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摘要 

 

正交分頻多工是可在無線通道下達高速資料傳輸的有效技術，應用多輸入

多輸出技術於正交分頻多工系統被視為下一代無線通訊提升系統效能的熱門方

式。於本論文中，吾人研究正交分頻多工系統中通道估計與資料檢測技術，研

究主題包括多輸入多輸出通道之領航訊號設計、慢速時變通道之通道估計與追

蹤以及快速時變通道之資料檢測。 

本論文可分為四部分，第一部分提出以互補碼領航訊號為基礎之空時區塊

碼-正交分頻多工系統。於此系統，一組預先定義順序之互補碼與資料訊號同時

傳送，做為兩根天線傳送分集系統之領航訊號，使用於接收機端估計通道以達

最佳資料檢測。吾人設計完整接收機架構，分析理論系統效能，同時利用電腦

模擬來驗證系統於行動無線電衰退通道下之效能。 

於論文第二部分中，吾人由牛頓法推導於空時區塊碼-正交分頻多工系統中

以決策迴饋離散傅立葉轉換為基礎之通道估計方法，藉由導證過程，證明牛頓

法與以決策迴饋離散傅立葉轉換為基礎方法之間的等效。吾人亦使用電腦模擬

驗證位元錯誤率及正規化方差效能來展現兩方法之間的等效，此結論於傳統正

交分頻多工系統亦成立。 
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於論文第三部分中，吾人研究於行動無線通道下正交分頻多工系統採用空

時區塊碼之通道估計，根據典型以離散傅立葉轉換為基礎之通道估計方法，提

出一涵蓋兩階段處理方法。於初始階段，吾人使用多重路徑干擾消除技術估得

多重路徑延遲與複數增益，於追縱階段，吾人發展一種改善的以決策迴饋離散

傅立葉轉換為基礎之通道估計方法，此方法應用少量相嵌於正交分頻多工資料

符元之領航載波，在第一次迭代時，形成最佳梯度向量來減緩錯誤蔓延效應，

並且利用近似的權重矩陣以降低反矩陣計算複雜度。吾人經由電腦模擬兩發射

天線一接收天線之空時區塊碼-正交分頻多工系統以驗證所提出的方法，結果顯

示所提出方法不僅優於典型以離散傅立葉轉換為基礎之方法，亦優於以空時區

塊碼為基礎之最小均方差方法及卡爾曼濾波方法。模擬結果亦證明所提出方法

可達成顯著的訊號雜訊比效能改善，尤其在使用高階調變方式（例如：十六點

正交振幅調變）於高車速環境下。 

於本論文最後部分中，吾人憑藉最大期望值演算法，來處理時變多路徑通

道對於正交分頻多工系統以及位元交錯調變碼-正交分頻多工系統所造成的載波

間干擾問題。吾人首先在頻域上分析載波間干擾以便使用減少的參數集，根據

此分析，導證最大期望值演算法用於最大似然資料檢測。吾人又針對正交分頻

多工系統提出最大似然-最大期望值接收機及位元交錯調變碼-正交分頻多工系

統提出渦輪-最大期望值接收機，其主要概念在於將所提出之最大期望值演算法

與群式載波間干擾消除方法結合，用以減少計算複雜度及獲得時間分集益處。

不同於最大似然-最大期望值接收機，渦輪-最大期望值接收機藉由渦輪原理，

進一步利用軟輸出維特比演算法與最大後驗之最大期望值檢測器交換訊息。電

腦模擬證實所提出之二個接收機顯然勝於傳統一階等化器，且渦輪-最大期望值

接收機的效能在正規化最大都卜勒頻率為 0.1 時，能逼近匹配濾波器界限。 
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Abstract

Orthogonal frequency division multiplexing (OFDM) is an effective tech-

nique for high data rate transmission over wireless channels. Employing

multiple-input multiple-output (MIMO) techniques in OFDM systems is

viewed as a popular way to improve system performance for the next gener-

ation wireless communications. In this dissertation, we investigate channel

estimation and data detection techniques for OFDM systems, covering the

research topics of pilot signal designs for MIMO channels, channel estima-

tion and tracking for slowly time-varying channels, and data detection for

fast time-varying channels.

This dissertation is divided into four parts. The first part presents a com-

plementary codes (CC) pilot-based space-time block code (STBC)-OFDM

system. In this system, a pair of complementary codes transmitted in a pre-

defined order with the OFDM data signals is used as the pilot signals in a

iii



two-antenna transmit diversity system, and used to estimate the channels for

optimal data detection at the receiver side. A complete receiver architecture

has been designed, the theoretical system performance has been analyzed,

and computer simulations have been used to verify the performance of the

system in mobile radio fading channels.

In the second part, we derive the decision-feedback (DF) discrete Fourier

transform (DFT)-based channel estimation method from Newton’s method

for STBC-OFDM systems. Through our derivation, the equivalence between

Newton’s method and the DF DFT-based method is established. Computer

simulations are also used to demonstrate the equivalence of the two methods

in terms of bit error rate (BER) and normalized square error (NSE) perfor-

mance. Finally, the results presented in this part also hold for conventional

OFDM systems.

In the third part, we investigate channel estimation for OFDM systems

with STBC in mobile wireless channels. Our proposed method consists of

two-stage processing and is developed on the basis of the classical DFT-

based channel estimation method. In the initialization stage, we employ a

multipath interference cancellation (MPIC) technique to estimate multipath

delays and multipath complex gains. In the tracking stage, we develop a

refined DF DFT-based channel estimation method in which a few pilot tones

inserted in OFDM data symbols are applied to form an optimal gradient vec-

tor at the first iteration such that the error propagation effect is mitigated. In

order to reduce computational complexity, an approximate weighting matrix

is adopted to avoid matrix inversion. We demonstrate the proposed method

iv



through computer simulation of an STBC-OFDM system with two transmit

antennas and a single receive antenna. The results show that our method out-

performs the classical DFT-based method, the STBC-based minimum mean

square error (MMSE) method, and the Kalman filtering method as well, and

that significant signal-to-noise ratio (SNR) performance improvement can be

achieved, especially when a high-level modulation scheme, e.g. 16-quadrature

amplitude modulation (QAM), is adopted in low-mobility environments.

In the final part, we resort to the expectation-maximization (EM) al-

gorithm to tackle the inter-carrier interference (ICI) problem, caused by

time-variant multipath channels, for both the OFDM systems and the bit-

interleaved coded modulation (BICM)-OFDM systems. We first analyze the

ICI in frequency domain with a reduced set of parameters, and following

this analysis, we derive an EM algorithm for maximum likelihood (ML)

data detection. An ML-EM receiver for OFDM systems and a TURBO-EM

receiver for BICM-OFDM systems are then developed to reduce computa-

tional complexity and to exploit temporal diversity, the main idea of which

is to integrate the proposed EM algorithm with a groupwise ICI cancellation

method. Compared with the ML-EM receiver, the TURBO-EM receiver fur-

ther employs a soft-output Viterbi algorithm (SOVA) decoder to exchange

information with a maximum a posteriori (MAP) EM detector through the

turbo principle. Computer simulation demonstrates that the two proposed

receivers clearly outperform the conventional one-tap equalizer, and the per-

formance of the TURBO-EM receiver is close to the matched-filter bound

even at a normalized maximum Doppler frequency up to 0.1.
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Chapter 1

Introduction

The second-generation (2G) wireless systems were introduced in the early

1990s, and considered as the prominent evolution of cellular systems in

telecommunication. Because 2G systems feature the implementation of digi-

tal technology, they offer better voice quality and elementary data service, as

compared with analog communication provided in the first-generation (1G)

radio systems. Today, the European digital cellular system, referred to as

Global System for Mobile Communications (GSM), is undoubtedly the most

successful 2G systems in the world, and still dominates the cellular service

market with over 250 million subscribes in about 120 countries. With the in-

creasing demands for multimedia-level data rates in mobile communication,

the third-generation (3G) systems, based on wideband code division multiple

access (WCDMA) radio technology, are now being progressively deployed on

a large scale all over the world. The 3G systems upgrade the existing 2G

network to provide data rates up to 144kb/s for high-mobility environments,

284kb/s for low-mobility environments and 2Mb/s for stationary environ-
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ments, and they also aim to greatly expand cell coverage. A comprehensive

introduction of air interface evolution for cellular communication systems can

be referred to [1] for details. A desire for high data rate transmission moti-

vates the development of the fourth-generation (4G) systems. In order to get

richer multimedia services in the future, the 4G systems attempt to provide

a peak data rate up to a level of 100Mb/s for wide area coverage with high

mobility and 1Gb/s for local area coverage with low mobility. As data rate

increases, the effect of time dispersion in wireless channels becomes much

more significant and will cause more severe inter-symbol interference (ISI).

As a result, a relatively complicate time-domain equalizer in single-carrier

(SC) systems, such as GSM, is needed, which will raise the cost of imple-

mentation. In 3G systems, although a rake receiver can be used to combat

dispersive fading by resolving and combining the multipath, the receiver is

not suitable over a broadband channel due to the appearance of excessive

multipath interference. On the other hand, orthogonal frequency division

multiplexing (OFDM) is an attractive choice to meet the requirement for

high-data-rate transmission in future 4G systems due to its inherent ability

to compensate for multipath fading [2]. OFDM was originally proposed in

the 1970s, and it is a special form of multicarrier modulation (MC) scheme

in which a large number of narrowband and orthogonal subcarriers are used

to transmit data symbols in parallel through the use of inexpensive inverse

fast Fourier transfom (IFFT) and fast Fourier transform (FFT). As a conse-

quence, it converts a frequency selective fading channel into several flat fad-

ing channels, and allows for a simpler one-tap equalizer at the receiver side.
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Besides, the flexibility of OFDM enables the use of frequency-domain adap-

tation and multi-antenna solutions. Based on all these advantages, OFDM

has been chosen as a potential air interface candidate for two popular 4G

cellular systems [3–5]:

• Worldwide Interoperability for Microwave Access (WiMAX) systems in

IEEE 802.16 standard.

• Long-Term Evolution (LTE) of 3G systems in Third Generation Part-

nership Project (3GPP).

The capacity of wireless communication can be substantially boosted if a

communication system employs multiple antennas at the transmitter and

receiver, also known as multiple-input multiple-output (MIMO) system. It

is proved in [6] that, the capacity of MIMO systems is linearly increased

with the minimum number of transmit and receive antennas in a flat fading

channel. In order to improve cell coverage and data rate, various MIMO tech-

nologies should be supported as a well-integrated part of 4G systems, rather

than just an add-on to the specifications [7,8]. Since OFDM is well suited for

MIMO processing, the combination of MIMO and OFDM is a nature choice

for wideband transmission to obtain diversity gains or multiplexing gains

in the spatial dimension. With this popularity, MIMO-OFDM technology

has been adopted in several standards, and it is the most attractive air in-

terface for high performance 4G broadband wireless communications [9, 10].

The primary goal of this dissertation is to deal with channel estimation and

data detection for OFDM systems, and detailed descriptions of problem and

motivation are given in the next section.
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1.1 Problem and Motivation

Figure 1.1 shows a transmitter of basic OFDM systems with NT transmit

antennas. The information bits are first encoded by a channel encoder and

fed into an interleaver in order to achieve good coding gains as well as di-

versity gains. Afterwards, the coded bit stream is mapped onto constellation

points, e.g. quadratic phase shift keying (QPSK) or quadrature amplitude

modulation (QAM), using a signal mapper, and then processed by an MIMO

encoder. The MIMO encoder transforms a symbol stream into NT parallel

substreams, and it can be implemented in a number of different ways, de-

pending on application requirements. Herein, we focus on two key schemes:

space-time coding (STC) and spatial multiplexing (SM). More details on

these two schemes can be found in [11]. In the STC scheme, the same symbol

stream is encoded into different substreams across multiple transmit anten-

nas to achieve spatial diversity gains. Of particular interest is Alamouti’s

space-time block code (STBC) in two transmit-antenna systems [12]. On

the other hand, the SM scheme aims at increasing data rate by spatially

multiplexing a symbol stream into independent substreams across transmit

antennas. After the MIMO processing, these substreams are simultaneously

transmitted using the corresponding antennas through the same process of

OFDM transmission. As illustrated in Figure 1.1(b), in an OFDM modula-

tor at the ith transmit antenna, a symbol substream
{
X(i) [k]

}
is first passed

through a serial-to-parallel (S/P) converter, and modulated by an inverse

fast Fourier transform (IFFT) to produce time domain samples
{
x(i) [n]

}
.

Then, in order to avoid the ISI caused by multipath channels, a guard inter-
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Figure 1.1: Transmitter of basic OFDM systems.

5



val (GI) x(i) [n], for n = −1, . . . ,−G, with length longer than delay spread, is

attached at the beginning of these samples through a parallel-to-serial (P/S)

converter to generate an OFDM symbol. Although a silent GI can be used

to take care of ISI, inter-carrier interference (ICI) remains a critical issue due

to the loss of orthogonality among subcarriers. If a cyclic prefix (CP) is used

for the GI, ICI can also be avoided. In this regard, the CP is more widely

adopted in current standards, and an OFDM symbol transmitted from the

ith antenna is given by

x(i) [n] =
1

N

N−1∑

k=0

X(i) [k] e 2πkn
N (1.1)

for n = −G, . . . , N − 1. The impulse response of wireless channels between

the ith transmit antenna and the jth receive antenna can be expressed as

h(j,i) [n, τ ] =
L−1∑

l=0

h(j,i) [l, n] δ [τ − l] (1.2)

where h(j,i) [l, n] is complex gain of the lth path, associated with path delay

l, and L is the number of propagation paths. Note that h(j,i) [l, n] changes

with time index n when Doppler spread exists.

The receiver of basic OFDM systems with NR receive antennas is shown in

Figure 1.2. The received signal at the jth receive antenna can be represented

as

r(j) [n] =

NT∑
i=1

L−1∑

l=0

h(j,i) [l, n] x(i) [((n− l))N ] + z(j) [n] (1.3)

where ((·))N represents modulo N operation and z(j) [n] is complex additive

white Gaussian noise (AWGN) at the jth antenna. At the receiver side, after

S/P conversion, GI removal and FFT operation, the received signal of each
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antenna arm is transformed into frequency domain as follows:

R(j) [k] =
N−1∑
n=0

r(j) [n] e− 2πkn
N (1.4)

for k = 0, . . . , N−1. By substituting (1.1) and (1.3) into (1.4), we can obtain

R(j) [k] =

NT∑
i=1

L−1∑

l=0

N−1∑
m=0

X(i) [m] α(j,i) [k, m, l] e− 2πml
N + Z(j) [k] (1.5)

where Z(j) [k] and α(j,i) [k,m, l] can be evaluated by

Z(j) [k] =
N−1∑
n=0

z(j) [n] e− 2πkn
N (1.6)

α(j,i) [k, m, l] =
1

N

N−1∑
n=0

h(j,i) [l, n] e−
2πn((k−m))N

N (1.7)

We then define

H(j,i) [k, m] =
L−1∑

l=0

α(j,i) [k,m, l] e− 2πml
N (1.8)

and rewrite (1.5) as follows:

R(j) [k] = H(j,q) [k, k] X(q) [k]︸ ︷︷ ︸
desired term

+

NT∑

i=1,i6=q

H(j,i) [k, k] X(i) [k]

︸ ︷︷ ︸
IAI term

+

NT∑
i=1

N−1∑

m=0,m6=k

H(j,i) [k, m] X(i) [m]

︸ ︷︷ ︸
ICI term

+ Z(j) [k]︸ ︷︷ ︸
noise term

(1.9)
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It is observed from (1.9) that for detecting the qth transmitted signal X(q) [k],

the demodulated signal R(j) [k] suffers from not only noise but also inter-

carrier interference (ICI) as well as inter-antenna interference (IAI). Essen-

tially, the ICI arises from Doppler spread, while the IAI is due to multiple

antennas transmission, and these two unwanted signals will severely degrade

the performance of a mobile OFDM receiver. When wireless channels are

quasi-static, i.e. channel gains are time-invariant, (1.7) and (1.8) become as

α(j,i) [k, m, l] =





h(j,i) [l] , for k = m

0, for k 6= m
(1.10)

H(j,i) [k, m] =





L−1∑
l=0

h(j,i) [l] e− 2πml
N , for k = m

0, for k 6= m

(1.11)

where h(j,i) [l, n] is a constant value of h(j,i) [l], for n = 0, . . . , N − 1. Then,

(1.9) is reduced to

R(j) [k] = H(j,q) [k, k] X(q) [k]︸ ︷︷ ︸
desired term

+

NT∑

i=1,i6=q

H(j,i) [k, k] X(i) [k]

︸ ︷︷ ︸
IAI term

+ Z(j) [k]︸ ︷︷ ︸
noise term

(1.12)

Moreover, the extension of (1.9) and (1.12) to single-input single-output

(SISO)-OFDM systems is also straightforward by setting NT = 1 and NR =

1. As expected, there is no IAI problem in this special case.

There are several challenges in attempts to design an OFDM system.

As depicted in Figure 1.2, the success of implementing a receiver hinges on

9



several basic issues, consisting of synchronization, channel estimation, data

detection, and channel decoding, etc. In this dissertation, we will focus on

channel estimation and data detection problem. From the aforementioned

discussion, the knowledge of channel state information (CSI) is required for

coherent data detection in (1.9) and (1.12). Hence, it is crucial to have accu-

rate estimates of CSI, which is in general difficult to achieve over fast fading

channels and MIMO channels. In fast fading channels, a more sophisticated

receiver is needed to track rapid channel variation; otherwise, performance

deterioration may occur. In MIMO channels, the intent to identify multi-

ple channel parameters at each receiver antenna makes channel estimation

more challenging. In addition to channel estimation, it is also necessary to

investigate data detection for efficiently dealing with ICI and IAI. These ob-

servations motivate us to investigate channel estimation and data detection

for OFDM systems.

1.2 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we use

complementary codes (CC) to design pilot signals with minimum peak-to-

average power ratio (PAPR) for channel estimation in MIMO systems. Then,

we present a CC pilot-based STBC-OFDM system which transmits CC pilot

signals together with OFDM data signals in time domain without sacrificing

bandwidth efficiency. A complete receiver architecture for channel estimation

and data detection is proposed and analyzed. Chapter 3 introduces a classical

decision-feedback (DF) discrete Fourier transform (DFT)-based channel es-

10



timation method for STBC-OFDM systems. We then prove the equivalence

between the DF DFT-based method and the Newton’s method, and establish

their relationship. In Chapter 4, we propose a two-stage channel estimation

method for STBC-OFDM systems. In the initialization stage, a multipath

interference cancellation (MPIC)-based decorrelation method is employed to

identify significant channel taps. Through the equivalence discussed in Chap-

ter 3, we develop a refined DF DFT-based channel estimation method in

the tracking stage to improve bit error rate (BER) performance. Chapter

5 presents two expectation-maximization (EM)-based iterative receivers to

mitigate ICI, introduced by Doppler effect, for both OFDM systems and bit-

interleaved coded modulation (BICM)-OFDM systems. We derive an EM

algorithm for maximum likelihood (ML) data detection. Towards the goal

of reducing computational complexity, we then develop an ML-EM receiver

for OFDM systems and a TURBO-EM receiver for BICM-OFDM systems.

Chapter 6 draws some conclusions.
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Chapter 2

A Complementary Codes

Pilot-Based Transmit Diversity

Technique for OFDM Systems

2.1 Literature Survey and Motivation

In a recent paper, STBC [12, 13] has been suggested to improve the per-

formance of an OFDM system [14]. Garg studied the degradation in the

performance of the STC with imperfect channel estimation [15]. In general,

channel estimation is an important issue in realizing a successful STBC-

OFDM system. We all know that channel estimation can be performed at

a receiver by inserting pilot signals into transmitted signals. There are sev-

eral factors which have to be considered for the practical use of pilot signals

in multiple transmit antenna systems. First, pilot signals should be sent in

the same frequency band and at the same time with data signals to ensure

the accuracy of channel estimation. Second, multiple CSIs must be derived

12



from the received signal in a system with multiple transmit antennas. To

estimate multiple channels, antennas at the transmitter side can alternately

transmit a single pilot signal or simultaneously transmit different pilot signals

which have impulse-like auto-correlation and zero cross-correlation proper-

ties [16–19]. Third, the length of pilot signals should not be too short in order

to achieve accurate channel estimation. In some special cases, pilot signals

take the length of 2P , where P is an integer, to meet with the requirement of

fast signal processing algorithms. Finally, the values of pilot signals need to

be taken from some predetermined signal sets such as {1,−1, ,−} to main-

tain constant amplitude and avoid the non-linear effect of an amplifier. The

design of optimal pilot signals is an open problem [16–23]. Computer simu-

lations are used in [16–19] to exhaustively search the pilot signals which are

able to achieve MMSE channel estimation. [20] proposed a channel estimator

based on the correlation of channel frequency response at adjacent frequen-

cies. However, a large size of matrix inverse is required in this scheme. [21–23]

extended the work in [20] to reduce the complexity of channel estimation.

Besides, some channel estimation methods based on superimposed training

sequences are proposed for SISO-OFDM systems [24–26]. At the expense

of reducing power efficiency, these methods can not only significantly save

bandwidth but also effectively track time-variant channels. Recently, chan-

nel estimation using superimposed training for MIMO-OFDM systems has

been investigated [27, 28]. The PAPR of the OFDM signals with superim-

posed training is analyzed in [29], and it is demonstrated that the constant

magnitude pilot sequences result in the best BER performance due to their

13



ability to lower the PAPER of the transmitted OFDM signal.

In this chapter, we suggest that CC can be used as pilot signals and

transmitted in time domain for the purpose of channel estimation in a two

transmit antenna system. The CC pilot signals satisfy the requirements of

pilot signals we mentioned above, and at the same time, have the minimum

PAPR. We will describe the functional block diagrams and simulate the per-

formance of an STBC-OFDM system with CC pilot signals. The rest of this

chpater is organized as follows. In Section 2.2, we will describe the CC pilot

signals for a two transmit antenna system. In Section 2.3, We will introduce

the transmitter architecture of a CC pilot-based STBC-OFDM system. The

details of the receiver operation such as data detection, channel estimation,

etc., are described in Section 2.4. The performance of the CC pilot-based

STBC-OFDM system is then analyzed in Section 2.5. In Section 2.6, we

show our computer simulation and performance evaluation results. Finally,

concluding remarks are drawn in Section 2.7.

2.2 CC Pilot Signals for Two Transmit An-

tenna Systems

Binary CC was originally conceived by Golay for infrared multi-slit spec-

trometry applications [30, 31]. More recently, these codes were also used in

OFDM systems to reduce PAPR [32]. For details, please refer to Appendix

A. We can define CC as follows. Let us consider a pair of equally long se-

quences {α [n]} and {β [n]}, for n = 0, . . . , N − 1, where N is the length of

the two sequences. These sequences are called CC if their auto-correlations

14



satisfy the relationship:

Γ [n] ≡
N−1∑
m=0

{α [m] α∗ [((m− n))N ]

+ β [m] β∗ [((m− n))N ]}

= 2N · δ [n]

=





2N, for n = 0

0 , for n 6= 0
(2.1)

where (·)∗ denotes the complex conjugate operation, ((·))N denotes the mod-

ulo N operation, and δ[n] is the Kronecker delta function.

The pilot signals of a two transmit antenna system can be constructed

from a pair of CC. For simplicity, we assume that CC sequences {α [n]}
and {β [n]} are normalized such that their combined auto-correlation value

Γ [n] = δ [n] as shown in (2.1). Consider a system with two transmit anten-

nas and one receive antenna. Two signals {α [n]} and {−β [n]} are simulta-

neously transmitted from the two transmit antennas over two independent

frequency selective fading channels in the first time slot; the other two signals

{β∗ [((−n))N ]} and {α∗ [((−n))N ]} are then simultaneously transmitted over

the same two channels in the second time slot. Furthermore, a CP is added

before each transmitted pilot signal to avoid ISI and to preserve the circular

convolution between the pilot signal and the channel impulse response in the

time domain. Here, we assume that the two channels are quasi-static over

the two transmission time slots. Hence, the received pilot signals in the fre-

quency domain in the first and second time slot, RT1 [k] and RT2 [k], can be

15



expressed as

RT1 [k]

RT2 [k]


 =


Pα [k]−Pβ [k]

P ∗
β [k] P ∗

α [k]





H1 [k]

H2 [k]


 + Z [k]

= P [k]


H1 [k]

H2 [k]


 + Z [k] (2.2)

for k = 0, . . . , N − 1, where H1 [k] and H2 [k] are the channel frequency

responses from the two transmit antennas to the receive antenna, Pα [k] and

Pβ [k] are the N -point DFT of the CC sequences {α [n]} and {β [n]}, P [k]

is called a pilot matrix which is a unitary matrix, and Z [k] is an AWGN

vector with zero mean and covariance matrix σ2
nI2, where IK is a K × K

identity matrix. The received pilot signals are then multiplied by a matrix

PH [k], where (·)H denotes the complex conjugate transpose operation, to

obtain estimated CSIs in the frequency domain

Ĥ1 [k]

Ĥ2 [k]


 = PH [k]


RT1 [k]

RT2 [k]




=


H1 [k]

H2 [k]


 + PH [k]Z [k] (2.3)

for k = 0, . . . , N − 1. As a result, the mean square error (MSE) of channel

estimation is given by

MSE = E

[∣∣∣Ĥj [k]−Hj [k]
∣∣∣
2
]

= σ2
n, for j = 1, 2 (2.4)

Generally speaking, the pilot matrix can be any unitary matrix which

satisfies the power constraint of |Pα [k]|2 + |Pβ [k]|2 = 1 for all k. For ex-
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ample, |Pα [k]|2 = |Pβ [k]|2 = 1/2 for all k also satisfies the unitary matrix

requirement. However, the CC pilot signals used in this dissertation have

the minimum PAPR (= 0dB) in time domain, thus improve radio frequency

power amplifier efficiency. In the case of |Pα [k]|2 = |Pβ [k]|2 = 1/2 for all k,

the PAPR is 10logN(dB). Moreover, we can easily extend the design of the

pilot matrix to four transmit antenna systems by using a 2×2 unitary matrix

as follows:

P4 [k] =
1√
2


 P [k] P [k]

−P [k]P [k]


 (2.5)

2.3 CC Pilot-Based STBC-OFDM Systems:

Transmitter Architecture

The transmitter block diagram of a CC pilot-based STBC-OFDM system is

shown in Figure 2.1. The block diagram shows two transmit antennas. The

transmitted signal from each antenna consists of a data signal and a pilot

signal. Now we describe the generation of the data signals. At the output

of the signal mapper, the ith block of 2N data symbols d(i) [k] are separated

into two data sub-blocks and represented as

X
(i)
F [k] = d(i) [k] (2.6)

and

X
(i)
S [k] = d(i) [N + k] (2.7)
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for k = 0, . . . , N − 1, where N denotes number of subcarriers in an OFDM

symbol, X
(i)
F [k] and X

(i)
S [k] are the kth data symbol of the first and sec-

ond data sub-block, respectively. Here, we use Alamouti’s STBC encoding

method [12] to encode the two data sub-blocks, X
(i)
F [k] and X

(i)
S [k], in the

sequence as described in [14]. An N -point inverse discrete Fourier transform

(IDFT) unit is used in each arm of Figure 2.1 to transform the frequency

domain data symbols into a time domain data signal. Afterward, we add

the CC pilot signal as described in Section 2.2 to the time domain data sig-

nal. Both the data signal and the pilot signal are assumed to be of the same

length and they are added synchronously to become an effective OFDM sym-

bol with symbol duration T . The cyclic extension with time duration Tg of

an effective OFDM symbol is then inserted as a GI to combat the ISI effect.

Finally, a complete OFDM symbol with symbol duration Ts is converted into

an analog signal with a digital-to-analog converter, filtered by a low-pass fil-

ter, up converted to radio frequency band, and transmitted in air with a

pre-selected antenna, where we set Ts = T + Tg.

2.4 CC Pilot-Based STBC-OFDM Systems:

Receiver Architecture

The receiver block diagram of the CC pilot-based STBC-OFDM system is

shown in Figure 2.2. This receiver architecture consists mainly of a fine data

detection functional block and a channel estimation functional block, along

with other common blocks. After a radio frequency signal is received from an

antenna, it is down converted to the equivalent baseband, low-pass filtered,
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Figure 2.1: Transmitter architecture of CC pilot-based STBC-OFDM sys-
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Figure 2.2: Receiver architecture of CC pilot-based STBC-OFDM systems.
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and digitized. We assume that timing and carrier frequency synchronization

are perfect and the length of the channel impulse response is not longer than

the length of the GI. The channels are assumed to be quasi-static during

any two successive OFDM symbols duration. The frequency response of

the propagation channel between the first transmit antenna and the receive

antenna is denoted by H
(i)
1 [k], and the other one is denoted by H

(i)
2 [k], where

index i is used to indicate the corresponding (2i) th and (2i + 1) th OFDM

symbol duration. Hence, after the GI removal, S/P conversion and N -point

DFT computation, the successively received signals Y
(i)
e [k] and Y

(i)
o [k] on

the kth subcarrier in the (2i) th and (2i + 1) th OFDM symbol duration can

be represented as

Y (i)
e [k] = H

(i)
1 [k]

(
X

(i)
F [k] + Pα [k]

)

+H
(i)
2 [k]

(
X

(i)
S [k]− Pβ [k]

)
+ Z(i)

e [k] (2.8)

and

Y (i)
o [k] = H

(i)
1 [k]

(
−X

(i)∗

S [k] + P ∗
β [k]

)

+H
(i)
2 [k]

(
X

(i)∗

F [k] + P ∗
α [k]

)
+ Z(i)

o [k] (2.9)

for k = 0, . . . , N − 1, where Z
(i)
e [k] and Z

(i)
o [k] are the AWGN in the (2i) th

and (2i + 1) th OFDM symbol duration, respectively. The noise is modeled

as an independent complex Gaussian random variable with zero-mean and

variance σ2
n.
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Figure 2.3: Fine data detection functional block.

2.4.1 Fine Data Detection

Figure 2.3 shows the details of the fine data detection functional block which

include a pilot cancellation unit, a combiner unit and an ML decoder unit.

We assume that the estimated CSIs are accurate, i.e. Ĥ
(i)
1 [k] = H

(i)
1 [k];

Ĥ
(i)
2 [k] = H

(i)
2 [k], and the pilot interference signals can thus be reconstructed

and be completely subtracted from the received signals Y
(i)
e [k] and Y

(i)
o [k].

The output of the pilot signal cancellation unit can be expressed as

Ȳ (i)
e [k] = H

(i)
1 [k] X

(i)
F [k] + H

(i)
2 [k] X

(i)
S [k] + Z(i)

e [k] (2.10)

and

Ȳ (i)
o [k] = −H

(i)
1 [k] X

(i)∗

S [k] + H
(i)
2 [k] X

(i)∗

F [k] + Z(i)
o [k] (2.11)

for k = 0, . . . , N −1. We then use the combiner unit to combine the received

signals from different transmit antennas according to the method revealed

in [14]. Finally, in the ML decoder unit, the ML decision rule can be used to

detect the transmitted data symbol on each subchannel [12].
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Figure 2.4: Channel estimation functional block.

2.4.2 Channel Estimation

Figure 2.4 depicts the detailed structure of the channel estimation functional

block. First, we use a coarse data detection unit to obtain coarsely estimated

data symbols X̂
(i)
FC [k] and X̂

(i)
SC [k] by using the estimated CSIs in the previ-

ous two OFDM symbols, i.e., the (2i− 2) th and (2i− 1) th OFDM symbol.

The structure of the coarse data detection unit is similar to the fine data

detection functional block as shown in Figure 2.3. The data interference sig-

nals are then reconstructed and subtracted from the received signals Y
(i)
e [k]

and Y
(i)
o [k] in a data interference cancellation unit. We assume that the data

interference signals can be cancelled perfectly and the refined signals can be

represented as

^

Y
(i)

e [k] = H
(i)
1 [k] Pα [k]−H

(i)
2 [k] Pβ [k] + Z(i)

e [k] (2.12)

and

^

Y
(i)

o [k] = H
(i)
1 [k] P ∗

β [k] + H
(i)
2 [k] P ∗

α [k] + Z(i)
o [k] (2.13)
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for k = 0, . . . , N − 1. Next, the refined signals are multiplied by the complex

conjugate transpose of the pilot matrix P [k] in the pilot matching unit in

Figure 2.4, to obtain more accurately estimated CSIs in the frequency do-

main. We then use an N -point IDFT unit to obtain the estimated CSIs in

the time domain, i.e.,

h̄
(i)
1 [n] = h

(i)
1 [n] + IDFT

{
Z(i)

e [k] P ∗
α [k] + Z(i)

o [k] Pβ [k]
}

(2.14)

and

h̄
(i)
2 [n] = h

(i)
2 [n] + IDFT

{−Z(i)
e [k] P ∗

β [k] + Z(i)
o [k] Pα [k]

}
(2.15)

for n = 0, . . . , N − 1. Finally, a path selection unit is used to suppress the

noise effect and to refine the estimated CSIs. For path selection, we first

define a parameter Np, which is the desired number of paths to be selected.

Only the Np paths with larger amplitudes in h̄
(i)
1 [n] (or h̄

(i)
2 [n]) are preserved

and all the other paths are discarded. As a result, we obtain ĥ
(i)
1 [n] and

ĥ
(i)
2 [n] in the following way:

ĥ
(i)
j [n] =





h̄
(i)
j [n] , if

∣∣∣h̄(i)
j [n]

∣∣∣ is one of the Np larger values

0, otherwise
(2.16)

for n = 0, . . . , N − 1 and j = 1, 2.

To initialize the channel estimator, pilot preambles without data signals

added are transmitted in the first two OFDM symbols. The received signals

are passed only through the pilot matching and the path selection unit to

generate the preliminary channel estimations.
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2.4.3 Computational Complexity

In this subsection, the complexity of the CC pilot-based STBC-OFDM re-

ceiver will be calculated in terms of the number of complex multiplications.

Either N -point DFT or IDFT needs DFTN multiplications per OFDM sym-

bol. At the recever, three DFT or IDFT operations are needed for every

OFDM symbol (see Figure 2.2 to Figure 2.4). According to Figure 2.3, the

pilot signal cancellation unit and the combiner unit need 8N multiplications

for every two OFDM symbols. In Figure 2.4, the data interference cancella-

tion unit and the pilot matching unit also need 8N multiplications for every

two OFDM symbols. Furthermore, the coarse data detection unit requires the

same number of multiplications as the fine data detection functional block,

i.e. 8N per two OFDM symbols. Hence, the receiver has the complexity

order of 3DFTN + 12N multiplications per OFDM symbol.

2.5 Performance Analysis

In this section, we include an analysis of the BER performance of the pro-

posed system in a two-path fading channel. The analysis method is general

and can be easily extended to a mobile radio channel with more paths.

2.5.1 Time-Varying Effect of Two-Path Channels

The equivalent baseband impulse response of the two-path fading channel is

represented by

h [n] = a1δ [n] + a2δ [n− τ ] (2.17)
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where δ [n] denotes a delta function, τ is the excess delay of the second path,

and al is the complex gain of the lth path. Assume that the complex gain

of the lth path, for l = 1 and 2, during the (2i) th and (2i + 1) th OFDM

symbol is a complex Gaussian random variable and denoted as a
(i)
l = a

(i)
l,I +

a
(i)
l,Q, where a

(i)
l,I and a

(i)
l,Q are the real and imaginary part of a

(i)
l , respectively.

According to the Jakes fading channel model [33], the random variables a
(i−1)
l,I ,

a
(i−1)
l,Q , a

(i)
l,I and a

(i)
l,Q have the following correlations:

E
[
a

(i−1)
l,I a

(i)
l,I

]
= E

[
a

(i−1)
l,Q a

(i)
l,Q

]
=

εl

2
J0 (2πfD (2Ts)) (2.18)

and

E
[
a

(i−1)
l,I a

(i)
l,Q

]
= E

[
a

(i−1)
l,Q a

(i)
l,I

]
= 0 (2.19)

where E [·] is the operation of taking expectation, εl = E
[∣∣∣a(i)

l

∣∣∣
2
]

is the power

of the lth path, fD is the maximum Doppler frequency, and J0 (·) is the Bessel

function of the first kind. In order to model the time-varying effect of the

lth path between a
(i−1)
l and a

(i)
l , we have the following equation:

a
(i)
l = a

(i−1)
l + ∆

(i)
l (2.20)

where ∆
(i)
l is a complex Gaussian random variable with zero mean. Therefore,

the normalized error power of the lth path becomes

E
[∣∣∣∆(i)

l

∣∣∣
2
]

εl

= 2 (1− J0 (4πfDTs)) (2.21)

Assume the corresponding channel frequency response is denoted by H(i) [k],

and as a result, the channel variation in frequency domain, Ω(i) [k], can be

described by the following equation:

H(i) [k] = H(i−1) [k] + Ω(i) [k] (2.22)
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The two fading paths are assumed to be independent of each other, and it is

obtained from (2.21) that Ω(i) [k] is a zero-mean complex Gaussian random

variable with variance

σ2
Ω = E

[∣∣Ω(i) [k]
∣∣2

]
= 2 (1− J0 (4πfDTs))

2∑

l=1

εl (2.23)

Without loss of generality, we assume that the channel power is normalized

to one, i.e.
∑2

l=1 εl = 1; hence, we get σ2
Ω = 2 (1− J0 (4πfDTs)).

2.5.2 Performance Analysis of Coarse Data Detection

Assume that binary phase-shift keying (BPSK) modulation is used, and data

signals X
(i)
F [k] and X

(i)
S [k] in each subcarrier k are independently and iden-

tically distributed (i.i.d.) random variables with zero mean and variance

Eb/2. For the simplicity of analysis, it is assumed that the CC sequences

are ideal random binary sequences with zero mean, and the power of CC

pilot signals is the same as data signals. Finally, we assume that the esti-

mated CSI Ĥ
(i−1)
1 [k] used by the coarse data detection unit can be modeled

as H
(i)
1 [k]−Λ

(i)
1 [k], where the term Λ

(i)
1 [k] includes both the effects of chan-

nel variation and channel estimation error, and its mean and variance are

given by zero and σ2
Λ. The estimated CSI Ĥ

(i−1)
2 [k] is also assumed in a

like manner. For simplicity, the indices i and k are omitted in the following

derivation.

From (2.8) and (2.9), the outputs of the pilot signal cancellation unit, in

the coarse data detection unit in Figure 2.4, are given by

ȲeC = H1XF + H2XS︸ ︷︷ ︸
De

+ PαΛ1 − PβΛ2︸ ︷︷ ︸
Ĩe

+Ze (2.24)
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and

ȲoC = −H1X
∗
S + H2X

∗
F︸ ︷︷ ︸

Do

+ P ∗
βΛ1 + P ∗

αΛ2︸ ︷︷ ︸
Ĩo

+Zo (2.25)

where ȲeC and ȲoC consist of three mutually independent components:

· desired data signal components De and Do;

· residual pilot interference signal components Ĩe and Ĩo;

· AWGN components Ze and Zo.

Since the random variables Pα, Pβ, Λ1, and Λ2 are mutually independent of

each other, the mean and variance of Ĩe and Ĩo are given by

E
[
Ĩe

]
= E

[
Ĩo

]
= 0 (2.26)

and

Var
[
Ĩe

]
= Var

[
Ĩo

]
= Ebσ

2
Λ (2.27)

where Var [·] is the operation of taking variance. Given the channel gains H1

and H2, and the transmitted data signals XF and XS, we have the mean

E
[
ȲeC

]
= H1XF + H2XS (2.28)

E
[
Ȳ ∗

oC

]
= −H∗

1XS + H∗
2XF (2.29)

and the variance

Var
[
ȲeC

]
= Var

[
Ȳ ∗

oC

]
= Ebσ

2
Λ + σ2

n (2.30)
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The outputs of the combiner unit in the coarse data detection unit are [14]

X̃FC = Ĥ∗
1 ȲeC + Ĥ2Ȳ

∗
oC (2.31)

and

X̃SC = Ĥ∗
2 ȲeC − Ĥ1Ȳ

∗
oC (2.32)

Since Ĥ∗
1 , ȲeC , Ĥ2 and Ȳ ∗

oC are mutually uncorrelated of each other, the mean

and variance of X̃FC are given by

E
[
X̃FC

]
= E

[
Ĥ∗

1

]
E

[
ȲeC

]
+ E

[
Ĥ2

]
E

[
Ȳ ∗

oC

]
= ζXF (2.33)

and

Var
[
X̃FC

]
= E2

[
Ĥ∗

1

]
Var

[
ȲeC

]
+ E2

[
ȲeC

]
Var

[
Ĥ∗

1

]

+E2
[
Ĥ2

]
Var

[
Ȳ ∗

oC

]
+ E2

[
Ȳ ∗

oC

]
Var

[
Ĥ2

]

+Var
[
Ĥ∗

1

]
Var

[
ȲeC

]
+ Var

[
Ĥ2

]
Var

[
Ȳ ∗

oC

]

= ζ
(
2Ebσ

2
Λ + σ2

n

)
+ 2Ebσ

4
Λ + 2σ2

Λσ2
n (2.34)

where ζ = |H1|2 + |H2|2. Similarly, the other combiner output X̃SC has the

same variance as X̃FC , but different mean ζXS. Therefore, conditioned on

the combined channel gain ζ, the BER is given by

BERC (ζ) = Q

(
ζ√

aζ + b

)
(2.35)

where Q (x) =
∫∞

x

(
1
/√

2π
)
e−y2/2dy, a = 2σ2

Λ +σ2
n/Eb, b = 2σ4

Λ +2σ2
Λσ2

n/Eb.

2.5.3 Performance Analysis of Channel Estimation and

Fine Data Detection

As shown in Figure 2.4, in order to reconstruct the data interference signals,

tentative decisions of data symbols are made and denoted as X̂FC and X̂SC .
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From (2.8) and (2.9), notice that after the data interference cancellation, the

output signal
^

Y e is given by

^

Y e = H1Pα −H2Pβ︸ ︷︷ ︸
Ie

+ H1

(
XF − X̂FC

)
+ Λ1X̂FC + H2

(
XS − X̂SC

)
+ Λ2X̂SC

︸ ︷︷ ︸
D̃e

+Ze (2.36)

and consists of three parts. The first part is the desired pilot signal Ie. The

second part is the residual data interference signal D̃e, which is caused by two

factors. One is the channel estimation error, and the other is the tentative

data decision error from the coarse data detection unit. The third part is

AWGN Ze. From (2.35) and (2.36), the mean and the second moment of D̃e

can be calculated as (see Appendix B)

E
[
D̃e

]
= 2BERC (ζ) (H1XF + H2XS) (2.37)

and

E
[∣∣∣D̃e

∣∣∣
2
]

= 2BERC (ζ) ζEb + σ2
ΛEb

+4BER2
C (ζ) (H1H

∗
2XF X∗

S + H∗
1H2X

∗
F XS) (2.38)

Similarly, for the other output
^

Y o, we have the residual data interference

signal D̃o as follows

E
[
D̃o

]
= 2BERC (ζ) (−H1X

∗
S + H2X

∗
F ) (2.39)

and

E
[∣∣∣D̃o

∣∣∣
2
]

= 2BERC (ζ) ζEb + σ2
ΛEb

−4BER2
C (ζ) (H1H

∗
2XF X∗

S + H∗
1H2X

∗
F XS) (2.40)
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According to (2.3) and (2.36), the estimated CSIs at the output of the pilot

matching unit can be written as

H̄1 = H1 +
1

Eb

(
P ∗

αD̃e + P ∗
αZe + PβD̃o + PβZo

)
(2.41)

and

H̄2 = H2 +
1

Eb

(
−P ∗

β D̃e − P ∗
βZe + PαD̃o + PαZo

)
(2.42)

As can be seen in (2.41) and (2.42), the estimated CSIs H̄1 and H̄2 have

different means H1 and H2, respectively, but equal variance 2BERC (ζ) ζ +

σ2
Λ +σ2

n/Eb. In a two-path fading channel, the variance of H̄1 and H̄2 can be

further reduced by a factor of 2/N if we assume the path selection process

is perfect, i.e., we have

σ̄2
Λ = Var

[
H̄1

]
= Var

[
H̄2

]
=

2

N

(
2BERC (ζ) ζ + σ2

Λ +
σ2

n

Eb

)
(2.43)

We can then replace σ2
Λ with σ̄2

Λ in (2.35) to obtain the BER, denoted as

BER (ζ), for the fine data detection unit. With the two-path Rayleigh fad-

ing channel model, ζ is a random variable with probability density function

p (ζ) = ζe−ζ , where ζ ≥ 0. The averaged BER for the fine data detection

unit can be obtained by averaging BER (ζ) over ζ, i.e.

BER =

∫ ∞

0

BER (ζ) p (ζ)dζ (2.44)

In general, BER can be computed iteratively using software like MATLAB

with the following procedure:

1. Initially, we set the variance of channel estimation error in the pilot

preambles as σ2
U = σ2

init = 2σ2
n/NEb
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2. Due to the Doppler effect, the variance of channel estimation error for

the next two OFDM symbols is given by σ2
Λ = σ2

U + σ2
Ω

3. Using (2.35), (2.43) and (2.44), we can calculate BERC (ζ), σ̄2
Λ, BER (ζ),

and BER, respectively.

For simple analysis of BER performance, we average σ̄2
Λ over ζ and use the

averaged σ̄2
Λ instead of σ2

U for the next iteration (return to the procedure 2).

With 100 iterations, i.e., 200 OFDM symbols are processed, Figure 2.5 shows

that BER almost stayed at the same value.
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Figure 2.5: BER performance versus number of iterations at Eb/σ
2
n=24dB

and fDTs=0.0111.
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2.6 Computer Simulation

We utilize computer simulations to verify the performance of the proposed

CC pilot-based STBC-OFDM system in a two-path fading channel and a

Universal Mobile Telecommunications System (UMTS) defined channel. The

complex gain of each path is independently generated from the Jakes fading

channel model [33]. The relative path power profiles of the two-path channel

is 0, 0 (dB). Besides, the channel selected for evaluating the third generation

UMTS European systems with relative path power profiles: -2.5, 0, -12.8, -

10, -25.2, -16 (dB), is also used to simulate the system performance [34]. We

also assume the two transmit antennas are spatially separated far enough and

the two channels from the two transmitters to the receiver are uncorrelated

in our simulation.

The system parameters for the CC pilot-based STBC-OFDM system sim-

ulation are listed in Table 2.1. In our simulation, a single-user at a time

scenario, i.e. time division multiple access (TDMA) can be used as a multi-

ple access scheme, is assumed. The entire simulations are conducted in the

equivalent baseband. We assume both symbol synchronization and carrier

synchronization are perfect. Golay’s binary CC [31] is directly used to gen-

erate the CC pilot signals. Each antenna transmits both the data signal and

the pilot signal at an equal power level of 0.5 per sample. The excess delay

of the paths is uniformly distributed between 0.19µs and 9.77µs. Finally,

throughout the simulation, the parameter Eb/No is defined as the received

bit power to the noise power ratio.
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Table 2.1: Simulation parameters.

Parameter Value

Carrier frequency 2 GHz

Bandwidth 5.12 MHz

FFT size 256

Length of CP 64

Modulation BPSK

Number of receive antennas 1

Transmitted data signal energy/ antenna 0.5

Pilot signal energy/ antenna 0.5

Channel power profiles ITU Veh-B channel

Channel delay profiles 0.19 µs ∼ 9.77 µs

Vehicle speed 8, 30, 120 km/hr
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2.6.1 Effect of Vehicle Speed

Figure 2.6 shows the BER performance of the proposed system in the two-

path fading channel with a relative path power profile: 0, 0 (dB) at different

vehicle speeds (V ). Here, we set the number of selected paths Np = 2.

The system performance is approximately only 1dB poorer (in Eb/No) at a

BER=10−3 as compared with the theoretic BPSK case with a second-order

diversity, even when the motor vehicle moves at a high speed. The simulated

performance curves under the perfect CSIs assumption are also included for

comparison purpose. These curves indicate that CC pilot-based channel

estimation method works very well.

2.6.2 Effect of Path Selection

Figure 2.7 shows the BER performance of the proposed system in the UMTS

defined multipath fading channel (with six paths) at a vehicle speed of 120

km/hr, with Np is chosen as a simulation parameter. It is observed that the

system performance have a small degradation of about 2dB at a BER=10−3

as compared with the previous two-path fading channel case as shown in

Figure 2.6. When the parameter Np is chosen appropriately, i.e. close to

the actual number of paths in the mobile radio environment, the system

performance is almost the same. In other words, the parameter Np can be

set a little bit larger than the number of available paths in a practical system

design.
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2.6.3 Analytic and Simulated BER Performance

Figure 2.8 shows the analytic and simulated BER performance of the pro-

posed system in the two-path fading channel at different vehicle speeds. Here,

we set the number of selected paths Np = 2. The results of our analysis and

simulation both show that the fine data detection unit reduces the BER fur-

ther as compared with the coarse data detection unit at a vehicle speed of

120 km/hr. Our analytic result shows that the BER performance is very

close to the theoretic BPSK case with a second-order diversity, even when

the motor vehicle moves at 120 km/hr. In our analysis, we assume that CC

sequences are ideal binary random sequences with zero mean. Nevertheless,

these sequences have non-zero mean, and it leads to a biased channel estima-

tion. Furthermore, for simple analysis, we average out the error propagation

effect in calculating the analytic BER performance. As a result, there is a

observable discrepancy between the results of analysis and simulation only in

the case of high vehicle speeds and high Eb/No values. As we can see, these

curves indicate that the CC pilot-based channel estimation method works

very effectively.

35



4 8 12 16 20 24

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No (dB)

B
E

R

 

 

8 km/hr, Estimated CSIs
30 km/hr, Estimated CSIs
120 km/hr, Estimated CSIs
8 km/hr, Perfect CSIs
30 km/hr, Perfect CSIs
120 km/hr, Perfect CSIs
Theorectic BPSK (Diversity order=2)

Figure 2.6: BER performance of CC pilot-based STBC-OFDM systems in

the two-path fading channel with vehicular speed as a parameter (Np = 2).
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Figure 2.7: BER performance of CC pilot-based STBC-OFDM systems in

the UMTS system defined fading channel with Np as a parameter (V =

120km/hr).
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Figure 2.8: The analytic and simulated BER performance of CC pilot-based

STBC-OFDM systems in the two-path fading channel with vehicular speed

as a parameter.
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2.7 Summary

In this chapter, we designed a pilot signal structure for an STBC-OFDM sys-

tem by utilizing a pair of complementary codes, which can be systematically

generated from well-understood rules. We have also described the detailed

functional block diagrams of the CC pilot-based STBC-OFDM system and

simulated its performance. The CC pilot signals are transmitted simulta-

neously along with data signals in the time domain and used to estimate

CSIs optimally at the receiver end. Although this approach has a draw-

back of lower power efficiency, but it does not reduce bandwidth efficiency as

compared with other schemes in which pilot carriers are added in frequency

domain.
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Chapter 3

On the Equivalence between

DF DFT-based Channel

Estimation Method and

Newton’s Method in OFDM

Systems

3.1 Literature Survey and Motivation

The DFT-based channel estimation method derived from the ML criterion

is originally proposed for OFDM systems with pilot preambles [35–39]. In

order to save bandwidth and improve system performance, DF data sym-

bols are usually exploited to track channel variations in subsequent OFDM

data symbols, and this method is called DF DFT-based channel estima-

tion [35–37]. However, the working principle of this empirical method has
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not been explored from the viewpoint of Newton’s method in previous stud-

ies. This chapter derives the DF DFT-based channel estimation via Newton’s

method for STBC-OFDM systems. In this way, the equivalence between the

two methods is established. Our results indicate that both methods can be

implemented through the same four components: a least-square (LS) esti-

mator, an IDFT matrix, a weighting matrix, and a DFT matrix, but with

different connections. On one hand, the gradient vector in Newton’s method

can be found by calculating the difference between an estimated channel fre-

quency response and an LS estimate, followed by the IDFT operation. On

the other hand, the inverse of the Hessian matrix in Newton’s method is just

the weighting matrix operation in the DF DFT-based method.

The rest of this chapter is organized as follows. In Section 3.2, we briefly

describe an STBC-OFDM system. In Section 3.3, a classical DF DFT-based

channel estimation method is introduced, and a channel estimation method

using the ML criterion is derived from Newton’s method. The equivalence

between the DF DFT-based method and Newton’s method is then discussed

in this section. In Section 3.4, we show our computer simulation results.

Finally, some concluding remarks are drawn in Section 3.5.

3.2 STBC-OFDM Systems

Consider an STBC-OFDM system in Figure 3.1 with NT transmit and NR

receive antennas, employing K subcarriers among which M subcarriers are

used to transmit data symbols and the other K − M subcarriers are used

as either a DC subcarrier or virtual subcarriers. Assume that the set of
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Figure 3.1: STBC-OFDM systems.

data subcarrier indices is denoted as Q ⊆ {1, . . . , K}. At subcarrier k ∈ Q

and after symbol mapping, P modulated data symbols {s1 [k] , . . . , sP [k]} are

encoded by an NT ×NL STBC encoder X [k] to generate NT signal sequences

of length NL, denoted by
{
X(i) [1, k] , . . . , X(i) [NL, k]

}
, for i = 1, . . . , NT

[12, 13, 40]. As a simple example, for a 2 × 2 Alamouti’s STBC, we have

X(1) [1, k] = s1 [k], X(2) [1, k] = s2 [k], X(1) [2, k] = −s∗2 [k], and X(2) [2, k] =

s∗1 [k]. It is noted that these signal sequences possess the orthogonal property,

given by X∗ [k]XT [k] = C [k] INT
, where (·)∗ and (·)T represent complex

conjugate and transpose, respectively, IN is an N ×N identity matrix, and

C [k] =
∑NL

t=1

∣∣X(i) [t, k]
∣∣2. After insertion of K−M zeros for DC and virtual

subcarriers, the STBC encoded data symbols X(i) [t, k] are modulated onto M

subcarriers via a K-point IDFT unit to produce time domain samples, for t =

1, . . . , NL and i = 1, . . . , NT . The time domain samples are then appended

with CP of length G and transmitted through NT transmit antennas within

the duration of NL OFDM data symbols.

We assume that both timing and carrier frequency synchronization are
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perfect, and that the length of channel impulse response is always smaller

than the length of the CP. Another assumption here is that the channel

is quasi-static over the duration of a time slot, including NL OFDM data

symbols, but it varies from one time slot to another. Hence, at the output of

the OFDM demodulator in Figure 3.1, the NL successively received OFDM

data symbols at the jth receive antenna are given by

R(j) [t, k] =

NT∑
i=1

H(j,i) [k] X(i) [t, k] + Z(j) [t, k] (3.1)

for t = 1, . . . , NL and k ∈ Q, where H(j,i) [k] is the channel frequency response

for the (j, i) th antenna pair, and Z(j) [t, k] is uncorrelated additive white

Gaussian noise (AWGN) on the jth receive antenna with zero-mean and

variance σ2
Z .

3.3 DF DFT- Based Method and Newton’s

Method

3.3.1 DF DFT-Based Channel Estimation Method

As shown in Figure 3.2, the block diagram of the DF DFT-based chan-

nel estimation method is composed of an LS estimator, an IDFT matrix, a

weighting matrix, and a DFT matrix [36–39]. The LS estimator exploits DF

data symbols to produce an LS estimate, which is a noisy estimation of chan-

nel frequency response. After taking the IDFT to transform the estimate to

time domain, we can improve this estimate by using a weighting matrix which

depends on the performance criterion chosen, either ML or MMSE [37, 39].
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Finally, the enhanced estimate is transformed back to frequency domain to

obtain a new estimate of channel frequency response.
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Figure 3.2: The block diagram of the DF DFT-based channel estimation

method. (D is a delay component.)

3.3.2 Channel Estimation via Newton’s Method

A parametric channel model M (j,i) [k] of the channel frequency response

H(j,i) [k] is first formed by a summation of G complex sinusoids as follows:

M (j,i) [k] =
G∑

l=1

µ
(j,i)
l e−

2π(k−1)(l−1)
K (3.2)

where µ
(j,i)
l = α

(j,i)
l + β

(j,i)
l is a complex fading gain to be tracked in sub-

sequent time slots. From (3.1) and (3.2), the joint channel estimation and

data detection problem can be formulated in an ML estimation framework
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as follows:

(ŝ, ŷ) = arg min
s,y

NR∑
j=1

NL∑
t=1

∑

k∈Θ

∣∣∣∣R(j) [t, k]

−
NT∑
i=1

M (j,i) [k] X(i) [t, k]

∣∣∣∣
2

(3.3)

where Θ = {Θ1, . . . , ΘNS
} is a subset of Q over which we execute the sum-

mation, s denotes the data symbols which are STBC encoded and trans-

mitted over subcarriers Θ, and NS denotes the cardinality of Θ. In addi-

tion, we define µ
(j,i)
I =

[
α

(j,i)
1 , . . . , α

(j,i)
G

]T

, µ
(j,i)
Q =

[
β

(j,i)
1 , . . . , β

(j,i)
G

]T

, y(j,i) =
[
µ

(j,i)T

I , µ
(j,i)T

Q

]T

, y(j) =
[
y(j,1)T

, . . . ,y(j,NT )T
]T

, and y =
[
y(1)T

, . . . ,y(NR)T
]T

.

Because it is hard to solve (3.3) directly, we yield a simplified optimization

problem by relaxing (3.3) as follows:

(ŝ, ŷ) = arg min
y

min
s

NR∑
j=1

NL∑
t=1

∑

k∈Θ

∣∣∣∣R(j) [t, k]

−
NT∑
i=1

M (j,i) [k] X(i) [t, k]

∣∣∣∣
2

(3.4)

Assuming that M (j,i) [k] is known, it is straightforward to solve the mini-

mization problem with respect to s first by applying the STBC decoding

algorithm [12,40], and we have

ŷ = arg min
y

NR∑
j=1

NL∑
t=1

∑

k∈Θ

∣∣∣∣R(j) [t, k]

−
NT∑
i=1

M (j,i) [k] X̂(i) [t, k]

∣∣∣∣
2

4
= arg min

y

NR∑
j=1

NL∑
t=1

∑

k∈Θ

∣∣∣∣Ψ(j) [t, k]

∣∣∣∣
2

(3.5)

where X̂(i) [t, k] is the signal (corresponding to X(i) [t, k]) obtained by re-

encoding the decision symbols ŝp [k] = Φ (s̃p [k]), Φ (·) is a symbol decision
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function, and s̃p [k] is the signal after diversity combining [12, 40]. Notice

that (3.5) might converge to local minima, leading to BER performance loss,

as compared with (3.3), particularly when the initial choice of M (j,i) [k] is

not accurate enough. By rewriting (3.5), we have

ŷ = arg min
y

NR∑
j=1

NL∑
t=1

∑

k∈Θ

Ψ
(j)2

I [t, k] + Ψ
(j)2

Q [t, k]

4
= arg min

y
D (y) (3.6)

where notations ΥI(·) and ΥQ(·) denote the real and imaginary part of the

notation Υ(·), respectively. For simplification, we drop the variable nota-

tion ”(y)” in D(y) hereafter except otherwise stated. Now we use Newton’s

method to find the minimum of (3.6), and the well-known iterative formula

of Newton’s method is provided in the following [41]:

ŷv = ŷv−1 − gv (3.7)

where v is the iteration index and v = 1, . . . , V , ŷv is the estimated CSI

obtained at the vth iteration, gv is a search vector associated with g = E−1q

at y = ŷv−1 in which E and q are the Hessian matrix and the gradient

vector of D, respectively, and (·)−1 represents the matrix inverse. Thus, the

uth entry of q is calculated as

(q)u

4
=

∂D

∂ (y)u

= 2

NR∑
j=1

NL∑
t=1

∑

k∈Θ

Ψ
(j)
I [t, k]

∂Ψ
(j)
I [t, k]

∂ (y)u

+Ψ
(j)
Q [t, k]

∂Ψ
(j)
Q [t, k]

∂ (y)u

(3.8)
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where (y)u is the uth entry of y. The partial derivative of ∂Ψ
(j)
I [t, k] /∂ (y)u

and ∂Ψ
(j)
Q [t, k] /∂ (y)u can be derived in the following way. First, we assume

that the probabilities of s̃p,I [k] = 0 or s̃p,Q[k] = 0 are zero; thus, it is reason-

able to take the terms involving the partial derivative of the function Φ(·)
as zero. Since the variable (y)u in y is either α

(j,i)
l or β

(j,i)
l , straightforward

calculation using (3.6) shows that for j = j′, we have

∂Ψ
(j′)
I [t, k]

∂α
(j,i)
l

= − cos

(
2π (k − 1) (l − 1)

K

)
X̂

(i)
I [t, k]

− sin

(
2π (k − 1) (l − 1)

K

)
X̂

(i)
Q [t, k] (3.9)

∂Ψ
(j′)
Q [t, k]

∂α
(j,i)
l

= − cos

(
2π (k − 1) (l − 1)

K

)
X̂

(i)
Q [t, k]

+ sin

(
2π (k − 1) (l − 1)

K

)
X̂

(i)
I [t, k] (3.10)

∂Ψ
(j′)
I [t, k]

∂β
(j,i)
l

= − sin

(
2π (k − 1) (l − 1)

K

)
X̂

(i)
I [t, k]

+ cos

(
2π (k − 1) (l − 1)

K

)
X̂

(i)
Q [t, k] (3.11)

∂Ψ
(j′)
Q [t, k]

∂β
(j,i)
l

= − sin

(
2π (k − 1) (l − 1)

K

)
X̂

(i)
Q [t, k]

− cos

(
2π (k − 1) (l − 1)

K

)
X̂

(i)
I [t, k] (3.12)

Otherwise, i.e. if j 6= j′, we have

∂Ψ
(j′)
I [t, k]

∂α
(j,i)
l

=
∂Ψ

(j′)
Q [t, k]

∂α
(j,i)
l

=
∂Ψ

(j′)
I [t, k]

∂β
(j,i)
l

=
∂Ψ

(j′)
Q [t, k]

∂β
(j,i)
l

= 0 (3.13)
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Next, we compute the (m, u)th entry of E as

(E)m,u

4
=

∂2D

∂ (y)m ∂ (y)u

= 2

NR∑
j=1

NL∑
t=1

∑

k∈Θ

∂Ψ
(j)
I [t, k]

∂ (y)m

∂Ψ
(j)
I [t, k]

∂ (y)u

+
∂Ψ

(j)
Q [t, k]

∂ (y)m

∂Ψ
(j)
Q [t, k]

∂ (y)u

(3.14)

where the terms involving the second derivative of Ψ
(j)
I [t, k] (or Ψ

(j)
Q [t, k])

are all equal to zero. Since the variable in y is either α
(j,i)
l or β

(j,i)
l , the

calculation of ∂2D/∂(y)m∂(y)u is equivalent to finding ∂2D/∂α
(j,i)
l ∂α

(j′,i′)
l′ ,

∂2D/∂β
(j,i)
l ∂β

(j′,i′)
l′ , ∂2D/∂α

(j,i)
l ∂β

(j′,i′)
l′ , and ∂2D/∂β

(j,i)
l ∂α

(j′,i′)
l′ in turn. By

using (3.9)–(3.14) and the orthogonal property of STBC, as described in

Section 3.2, it follows that

∂2D

∂α
(j,i)
l ∂α

(j′,i′)
l′

=
∂2D

∂β
(j,i)
l ∂β

(j′,i′)
l′

(3.15)

=





0, if i 6= i′ or j 6= j′

2
∑
k∈Θ

Ĉ [k] cos
(

2π(k−1)(l−l′)
K

)
, o.w.

−∂2D

∂α
(j,i)
l ∂β

(j′,i′)
l′

=
∂2D

∂β
(j,i)
l ∂α

(j′,i′)
l′

(3.16)

=





0, if i 6= i′ or j 6= j′

2
∑
k∈Θ

Ĉ [k] sin
(

2π(k−1)(l−l′)
K

)
, o.w.

where Ĉ [k] =
∑NL

t=1

∣∣∣X̂(i) [t, k]
∣∣∣
2

. According to (3.14)–(3.16), we can make

two observations. One is that the matrix E is related not only to the multi-

path delay l but also to the estimate of the total transmitted signal energy

48



Ĉ[k] at the kth subcarrier for each transmit antenna. The other observa-

tion is that the matrix E is a block diagonal matrix. Owing to the second

observation, the iterative channel estimation method in (3.7) can be further

simplified to †

ŷ(j,i)
v = ŷ

(j,i)
v−1 − g(j,i)

v (3.17)

where g
(j,i)
v is obtained by computing g(j,i) = E(j,i)−1

q(j,i) at y(j,i) = ŷ
(j,i)
v−1

in which E(j,i) is the truncated matrix obtained from the ((j − 1) NT + i) th

diagonal block of E, and q(j,i) is the truncated vector merely containing the

partial derivate of ∂D/∂α
(j,i)
l and ∂D/∂β

(j,i)
l , for i = 1, . . . , NT and j =

1, . . . , NR.

3.3.3 Equivalence between Newton’s Method and DF

DFT-Based Method

We now turn our attention to deriving the equivalence between Newton’s

method and the DF DFT-based channel estimation method. By using (3.8)–

(3.12) and defining q̃(j,i) = ∂D/∂µ
(j,i)
I +∂D/∂µ

(j,i)
Q , the gradient vector q(j,i)

in (3.17) is rewritten in a complex vector form as follows †

q̃(j,i) = F(j,i)H

∆(j,i) (3.18)

†It is noted that in this paper, E(j,i) is a constant matrix for all antenna pairs. This is also

the case for F(j,i) and Ẽ(j,i), but in practice, these matrices are specific for transceiver

antenna pairs, depending upon path delays of the corresponding channel.
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where ∆(j,i) =
[
∆(j,i) [Θ1] , . . . , ∆

(j,i) [ΘNS
]
]T

, each element of which is calcu-

lated by

∆(j,i) [k] = −2

NL∑
t=1

Ψ(j) [t, k] X̂(i)∗ [t, k] (3.19)

Moreover, F(j,i) is an NS×G truncated DFT matrix, with the (m, l)th element

given by exp{−2π(Θm−1)(l−1)/K}, and (·)H is the Hermitian matrix of (·).
By substituting Ψ(j) [t, k] of (3.5) into ∆(j,i) [k] and applying the orthogonal

property as described in Section 3.2, a more meaningful expression is provided

by rewriting (3.19) in a column vector form:

δ(j) [k] =
[
∆(j,1) [k] , . . . , ∆(j,NT ) [k]

]T

= 2X̂∗ [k]
(
X̂T [k]M(j) [k]−R(j) [k]

)

= 2
(
Ĉ [k]M(j) [k]− X̂∗ [k]R(j) [k]

)
(3.20)

for k ∈ Θ, and where R(j)[k] = [R(j)[1, k], . . . , R(j)[NL, k]]T , M(j)[k] =

[M (j,1)[k], . . . ,M (j,NT )[k]]T , and X̂[k] is the re-encoded STBC matrix with

X̂(i)[t, k] as its element. Here, we observe that X̂∗[k]R(j)[k] is an LS estimate

for
[
H(j,1) [k] , . . . , H(j,NT ) [k]

]T
, and that δ(j)[k] represents the difference be-

tween the two channel frequency responses, Ĉ[k]M(j)[k] and X̂∗[k]R(j)[k].

From (3.18) and rewriting E(j,i) in a complex matrix, Ẽ(j,i), by using Ap-

pendix C, we have a complex-form representation of (3.17):

µ̂(j,i)
v = µ̂

(j,i)
v−1 − g̃(j,i)

v (3.21)

where µ̂(j,i)
v and g̃

(j,i)
v are the calculation associated with µ(j,i) = µ

(j,i)
I +µ

(j,i)
Q

and g̃(j,i) = Ẽ(j,i)−1
q̃(j,i), respectively, at µ(j,i) = µ̂

(j,i)
v−1 in which the (l, l′)th

entry of Ẽ(j,i) is given by 2
∑

k∈Θ Ĉ[k] exp {2π(k − 1)(l − l′)/K}. As shown
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in Appendix D, the matrix Ẽ(j,i)−1
in effect acts as a path decorrelator to

decorrelate inter-path interference. It is desirable for the path decorrelator

to be independent of Ĉ[k]; therefore, Ẽ(j,i)−1
only needs to be calculated once

in each OFDM frame, containing several time slots. One way to achieve this

is to normalize δ(j)[k] in (3.20) by 2Ĉ[k] and to modify Ẽ(j,i) as follows †

δ(j) [k] = M(j) [k]− 1

Ĉ [k]
X̂∗ [k]R(j) [k] (3.22)

(
Ẽ(j,i)

)
l,l′

=
∑

k∈Θ

e
2π(k−1)(l−l′)

K (3.23)

To be precise, Ẽ(j,i) in (3.23) can be equivalently expressed as F(j,i)H
F(j,i).

Finally, a truncated DFT matrix is applied to (3.21) to extrapolate the overall

channel frequency response as follows

M̂(j,i)
v = M̂

(j,i)
v−1 − F(j,i)g̃(j,i)

v (3.24)

where M̂
(j,i)
v = F(j,i)µ̂(j,i)

v is the estimated channel frequency response at

the vth iteration, with respect to the channel frequency response M(j,i) =

[M (j,i)[Θ1], . . . , M
(j,i)[ΘNS

]]T . It is clear that M̂
(j,i)
v−1 belongs to the subspace

spanned by F(j,i), and F(j,i)Ẽ(j,i)−1
F(j,i)H

is an orthogonal projection onto this

subspace. From matrix theory, these two observations imply that

F(j,i)Ẽ(j,i)−1

F(j,i)H

M̂
(j,i)
v−1

= F(j,i)Ẽ(j,i)−1

F(j,i)H

F(j,i)µ̂
(j,i)
v−1

= F(j,i)µ̂
(j,i)
v−1

= M̂
(j,i)
v−1 (3.25)
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Hence, the vector M̂
(j,i)
v−1−F(j,i)Ẽ(j,i)−1

F(j,i)H
M̂

(j,i)
v−1 implicitly contained in the

right side of (3.24) is zero. As a result, (3.24) is reduced to the DF DFT-

based channel estimation method and the equivalence can be expressed as

††

M̂(j,i)
v = F(j,i)ḡ(j,i)

v (3.26a)

ḡ(j,i) = Ẽ(j,i)−1

q̄(j,i) (3.26b)

q̄(j,i) = F(j,i)H

∆̄(j,i) (3.26c)

δ̄
(j)

[k] =
1

Ĉ [k]
X̂∗ [k]R(j) [k] , for k ∈ Θ (3.26d)

where ḡ
(j,i)
v is the calculation with respect to ḡ(j,i) at M(j,i) = M̂

(j,i)
v−1 ,

and moreover, we define ∆̄(j,i) = [∆̄(j,i)[Θ1], . . . , ∆̄
(j,i)[ΘNS

]]T and δ̄
(j)

[k] =

[∆̄(j,1)[k], . . . , ∆̄(j,NT )[k]]T .

The above derivation clearly establishes the mathematical equivalence be-

tween Newton’s method of (3.24) shown in Figure 3.3(a) and the DF DFT-

based method of (3.26) shown in Figure 3.3(b). Our results indicate that both

Newton’s method and the DF DFT-based method for channel estimation in

STBC-OFDM systems can be implemented through four components: an LS

estimator, an IDFT matrix, a weighting matrix, and a DFT matrix. Accord-

ing to (3.18) and (3.22), we can also observe that the process of calculating

the difference between the estimated channel frequency response M(j)[k] and

the LS estimate X̂∗[k]R(j)[k]/Ĉ[k], followed by the IDFT matrix F(j,i)H
, is

equivalent to forming the gradient vector in Newton’s method. Moreover,

the weighting matrix Ẽ(j,i)−1
in (3.26) is in fact the inverse of the Hessian

matrix in Newton’s method as observed in (3.21) and (3.23).
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Figure 3.3: Equivalence between (a) Newton’s method and (b) the DF DFT-

based method.
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3.4 Computer Simulation

The equivalence of the two methods is also verified by simulation in this

section, with parameters listed in Table 3.1. We assume that the CSI in

the previous time slot is known and utilized to initialize channel estimators.

The parameter fd denotes the maximum Doppler frequency, normalized to

subcarrier spacing.

3.4.1 BER Performance

Figure 3.4 shows the equivalence of the two methods in terms of BER per-

formance. The BER curve for ideal CSI is also provided for the purpose of

calibration.

3.4.2 NSE Performance

As observed in Figure 3.5, the equivalence of the two methods is demon-

strated in terms of the performance of normalized square error (NSE) be-

tween true and estimated CSI.

††Thanks to the orthogonal property of STBC, extending the results in SISO-OFDM systems

[36–38] to the STBC-OFDM systems should be straightforward.
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Table 3.1: Simulation parameters.

Parameter Value

Carrier frequency 2.3GHz

Bandwidth 5MHz

FFT size (K) 256

Length of CP (G) 64

Number of data subcarriers (M) 200

Number of data subcarriers used (NS) 200

Modulation QPSK

Number of transmit antennas (NT ) 2

Number of receive antennas (NR) 1

ITU Veh-A [34] and
Channel power profiles

Jakes model [33]

0 ∼ 63
Channel delay profiles

(Uniform distribution)

Normalized maximum Doppler frequency (fd) 0.01, 0.05
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Figure 3.4: BER performance of the two methods.
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3.5 Summary

In this chapter, we present a derivation on the equivalence between Newton’s

method and the DF DFT-based method for channel estimation in STBC-

OFDM systems. The results could provide useful insights for the develop-

ment of new algorithms. For example, extending the DF DFT-based method

to the Levenberg-Marquardt method is quite simple through this equivalence,

which is particularly helpful when the inverse for the weighting matrix does

not exist [41]. As another example, a few pilot tones can be applied to form

a gradient vector at the first iteration by using (3.21) and to help the DF

DFT-based method jump out of local minimum, thus improving the BER

performance in fast fading channels [42]. Finally, it is worth mentioning that

the derivation and the relationships explored in this chapter are also valid

for conventional OFDM systems since they are only simplified cases of the

systems discussed in this chapter.
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Chapter 4

A Refined Channel Estimation

Method for STBC-OFDM

Systems in Low-Mobility

Wireless Channels

4.1 Literature Survey and Motivation

OFDM has been widely applied in wireless communication systems in re-

cent years due to its capability of high-rate transmission and low-complexity

implementation over frequency-selective fading channels. STC is another

promising technique to provide diversity gain through the use of multiple

transmit antennas, especially when receive diversity is too expensive to de-

ploy. In particular, STBC has received a lot of attention because a simple

linear decoder can be used at the receiver side [12, 13, 40]. These advan-

tages make OFDM combined with STBC, known as STBC-OFDM, an ideal
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choice for several applications such as wireless metropolitan area networks

(WMANs) 802.16e [43], etc. However, a high-rate STBC-OFDM system em-

ploying multi-level modulation with non-constant envelope (e.g. 16QAM)

generally requires accurate CSI to perform coherent detection. This in turn

implies that dynamic channel estimation is a crucial factor in realizing a

successful STBC-OFDM system over doubly selective channels.

Blind channel estimation, which merely relies on the received signals,

is very attractive due to its bandwidth-saving advantage. Nevertheless, it

requires a long data record, involves high computational complexity, and

only applies to slowly time-varying channels. On the contrary, pilot-aided

channel estimation, using pilot tones known to the receiver, shows great

promise for applications in mobile wireless communication, even though the

use of pilot tones ends up with lower data rate. DF channel estimation offers

an alternative way to track channel variations; nevertheless, it is vulnerable

to decision error propagation in fast time-varying channels [35–37, 44–46].

As a high quality channel estimator with low training overhead is needed for

successful implementation of STBC-OFDM systems, we restrict our attention

to the category of pilot-aided plus DF channel estimation methods in this

chapter.

Among a wide variety of pilot-aided plus DF channel estimation meth-

ods, the DFT-based channel estimation method, derived from either MMSE

criterion or ML criterion, has been intensively studied for OFDM systems

with preambles [36–39]. It is shown in [35–38] that the DFT-based channel

estimation method using the ML criterion is simpler to implement because it
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requires neither channel statistics nor operating signal-to-noise ratio (SNR).

Furthermore, as presented in [38], the performance of the ML estimator is

comparable to that of the MMSE estimator at intermediate or high SNR

values when the number of pilot tones is sufficiently larger than the maximal

channel length (in samples). Thus, we will focus on the ML estimator in this

chapter. In order to save bandwidth and improve system performance, DF

data symbols are also used as pilots to track channel variations in subsequent

OFDM data symbols, and this method is called the DF DFT-based channel

estimation method. Recently, the mathematical equivalence between the DF

DFT-based method and Newton’s method has been studied in [47], and it is

concluded that even though a global solution for CSI is given as the initial

value in the preamble, the DF DFT-based method is only applicable to very

slowly time-varying channels because of the local optimization capability of

Newton’s method.

Most mobile wireless channels are characterized by channel impulse re-

sponse (CIR) consisting of a few dominant paths. The multipath delays are

usually slowly time-varying. The amplitude and the phase of each path, how-

ever, can vary relatively fast. In this chapter, we propose a two-stage channel

estimation method by utilizing these channel characteristics. In the initial-

ization stage, we employ an MPIC-based decorrelation method to identify

significant paths. In the following tracking stage, we develop a refined DF

DFT-based channel estimation method, in which we use a few pilot tones

inserted in OFDM data symbols to form an optimal gradient vector at the

first iteration. This optimal gradient vector helps the classical method jump
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out of the local optimum, thus reducing the error propagation effect. The

classical DF DFT-based channel estimation method is then used at the fol-

lowing iterations. In addition, an approximate weighting matrix is adopted

to reduce the computational complexity associated with the matrix inversion

operation of the weighting matrix in the DF DFT-based channel estimation

method.

The rest of this chapter is organized as follows. In Section 4.2, we de-

scribe the STBC-OFDM system. In Section 4.3, we present the MPIC-based

decorrelation method in the initialization stage. Next, the equivalence be-

tween the DF DFT-based channel estimation method and Newton’s method

is briefly reviewed, and we propose a refined DF DFT-based channel esti-

mation method in the tracking stage. We then discuss the computational

complexity of the proposed two-stage channel estimation method in Section

4.4. In Section 4.5, we present our computer simulation and performance

evaluation results. Finally, some concluding remarks are drawn in Section

5.6.

4.2 STBC-OFDM Systems

4.2.1 Transmitted Signals

As shown in Figure 4.1(a), we consider an STBC-OFDM system with NT

transmit and NR receive antennas, employing K subcarriers among which

M subcarriers are used to transmit data symbols plus pilot tones and the

other K −M subcarriers are used as either a DC subcarrier or virtual sub-
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Figure 4.1: (a) STBC-OFDM system (b) OFDM frame format.
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carriers at the two edges to avoid the spectrum overlapping problem at the

receiver. Assume that Q and J denote the sets of subcarrier indices assigned

to transmit data symbols and pilot tones, respectively. At subcarrier k ∈ Q

(or k ∈ J) and after symbol mapping, P modulated data symbols (or pi-

lot tones) {s1 [k] , . . . , sP [k]} are encoded by a T ×NT STBC encoder X [k]

to generate NT signal sequences of length T , each of which is denoted by
{
X(i) [1, k] , . . . , X(i) [T, k]

}
, for i = 1, . . . , NT [12, 13, 40]. These NT signal

sequences possess the orthogonal property given by XH [k]X [k] = C [k] INT
,

where C [k] = C(i) [k] =
∑T

t=1

∣∣X(i) [t, k]
∣∣2 is the total transmitted signal

energy at the kth subcarrier for each transmit antenna, and they are simul-

taneously transmitted by the NT transmit antennas within the duration of T

OFDM data symbols. The notation (·)H represents the operation of taking

Hermitian and the notation IN represents an N × N identity matrix. At

the tth OFDM data symbol and the ith transmit antenna, after insertion of

K −M zeros for DC and virtual subcarriers, STBC encoded data symbols

and pilot tones X(i)[t, k], for k ∈ Q and k ∈ J, respectively, are modulated

onto M subcarriers via a K-point IDFT unit to produce time domain sam-

ples. A CP is then added in front of each OFDM data symbol to eliminate

intersymbol interference caused by multipath channels. As shown in Figure

4.1(b), each OFDM frame starts with a CP-added preamble which occupies

one OFDM symbol and is followed by ND consecutive OFDM data symbols.

In order to avoid IAI at the receiver side, pilot tones are alternatively in-

serted into the available subcarriers of the preamble with antenna-specific

subcarrier shifts [43], and the preamble in frequency domain is denoted by
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P (i) [k], for k ∈ Q ∪ J and i = 1, . . . , NT .

4.2.2 Channel Model

The complex baseband representation of impulse response for a mobile wire-

less channel (in discrete expression) between the ith transmit antenna and

the jth receive antenna can be described by

h(j,i) [t, τ ] =
L(j,i)∑

l=1

µ
(j,i)
l (t) δ

[
τ − τ

(j,i)
l

]
(4.1)

where L(j,i) is the number of resolvable paths, τ
(j,i)
l is the time delay in

samples of the lth path, and µ
(j,i)
l (t) is the complex Gaussian fading gain

of the lth path. All paths µ
(j,i)
l (t), for l = 1, . . . , L(j,i), are assumed to be

independent of each other. Thus, with proper cyclic extension, the channel

frequency response can be expressed as

H(j,i) [t, k] =
L(j,i)∑

l=1

µ
(j,i)
l (t) e−

2πkτ
(j,i)
l

K (4.2)

where k is the subcarrier index.

4.2.3 Received Signals

We assume that both timing and carrier frequency synchronization are per-

fect, and that the length of channel impulse response is always smaller than

the length of the CP. Another assumption here is that the channel is quasi-

static over the duration of each time slot. The time index t in H(j,i)[t, k] is

dropped hereafter. Hence, after the OFDM demodulator in Figure 4.1(a),
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the received preamble at the jth receive antenna can be expressed as

R̆(j) [k] =

NT∑
i=1

H(j,i) [k] P (i) [k] + Z(j) [k] (4.3)

for k ∈ Q ∪ J. Moreover, the T successively received OFDM data symbols

at the jth receive antenna are given by

R(j) [t, k] =

NT∑
i=1

H(j,i) [k] X(i) [t, k] + Z(j) [t, k] (4.4)

for t = 1, . . . , T and k ∈ Q∪J. Note that Z(j)[k] in (4.3) or Z(j)[t, k] in (4.4)

are uncorrelated AWGN with zero-mean and variance σ2
Z on the jth receive

antenna.

4.3 Proposed Channel Estimation Method

In this section, we first present the MPIC-based decorrelation method for

the initialization stage. Before introducing the refined DF DFT-based chan-

nel estimation method for the tracking stage, we briefly review the equiva-

lence between the DF DFT-based channel estimation method and Newton’s

method.

4.3.1 Initialization Stage: The MPIC-Based Decorre-

lation Method

We all know that CIR can be estimated using the preamble placed at the

beginning of each OFDM frame, while the difficulty is that for most wire-

less standards, the preamble does not have ideal auto-correlation due to the
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Figure 4.2: The MPIC-based decorrelation method in the initialization stage.

(G is the ratio of the CP length to the useful OFDM symbol time, and

IDFT{·} is a K-point IDFT operation.)
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use of either guard band or non-equally spaced pilot tones. Figure 4.2 out-

lines the MPIC-based decorrelation method to estimate CIR path-by-path

by canceling out already known multipath interference. Since the preambles

transmitted from different antennas do not interfere with each other at the

receiver side, channel estimation can be independently performed for each

transceiver antenna pair, and therefore the antenna indices j and i are omit-

ted in the following. In step 1, we first define two parameters Nh and Wb

which represent a preassumed number of paths in a mobile radio channel and

a multipath observation window, respectively. Next, we calculate the cyclic

cross-correlation CR̆P [τ ] between the received and the transmitted preamble

as well as the normalized cyclic auto-correlation CPP [τ ] of the transmitted

preamble. Both ρ and κ, which stand for a path counting variable and the

number of legal paths found by the MPIC-based decorrelation method, re-

spectively, are initialized to zero. In step 2, we start by increasing the value

of the path counting variable, ρ, by one, and picking only one path whose

time delay τ̃ρ yields the largest value in |CR̆P [τ ]|, for τ ∈ Wb. If the time

delay τ̃ρ is larger than the length of the CP, this path is treated as an illegal

path, thereby discarded by setting CR̆P [τ̃ρ] = 0. Otherwise, we increase the

number of legal paths found, κ, by one, and then reserve this path as the

κth legal path with time delay τ̂κ = τ̃ρ and complex path gain µ̂κ = CR̆P [τ̃ρ].

The replica of the interference associated with this legal path is regenerated

and subtracted from CR̆P [τ ] to obtain a refined cross-correlation function:

CR̆P [τ ] ← CR̆P [τ ]− µ̂κCPP [|τ − τ̂κ|] (4.5)
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for τ ∈ Wb \ {τ̃1, . . . , τ̃ρ−1}, where ”←” is the assignment operation. We

continue the iterative process of the step 2 until ρ reaches the preassumed

value of Nh.

4.3.2 Equivalence between DF DFT-Based Method and

Newton’s Method

Through the initialization stage, we are able to obtain information on the

number of paths κ(j,i) (≤ Nh), the multipath delays τ̂
(j,i)
l , the multipath com-

plex gains µ̂
(j,i)
l , for l = 1, . . . , κ(j,i), and therefore the corresponding channel

frequency response. With the assumption of the unchanged multipath delays

over the duration of each OFDM frame, the DF DFT-based channel estima-

tion method using the ML criterion (at the vth iteration) can be summarized

as follows [36–38, 47]. First, the re-encoded STBC matrix is used to obtain

the LS channel estimate [48]:

δ(j)
v = Ĉ−1

v X̂H
v R(j) (4.6)

where R(j) =
[
R(j)T

[Θ1] , . . . ,R
(j)T [

Θ|Θ|
]]T

is the received signal vector at

the jth receive antenna in which we have R(j) [k] =
[
R(j) [1, k] , . . . , R(j) [T, k]

]T

and Θ is a subset of Q used to track channel variations, v is the itera-

tion number from 1 to V , X̂v = diag
{
X̂v [Θ1] , . . . , X̂v

[
Θ|Θ|

]}
consists of

the re-encoded STBC matrix X̂v [k] with decision symbols X̂
(i)
v [t, k] which

are obtained by applying the previously estimated channel frequency re-

sponse to decode the received signal R(j)[k] according to [12, 13, 40], and

Ĉv = diag
{

Ĉv [Θ1] INT
, . . . , Ĉv

[
Θ|Θ|

]
INT

}
is the energy normalization fac-

tor in which Ĉv [k] = Ĉ
(i)
v [k] =

∑T
t=1

∣∣∣X̂(i)
v [t, k]

∣∣∣
2

. The notation (·)T takes
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the transpose of (·), the notation (·)−1 represents the matrix inversion of (·),
the notation diag {X1, . . . ,XN} represents a block diagonal matrix, and the

notation |Θ| denotes the dimension of the set Θ. Thus, it is clear to show

that the ((m− 1) NT + i) th entry of δ(j)
v represents the LS estimate for the

Θmth subcarrier at the ith transmit and the jth receive antenna. Second, a

truncated DFT matrix is applied to improve the LS estimate as follows:

q(j)
v = F(j)H

∆(j)
v (4.7)

E(j) = F(j)H

F(j) (4.8)

M(j)
v = F(j)E(j)−1

q(j)
v (4.9)

where ∆
(j)
v = Πδ(j)

v and Π is an NT |Θ|×NT |Θ| permutation matrix obtained

by making the ((i− 1) |Θ|+ m) th row have all zeros except for a single one

at the ((m− 1) NT + i) th column for i = 1, . . . , NT and m = 1, . . . , |Θ|,
F(j) = diag

{
F(j,1), . . . ,F(j,NT )

}
, F(j,i) is the |Θ| × κ(j,i) truncated DFT

matrix whose (m, l)th entry is defined as exp{−2πΘmτ̂
(j,i)
l /K}, and the

((i− 1) |Θ|+ m) th entry of M
(j)
v represents the estimated channel frequency

response for the Θmth subcarrier at the vth iteration, corresponding to the

(j, i)th antenna pair. In order to initialize the channel estimator of (4.9), the

CSI estimated in the previous time slot has to be taken as the initial value

of the CSI for the current time slot.

It has been shown in [47] that the DF DFT-based channel estimation

method can be equivalently expressed in the framework of Newton’s method

as [41]:

δ̄
(j)
v = M̄

(j)
v−1 − Ĉ−1

v X̂H
v R(j) (4.10)
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q̄(j)
v = F(j)H

∆̄(j)
v (4.11)

M(j)
v = M

(j)
v−1 − F(j)E(j)−1

q̄(j)
v (4.12)

where M̄
(j)
v−1 = Π−1M

(j)
v−1 and ∆̄

(j)
v = Πδ̄

(j)
v . According to [47], the purpose of

calculating the difference between M̄
(j)
v−1 and Ĉ−1

v X̂H
v R(j) in (4.10), followed

by the IDFT matrix F(j)H
in (4.11), is to form the gradient vector q̄

(j)
v in

Newton’s method, as observed in (4.12). Furthermore, it is also proved in [47]

that the role of the weighting matrix E(j)−1
in (4.12) is in fact the inverse of

the Hessian matrix in Newton’s method.

4.3.3 Refined DF DFT-Based Channel Estimation

Through the equivalence relation described in Section 4.3.2, it is concluded

that the classical DF DFT-based channel estimation method (called method

I, hereafter) is limited by the local search capability of Newton’s method and

only applicable to very slowly time-varying channels. In the previous studies

[36] [37], pilot tones as well as decision data symbols are simultaneously

adopted to perform channel estimation at each iteration. This is, however,

not a good solution in time-varying channels because decision data symbols

easily induces the error propagation effect, whereas pilot tones are much more

reliable than decision data symbols. From the viewpoint of optimization, the

pilot tones inserted in each OFDM data symbol can play a more important

role in providing a global search direction at the first iteration of the method

I. Figure 4.3 shows the refined DF DFT-based channel estimation method in

the tracking stage. With the help from a few pilot tones to form a gradient

71



��������	
��

�

��
�������
�������������

������������

���������

��������� 
! 


( )1ˆ ˆ jH
v v
−C X R

( )
1

j
v−M

( )j
v"

( )H
jF

( )jR

ˆ
vX

( )j
vq ( )j

vM#����
����$

��%

j −

E
1( )��

���

( )jF

�

��������	
��

�

��
�������
�����������&�

�����

��������'���
�

$

��%

( )
1

jM�!
��
��

�
�!���(�
���

( )jF

( )j
pR

( )1 jH
p p p
−C X R

pX

( )j
p"

( )H
j

pF

( )j
pq

( )j
)

( ) ( ) ( )j j j
p) F q

( )
0

jM( )j
pM

Figure 4.3: Block diagram of the refined DF DFT-based channel estimation

method in the tracking stage. (The subscript ”p” is to indicate that the

calculation is only associated with the pilot subcarrier set.)
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vector according to (4.10) and (4.11), the refined channel tracking method

(called method II, hereafter) is proposed here by only modifying the first

iteration (v = 1) of (4.12) as follows

M
(j)
1 = M

(j)
0 −B(j)F(j)q̄(j)

p (4.13)

where q̄
(j)
p is the gradient vector calculated according to (4.10) and (4.11) by

only utilizing the set J, instead of Θ, B(j) is a block diagonal matrix defined

as diag
{
β(j,1)I|Θ|, . . . , β(j,NT )I|Θ|

}
, and β(j,i) is a real-valued step size which

can be determined by minimizing the following ML cost function over the

pilot subcarrier indices:

βopt = arg min
β

Ω (β)

= arg min
β

NR∑
j=1

∣∣R(j)
p −XpΠ

−1
p

(
M(j)

p −B(j)
p F(j)

p q̄(j)
p

)∣∣2 (4.14)

where β =
[
β(1)T

, . . . , β(NR)T
]T

in which we define β(j) =
[
β(j,1), . . . , β(j,NT )

]T
,

the notations R
(j)
p , Xp, M

(j)
p , B

(j)
p , F

(j)
p and Πp are defined similar to R(j), X̂v,

M
(j)
v , B(j), F(j) and Π, respectively, but here the set J is used instead of Θ

in the definition. Note that M
(j)
p is the estimated channel frequency obtained

from the previous time slot. Let M (j,i) [k] and ξ(j,i) [k] for k = Jm denote the

((i− 1) |J|+ m) th entries of M
(j)
p and F

(j)
p q̄

(j)
p , respectively. Furthermore,

we define γ(j) [t, k] = R(j) [t, k] − ∑NT

i=1 M (j,i) [k] X(i) [t, k] and φ(j,i) [t, k] =

ξ(j,i) [k] X(i) [t, k]. By expanding (4.14) and taking ∂Ω(β)/∂β = 0, after

straightforward manipulations, the optimum value of β(j) is given by

β
(j)
opt = −Φ(j)−1

Γ(j) (4.15)
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where the (m,u) th entry of the matrix Φ(j) is calculated by

(
Φ(j)

)
m,u

=
T∑

t=1

∑

k∈J

<e
{
φ(j,m) [t, k] φ(j,u)∗ [t, k]

}
(4.16)

and the uth entry of the vector Γ(j) is given by

(
Γ(j)

)
u

=
T∑

t=1

∑

k∈J

<e
{
φ(j,u) [t, k] γ(j)∗ [t, k]

}
(4.17)

The notation <e (·) takes the real part of (·). Note that, after the first itera-

tion, we execute the channel tracking process of (4.10)–(4.12) for the second

and subsequent iterations until a stopping criterion holds. The stopping cri-

terion is to check whether the absolute value of each entry in F(j)E(j)−1
q̄

(j)
v

is less than a prespecified threshold ε or the iteration number v reaches the

maximum value of V . The channel tracking process for the current time slot

will be stopped when either of the above two conditions holds.

In order to reduce computational complexity in the method II, we fur-

ther propose method III to avoid the matrix inverse of the weighting ma-

trix, E(j)−1
, by taking into account the strongly diagonal property of E(j)

which is originally proposed for reducing the complexity of multiuser detec-

tion in code division multiple access (CDMA) systems [49]. Define E(j) =

|Θ| (Iκ(j) + Ooff ), where κ(j) =
∑NT

i=1 κ(j,i) and Ooff is a zero-diagonal ma-

trix. Then, it follows that if |Θ| is large enough, an approximate weighting

matrix of E(j)−1
takes the form:

E(j)−1

=
1

|Θ| (Iκ(j) + Ooff )
−1

≈ 1

|Θ| (Iκ(j) −Ooff )

=
1

|Θ|2
(
2 |Θ| Iκ(j) − E(j)

)
(4.18)
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4.4 Computational Complexity

Now let us look at the computational complexity of the three methods, in

terms of the number of real multiplications per transceiver antenna pair. In

general, the operations of K-point IDFT and K ×K matrix inversion need

4K log2 K and 4K3 real multiplications, respectively. Besides, the weight-

ing matrix E(j)−1
only needs to be calculated once in each OFDM frame

as it is only related to the multipath delays τ̂
(j,i)
l . Therefore, the complex-

ity considered in the initialization stage is mainly due to the operations of

CR̆P [τ ] and E(j)−1
. The calculation and update of CR̆P [τ ] require at most

4(|Q|+ |J|)/NT + 4K log2 K + 4Nh|Wb| real multiplications. Moreover, the

calculation of E(j)−1
needs at most 4N3

h real multiplications, but it needs at

most 2N2
h real multiplications if the approximate weighting matrix of E(j)−1

in (4.18) is used instead. In the tracking stage, the computation for each iter-

ation of the method I (or each of the second and subsequent iterations of the

method II and the method III) involves the calculation of F(j)E(j)−1
q̄

(j)
v , in

total requiring at most |Θ|(4T +2)+2|Θ|T/NT +8K log2 K+4N2
h real multi-

plications. For the method II and the method III, an optimal gradient vector

is formed at the first iteration, in which the computation of B(j)F(j)q̄
(j)
p and

the optimum β(j) at most requires |J|(4T +2)+8K log2 K +2|Θ|+10|J|T +

N2
T + NT (2|J|T + 1) real multipliations. The computational complexity for

the system parameters given in Section 4.5 is listed in Table 4.1. The values

of the parameters |Wb|, Nh, T , NT , K, |Q|, and |J| are set as 109, 8, 2, 2,
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256, 192, and 8, respectively, while the value of the parameter |Θ| can be

48, 96, or 192. For a fair performance comparison, both the data subcarrier

set Θ and the pilot subcarrier set J are used for tracking channel variations,

except that only the pilot subcarrier set is adopted at the first iteration of

the method II and the method III. Hence, we use |Θ|+ |J| to replace |Θ| in

the calculation of the complexity in Table 4.1. As observed in Table 4.1, the

complexity of the method II and the method III is a little bit lower than that

of the method I. It can also be noticed that the complexity in the tracking

stage is mostly due to the operations of the DFT and the IDFT which in total

require 8K log2 K = 16384 real multiplications. Some complexity gain can

be achieved by using partial DFT processing such as in [37]. If |Θ| is larger

than Nh, the computation of the partial DFT processing mainly depends on

the size of Θ. As a result, the complexity of the tracking stage is basically

dominated by |Θ| since |J|, NT and T are usually much smaller than |Θ|.

4.5 Computer Simulation

We demonstrate the performance of the proposed channel estimation meth-

ods through computer simulation of an STBC-OFDM system with two trans-

mit antennas and a single receive antenna. The parameters are set the same

as those in the 802.16e OFDM standard [43] and summarized in Table 4.2.

The system occupies a bandwidth of 5MHz and operates in the 2.3GHz

frequency band. The entire bandwidth is divided into K = 256 subcarriers

among which |Q|+ |J| = 200 subcarriers are used to transmit data symbols

and pilot tones, and the remaining M = 56 subcarriers are used as virtual
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Table 4.1: Computational complexity for the system parameters given in

Section 4.5.

Initialization Stage

Method I and Method II 14128

Method III 12208

Tracking Stage (|J| = 8)

|Θ| 48 96 192

The first iteration of the Method II and the

Method III

16806 16902 17094

Each iteration of the Method I or each of the

second and subsequent iterations of the Method

II and the Method III

17312 17888 19040
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Table 4.2: Simulation parameters.

Parameter Value

Carrier frequency 2.3GHz

Bandwidth 5MHz

FFT size (K) 256

Length of CP 64

Number of data and pilot subcarriers 200

Number of virtual subcarriers (M) 56

Modulation scheme for data subcarriers QPSK, 16QAM

Modulation scheme for pilot subcarriers BPSK

Number of OFDM data symbols per frame (ND) 40

Two-path channel

Channel power profiles ITU Veh-A channel [34]

Jakes model [33]

0 ∼ 50
Channel delay profiles

(Uniform distribution)

Multipath observation window (Wb) [0, 108]

Preassumed number of paths (Nh) 4, 8
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subcarriers at the two edges and a DC subcarrier. In the simulation, the

modulation schemes for the data symbols are QPSK and 16QAM, while the

BPSK modulation scheme is adopted for the pilot tones. Each pilot subcar-

rier transmits the same power as each data subcarrier. Each OFDM frame

is composed of one OFDM preamble and ND = 40 OFDM data symbols.

The length of the CP is 64 sample periods, i.e., one quarter of the useful

symbol time. The preambles transmitted from the first and second antennas

use even and odd subcarriers respectively with a 3dB power boost, and the

values of those subcarriers are set according to [43]. Both a conventional two-

path channel and an International Telecommunication Union (ITU) Veh-A

channel are simulated with path delays uniformly distributed from 0 to 50

sample periods, where the relative path power profiles are set as 0, 0 (dB)

for the two-path channel and 0, −1, −9, −10, −15, −20 (dB) for the ITU

Veh-A channel [34]. The vehicle speed ve of 240km/hr is used to simulate

mobile radio environments, for which Rayleigh fading is generated by Jakes

model [33]. Moreover, the multipath observation window Wb is set as [0, 108].

The preassumed number of paths Nh is set as 4 and 8 in the two-path channel

and the ITU Veh-A channel, respectively. Both the data subcarrier set Θ

and the pilot subcarrier set J are used in the tracking stage. The subcarrier

indices of J are uniformly assigned within the available subcarriers. The set

Θ is uniformly selected from Q, and the parameter |Θ| could be 192, 96, 48,

24, 12, 6 or 3. The values of the maximum iteration number V are set as

5 and 7 for QPSK and 16QAM modulation, respectively. For the stopping

criterion, the prespecified threshold ε is set as 10−4. The entire simulations
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are conducted in the equivalent baseband, and we assume both symbol syn-

chronization and carrier synchronization are perfect. Finally, throughout the

simulation, the parameter Eb/No is defined as a ratio of received bit energy

to the power spectral density of noise.

For comparison purpose, the performance curve with ideal channel esti-

mation, denoted as perfect CSI, is provided for reference and served as a per-

formance lower bound. We also compare the proposed methods with both the

STBC-based MMSE method [48] and the Kalman filtering method [50] [51]

where the decision-feedback methodology is employed under the assumption

of ideal channel estimation in the initialization stage. Some statistical in-

formation such as Doppler frequency, auto-covariance of channels, and noise

power is assumed to be known for these two existing methods. It is noted

that the Kalman filtering method is mainly based on [50] and the received

signals within a time slot are used to perform channel estimation according

to the decision-feedback steps in [51].

4.5.1 NSE Performance of MPIC-Based Decorrelation

Method

Figure 4.4 shows the NSE performance of the MPIC-based decorrelation

method in the initialization stage. The performance measure is the aver-

aged NSE between the actual channel frequency response and the estimated

channel frequency response. We can see from this figure that the NSE de-

creases monotonically as the Eb/No increases, but the channel estimation

performance is eventually limited by the residual multipath interference at
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high Eb/No. It is also observed that the MPIC-based decorrelation method

in the two-path channel has better NSE performance than that in the ITU

Veh-A channel.

4.5.2 BER Performance

Figure 4.5 shows the BER performance for QPSK modulation in the two-path

channel at ve = 240km/hr with |J| = 8 and |Θ| = 192. As can be observed

in Figure 4.5, at BER=10−2, the required Eb/No for both the method II and

the method III is about 3dB less than that for the method I, and at most

0.2dB more than that for the perfect CSI case. Compared with the STBC-

based MMSE method and the Kalman filtering method, the method II and

the method III also yield much better BER performance. Figure 4.6 and

Figure 4.7 give the BER performance for 16QAM modulation in the two-

path channel and the ITU Veh-A channel, respectively, at ve = 240km/hr

with |J| = 8 and |Θ| = 192. As shown in Figure 4.6, it is clear that with the

help from the pilot gradient vector at the first iteration, both the method II

and the method III provide a substantial gain in Eb/No, and there is only

0.8dB degradation in the required Eb/No at BER=10−2 compared with the

performance curve of the perfect CSI case. However, for the method I, a

higher error floor is clearly visible at a BER of 4× 10−2. Obviously, the two

existing methods also suffer from severe degradation in the BER performance

due to the error propagation effect, even though they are a little better than

the method I. Similarly to the above results, Figure 4.7 shows that both the

method II and the method III significantly outperform the method I, whereas
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they still have 3.6dB gap in Eb/No compared with the perfect CSI case. The

two existing methods still have a significant Eb/No gap compared with the

method II and the method III.

4.5.3 Effect of Normalized Maximum Doppler Frequency

Figure 4.8 and Figure 4.9 show BER versus fd in the ITU Veh-A channel

for QPSK modulation and 16QAM modulation, respectively, where fd is the

maximum Doppler frequency, normalized by the subcarrier spacing. Clearly,

the BER performance gap between the method I and the method II (or the

method III) becomes larger as fd increases up to 0.07 and 0.05 in the cases

of QPSK and 16QAM modulation, respectively. It is worthy to mention that

the method III is comparable to the method II at different maximum Doppler

frequencies, even though an approximate weighting matrix is adopted in the

method III. For calibration purpose, the BER performance for the three

proposed methods without error propagation is also simulated in these two

figures. We observe that the adoption of the optimal gradient vector effec-

tively reduces the error propagation effect and even the BER performance

without error propagation is attainable for fd up to 0.05 and 0.03 in the cases

of QPSK and 16QAM modulation, respectively.

4.5.4 Effect of Number of Pilot Tones

Figure 4.10 shows BER versus |J| in the ITU Veh-A channel for 16QAM

modulation at ve = 240km/hr with |Θ| = |Q| and Eb/No= 20dB. As can

be observed from this figure, the BER performance of the method II (or
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the method III) converges faster than the method I, while it is improved

continually until |J| increases to 8. Moreover, both the method II and the

method III can still give better BER performance even when the number of

pilot tones is small.

4.5.5 Effect of Number of Data Subcarriers Used

Figure 4.11 shows BER versus |Θ| in the ITU Veh-A channel for 16QAM

modulation at ve = 240km/hr with |J| = 8 and Eb/No=20dB. This figure

indicates that there is a trade-off between BER and |Θ|, and that one can

reduce computational complexity by using a smaller |Θ| at the cost of slight

performance degradation whenever |Θ| is larger than 48.

4.5.6 Average Number of Iterations

Figure 4.12 compares the average number of iterations in the ITU Veh-

A channel for 16QAM modulation at ve = 240km/hr with |J| = 8 and

Eb/No=20dB. Due to the use of the approximate weighting matrix, when

|Θ| is larger than 48, the method III requires one more iteration compared

with the method II. However, the method III is still an attractive approach by

decreasing V from 7 to 6 at the price of slight BER performance degradation

when the computational complexity of matrix inverse is an issue.
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Figure 4.4: NSE performance of the MPIC-based decorrelation method in

the initialization stage (ve = 240km/hr).
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Figure 4.5: BER performance for QPSK modulation in the two-path channel

at ve = 240km/hr (|J| = 8 and |Θ| = |Q| = 192).
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Figure 4.6: BER performance for 16QAM modulation in the two-path chan-

nel at ve = 240km/hr (|J| = 8 and |Θ| = |Q| = 192).
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Figure 4.7: BER performance for 16QAM modulation in the ITU Veh-A

channel at ve = 240km/hr (|J| = 8 and |Θ| = |Q| = 192).
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Figure 4.8: BER versus normalized maximum Doppler frequency in the ITU

Veh-A channel for QPSK modulation (|J| = 8, |Θ| = |Q| = 192, and

Eb/No=16dB).
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Figure 4.9: BER versus normalized maximum Doppler frequency in the ITU

Veh-A channel for 16QAM modulation (|J| = 8, |Θ| = |Q| = 192, and

Eb/No=22dB).
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Figure 4.10: BER versus number of pilot tones used in the ITU Veh-A channel

for 16QAM modulation (ve = 240km/hr, |Θ| = |Q|, and Eb/No=20dB).
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Figure 4.11: BER versus number of data subcarriers used in the ITU

Veh-A channel for 16QAM modulation (ve = 240km/hr, |J| = 8, and

Eb/No=20dB).
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Figure 4.12: Average number of iterations versus |Θ| in the ITU Veh-A chan-

nel for 16QAM modulation (ve = 240km/hr, |J| = 8, and Eb/No=20dB).
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4.6 Summary

In this chapter, we present a two-stage channel estimation method for STBC-

OFDM systems in mobile wireless channels. In the initialization stage, an

MPIC-based decorrelation method is used to estimate multipath delays and

multipath complex gains. In the tracking stage, two refined DF DFT-based

channel estimation methods are proposed by using a few pilot tones to form

an optimal gradient vector at the first iteration, and the optimal step size

is directly calculated from the received signals. Further, in order to reduce

computational complexity of matrix inverse in the method II, an approximate

weighting matrix is proposed and used in the method III. The simulation

results show that both the method II and the method III can effectively alle-

viate the error propagation effect and thus significantly improve the perfor-

mance of the method I (i.e., the classical DF DFT-based channel estimation

method). The two refined methods also outperform the STBC-based MMSE

method and the Kalman filtering method, especially when a high-level mod-

ulation scheme, e.g. 16QAM, is adopted in mobile environments.
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Chapter 5

EM-based Iterative Receivers

for OFDM and BICM-OFDM

Systems in Doubly Selective

Channels

5.1 Literature Survey and Motivation

OFDM is a promising technique to realize high data rate transmission over

multipath fading channels. Due to the use of a GI, it allows for a simple

one-tap equalizer [52]. In addition, BICM combined with OFDM, known

as BICM-OFDM, is introduced as a way to offer superior performance by

exploiting frequency diversity [53]. Over the past decade, OFDM has found

widespread application in several standards such as 802.16e WMAN [54].

However, in mobile radio environments, multipath channels are usually time-

variant. The channel time variation destroys the orthogonality among sub-
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carriers, and thereby yields ICI. The effect of ICI on the BER performance

has been intensively studied in [55,56]. As the maximum Doppler frequency

increases, the one-tap equalizer is no longer sufficient to conquer this chan-

nel distortion. It is shown in [56] that if the maximum Doppler frequency is

larger than 8% of the subcarrier spacing, the signal-to-ICI plus noise ratio is

less than 20dB. Hence, in order to obtain reliable reception, there is a need

for efficient algorithms to combat the ICI effect in a mobile OFDM receiver.

A wide variety of schemes for ICI mitigation have been proposed, mainly

consisting of ICI self-cancellation, blind equalization, and ICI cancellation-

based equalization [56–69]. At the expense of reduced bandwidth efficiency,

the ICI self-cancellation scheme is simple and effective to provide good BER

performance [57,58]. The scheme, however, is not suitable for existing stan-

dards as modification to transmit formats is required. In contrast, the blind

equalization scheme is efficient in saving bandwidth but it involves high com-

putation complexity [59]. Among the three ICI mitigation schemes, the ICI

cancellation-based equalization scheme is the most common [60–69]. Based

on zero-forcing or MMSE criterion, two optimal frequency-domain equaliz-

ers are derived in [60–62]. To enhance the performance, successive interfer-

ence cancellation with optimal ordering can be incorporated with the MMSE

equalizer [63]. Several works, like [56] and [64–66], are targeted toward re-

ducing the complexity of frequency-domain equalizers. By ignoring small ICI

terms, a partial MMSE equalizer is proposed in [64] to avoid the inversion of

a large-size matrix, while a recursive algorithm is developed in [56] for calcu-

lation of equalizer coefficients. Moreover, [65] incorporates a partial MMSE
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equalizer with successive interference cancellation, and [66] combines the par-

tial MMSE equalizer with BICM. Both methods benefit greatly from time

diversity gains induced by mobility. We also find two DF equalizers in [67,68],

which make use of power series expansion on time-variant frequency response.

Apart from using frequency-domain equalizers, [60] and [69] consider time-

domain equalizers which first achieve ICI shortening, followed by MMSE

detection and parallel interference cancellation, respectively, to remove the

residual ICI.

For successful implementation of the ICI cancellation-based equalization,

it is essential to obtain an accurate estimate of channel variation or the equiv-

alent ICI channel matrix. In general, this can be accomplished through the

use of embedded reference signals such as pilot symbols or pilot tones. In [63],

an MMSE estimator, which demands frequent pilot symbols inserted among

OFDM data symbols, is proposed to estimate time-variant CIR. As complex-

ity is concerned, most studies model the time variation of each channel tap

as a polynomial function. By assuming CIR varies in a linear fashion within

an OFDM symbol, [64] and [67] exploit pilot symbols for parameter estima-

tion, whereas [68] and [70] belong to the category which uses pilot tones.

It is concluded that a first-order polynomial is adequate to capture channel

dynamics with the normalized maximum Doppler frequency up to 0.1. When

normalized maximum Doppler frequency is larger than 0.1, a 2-D polynomial

surface function is suggested in [61] to model time-varying channel frequency

response and to gain better performance.

The EM algorithm can facilitate solving the ML estimation problem in
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an iterative manner which alternates between an E-step, calculating an ex-

pected complete log-likelihood (ECLL) function, and an M-step, maximizing

the ECLL function with respect to some unknown parameters [71, 72]. Re-

cently, a few EM-based methods have been proposed for channel estimation

and data detection in OFDM systems [73–75]. The major difference among

these methods lies whether they formulate the original ML problem into a

data sequence detection problem or a channel variable estimation problem.

Yet, the wireless channel is assumed to be quasi-static in all these works,

i.e., channel gain remains constant over the duration of one OFDM symbol.

In this chapter, we investigate two EM-based iterative receivers for OFDM

and BICM-OFDM systems in doubly selective fading channels. By assuming

channel varies in a linear fashion, we first analyze the ICI effect in frequency

domain and derive a data detection method based on the EM algorithm using

the ML criterion. In an effort to reduce complexity, groupwise processing is

adopted for the two EM-based receivers. For OFDM systems, we implement

an ML-EM receiver which iterates between a groupwise ICI canceller and an

EM detector. Based on this receiver structure, a TURBO-EM receiver for

BICM-OFDM systems is then proposed to successively improve the perfor-

mance by applying the turbo principle. Finally, for the initial setting of the

two receivers, MMSE-based channel estimation is first performed by using a

few pilot tones and it is later improved via the DF methodology.

The rest of this chapter is organized as follows. In Section 5.2, we de-

scribe the OFDM and BICM-OFDM systems, followed by the analysis of

ICI in frequency domain. According to the frequency domain ICI model, an
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Figure 5.1: BICM-OFDM systems.

EM-based data detection method is developed in Section 5.3. In Section 5.4,

an ML-EM receiver and a TURBO-EM receiver are proposed. Afterwards,

we describe the initialization procedure of the two receivers and discuss their

computational complexity. In Section 5.5, we present our computer simula-

tion results. Finally, some conclusions are drawn in Section 5.6.

5.2 System Model

5.2.1 Transmitted and Received Signals

Figure 5.1 shows a BICM-OFDM system, where information bits are mod-

ulated by BICM along with an OFDM modulator [53]. Data symbols are

generated by concatenating a binary convolutional encoder with a 2γ-ary

mapper through a bitwise interleaver (denoted as Π). Throughout this chap-

ter, we only consider BPSK modulation (γ = 1); therefore, data symbols are

one-to-one mapped from coded bits. Subsequently, these data symbols are

transmitted over NF consecutive OFDM symbols. Let X [k] be the data sym-

bols to be transmitted over the kth subcarrier for an OFDM symbol. After

modulated by an N -point IDFT and appended with GI of length NG, time
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domain samples of an OFDM symbol are given by

x [n] =
1

N

N−1∑

k=0

X [k] e 2πkn
N (5.1)

for n = −NG, . . . , N − 1, where we assume that X [k] is mapped from the

coded bit stream c [k].

At the receiver, by removing the GI and taking the DFT, the demodulated

signal in frequency domain is given by [19]:

Y [k] = H [k, k] X [k] +
N−1∑

m=0,m6=k

H [k, m] X [m]

︸ ︷︷ ︸
ICI term

+Z [k] (5.2)

for k = 0, . . . , N − 1, where H [k,m] represents the leakage term of ICI from

the mth subcarrier to the kth subcarrier, α [k,m, l] is the DFT of a time series

h [l, n] corresponding to the lth channel tap at time delay l, for l = 0, . . . , L−1

and n = 0, . . . , N − 1, ((·))N denotes the modulo-N operation, and Z [k] is

AWGN with zero-mean and variance σ2
Z . Therefore, we have

H [k, m] =
L−1∑

l=0

α [k, m, l] e− 2πml
N (5.3)

and

α [k, m, l] =
1

N

N−1∑
n=0

h [l, n] e−
2πn((k−m))N

N (5.4)

Moreover, we assume that the channel tap h [l, n] for different l is an indepen-

dent and identically distributed (i.i.d.) complex Gaussian random variable

with zero mean and variance Ξl. From (5.2), we can observe that a de-

modulated subcarrier is affected by the ICI contributed from all the other

subcarriers, and this effect severely degrades the system performance if a

conventional one-tap equalizer is employed [56].
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5.2.2 Modeling of ICI in Frequency Domain

We adopt a linear function to model the temporal variation of each channel

tap over an OFDM symbol, as follows:

h [l, n] = a [l, 1] n + a [l, 0] (5.5)

for l = 0, . . . , L − 1 and n = 0, . . . , N − 1, where a [l, p] is the complex

coefficient of the pth order for the lth tap. Substituting (5.5) into α [k, m, l]

of (5.4), we can obtain

α [k,m, l] =





N−1
2

a [l, 1] + a [l, 0] , for k = m

Φ [k, m] a [l, 1] , otherwise
(5.6)

where Φ [k, m] can be derived as

Φ [k, m] =
1

N

N−1∑
n=0

ne−
2πn(k−m)

N = −1

2
+ 

1

2 tan
(

π((k−m))N

N

) (5.7)

According to the fact of 1 ≤ ((k −m))N ≤ N − 1, we observe that the value

of π ((k −m))N/N ranges from π/N to π (N − 1)/N . Apply the Maclaurin

series of tan (x) ≈ x, for |x| < π/2, and after some straightforward derivation,

we can represent Φ [k,m] as

Φ [k,m] ≈





−1
2
, for ((k −m))N = N

2

−1
2

+  N
2π((k−m))N

, for 1 ≤ ((k −m))N < N
2

−1
2

+  N

2π[((k−m))N−N]
, for N

2
< ((k −m))N ≤ N − 1

(5.8)

From (5.8), it follows that Φ [k, m] is a fixed value, which only depends on

(k −m) modulo N and it can be calculated in advance. By using (5.6) and

(5.8), (5.2) can be rewritten as

Y [k] = H [k, k] X [k] +
N−1∑

m=0,m6=k

Φ [k, m] w [m] X [m]

︸ ︷︷ ︸
ICI term

+Z [k] (5.9)
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where w [m] is a new channel variable in frequency domain and can be defined

as

w [m] =
L−1∑

l=0

a [l, 1] e− 2πml
N (5.10)

It is worthy to mention that in orthogonal frequency division multiple ac-

cess (OFDMA) systems, each user merely detects a set of nearby subcarriers

of interest (e.g. zones or clusters in 802.16e), instead of all the N subcar-

riers [54]. With the formulation of (5.9), one can deal only with a small

number of channel variables even when the number of channel taps is large.

Finally, we can rewrite (5.9) in a matrix notation, leading to a more compact

representation:

Y = HX + Z

= (M + ΦW)X + Z

= MX +
_

Φw + Z (5.11)

where Y = [Y [0] , . . . , Y [N − 1]]T , X = [X [0] , . . . , X [N − 1]]T , the (k, m) th

entry of H is H [k, m], Z = [Z [0] , . . . , Z [N − 1]]T , the (k, m) th entry of Φ is

just Φ [k, m], w = [w [0] , . . . , w [N − 1]]T , W = diag {w}, the (k, m) th entry

of
_

Φ is given by Φ [k, m] X [m], M = diag
{

[H [0, 0] , . . . , H [N − 1, N − 1]]T
}

,

and the superscript (·)T stands for the transpose operation. Moreover, we

have w = Fs, where s = [a [0, 1] , . . . , a [L− 1, 1]]T and F is a DFT matrix of

size N × L, with the (m, l) th entry given by exp {−2πml/N}.
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5.3 EM-based Data Detection Method

The EM algorithm was originally introduced by Dempster et al in 1977 for

iteratively computing the ML estimate in a missing data model. [71]. The

algorithm was given its name since the iteration procedure consists of an ex-

pectation step (E-step), followed by a maximization step (M-step). Dempster

et al pointed out that the EM algorithm had been used in a wide range of

applications, but they generalized the algorithm and more importantly, de-

veloped the theory behind it. Since 1977, due to this development, the EM

algorithm has been applied in many research works and fields, such as image

signal processing, communication signal processing, and even economic and

social science. From (5.11), the optimum ML data detection problem can be

formulated as follows:

XML = arg max
X∈{1,−1}N

L (Y|X)

= arg max
X∈{1,−1}N

∫
L (Y|w,X) P (w) dw (5.12)

where L (·) is a log-likelihood function, obtained by taking logarithm of the

corresponding probability density function P (·). Direct calculation using

(5.12), however, involves multidimensional integration over the hidden vari-

able w. With the ability to tackle missing data models, the EM algorithm is

considered as a good alternative to solve (5.12), and the core idea behind this

algorithm is to iterate between the E-step and the M-step such that mono-

tonic increase in L (Y|X) is obtained. The theorem of the EM algorithm is

reviewed and proved in Appendix E. More details of the algorithm and its

application can be found in [71,72].
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The E-step and the M-step associated with the optimization problem of

(5.12) are expressed respectively as

Ω
(
X|Y, X̂(m−1)

)
= Ew|Y,X̂(m−1) [L (Y,w|X)] (5.13)

X̂(m) = arg max
X∈{1,−1}N

Ω
(
X|Y, X̂(m−1)

)
(5.14)

where X̂(m) denotes the hard decision of X at the mth EM iteration, and

Ω
(
X|Y, X̂(m−1)

)
is known as the ECLL function, to be maximized in the

M-step of (5.14). By using the fact that L (Y,w|X) = L (Y|w,X) + L (w)

and from (5.11), we can further simplify (5.13) as

Ω
(
X|Y, X̂(m−1)

)
= Ew|Y,X̂(m−1) [L (Y|w,X)] + const.

= Ew|Y,X̂(m−1)

[−1

σ2
Z

‖Y −HX‖2

]
+ const.

=
−1

σ2
Z

(
YHY −YHH̃X

−XHH̃HY + XHΣ̃X
)

+ const. (5.15)

where H̃ and Σ̃ denote Ew|Y,X̂(m−1) [H] and Ew|Y,X̂(m−1)

[
HHH

]
, respectively,

and the superscript (·)H represents the Hermitian operation. The constant

term in (5.15) can be dropped for simplicity. Without loss of generality,

the CSI M can be estimated through pilot tones embedded in each OFDM

symbol, and we denote the estimate as M̂. By inserting H = M̂ + ΦW into

H̃ and Σ̃, it is straightforward to calculate the two terms as

H̃ = Ew|Y,X̂(m−1)

[
M̂ + ΦW

]
= M̂ + ΦW̃ (5.16)
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Σ̃ = Ew|Y,X̂(m−1)

[(
M̂ + ΦW

)H (
M̂ + ΦW

)]

= Ew|Y,X̂(m−1)

[
M̂HM̂ + M̂HΦW + WHΦHM̂

+WHΦHΦW
]

= M̂HM̂ + M̂HΦW̃ + W̃HΦHM̂

+Ew|Y,X̂(m−1)

[(
wwH

)T ¯ (
ΦHΦ

)]

= M̂HM̂ + M̂HΦW̃ + W̃HΦHM̂

+Ew|Y,X̂(m−1)

[(
wwH

)T
]
¯ (

ΦHΦ
)

= M̂HM̂ + M̂HΦW̃ + W̃HΦHM̂

+
(
Ew|Y,X̂(m−1)

[
wwH

])T

¯ (
ΦHΦ

)
(5.17)

where we have W̃
∆
= Ew|Y,X̂(m−1) [W] and the notation ¯ denotes as the

Hadamard product. Let

W̃
∆
= diag {w̃} (5.18)

w̃
∆
= Ew|Y,X̂(m−1) [w] (5.19)

and

Σ̃w
∆
= Ew|Y,X̂(m−1)

[
(w − w̃) (w − w̃)H

]

= Ew|Y,X̂(m−1)

[
wwH

]− w̃w̃H (5.20)

We can rewrite (5.17) as

Σ̃ = M̂HM̂ + M̂HΦW̃ + W̃HΦHM̂

+
(
Σ̃w + w̃w̃H

)T

¯ (
ΦHΦ

)
(5.21)
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Also, from (5.11), it is observed that the conditional probability density func-

tion P
(
w|Y, X̂(m−1)

)
is a Gaussian distribution, with mean and covariance

given by [76]

w̃ = µw + CwYC−1
YY (Y − µY) (5.22)

Σ̃w = Cww −CwYC−1
YYCYw (5.23)

where the relevant terms are defined and statistics are calculated in the

following way. We first apply a first-order autoregressive (AR) channel model

to compute µw and Cww. Details are provided in Appendix F, and the two

terms can be derived as

µw = E [w] = 0 (5.24)

Cww = E
[
(w − µw) (w − µw)H

]
= FCssF

H (5.25)

where Css in (5.25) is a diagonal matrix with the lth diagonal entry equal to

2 (1− α) Ξl

/
(N − 1)2, and α is the channel tap autocorrelation as defined in

(F.2). Moreover, we can get

µY = E [Y] = M̂X̂
(m−1)

(5.26)

CYY = E
[
(Y − µY) (Y − µY)H

]

=
_

Φ
(m−1)

Cww

_

Φ
(m−1)H

+ σ2
ZI (5.27)
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and

CwY = CH
Yw = E

[
(w − µw) (Y − µY)H

]
= Cww

_

Φ
(m−1)H

(5.28)

where
_

Φ
(m−1)

is obtained by substituting the hard decision X̂(m−1) into
_

Φ.

Using (5.16)-(5.28), we can calculate the ECLL function of (5.15). The EM

algorithm for data detection is then summarized in Figure 5.2, and it is

repeated until a stopping criterion holds. The stopping criterion is to check

whether X̂(m) = X̂(m−1) or the iteration number reaches a predefined limit

NEM .

5.4 Implementation: EM-based Iterative Re-

ceivers

Because the data detection method in (5.14) has high computation com-

plexity, in this section, we investigate two EM-based iterative receivers for

practical implementation.

5.4.1 ML-EM Receiver for OFDM Systems

As depicted in Figure 5.3, we consider an ML-EM receiver with N subcar-

riers partitioned into R groups, and each group consists of G subcarriers.

Denote the jth group of subcarriers as Gj = {jG, . . . , (j + 1) G− 1}, for

j = 0, . . . , R− 1. Next, we define the jth data group and observation group

as

Xj = [X [jG] , . . . , X [(j + 1) G− 1]]T (5.29)
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Figure 5.2: EM-based data detection method.
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and

Yj = [Y [jG] , . . . , Y [(j + 1) G− 1]]T (5.30)

Further, we use Bj to denote the set {((j −Q))R , . . . , ((j + Q))R}. Without

loss of generality, we focus on detecting the kth data group. Assume that

due to the ICI effect, the energy of Xk is spread over 2Q + 1 observation

groups of Yj, for j ∈ Bk, which also contains interfering energy caused by

other adjacent data groups Xj, for j ∈ Bj\ {k}. As observed in Figure

5.3(a), there is an additional iteration loop outside the EM detector, called

ML iteration. Within an ML iteration, the ICI is first reconstructed and

subtracted from the observation group, yielding a signal:

Ȳj = Yj −
∑

i∈Bk\{k}
H̄j,iX̄i (5.31)

for j ∈ Bk, where X̄i is the tentative decision of Xi, and the (p, q) th entry

of H̄j,i is given by the (jG + p, iG + q) th entry of H̄, the estimate of H,

for p, q = 0, . . . , G − 1. Both X̄i and H̄ are obtained from the output of

the EM detector at the previous ML iteration. After ICI cancellation, the

EM detector is executed by applying the EM-based data detection method

in Section 5.3. Define XE =
[
X̄T

((k−Q−1))R
, . . . , X̂

(m−1)T

k , . . . , X̄T
((k+Q+1))R

]T

and YE =
[
YT

((k−Q−1))R
, . . . ,YT

((k+Q+1))R

]T

, where X̂
(m−1)
k is the hard deci-

sion of Xk at the (m− 1) th EM iteration within the EM detector. Par-

ticularly, for m = 1, we initialize X̂
(0)
k as X̄k. In the E-step, at the mth

EM iteration, we replace X and Y (in Figure 5.2) with XE and YE to

calculate the statistics W̃, H̃ and Σ̃. The size of these three matrices now

becomes (2Q + 3) G×(2Q + 3) G. After that, the interference-reduced signal

109



YM =
[
ȲT

((k−Q))R
, . . . , ȲT

((k+Q))R

]T

is taken to compute the ECLL function,

for each combination of Xk ∈ {1,−1}G, as follows:

Ω (Xk|YM ,YE,XE) = − 1

σ2
Z

(
YH

MYM −YH
MH̃kXk

−XH
k H̃H

k YM + XH
k Σ̃kXk

)
(5.32)

where the matrices H̃k and Σ̃k are of size (2Q + 1) G×G and G×G, with

the (p, q) th entry given by the (G + p, (Q + 1) G + q) th entry of H̃ and the

((Q + 1) G + p, (Q + 1) G + q) th entry of Σ̃, respectively. Finally, the deci-

sion of Xk is calculated in the M-step according to:

X̂
(m)
k = arg max

Xk∈{1,−1}G
Ω (Xk|YM ,YE,XE) (5.33)

Within the EM detector, the above procedure is conducted to detect R groups

simultaneously, i.e., we use parallel processing for group detection. Once the

stopping criterion is met, the receiver proceeds to the next ML iteration

until a good performance is achieved, and X̄k and H̄ are updated. In other

words, at the end of the kth parallel processing, X̄k is replaced by X̂
(m)
k ,

the (kG + j) th diagonal entry of W̄ is renewed by the ((Q + 1) G + j) th

diagonal entry of W̃, for k = 0, . . . , R − 1 and j = 0, . . . , G − 1, and H̄ is

calculated as M̂ + ΦW̄.

The intuition behind the group detection is explained as follows. While

computing and maximizing the ECLL function, we can acquire the diversity

gains through examining the interference-reduced signals YM , of which the

energy is contributed mainly by the data group Xk. Therefore, it is reason-

able to expect that full diversity gain is achievable when the value of Q is

sufficiently large and the ICI is perfectly cancelled out. The diversity gain we
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Figure 5.4: TURBO-EM receiver for BICM-OFDM systems.

can achieve also depends upon whether a good estimate of W̄ is provided.

Recall that the 2Q + 1 observation groups (in the neighborhood of Yk) are

sufficient for estimating the channel variables of the kth group, but they also

include ICI from adjacent data groups. For example, the ((k −Q))R th obser-

vation group is interfered by the data groups Xj, for j = ((k − 2Q))R , . . . , k.

Hence, in the E-step, we takes an enlarged cluster of original observation

groups YE, as well as the corresponding data groups XE, to calculate the

channel variables of the kth group. Strictly speaking, the size of YE and

XE should be chosen as 4Q + 1, but our experimental trials suggest that the

choice of 2Q + 3 is large enough to get a good result.
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5.4.2 TURBO-EM Receiver for BICM-OFDM Systems

Figure 5.4 shows the TURBO-EM receiver for BICM-OFDM systems. The

receiver implements the turbo iterations by exchanging the extrinsic informa-

tion between the EM detector (after the ICI canceller) and the soft-output

Viterbi algorithm (SOVA) decoder. Within each TURBO iteration, the ICI

is first reconstructed and subtracted from the observation group to obtain

the interference-reduced signal Ȳj by using (5.31), but with soft decision
_

Xi replacing the hard decision X̄i. In this way, we can mitigate the error

propagation effect, and the soft decision for the BPSK case is given by [77]

_

Xi = E [Xi] = tanh

(
λC,post

i

2

)
(5.34)

where λC,post
i =

[
λC,post [iG] , . . . , λC,post [(i + 1) G− 1]

]T
is the a posteriori

log-likelihood ratio (LLR), associated with Xi, from the SOVA decoder at

the previous TURBO iteration, and the LLR of a data symbol ϑ is defined as

the logarithm of the ratio of P (ϑ = +1) to P (ϑ = −1). We then apply the

maximum a posteriori (MAP) EM algorithm to the EM detector, which fur-

ther takes account of the a priori information to compute the ECLL function

as follows:

Ω (Xk|YM ,YE,XE) =
−1

σ2
Z

(
YH

MYM −YH
MH̃kXk −XH

k H̃H
k YM

+XH
k Σ̃kXk

)
+ L (Xk) (5.35)

where L (Xk) = ln P (Xk) is calculated from the interleaved extrinsic infor-

mation λC,ext
k =

[
λC,ext [kG] , . . . , λC,ext [(k + 1) G− 1]

]T
with respect to Xk

which is generated by the SOVA decoder. Under the assumption of an ideal
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interleaver, data symbols are independent of each other, and we obtain

L (Xk) =
G−1∑
j=0

L (X [kG + j] = qj) (5.36)

where qj denotes the value of X [kG + j], and L (X [kG + j] = qj) is calcu-

lated by using (G.4) in Appendix G. At the final EM iteration, the extrinsic a

posteriori LLR λD,ext
k =

[
λD,ext [kG] , . . . , λD,ext [(k + 1) G− 1]

]T
is generated

at the output of the EM detector. From [78] and (G.3), we get

λD,ext [kG + j]

= ln
P (X [kG + j] = +1|YM)

P (X [kG + j] = −1|YM)
− λC,ext [kG + j]

≈ max
Xk∈Ω+

j

(−1

σ2
Z

∥∥∥YM − H̃kXk

∥∥∥
2

+
1

2
XT

k\{j}λ
C,ext
k\{j}

)

− max
Xk∈Ω−j

(−1

σ2
Z

∥∥∥YM − H̃kXk

∥∥∥
2

+
1

2
XT

k\{j}λ
C,ext
k\{j}

)
(5.37)

where Ω+
j denotes the set for which the jth entry of Xk is ”+1”; Ω−

j is

defined similarly, and the vectors Xk\{j} and λC,ext
k\{j} are obtained by omitting

the jth entry of Xk and λC,ext
k , respectively. The extrinsic LLR λD,ext

k is then

converted into soft bits using (5.34), modeled as the output of an AWGN

channel with unit gain and variance σ2
C , deinterleaved through Π−1, and

passed to the SOVA decoder. The variance σ2
C is estimated as [79]

σ2
C =

1

NI

NI∑
i=1

(|µ [i]| − 1)2 (5.38)

where µ [i] indicates the soft value of the coded bits ranging between −1 and

+1, and NI represents the interleaver size. It is mentioned in [79] that the

Gaussian assumption is not satisfied at the beginning of TURBO iterations,

but it becomes a good approximation as the number of iterations increases.
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Figure 5.5: Initialization procedure for ML-EM and TURBO-EM receivers.

After the SOVA decoder produces the soft information by considering the

ML path and its strongest competitor in the trellis diagram, the receiver

progresses toward the next TURBO iteration until a preset maximum number

of iteration, NTB, is reached.

5.4.3 Initial Setting and Channel Estimation Update

Figure 5.5 depicts the block diagram for initialization of the two receivers.

The initial channel estimation is performed through the use of pilot tones

and improved via the decided data symbols. Let XP be a diagonal matrix

whose diagonal elements are obtained from the stacked vector of J pilot

tones on subcarriers {P0, . . . , PJ−1} within the OFDM symbol. Applying the

MMSE-based channel estimation method, we obtain [39]

M̂ = F
(
FH

P XH
P XPFP +

(
σ2

Z + σ2
ICI

)
I
)−1

FH
P XH

P YP (5.39)

where YP and FP are defined similar to Y and F, respectively, but here

related to subcarriers {P0, . . . , PJ−1} only. By invoking central limit theorem,
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the ICI energy σ2
ICI is approximated as (2πfd)

2/12 [55]. Subsequently, an

one-tap equalizer is used for data detection, and a DF approach is carried out

to initialize the two receivers. For the ML-EM receiver, decided data symbols

together with the pilot tones are used to generate a new channel estimate M̂

by using (5.39) and then produce an updated decision symbol X̄i, while for

the TURBO-EM receiver, much more reliable decision symbols are generated

by the Viterbi decoder. At the first TURBO iteration of the TURBO-EM

receiver, λC,ext
k is set to 0, and X̄i is used to replace

_

Xi in (5.34). Moreover,

we initialize H̄ as M̂, i.e., set W̄ = O, since no information on W̄ is available

at the first iteration of the two receivers.

Due to ICI, the initial estimate of M becomes inaccurate as fd increases.

Hence, Figure 5.3(a) and Figure 5.4 offer an option for channel estimation

update, wherein at the second and subsequent iterations (outer loop), the

ICI (reconstructed from NU adjacent subcarriers in a hard or soft manner)

to the subcarriers is canceled out in the received signal Y, and the MMSE-

based channel estimation is again used to refine the estimate M̂ by setting

σ2
ICI = 0.

5.4.4 Computational Complexity

Now let us look at the number of complex multiplications required for the

two proposed receivers. Assume that the operation of K×K matrix inversion

needs K3 complex multiplications. In Table 5.1, the first and second rows in-

dicate the complexity of the ICI canceller and the EM detector, respectively.

The third row gives the complexity for precomputing Cww and ΦHΦ in the
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EM detector. Note that the calculation of (5.36) in the MAP EM detector

does not require any multiplications, and the number of multiplications re-

quired to calculate (5.37) is presented in the fourth row of the Table 5.1. For

example, in the case of G = 4, Q = 4, γ = 1 and L = 6, the complexity

is calculated in the third column as well. Some complexity reduction can

be achieved by applying the SAGE algorithm and the Viterbi algorithm, as

proposed in [80] and [77] respectively, to simplify (5.33) and (5.37) when the

values of G and γ are relatively large to dominate the overall computation

complexity. Moreover, the complexity of the SOVA decoder is, in general,

upper-bounded by two times that of the Viterbi decoder. Finally, the com-

putational complexity of the MMSE-based channel estimation method can

be referred from [39] for details.

5.5 Computer Simulation

Our simulation demonstrates the performance of the two EM-based receivers.

The simulation parameters are defined according to the 802.16e OFDM stan-

dard [54] and listed in Table 5.2. The entire bandwidth, 5MHz, is divided

into N = 256 subcarriers among which 192 subcarriers carry data symbols,

J = 8 subcarriers transmit pilot tones, and the remaining 56 subcarriers

are virtual subcarriers. The BPSK modulation scheme is adopted for the

pilot tones, and a pilot subcarrier transmits at the same power level as a

data subcarrier. Each OFDM data frame is composed of NF = 40 OFDM

data symbols, and the length of GI is set to NG = 64. For the BICM

scheme, we employ a rate-1/2 convolutional code with generator polynomial
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Table 5.1: Computational Complexity (Ex: G = 4, Q = 4, γ = 1, and

L = 6).

Operation Number of Complex Multi-

plications

Example Unit

ICI canceller (2Q) G2 (2Q + 1) 1152 /ML

(or TURBO)

iteration

/group

EM detector 5 (2Q + 3)3 G3

+
[
36Q2 +

(
108 + 2γG+1

)
Q

+
(
81 + 2γG+1

)]
G2

+
[(

2γG+2 + 4
)
Q + 3× 2γG

+6] G

447208 /ML

(or TURBO)

iteration

/EM iteration

/group

Precalculation

of Cww &

ΦHΦ

(2Q + 3)2 (L + 1) G2

+ (2Q + 3) LG

13816 /group

Eq. (5.37) 2γ(G−1) [(2Q + 1) G2

+ (2Q + 2) G + 1]

1480 /TURBO

iteration

/group
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(133, 171) represented in octal and a block interleaver with 96 rows and 80

columns. Both a conventional two-path channel and an ITU Veh-A chan-

nel are used in our simulation with path delays uniformly distributed from

0 to 50 sample periods, where the relative path power profiles are set as

0, 0 (dB) for the two-path channel and 0,−1,−9,−10,−15,−20 (dB) for

the ITU Veh-A channel [34]. The fading channel is generated with Jakes

model by setting fd = 0.1 [33]. The user-defined parameters are chosen as

NU = 10 and NEM = 5. Some statistical information such as power delay

profiles, Doppler frequency, and noise power is assumed to be known to the

receivers. Throughout the simulation, the parameter Eb/No is defined as a

ratio of averaged receive bit energy to the power spectral density of noise.

As a benchmark, the performance curve with ideal initialization, labeled as

CSI and data known, serves as a performance lower bound, and the results

obtained with ideal CSI, denoted as CSI known, is provided for reference.

Furthermore, we also include the performance curve of the one-tap equalizer

in quasi-static channels, under the assumption of ideal CSI.

5.5.1 BER Performance of ML-EM Receiver

Figure 5.6 and Figure 5.7 show the BER performance of the ML-EM receiver

in the two-path and the ITU Veh-A channel, respectively. The parameter of

[G,Q] is set to [4, 4]. It is seen from Figure 5.6 that after three iterations,

the ML-EM receivers with or without channel estimation update have much

better performance than the same receiver at the initialization stage. Since

time-variant channels introduce diversity gains, the ML-EM receiver also per-

118



Table 5.2: Simulation parameters.

Parameter Value

Carrier frequency 2.3GHz

Bandwidth 5MHz

FFT size (N) 256

Length of CP (NG) 64

Number of data subcarriers 192

Number of pilot subcarriers (J) 8

Number of virtual subcarriers 56

Modulation BPSK

Number of OFDM data symbols per frame (NF ) 40

Generator polynomial of convolutional code (133, 171) in octal

Block interleaver size (rows, columns) (96, 80)

Two-path channel

Channel power profiles ITU Veh-A channel [34]

Jakes model [33]

0 ∼ 50
Channel delay profiles

(Uniform distribution)

Normalized maximum Doppler frequency (fd) 0.1
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forms better than the one-tap equalizer in quasi-static channels. In addition,

its BER is comparable to that based on ideal CSI knowledge, whereas for

the case without channel estimation update, an error floor occurs in the high

Eb/No region at BER=2×10−4. When compared with the lower bound, there

is still an Eb/No gap of 1.5dB and 4.5dB at BER=10−3 and 10−4, respectively,

for the ML-EM receiver with channel estimation update. Clearly, this gap is

due to the error propagation effect. It is worth noting that the performance

lower bound in Figure 5.6 comes very close to the theoretical matched-filter

bound analyzed in [56]. Similar performance trends are observed in Figure

5.7 for the ITU Veh-A channel. We can see that for the ML-EM receiver

with channel estimation update, the required Eb/No at BER=10−3 is almost

the same as that for an one-tap equalizer in quasi-static channels, while a

loss of 4.5dB and 3dB in Eb/No can be observed as compared with the lower

bound and the case of ideal CSI, respectively.

5.5.2 Effect of Group Size

Figure 5.8 addresses the impact of group size on the BER performance, and

the number of Q is selected to keep (2Q + 1) G ≈ 39 for fair comparison.

As expected, joint detection with more subcarriers will attain better perfor-

mance, and the improvement eventually saturates as the size of G increases.

5.5.3 BER Performance of TURBO-EM Receiver

Figure 5.9 demonstrates the BER performance of the TURBO-EM receiver

in the two-path channel. With the BICM, the effect of error propagation is
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effectively suppressed. From Figure 5.9, we see that after three iterations, the

receiver with channel estimation update achieves a performance close to the

lower bound, and the gap between them is only about 0.5dB at BER=10−5.

We also notice that there is a significant performance improvement over the

initialization case and it also outperforms the case without channel estimation

update by 1dB. Figure 5.10 depicts the BER performance in the ITU Veh-

A channel. We see from Figure 5.10 that after four iterations, the receiver

with channel estimation update achieves a performance gap with respect to

the lower bound by less than 1dB at BER=10−5, and the receiver exhibits

a remarkable improvement as compared with the initialization stage. How-

ever, when CSI is not updated, the performance of the receiver deteriorates

remarkably, although it is still better than that of the initialization stage.

5.5.4 FER Performance of TURBO-EM Receiver

Figure 5.11 depicts the frame error rate (FER) performance in the ITU Veh-

A channel. This figure also shows that the receiver with channel estimation

update performs very well in terms of FER. Hence, in order to achieve a good

performance, it is necessary to refine the CSI, especially when the number of

pilot tones is small and the normalized maximum Doppler frequency is large.

From Figure 5.9 to Figure 5.11, we also observe that the receivers with G = 2

and G = 4 have nearly identical BER performance.
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Figure 5.6: BER performance of the ML-EM receiver in the two-path channel

(NML = 3 and [G,Q] = [4, 4]).
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Figure 5.7: BER performance of the ML-EM receiver in the ITU Veh-A

channel (NML = 3 and [G,Q] = [4, 4]).
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Figure 5.8: BER performance of the ML-EM receiver with channel estimation

update for various [G,Q] (NML = 3).
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Figure 5.9: BER performance of the TURBO-EM receiver in the two-path

channel (NTB = 3 and [G, Q] = [4, 4]).
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Figure 5.10: BER performance of the TURBO-EM receiver in the ITU Veh-A

channel (NTB = 4 and [G, Q] = [4, 4]).
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Figure 5.11: FER performance of the TURBO-EM receiver in the ITU Veh-A

channel (NTB = 4 and [G, Q] = [4, 4]).
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5.6 Summary

In this chapter, we have investigated two EM-based iterative receivers for

OFDM and BICM-OFDM systems in doubly selective channels. Based on

the proposed EM algorithm for data detection, both receivers use groupwise

processing with ICI cancellation to reduce computational complexity and

to explore time diversity inherent in time-variant channels. For OFDM sys-

tems, the ML-EM receiver significantly outperforms the conventional one-tap

equalizer, and its BER performance even approaches the BER performance

without Doppler effect. Compared with the matched-filter bound, an Eb/No

gap appears because of the error propagation effect. For BICM-OFDM sys-

tems, a TURBO-EM receiver, which iterates between the MAP EM detector

and the SOVA decoder, is then introduced. This receiver effectively solves

the error propagation problem, and it attains a performance close to the low

bound in terms of both BER and FER. Simulation results indicate that in

order to attain a good performance, the channel estimation update is re-

quired when we use low-density pilot tones at high Doppler frequencies. As

a final remark, a group size of two to four is large enough to guarantee an

acceptable performance under practical channel conditions.
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Chapter 6

Conclusions

In this dissertation, we have studied channel estimation and data detection

methods for OFDM systems in time-varying multipath channels. The scope

of our research encompasses the design of pilot signals for MIMO channels,

channel estimation and tracking for low-mobility channels as well as data

detection for high-mobility channels. There are four main contributions in

our works. First of all, we design CC pilot signals for optimal channel es-

timation in MIMO systems. It is worth noting that the CC pilot signals

not only exhibit the properties of both impulse-like auto-correlation and

zero cross-correlation, but also have the characteristic of minimum PAPR

in time domain. We also propose a CC pilot-based STBC-OFDM system to

achieve bandwidth-efficient transmission at high vehicle speed. A receiver

architecture for channel estimation and data detection is developed and its

BER performance is analyzed and simulated. The second contribution is

to present the equivalence between the DF DFT-based channel estimation

method and the Newton’s method. Thus, the relationship between them
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is well established. We clarify that the DF DFT-based channel estimation

method can be further improved through the use of this equivalence. As to

the third contribution, a refined channel estimation method is investigated

for STBC-OFDM systems. The proposed channel estimation method is ac-

complished in two stages. In order to reduce computational complexity and

improve channel estimation performance, we propose an MPIC-based decor-

relation method to catch significant channel paths in the initialization stage.

The tracking stage considers the use of a gradient vector derived from pilot

tones to track temporal channel variation at the first iteration, followed by

the DF DFT-based channel estimation method at the subsequent iterations.

In addition, an analytic formula for adaptively determining the optimum step

size is investigated. The final contribution of this dissertation is the devel-

opment of OFDM receivers that enable to deal with the ICI in the presence

of Doppler spread in multipath channels. In this work, the EM algorithm

is derived and performed for data detection using ML criterion. By inte-

grating the groupwise ICI cancellation with the proposed EM algorithm, we

study the design of a low-complexity iterative ML-EM receiver for OFDM

systems. Based on the turbo processing principle, a TURBO-EM receiver,

for joint detection and decoding in BICM-OFDM systems, is proposed to

further improve system performance.
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Appendix A

Complementary Sequences

Complementary sequences are defined as a pair of sequences having the sum

of their autocorrelation values equal to a Kronecker delta function. Binary

complementary sequences, also widely named Golay sequences, were first

introduced by Marcel J. E. Golay in 1949 [30,31]. Later, complementary se-

quences were generalized to polyphase or multilevel complementary sequences

by other authors [81].

Let {α [0] , . . . α [N − 1]} and {β [0] , . . . β [N − 1]} be a pair of binary

complementary sequences, i.e., the values of the two sequences are either

”+1” or ”-1”. The two sequences are complementary if we have

γ [n] ≡
N−1∑
m=0

{α [m] α∗ [((m− n))N ]

+ β [m] β∗ [((m− n))N ]}

= 2N · δ [n]

=





2N, for n = 0

0 , for n 6= 0
(A.1)

where δ [n] is a Kronecker delta function. This ideal autocorrelation property
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makes complementary sequences attractive for many applications like radar

pulse compression and spread spectrum communication. From (A.1), the

complementary sequences in frequency domain representation have comple-

mentary power spectrum as follows:

Γ [k] =
N−1∑

k=0

|A [k]|2 + |B [k]|2 = 2N (A.2)

where {A [k]} and {B [k]} are the DFT of {α [n]} and {β [n]}, respectively.

For the simplest example, we have binary complementary sequences of length

two, given by {α [n]} = [+1, +1] and {β [n]} = [+1,−1]. Given a pair of

complementary sequences {α [n]} and {β [n]}, a new pair of complementary

sequences can be generated from the following rules if

1. Any of the two sequences is multiplied by eφ.

2. Any of the two sequences is time-reversed.

3. Any of the two sequences is circular-shifted.

4. The two sequences are interchanged.

5. Both sequences are decimated in time by K.

6. Both sequences are multiplied by eπkn/N , where k is a constant.

7. The two sequences are concatenated to form [α [0] , . . . , α [N − 1] , β [0] ,

. . . , β [N − 1]] and [α [0] , . . . , α [N − 1] ,−β [0] , . . . ,−β [N − 1]].

8. The two sequences are concatenated and interleaved to form [α [0] , β [0],

. . . , α [N − 1] , β [N − 1]] and [α [0] ,−β [0] , . . . , α [N − 1] ,−β [N − 1]].
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9. The two sequences are added and subtracted to form [α [0] + β [0] , . . . ,

α [N − 1] + β [N − 1]] and [α [0]− β [0] , . . . , α [N − 1]− β [N − 1]].
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Appendix B

Proof of (2.37) and (2.38)

By substituting the definition of D̃e in (2.36) into E
[
D̃e

]
, we can obtain

E
[
D̃e

]
= (1−BERC (ζ)) (1−BERC (ζ))E

[
Λ1X̂FC

+Λ2X̂SC

]

+ (1−BERC (ζ)) BERC (ζ)E
[
Λ1X̂FC + 2H2XS

+Λ2X̂SC

]

+BERC (ζ) (1−BERC (ζ))E
[
2H1XF + Λ1X̂FC

+Λ2X̂SC

]

+BERC (ζ) BERC (ζ)E
[
2H1XF + Λ1X̂FC

+2H2XS + Λ2X̂SC

]

= 2BERC (ζ) (H1XF + H2XS) (B.1)
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Moreover, we can calculate the second moment of D̃e as follows:

E
[∣∣∣D̃e

∣∣∣
2
]

= (1−BERC (ζ)) (1−BERC (ζ))E
[
|Λ1|2

∣∣∣X̂FC

∣∣∣
2

+ |Λ2|2
∣∣∣X̂SC

∣∣∣
2
]

+ (1−BERC (ζ)) BERC (ζ)E
[
|Λ1|2

∣∣∣X̂FC

∣∣∣
2

+ 4 |H2|2 |XS|2

+ |Λ2|2
∣∣∣X̂SC

∣∣∣
2
]

+BERC (ζ) (1−BERC (ζ))E
[
4 |H1|2 |XF |2 + |Λ1|2

∣∣∣X̂FC

∣∣∣
2

+ |Λ2|2
∣∣∣X̂SC

∣∣∣
2
]

+BERC (ζ) BERC (ζ)E
[
4 |H1|2 |XF |2 + |Λ1|2

∣∣∣X̂FC

∣∣∣
2

+4 |H2|2 |XS|2 + |Λ2|2
∣∣∣X̂SC

∣∣∣
2

+4H∗
1X

∗
F H2XS + 4H∗

2X
∗
SH1XF

]

= 2BERC (ζ) ζEb + σ2
ΛEb

+4BER2
C (ζ) (H1H

∗
2XF X∗

S + H∗
1H2X

∗
F XS) (B.2)
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Appendix C

Proof of (3.21)

Define g(j,i) = [gT
1 ,gT

2 ]T and q(j,i) = [qT
1 ,qT

2 ]T , where g1, g2, q1, and q2 are

of size G× 1. From (3.15)–(3.17), we convert g(j,i) = E(j,i)−1
q(j,i) into block

matrix representation as follows

g1

g2


 =


A−B

B A



−1 

q1

q2


 (C.1)

where A and B are G×G sub-matrices of E(j,i). It is clear that the matrix

E(j,i)−1
holds the same structure as the matrix E(j,i), given by

E(j,i)−1

=


C−D

D C


 (C.2)

where AC − BD = IG, BC + AD = 0G, and 0G is a zero matrix of size

G×G. Hence, we have

g1 + g2 = (Cq1 −Dq2) +  (Dq1 + Cq2)

= (C + D) (q1 + q2)

= (A + B)−1 (q1 + q2) (C.3)
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Appendix D

Explanation of Hessian Matrix

In this appendix, we provide an explanation of Ẽ(j,i)−1
. For simplicity, we

assume that the DF data symbols are all correct, i.e., X̂[k] = X[k], and

neglect noise terms. Therefore, the LS estimate in (3.20) for channel H(j,i)[k]

given in (3.1) becomes

C [k] H(j,i) [k] = C [k]
G∑

l=1

µ̆
(j,i)
l e−

2π(k−1)(l−1)
K (D.1)

for k ∈ Θ, where C[k] =
∑NL

t=1 |X(i)[t, k]|2 and µ̆
(j,i)
l is the complex gain of

the lth path. Taking the IDFT of (D.1), we get the estimate for the l′th

channel path gain as follows

η̂
(j,i)
l′ =

G∑

l=1

µ̆
(j,i)
l

∑

k∈Θ

C [k] e
2π(k−1)(l′−l)

K (D.2)

where 1 ≤ l′ ≤ G. By rewriting (D.2) in a vector form, we have

η̂(j,i) =
1

2
Ẽ(j,i)µ̆(j,i) (D.3)

where Ẽ(j,i) is defined as in (3.21), η̂(j,i) = [η̂
(j,i)
1 , . . . , η̂

(j,i)
G ]T , and µ̆(j,i) =

[µ̆
(j,i)
1 , . . . , µ̆

(j,i)
G ]T . As can be seen in (D.2) and (D.3), µ̆

(j,i)
l from other paths
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causes interference in η̂
(j,i)
l′ due to the effect of aliasing, and Ẽ(j,i)−1

acts as a

path decorrelator to mitigate this effect.
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Appendix E

Review of EM Algorithm

Consider a general ML estimate problem in a missing data model. Suppose

that we observe a vector y generated from P (y|x, θ), where θ is the param-

eter vector and x represents the missing data vector (or called unobserved

latent data vector), and want to compute the ML estimate

θ̂ = arg max
θ

P (y|θ) (E.1)

The EM algorithm seeks to find the ML estimate of (E.1) by iteratively

applying the following two steps:

E - step:

Compute

Ω
(

θ|y, θ̂
(m−1)

)
= E

x|y,
ˆθ

(m−1) [L (y,x|θ)] (E.2)

where the expectation is with respect to P
(
x|y, θ̂

(m−1)
)
.

M - step:

Maximize

θ̂
(m)

= arg max
θ

Ω
(

θ|y, θ̂
(m−1)

)
(E.3)
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We refer to L (y,x|θ) as the complete log-likelihood function which cor-

responds to the complete data of both y and x. The theoretical core of

the EM algorithm is that the likelihood function L (y|θ) is guaranteed to

increase monotonically at each iteration by maximizing Ω
(

θ|y, θ̂
(m−1)

)
at

the M-step. In other word, we can ensure that

L
(
y| θ̂(m)

)
≥ L

(
y| θ̂(m−1)

)
(E.4)

The EM procedure is conducted until a fixed value of Ω
(

θ̂
(m)

∣∣∣y, θ̂
(m−1)

)

is obtained. In this case, we have L
(
y| θ̂(m)

)
= L

(
y| θ̂(m−1)

)
. The the-

orem can be proved as follows. According to the Bayesian rule and taking

logarithm, it is easy to show that

L (y|θ) = L (y,x|θ)− L (x|y,θ) (E.5)

By taking the expectation of (E.5) with respect to P
(
x|y, θ̂

(m−1)
)
, it leads

to

L (y|θ) = E
x|y,

ˆθ
(m−1) [L (y,x|θ)]− E

x|y,
ˆθ

(m−1) [L (x|y,θ)] (E.6)

From the definition of the M-step in (E.3), it is straightforward to find

E
x|y,

ˆθ
(m−1)

[
L

(
y,x| θ̂(m)

)]
≥ E

x|y,
ˆθ

(m−1)

[
L

(
y,x| θ̂(m−1)

)]
(E.7)
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Moreover, from Jensen’s inequality, we can obtain

E
x|y,

ˆθ
(m−1)


log

P
(
x|y, θ̂

(m)
)

P
(
x|y, θ̂

(m−1)
)




≤ logE
x|y,

ˆθ
(m−1)


 P

(
x|y, θ̂

(m)
)

P
(
x|y, θ̂

(m−1)
)




= log

∫
P

(
x|y, θ̂

(m)
)
dx

= 0 (E.8)

Thus, we can verify (E.4) by using (E.6)-(E.8).
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Appendix F

Proof of (5.24) and (5.25)

Let us first define an AR channel model

h [l, N − 1] = αh [l, 0] + u (F.1)

where α is the parameter of the AR model and u represents a complex Gaus-

sian random variable, independent of h [l, n], with zero mean and variance

σ2
u. From Jakes model, α is evaluated by

α = E [h [l, N − 1] h∗ [l, 0]] = J0

(
2πfd (N − 1)

N

)
(F.2)

where J0 (·) is the zeroth order Bessel function of the first kind, fd denotes

the normalized maximum Doppler frequency. Recall from (5.4) that we have

E [h [l, n]] = 0 and E [h2 [l, n]] = Ξl. Following the energy conservation rule

in (F.1), the variance of u can be calculated as σ2
u = (1− α2) Ξl. According

to (F.1), (F.2) and (5.5), we find the slope of the lth tap over the duration

of one OFDM symbol as

a [l, 1] =
1

N − 1
{h [l, N − 1]− h [l, 0]}

=
1

N − 1
{(α− 1) h [l, 0] + u} (F.3)
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and its mean and variance is calculated by

E [a [l, 1]] = 0 (F.4)

and

E [a [l, 1] a∗ [l, 1]] =
1

(N − 1)2

{
(α− 1)2 Ξl +

(
1− α2

)
Ξl

}

=
2 (1− α) Ξl

(N − 1)2 (F.5)

Besides, it is reasonable to assume that the slopes of channel taps are inde-

pendent of each other, i.e., E [a [l, 1] a∗ [l′, 1]] = 0 if l 6= l′ since h [l, n]’s for

different l’s are independent. Consequently, we get (w = Fs):

µw = 0 (F.6)

and

Cww = FCssF
H (F.7)

where Css = E
[
ssH

]
is a diagonal matrix with the lth diagonal entry given

by 2 (1− α) Ξl

/
(N − 1)2.
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Appendix G

Calculation of (5.36)

Using the definition of LLR, we have

L (X [kG + j] = +1) = λC,ext [kG + j]− ln
(
e0 + eλC,ext[kG+j]

)
(G.1)

L (X [kG + j] = −1) = − ln
(
1 + eλC,ext[kG+j]

)
(G.2)

The calculation of (G.1) and (G.2) can be simplified by using the rule:

ln
∑

j

eaj ≈ max
j

aj (G.3)

When applied, straightforward manipulation yields

L (X [kG + j] = q) =




− ln 2, if λC,ext [kG + j] = 0

min
(
qλC,ext [kG + j] , 0

)
, otherwise

(G.4)

where q is either +1 or −1.
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