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交錯耦合微帶線濾波器的調整與診斷 

 

研究生:廖竟谷                       指導教授:張志揚博士 

 

國立交通大學電信工程學系﹙研究所﹚博士班 

 

摘要 

 

 
本論文主要在研究如何萃取交錯耦合濾波器之等效電路參數，進而調整濾波器使其

達到預先設定之響應。一般而言，交錯耦合濾波器之等效電路參數可由一個耦合矩陣來

表示，文中將對耦合矩陣的萃取與合成方法有詳盡的討論。同時文中也提出了系統化的

設計與調整濾波器的步驟。而這樣的方法與步驟可有效地用來分析微帶線濾波器中的交

錯耦合效應、共振腔頻率校正等問題。其中，對於具有源級與負載相耦合(source-load 

coupling)的四角互耦(quadruplet)結構有詳盡的討論。此外，文中也提出了如何快速

設計具高止帶頻率選擇性的串接三角互耦(cascade trisection)濾波器。除了在單模濾

波器的應用外，文中也深入探討了如何混用單模與雙模共振腔來實踐具廣義查比雪夫響

應之似盒狀(box-like)耦合濾波器。另外，文中也提出了一種新的參數萃取法，此法可

以從濾波器的響應同時萃取出耦合矩陣與無外加負載之品質因子(unloaded quality 

factor)。此種參數萃取法可以實際用於有損濾波器的分析與調整。 
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Abstract 
 
 

This Dissertation presents how to extract the equivalent circuit parameters of 

cross-coupled filters. From the extracted parameters, one can decide how to tune a filter to 

achieve the prescribed response systematically. In most cases, the cross-coupled filters can be 

described by a coupling matrix. Thus, how to extract and synthesize a coupling matrix with a 

given response would be discussed in detail. Besides, a systematical procedure for filter 

design and tuning is given. With these developed methods, one can effectively analyze the 

effect of cross couplings and asynchronous resonant frequencies of resonators in microstrip 

filters. As an example, the quadruplet filters with source-load coupling are discussed in detail. 

And a cascade trisection filter with high selectivity in upper stopband is proposed. In addition 

to the design of single-mode resonator filters, we investigate how to utilize the dual-mode 

resonator with single-mode resonators to realize box-like filters with generalized Chebyshev 

response. To extract a coupling matrix and an unloaded quality factor of a filter from a 

simulated/measured response simultaneously, a novel parameter extraction method is 

proposed. This parameter extraction method can be used to analyze and tune lossy filters. 
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Chapter 1 Introduction 

Microwave filters are essential component in a microwave system. Thus, there 

are lots of literatures concerning with the designs and implementations of microwave 

filters applied in different wireless communication systems. Concerning with the 

development of the microwave filters, Ralph Levy et al. [1], [2] and Ian C. Hunter et 

al. [3] give a clear historical review of the development of microwave filters. Among 

these papers, different kinds of microwave filters are introduced and discussed, and 

important references are also given. Among different kinds of microwave filters, this 

dissertation would focus on the design and tuning of microwave filters which can be 

described by coupling matrices. 

The design of microwave filters normally starts from the synthesis of a low-pass 

prototype network, regardless of the eventual physical realization in transmission line, 

waveguide, or other media. Low pass prototype networks are two-port network with 

an angular cutoff frequency of 1 rad/s and operating in a 1-Ω  system. A typical 

prototype network is shown in Figure 1-1. The ladder network prototype in Figure 

1-1(a) and (b) is an all-pole network with all its transmission zeros at infinity. The 

alternative network shown in Figure 1-1(c) and (d) are also used. The networks in 

Figure 1-1(c)(d) are very useful for the design of narrow band bandpass filter since it 

only use the series or shunt resonator. Besides, the network in Figure 1-1(c) or (d) can 

be described by a coupling matrix. To achieve more selective frequency response, like 

generalized Chebyshev response [1], finite transmission zeros in the complex plane 

have to be introduced, and the corresponding prototype circuit usually can be 

expressed by a cross-coupled network.  Filters which can be modeled by a 

cross-coupled network are called cross-coupled filters. Cross couplings are usually 

generated by either putting resonant/non-resonant circuits or introducing couplings 

between nonadjacent resonators. 
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(a) 

(b) 

 

(c) 

 
(d) 

Figure 1-1. (a), (b) Lowpass prototype networks for “all-pole” filters. (c), (d) 

Alternative lowpass prototype networks using inverter. 

 

1.1 Review of the Design of Cross-Coupled Resonator filters 

The cross-coupled filters have been used since 1940’s [1]. An example is given 

following to explain the basic idea behind cross-coupled filters. A filter, utilizing the 

cross couplings between nonadjacent resonators, is shown in Figure 1-2. These cross 

couplings give a number of alternative paths which a signal may take between input 

and output ports. The multi-path effect causes transmission zeros to appear in the 

transfer function, which, depending on the phasing of the signals, may cause 

transmission zeros at finite frequencies or group delay flattening, or both 

simultaneously. 
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Figure 1-2. A cross-coupled resonator filter (clipped from Figure 9 in [1] ) 

 

 Synthesis technique and implementation methods for the cross-coupled filters 

have been developed for couples of decades. Among those related works, the most 

significant development took place in the 1970’s in COMSAT by Atia and Williams 

[4]-[7]. The COMSAT work on elliptic function and linear-phase waveguide filters 

using dual-mode cavities with cross coupling was particular significant. The 

dual-mode cavity filters introduced by Atia and Williams have set the virtual 

standardization of these designs for satellite transponders. Actually, Atia and Williams 

have published a series of papers concerning on the synthesis, design, implementation, 

and tuning of the cross-coupled resonator filters. All those papers are well-written and 

introduce original concepts. It is highly recommended for one who is interested in the 

design of cross-coupled resonators filter to read the series of papers by Atia and 

Williams.  

The most recent progress in the synthesis of cross-coupled filter is done by 

Richard Cameron. In 1999 and 2003, Richard Cameron published two papers focused 

on generalizing the synthesis technique for the cross-coupled resonator filter with the 

generalized Chebyshev function [8] [9]. With his work, a cross-coupled filter with N 

resonators can have at maximum N finite transmission zeros. Based on Cameron’s 
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work, many researchers have developed different methods to transfer the synthesized 

coupling matrixes into desired forms. The details of the related synthesis techniques 

will be discussed in Chapter 2. 

 The cross-coupling concept was originally used in the waveguide filters but not 

applied to the microstrip filters before 1990’s. But with the increasing power of 

computation of computers, the story was changed. Electromagnetic (EM) simulators 

are capable of simulating complex physical structures within a reasonable time now. 

Thus, it is feasible to get the S-parameters of the designed structure through the EM 

simulator instead of doing experiments. Hong and Lancaster took the advantage of the 

computer’s power to calculate the external quality factor and coupling coefficients, 

originally experimental method, to design the microstrip cross-coupled resonator 

filters [10], [11]. The related works done by Hong and Lancaster are clearly described 

in the book [12] written by them. 

 

1.2 Motivation 

The computer-aided diagnosis and tuning of cross-coupled resonator filters have 

been an active topic in the filter society for several decades. The main driving force to 

the art is the continuous demand on reducing the manufacturing cost and development 

time for various filters with different specifications. The core task in filter tuning is to 

diagnose the filter coupling status that corresponds to the current filter response. By 

comparing the desired circuit model parameters (i.e., coupling matrix) to the extracted 

ones, the tuning direction and magnitude can be decided. 

Tuning is an essential process for optimizing filters’ responses in both the 

simulation stage and production line. On the simulation, even though a great variety 

of EM simulators are commercially available, it is generally impossible to optimize 

microwave filters on the basis of field simulators alone because the computer 
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simulation time for it is huge, especially for higher order filter with generalized 

Chebyshev response. Moreover, on the production line, fabrication of high 

performance filters is a constant trade-off between the manufacturing cost and the 

accuracy required in the process. In reality, the variation in raw material and 

manufacturing process leads the filters’ response deviate from the designed ones, 

which means post tuning is always required. The need of tuning on both EM 

simulation and fabrication urges filter designers to develop CAD tool to shorten the 

design period in recent decades. 

In the design of cross-coupled resonator filter, especially for microstrip filter, the 

spurious couplings between resonators always exist. However, the method proposed 

by Hong and Lancaster only gives initial dimensions of microstrip cross-coupled 

filters [12]. The effect of spurious couplings between resonators and how to tune a 

filter to achieve a prescribed response were not mentioned. Thus, parameter extraction 

methods and tuning algorithm is needed to obtain the strength of spurious couplings 

and tune a filter. 
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1.3 Literatures Survey 

The existing computer diagnosis techniques can be basically divided into two 

catalogues: by optimization technique and by analytical methods.  There are pros 

and cons for the diagnosis techniques based on optimization methods and analytic 

formula, respectively. In the following, we will discuss them individually. 

Basically, all the diagnosis and tuning procedures involving three basic elements 

1. Filter synthesis 

2. Curve fitting of a simulated or measured S-parameter, 

3. Update of a filter’s physical dimensions. 

These three basic elements in the procedure determine how good a procedure is. A 

simplified design flow of the filter tuning process is shown in Figure 1-3 to clarify the 

basic elements involved. The implementation of the flow shown in Figure 1-3 will be 

discussed in Chapter 2 in detail. 

The methods based on nonlinear optimization are like that in [13]-[15] where 

different optimization strategies and schemes for parameter extraction are explored. In 

[13], the optimization technique is used to find a coupling matrix with the goal that 

the resulted response fitting well with the simulated response. However, there are 

many variables (coupling coefficients) involved in the optimization process, which 

makes the method only applicable for the cases where the order of filter is less than 6.  

The methods in [16], [17] are based on analytical method. Those methods extract the 

coupling matrix from the locations of system zeros and poles. The existing analytical 

models provide a recursive procedure to determine individual resonant frequencies 

and inter-resonator couplings. However, those analytical methods are only valid for 

highly restricted filter topologies. In addition, to get analytical formula for the 

calculation of the coupling matrix, one must derive different formula for different 

topologies, which is not easy even for an expert in this filed. Furthermore, the 
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S-parameters corresponding to an extracted coupling matrix usually can not so well fit 

the simulated or measured response as one can obtain by the optimization method 

because of the existence of dispersion effect. As we know, poles and zeros of a system 

determine the systems response. Moving one of the poles or zeros will change the 

response over all frequency. On the other hand, methods based on optimization can fit 

the simulated response better than the method based on analytical methods because 

sampling a lot of different frequency points over the interest band can average the 

dispersion effect. 

Filter 
specification

S11(s) = F(s)/E(s)
S21(s )= P(s)/E(s)

Microwave filter

S11(si), S21(si)

M̂

M

+
-

MΔ

Circuital error:

Physical 
dimension:

yΔ

0x

Correction: xΔ

end

δ<Δx
No

Yes

synthesis

update

 

Figure 1-3. Flow diagram of the filter optimization algorithm 
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From the above discussion, some observations are summarized. First, 

optimization technique should not be directly applied to obtain the coupling matrix as 

that in [13] since this approach limited the method only applicable to lower order filter. 

Second, reconstructing the coupling network from poles and zeros of system by 

analytical formula may not be accurate enough and be topology-limited.  

 In the procedure provided in [18], the Cauchy method is applied to obtain the 

approximated rational polynomials of reflection and transmission function, 

)(11 sS and )(21 sS , which is suitable for filter synthesis. After getting the approximated 

rational polynomial of )(11 sS  and )(21 sS , a variety of synthesis techniques can be 

applied to get the coupling matrix. The synthesis technique used in [19] is based on 

optimization technique and can be applied to get a coupling matrix with arbitrary 

topology with the order smaller than 14. In practical, most cross-coupled resonators 

filters have the order smaller than 14. Thus, the procedure provided in [19] is highly 

recommended. Besides, there is no need to calibrate the reference plane when using 

the Cauchy method to get the approximated )(11 sS  and )(21 sS .  

The formulation based on Cauchy method in [18] is only valid for lossless case. 

For lossy filters, the modified Cauchy methods are proposed in [20]. However, the 

method in [20] is incorrect in the sense that the generated rational polynomials, 

)(11 sS and )(21 sS , are not suitable for the filter synthesis. The author in [21] indicated 

the theoretical error in [20] and proposed a modified formulation suitable for filters 

with low and moderate losses. It should be noted that even the formulation in [21] can 

not tell how lossy a filter is. So, how to model a lossy filter and extract related 

parameters is still a problem under investigate. 
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1.4 Contribution 

The main contributions of this dissertation are described in the following. 

First, an optimization procedure as shown in Figure 1-3 is developed in this 

dissertation. The optimization procedure is used to design all the circuits presented in 

this dissertation. It is also applied to investigate the effect of spurious couplings in the 

cross-coupled microstrip filters. Coupling matrices are extracted in the course to 

optimize the quadruplet filter with source-load coupling. With the developed 

optimization methods, quadruplet filters with various responses are designed, built, 

and tested.  

 Second, a microstrip cross-coupled filter with two independently controllable 

transmission zeros on upper stopband is presented. The initial filter structure is a 

conventional Chebyshev-response parallel-coupled filter that can be easily realized by 

the analytical method. The newly proposed coupling/shielding lines effectively 

control the cross and main couplings without changing the original filter layout. With 

this approach, designer can eliminate tedious segmentation method for the filter 

design.  

 Third, an E-shaped dual-mode resonator is proposed to implement coupling 

topologies such as doublet, extended doublet, and box-section in a unified approach. 

The doublet and box-section filter exhibit the zero-shifting properties which can not 

be achieved by trisection cross-coupled filters. The extended-doublet filter can 

generate two finite transmission zeros to improve selectivity or flatten in-band group 

delay. The correspondence between the E-shaped dual-mode resonator and a coupling 

matrix is established, which make it possible to design those filters in a systematical 

way. 

Finally, the formulation which is applicable to extract the loss term and a 

coupling matrix simultaneously from a simulated or measured response is proposed. 
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With this method, no matter the device under test is lossy or lossless, one can extract 

the coupling matrix from the simulated or measured response. 

1-5 Organization 

This dissertation is mainly concentrated on the design and tuning of 

cross-coupled resonator filters, especially for the microstrip filters.  

In Chapter 2, each step taken in the flow diagram of filter optimization in Figure 

1-3 is discussed in detail. The model of the cross-coupled resonator filter in low pass 

domain is given. From the model, the relation between a coupling matrix and 

S-parameters is derived. Then, how to directly relate the position of finite 

transmission zeros to a given coupling matrix is given. Some simple topologies such 

as trisection, quadruplet, doublet, extended doublet, and box-section are taken as 

examples, and the equations relating the position of finite transmission zeros and 

coupling coefficients are given. In addition, a variety of synthesis methods are 

discussed, and the method for updating the physical dimension is given.  

In Chapter 3, the quadruplet filters with source-load coupling are presented. The 

effect of spurious cross couplings between resonators is discussed. The parameter 

extraction method is applied to extract the coupling matrix corresponding to simulated 

response. The examples include the quadruplet filters designed for improving skirt 

selectivity and in-band group delay flatness.  

In Chapter 4, a cascade trisection filter with source/load to multi-resonator 

couplings is proposed. The initial dimension of the filter is obtained from the 

conventional parallel coupled line filter. The filter exhibiting two finite transmission 

zeros which can be independently controlled to improve the selectivity. 

In Chapter 5, generalized Chebyshev microstrip filters with box-like coupling 

schemes are presented. The box-like portion of the coupling schemes is implemented 

by an E-shaped resonator. Synthesis and realization procedures are described in detail. 
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In Chapter 6, a parameter extraction method based on vector fitting formulation 

is proposed to identify the unload quality factor of resonators and coupling matrix of a 

filter from the simulated/measured response simultaneously.  

In Chapter 7, summary and suggested future works are given. 
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Chapter 2 Design and Optimization of Microwave Filter 

Based on Coupling Matrix 

In this chapter, the design flow of cross-coupled resonator filters is given and 

discussed in detail. To facilitate the discussion, the cross-coupled resonators network 

is analyzed in the normalized frequency domain at first. The relation between the 

normalized network parameters and S-parameters is derived. How to obtain the 

position of finite transmission zeros from coupling topologies is also given. With the 

necessary background, each step shown in Figure 1-3 is given. 

 

(a) 

 

(b) 

Figure 2-1 (a) Equivalent circuit of n-coupled resonators in low pass domain. (b) Its 

network representation. 

2.1 Filter Model in the Normalized Domain 

 A prototype filter of degree n in the lowpass domain is shown in Figure 2-1 (a). 

The prototype filter consists of frequency independent impedance inverters sJ ij , 

capacitors sCi  and susceptances sBi . The values of all the capacitors and the 
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terminated admittances Y0 are set equal to one. The capacitors in the low-pass domain 

correspond to the resonators in the bandpass domain. Thus, the frequency invariant 

susceptances sBi  represent the frequency shift of resonators in the bandpass domain. 

The values of sBi  are zero for the synchronously tuned filters and nonzero for the 

asynchronously tuned filters. 

 According to the current law, which is one of the Kirchhoff’s two circuit laws 

and states the algebraic sum of the currents leaving a node in a network is zero, with a 

driving or external current of sI , the node equations for the circuit of Figure 2-1(a) 

are 
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where Ω  is the normalized frequency.  

To derive the two-port S-parameters of a coupled-resonator filter, the circuit of 

Figure 2-1(a) is represented by a two-port network of Figure 2-1(b). Comparing 

Figure 2-1(a) and Figure 2-1(b), we can find that V1=V0, V2=Vn+1, and I1=Is-Y0V0. 

And 
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From equation (2-1), we can obtain 
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I
V

s

                         (2-4) 
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Take (2-4) into (2-2), we can obtain 

                        1
1,111 ][21 −+−= YS                      (2-6) 

Take (2-5) into (2-3), we can obtain 

                           1
1,221 ][2 −

+= nYS                         (2-7) 

In the literatures, the matrix 
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 is called the 

normalized coupling matrix and denoted as matrix [M].  
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Where jiij JM ,= , iii BM = . To translate the equation (2-6) and (2-7) to the 

expressions in the literatures, let  

( ) ][][][][][][][][ 0 AjGjMUjGMjIsY =−+Ω=++= ,  

where ][][][][ 0 GjMUA −+Ω= , )2()2(
0 ][ +×+∈ nnRU  is identical to the identity 

matrix, except for the element 0][][ 2,20110 == ++ nnUU , and )2()2(][ +×+∈ nnRG  is also a 

diagonal matrix, }1,0,,0,1{][ LdiagG = . The equations (2-6) and (2-7) can be 

rewritten as  
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                   1
1,111 ][21 −−−= AjS                  (2-8) 

                   [ ] 1
1),2(21 2 −

+−= nAjS                  (2-9) 

Similarly, we can derive  

                    1
2,222 ][21 −

++−−= nnAjS              (2-10) 

The equations (2-8), (2-9) and (2-10) directly related the normalized coupling matrix 

to the S-parameters. 

2.2 The Position of Finite Transmission Zeros 

 From the equations (2-8) and (2-9), we can express S11 and S22 as a rational 

functions, 
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Obviously, the finite transmission zeros are the roots of the equation  

                   0)( =ΩP                          (2-12) 

Solving the equation (2-12) can help us understand the dependence between the 

coupling coefficients and finite transmission zeros, which help us get more insight to 

control the finite transmission zeros. To illustrate that, let us take an example with the 

coupling matrix 1M  
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The topology of 1M  is known as cross-coupled quadruplet and the graphical 

representation of it is drawn in Figure 2-2. This kind of graphical representation has 
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been widely used in literatures recently.  

 

      

Figure 2-2 the coupling route of the example filter 

 

By solving 0)( =ΩP , we can find the roots can be expressed as 

            
14

3423122
23

2

M
MMMMΩ −=           (2-14) 

The cross-coupled quadruplet filter is a perturbation version of the original 

direct-coupled Chebyshev filter. Thus, compared to the values of M12, M23 and M34, 

the value of M14 is relatively small. That is 
14

3423122
23 M

MMMM < .  

For the design where the shape skirt selectivity is required on both side of the 

pass band, the finite transmission zeros should be put on the real frequency axis, 

which means 02 >Ω . On the other hand, for the group delay flattening, the finite 

transmission zeros should be put on the imaginary frequency axis, which means 

02 <Ω . From the equation (2-14), we can tell that if 014342312 <MMMM , 

then 02 >Ω  and if 014342312 >MMMM , then 02 <Ω .  

 The coupling topologies: quadruplet, trisection, doublet and box-section, are 

given in Table 2-1. The corresponding position of finite transmission zeros of these 

topologies are given in Table 2-1 as well. 
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Coupling route Coupling matrix Position of finite Txz 
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Table 2-1. Coupling topologies and the position of their corresponding finite 

transmission zeros 

 

2.3 Synthesis Methods for Cross-Coupled Filters 

Filters may be classified into categories in several ways, one being into different 

classes of response functions, defined in terms of the location of poles of the 

insertion-loss function and of the zeros within the passband. The zeros are usually 

spaced throughout the passband to give a Chebyshev response since this is far more 

optimum and superior to the maximally flat or Butterworth response, which is rarely 

used. As far as the poles are concerned, the most common type of filter response has 

these located all at dc and infinity and is often described as an all-pole Chebyshev 
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filter. When one or more poles are introduced into the stopband at finite frequencies, a 

filter is called a generalized Chebyshev filter or a pseudo-elliptic filter.  

 From the discussion in section 2.1 and 2.2, we know cross-coupled filters exhibit 

finite transmission zeros (attenuation poles), which means the responses of 

cross-coupled filters may correspond to the generalized Chebyshev response. In fact, 

how to generate the )(11 sS  and )(21 sS  corresponding to the generalized Chebyshev 

function and find the corresponding coupling matrix are well-established [4]-[9]. The 

method about how to generate rational functions, )(11 sS  and )(21 sS , corresponding 

to the generalized Chebyshev response are given in [8]. The generated )(11 sS and 

)(21 sS  are in the form 

 
)(
)()(11 sE

sFsS =    (2-15) 

 
)(
)()(21 sE

sPsS =    (2-16) 

Synthesis methods about how to get the coupling matrix corresponding to the 

specified response in (2-15) and (2-16) may be divided into three categories. 

 

1. Direct optimization 

 In 1998, Atia first proposed that with suitable cost function defined with  

positions of poles and zeros of a transfer function, we can set coupling coefficients of 

a filter as variables and apply the optimization method to get a coupling matrix [22] 

corresponding to that transfer function. Later, Amari extended Atia’s work to include 

the source-load coupling [23]. The drawback of this kinds of method is that they are 

only effective for the filter with order smaller than 6. On the other hand, this kind of 

method is easy to follow and implement in a circuit simulator, like ADS. 
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2. Analytical method 

 The analytical method for the synthesis of cross-coupled filters was originally 

presented by Atia and Williams in [5]. Recently, Cameron has extended the analytical 

method to generate a generic matrix corresponding to a generalized Chebyshev 

response [8]. The generic matrix is nn×  matrix having the form 
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where Mij=Mji. The external coupling between the first resonator to source or last 

resonator to load is not shown in the matrix but expressed by two additional 

parameters R1 and R2. Since the source-load coupling is not included in the 

formulation, this kind of synthesis method can only apply for nth order filter with 

maximum of (n-2) finite transmission zeros. Besides, the matrix in generic form has 

to be further reduced since the coupling route is too complicated to achieve 

practically. 

 In 2003, Cameron further generalized the synthesis technique to cover the cases 

where source-load and source/load to multi-resonator couplings are involved. Follow 

the analytical formula in [9], we can get a transversal matrix with size )2()2( +×+ nn .  

To distinguish coupling matrix with size )2()2( +×+ nn  to that with size nn× , we 

usually call a coupling matrix with size )2()2( +×+ nn an extended coupling matrix. 

A transversal coupling matrix is an extended coupling matrix with the following form 
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The corresponding coupling route of the transversal topology is shown in Figure 2-3 

 

Figure 2-3. Coupling route of a transversal filter 

 

The transversal matrix need to be further transformed into other coupling routes since 

the coupling route in transversal configuration is too sensitive to realize when the 

order of filter exceeds 2 [24]. From the above discussion, we know that both the 

generic and transversal coupling matrix are impractical. Thus, how to annihilate some 

couplings to make a coupling matrix simpler and keep the same electrical 

performance is important.  

The technique of annihilating some specific couplings in a coupling matrix is 

called matrix reduction. The method for matrix reduction has been studied for several 
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decades. In principle, we can apply a sequence of similarity transforms to a generic or 

transversal matrix until more convenient form with a minimal number of couplings is 

obtained [5], [8], [9]. The similar transformation would not change the eigenvalues 

and eigenvectors of the coupling matrix, which means a transferred coupling matrix 

would exhibit the same response as the original coupling matrix. There are only a few 

patterns of coupling matrix can be achieved in a predetermined way, and most of them 

are proposed by Cameron [8], [9]. The analytical method is very powerful in the sense 

that the order of filter is not limited. However, how to transfer the generic or 

transversal coupling matrix into suitable topologies is not easy at all.  

 In view of the difficult of determine the rotation angles of the sequence of similar 

transformation, optimization method is introduced [25]. The method in [25] is 

reported to be effective for filter with order below 12. Another power optimization 

method based on the conservation of eigenvalues is proposed in [19], which is 

effective for filter with order under 14 and taken in this dissertation. 

  

2.4 Obtaining a Initial Design for a Microwave Filter 

With the information of a coupling matrix, we may obtain the initial dimension 

of microwave filters. A widely applied method to get the initial dimension of a filter is 

the segmentation method. In the segmentation method, the coupling strength between 

resonators is tested pair by pair to obtain the approximated coupling strength. The 

external coupling, the coupling between the first/last resonator to the source/load, is 

calculated by excluding other resonators. The detail of segmentation method 

formulated in low-pass domain is provided in Chapter 4 in the book [26]. In addition, 

formulation in the bandpass domain is given in the chapter 8 in the book [12]. In 

principle, it is better to do the calculation in the low-pass domain since the formulas 

are much simpler.  
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2.5 Tuning Procedures 

 The tuning of a microwave filter consists of two major steps. First, extract the 

coupling matrix from the simulated or measured response. Second, decide how to 

adjust the geometrical dimension of the filter under test by comparing the difference 

between extracted coupling matrix and the wanted coupling matrix. 

 

A. parameter extraction 

 As we discussed in section 2.2 and 2.3, it is feasible to express the S-parameters 

of a filter as a rational polynomials in normalized frequency domain. So, if we can 

identify the S-parameters in rational polynomials in normalized frequency domain 

from the simulated or measured response, we can use the synthesis technique to 

obtain a coupling matrix. For S-parameter identification, an effective method, called 

Cauchy method, is proposed. The detail of the method is given in [18]. Here, we just 

give a brief review of the Cauchy method and point out some important 

characteristics of it.  

 The purpose of Cauchy method is to obtain the approximated rational 

polynomials of )(~
11 sS  and )(~

21 sS  in the following form 
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In the Eq. (2-17) (2-18), n is the order of filter and nz is the number of finite 

transmission zeros. Note that the )(~
11 sS  and )(~

21 sS  have common denominator. 

Instead of directly fitting the simulated or measured data into the rational polynomial 

)(~
11 sS  and )(~

21 sS , the first step is to fit the characteristic function 
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)(~/)(~)( 2111 sSsSsK = . In this step, one can obtain the )(~ sF  and )(~ sP . The second 

step is to reconstruct the polynomial )(~ sE  by the Feldtkeller’s equation: 

           )(~)(~)(~)(~)(~)(~ *** sEsEsPsPsFsF −=−+−           (2-19) 

Note that there is no need to calibrate the reference plane before applying the Cauchy 

method, which makes the Cauchy method a perfect CAD tool. After obtaining the 

approximated rational polynomials in (2-17) and (2-18), the synthesis method given in 

section 2.3 can be directly applied to obtain the coupling matrix M~ . The M~  

represents the equivalent electrical parameters of the filter corresponding to the 

present geometrical dimensions.  

 

B. Update the geometrical parameters 

The cross-coupled network shown in Figure 2-1 can be treated as a surrogate 

model. The status of the surrogate model is represented by a coupling matrix. The 

object of filter diagnosis is to decide how to adjust the geometrical dimension of a 

filter by comparing the extracted coupling matrix M~  to the object coupling matrix 

objM , where objM  correspond to the desired response.  

 In a coupling matrix, only the nonzero elements are significant since they 

represent either the coupling coefficients or the shifting of resonant frequencies. To 

facilitate the discussion, we collect those nonzero elements to form a vector y  and 

collect the geometrical parameters of the filter to form a vector x . The relation 

between vector y  and vector x  can be denote as )(xfy = . The object surrogate 

parameters can be denoted as objy . The present geometrical parameters of the filter 

can be donated as 0x  and its corresponding significant surrogate parameters can be 

donated as 0y . The goal of optimization is to find an optimal geometrical parameter 
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optx  to let the corresponding opty  approach objy  So, updating the vector x  from 

0x  to optx  is the core of the optimization. The update method used in [13] is taken in 

this dissertation and outlined in the following. 

 Before the surrogate model can be optimized, the sensitivities of the parameters 

with respect to the geometrical parameters must be determined. This is done by using 

finite difference approximation as described in the following four steps: 

1. Calculate S-parameter of the filter structure in basis (non-ideal) position using the 

field solver and extract the characteristic parameters : basis
ii

basis
ij MM ~,~  

2. Change first geometry parameter to 11 xx Δ+ , and repeat step 1 xx
ii

xx
ij MM Δ+Δ+ 11 ~,~  

3. Repeat step2 for all other geometry parameters nxxx ,....,, 32  

The above information is to construct the first order Taylor expansion with respect to 

the initial design (the initial design must be near the solution, otherwise the 

convergence is not guaranteed). 

4. The surrogate model can be approximated as 
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 are determined in the first three steps. 

The object of optimization is to determine the set },...,{ 21 nddd  which minimize 

the difference between coupling matrix of surrogate model and object coupling matrix 

get from standard filter synthesis. The cost function is defined as  
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The termination condition can be set by the value of cost function ),...,,( 21 ndddU  or 

by the value of 
2

d
r

, where ),,,( 21 ndddd L
r
= . If the updated geometric parameters 

do not exhibit the desired response, repeat the step1 to step 4 until the termination 

condition is achieved. It usually takes several times for the optimization since in 

most case the parameters of surrogate model are not a linear function of the geometry 

parameters. However, this method is attractive since the step can easily be followed in 

practice. Besides, testing the sensitivity is crucial since it not only give the 

information of how to update the filter but also give a measure of how sensitive a 

filter is.  

 

2.6 The Optimization Flow of Cross-Coupled Microwave Filters 

 In this section, the step by step optimization algorithm is given. The flow of the 

optimization algorithm is shown in Figure 2-4. Each step is numbered.  

1. Give a specification. 

2. Generation of the ideal characteristic polynomials, )(sF , )(sP , )(sE which satisfy 

specifications. 

3. Synthesis of the ideal coupling matrix M which would be the object matrix we 

want to achieve in the optimization process. 

The methods for the first three steps are given in section 2.3. 

 

4. Computation of the initial dimensions of the microwave filter from the 

information of the ideal coupling matrix by segmentation method. Detail is given 
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in section 2.4. 

5. Simulate the circuit in an EM simulator. Then, acquire N samples points of 

S-parameters, )(11 isS )(21 isS  from the simulated response to reconstruct the 

rational model, )(~
11 sS  and )(~

21 sS , by Cauchy method. The detail is given in 

section 2.5. 

6. Synthesize the coupling matrix corresponding to the rational functions )(~
11 sS  

and )(~
21 sS . The obtained coupling matrix is M~ . The synthesis technique is the 

same as that used in step 3. 

7. Calculate the difference between the object coupling matrix objM and extracted 

coupling matrix M~ . objMMM −=Δ ~ . 

8. Do the sensitivity test 

9. Generate the correction vector, d
r

, for the geometric parameters of the filter.  

The methods for Step 7 to step 9 are given in section 2.5.  

10.  If the change of the geometric dimension is small enough (depending on the 

limitation of the fabrication), then stop the optimization procedure. Otherwise, 

change the geometric dimension to be xx Δ+0  and repeat step 4 to step 10.  



 27

 
Figure 2-4 The flow of the optimization algorithm 
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2.7 Limitations of the Proposed Design Flow 

The diagnosis and tuning process presented in this Chapter is only true for filters 

which can be described by the cross-coupled network shown in Figure 2-1(a). Thus, 

the correspondence between a physical layout and a cross-coupled prototype network, 

served as surrogate model, must be tested at first. This kind of test can be achieved in 

the process of sensitivity test. By observing the shift of the resonant frequencies or 

variation of coupling coefficients as the physical dimension is changed, we can tell 

whether the correspondence between the physical layout and surrogate model exists.  

The surrogate model used in this dissertation can only apply for narrow band 

filters. The maximum fractional bandwidth may range from 10% to 40% depending 

on the type of resonators and coupling methods. The diagnosis and tuning process is 

not a “black box” process, which means knowing more about the design process 

would help do the parameter extraction and diagnosis. For example, when doing the 

design, the formula for lowpass to bandpass transformation may differ from design to 

design. When doing the diagnosis, we must map the frequency response from 

bandpass domain to lowpass domain by the bandpass to lowpass transformation. 

Definitely, the bandpass to lowpass transformation is the reverse operation of the 

lowpass to bandpass transformation used in the design. Thus, knowing the lowpass to 

bandpass transformation used in the design is important for the process of filter 

diagnosis. 
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Chapter 3 Cross-Coupled Filters with Source-Load Coupling 

In this chapter, quadruplet microstrip filters with source-load coupling are 

proposed to achieve similar skirt selectivity and/or in-band flat group delay as that of 

a sixth-order canonical form or an extracted pole microstrip filter. Diagnosis method 

of unwanted effects such as asynchronous resonant frequencies and unwanted 

couplings, which often occurs in microstrip’s open environment, is described in detail. 

A systematic design flow to implement a quadruplet microstrip source-load coupled 

filter with proper filter response is also provided. Two trial filters exhibited 

quasi-elliptical and flat group delay response are designed and fabricated. Both 

theoretical and experimental results are presented.  

 

3.1 Introduction 

High performance microstrip filters with high selectivity and linear in-band 

phase response has been studied over the last two decades [12]. Additional cross 

coupling between nonadjacent resonators are often used to generate finite 

transmission zeros for high selectivity, or linear phase. Naturally, the topology of the 

coupling network determines the number of finite transmission zeros, whereas the 

relative signs and magnitudes of the different coupling coefficients control the 

positions of finite transmission zeros. Some well-known topologies such as canonical 

form, cascade quadruplet (CQ), cascade trisection (CT) [12], and extracted-pole [27] 

have been successfully realized using microstrip. For instance, Jokela [28] has shown 

that sixth-order canonical form filter can achieve both high selectivity and linear 

phase, which is attractive when comparing the passband insertion loss with the CQ 

filter. In the CQ configuration, a minimal of eighth order is required to generate the 

real-frequency transmission zeros pair for selectivity, and real-axis transmission zeros 
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pair for linear phase. An eighth-order CQ filter introduces more insertion loss than 

that of a sixth-order canonical form filter, but it gains the independent control of 

transmission zeros where the design and tuning becomes easy. However, there are 

some disadvantages attached to the canonical structure as mentioned in [27]. Besides, 

according to Jokela’s paper [28], the in-band flat group delay and skirt selectivity can 

be obtained simultaneously but a requirement of M25=0 should hold for easy 

implementation. This requirement simplifies the coupling routine but greatly 

constrains the freedom of choice of filter response. 

 

(a) 

 
(b) 

Figure 3-1 Microstrip implementation for (a) sixth-order quasi-elliptic filter with 

linear phase response using extracted-pole technique (b) proposed quadruplet filter 

with source-load coupling. 
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To avoid the disadvantage of the canonical form filter, Yeo et al. [27] proposed 

the extracted-pole microstrip filter as shown in Figure 3-1(a) where the concept is 

originally used in a waveguide filter. The extracted-pole filter depicts better control of 

finite transmission zeros than that of canonical form filter, but it is relatively large due 

to the need of phase shifters. Here, we propose the fourth-order filter with source-load 

coupling, as shown in Figure 3-1(b), to generate two pairs of transmission zeros as 

sixth-order canonical form or eighth-order CQ filter does. The synthesis methods of 

the symmetric resonator filters with source-load coupling are well documented in 

literatures [23, 29]. Coupling diagram of the symmetric fourth-order filter with 

source-load coupling is shown in Figure 3-2(a). However, in realistic implementation 

of microstrip filter, the unwanted cross couplings always exist and lead the coupling 

route becomes complicated as shown in Figure 3-2(b). To identify all parameters 

corresponding to unwanted cross couplings, frequency alignment, and source-load 

coupling, powerful CAD tools are needed. Recently, an elegant diagnosis method is 

proposed to help designing of symmetric coupled-resonator filters [17]. However, the 

method in [17] has not taken the source-load coupling into account. In this chapter, 

we propose a diagnosis scheme, which is applicable to arbitrary topologies with or 

without source-load coupling.  

This chapter is organized as follows. In section 3.2, the phenomenon of 

asymmetric responses of quadruplet filter is discussed and design guidelines are 

provided. In section 3.3, the CAD method is introduced to extract the coupling matrix 

with prescribed topologies. In section 3.4, the diagnosis method is applied to 

designing the proposed filter. Both theoretical and experimental results are presented 

for comparison. 
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      (a)                         (b) 

Figure 3-2 Coupling and routing scheme of symmetric cross-coupled quadruplet filter 

with source-load coupling (a) ideal case, (b) including the unwanted diagonal cross 

couplings. 

3.2 Asymmetric Frequency Responses 

The fourth order cross-coupled quadruplet filter is the well-known building block 

for generating a pair of finite transmission zeros, which can improve skirt selectivity 

or in-band group delay flatness. The conventional coupling diagram of quadruplet 

filter is similar to Figure 3-2(a) except source-load coupling is excluded. The explicit 

relation between the finite transmission zeros and the coupling coefficients of it can 

be expressed in lowpass domain as follows 

14

3423122
23

2

M
MMM

MΩ −=     (3-1) 

In Eq. (3-1),Ω  is the normalized frequency and Mij are the coupling coefficients in 

lowpass prototype. The relation between Ω  and actual frequency f  is 

)//)(/( 000 ffffff −Δ=Ω , where 0f  is the center frequency of the filter, and fΔ  

is the bandwidth of the filter. For improving the skirt selectivity of the filter, the finite 

transmission zeros are put in real frequency axis and the relation M12 M23 M34 M14 < 0 

must be satisfied. On the other hand, to generate the imaginary frequency 

transmission zeros for in-band group delay flatness, M12 M23 M34 M14 > 0 must hold. 
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However, the unwanted diagonal cross couplings always exist in the microstrip 

cross-coupled filter due to microstrip’s open environment. Both unwanted diagonal 

cross couplings and asynchronous resonant frequencies of resonators would distort the 

ideal symmetric response of the reflection coefficient |S11| and transmission 

coefficient |S21|. In [17, 30], the authors have shown how to extract the unwanted 

diagonal cross couplings and to adjust the resonant frequencies of resonators to 

compensate the distortion of return loss for a skirt selectivity filter. However, in the 

case of flat group delay filter we find that the unwanted cross couplings seriously 

degrade the flatness of in-band group delay and should be suppressed to a negligible 

level. Figure 3-3 shows some examples to demonstrate the phenomena. In Figure 

3-3(a), an ideal response of the synchronous-tuned quadruplet filter with symmetric 

finite transmission zeros at 2±=Ω  is shown. If the values of unwanted cross 

couplings M13 and M24 are equal to –0.06, the frequency response after adjusting the 

resonant frequencies is shown in Figure 3-3(b). It can be observed that the 

transmission zeros drift slightly and the height of |S21| bumps tilts. In many practical 

applications this change of |S21| is acceptable. However, in the case of flat group delay 

filter as shown in Figure 3-3(c), the finite transmission zeros are located at 

55.1j±=Ω . Set M13=M24=-0.06, which is similar to the previous case, and adjust the 

resonant frequency to optimize the in-band return loss, we would get the results as 

shown in Figure 3-3(d). It is obvious that the response of |S21| has negligible change 

but the in-band group delay tilts seriously. In most of linear phase filter applications 

this tilting of group delay is not allowed. 

From the above discussion, some observations are summarized as follows. First, 

higher order symmetric filters in folded form are hard to design since tuning of 

resonant frequencies is needed for compensating the in-band return loss distortion. 

Besides, controlling more than one pair of finite transmission zeros and keep the 
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return loss good is even more difficult. On the contrary, the source-load coupling has 

extremely small contribution to the passband response and is much easier to 

implement extra pair of transmission zeros. In other words, we can control the 

additional pair of finite transmission zeros and keep the original finite transmission 

zeros nearly unchanged by merely adjusting source-load coupling without fine-tuning 

other portion of the filter. Second, the unwanted cross coupling is surprisingly harmful 

to the performance of in-band flap group delay response. The only way to implement 

a good in-band flap group delay filter is to avoid the unwanted cross coupling. 

 
                 (a)                                    (b) 

 

 
                  (c)                                  (d) 

Figure 3-3. Quadruplet filters with (a) ideal quasi-elliptical response, (b) including 

unwanted cross coupling, (c) ideal flap group delay response, and (d) including 

unwanted cross coupling. 
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3.3 CAD Methods for Filter Diagnosis 

In previous section, we ignore the coupling term, ML1, MS4, and MSL to facilitate 

the discussion and give some design guidelines for the quadruplet filter. To get further 

insight about the correspondence between the proposed physical layout in Figure 

3-1(b) and the coupling diagram shown in Figure 3-2(b), we introduce the CAD tool 

to extract the entire filter network parameters from the EM simulated results in this 

section.  

The extraction method proposed here has two major steps. In the first step, we 

extract the (N+2)× (N+2) transversal coupling matrix, for the filter of order N, from 

the EM simulated response as Alejandro et al. have done in [18]. In [18], the authors 

apply the Cauchy method to get the rational polynomial approximation of )(11 ΩS and 

)(21 ΩS from the EM simulated results, and then generate the corresponding 

transversal coupling matrix by the method proposed by Cameron [9]. Extracting the 

coefficients of the rational function by Cauchy method is attractive since there is no 

need of calibrating the reference plane as that in [16, 17]. In this step, we would get 

the transversal coupling matrix like the follows (take the proposed quadruplet filter 

for instance). 
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The coupling matrix is related to the responses of )(11 ΩS and )(21 ΩS via the following 

equation  
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11
1

11 ][21 −+= AjS            (3-3) 

1,2
1

21 ][2 +
−−= NAjS           (3-4) 

Here, ][][][ 0 RjMUA −+Ω= , )//)(/( 000 ffffff −Δ=Ω , ][ 0U  is similar to the  

(N+2) × (N+2) identity matrix except that 0][][ 2,20110 == ++ NNUU , ][M  is the  

(N+2)× (N+2) symmetric coupling matrix, 0f  is the center frequency of the filter 

and fΔ is its bandwidth, and ][R  is the diagonal matrix 

}1,,...,,1{][ lossloss RRdiagR = . lossR , which value is 
uQf

f 10

Δ
, accounts for the 

resonator loss. uQ  is the unloaded quality factor of the resonator. Note that lossR  is 

set to be zero in the filter parameter extraction process since the assumption of 

lossless network must be satisfied in the extraction of )(11 ΩS and )(21 ΩS  [18]. After 

getting the coupling matrix of prescribed topology, one can put the lossR  back to 

calculate the practical filter response. 

  In the second step, the transversal coupling matrix is transformed into the 

prescribed topology. It is known that by applying the multiple similarity 

transformations to the coupling matrix, one can get the equivalent coupling matrix 

with the same electrical performance as the original coupling matrix. Some methods 

may be found in the literature, which describe how to find the sequence of rotations 

(and the corresponding angles) required for obtaining a few specific topologies [8, 9, 

31]. However, to the best of authors’ knowledge, how to transfer the transversal 

coupling matrix into the topology shown in Figure 3-2 is still not known. Fortunately, 

one can apply the numerical optimization technique to determine the sequence and 

rotation angles of the multiple similarity transformations as Macchiarella has done in 

[25]. The method, reported in [25], works well for the synthesis of a filter with order 

up to 12. The initial coupling matrix being used in [25] is the canonical folded form or 
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generic form, which corresponds to the filter of order N with maximum of N-2 finite 

transmission zeros. 

We apply the optimization method as proposed by Macchiarella to transform the 

transversal coupling matrix to the prescribed topology as shown in Figure 3-2 (b). 

Note that using the transversal coupling matrix as initial coupling matrix extends the 

method of [25] applicable to a filter of order N with maximum of N finite 

transmission zeros. In the follows, we take the quadruplet filters as an example since 

they will be used in the next section. Applying the multiple similarity transformations 

to the transversal coupling matrix M  in Eq. (3-2), we would get the new coupling 

matrix M  and M  can be expressed as 
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where )( ijijR ϑ  is the rotation matrix of order N+2 corresponding to pivot (i, j), and 

angle ijϑ . )( ijijR ϑ  is defined as follows: 
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The cost function U  for the topology shown is Figure 3-2(b) is defined as 
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  (3-7) 

The first four terms in the cost function indicate which cross coupling elements must 

vanish while the last four terms indicate the symmetry of the coupling route. If the 
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symmetric condition was not included in the cost function, we might get the 

non-physical solutions. In the practical implementation of the minimization procedure, 

the Gauss-Newton method is used to determine the rotation angles ),..,,( 452423 ϑϑϑ , 

which minimize the cost function U . Once the rotation angles are determined, we 

can get the corresponding coupling matrix elM mod . 

 It should be mentioned that the proposed extraction scheme could be applied to 

arbitrary topologies once their feasibility has been assessed. Depending on the setting 

of different cost functions, different topologies can be obtained after multiple 

similarity transformations. For the filter of order N, one can choose the N×N coupling 

matrix or (N+2)× (N+2) coupling matrix as the initial coupling matrix, depending on 

the maximum number of finite transmission zeros. If the maximum number of finite 

transmission zeros is less than N-2, either N×N coupling matrix or (N+2)× (N+2) 

extended coupling matrix can be chosen. Otherwise, the (N+2)× (N+2) transversal 

coupling matrix should be applied. 

3.4 Filter Design Examples 

In this section, we will develop two novel quadruplet filters with source-load 

coupling and utilize the CAD tool introduced in previous section to do diagnosis of 

proposed filters. The design procedures are summarized as following. Follows the 

synthesis method described in [9], one would get the ideal coupling matrix with the 

topology shown in Figure 3-2(a). The corresponding spacing between every resonator 

is determined through the characterization of the couplings as described in chapter 8 

of [12]. After EM simulation, the values of unwanted cross couplings are extracted. 

Fixing the values of unwanted couplings, the optimization technique is then applied to 

determining the required frequency shifts of resonators and the change of other 

coupling elements to compensate the distortion of |S11|[17]. Two examples are given 

to show the design procedures. The first filter, shown in Figure 3-4, is designed to 
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have two pairs of real frequency transmission zeros at normalized frequency 

 6,2 ±±=Ω for skirt selectivity. The second filter, shown in Figure 3-7, is intended to 

have one pair of real frequency transmission zero at normalized frequency 5.4±=Ω  

for selectivity and another pair at 55.1j±=Ω  for in-band flap group delay. The center 

frequency, the fractional bandwidth, and the maximum in-band return loss of both 

filters are 2.4GHz, 3.75% and 20dB respectively. The filters are built on a 

20-mil-thick Rogers RO4003 substrate with 38.3=rε , 0021.0tan =δ . The 

commercial EM simulation software Sonnet 9.0 [32] is used to perform the 

simulation. 
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(a) 

 

(b) 

Figure 3-4. (a) quadruplet filter with the capacitive S/L coupling controlled by the 

controlling line (b) photograph of the fabricated filter with dimension (in mils) S1=4, 

S2=8, S3=41, E1=90, E2=20, W1=64, W2=30, h1=310, h2=250, g1=42, g2=26, 

Line=160 
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A. Quadruplet filter with two pair of real frequency transmission zeros 

In order to see the effect of the controlling line, we exclude the controlling line at 

first and adjust the quadruplet filter with the previously mentioned procedures. After 

extracting the unwanted diagonal cross couplings of the quadruplet filter and 

compensate them, we would get the EM simulated response shown as circles in 

Figure 3-5(a). Using the CAD tool developed in section 3.3 together with the cost 

function defined in Eq. (3-7), the extracted coupling matrix M1 (with the value of cost 

function 710−=U ) is obtained as following.  
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The corresponding response of M1 is also shown in Figure 3-5(a) as solid line for 

comparison. 

After adding the controlling line of source-load coupling, the EM simulated 

response is shown in Figure 3-5(b) as circles. The corresponding extracted coupling 

matrix M2 (with the value of cost function 710−=U ) is  
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The corresponding response of coupling matrix M2 is also shown in Fig. 5(b) as solid 

line. 



 42

 

(a) 

 
(b) 

Figure 3-5. (a) response of quadruplet filter (b) response of quadruplet filter with 

controlling line of source-load coupling. Circle: EM simulated results; solid line: 

circuit model. 
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Comparing M1 and M2, it can be easily observed that the introduction of 

controlling line is only a small perturbation to the original quadruplet. In other words, 

the controlling line has negligible contribution to the passband response. Besides, the 

existence of the tiny unwanted diagonal cross couplings MS4 and ML1 in matrix M2 

explain why the response is asymmetric because the response becomes symmetric as 

the MS4 and ML1 are excluded from M2. Taking matrix M2 into equation (3) and (4), 

and setting unloaded quality factor 150=uQ , the results are shown in Figure 3-6 as 

dashed lines. The measured responses are also shown in Figure 3-6 as solid lines. 

Comparing the circuit model responses with measured responses an excellent fit can 

be observed except some frequency drift toward lower frequency.  

 

Figure 3-6. Experimental and circuit model results. Solid line: experimental results, 

dashed line: circuit model including loss term. 
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(a) 

 

(b) 

Figure 3-7. (a) quadruplet filter with the inductive S/L coupling controlled by the 

controlling line (b) photograph of the fabricated filter with dimension (in mils) d=20, 

Line=800, s=4, L3=575, L1=940, L2=770, L3=575, h1=340, h2=304. 
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B. Quadruplet filter for flap group delay and skirt selectivity 

As mentioned in section 3.2, the unwanted cross couplings M13 and M24 would 

destroy the in-band group delay flatness. To reduce the strength of unwanted 

couplings, we use the L-shaped resonator and arrange the resonators in square to 

maximize the distance between diagonal resonators as shown in Figure 3-7. The 

coupled lines with length L1, L2, and L3 control the strength of coupling between 

L-shape resonators respectively. The inductive source-load coupling is effectively 

controlled by changing the length of controlling line with both ends connected to 

ground. Resonant frequencies of resonators can be tuned by adjusting the length h1 

and h2. Following similar procedures in the previous design, we can get the extracted 

coupling matrix M3 as 
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The corresponding response of M3 fit well with the EM simulated results as shown in 

Figure 3-8. Taking M3 into equation (3-3) and (3-4) and setting unloaded quality 

factor 150=uQ , we have the filter responses shown in Figure 3-9 as doted lines. The 

experimental results are also shown in Figure 3-9 as solid lines that they are similar to 

the circuit model results except similar frequency drift as the former example. The 

frequency drift might come from the discrepancy of the substrate dielectric const. In 

other words, the dielectric const rε  might be greater than data sheets’ value 3.38.  
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(a) 

 

(b) 

Figure 3-8. Response of quadruplet filter with controlling line of source-load coupling. 

Circle: EM simulated results; solid line: circuit model. 
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From above two examples, we can conclude that the controlling line of 

source-load coupling can effectively adjusting the position of finite transmission zeros 

with negligible perturbation to the passband. It is suggested that one can design the 

symmetric folded coupled-resonator filter at first and then adds the controlling line to 

control the source-load coupling without fine-tuning other portion of the filter. The 

design method may apply to higher order symmetric folded coupled-resonator filter. 
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(a) 

 

                                (b) 

Figure 3-9. Experimental and circuit model results (a) return loss and insertion loss (b) 

group delay. Solid line: experimental results, dashed Line: circuit model including 

loss term. 
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Chapter 4 Modified Parallel-Coupled Filter with Two Independently 

Controllable Upper Stopband Transmission Zeros 

In this chapter, a microstrip cross-coupled filter with two independently 

controllable transmission zeros on upper stopband is presented. The initial filter 

structure is a conventional Chebyshev-response parallel-coupled filter that can be 

easily realized by the analytical method. The newly proposed coupling/shielding lines 

can effectively control the cross and main couplings without changing the original 

filter layout. This approach allows designer to eliminate tedious segmentation method, 

which is usually used to establish the relation between coupling coefficient and 

physical distance between resonators. A 3-order filter is designed and fabricated for 

demonstration. 

 

4.1 Motivation 

The cross-coupled microstrip filters have been extensively studied in recent years. 

Research efforts are focused mainly on two aspects. One is finding new shape of 

resonator. Another is developing novel synthesis methods, which enable designer to 

arrange resonators in different ways to achieve advanced response such as generalized 

Chebyshev response. Resonators with different shape, such as loop [11], hairpin [33], 

and patch [34], have been arranged in specific topologies for improving the selectivity 

or in-band group delay of filters. Some widely applied topologies are cascade 

quadruplet (CQ) and cascade trisection (CT). Besides CQ and CT, novel synthesis 

methods have leaded to novel topologies containing couplings of source/load to 

multi-resonator [23, 35]. In a word, novel physical structures accompanied with 

advanced synthesis methods have enriched the possibilities of a microstrip filter. 

However, the designs of cross-coupled filters are not as straightforward as 

conventional ones such as parallel-coupled filter, end-coupled filter, etc. In the design 
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of cross-coupled filter, there are no explicit expressions to relate synthesized electrical 

parameters to physical dimensions of a filter. Therefore, when designing a 

cross-coupled filter, the first step is to synthesize a coupling matrix. Then, use 

segmentation method to relate coupling strength to physical distance between 

resonators [12]. The drawback of the design procedures is that once the size of 

resonator changes, designers must redo the segmentation method to find physical 

dimensions of filters. Moreover, since segmentation method can provide only 

approximated dimensions of filter, fine tunings are always needed.  

 

To skip the tedious designing routine of segmentation method, we propose an 

easy designing procedure to realize a filter with two upper stopband transmission 

zeros. The basic structure of proposed filter utilizes the conventional microstrip 

parallel-coupled filter [36], as shown in Figure 4-1(a), to serve as the initial design. 

Then, vertically flip feeding lines of the source and the load as shown in Figure 4-1(b). 

As described by Chang and Itoh in [37] that the physical dimensions keep the same 

during flipping. Next, adding the proposed coupling/shielding lines at the ends of 

input and output feed lines as depicted in Figure 4-1(b). Figure 4-1(c) shows the 

coupling diagram of Figure 4-1(b) and the coupling elements can be optimized and 

fine-tuned by the method given in Chapter 2. The proposed layout of the filter is 

somewhat similar to those of [37]. Nevertheless, the strengths of couplings MS2 and 

ML,n-1 in the filters described in [37] are extremely weak and not taken them into 

account during filter design procedures. In this paper, we introduce these 

coupling/shielding lines to control the strength of MS2 and ML,n-1, which makes it 

possible to independently control two transmission zeros in upper stopband.  
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(a) 

 

(b) 

 

(c) 

Figure 4-1. (a) The conventional parallel-coupled filter. (b) The modified filter. (c) 

The coupling route of the modified filter. 
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4.2 Circuit Description and Design Feasibility 

The design procedures are started with the conventional microstrip 

parallel-coupled filter. Following easy design procedures, dimensions of a 

Chebyshev-response parallel-coupled filter as shown in Figure 4-1(a) can be obtained. 

Then, vertically flip feeding lines of the source and the load with respect to the 

resonator “1” and resonator “n” respectively, which is shown in Figure 4-1(b). Note 

that the gap spacing Si in Figure 4-1(a) is identical to that in Figure 4-1(b). During 

practical layout, designers may shorten resonators in advance to prevent the feed lines 

from directly connecting to the resonator “2” or resonator “n-1” if needed.  

To introduce two independently controllable transmission zeros on the upper 

stopband, the design procedures could be started with the Chebyshev-response 

coupling matrix and perturb it by introducing cross couplings MS, 2 and ML, n-1 to form 

two trisection blocks as shown in Figure 4-1(c). During this procedure, it is found that 

in order to keep equal ripple in-band response, the strength of M1, 2 and Mn-1, n must be 

decreased and the frequencies of resonators need to be adjusted. Therefore, a suitable 

manner to simultaneously introduce the couplings, 2SM  and ML, n-1, and decrease the 

strength of M1, 2, and Mn-1, n is needed. The coupling/shielding lines shown in Figure 

4-1(b) seem to be a perfect candidate. The coupling/shielding lines can introduce 

couplings, MS2 and ML, n-1, and decrease the strength of M12 and Mn-1, n by shielding 

part of the coupling gaps of them. Practically, length, width, and vertical position of 

the coupling/shielding line can be adjusted. Here, we fix the line width and adjust the 

line length and vertical position. The vertical position of the coupling/shielding line 

has little effect on shielding but has strong influence on cross-coupling. In 

Chebyshev-response parallel-coupled filters, the relations S1<S2 and Sn+1<Sn always 

hold, which makes it possible to add coupling/shielding line at the end of feed lines. 

Another merit of the parallel-coupled filter structure is that when adjusting the length 
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of resonator to align the resonant frequencies, the coupling between resonators is 

nearly unchanged. The feasibility of nearly independently tuning the coupling and 

frequencies makes it easy to implement the asynchronous tuned filter as that in Figure 

4-1(c). 

 

 
Figure 4-2. The layout of the fabricated filter (unit: mil). L1=354, L2=354, L3=354, 

L4=354, S1=11, S2=35, W1=19, W2=21, K1=19, K2=20, T1=87, T2=39. The line 

with of coupling/shielding lines is 8mil. 

 

4.3 Design Example and Experiment 

To show the feasibility of the proposed structure, an example is given below. The 

center frequency, in-band return loss, and fractional bandwidth of the filter are chosen 

to be 5GHz, 20dB, and 5% respectively. The filter is built on a Rogers RO4003 

substrate with 58.3=rε , thickness=20mil, and 0021.0tan =δ . The initial dimensions 

of the parallel-coupled filter are obtained by analytical method described in [7]. The 

coupling/shielding lines with length T1 and T2 are added at the ends of feed lines as 

shown in Figure 4-2, to introduce two transmission zeros separately. Two prescribed 

transmission zeros are located at 5.35GHz, and 5.7GHz respectively. The initial value 

of T1 and T2 can be arbitrarily set, say, T1=50 mil, T2=30 mil. The S-parameters of the 

filter is then obtained with the help of the commercial EM simulator Sonnet [32]. 

Next, the method described in chapter 2 can be used to extract the coupling matrix 

from the simulated S-parameters. The physical dimensions of filter are then adjusted 
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according to the extracted coupling matrix to match the prescribed response. After 

totally five of EM-simulation, matrix extraction, and physical parameters adjusting 

loops, one can get the simulated results as shown in Figure 4-3. The measured results 

are also shown in Figure 4-3 for comparison. The corresponding physical sizes are 

shown in Figure 4-2. And the corresponding coupling matrix M is extracted as follows 
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Figure 4-3. Simulated and measured responses. Solid line: measured results. Dashed 

lines: EM simulated results. 

It should be emphasized that filter shown in Figure 4-2 has exactly the same 

layout as the initial design except two coupling/shielding lines. So, designers can 
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easily realize this filter even by trial and error method without using of matrix 

extracting procedure.  

 

Figure 4-4. EM simulated results of three different cases. The dimensions of the 

simulated filter are the same as these shown in Figure 4-2 except T2 is set to different 

values.  

 

It is mentioned in section 4-2 that the introduction of the coupling/shielding lines 

in this way can effectively adjust the transmission zeros with slight perturbation of the 

passband return loss. To demonstrate the merits of easy tuning of the proposed 

structure, three EM simulations are taken in which the length of the 

coupling/shielding line, T2, are set to 14mil, 24mil, and 39mil respectively while the 

other dimensions are the same as these given in Figure 4-2. From the EM simulated 

results shown in Figure 4-4, it is obvious that the transmission zero can be tuned over 

a wide range with negligible change in the passband return loss. 
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Chapter 5 Microstrip Realization of Generalized Chebyshev Filters 

with Box-Like Coupling Schemes 

In this chapter, generalized Chebyshev microstrip filters with box-like coupling 

schemes are presented. The box-like coupling schemes taken in this chapter include 

doublet, extended doublet, and fourth-order box-section. The box-like portion of the 

coupling schemes is implemented by an E-shaped resonator. Synthesis and realization 

procedures are described in detail. The example filters show an excellent match to the 

theoretical responses. 

5.1 Introduction 

The microstrip filters with generalized Chebyshev response attract considerable 

attention due to its lightweight, easy fabrication and ability to generate finite 

transmission zeros for sharp skirts. In the literature, most of them are based on 

cross-coupled schemes such as cascade trisection and cascade quadruplet. Some 

representative examples of cross-coupled microstrip filters are available in the book 

[12].  

Recently, with the progress of the synthesis technique, new coupling schemes 

such as “doublet”, “extended doublet”, and “box-section” are introduced [38]-[40]. As 

shown in Figure 5-1, these coupling schemes have a box-like center portion, so we 

call them box-like coupling schemes. These coupling schemes impact the filter design 

since they do not only provide new design possibilities but exhibit some unique and 

attractive properties as well. They differ from the conventional cascade trisection and 

cascade quadruplet mainly on two aspects. First, there are two main paths for the 

signal from source to load while there is only one main path in the case of cascade 

trisection and cascade quadruplet. Second, the configuration of doublet and 

box-section exhibit the zero-shifting property which make it possible to shift 

transmission zero from one side of the passband to the other side simply by changing 
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the resonant frequencies of the resonator while keeping other coupling coefficients 

unchanged. The zero-shifting property implies that the similar physical layout can 

implement a filter with transmission zero at the lower stopband or at the upper 

stopband, which is not feasible on the conventional trisection configuration. Besides, 

the third-order extended-doublet configuration, as shown in Figure 5-1(b), exhibits 

one pair of finite transmission zeros as that of a cross-coupled quadruplet filter. Pairs 

of finite transmission zeros can be used to improve the selectivity of the filter or 

flatten the in-band group delay. However, to the author’s knowledge, only a few 

studies in the literature are focused on realization of the coupling schemes shown in 

Figure 5-1 with microstrip line [41], [42]. 

                                            

                  (a)                                   (b) 

 

                  (c) 

Figure 5-1. Basic box-like coupling schemes for generalized Chebyshev-response 

filters discussed in this paper. (a) doublet. (b) extended doublet (c) box-section. ( The 

gray area is realized by the proposed E-shaped resonator) 
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An important property of the schemes in Figure 5-1 is that one of the coupling 

coefficients on the two main paths must be negative while others are positive. The 

simplest way to obtain the required negative sign is to use higher-order resonance [39], 

[42]. Unfortunately, higher-order resonance leads to a spurious resonance in the lower 

stopband. Instead of using higher-order resonance, loop resonators are arranged 

carefully to satisfy the required sign of coupling coefficients for the box-section 

configuration [41]. However, a similar method can not apply to doublet or 

extended-doublet. To overcome these difficulties, an E-shaped resonator as shown in 

Figure 5-2(a) is proposed to implement the required coupling signs.  

 

   

                   (a)                                (b) 

Figure 5-2. A doublet filter (a) the proposed layout (gray area indicate the E-shaped 

resonator) (b) the corresponding coupling scheme. 

 

The E-shaped resonator can achieve the required magnitude and sign of the coupling 

schemes shown in Figure 5-1. As shown in Figure 5-2(a), the E-shaped resonator 

comprises a hairpin resonator and an open stub on its center plane. This symmetric 



 59

structure can support two modes: even mode and odd mode. Thus, the source and the 

load are coupled to both modes of the E-shaped resonator. That is even though only 

one physical path exists between source and load, there are two electrical paths 

between them. Consequently, the layout in Figure 5-2(a) can be modeled by the 

coupling scheme, a doublet, in Figure 5-2(b). The doublet filter illustrates how an 

E-shaped resonator directly couples to external feeding network.  

Based on the proposed E-shaped resonator, filters with extended-doublet and 

box-section configuration can be realized as well. The E-shaped resonator can use 

either its even mode or odd mode to couple an extra resonator. Thus, the 

extended-doublet configuration in Figure 5-1(b) is achievable. Besides, the E-shaped 

resonator can couple to external resonators with two of its modes simultaneously and 

forms the box-section configuration in Figure 5-1(c). The feasibility of realization of 

the basic coupling schemes in Figure 5-1 with proposed E-shaped resonator makes it 

possible to realize a class of coupled microstrip filters in a unified approach.  

 

5.2 Circuit Modeling 

A. Filters in the doublet configuration 

The E-shaped resonator filter in Figure 5-2(a) was originally reported in [43]. In 

[43], the E-shaped resonator was not modeled as a two-mode resonator. Instead, the 

circuit was modeled as two quarter-wavelength resonators with a tapped open stub in 

the center plane. The open stub is considered as a K-inverter between two 

quarter-wavelength resonators to control the coupling strength and as a quarter-wave 

open stub to generate a transmission zero at the desired frequency. However, the filter 

cannot be designed with a prescribed quasi-elliptic response since there is no suitable 

prototype corresponding to the circuit model in [43].  

In this dissertation, a doublet as shown in Figure 5-2 (b) is used to model the 
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circuit in Figure 5-2 (a). In Figure 5-2(b), the resonator 1 represents the odd-mode 

resonance, where the center plane of the E-shaped resonator is an electric wall 

(E-plane). On the other hand, the resonator 2 represents even-mode resonance, where 

the center plane of the E-shaped resonator is a magnetic wall (H-plane). With the 

notation shown in Figure 5-2(b), the corresponding coupling matrix M can be written 

down as  

                                                 

 

                                                     (5.1) 

 

 

There are some interesting properties of the doublet filter in Figure 5-2(a). First, 

since the E-shaped resonator exhibits symmetry, the relationship MS1=-M1L and 

MS2=M2L holds. Second, |MS1|>|MS2| is always true for this structure since the 

coupling strength between the odd mode and external feeding network is always 

larger than that of the even mode.  

To get more insight of how to control a transmission zero of a doublet filter in 

this configuration, an explicit expression relating the coupling elements and the 

transmission zero Ω  is provided in a low-pass domain as follows 
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Based on the Eq (5.2), observations are summarized in the following: 
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other words, the structure exhibits finite transmission zero inherently. 

2. The transmission zero can be moved from upper stopband to the lower stopband, 

or vice versa, by changing the sign of M11 and M22 simultaneously. This property 

makes it possible to generate upper stopband or lower stopband finite transmission 

zero with similar structure. 

3. If 011 >M  and 022 <M , Ω  would be greater than zero. In a more explicit 

expression, 11M  and 22M  can be related to the resonant frequencies of odd 

mode, oddf , and even mode, evenf , respectively by the following equations. 
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where 0f  and fΔ  are center frequency and bandwidth of a filter, respectively. That 

is if 0ffodd <  and 0ffeven > , the transmission zero would be on the upper stopband.  

4. If 011 <M  and 022 >M , Ω  would be smaller than zero. That is if 0ffodd >  

and 0ffeven < , the transmission zero would be on the lower stopband.  

 

 To get the related electrical parameters indicated in Figure 5-2(a), one can take 

the following procedures. First, synthesize a coupling matrix M corresponding to the 

prescribed response. Then, consider parameters concerning the odd mode only by 

removing the open stub on the center plane. Once the open stub is removed, the 

circuit becomes a first-order hairpin filter. The first-order hairpin filter can be 

synthesized by the conventional method [44] with the center frequency set to be the 

resonant frequency of odd mode, which can be expressed as 

)2/1( 0110 ffMffodd Δ×−= . At this step, one can specify the values of Cϑ , 1Z  and 

1ϑ  and obtain the values of oeZ , ooZ  by analytical method [44]. Second, put the 

open stub back. The two parameters of the open stub, 2Z  and 2ϑ , can be adjusted to 
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achieve the desired resonant frequency and the needed external coupling strength of 

the even mode. Here, the resonant frequency of the even mode is 

)2/1( 0220 ffMffeven Δ×−= .  

To illustrate the procedure, an example is taken of a second order generalized 

Chebyshev filter with a passband return-loss of 20-dB and a single transmission zero 

at a normalized frequency 3=Ω . The corresponding coupling coefficients are 

MS1=1.1110, MS2=0.6170, M11=1.4545, and M22=-1.6260. For filter with center 

frequency f0=2.4 GHz and fractional bandwidth FBW=0.05, the ideal response is 

depicted in Fig. 3 as solid lines. After getting the coupling matrix, Cϑ  could first be 

specified. Here, we set o
C 60=ϑ , 501 =Z ohm, and o601 =ϑ  and obtain 

2552.75=oeZ ohm, 1022.38=ooZ  ohm for a uniform impedance resonator with 

characteristic impedance 500 =Z ohm at frequency 3127.2=oddf GHz. Next, put the 

open stub back and adjust the values of 2Z  and 2ϑ  by the optimization method to 

let the response of the circuit match with the ideal response calculated from the M 

matrix. The optimized values of 2Z  and 2ϑ  are 62 ohm and o8.86 , respectively, at 

frequency 4976.2=evenf GHz. According to the obtained electrical parameters in 

Figure 5-2 (a), the corresponding response is shown in Figure 5-3 as circled lines. The 

frequency response contributed only by the odd mode is also depicted in Figure 5-3 as 

dashed lines to let us understand the procedures clearer. 
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Figure 5-3. Responses generated from the coupling matrix and from electrical 

network shown in Fig. 2(a) with synthesis parameters. 

  

B. Extended-Doublet Filters 

Based on the doublet filters developed in previous section, the emphasis is put on 

how to extend the design to extended-doublet filters in this section. There are two 

possible arrangements suitable to form extended-doublet filters. One possible 

arrangement is indicated in Figure 5-4 where the extended doublet filter consists of a 

doublet filter plus a grown resonator. The grown resonator is a half-wavelength 

resonator with both ends open. In this case, the grown resonator would mainly couple 

to the odd mode of the E-shaped resonator. And for the even mode of the E-shaped 

resonator, it acts as a non-resonant element, which slightly perturbs the resonant 

frequency of the even mode. Another possible design is shown in Figure 5-5 where 

both ends of the grown resonator are shorted to ground. In this case, the grown 

resonator mainly couples to the even mode of the E-shaped resonator and acts as a 

non-resonant element to the odd mode of the E-shaped resonator. To clarify the 
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coupling relationship between each resonator, the coupling routes are accompanied 

with layouts in Figure 5-4 and Figure 5-5.  

 

Figure 5-4. A layout of extended-doublet filter and its corresponding coupling scheme. 

The design is for flat group delay response 

 

Figure 5-5. A layout of extended-doublet filter and corresponding coupling scheme. 

The design is for skirt selectivity response 

 

The extended-doublet filter has a pair of finite transmission zeros. For the design 

in Figure 5-4, the pair of transmission zeros is on the imaginary-frequency axis. On 

the other hand, to generate a pair of real-frequency transmission zeros, the design in 

Figure 5-5 must be adopted. The difference between the two designs can be 
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understood from the governing equation of finite transmission zeros. Since the 

proposed extended doublet filters are symmetric structures, the relations |MS1|=|M1L| 

and |MS2|=|M2L| always hold. Thus, the governing equation of finite transmission zero 

can be expressed as 
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As discussed in the design of doublet, the coupling coefficient of source to odd mode 

is stronger than that of source to even mode. Thus, for the design in Figure 5-4, 

|MS2|>|MS1|, which leads to 02 <Ω . On the contrary, for the design in Figure 5-5, 

|MS2|<|MS1|, which results in 02 >Ω . In conclusion, the design in Figure 5-4 can be 

used to generate delay-flattening transmission zeros while the design in Figure 5-5 

can be used to generate a pair of attenuation poles.  

 To illustrate the procedure of the design, a generalized Chebyshev filter with 

passband return loss of 20-dB and a pair of transmission zeros at 2±=Ω  is taken as 

an example. The design of an extended doublet starts from the synthesis of coupling 

matrix, which can be done using the technique in [9]. The synthesized coupling 

matrix is shown in Figure 5-6(a). Using the information of MS1 and MS2, one can 

construct the doublet by the method provided in section 5-2A. Excluding the M23 and 

M32 in the coupling matrix, one can calculate the response contributed from the 

doublet only. For instance, if the center frequency and fractional bandwidth of the 

designed filter are 2.4GHz and 5% respectively, the responses of the doublet are 

shown as dotted lines in Figure 5-6(b). After getting the initial design of doublet, add 

the grown resonator. Since 02 >Ω  in this case, the layout in Figure 5-5 must be 

adopted. Ideally, the response of the extended-doublet would be the solid lines shown 

in Figure 5-6. The physical implementation of this design will be presented in section 

5-3 to confirm the validity. 
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 (a) 

 

(b) 

Figure 5-6. The extended-doublet filter with in-band return loss RL=20dB, 

normalized transmission zeros at 2±=Ω . (a) its coupling matrix (b) Responses of 

extended doublet filter and responses contributed by doublet only. 
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C. Box-section Filters 

The fourth order filter in the “box-section” configuration was first proposed in 

[38] and realized by coaxial resonators. With the zero-shifting property, it is possible 

to use the similar filter structure to realize the finite transmission zero either on the 

upper stopband or on the lower stopband. The box-section filter is suitable for the 

complementary filters of a transmit /receive duplexer [42] since it has asymmetric 

response with high selectivity on one side of the passband. The microstrip box-section 

filter was first reported in [41] with open square loop resonators. Because the 

box-section coupling diagram is symmetric where MS1=M4L, M12=-M24, M13=M34, 

and M11=M44 should be held in the coupling route shown in Fig. 5-7(a). Therefore, it 

is preferable to layout the filter symmetrically because a symmetrical-layout filter can 

inherently obtain symmetrical coupling coefficients. The asymmetrical layout causes 

the filters in [41] to be difficult to keep the coupling coefficients to be symmetric. 

Another microstrip box-section filter was proposed in [42]. Although the layout of the 

filters in [42] is symmetric, it suffers from spurious response in the filter’s lower 

stopband due to one of filter’s resonators to be a higher order mode resonator. In this 

paper, the layout depicted in Figure 5-7(b) solves the problems mentioned. The 

E-shaped resonator is symmetric and is free from lower stopband spurious resonances. 

Due to the symmetry, only half of the electrical parameters are shown in Fig. 5-7(b). 

As explained in doublet filter, the circuit layout in Fig. 5-7(b) satisfies the required 

sign of couplings.  
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(a) 

 

(b) 

Figure 5-7. A Box-section filter. (a) filter’s coupling scheme.  (b) the proposed 

layout. 

To illustrate how to obtain the corresponding electrical parameters in Figure 

5-7(b) from a prescribed response, examples are taken as follows. The first example is 

a fourth order generalized Chebyshev filter with a passband return-loss of 20-dB, a 

single transmission zero at 57.2−=Ω  which gives a lobe level of -48 dB on the 

lower side of the passband. The corresponding coupling matrix M is shown in Figure 

5-8(a). After the lowpass-to-bandpass transformation, the ideal bandpass response of 

this filter with center frequency of 2.4 GHz and fractional bandwidth of 5% is shown 

in Figure 5-8(b).  
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The design procedures are described as follows. First, remove the open stub in 

the E-shaped resonator in Figure 5-7(b), which is equivalent to discarding the even 

mode (resonator 3 in the Figure 5-7(a)) of the E-shaped resonator. After removing the 

open stub, the circuit becomes a third-order hairpin-like filter. The coupling matrix M1 

of this hairpin-like filter is identical to the coupling matrix M in Figure 5-8(a) except 

M3i and Mi3 being zero. The ideal response of this hairpin-like filter can be calculated 

from M1 matrix as circled lines in Figure 5-8(b). To get the electrical parameters 

associated with the asynchronously tuned third-order hairpin-like filter, a synchronous 

tuned third-order hairpin filter provides the initial design and is synthesized at first. 

The synchronous tuned hairpin filter has coupling matrix M2 which is identical to M1 

except Mii=0. When synthesizing the synchronously tuned hairpin filter, we 

set o
C 901 =ϑ , o

C 602 =ϑ , 501 =Z ohm, 502 =Z ohm at 0ff = , and the 

characteristic impedance of each resonator to be 50 ohm. With these settings, the 

electrical parameters of the synchronously tuned hairpin filter are calculated and 

shown in Table. 5.1, which provides the initial values for the asynchronous-tuned 

hairpin-like filter. Then, an optimization routine is involved. The goal of optimization 

routine is to find a set of electrical parameters which can make the response match 

with the response of the ideal asynchronously-tuned hairpin-like filter calculated from 

M1 matrix. The optimized parameters are shown in Table 5.1 for comparison. Note 

that the optimized values of associated parameters are nearly identical to the initial 

values; therefore, the optimization routine can converge within a few times. Finally, 

put the open stub back and optimize the parameters 3Z  and 3ϑ  to make the 

response matched with the response of the desired box-section filter’s response as 

solid lines in Figure 8(b). The optimized values of 3Z  and 3ϑ  are given in Table 5.1 

as well. 
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(a) 

 
(b) 

Figure 5-8. A fourth order box-section filter: (a) its coupling matrix (b) the responses 

of the box-section filter and ideal responses of the asynchronous tuned third-order 

hairpin-like filter calculated by M1 matrix. 

Instead of a lowpass prototype filter with a transmission zero at 57.2−=Ω in the 

first example, the second example locates the transmission zero at a normalized 

frequency 57.2=Ω  and keeps all other parameters unchanged. According to the 

synthesis procedures in [38], the inter-resonator couplings are unchanged but 

self-couplings (principal diagonal matrix elements, M11, M22,…etc., of the coupling 
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matrix in Figure 5-8(a)) must change sign. Following the same procedures in the 

previous design, one can get the electrical parameters given in Table 5.1. In Table 5.1, 

the column of design #1 corresponds to lowpass prototype filter transmission zero at 

57.2−=Ω  and the column of design #2 corresponds to a lowpass prototype filter 

transmission zero at 57.2=Ω . The responses obtained from the electrical parameters 

listed in Table 5.1 and responses calculated from M matrix in Figure 5-8(a) are both 

plotted in Figure 5-9 for comparison.  

 
Table 5.1. Electrical parameters corresponding to box-section filters shown in Fig. 

7(b). Here, o
C 901 =ϑ , o

C 602 =ϑ , 501 =Z ohm, 502 =Z ohm. All of the electrical 

lengthes are corresponding to the center frequency of the filter. 

Design 1: in-band return loss RL=20dB, 57.2−=Ω , and FBW=5% 

Design 2: in-band return loss RL=20dB, 57.2=Ω , and FBW=5% 
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5.3 Design Examples and Experimental Results 

The extended-doublet filter discussed in Section 5-2-B with its ideal response 

shown in Figure 5-5, and the design #1 of box-section filter discussed in Section 

5-2-C with its ideal response shown in Figure 5-9(a) are fabricated to verify the 

designs. Although all of the electrical parameters obtained in Section 5-2 can be 

transformed to physical parameters, it does not include the junction effect. Therefore, 

a commercial EM simulator Sonnet [32] is adopted to take all the electromagnetic 

effects into consideration. To efficiently tune the physical dimensions of the filter to 

achieve the prescribed response, the diagnosis and tuning methods given in Chapter2 

are taken. Figure 5-10 shows the physical dimensions and the corresponding 

responses for the extended-doublet filter where a RO6010 substrate with dielectric 

constant of 10.8 and thickness of 50mil is used. Figure 5-11 depicts the physical 

dimensions and corresponding responses for the box-section filter where an RO4003 

substrate with dielectric constant of 3.63 and a thickness of 20mil is used. The 

measured in-band insertion loss of the filters in Figure 5-10 and Figure 5-11 are 1.4dB 

and 2.7dB, respectively. In Figure 5-10 (b), the experimental results show a larger 

passband than the simulated ones. The deviation mainly results from the fabrication 

error. In Figure 5-11 (b), the measured response is shifted about 30MHz. Further 

investigation showed that the dielectric constant of the substrate is closer to 3.4 rather 

than 3.63. The wideband measurement results of the fabricated box-section filter are 

shown in Figure 5-11 (c). 
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(a) 

 

(b) 

Figure 5-9 Responsess of the box-section filters. (a) Responses obtained by electrical 

parameters of design #1 in Table 5.1 and its coupling matrix respectively. (b) 

Responses obtained by electrical parameters of design #2 in Table 5.1 and its coupling 

matrix respectively. 
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(a) 

 

(b) 

Figure 5-10. Fabricated extended-doublet filter (a) layout(unit:mil) (b) simulated and 

measured response. 
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(a) 

 

                                     (b) 

 

Figure 5-11. fabricated box-section filter (a) layout (unit:mil) (b) simulated and 

measured response. (c) the measured wideband response 
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5.4 Discussion 

In Section 5-2, we have discussed how to get the electrical parameters of a filter 

network in doublet, extended-doublet, and box-section configuration from the 

corresponding coupling matrices. With the understanding of the correspondence 

between the coupling matrix and physical structure, the layout is not limited to those 

provided in this paper. A filter can be modeled by the box-like coupling scheme as 

long as it contains a two-mode resonator that is physically symmetric and supports 

two resonant modes. For instance, the filters in Figure 5-12 can also be modeled as a 

doublet filter since it is symmetric and has two resonant modes. However, for the 

filter in Figure 5-12, it is not easy to get the initial physical dimensions. On the 

contrary, the initial dimensions of the layouts proposed in this paper can easily be 

obtained. Besides, using the E-shaped resonator and the design procedures provided 

in this paper, all electrical parameters of a filter with box-like coupling schemes can 

be easily obtained. These parameters can be applied to filters with the same low-pass 

prototype and fractional bandwidth but a different center frequency and a different 

substrate. Having clear initial dimensions of a filter can save quite a lot of time in the 

design when comparing to the conventional design procedures of cross-coupled filters, 

e.g. the filters in [11]. In the design of a conventional cross-coupled filter, once the 

substrate, shape of resonator, or center frequency of a filter is changed, one must redo 

the design from the very beginning of the procedures. 

 

Figure 5-12. A possible filter layout that can be modeled as a doublet configuration. 
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The sensitivity analysis of the box-like coupling routes can be performed by the 

method proposed in [45]. The most sensitive part of the proposed structures is the 

coupling section between the E-shaped resonator and the source/load or other 

resonators because the coupling section controls the coupling strengths of two modes 

of E-shaped resonator to external circuit simultaneously.  
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Chapter 6 Parameter Extraction Method Based on  

Vector Fitting Formulation 

In previous chapters, the parameter extraction method applied to all of the 

mentioned filters is based on a lossless condition. In this Chapter, a formulation based 

on the vector fitting is applied to extract the equivalent circuit model from the 

frequency response of lossy cross-coupled microwave filters. By approximating the 

lossy response with short-circuit admittance parameters in partial fractional expansion 

form, the proposed method can evaluate the unloaded quality factor of resonators and 

extract the transversal coupling matrix simultaneously. The methodology of the vector 

fitting can identify the poles and residues of the short-circuit admittance parameters 

even when the poles are on the complex plane. And the extracted transversal coupling 

matrix can further transform into the prescribed form corresponding to the physical 

layout. The proposed method can be used in the tuning process of filter designs where 

the extraction of a coupling matrix is essential. To verify the method, a cross-coupled 

quadruplet filter is used as an example. 

6.1 Introduction 

The cross-coupled filters based on the model proposed in [5], [23] have found 

wide applications in wireless communication systems since they can provide the 

generalized Chebyshev response which exhibits the optimal in-band response and 

selectivity. However, the tuning of the filters based on cross-coupled topologies is 

time-consuming. In order to tune the cross-coupled filters more efficiently, therefore, 

diagnosis methods are needed to guide the process of the filter tuning [13]-[18]. Since 

the model proposed in [5], [23] can be expressed by a coupling matrix, most diagnosis 

methods in literatures are focused on extracting a coupling matrix from the simulated 

or measured response. By comparing the extracted coupling matrix to the desired 

coupling matrix, one can determine how to adjust the filter [13], [18].  
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 Most parameter extraction methods are only valid for lossless filters since this 

is the assumption in their formulations. Thus, getting a coupling matrix from a lossy 

filter response is still an important research topic. Recently, a modified formulation of 

the Cauchy method which can extract the parameters of a lossless model from the 

response of a lossy bandpass filter is proposed [21]. The formulation in [21] can 

generate characteristic polynomials suitable for the synthesis of a low pass prototype 

associated with the lossless model of the filter, which is not feasible in the formulation 

proposed in [18], [20]. Strictly speaking, the methods in [21] would require lossless 

measured data and can not give a measure of how lossy a filter is. 

To take the loss of a filter into consideration, we propose to use the model in 

Figure 6-1. The model in Figure 6-1 was modified from the model first proposed in [9] 

for filter synthesis and known as transversal network. The only difference between the 

model used in [9] and here is that we added the conductance, Gk, in each branch of the 

transversal network to model the loss, as shown in Figure 6-1(b). As the formulation 

in [9], the short-circuit admittance parameters, also known as Y-parameters, of the 

model in Figure 6-1, can be expressed by a polynomial in partial fractional expansion 

form. Here, the introduction of the loss positions the poles of the Y-parameters on the 

complex plane instead of on the imaginary axis as in the lossless case. To effectively 

get the short-circuit admittance parameters in the form of partial fraction expansion, 

the technique of vector fitting [46] is applied. The formulation based on the vector 

fitting can identify the positions of poles and calculate the residue of the Y-parameters. 

The poles of the Y-parameters contain the information of how lossy a filter is. Thus, 

the proposed method allows: 

1. the evaluation of how lossy a filter is from the simulated or measured data; 

2. the generation of the Y-parameters in the partial fraction expansion form, which is 

suitable for the synthesis of a low-pass prototype by the method in [9].  
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(a) 

 

 
(b) 

 

Figure 6-1. Canonical transversal array. (a) N—resonator transversal array including 

direct source–load coupling MSL. (b) Equivalent circuit of the kth “low-pass 

resonator” in the transversal array. 
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6.2 Review of the Vector Fitting Technique 

To facilitate the discussion in the next section, we briefly review the technique of 

vector fitting in this section. The technique of vector fitting was first proposed in 1997 

by Bjorn Gustavsen and Adam Semlyen, and the authors further improved the 

technique in 1999 [46]. To one who is interested in the vector fitting technique, the 

paper published by the author in 1999 is highly suggested. The review below is based 

on the material in [46]. 

Consider the rational approximation  
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where the nc , na , d  and h  are unknowns. Vector fitting solves the problem (6-1) 

sequentially as a linear problem in two stages: pole identification and residue 

identification. In the stage of pole identification, specify a set of starting poles na  in 

(6-1) and multiply )(sf  with an unknown function )(sσ . The )(sσ  is expressed 

by rational approximation. This gives the augmented problem: 
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Multiplying the second row in (6-2) with )(sf  yields the following equation: 
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or  

         )()()()( sfssf fitfit σσ =           (6-4) 

Equation (6-3) is linear in its unknowns nc , d , h  and nc~ .Writing (6-3) for several 

frequency points gives the overdetermined linear problem 
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            bAx =                     (6-5) 

where unknowns are in solution vector x . Equation (6-5) is solved as a least squares 

problem. An important fact is that the zeros of )(sσ  are the poles of )(sf , so we 

can calculate the zeros of )(sσ  from the solution vector x  to be the new poles of 

)(sf . Note that the numerator and denominator of )(sfitσ  have been specified in 

(6-2) to be of the same order. This imply that if the starting poles are correct, then the 

new poles (zeros of )(sfitσ ) become equal to the starting poles ( 1)( =sfitσ ). In 

practical application, this has the consequence that the rational function will converge 

if the new poles are used as starting poles in an iteration procedure.  

 After identifying the poles of )(sf , we can take the poles na  to the original 

problem (6-2) and solve the equation like that in (6-5) to find the unknowns nc , d , h , 

which is called residue identification in the vector fitting. 

  

6.3 Applying Vector Fitting to Parameters Extraction 

Following the formulation in [9], one can determine the two-port short-circuit 

admittance matrix [ ]NY  for the parallel-connected transverse array in Figure 6-1 as 

[ ]

∑
=

⎥
⎦

⎤
⎢
⎣

⎡
++

+

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

N

k LkLKSK

LKSKSk

kkk

SL

SL

N

MMM
MMM

GjBsC

M
M

j

sysy
sysy

Y

1
2

2

2221

1211

)(
1

0
0

)()(
)()(

      (6-6) 

Thus, if we can approximate the measured or simulated Y-parameters by polynomials, 

)(, sy appxij , in the following form  
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Note that the residues kr11 , kr12 , kr21  and kr22  are real numbers while the kλ  is a 

complex number in general in Equation (6-7). By comparing the first column of the 

Equation (6-6) and Equation (6-7), we can obtain 0KM SL = , 1=kC , 

]Re[ kkkk BM λ−== , ]Im[ kkG λ= , kSk rM 11= , kkLk rrM 1121 /= . Once the Mkk, 

MSK, MLK, MSL are determined, the transversal matrix is formed [9]. To transform the 

transversal coupling matrix into another coupling matrix with the prescribed coupling 

route corresponding to the physical structure, the methodology in [46] is used in this 

paper.  

To obtain approximated Y-parameters of simulated or measured data in the form 

of Equation (6-7), the technique of vector fitting is applied. The vector fitting 

technique is a general methodology for the fitting of measured or calculated frequency 

domain response with rational function approximation [9]. Instead of directly fitting 

the data into a ratio of two polynomials, the methodology generates a polynomial in 

partial fractional expansion form. The source code can be obtained from the authors 

of the paper [46], but it can not be directly used to determine the polynomials that fit 

the model in Figure 6-1. The reason is that the formulation in [46] is in the bandpass 

frequency domain s , fjs π2= , and the generated polynomials can not fit into the 

model in Figure 6-1 even after bandpass-to-lowpass frequency transformation. To 

apply the formulation of vector fitting to fit the model in Figure 6-1, the formulation 

in [46] is followed except that the symbol s  stands for normalized frequency 

Ω= js . For the need of parameter extraction, one must calibrate the position of 

reference planes of the input and output ports [17], and then fit the )(,11 sy appx and 
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)(,21 sy appx  simultaneously. Thus, stack the )(,11 sy appx  and )(,21 sy appx  to form a 

vector )(sy  , as shown in following equation: 
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The procedure in [46] is followed to identify the poles. As mentioned in [46], final 

positions of poles are determined through iterative calculations and not sensitive to 

the starting positions of poles. It is worth noting that the complex poles come in pairs 

in [46]; however, for the case here, it is not necessary for the poles to be in complex 

pairs since they are in the normalized frequency domain. After identifying the poles, 

one can identify the corresponding residues and obtain the polynomials in Equation 

(6-8).  

 

6.4 Example 

To illustrate the proposed method, a cross-coupled quadruplet filter is given as an 

example. The layout of the filter is the same as Figure 3-4 in Chapter 3 excluding the 

S/L coupling controlling line. The center frequency and fractional bandwidth of the 

filter are 2.4 GHz and 3.75%, respectively. To demonstrate the ability of extracting 

the coupling matrix from a lossy filter response, the conductor loss is included. The 

simulation was performed using Sonnet [32] and the result is shown in Figure 6-2. 

The method in [17] is used to calibrate the position of the reference plane. The 

following bandpass-to–lowpass frequency transformation is adopted: 

)//)(/( 000 ffffffjjs −Δ=Ω=          (6-9) 

where fΔ  and 0f  are bandwidth and center frequency of the filter, respectively. By 

using the proposed method, the extracted normalized transversal coupling matrix 1M  

is calculated to be 
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, along with other parameters 1472.01 =G , 1427.02 =G , 1539.03 =G , and 

1501.04 =G . Then, transform the coupling matrix 1M into the coupling matrix 

2M which corresponds to the coupling route of the cross-coupled quadruplet. The 

matrix 2M is  
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With the approximation that the unloaded quality factor of each resonator is the 

same, we can get a measure of how lossy the filter is by calculating the average value 

of Gks. In this case, the average value of Gks is 

1476.04/)( 4321 =+++= GGGGGloss . From the quantity lossG , we can evaluate the 

unloaded quality factor, uQ ,by )/( 0fGfQ lossu Δ= . In this case, uQ is equal to 

180.67. A normalized coupling matrix [M] is related to the responses of )(11 ΩS and 

)(21 ΩS via the following equations: 

1,1
1

11 ][21 −−−= AjS                      (6-12) 

1,2
1

21 ][2 +
−−= NAjS                       (6-13) 

Here, ][][][ 0 GjMUA −+Ω= , )//)(/( 000 ffffff −Δ=Ω , ][ 0U  is similar to the  

(N+2)× (N+2) identity matrix except that 0][][ 2,201,10 == ++ NNUU , and ][G  is the 
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diagonal matrix }1,,...,,1{][ lossloss GGdiagG = . Substituting the extracted coupling 

matrix 2M  with 1476.0=lossG  into the Eq.(6-12) and Eq. (6-13),  one can obtain 

the response shown in Figure 6-2.  

 

Figure 6-2. The simulated and extracted results of the cross-coupled quadruplet filter 

under consideration. 
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Chapter7 Summary and Future Work 

7.1 Summary 

 The design of microwave filter is not a new filed, but there are always new 

things in this area. In recent years, a big advance is in filter design is the development 

of computer aided design (CAD) tools for filter diagnosis and tuning. In this 

dissertation, we try to keep the state of art to make filter design more systematical and 

faster.  

A review of related algorithms and methods for the filter diagnosis and tuning 

are given in Chapter 2. The Pros and Cons of each method are discussed. An 

optimization design flow is given in Figure 2-6. Actually, each step of the flow is 

implemented in MATLAB except the EM simulation part which is done by 

commercial EM simulator. We have applied the extraction method and tuning process 

to design the microstrip filters in Chapter 3, Chapter 4, and Chapter 5. Although only 

microstrip filter are given in this dissertation, the design flow in Figure 1-3 is not 

limited to the microstrip filters. That is the design procedure can apply to design 

microwave filters with different material and guiding structure with the condition that 

the filter under consideration can be described by a coupling matrix with a proper 

topology. 

A Parameter extraction method is given in Chapter 6. The proposed parameter 

extraction method can reconstruct the model of a lossy filter, which makes the 

proposed method different from other methods that are only effective for lossless 

filters. The ability of modeling a lossy filter makes the proposed parameter extraction 

method can not only be used in EM-simulation stage but also in production line. 
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7.2 Future work 

 The application interface between the commercial EM-simulator and MATLAB 

is needed. In the optimization procedure presented in Chapter 2, the EM-simulator is 

used to calculate the response of filters and export the simulated files to MATLAB. 

From the simulated response, programs written in MATLAB are applied to extract a 

coupling matrix and decide how to adjust the filter to achieve a prescribed response.  

The EM solver used in this dissertation is a commercial EM simulator. Thus, the 

application interface (API) between the EM-simulator and MATLAB is needed for the 

fully automatic tuning. That is to make the MATLAB able to co-simulate with a 

commercial EM-simulator, an interface is needed.  

Although the API is not done yet, the ability of co-simulation is a trend. 

MATLAB is very powerful since it includes a lot of functions that can handle 

numerical operations and draw wonderful graphics. It is easy to develop an algorithm 

and verify it with MATLAB. On the other hand, it is hard for an individual to develop 

an EM solver to compete with the commercial EM simulators such as HFSS, IE3D, 

and Sonnet. Thus, if we can combine MATLAB with a commercial EM simulator, like 

HFSS, to solve a complicated EM problem, the design procedure would be more 

systematic and fast. 
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