½ . 	 ¬ o < $ ü Õ. ü . 	 + Ã �. Ã . 	¨ y AB'½ . ¬ o < $BÇ ü . Ç � + ) (5.42)

< $ � �· q � � · q � + �g< QS T 1 ° AB'½ @E¬ o � ��¼@ ü @�Ã±@ s y AB'½k ¬ ° � ��¼k ü k Ã k 3 � 1 ° AB'½@ 	 ¬ o � ��¼@ 	 ü @ 	 Ã±@ 	 s y AB'½k 	 ¬ ° � ��¼k 	 ü k 	 Ã k 	 3 X Z[¨ ° AB'½ @E¬ o Ç � @rÇ � ¼�
¤� < $BÇ ü @rÇ � + s y AB'½ . ¬ ° Ç � . Ç � ¼�
¤� < $BÇ ü . Ç � + ) (5.43)
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and < $ � �· q � � · q � + �g< QS T 1 y AB'½ k ¬ o)( k�q · / k Ã k 3 � 1 y AB'½k 	 ¬ o ( k 	 q · / k 	 Ã k 	 3 X Z[¨ y AB'½ k ¬ o Ç ( k�q ·fÇ � < $BÇ / k Ç � + J (5.44)

Finally, the average SINR can be approximated as@BA�CED �· ¨ © y AB'. ¬ o < $BÇ ü . Ç � +© ° AB'@E¬ o Ç � @�Ç � ¼�
¤� < $BÇ ü @�Ç � + s © y AB'. ¬ ° Ç � . Ç � ¼�
¤� < $BÇ ü . Ç � + s © y AB'k ¬ o Ç ( k�q ·�Ç � < $BÇ / k Ç � +� @�A��Ó' s A�� � s C�� ) (5.45)

where @� � © y AB'. ¬ o < $BÇ ü . Ç � + , A��Â' � © ° AB'@E¬ o Ç � @�Ç � ¼�
¤� < $BÇ ü @�Ç � + , A�� � � © y AB'. ¬ ° Ç � . Ç � ¼�
¤� < $BÇ ü . Ç � + ,
and C�� � © y AB'k ¬ o Ç ( k�q ·�Ç � < $BÇ / k Ç � + . Now, we can examine the three terms in the denominator of

(5.45). The first term A��Ó' , involving eigenvalues with amplitudes greater than one, is monoton-

ically increased, and the second term, involving eigenvalues with amplitudes less than one, is

monotonically decreased as Q is increased. Recall that only few eigenvalues’ amplitudes will

be greater than one (i.e., � is small), and their amplitudes often do not deviate from one too

much. Also, from the definition of C�� , it can be shown that the third term tends to be increased

when Q is increased and its variation is not large (see the definition of ( k�q · ). Then, it is simple to

see that in the first several iterations, the amount of decreasing in A�� � will be larger than that of

increasing in A��ì' . We then conclude that for typical divergence cases, SINR will be increased

and then decreased as the iteration is proceeded. Thus, if we can stop the iteration before SINR

is degraded, we can still have the performance gain even though the iteration diverges eventu-

ally. Due to the fast convergence property of Newton’s method, the number of iterations can be

as small as two or three for convergent cases. For divergent cases, SINR is still increasing in

the first two or three iterations. Note that the magnitudes of eigenvalues are related to those of

CFOs. The proposed method with CFO pre-compensation can reduce the magnitudes of CFOs.

Thus, it can improve the performance of the proposed method. As an example, we let
�"�!9�:

,; �5: ,  �G� , and the normalized CFO (for each user) be randomly sampled from the interval
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x b��B) ��z , where � º 3KJcX . After exhaustive simulations, we found that without PC, the largest �
rendering the amplitudes of all eigenvalues smaller than one is

3KJ R�9
, and with PC, it can be as

large as 0.5.

We now develop the second method to analyze the convergence behavior of the proposed

algorithm. Recalling (5.5) and (5.14), we can rewrite the receive signal after CFO compensation

as

¶�·{�
Ú � ��¼ AB'½¾ ¬ o ~ · q ¾ 	�¶ o ��S ¾ DF' �� s

��¼ AB'½¾ ¬ o ~ · q ¾ 	�¶ o � �� ¾ ¶ o ���Ø7 ·,�� s ¶�·���Á) (5.46)

where
7 · � © � ¼ AB'¾ ¬ o ~ · q ¾ 	�¶ o ��S ¾ DF' is the CFO-compensated ICI matrix. Define Å ����� 	�� 

as a banded matrix with upper bandwidth � and lower bandwidth � , i.e., Å
	 U ){u ì��3 wheneverÇ u6b U Ç � � , and Å
	 U ){u  � �V	 U ){u  otherwise. In addition, Å � �	� 	��  is the complement of��� 	��  , i.e., Å
	 U ){u V� �V	 U ){u  whenever Ç u0b U Ç � � , and Å
	 U ){u V�83 otherwise. Then, we can

rewrite (5.46) as

¶�·{�
Ú ��� o 	 7 ·  �� s � o 	 7 ·  �� s ¶�·��� J (5.47)

The first term,
� o 	 7 ·  �� , is the desired signal, the second term,

� o 	 7 ·  �� , is the interference,

and the last term, ¶"·��� , is the noise. Let �� �8x �� o ) �� '�) JWJWJ ) �� y AB'{zE| , and �� �8x � ú o ) � ú '�) JWJWJ ) � ú y AB'�zE| .

Then we can define the average SINR for the proposed method with Q iterations as follows:@BA�CED	�· � < $ ® � o 	 7 ·  �� ® �� +< $ ® � o 	 7 ·  �� ® �� + s < $ ® ¶�·��� ® �� +� 9 �:� ® � o 	 7 ·  ® �¢9 �:� ® � o 	 7 ·  ® �¢ s 9 �: � ® ¶�· ® �¢� ® � o 	 7 ·  ® �¢® � o 	 7 ·  ® �¢ s�� ® ¶�· ® �¢ ) (5.48)

where 9 �:� �¼< $BÇ �� @rÇ � + 	 3 º U º � b �� , 9 �: � �¼< $BÇ � ú @rÇ � + 	 3 º U º � b �� , and
� � 9 �: � � 9 �:� �® � � ® �¢ � 	 �Z� @�CED n�#��� @�CED . For comparison, the average SINR of the receive signal without
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CFO-compensation is also calculated as@BA�CED � � < $ ® � o 	 � �S �� ® �� +< $ ® � o 	 � �� �� ® �� + s < $ ® �� ® �� +� 9 �:� ® � o 	 � �� ® �¢9 �:� ® � o 	 � �� ® �¢ s � 9 �: �� ® � o 	 � �� ® �¢® � o 	 � �S ® �¢ s � � J (5.49)

To obtain the @BA�CED��· in (5.48), we must calculate each element in
7 · and ¶�· . Since� ��� © ÎÆ{¬F' �Û Æ µ Æ , the CFO-compensated ICI matrix

7 · can be expanded as7 · � � ¼ AB'½¾ ¬ o ~ · q ¾ 1 Î½ Æ{¬F' ¶ o �Û Æ µ Æ 3 ¾ DF'� ��¼ AB'½¾ ¬ o ~ · q ¾RQS T Î½Æ UWV J ¬F' Î½Æ UWV � ¬F' JWJWJ Î½Æ UWV U ¬F' ¾#\ ¬ o ¶ o �Û Æ UWV ] µ Æ UWV ] X Z[� ��¼ AB'½¾ ¬ o ~ · q ¾RQS T Î½Æ UWV J ¬F' Î½Æ UWV � ¬F' JWJWJ Î½Æ UWV U ¬F' ? ¾ X Z[ ) (5.50)

where ? ¾ �`* ¾ \ ¬ o ¶ o �Û Æ UWV ] µ Æ UWV ] , and ?�AB' �#� y . In the same way, we can also expand ¶ò·
as

¶�· � ��¼ AB'½¾ ¬ o ~ · q ¾ 1 Î½ Æ{¬F' ¶ o �Û Æ µ Æ 3 ¾ ¶ o� ��¼ AB'½¾ ¬ o ~ · q ¾RQS T Î½Æ UWV J ¬F' Î½Æ UWV � ¬F' JWJWJ Î½Æ UWV U ��� ¬F' ? ¾ AB'{¶ o X Z[� ��¼ AB'½¾ ¬ o ~ · q ¾ QS T Î½Æ UWV J ¬F' Î½Æ UWV � ¬F' JWJWJ Î½Æ UWV U ��� ¬F' Å ¾ X Z[ ) (5.51)

where Å ¾ � ? ¾ AB'�¶ o . In what follows, we calculate each element of ? ¾ 	 U ¾ ){u ¾  . To make

the expression simpler, we denote Ò�öÔy�÷ q @ as ÒÓ@ . First, we compute ? o 	 U o ){u o  which can be
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expressed as ? o 	 U o ){u o n�Sx ¶ o �Û Æ J V J µ Æ J V J zL@ J q k J� Ò d @ J q Î e � j Æ J V Jd @ J A k J q yfe øK	 � orq o b � b ¯ u o )�; �\*J (5.52)

Next, we express ?�',	 U '�){u&'  as?�',	 U '�){u&' ��Mx 	�¶ o �Û Æ � V J µ Æ � V J  	�¶ o �Û Æ � V � µ Æ � V �  zL@ � q k �� y AB'½¼ J H!J¼ J���� Õ � V J Ò d @ � q Î e Ò d · J q Î e � jÖÆ � V Jd @ � A£· J q yfe � jÖÆ � V �d · J A k � q yfe øK	 � ' q '�b � b ¯ u&'�)�; �\*J (5.53)

Furthermore, ? � 	 U � ){u �  can be presented by? � 	 U � ){u � n�Sx 	�¶ o �Û Æ  V J µ Æ  V J  	�¶ o �Û Æ  V � µ Æ  V �  	�¶ o �Û Æ  V  µ Æ  V   zL@  q k  � y AB'½¼ � H!J¼ � ��� Õ  V � y AB'½¼ J H!J¼ J ��� Õ  V J Ò d @  q Î e Ò d · J q Î e Ò d · � q Î e � jÖÆ  V Jd @  A£· J q yfe � jÖÆ  V �d · J A£· � q yfe � jÖÆ  V  d · � A k  q yfeøK	 � � q '�b � b ¯ Q£'*)�; �\ øK	 � � q � b � b ¯ u � )�; �\*J (5.54)

Finally, we can formulate ? ¾ 	 U ¾ ){u ¾  for ¿R� � as? ¾ 	 U ¾ ){u ¾ ��Mx 	�¶ o �Û Æ UWV J µ Æ UWV J  	�¶ o �Û Æ UWV � µ Æ UWV � ÜJWJWJ 	�¶ o �Û Æ UWV U µ Æ UWV U  zL@ U q k U� y AB'½¼ U ��� H!J¼ U ��� ��� Õ UWV U ���
y AB'½¼ U �! H!J¼ U �! ��� Õ UWV U �! JWJWJ

y AB'½¼ J H!J¼ J ��� Õ UWV J Ò d @ U q Î e Ò d · J q Î e Ò d · � q Î e JWJWJ Ò d · U ��� q Î e� jÖÆ UWV Jd @ U A£· J q yfe � jÖÆ UWV �d · J A£· � q yfe � jÖÆ UWV  d · � A£·  q yfe JWJWJ � j Æ UWV Ud · U ��� A k U q yfe øK	 � ¾ q 'tb � b ¯ Q£'*)�; �\øK	 � ¾ q � b � b ¯ Q � )�; �\ÜJWJWJ øK	 � ¾ q ¾ AB'tb � b ¯ Q ¾ AB'*)�; �\øK	 � ¾ q ¾ b � b ¯ u ¾ )�; �\*J (5.55)

Since � à Æ � 	 ����� �1 �¦à Æ , we can further express � j Æ· as

� j Æ· � �� y AB'½ Ô ¬ o j k  ÔÜ !LÝ ÕÞ j A k  ÔÜ !�¼Þ
�#" Ï�Ð-x $ 	hQ b0ßLÆ  z� " Ï�Ð1��% � ·�A ü Õ �y � j A k % � ·�A ü Õ � � Þ ���Þ � J

(5.56)
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By (5.56), we can expand �¿Y@ q k as

�¿(@ q k � � j d k�q Î e DF'd @�A k�q yfe�&" Ï�Ð $ $Áx ¯ U b2u�) �Â� bEß d k�q Î e DF'�z +� " Ï�Ð � %(' d @�A k�q yfe A ü*) G V +-, 
¤�/.y � j A k %(' d @�A k�q yfe A ü*) G V +-, 
¤�/. � Þ ���Þ � J
(5.57)

With �¿(@ q k , we can further formulate Ò d · q Î e as

Ò d · q Î e ¨ �¿
Õ d · q Î eBq d · q Î e© k ¬ dñd · q Î e A ²¤ú d · q Î e D ² q yfe Ç �¿ d · q Î eBq k Ç �� 	 � j d · q Î e DF'o  Õ© k ¬ dñd · q Î e A ²¤ú d · q Î e D ² q yfe Ç � j d k�q Î e DF'dñd · q Î e A k�q yfe Ç �� � " Ï�Ð-x $ ß d · q Î e DF'�z j A k % ü ) ¼ V +-, 
¤� � Þ ���Þ �
" Ï�Ð10 % ü ) ¼ V +-, 
¤�y 2 © k ¬ dñd · q Î e A ²¤ú d · q Î e D ² q yfe43 � �  �5 %(' dñd · q Î e A k�q yfe A ü*) G V +-, 
¤�6.873 � �  �9 Ü x )() ¼ V +-, � G V Þ , �ïÝ ) G V +-, 
¤� zÞ :

J
(5.58)

By (5.56) and (5.58), we can completely express ? ¾ 	 U ¾ ){u ¾  in (5.55). From (5.55) and (5.58),

we can formulate Å ¾ 	 U ¾ ){u ¾  as

Å ¾ 	 U ¾ ){u ¾ n� ? ¾ AB',	 U ¾ ){u ¾  Ò d k U q Î e� ? ¾ AB',	 U ¾ ){u ¾ �� " Ï�Ð $ $ ß d k U q Î e DF' + j A k % ü*) G U V +-, 
¤� � Þ ���Þ �
" Ï�Ð 0 % ü*) G U V +-, 
¤�y 2 © k ¬ dñd k U q Î e A ²¤ú d k U q Î e D ² q yfe 3 � �  �5 %(' dñd k U q Î e A k�q yfe A ü*) G U V +-, 
¤�;.873 � �  �9 Ü x )() G U V +-, � G V Þ , �ïÝ ) G U V +-, 
¤� zÞ :

J
(5.59)

Now we can calculate each term in (5.48) by (5.55) and (5.59). The term
® � o 	 7 ·  ® �¢ related to

the desired signal can be formulated as

® � o 	 7 ·  ® �¢ � y AB'½@ U ¬ o=<<<<<<

��¼ AB'½¾ ¬ o ~ · q ¾ QS T Î½Æ UWV J ¬F' Î½Æ UWV � ¬F' JWJWJ Î½Æ UWV U ¬F' ? ¾ 	 U ¾ ) U ¾  X Z[ <<<<<<

�
) (5.60)

the interference-related
® � o 	 7 ·  ® �¢ is expressed as

® � o 	 7 ·  ® �¢ � y AB'½k U ¬ o y AB'½$ U H!J$ U KH G U <<<<<<

��¼ AB'½¾ ¬ o ~ · q ¾²QS T Î½Æ UWV J ¬F' JWJWJ Î½Æ UWV U ¬F' ? ¾ 	 U ¾ ){u ¾  X Z[ <<<<<<

�
) (5.61)
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and
® ¶�· ® �¢ can be calculated by

® ¶�· ® �¢ � y AB'½k U ¬ o y AB'½@ U ¬ o <<<<<<
��¼ AB'½¾ ¬ o ~ · q ¾RQS T Î½Æ UWV J ¬F' JWJWJ Î½Æ UWV U ��� ¬F' Å ¾ 	 U ¾ ){u ¾  X Z[ <<<<<<

� J
(5.62)

Thus, the average SINR of the proposed method with Q iterations can be explicitly calculated

by (5.55), (5.59), (5.60), (5.61), and (5.62). As for (5.49), we can further express the result by�¿(@ q k in (5.57) as

@BA�CED � � © y AB'k ¬ o 3 � �  >5 % ü*) G V +-, 
¤�?7y  3 � �  $ ÜLÝ ) G V +-, 
¤�Þ +© y AB'k ¬ o © y AB'$ H!J$ KH G 3 � �  >5 %(' d @�A k�q yfe A ü*) G V +-, 
¤�/.87y  3 � �  @9 Ü x ) $ � G V Þ , �ïÝ ) G V +-, 
¤� zÞ : s � � J (5.63)

We also evaluate the SINR for each subcarrier. The SINR for the proposed algorithm withQ iterations in the
U
th subcarrier, denoted as @BA�CED 3 · q @ , is shown to be@BA�CED 3 · q @ � < $BÇ F ·@ q @ �� @�Ç � +< $BÇ © y AB'GIH!JGLKH $ F ·@ q k �� k Ç � + s < $BÇ © y AB'k ¬ o Ò ·@ q k � ú k Ç � +� Ç F ·@ q @ Ç �© y AB'GIH!JGLKH $ Ç F ·@ q k Ç � s�A  BCA  BD © y AB'k ¬ o Ç Ò ·@ q k Ç �� Ç F ·@ q @ Ç �© y AB'GIH!JGLKH $ Ç F ·@ q k Ç � s�� © y AB'k ¬ o Ç Ò ·@ q k Ç � ) (5.64)

where F ·@ q k �g7 ·�	 U ){u  and Ò ·@ q k � ¶�·�	 U ){u  . Here,
7 ·�	 U ){u  and ¶�·�	 U ){u  are defined in (5.50) and

(5.51), respectively. The
U
th subcarrier SINR of the received signal without CFO-compensation,

denoted as @BA�CED 3@ , can be described as@BA�CED 3@ � < $BÇ �¿(@ q @ �� @rÇ � +< $BÇ © y AB'GIH!JGLKH $ �¿(@ q k �� k Ç � + s < $BÇ � ú @rÇ � +� 3 � �  �5 % ü*) $ V +-, 
¤�?7y  3 � �  $ ÜLÝ ) $ V +-, 
¤�Þ +© y AB'GIH!JGLKH $ 3 � �  >5 %(' d @�A k�q yfe A ü*) G V +-, 
¤�/.87y  3 � �  @9 Ü x ) $ � G V Þ , �ïÝ ) G V +-, 
¤� zÞ : s�� J (5.65)
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§ 5.3.5 Simulations

In this subsection, we report simulation results to demonstrate the effectiveness of the proposed

method. We consider an interleaved-OFDMA uplink system with
���#9�:

, ; �!: , and the CP

length
�ÇÐ0�`�<9

. The adopted modulation scheme is 16-QAM or 64-QAM. The length of the

channel response, i , is set to 15 for all users, and the power delay profile of user � is described

with an exponential function, i.e., 9 �Æ q . �+j AB«ÖÕ . � © l AB'@E¬ o j AB«ÖÕ{@ , where n is the tap index, and ?�Æ is

a parameter of the function. For later simulations, we let $'?n'*)�? � )�? � )�? � + � $ 3KJL� ) 3KJc� ) 3KJ R ) 3KJ : +
for each user. Each channel tap is generated according to Rayleigh distribution. Also, we have

found that the performance of the proposed algorithm with  �!� is similar to that with  �5RK� .
Thus, in the following experiments, we will only consider the setting of  �!� .

First, we evaluate the validity of our output SINR analytic results. Two cases are consid-

ered. Case 1 corresponds to the case that the amplitudes of all eigenvalues of
¹ o

are smaller

than one, and in case 2 some eigenvalues’ amplitudes are larger than one. In case 1, CFOs� $ 3KJL� )Wb 3KJc� )Wb 3KJ 3�X ) 3KJc� + and SNR = 30 dB, while in case 2, CFOs = $ 3KJ :�d ) 3KJ :�d ) 3KJL��X ) 3KJ : +
and SNR = 15 dB. Note that most of the CFO values in case 2 are quite large and positive.

Figure 5.1 shows the average SINRs calculated for the proposed method with the approaches

in Subsection 5.3.4. From this figure, we find that the simulated output SINRs are identical to

the results of the exact analysis, which verifies the correctness of the exact analysis. We also

see that in both cases, the average SINR obtained by the approximated analysis is close to that

by the exact analysis, especially when the iteration number gets larger. Just as mentioned in

Subsection 5.3.4, even in the divergent case, the SINR increases for first two iterations. In case

1, the SINR is saturated at the second iteration.

Next, we investigate the effect of input SNR on output SINR. We assume that CFOs are set

to $ 3KJL� )Wb 3KJc� )Wb 3KJ 3�X ) 3KJc� + , and use the result of exact analysis. Figure 5.2 shows the average

SINR for the proposed method. In this figure, we also plot the theoretical average SINR without

CFO compensation using (5.63). From this figure, we can see that the average output SINR is
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improved when the number of iterations increases. For the proposed method with two iterations,

the theoretical average output SINR is almost the same as the input SNR. This result indicates

that the proposed method almost cancels the CFO-induced ICI thoroughly. The theoretical

subcarrier SINR analysis for the proposed method is also shown in Fig. 5.3. Here, the input

SNR is set to 30 dB. From this figure, we can see that different subcarriers have different SINRs

and the SINRs are improved when the number of iterations is increased. When the number

of iterations is two, all subcarriers almost have the same output SINR which is close to the

input SNR (30 dB). We have also tried other scenarios and obtained the similar result. We then

conclude that when amplitudes of CFOs are moderate, a suitable choice for the iteration number

is two.

Now, we present simulation results to evaluate the BER performance of the proposed method.

We consider a 16-QAM modulation scheme and set CFOs to $ 3KJL� )Wb 3KJc� )Wb 3KJ 3�X ) 3KJc� + . Figure

5.4 shows the simulation result. From the figure, it is obvious that the conventional method

and the CLJL method both have a serious error floor phenomenon. This is because when the� th user’s CFO is compensated, other users’ CFOs may be enlarged, magnifying MUI. We can

also see that the CLJL method performs slightly better than the conventional method. Since the

CLJL-PIC method further processes the MUI, it improves the performance of the CLJL method.

The CLJL-PIC method with a 2-stage PIC can perform similarly as that with a 3-stage PIC. The

performance bound, in which no CFOs are added, is also shown in the figure. Even with a 3-

stage PIC, the CLJL-PIC method still cannot approach the performance bound. In higher SNR

regions, the performance loss is larger. With only two iterations, the proposed method performs

as well as the direct ZF method. Also, its performance closely approaches the performance

bound.

We also consider a 64-QAM modulation scheme for the same CFO setting in Fig. 5.4 (CFOs

= $ 3KJL� )Wb 3KJc� )Wb 3KJ 3�X ) 3KJc� + ). Figure 5.5 shows the BER performance comparison. We can see

that the performance of the CLJL-PIC method degrades. This is because in high QAM-size

modulation, the performance of an OFDMA system is more sensitive to the residual MUI. The
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performance of the proposed method can still approach that of the direct ZF method.

We further consider a worse scenario, where the CFO of some user is large. Specifically,

we set CFOs to $ 3KJL� )Wb 3KJ : )Wb 3KJ 3�X ) 3KJc� + and use a 16-QAM modulation scheme. Figure 5.6

shows the BER performance comparison. In addition to the conventional method and the CLJL

method, the CLJL-PIC method (even with a 3-stage PIC) performs poorly. In this case, the

PIC method fails to cancel MUI. This may be due to an error propagation effect inherent in the

PIC scheme. The performance of the proposed method is slightly affected. This performance

loss results from the insufficient iteration number. We have shown the result for the proposed

method with three iterations in the figure. It can be seen that the performance can be further

enhanced at the expense of the increased computational complexity.

To clearly see the impact of the CFO magnitude, we consider a scenario that the fourth

user’s CFO is increased from 0 to 0.5. If the CFO of the fourth user is increased, the MUI from

the fourth user will be increased. The CFOs of other three users are set to
3KJL�

, b 3KJc� , and b 3KJ 3�X ,
respectively. The adopted modulation scheme is 16-QAM and the simulated SNRs are 25 dB

and 35 dB. We simulate the average BER of the first three users. Figure 5.7 shows the simulation

result. From this figure, we can see that the CLJL-PIC method (with e �SR ) is sensitive to the

CFO variation. For SNR = 35 dB, we find that the BER for the CLJL-PIC method begins to

increase when the fourth user’s CFO is 0.1. When the CFO is increased further, its performance

is degraded rapidly. For the proposed method, only little performance loss is observed. If the

iteration number is three, the proposed method almost does not have performance degradation

compared to the direct ZF method. As the results observed above, the proposed method can

have the same performance as the direct ZF method.

Since OFDMA is a multiuser system, the near-far phenomenon may occur. In such a case,

some users may have stronger receive power than others. To realize the impact of the near-far

effect, we report simulations with a scenario that the powers of the first three users are equal

and fixed and that of the fourth user is varied. The power ratio of the fourth user to anyone

of the first three users is defined as the near-far power ratio E ranging from b ��X dB to
��X
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dB. Let CFOs be $ 3KJL� )Wb 3KJc� )Wb 3KJ 3�X ) 3KJc� + and modulation be 16-QAM. Similar to the previous

simulation setting, we calculate the average BER of the first three users. Figure 5.8 shows the

result. From the figure, we find that both the CJLJ-PIC and proposed algorithms are affect by

the near-far problem. However, the CJLJ-PIC is more sensitive in the near-far environment.

We consider an extreme case, in which most CFOs are very large and positive. Here, we

set CFOs to $ 3KJ :�d ) 3KJ :�d ) 3KJL� ) 3KJ : + and use a 16-QAM modulation scheme. In this case, ßêöÔy�÷
is calculated as

3KJ R
�
, which is large. We compare the performance of all methods mentioned

above. For the proposed method, we also try the PC technique. Figure 5.9 shows the simulation

results. In this case, the conventional method, the CLJL method, and the CLJL-PIC method all

have bad performance. Note that the conventional method can even have better performance

than the CLJL-PIC method. The proposed method without PC does not perform well either.

Only does the proposed method with PC perform well. Its performance is almost identical to

that of the direct ZF method. The result shows the effectiveness of the proposed PC method.

We also consider another case that CFOs are not all positive. Specifically, CFOs are set to$fb 3KJL� ) 3KJ R ) 3KJ : )Wb 3KJc� + . Figure 5.10 shows the BER result. We again see that the proposed

method with PC has similar performance with the direct ZF method. These results show that

the PC method can always be applied to improve the performance of the proposed method.

Finally, we present simulation results in an interleaved-OFDMA uplink system with the

large number of subcarriers and more users. Specifically,
� �M��3�:��

, ; �P�<9 , and
�¹ÐÖ�P�����

.

The modulation scheme is 16-QAM. The channel length is set to 127 for all users and let$'?t'*)�? � ) JWJWJ )�? Î + � $ 3 ) 3KJc� ) 3KJ : ) JWJWJ ) R + . CFOs for all users are set to {0.1, -0.2, -0.05, 0.2,

-0.3, 0, -0.1, 0.4, -0.3, 0.05, 0, -0.1, 0.05, -0.1, 0.3, 0.15}. The performances of five methods,

namely, the conventional, CLJL, direct ZF, banded ZF, and proposed methods, are compared in

our simulations. The banded ZF method indicates that it modifies the ICI matrix into a banded

matrix with bandwidth F . Figure 5.11 shows the simulation results. From this figure, we find

that the conventional and CLJL methods both have a serious error floor phenomenon. The

performance of the proposed method with three iterations can approach that of the direct ZF
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method. The complexity of the banded ZF method depends greatly on its matrix bandwidth.

For a fair comparison, we let F be 16 for the banded ZF method. In this case, the complexity of

the banded ZF method and the proposed method ( Q �!R ) are roughly equal. Figure 5.11 shows

that the proposed method performs much better than the banded ZF method ( F ���<9
).

From the above simulations, we can see that the proposed method is more robust to the

large modulation QAM-size and CFOs compared to the CLJL-PIC method. In what follows,

we will compare the computational complexity of the direct ZF method, the CLJL-PIC method,

and the proposed method in an OFDMA system shown above (
���M9�:

, ; �S: ). Substituting

the required parameters into Table 5.1, we then derive the computational complexity of each

method, and show the result in Table 5.2. The number of iterations for the proposed method

is set to two here. Note that the number inside the parenthesis of the forth row indicate the

ratio of the required number of mathematic operations for the proposed algorithm divided by

that of other methods. From the table, we can see that the real multiplications/additions for the

proposed method is 0.286/0.306 times those for the CLJL-PIC method (with a 2-stage PIC), and

is 0.037/0.041 times those for the direct ZF method. The required number of divisions is small

(for three methods) compared with that of multiplications/additions. For example, the proposed

method only needs 8 real divisions.

Table 5.3 shows the computational complexities of the direct ZF, banded ZF, and proposed

algorithms in an OFDMA uplink system with 2048 subcarriers and 16 users. In this table, the

two numbers inside each set of parentheses (in the forth row) are the ratios of the number of

operations (indicated by each column) required for the proposed method to those of the direct

ZF and banded ZF methods, respectively. From this table, we can see that the real multipli-

cations/additions/divisions required for the proposed method are 0.000271/0.000282/0.000008

times those for the direct ZF method. It is apparent that the proposed method requires a much

lower complexity. Although the banded ZF method can have low complexity, its performance

is not satisfactory. At a similar complexity, the proposed method outperforms the banded ZF

method.
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From the results shown above, we can have following conclusions. Compared to the CLJL-

PIC method, the proposed method not only performs better, but also requires lower computa-

tional complexity. Compared to the direct ZF method, the proposed method has similar perfor-

mance, but requires much lower computational complexity.
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Figure 5.1: Theoretical average SINR for the proposed method, exact and approximated (Case

1: CFOs = $ 3KJL� )Wb 3KJc� )Wb 3KJ 3�X ) 3KJc� + and SNR = 30 dB; Case 2: CFOs = $ 3KJ :�d ) 3KJ :�d ) 3KJL��X ) 3KJ : +
and SNR = 15 dB).
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Figure 5.2: Theoretical average SINR for the proposed method (exact).
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Table 5.2: Complexity comparison among direct ZF method, CLJL-PIC method, and proposed

method when
���49�:

and ; �4: .
Methods Real multipli-

cations

Real divisions Real additions

Direct ZF 373056 4160 368352

CLJL-PIC (e �5� ) 48128 0 49536

Proposed (  ���
,Q �!� ) 13776 (0.037,

0.286)

8 (0.002, -) 15160 (0.041,

0.306)

Table 5.3: Complexity comparison of the direct ZF method, the banded ZF method, and the

proposed method when
���5��3�:��

and ; ���<9 .
Methods Real multiplications Real divisions Real additions

Direct ZF 11474937856 4196352 11469003776

Banded ZF

( F ���<9
)

3275760 69360 3532168

Proposed

(  � �
,Q �4R )

3109184 (0.000271,

0.949150)

32 (0.000008,

0.000461)

3236064 (0.000282,

0.916170)
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Figure 5.3: Theoretical subcarrier SINR for the proposed method (exact; SNR = 30 dB).
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Figure 5.4: BER performance comparison for conventional, CLJL, CLJL-PIC, proposed, and

direct ZF methods (16-QAM modulation, and CFOs = $ 3KJL� )Wb 3KJc� )Wb 3KJ 3�X ) 3KJc� + ).
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Figure 5.5: BER performance comparison for conventional, CLJL, CLJL-PIC, proposed, and

direct ZF methods (64-QAM modulation, and CFOs = $ 3KJL� )Wb 3KJc� )Wb 3KJ 3�X ) 3KJc� + ).
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Figure 5.6: BER performance comparison for conventional, CLJL, CLJL-PIC, proposed, and

direct ZF methods (16-QAM modulation, and CFOs = $ 3KJL� )Wb 3KJ : )Wb 3KJ 3�X ) 3KJc� + ).
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Figure 5.8: BER performance comparison for CLJL-PIC (e �!R ), proposed ( Q �G� ), and direct
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124



0 5 10 15 20 25 30 35
10−4

10−3

10−2

10−1

100

SNR (dB)

B
E

R

Without CFO
Direct ZF
Conventional
CLJL
CLJL−PIC (p=3)
Proposed with PC (S=2, k=2)
Proposed (S=2, k=2)

Figure 5.9: BER performance comparison for the proposed method with and without PC (16-

QAM modulation, and CFOs = $ 3KJ :�d ) 3KJ :�d ) 3KJL� ) 3KJ : + ).
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Figure 5.10: BER performance comparison for the proposed method with PC (16-QAM modu-

lation and CFOs = $fb 3KJL� ) 3KJ R ) 3KJ : )Wb 3KJc� + ).
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Figure 5.11: BER performance comparison for the conventional, CLJL, banded ZF, and direct

ZF and proposed methods (16-QAM modulation, and CFOs = {0.1, -0.2, -0.05, 0.2, -0.3, 0,

-0.1, 0.4, -0.3, 0.05, 0, -0.1, 0.05, -0.1, 0.3, 0.15}).

126



Chapter 6

Conclusions

In this dissertation, we investigate ICI mitigation methods in high-mobility SISO/MIMO-OFDM(A)

and CFO-presented OFDMA uplink systems. Conventional ZF and MMSE methods require the

inversion of a large ICI matrix, and the computational complexity is usually very high. This pre-

cludes the real-world application of the ICI mitigation methods. This is the motivation of our

development of low-complexity ZF and MMSE algorithms. The main idea is to explore the spe-

cial structure inherent in the ICI matrix resulting from mobility or CFO and to apply Newton’s

iteration for matrix inversion. Using our formulation, we can use FFTs/IFFTs in the iteration ,

and this can reduce the computational complexity dramatically. Note that the FFT/IFFT mod-

ule is embedded in OFDM/OFDMA transceiver, and the required circuitries to implement the

proposed algorithms are limited. We also analyze the convergence behavior of the proposed

methods and derive theoretical output SINRs for some scenarios. Simulations show that the

performances of the proposed ZF and MMSE methods are almost as good as those of the direct

ZF and MMSE methods. In concluding the dissertation, we suggest some possible topics for

further research.

1. In the dissertation, we only consider the ZF and MMSE methods for ICI mitigation. As

described in Chapter 5, other nonlinear methods can be combined with the proposed

methods to obtain further performance improvement. For example, we can use the pro-
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posed ZF or MMSE method to obtain initial estimates of the desired data, and apply SIC

for further processing. Note that in the scenario, we will have two iterative processes.

How to allocate the iteration numbers to obtain the optimum results will be the main

issue.

2. For MIMO-OFDM systems, we only consider the application of spatial multiplexing. As

we know, an important class of the MIMO technology is the space-time coding. The as-

sumption for the application of an orthogonal space-time code is that the channel response

must be static during the transmission of a codeword. However, in high-mobility MIMO-

OFDM environments, this assumption no longer holds. As a result, the orthogonality is

destroyed, and the performance is degraded. The proposed ZF and MMSE methods can

then be used to solve the problem.

3. Except for OFDMA, there exist other more efficient methods for multiple access. For

example, for MIMO systems we can conduct the ZF method in the transmitter side (other

than the receiver side) to cancel the MUI. This is usually referred to as the multiuser

downlink technology. The proposed low-complexity methods may find applications in

the area.

4. In this dissertation, we do not consider channel coding. In real-world applications, chan-

nel coding is an essential operation conducted in the transmitter side. If we treat the ICI

as the result of an inner code, and the channel encoder as an outer code, we can then

apply turbo equalization at the receiver. Turbo equalization involves an iteration between

equalization and decoding. The equalization can be realized with the MMSE method.

Note that the input of the MMSE method includes priori signal information. How to

extend the proposed low-complexity ZF and MMSE methods to include the priori infor-

mation will be the main issue. Note that we have two iterative processes, and how to

allocate the iteration number will be another issue.
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