
A
t
t
c
c
a
v
r
r
p
m
a
v
a
r
f
v
c
c
t
b
b
s
q
e

1
S
t
t
s
r
t
m
e
p

a
o
e
A
i

P
2
2

1

Journal of Electronic Imaging 18(3), 033008 (Jul–Sep 2009)

J

Downloaded Fro
User-friendly sharing of images: progressive approach
based on modulus operations

Kun-Yuan Chao
Ja-Chen Lin

National Chiao Tung University
Department of Computer and Information Science

1001 Ta Hsueh Road
Hsinchu, Taiwan, 300

E-mail: kychao@cis.nctu.edu.tw
bstract. Image sharing is a popular technology to secure impor-
ant images against damage. The technology decomposes and
ransforms an important image to produce several other images
alled shadows or shares. To decode, the shared important image
an be reconstructed by combining the collected shadows, as long
s the number of collected shadows reaches a specified threshold
alue. A few sharing methods produce user-friendly (i.e., visually
ecognizable) shadows—in other words, each shadow looks like a
eplica of reduced visual quality of a given image, rather than com-
letely meaningless random noise. This facilitates visual manage-
ent of shadows. (For example, if there are 100 important images
nd each creates 2 to 17 shadows of its own, then it is easy to
isually recognize that a stored shadow is from, say, a House im-
ge, rather than from the other 99 images.) In addition to visually
ecognizable shadows, progressive decoding is also a convenient
eature: it provides the decoding meeting a convenient manner to
iew a moderately sensitive image. Recently, Fang combined both
onveniences of visually recognizable shadows and progressive de-
oding [W. P. Fang, Pattern Recogn., 41, 1410–1414 (2008)]. But
hat method was memory expensive because its shadows were too
ig. In order to save memory space, we propose a novel method
ased on modulus operations. It still keeps both conveniences, but
hadows are two to four times smaller than Fang’s, and the visual
uality of each shadow can be controlled by using a simple
xpression. © 2009 SPIE and IS&T. �DOI: 10.1117/1.3206950�

Introduction
haring can be utilized to secure an image for storage and

ransmission. Usually, a sharing method shares an impor-
ant image among several extremely noisy images called
hadows or shares. By combining these shadows, one can
econstruct the image later. Several works have extended
his fundamental concept.1,2. Examples include reduction of
emory cost for shadows,3 fast decoding and small pixel

xpansion rate,4 and extension of binary visual cryptogra-
hy �VC� to grayscale images.5

Some other extensions are “application-oriented,” such
s user-friendly shadows6,7 for easier management of shad-
ws, and progressive decoding7,8 of an image that is mod-
rately sensitive but needs to be processed frequently.
mong these methods, Thien and Lin6 first introduced the

dea of using user-friendly �visually recognizable� shadows,
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Jin et al.8 developed a progressive technique for grayscale/
color images with three types of decryptions to enable re-
covery in varying qualities, and Fang7 utilized user-friendly
shadows and progressive decoding simultaneously.

From the viewpoint of shadow management, to classify
or locate a shadow, attaching a name tag to each shadow in
advance is needed if each shadow looks like random noise.
�Most reported methods have this kinds of shadows.� An-
other method is to use visually identifiable shadows. These
are also called user-friendly shadows �first mentioned in
Ref. 6 and then in Ref. 7�, because their visually identifi-
able features �each shadow looks like a visual-quality-
reduced version of a given image� make the job of manag-
ing shadows easier for the database manager.

Although Thien and Lin6 first introduced the idea of
using user friendly �visually recognizable� shadows, their
method is not progressive, and the reconstruction by all
shadows is not lossless. These two weaknesses will be
avoided by our method. So far, only Fang’s method7 �which
is lossless when all shadows are collected� simultaneously
provides two application-convenient features: user-friendly
shadows and progressive decoding. Unfortunately, its shad-
ows are four times larger than the input image and thus are
not economic in memory. To improve this, we propose here
a novel progressive and user-friendly approach based on
modulus operations. Better than Fang’s method,7 our
method possesses extra advantages: nonexpansion of the
shadow size and controllable quality of shadow images.
Meanwhile, like Fang’s method, our method has lossless
recovery, when all n shadows are used, and the decoding
complexity is O�k� for the reconstruction using k shadows
�k�n�.

The remaining portion of this paper is organized as fol-
lows. Section 2 briefly describes Fang’s user-friendly pro-
gressive sharing method.7 Section 3 presents the proposed
method. Experimental results and some comparisons are
shown in Sec. 4. Last, conclusions are given in Sec. 5.

2 Brief Review of Fang’s Method
This section reviews briefly Fang’s progressive and user-
friendly method.7

Sharing phase. See the flowchart in Fig. 1 for Fang’s
sharing phase:
Jul–Sep 2009/Vol. 18(3)1
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Step 1. According to the two leftmost columns in Table
1, expand every pixel O�x ,y� of the input binary image
O to a 2�2 block at the corresponding position of the
expanded image O�. �If O�x ,y� is white, then the corre-
sponding 2�2 block is randomly selected from the six
possibilities listed in the lower part of column O�.�
Step 2. For each 2�2 block of the expanded image O�,
by checking the pixel value at the corresponding posi-
tion of a given stego-image T, Fang randomly selected
one of the corresponding patterns listed in the rightmost
column of Table 1 to create the 2�2 sharing block at
the corresponding position of the first shadow S1. Simi-
lar arguments created each of the remaining n−1
shadows.

ecovering phase. Assume that k shadows are collected.
hen, each pixel j of the black-or-white image is recon-
tructed using the k sharing pixels at the same position j of
he k shadows. The reconstruction rule is an OR-like opera-
ion: The reconstructed pixel is black iff at least one of the

sharing pixels is black.
Fang’s method has two disadvantages: �1� The size of

ach shadow Si is four times larger than the input image O;
nd �2� the image quality �such as peak signal-to-noise ratio
PSNR�� of shadows is not easy to control. We will im-
rove these aspects.

Proposed Method
his section presents our user-friendly progressive sharing
ethod based on modulus operations. The method gener-

tes n user-friendly shadows whose image quality �such as
SNR� is lower than the input image’s quality; later, the

nput image can be reconstructed with progressively im-
roved image quality after gathering k �2�k�n� shadows.
he description of the method is divided into three subsec-

ions. First, a fundamental �n ,n� sharing version based on
odulus operations is introduced in Sec. 3.1. This simple

ersion is neither user-friendly nor progressive. Then, the
undamental version is extended in Sec. 3.2 to an interme-
iate version with friendly shadows, although the interme-
iate version is still nonprogressive. Last, Sec. 3.3 presents

Fig. 1 The sharing flowchart of Fang’s method.
ournal of Electronic Imaging 033008-
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the final version by extending the intermediate �user-
friendly� version further to include both progressive decod-
ing and user-friendly features. A comparison between our
progressive and user-friendly method �Sec. 3.3� and Fang’s
�Sec. 2� is given in Sec. 3.4.1, while a stego version of our
method is given in Sec 3.4.2.

3.1 An �n ,n� Fundamental Sharing Version Based
on Modulus Operations

This section illustrates a fundamental �n ,n� sharing version
for grayscale images based on modulus operations. This
version splits a grayscale image A among n extremely
noisy shadows B1 ,B2 , . . . ,Bn whose sizes are all the same
as A. The n noisy shadows together can reconstruct each
pixel of A by using one modulus operation and n−1 addi-
tion. �In this paper, � and Mod denote addition and modu-
lus operations, respectively.� The sharing and recovering
phases of the fundamental version are listed in the follow-
ing.
Sharing phase.

Step 1. Input a grayscale secret image A.
Step 2. Generate n−1 random images B1 ,B2 , . . . ,Bn−1 as
shadows. Each is as large as A.
Step 3. Create the n’th shadow Bn by

Bn = �A + �256 − ��B1 + B2 + . . . + Bn−1�Mod 256���Mod 256.

�1�

Step 4. Output the n noisy �nonfriendly� shadows
B1 ,B2 , . . . ,Bn.

Recovering phase. Retrieve A using the formula

A = �B1 + B2 + . . . + Bn�Mod 256. �2�

Notably, both � and Mod are pixel-by-pixel operations.
This sharing scheme can also work for binary or color im-
ages by using 2�=21� and 16777216�=224�, respectively, to
replace the constant 256 in the two preceding formulas. An
experiment using the grayscale image Lena as image A is
shown in Fig. 2, with �n ,n�= �4,4�.

3.2 A User-Friendly but Nonprogressive �n ,n�
Version

This section describes how to extend the �n ,n� fundamental
version in Sec. 3.1 to an intermediate version whose n
shadows are all user-friendly. What we do is to use a
smaller value m to replace the value 256 in the modulus
operations in Sec. 3.1.
Sharing phase.

Step 1. Input an integer parameter m �2�m�256� and
an 8-bit grayscale image A. Generate a smaller range
image

A� = �A�Mod m, �3�

whose size is identical to A, but with pixel value less
than m �rather than 256�.
Jul–Sep 2009/Vol. 18(3)2
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Step 2. Generate n−1 “random” images B1� , . . . ,Bn−1�
whose sizes are all as large as A, but each pixel is a
random value chosen from �0,1 , . . . , �m−1��. Then cre-
ate

Bn� = �A� + �m − ��B1� + B2� + . . . + Bn−1� �Mod m���Mod m,

�4�

which implies that �B1�+B2�+ . . .+Bn��Mod m=A�.
Step 3. Output the n friendly shadows �B1 , . . . ,Bn� de-
fined by

Bi = �A − A�� + Bi� for i = 1, . . . ,n . �5�

ecovering phase. Retrieve A by

= �Bi − �Bi�Mod m� + ��B1 + B2 + . . . + Bn�Mod m� . �6�

n Eq. �6�, it does not matter which one of B1 ,B2 , . . . ,Bn is
sed as Bi; the result is the same. Also, if m=256 is used in
qs. �3�–�6�, then this intermediate version is identical to

he �n ,n� sharing one in Sec. 3.1.

Table 1 Fang’s selectio

Secret pixel
O�x ,y�

Expanded secret
O�

Co
T

Ba �B,B,B,B�

W �B,B,W,W�b

�B,W,B,W�

�B,W,W,B�

�W,B,B,W�

�W,B,W,B�

�W,W,B,B�

Note: �See Fig. 1 for definitions of O, O�, and T
aB represents a black pixel; W represents a wh
bEach 2�2 block in the expanded image O� �o
right-top pixel, left-bottom pixel, right-bottom pix
ournal of Electronic Imaging 033008-
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3.3 The User-Friendly and Progressive Version

The intermediate version �Sec 3.2� is still nonprogressive,
although user-friendly. Section 3.3 extends the intermediate

aring patterns �Ref. 7�.

el Possible choices for the related 2�2
block of a share Si�1� i�n�

�B,B,W,W�,�B,W,B,W�, �B,W,W,B�,
�W,B,B,W�, �W,B,W,B�, �W,W,B,B�

�W,W,W,W�,�B,W,W,W�,�W,B,W,W�,

�W,W,B,W�, �W,W,W,B�

�B,B,W,W�

�W,W,W,W�, �B,W,W,W�, �W,B,W,W�

�B,W,B,W�

�W,W,W,W�, �B,W,W,W�, �W,W,B,W�

�B,W,W,B�

�W,W,W,W�, �B,W,W,W�, �W,W,W,B�

�W,B,B,W�

�W,W,W,W�, �W,B,W,W�, �W,W,B,W�

�W,B,W,B�

�W,W,W,W�, �W,B,W,W�, �W,W,W,B�

�W,W,B,B�

�W,W,W,W�, �W,W,B,W�, �W,W,W,B�

l.
ch shadow Si� is represented as �left-top pixel,

Fig. 2 An example of the �n ,n� fundamental sharing version intro-
duced in Sec 3.1. Here, �n ,n�= �4,4�; �a� is the given grayscale
image Lena A; �b� to �e� are the four generated “nonfriendly” shad-
ows B1, B2, B3, B4; and �f� is the recovered error-free Lena using the
formula A= �B1+B2+B3+B4�Mod 256.
n of sh

ver pix
�x ,y�

B

W

B

W

B

W

B

W

B

W

B

W

B

W

�.
ite pixe
r in ea
el�.
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ersion to a progressive one. Because it is an extension of
ec. 3.2, the modulus-base notation m �2�m�256� is still
sed in this section.
haring phase.

Step 1. Input an integer parameter m �2�m�256� and
an 8-bit grayscale secret image A. �A can also be one of
the three 8-bit color-components of a 24-bit color im-
age.�
Step 2. In a pixel-by-pixel manner, generate a smaller-
range image

A� = �A�Mod m, �7�

whose size is identical to A, but pixel value is at most
m−1, rather than 255.
Step 3. Generate n−1 random images R1 ,R2 , . . . ,Rn−1.
�Each image Ri is as large as A, and each pixel of Ri is
8-bit.�
Step 4. Create n images B1� ,B2� , . . . ,Bn� in a pixel-by-
pixel manner:

If A�=0, then B1�=0; else B1�= �R1�Mod�A�+1�. Anyway,
define A1�=A�−B1�.

If A1�=0, then B2�=0; else B2�= �R2�Mod�A1�+1�. Anyway,
define A2�=A1�−B2�.

…
If An−2� =0, then Bn−1� =0; else Bn−1� = �Rn−1�Mod�An−2� +1�.

Anyway, define An−1� =An−2� −Bn−1� . Last, let Bn�=An−1� .
Here, B1�= �R1�Mod�A�+1� means that B1��t�

= �R1�t��Mod�A��t�+1� at pixel t. Then, after creating B1��t�,
we create A1��t� by the formula A1��t�=A��t�−B1��t�. The
explanation for the remaining operations in step 4 is the
same. Also, as t changes, for random effect, we ran-
domly switch the order of assigning these values to
�B1��t� ,B2��t� , . . . ,Bn��t��. For example, when t=0, assign
the computed values to B1��t� ,B2��t� , . . . ,Bn��t� as earlier,
respectively; then, when t=1, assign the computed val-
ues to Bn��t� ,Bn−1� �t� , . . . ,B1��t�, respectively; then, when
t=2, . . .. Here, we may use a random number generator
to create the permutation order for this.
Step 5. Output n final shadows B1 ,B2 , . . . ,Bn defined by

Bi = �A − A�� + Bi� for i = 1, . . . ,n . �8�

ecovering phase. After gathering any k�2�k�n�
hadows

i�1�,Bi�2�, . . . ,Bi�k� �1 � i�j� � n for 1 � j � k� ,

hich are a subset of the n shadows �B1 ,B2 , . . . ,Bn�, re-
rieve A using the formula

= �Bi�j� − �Bi�j��Mod m� + ��Bi�1� + Bi�2� + . . . + Bi�k��Mod m� .

�9�

ere, Bi�j� can be any one of Bi�1� ,Bi�2� , . . . ,Bi�k�.
Lemma 1. In Eq. �9�, any one of Bi�1� ,Bi�2� , . . . ,Bi�k� can

e used as Bi�j�.
Proof. Equation �8� implies that
ournal of Electronic Imaging 033008-
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Bi − Bi� = A − A� for all i = 1, . . . ,n , �10�

so we have �Bi�j�−Bi�j�� �Mod m= �A−A��Mod m for all 1
� i�j��n for 1� j�k. However, �A−A��Mod m=0 because
A�= �A�Mod m by Eq. �7�. Hence, �Bi�j�−Bi�j�� �Mod m=0. So

�Bi�j��Mod m = �Bi�j�� �Mod m = Bi�j�� , �11�

where the last identity is due to the fact that Bi�j�� � �A�
+1� by step 4 earlier, and the range of A� is �0, . . . ,m−1�
by Eq. �7�. We may thus say that

Bi�j� − �Bi�j��Mod m = Bi�j� − Bi�j�� = A − A� �here, 1 � i�j�

� n for 1 � j � k� . �12�

End of proof
Lemma 2. In step 4 of the preceding sharing phase,

A� = B1� + B2� + . . . + Bn−1� + Bn�. �13�

Proof. Because A1�=A�−B1�, we have A�=B1�+A1�.
Because A2�=A1�−B2�, we have A�=B1�+A1�=B1�+B2�+A2�.
Because A3�=A2�−B3�, we have A�=B1�+B2�+B3�+A3�.
…
Because An−1� =An−2� −Bn−1� , we have A�=B1�+B2�+ . . .

+Bn−1� +An−1� .
Last, because Bn�=An−1� , we have A�=B1�+B2�+ . . .+Bn−1�

+Bn�.
End of proof

Lemma 3. When all n shadows are received—i.e., when
k=n—then A can be recovered losslessly by Eq. �9�. In
other words,

A = �Bi − �Bi�Mod m� + ��B1 + B2 + . . . + Bn�Mod m� . �14�

�Again, it does not matter which one of �B1 ,B2 , . . . ,Bn� is
used as Bi.�

Proof. Here, we show why the recovery image Ã be-
comes the original image A when k=n. Since k=n, Eqs.
�9�, �12�, and �13� imply that

Ã = �Bi�j� − �Bi�j��Mod m� + ��Bi�1� + Bi�2� + . . . + Bi�n��Mod m� ,

=�Bi − �Bi�Mod m� + ��B1 + B2 + . . . + Bn�Mod m� ,

=�A − A�� + ��B1�Mod m + �B2�Mod m + . . .

+ �Bn�Mod m�Mod m,

=�A − A�� + �B1� + B2� + . . . + Bn��Mod m,

=�A − A�� + �A�� ,

=A .

End of proof
Jul–Sep 2009/Vol. 18(3)4
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Step 4 implies that each pixel of B1� ,B2� , . . . ,Bn� is non-
egative because each pixel is created by a modulus func-
ion. Moreover, in step 4, the pixel values of A� are distrib-
ted randomly among B1� ,B2� , . . . ,Bn�, and Eq. �13� reads

1� + B2� + . . . + Bn−1� + Bn� = A�,

n whichall pixel values are nonnegative. So to estimate the
mage quality �PSNR� of shadows B1 ,B2 , . . . ,Bn, we may
tart from the rough estimation

i� �
A�

n
. �15�

ow, the root-mean-square error �RMSE� for each Bi �1
i�n�, as compared with the input image A, is defined as

MSE�Bi� =�	
all t

�A�t� − Bi�t��2

Count�t�

1/2

. �16�

ere, A�t� is a pixel value in A, and Bi�t� is in Bi. By Eq.
8�, RMSE�Bi� is evaluated as

	
all t

�A�t� − �A�t� − A��t� + Bi��t���
2

Count�t�
�1/2

,

hich can be reduced as

	
all t

�A��t� � �n − 1�
n

�2

Count�t�
�

1/2

y Eq. �15�. Because �n−1� /n is a given constant due to the
nown value of n, the preceding rough estimation of
MSE�Bi� can be rewritten as

	
all t

A��t�2

Count�t�
�1/2

�
�n − 1�

n
.

lthough the actual value of

Table 2 The PSNR of shadows when n

m’s value
PSNR�Bi�
in Eq. �19�

PSNR in
Lena’s

shadows s

m=256 7.26 7.37

m=128 13.31 13.41

m=64 19.40 19.02

m=32 25.56 25.45

m=16 31.87 31.21
ournal of Electronic Imaging 033008-
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�	
all t

A��t�2

Count�t�
�1/2

depends on the histogram of the image A�, we may roughly
estimate

�	
all t

A��t�2

Count�t�
�1/2

as

���
0

m−1

t2dt�/�m − 1��1/2

= �m − 1�/1.73, �17�

which is the probabilistic average value considering the fact
that A��t�� �0,1 , . . . , �m−1��. Therefore, we have

RMSE�Bi� �
�m − 1� � �n − 1�

1.73 � n
. �18�

Then, we can get the rough estimation

PSNR�Bi� = 10 � log10
2552

�RMSE�Bi��2 � 10

� log10
2552

� �m − 1� � �n − 1�
1.73 � n

�2 . �19�

Some experimental results of PSNR�Bi� are shown in Table
2, which uses the five images in Fig. 2�a� and Fig. 3. From

adows were generated for each image.

s
s

PSNR in
Monkey’s
shadows

PSNR in
Pepper’s
shadows

PSNR in
Boat’s

shadows

7.16 7.45 7.34

13.12 13.09 13.50

18.46 18.75 19.89

25.36 25.46 25.85

31.15 31.11 31.97

Fig. 3 The other four images �Jet, Monkey, Pepper, Boat� used in
Table 2.
=4 sh

PSNR
in Jet’
hadow

7.40

13.74

20.09

25.13

31.21
Jul–Sep 2009/Vol. 18(3)5
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his table, we can see that the experimental value of PSNR
s close to the estimation given by Eq. �19�.

In our experiments, for the same value k, all recon-
tructed images have similar PSNR values. For example, in
ach of the three experimental results of Figs. 4–6, the four
mages respectively reconstructed by shadows �B1 ,B2 ,B3�
or by �B1 ,B2 ,B4�, or by �B1 ,B3 ,B4�, or by �B2 ,B3 ,B4�� all
ave very similar PSNR values. Likewise, the six images
econstructed by any two shadows of �B1 ,B2 ,B3 ,B4� also
ave similar PSNR values. In the recovering phase, when
ore shadows are gathered �k becomes larger�, the recon-

tructed image then has higher image quality. In particular,
hen all n shadows are gathered, then k=n, and the recon-

tructed image A is error-free due to Lemma 3. In summary,
he proposed version has a progressive decoding feature,
nd it uses only one subtraction, two modulus operations,
nd k additions to reconstruct a gray value from pixels of k
vailable shadows.

The �, �, and Mod in this section are all byte-by-byte
perations among gray values. Hence, if the input image is

ig. 4 An example of the �n=4� case using m=256 in the non-stego
ersion �Sec. 3.3�. Here, �a� to �d� are the final shadows B1, B2, B3,
4 �RMSE=109.13 and PSNR=7.37 for �a� to �d���; �e� to �g� are the

ecovered Lena images �RMSE=80.22 and PSNR=10.04 for �e�;
MSE=49.75 and PSNR=14.20 for �f�; lossless for �g�� using �re-
pectively� any two, any three, and all four final shadows.

ig. 5 An example of the �n=4� case using m=64 in the non-stego
ersion �Sec. 3.3�. Here, �a� to �d� are the final shadows B1, B2, B3,
4 �RMSE=28.54 and PSNR=19.02 for �a� to �d��; �e� to �g� are the

ecovered Lena images �RMSE=21.07 and PSNR=21.66 for �e�;
MSE=13.10 and PSNR=25.79 for �f�; lossless for �g�� using �re-
pectively� any two, any three, and all four final shadows.
ournal of Electronic Imaging 033008-
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color �24 bits per pixel�, then A must be first decomposed
into three components �AR, AG, and AB� of 8 bits each.
Then the preceding sharing process is implemented for
each component to generate n shadows. Then, for each in-
dex i=1, . . . ,n, the three corresponding shadows Bi

R, Bi
G,

and Bi
B are combined to get final shadow Bi.

3.4 Comparison with Fang’s Method and a Stego
Version of Our Method

3.4.1 Comparison with Fang’s method
Comparing to Fang’s method7 reviewed in Sec. 2, which is
also user-friendly and progressive, our method in Sec. 3.3
has two more advantages:

• The size of each of our shadows in B1 ,B2 , . . . ,Bn is
the same as A �not expanded�.

• Our shadows’ image quality PSNR�Bi� can be roughly
controlled by the base parameter m of modulus opera-
tions �2�m�256 is an integer�. Just estimate m by

m �
441 � n

�10PSNR�Bi�/10�1/2 � �n − 1�
+ 1. �20�

Equation �20� is derived from Eq. �19�, an estimation
tool whose validity is checked in Table 2.

3.4.2 Stego version of our method
In Fang’s method,7 each shadow is hidden using a cover
image T �also known as a host image� so that all shadows
�called stego-shadows� look like T. Our method in Sec. 3.3
can also be modified to have a stego version by using
stego-shadows smaller in size than Fang’s. Our stego ver-
sion is as follows.
Sharing phase.

Step 1. Input an integer parameter m �2�m�64 in
stego version, but 16�m�64 is suggested to avoid
large per�; input an 8-bit grayscale cover image T whose
size �w�h� is also the size of the 8-bit grayscale secret
image A.

Fig. 6 An example of the �n=4� case using m=16 in the non-stego
version �Sec. 3.3�. Here, �a� to �d� are the final shadows B1, B2, B3,
B4 �RMSE=7.01 and PSNR=31.21 for �a� to �d��; �e� to �g� are the
recovered Lena images �RMSE=5.21 and PSNR=33.79 for �e�;
RMSE=3.28 and PSNR=37.81 for �f�; lossless for �g�� using �re-
spectively� any two, any three, and all four final shadows.
Jul–Sep 2009/Vol. 18(3)6
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Step 2. Let sz=8 / �log2 m�. Use pixels duplication to ex-
pand T to a larger image T� whose size is

��sz � w� � ��sz � h� . �21�

Step 3. Generate n−1 random images R1 ,R2 , . . . ,Rn−1
�Each image Ri is as large as A, and each pixel of Ri is
8-bit.�
Step 4. Create n images B1� ,B2� , . . . ,Bn� according to step
4 of the sharing phase in Sec. 3.3, except that here we
use A to replace the role of A� in all formulas there.
Step 5. Use a random key r to create an order to permute
all pixels in B1�. Each of the remaining n−1 images
B2� , . . . ,Bn� is also permuted using the random key r.
Then use Shamir’s �2,n��-threshold sharing method1 to
share the key r among n created numbers r1 ,r2 , . . . ,rn.
Then, store ri in Bi� for each i=1, . . . ,n.
Step 6. Treat each grayscale image Bi� �1� i�n� as a bit
stream �i.e., a very big binary integer�, then partition
each Bi� to ��sz�w�� ��sz�h� smaller range numbers
Bi��t� �Here, 0�Bi��t��m and 0� t� �sz�w�h�.�
Then hide each number Bi��t� in T��t� to get a pixel value
Bi�t� by the formula

Bi�t� = round�T��t� − Bi��t�
m

� � m + Bi��t� , �22�

where the round operator rounds its argument to the

ig. 7 An example of the �n=4� case using m=32 in the stego
ersion �Sec. 3.4.2�. Here, �a� to �d� are the final stego-shadows B1,
2, B3, and B4; �e� to �g� are the progressively recovered Lena im-
ges using, respectively, “any” two, “any” three, and all four final
hadows. PSNR=26.66 for �a� to �d�; PSNR=10.04 for �e�; PSNR
14.21 for �f�; and �g� is lossless.
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nearest integer. Add �subtract� m to �from� the result of
Eq. �22� if Bi�t��0 or �255.
Step 7. Output n stego-shadows B1 ,B2 , . . . ,Bn whose
sizes are all identical to T�.

Recovering phase.

Step 1. After gathering any k �2�k�n� shadows
�Bi�1� ,Bi�2� , . . . ,Bi�k��� �B1 ,B2 , . . . ,Bn�, where 1� i�j�
�n for each j=1, . . . ,k, retrieve all �sz�w�h� smaller
range numbers Bi�j�� �t� in each stego-image Bi�j� by the
dehiding formula:

Bi�j�� �t� = �Bi�j��t��Mod m for t = 0, . . . ,�sz � w � h� − 1.

�23�

Step 2. Combine the �sz�w�h� smaller range numbers
Bi�j�� �t� to retrieve each Bi�j�� as an 8-bit grayscale image
of w�h pixels.
Step 3. Recover the random key r by inverse sharing.
Then use the key r to restore the original pixels’ order in
image Bi�1�� ,Bi�2�� , . . . ,Bi�k�� .
Step 4. Last, retrieve A in pixel-by-pixel manner by the
formula

Fig. 8 Comparing the stego-shadows in two stego methods for the
�n=4� case. The hidden image is Lena �Fig. 2�a��, and the host
image is Jet �Fig. 3�a��. Here, �a� is one of the four stego-shadows
with PSNR=26.66 dB in our stego version �when m=32�; �b� is one
of the four stego-shadows with PSNR=31.26 dB in our stego ver-
sion �when m=16�; �c� is one of the four stego-shadows with
PSNR=10.02 in Fang’s method �Sec. 2�. Note that our stego size is
only 1.6 times �in �a�� or 2 times �in �b�� larger than the original Jet
image’s size, whereas Fang’s stego size is 4 times larger than origi-
nal Jet.
Jul–Sep 2009/Vol. 18(3)7
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Ã = Bi�1�� + Bi�2�� + . . . + Bi�k�� . �24�

In our preceding stego version, the final stego-shadows

1 ,B2 , . . . ,Bn are sz=8 / �log2 m� times larger than the input
ecret image A. So the pixel expansion rate is per
8 / �log2 m��8 /4=2 if we set the parameter m�16. An
xample using m=32 is shown in Fig. 7, where the Jet
mages are stego-shadows utilized to cover �and progres-
ively recover� the important image Lena. In this example
m=32�, our stego version’s pixel expansion rate is per
8 /5=1.6, better than Fang’s per=4 �shown in Fig. 8�c��.
oreover, our shadows’ image quality is also better than

ang’s. For example, as shown in Figs. 7�a�–7�d� or Fig.
�a�, our Jet shadows have image quality of PSNR
26.66 dB. �PSNR would be 31.26 dB, as shown in Fig.
�b�, if we used m=16 to get the shadows whose size are
ll two times larger than the original Jet image.� On the
ontrary, after implementing Fang’s method in each bit-
lane of the same grayscale important image A �Lena� and
he same cover image T �Jet�, each of Fang’s n=4

Table 3 Comparisons with report

Methods
Computational

complexitya

Wang and Su �Ref. 3� O�log2 k� �math
operations�d

Wang et al. �Ref. 4� k−1 �XOR operatio

Lin and Tsai �Ref. 5� O�k�per� �OR-lik
operations�

Thien and Lin �Ref. 6�
�visually

recognizable
shadows�

O�log2 k� �math
operations�

Fang �Ref. 7�
�visually

recognizable
shadows and
progressive�

4� �k−1� �OR-like
operations�

Jin et al. �Ref. 8�
�progressive�

4� �k−1� �XOR
operations�

Section 3.3
�visually

recognizable
shadows and
progressive�

k additions; 2 Mod
operations; 1 subtrac

Our stego version,
Sec. 3.4.2
�visually

recognizable
shadows and
progressive�

�k−1� additions; 2 M
operations; 1 attachin
a short binary numbe
the other to get an 8

number

aOperations needed to recover one secret pixe
bThe pixel expansion rate �per� of each shadow
cThe secret image recovered by all shadows.
dMath operations: �,�,�,�.
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quadruple-size stego-shadows has PSNR=10.02 dB only
�see Fig. 8�c��. Our stego version is still progressive in
decoding, lossless when all n shadows are collected, and
has small decoding complexity O�k� when k of the n shad-
ows are used in decoding.

4 Experimental Results and Some Comparisons

4.1 Experimental Results
In the proposed method in Sec. 3.3, the input image A is the
grayscale image Lena in Fig. 2�a�. Figure 4 shows the ex-
perimental result for the �n=4� case when m=256. The
image A can be roughly seen in any of the four generated
user-friendly shadows shown in Figs. 4�a�–4�d�. In Figs.
4�e�–4�g�, when more shadows are available in retrieval,
the recovered image has better quality.

Other experiments using m=64 and m=16 for �n=4�
case are shown in Figs. 5 and 6, respectively. The shadows
in Fig. 6 have higher PSNR than those in Figs. 4 and 5 due
to the use of a smaller m value. This is according to Eq.
�19�, where we have

ge sharing methods �Refs. 3–8�.

Memory sizeb

for each shadow
Recovered

qualityc

per��1/k��60%
��1/n��60%

Lossless

per=1 Lossless

per�2 Lossless

per�1/k�1/n Lena’s PSNR=37.98
Jet’s PSNR=39.93

Monkey’s PSNR=35.33

per=4 Lossless

per=4 Lossless

per=1 Lossless

1.33�per=
8/ �log2 m��2

when 64�m�16

Lossless

hadows in �k, n� system.
mpared to the input secret image.
ed ima

ns�

e

tion

od
g of
r to
-bit

l by k s
as co
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PSNR�Bi� � 10 � log10
�441 � n�2

��m − 1� � �n − 1��2 = 10

� log10
�441 � 4�2

��m − 1� � 3�2 because n = 4.

Notably, when m=256, 64, and 16, respectively, the
PSNR�Bi� values estimated by Eq. �19� are 7.26 db,
9.40 dB, and 31.87 dB. These are all very close to the
ctual PSNR values of the shadows �7.37 dB, 19.02 dB,
nd 31.21 dB, respectively� shown in Figs. 4–6.

.2 Comparisons
ur method provides at least two convenient features: it is
ser-friendly and progressive. We can compare our method
ith other image-sharing researches.3–8 Table 3 compares

n three aspects: computational complexity to reconstruct a
ixel; memory space of a shadow �represented by pixel
xpansion rate �per�, as compared to the size of input im-
ge�; and image quality of the image recovered by all n
hadows. Table 3 shows that in our method: �1� each pixel
an be reconstructed by k shadows using about k opera-
ions; �2� the size of each shadow is not expanded �per
1� for the nonstego version; and �3� the recovery by all n

hadows is lossless. Although our per or computational
omplexity is in the middle rank rather than the best, note
hat in Table 3, only Refs. 6 and 7 and ours are user-
riendly �provide visually recognizable shadows�. In these
hree user-friendly approaches, Ref. 7 is four times ex-
anded in shadow size, whereas Ref. 6 is neither progres-
ive nor lossless in recovery. As for Refs. 3–5, they are
either progressive nor user-friendly.

To compare with Fang’s further, we provide the stego
ersion in Sec 3.4.2, in which the pixel expansion rate �per�
s 1.33� per=8 / �log2 m��2 when 64�m�16. For ex-
mple, per=1.6 when m=32. These per values are still bet-
er than Fang’s per=4. �Hence, regardless of whether the
tego version is used, our per is better than Fang’s.� More-
ver, our stego-shadow’s image quality is also better than
ang’s. �See Fig. 8; our Jet stego-shadows are with PSNR
26.66 dB for m=32 and 31.26 dB for m=16, both better

han Fang’s 10.02 dB.�

Conclusion
n this paper, based on modulus operations, we successfully
esigned a novel image sharing method with user- friendly
hadows and progressive decoding. According to the ex-
erimental results and comparisons in Sec. 4, in addition to
eing user-friendly, and progressive, each pixel is recon-
tructed by k shadows quickly with about k operations, and
he recovery is lossless after collecting all n shadows. The
ournal of Electronic Imaging 033008-
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proposed method also provides following features: the non-
stego-shadows’ image quality can be controlled by the pa-
rameter value m using Eq. �20�; each shadow is not ex-
panded in the non-stego version �Sec. 3.3� and is only
1.33� per=8 / �log2 m��1.6 times larger than the original
secret image if we restrict 64�m�32 in the stego version
�Sec. 3.4.2�; and the stego-shadows have quality much bet-
ter than Fang’s shadows �Fig. 8�.
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