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Tuning and Diagnosis of Cross-Coupled Microstrip Filters

Student: Ching-Ku Liao Advisor: Dr. Chi-Yang Chang

Department of Communication Engineering
National Chiao Tung University

Abstract

This Dissertation presents how to extract the equivalent circuit parameters of
cross-coupled filters. From the extracted: parameters, one can decide how to tune a filter to
achieve the prescribed response systematieally.«ln'most cases, the cross-coupled filters can be
described by a coupling matrix. Fhus, how to extract and synthesize a coupling matrix with a
given response would be discussed .in_detail. .Besides, a systematical procedure for filter
design and tuning is given. With'these'developed methods, one can effectively analyze the
effect of cross couplings and asynchronous resonant frequencies of resonators in microstrip
filters. As an example, the quadruplet filters with source-load coupling are discussed in detail.
And a cascade trisection filter with high selectivity in upper stopband is proposed. In addition
to the design of single-mode resonator filters, we investigate how to utilize the dual-mode
resonator with single-mode resonators to realize box-like filters with generalized Chebyshev
response. To extract a coupling matrix and an unloaded quality factor of a filter from a
simulated/measured response simultaneously, a novel parameter extraction method is

proposed. This parameter extraction method can be used to analyze and tune lossy filters.



270 RF REEDER g0 FEFEF AT F LR HA
R LT 2 AR R ERPE LA L R HA Sl

2 oo fv BILF nd g T

g FIEE > A AL gFp e o :ri‘,—:w,;{ o %A

o+

N

A AEE: T s L2, » Tis

iEF e o B e BRAE o g 2 ATeE e Y

Amz o ABELIFISARG - B 0 3 FHASTTHOES > A SRR B B
BATHNL T OREZHBEFP LI TY c £FELECI A IF BEDFR A £ - B

A Xl

ARG R HR AP R o RREOBR P B At 2 HE EaomaRa o #
WRE L TEE R G F A E o AATH RS E o BRI A T § e F
WP FA AT 247 FH T T Mo b BRI IS FHPRF - ¥ L
P 2 Faige R R RO R RY b E RO E > P 2R AR
FONFFEN o B OF AR B F B2 o Bruce F A Ra 1 FRF R
2 5 %%

FAE o R L RFAFHR DL ERER L LB MAOA B E c ARG BA S

AfE A A EE B R AR o

° Linsay Rl &de & 303 Aapph i~ dh- 2 A 4oy 2§ R GF

=Xl



Contents

N 5] 1 7 Uod B (O 1 =17 I
Abstract (English) ....................................................................................... I
Acknowledgements ....................................................................................... 1
Contents ................................................................................................... v
I 0 1= o] PP ¥/ |
I TS o) T 11 1 VI
Chapter 1 INtrodUCTION. ... e e e e e e e e e e e e e e eaes 1
1.1 Review of the Design of Cross-Coupled Resonator filters.....................ooiinii, 2
228 Y/ o (V7 1 o o P 4

1.3 LItEratures SUIVEY ... .cue it it it es et e e et et et e e e eteeeeeenieienenaeeeeen. D
1.4 CONEFIDULION. .. ..e e e e e e e e e e e e e e e e eeeeens D
1.5 OrQaANIZALION. .. . .e et e e e e e e et e e e e e 10

Chapter 2 Design and Optimization of Microwave Filter Based on Coupling Matrix

2.1 Filter Model in the Normalized DOM&IN ... ......c.vvvnniriie i e e nenen 13
2.2 The Position of Finite TranSmMISSION-ZEI0S:w ... c.uuvve e veniee e eeiietne e aeneeenn 15
2.3 Synthesis Methods for Cross:Coupled Filters..............ccoiiiiiiiiiiii i 17
2.4 Obtaining a Initial Design fora Microwave FHter................ccccvvivinininininnnn 21
2.5 TUNING ProCedures. .. ... o oo e e et e e e e e 22
2.6 The Optimization Flow of Cross-Coupled-Microwave Filters................c.ooeves 25

2.7 Limitations of the Proposed Design Flow...............ccooeiiiiiiiiiii i 28

Chapter 3 Cross-Coupled Filters with Source-Load Coupling

KT8 A oo [1Tox o 1RO 29
3.2 Asymmetric FrequenCy RESPONSES. .. ... vt ettt e e et ee e eteeae e aenaas 32
3.3 CAD Methods for Filter DiagnosiS. .. .....ovvuuiriiriieie it e e e e e ce e e 35

3.4 Filter Design EXampPles. .. ....coivniniie e e e e e e e e 0000038

Chapter 4 Modified parallel-coupled filters with two independently controllable upper
stopband transmission zeros

1Y/ 1Y LA o o 49
4.2 Circuit Description and Design Feasibility.............coocoiiiiiiiiii i e, 52
4.3 Design Example and EXPeriment..........c.vveiir e e e e e 53

=Xl



Chapter 5 Microstrip Realization of Generalized Chebyshev Filters with Box-Like

Coupling Schemes

ST 1 oo [0 o{ 1 o] o F PP 56
5.2 CIrcUIt MOAElING. .. c. et e e e e 59
5.3 Design Examples and Experimental ReSUltS.............cccooviiiiiii i, 72
5.4 DISCUSSION ... e ettt et e e et e ettt et e e et e ettt e e e e et e e e 76

Chapter 6 Parameter Extraction Method Based on Vector Fitting Formulation

G F00 1 0o o4 1 o 78
6.2 Review of the Vector Fitting Technique.............ocoiviiiiii i 081
6.3 Applying Vector Fitting to Parameters Extraction.................ccocvvvvee i enn.n....82
B.4 EXAMPIE. ..o e 84

Chapter 7 Summary and Future Work

T RS0 1111 PP P ¥ 4
T2 FULUIE WOTK . ettt e e e e e e e et et e e e e e e e e e e e ee e e 88

RETOIENCES. ..o T i e 89

-X1l1



List of Table

Table 2.1. Coupling topologies and the position of their corresponding finite transmission

4] (01 Y 4

Table 5.1. Electrical parameters corresponding to box-section filters shown in Fig. 7(b).

Here, 9., =90°, 4., =60°, Z, =500hm, Z,=500hm. All of the electrical lengthes are

corresponding to the center frequency of the filter.
Design 1: in-band return loss RL=20dB, Q=-2.57, and FBW=5%
Design 2: in-band return loss RL=20dB, Q=2.57, and FBW=5%

-XIV



List of Figures

Figure 1-1 (a), (b) Lowpass prototype networks for “all-pole” filters. (c), (d) Alternative

Figure 1-2
Figure 1-3
Figure 2-1

Figure 2-2
Figure 2-3

Figure 2-4

Figure 3-1

lowpass prototype Networks USING INVEIEr .........o.vieiieie e, 2
A cross-coupled resonator filter............ooovi i 3
Flow diagram of the filter optimization algorithm......................cooii i, 7

(a) Equivalent circuit of n-coupled resonators in low pass domain.

(b) its network representation.............ccovviiiiie i e L
The coupling route of the example filter..............cooiiiiiiiii 16
Coupling route of a transversal filter..............coooii i 20
The flow of the optimization algorithm...................cii 27

Microstrip implementation for (a) sixth-order quasi-elliptic filter with linear
phase response using extracted-pole technique (b) proposed quadruplet filter with

source-10ad COUPIING. .. .ol s e e et e e e e e e aaes 30

Figure 3-2 Coupling and routing=scheme .of symmetric cross-coupled quadruplet filter with

Figure 3-3

Figure 3-4

Figure 3-5

Figure 3-6

Figure 3-7

source-load coupling (a) ideal case, (b) including the unwanted diagonal cross
cuplingS.............. =8 . Mffomrormen . JB® . s 32
Quadruplet filters with*(a).ideal quasi-€lliptical response, (b) including unwanted
cross coupling, (c) ideal flap group delay response, and (d) including unwanted
CrOSS COUPIING ... e e e e e e e e e e e e e e 34

(a) quadruplet filter with the capacitive S/L coupling controlled by the controlling
line (b) photograph of the fabricated filter with dimension (in mils) S1=4, S2=8,
S3=41, E1=90, E2=20, W1=64, W2=30, h1=310, h2=250, g1=42, ¢g2=26,
LINE=L00. ettt et et e e e 40

(@) response of quadruplet filter (b) response of quadruplet filter with controlling

line of source-load coupling. Circle: EM simulated results; solid line: circuit

Experimental and circuit model results. Solid line: experimental results, dashed
line: circuit model including 10SS term..........oooii i e, 43
(@) quadruplet filter with the inductive S/L coupling controlled by the controlling
line (b) photograph of the fabricated filter with dimension (in mils) d=20,
Line=800, s=4, L3=575, L1=940, L2=770, L3=575, h1=340, h2=304............ 44

-XV



Figure 3-8 Response of quadruplet filter with controlling line of source-load coupling. Circle:

Figure 3-9

Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Figure 5-1

Figure 5-2

Figure 5-3

Figure 5-4

Figure 5-5

Figure 5-6

Figure 5-7
Figure 5-8.

EM simulated results; solid line: circuitmodel.................coo i, 46
Experimental and circuit model results (a) return loss and insertion loss (b) group

delay. Solid line: experimental results, dashed Line: circuit model including loss

L] 11 R PP 48
(a) The conventional parallel-coupled filter. (b) The modified filter. (c) The
coupling route of the modified filter..............cccoii i, 51

The layout of the fabricated filter (unit: mil). L1=354, L2=354, L3=354, L4=354,
S1=11, S2=35, W1=19, W2=21, K1=19, K2=20, T1=87, T2=39. The line with of
coupling/shielding lines is 8mil....... ..., 53
Simulated and measured responses. Solid line: measured results. Dashed lines:
EM Simulated reSUILS. .. ... .oe et et et e e e e ee e e 54
EM simulated results of three different cases. The dimensions of the simulated

filter are the same as these shown in Figure 4-2 except T2 is set to different

Basic box-like coupling schemes: for: generalized Chebyshev-response filters
discussed in this paper..(a) doublet. (b) extended doublet (c) box-section. ( The
gray area is realized-by the/proposed E-shaped resonator)......................... 57

A doublet filter (a) the'proposed layout(gray area indicate the E-shaped resonator)

(b) the corresponding coupling SCheMe. .........ccoiiie i e 58
Responses generated from the coupling matrix and from electrical network
shown in Fig. 2(a) with synthesis parameters..............ccooviiiieiiiiiineennn 63
A layout of extended-doublet filter and its corresponding coupling scheme. The
design is for flat group delay response............cooviiiiiiiiiiiiii e 64
A layout of extended-doublet filter and corresponding coupling scheme. The
design is for skirt Selectivity reSPONSE. .. ... e e 64
The extended-doublet filter with in-band return loss RL=20dB, normalized
transmission zeros at Q =+2. (a) its coupling matrix (b) Responses of extended
doublet filter and responses contributed by doubletonly........................... 66
A Box-section filter. (a) filter’s coupling scheme. (b) the proposed layout....68
A fourth order box-section filter: (a) its coupling matrix (b) the responses of the
box-section filter and ideal responses of the asynchronous tuned third-order

hairpin-like filter calculated by M1 matriX..............ccooiiiii i 70

-XVI



Figure 5-9 Responses of the box-section filters. (a) Responses obtained by electrical

parameters of design #1 in Table I and its coupling matrix respectively. (b)
Responses obtained by electrical parameters of design #2 in Table I and its

coupling MatrixX reSPeCtivelY.........ou v 73
Figure 5-10 Fabricated extended-doublet filter (a) layout(unit:mil) (b) simulated and
e R =0 =Yoo T 74
Figure 5-11 Fabricated box-section filter (a) layout (unit:mil) (b) simulated and measured
response. (c) the measured wideband response...........ccoovvviviiiiiiiiinnnnn. 75
Figure 5-12 A possible filter layout that can be modeled as a doublet configuration........... 76
Figure 6-1 Canonical transversal array. (a) N—resonator transversal array including direct
source—load coupling Ms, . (b) Equivalent circuit of the kth “low-pass resonator”
IN the traNSVEISAl rTay ... ..o e e e e e e e e e 80
Figure 6-2 The simulated and extracted results of the cross-coupled quadruplet filter under
(070] 0157 T [=1 - £ ) o PPt < ¢}

XVII



Chapter 1 Introduction

Microwave filters are essential component in a microwave system. Thus, there
are lots of literatures concerning with the designs and implementations of microwave
filters applied in different wireless communication systems. Concerning with the
development of the microwave filters, Ralph Levy et al. [1], [2] and Ian C. Hunter et
al. [3] give a clear historical review of the development of microwave filters. Among
these papers, different kinds of microwave filters are introduced and discussed, and
important references are also given. Among different kinds of microwave filters, this
dissertation would focus on the design and tuning of microwave filters which can be
described by coupling matrices.

The design of microwave filters normally starts from the synthesis of a low-pass
prototype network, regardless of the eventual physical realization in transmission line,
waveguide, or other media. Low pass prototype networks are two-port network with
an angular cutoff frequency of 1 rad/s-and-eperating in a 1-Q system. A typical
prototype network is shown in Figure.l-1. Theladder network prototype in Figure
I-1(a) and (b) is an all-pole network with all its transmission zeros at infinity. The
alternative network shown in Figure 1-1(c) and (d) are also used. The networks in
Figure 1-1(c)(d) are very useful for the design of narrow band bandpass filter since it
only use the series or shunt resonator. Besides, the network in Figure 1-1(c) or (d) can
be described by a coupling matrix. To achieve more selective frequency response, like
generalized Chebyshev response [1], finite transmission zeros in the complex plane
have to be introduced, and the corresponding prototype circuit usually can be
expressed by a cross-coupled network. Filters which can be modeled by a
cross-coupled network are called cross-coupled filters. Cross couplings are usually
generated by either putting resonant/non-resonant circuits or introducing couplings

between nonadjacent resonators.
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Figure 1-1. (a), (b) Lowpass prototype networks for “all-pole” filters. (c), (d)

Alternative lowpass prototype networks using inverter.

1.1 Review of the Design of Cross-Coupled Resonator filters

The cross-coupled filters have been used since 1940’s [1]. An example is given
following to explain the basic idea behind cross-coupled filters. A filter, utilizing the
cross couplings between nonadjacent resonators, is shown in Figure 1-2. These cross
couplings give a number of alternative paths which a signal may take between input
and output ports. The multi-path effect causes transmission zeros to appear in the
transfer function, which, depending on the phasing of the signals, may cause
transmission zeros at finite frequencies or group delay flattening, or both

simultaneously.



Figure 1-2. A cross-coupled resonator filter (clipped from Figure 9 in [1])

Synthesis technique and implementation methods for the cross-coupled filters
have been developed for couples of decades. Among those related works, the most
significant development took place i the 1970’s in COMSAT by Atia and Williams
[4]-[7]. The COMSAT work on elliptic function and linear-phase waveguide filters
using dual-mode cavities with cross.coupling was particular significant. The
dual-mode cavity filters introduced by Atia_and Williams have set the virtual
standardization of these designs for satellite transponders. Actually, Atia and Williams
have published a series of papers concerning on the synthesis, design, implementation,
and tuning of the cross-coupled resonator filters. All those papers are well-written and
introduce original concepts. It is highly recommended for one who is interested in the
design of cross-coupled resonators filter to read the series of papers by Atia and
Williams.

The most recent progress in the synthesis of cross-coupled filter is done by
Richard Cameron. In 1999 and 2003, Richard Cameron published two papers focused
on generalizing the synthesis technique for the cross-coupled resonator filter with the
generalized Chebyshev function [8] [9]. With his work, a cross-coupled filter with N

resonators can have at maximum N finite transmission zeros. Based on Cameron’s



work, many researchers have developed different methods to transfer the synthesized
coupling matrixes into desired forms. The details of the related synthesis techniques
will be discussed in Chapter 2.

The cross-coupling concept was originally used in the waveguide filters but not
applied to the microstrip filters before 1990’s. But with the increasing power of
computation of computers, the story was changed. Electromagnetic (EM) simulators
are capable of simulating complex physical structures within a reasonable time now.
Thus, it is feasible to get the S-parameters of the designed structure through the EM
simulator instead of doing experiments. Hong and Lancaster took the advantage of the
computer’s power to calculate the external quality factor and coupling coefficients,
originally experimental method, to design the microstrip cross-coupled resonator
filters [10], [11]. The related works done by Hong.and Lancaster are clearly described

in the book [12] written by them.

1.2-Motivation

The computer-aided diagnosis and tuning of cross-coupled resonator filters have
been an active topic in the filter society for several decades. The main driving force to
the art is the continuous demand on reducing the manufacturing cost and development
time for various filters with different specifications. The core task in filter tuning is to
diagnose the filter coupling status that corresponds to the current filter response. By
comparing the desired circuit model parameters (i.e., coupling matrix) to the extracted
ones, the tuning direction and magnitude can be decided.

Tuning is an essential process for optimizing filters’ responses in both the
simulation stage and production line. On the simulation, even though a great variety
of EM simulators are commercially available, it is generally impossible to optimize

microwave filters on the basis of field simulators alone because the computer

4



simulation time for it is huge, especially for higher order filter with generalized
Chebyshev response. Moreover, on the production line, fabrication of high
performance filters is a constant trade-off between the manufacturing cost and the
accuracy required in the process. In reality, the variation in raw material and
manufacturing process leads the filters’ response deviate from the designed ones,
which means post tuning is always required. The need of tuning on both EM
simulation and fabrication urges filter designers to develop CAD tool to shorten the
design period in recent decades.

In the design of cross-coupled resonator filter, especially for microstrip filter, the
spurious couplings between resonators always exist. However, the method proposed
by Hong and Lancaster only gives initial dimensions of microstrip cross-coupled
filters [12]. The effect of spurious couplings between resonators and how to tune a
filter to achieve a prescribed response were not mentioned. Thus, parameter extraction
methods and tuning algorithm is needed-to-obtain the strength of spurious couplings

and tune a filter.



1.3 Literatures Survey

The existing computer diagnosis techniques can be basically divided into two
catalogues: by optimization technique and by analytical methods. There are pros
and cons for the diagnosis techniques based on optimization methods and analytic
formula, respectively. In the following, we will discuss them individually.

Basically, all the diagnosis and tuning procedures involving three basic elements
1. Filter synthesis
2. Curve fitting of a simulated or measured S-parameter,

3. Update of a filter’s physical dimensions.

These three basic elements in the procedure determine how good a procedure is. A
simplified design flow of the filter tuning process is shown in Figure 1-3 to clarify the
basic elements involved. The implémentation of the flow shown in Figure 1-3 will be
discussed in Chapter 2 in detail:

The methods based on nonlinear optimization-are like that in [13]-[15] where
different optimization strategies and schemes.for parameter extraction are explored. In
[13], the optimization technique is used to find a coupling matrix with the goal that
the resulted response fitting well with the simulated response. However, there are
many variables (coupling coefficients) involved in the optimization process, which
makes the method only applicable for the cases where the order of filter is less than 6.
The methods in [16], [17] are based on analytical method. Those methods extract the
coupling matrix from the locations of system zeros and poles. The existing analytical
models provide a recursive procedure to determine individual resonant frequencies
and inter-resonator couplings. However, those analytical methods are only valid for
highly restricted filter topologies. In addition, to get analytical formula for the
calculation of the coupling matrix, one must derive different formula for different

topologies, which is not easy even for an expert in this filed. Furthermore, the
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S-parameters corresponding to an extracted coupling matrix usually can not so well fit
the simulated or measured response as one can obtain by the optimization method
because of the existence of dispersion effect. As we know, poles and zeros of a system
determine the systems response. Moving one of the poles or zeros will change the
response over all frequency. On the other hand, methods based on optimization can fit
the simulated response better than the method based on analytical methods because
sampling a lot of different frequency points over the interest band can average the

dispersion effect.

Filter
specification

S1(s) = F(S)/E(s)
Sa(s )= P(S)/E(s)

update

v

| i b Y
= [ .
Lt

A

Microwave filter

S11(si), Saa(Si)

Circuital error: Ay

.| Physical
dimension: ¥ o

Correction: Ax

Figure 1-3. Flow diagram of the filter optimization algorithm



From the above discussion, some observations are summarized. First,
optimization technique should not be directly applied to obtain the coupling matrix as
that in [13] since this approach limited the method only applicable to lower order filter.
Second, reconstructing the coupling network from poles and zeros of system by
analytical formula may not be accurate enough and be topology-limited.

In the procedure provided in [18], the Cauchy method is applied to obtain the
approximated rational polynomials of reflection and transmission function,
S,,(s)and S,, (s), which is suitable for filter synthesis. After getting the approximated
rational polynomial of S,,(s) andS,,(s), a variety of synthesis techniques can be
applied to get the coupling matrix. The synthesis technique used in [19] is based on
optimization technique and can be applied to get a coupling matrix with arbitrary
topology with the order smaller than 14. In practical, most cross-coupled resonators
filters have the order smaller than,14. Thus, the procedure provided in [19] is highly
recommended. Besides, there is'no need-to calibrate the reference plane when using
the Cauchy method to get the approximated. S;;(s) andS,,(s).

The formulation based on Cauchy method in [18] is only valid for lossless case.
For lossy filters, the modified Cauchy methods are proposed in [20]. However, the
method in [20] is incorrect in the sense that the generated rational polynomials,
S,,(s)and S,,(s), are not suitable for the filter synthesis. The author in [21] indicated
the theoretical error in [20] and proposed a modified formulation suitable for filters
with low and moderate losses. It should be noted that even the formulation in [21] can
not tell how lossy a filter is. So, how to model a lossy filter and extract related

parameters is still a problem under investigate.



1.4 Contribution
The main contributions of this dissertation are described in the following.

First, an optimization procedure as shown in Figure 1-3 is developed in this
dissertation. The optimization procedure is used to design all the circuits presented in
this dissertation. It is also applied to investigate the effect of spurious couplings in the
cross-coupled microstrip filters. Coupling matrices are extracted in the course to
optimize the quadruplet filter with source-load coupling. With the developed
optimization methods, quadruplet filters with various responses are designed, built,
and tested.

Second, a microstrip cross-coupled filter with two independently controllable
transmission zeros on upper stopband is presented. The initial filter structure is a
conventional Chebyshev-response;parallel-coupled filter that can be easily realized by
the analytical method. The newly proposed coupling/shielding lines effectively
control the cross and main couplings:without.changing the original filter layout. With
this approach, designer can eliminate. tedious. segmentation method for the filter
design.

Third, an E-shaped dual-mode resonator is proposed to implement coupling
topologies such as doublet, extended doublet, and box-section in a unified approach.
The doublet and box-section filter exhibit the zero-shifting properties which can not
be achieved by trisection cross-coupled filters. The extended-doublet filter can
generate two finite transmission zeros to improve selectivity or flatten in-band group
delay. The correspondence between the E-shaped dual-mode resonator and a coupling
matrix is established, which make it possible to design those filters in a systematical
way.

Finally, the formulation which is applicable to extract the loss term and a

coupling matrix simultaneously from a simulated or measured response is proposed.
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With this method, no matter the device under test is lossy or lossless, one can extract
the coupling matrix from the simulated or measured response.
1-5 Organization

This dissertation is mainly concentrated on the design and tuning of
cross-coupled resonator filters, especially for the microstrip filters.

In Chapter 2, each step taken in the flow diagram of filter optimization in Figure
1-3 is discussed in detail. The model of the cross-coupled resonator filter in low pass
domain is given. From the model, the relation between a coupling matrix and
S-parameters is derived. Then, how to directly relate the position of finite
transmission zeros to a given coupling matrix is given. Some simple topologies such
as trisection, quadruplet, doublet, extended doublet, and box-section are taken as
examples, and the equations relating the position of finite transmission zeros and
coupling coefficients are given. Jn addition, a,variety of synthesis methods are
discussed, and the method for updatingthe physical dimension is given.

In Chapter 3, the quadruplet filters.with.source-load coupling are presented. The
effect of spurious cross couplings between resonators is discussed. The parameter
extraction method is applied to extract the coupling matrix corresponding to simulated
response. The examples include the quadruplet filters designed for improving skirt
selectivity and in-band group delay flatness.

In Chapter 4, a cascade trisection filter with source/load to multi-resonator
couplings is proposed. The initial dimension of the filter is obtained from the
conventional parallel coupled line filter. The filter exhibiting two finite transmission
zeros which can be independently controlled to improve the selectivity.

In Chapter 5, generalized Chebyshev microstrip filters with box-like coupling
schemes are presented. The box-like portion of the coupling schemes is implemented

by an E-shaped resonator. Synthesis and realization procedures are described in detail.
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In Chapter 6, a parameter extraction method based on vector fitting formulation
is proposed to identify the unload quality factor of resonators and coupling matrix of a
filter from the simulated/measured response simultaneously.

In Chapter 7, summary and suggested future works are given.
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Chapter 2 Design and Optimization of Microwave Filter
Based on Coupling Matrix
In this chapter, the design flow of cross-coupled resonator filters is given and
discussed in detail. To facilitate the discussion, the cross-coupled resonators network
is analyzed in the normalized frequency domain at first. The relation between the
normalized network parameters and S-parameters is derived. How to obtain the
position of finite transmission zeros from coupling topologies is also given. With the

necessary background, each step shown in Figure 1-3 is given.

JI],n+l
AI / Joa \Jl].n Janst \ \ ,B
—4q  Fro i P
Is% Yo 1 [v| Jou '-']'c‘f B Jp 2 "-‘IC’ iB:} SR P '3-'|c“: Bl o1 'i_‘ Yo
L : !
AII \\ J, \ J?_z['_ /‘ / 'B,
‘ llI.n+l
(a)
B
g
two port ) I >
A Y
network |
T_’bj
B,
(b)

Figure 2-1 (a) Equivalent circuit of n-coupled resonators in low pass domain. () Its
network representation.
2.1 Filter Model in the Normalized Domain

A prototype filter of degree n in the lowpass domain is shown in Figure 2-1 (a).

The prototype filter consists of frequency independent impedance inverters Js,

capacitors C,s and susceptances Bs. The values of all the capacitors and the
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terminated admittances Y are set equal to one. The capacitors in the low-pass domain
correspond to the resonators in the bandpass domain. Thus, the frequency invariant
susceptances B,s represent the frequency shift of resonators in the bandpass domain.
The values of B.s are zero for the synchronously tuned filters and nonzero for the
asynchronously tuned filters.

According to the current law, which is one of the Kirchhoff’s two circuit laws
and states the algebraic sum of the currents leaving a node in a network is zero, with a

driving or external current of 7, the node equations for the circuit of Figure 2-1(a)

arc
I Yo jJO,l on,z o jJO,rH—] | I 2 | —]s |
on,l jQ+jB1 le,z le,rH—l Vl
3o JJ1s : : =10 (2-1)
: ’ JQIB, n :
_on,;1+1 le,n+1 o jJn,n+1 & oo+ L+ Jnezpa L 0 d(ns2ya

where € 1is the normalized frequency:
To derive the two-port S-parametets of -a ' coupled-resonator filter, the circuit of
Figure 2-1(a) is represented by a two-port network of Figure 2-1(b). Comparing

Figure 2-1(a) and Figure 2-1(b), we can find that V,=V,, V,=V,1;, and [,=I;-Y (V.

And
a :]_Sa b] = 2VO L
2 2
a,=0, b,=V,,
Thus,
S =ﬁ =—1+% (2-2)
|4y I
b 20
S21 =2 = o (2-3)
al a,=0 ]s
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From equation (2-1), we can obtain

V. _
—=lrh (2-4)
Vn+ -1
7 L= [Y](n+2),1 (2-5)
Take (2-4) into (2-2), we can obtain
S, =1+ 2[Y];] (2-6)
Take (2-5) into (2-3), we can obtain
Sy = 2[Y];J1rz,1 (2-7)
I 0 JO,I JO,Z 0,n+l_
JO,I Bl Jl,2 1,n+1
In the literatures, the matrix | J,, J,, : is called the
) Bn Jn,n+1
_JO,n+1 Jl,n+l "]n,n+l O i
normalized coupling matrix and denoted as matrix [M].
I O MSI MSZ MSL |
MSl Mll M12 MlL
M]=|Mg, M, .
: : M, M,
_MSL MIL MnL 0 |
Where M, =J,,, M, =B,. To translate the equation (2-6) and (2-7) to the

expressions in the literatures, let

[Y1=s[I1+ jIM1+[G]=j (Q[U], +[M]- j[G] )= jlA],

where [A]=Q[U],+[M]-/j[G], [U,]e R"?? s identical to the identity

matrix, except for the element [U,],, =[U,] =0,and [G]e R jsalsoa

n+2,n+2
diagonal matrix, [G]=diag{l,0,---,0,1} . The equations (2-6) and (2-7) can be

rewritten as
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S, =—1-2 jlA];, (2-8)

Sy =-2 j[A](_nl+2),l (2-9)
Similarly, we can derive

S, =—1-2 jl 4], (2-10)

n+2,n+2

The equations (2-8), (2-9) and (2-10) directly related the normalized coupling matrix
to the S-parameters.
2.2 The Position of Finite Transmission Zeros

From the equations (2-8) and (2-9), we can express S;; and S,; as a rational

functions,
F(Q
s, @)=L (2-10)
E(Q)
L)
Sl ()i SRR 2-11
P @) (2-11)
Obviously, the finite transmission zeros are the roots of the equation
P(©)=0 (2-12)

Solving the equation (2-12) can help us understand the dependence between the
coupling coefficients and finite transmission zeros, which help us get more insight to
control the finite transmission zeros. To illustrate that, let us take an example with the

coupling matrix M,

0 Mg, 0O 0 0 0 |
MSI O M12 O M14 O
v 0 M, 0 M, 0 0
- 2-13
o 0 M, 0 M, O (2-13)
o M, 0 M, 0 M,
0 0 o0 0 M, O |

The topology of M, is known as cross-coupled quadruplet and the graphical

representation of it is drawn in Figure 2-2. This kind of graphical representation has
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been widely used in literatures recently.

. Resonator node

—_——— Q Source/load node

Figure 2-2 the coupling route of the example filter

By solving P(Q2) = 0, we can find the roots can be expressed as

M12M23M34

Q* =M, -
M,,

(2-14)

The cross-coupled quadruplet filter is a perturbation version of the original

direct-coupled Chebyshev filter. Thus; compared to the values of M;,, M, and My,

M12M23M34

the value of M4 is relatively snially That is ‘M 223‘ <

14

For the design where the shape skirt selectivity is required on both side of the
pass band, the finite transmission zeros should be put on the real frequency axis,
which means Q” >0. On the other hand, for the group delay flattening, the finite

transmission zeros should be put on the imaginary frequency axis, which means

Q<0 . From the equation (2-14), we can tell that if M ,M, M, M, <0,

thenQ’ >0 andif M ,M, M, M, >0,then Q*<0.

The coupling topologies: quadruplet, trisection, doublet and box-section, are
given in Table 2-1. The corresponding position of finite transmission zeros of these

topologies are given in Table 2-1 as well.

16



Coupling route

Coupling matrix

Position of finite Txz

0 Mg 0 0 0 0
M, 0 M, 0 M, 0
0O M, 0 M, 0 0 2 » MMM,
M _ 12 23 Q — M23 _
B B 0 0 M, 0 M., 0 M
(3) o D) 14
~ ~/ o M, 0 M, 0 M,
L0 0 0 0 M, 0
0 M, 0 0 0
MSI Mll M12 M13 0 M M
M= 0 M, M, M, O Q=-M,, ]1\24 =
S —@Q----- (L) 13
0 M13 M23 M33 M3L
| 0 0 0 M, 0
0 Mg M, 0
M= Mg M, 0 M, Q:_MIIM.v2M2L+M22Ms]MlL
MSZ 0 M22 M2L MslMlL +Ms2M2L
0 M, M, 0
O M, 0 0. 0 0 Under the condition:
MS] Mll MIZ M13 0 0
) | M= 0 My My o 0 M, 0 Mgs=M14
O, L) 0 My O M, M, O
0 O M24 M34 M44 M4L Q — _M33M12M24 +M22M13M34
| O Mgt &y, 0 M,M,, +M M,

Table 2-1. Coupling topologies and “the "position of their corresponding finite

transmission zeros

2.3 Synthesis Methods for Cross-Coupled Filters

Filters may be classified into categories in several ways, one being into different

classes of response functions, defined in terms of the location of poles of the

insertion-loss function and of the zeros within the passband. The zeros are usually

spaced throughout the passband to give a Chebyshev response since this is far more

optimum and superior to the maximally flat or Butterworth response, which is rarely

used. As far as the poles are concerned, the most common type of filter response has

these located all at dc and infinity and is often described as an all-pole Chebyshev
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filter. When one or more poles are introduced into the stopband at finite frequencies, a
filter is called a generalized Chebyshev filter or a pseudo-elliptic filter.

From the discussion in section 2.1 and 2.2, we know cross-coupled filters exhibit
finite transmission zeros (attenuation poles), which means the responses of
cross-coupled filters may correspond to the generalized Chebyshev response. In fact,
how to generate the S,,(s) and S§,,(s) corresponding to the generalized Chebyshev
function and find the corresponding coupling matrix are well-established [4]-[9]. The
method about how to generate rational functions, S,,(s) and S,,(s), corresponding
to the generalized Chebyshev response are given in [8]. The generated S,,(s)and

S,,(s) are in the form

_F(s)

Su)=ps @19
_P(s) -

S 310

Synthesis methods about how to get.the coupling matrix corresponding to the

specified response in (2-15) and (2-16) may be divided into three categories.

1. Direct optimization

In 1998, Atia first proposed that with suitable cost function defined with
positions of poles and zeros of a transfer function, we can set coupling coefficients of
a filter as variables and apply the optimization method to get a coupling matrix [22]
corresponding to that transfer function. Later, Amari extended Atia’s work to include
the source-load coupling [23]. The drawback of this kinds of method is that they are
only effective for the filter with order smaller than 6. On the other hand, this kind of

method is easy to follow and implement in a circuit simulator, like ADS.
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2. Analytical method

The analytical method for the synthesis of cross-coupled filters was originally
presented by Atia and Williams in [5]. Recently, Cameron has extended the analytical
method to generate a generic matrix corresponding to a generalized Chebyshev

response [8]. The generic matrix is nxn matrix having the form

M11 M12 M13 e M
22 M23 MZn
32 M33 M3n

<

I
.5

< =

MnZ Mn3 M

where M;;=M;;.. The external coupling between the first resonator to source or last
resonator to load is not shown .in the 'matrix,but expressed by two additional
parameters R; and Rj,. Since- thelsource-load coupling is not included in the
formulation, this kind of synthesismethod ean only apply for nth order filter with
maximum of (n-2) finite transmission zeros. Besides, the matrix in generic form has
to be further reduced since the coupling route is too complicated to achieve
practically.

In 2003, Cameron further generalized the synthesis technique to cover the cases
where source-load and source/load to multi-resonator couplings are involved. Follow
the analytical formula in [9], we can get a transversal matrix with size (n+2)x (n+2).
To distinguish coupling matrix with size (n+2)x(n+2) to that with size nxn, we
usually call a coupling matrix with size (n+ 2)x(n+ 2) an extended coupling matrix.

A transversal coupling matrix is an extended coupling matrix with the following form
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SL

M
MlS M11 0 MlL
M

: : Mnn nL
_MLS MLz MLn 0

The corresponding coupling route of the transversal topology is shown in Figure 2-3

N

Figure 2-3. Coupling route of a transversal filter

The transversal matrix need to be further transformed into other coupling routes since
the coupling route in transversal configuration is too sensitive to realize when the
order of filter exceeds 2 [24]. From the above discussion, we know that both the
generic and transversal coupling matrix are impractical. Thus, how to annihilate some
couplings to make a coupling matrix simpler and keep the same electrical
performance is important.

The technique of annihilating some specific couplings in a coupling matrix is

called matrix reduction. The method for matrix reduction has been studied for several
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decades. In principle, we can apply a sequence of similarity transforms to a generic or
transversal matrix until more convenient form with a minimal number of couplings is
obtained [5], [8], [9]. The similar transformation would not change the eigenvalues
and eigenvectors of the coupling matrix, which means a transferred coupling matrix
would exhibit the same response as the original coupling matrix. There are only a few
patterns of coupling matrix can be achieved in a predetermined way, and most of them
are proposed by Cameron [8], [9]. The analytical method is very powerful in the sense
that the order of filter is not limited. However, how to transfer the generic or
transversal coupling matrix into suitable topologies is not easy at all.

In view of the difficult of determine the rotation angles of the sequence of similar
transformation, optimization method is introduced [25]. The method in [25] is
reported to be effective for filter ;with order below 12. Another power optimization
method based on the conservation of eigenvalues-is proposed in [19], which is

effective for filter with order under 14 and-taken.in this dissertation.

2.4 Obtaining a Initial Design for a Microwave Filter

With the information of a coupling matrix, we may obtain the initial dimension
of microwave filters. A widely applied method to get the initial dimension of a filter is
the segmentation method. In the segmentation method, the coupling strength between
resonators is tested pair by pair to obtain the approximated coupling strength. The
external coupling, the coupling between the first/last resonator to the source/load, is
calculated by excluding other resonators. The detail of segmentation method
formulated in low-pass domain is provided in Chapter 4 in the book [26]. In addition,
formulation in the bandpass domain is given in the chapter 8 in the book [12]. In
principle, it is better to do the calculation in the low-pass domain since the formulas

are much simpler.
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2.5 Tuning Procedures
The tuning of a microwave filter consists of two major steps. First, extract the
coupling matrix from the simulated or measured response. Second, decide how to
adjust the geometrical dimension of the filter under test by comparing the difference

between extracted coupling matrix and the wanted coupling matrix.

A. parameter extraction

As we discussed in section 2.2 and 2.3, it is feasible to express the S-parameters
of a filter as a rational polynomials in normalized frequency domain. So, if we can
identify the S-parameters in rational polynomials in normalized frequency domain
from the simulated or measured response, we can use the synthesis technique to
obtain a coupling matrix. For S-parameter identification, an effective method, called
Cauchy method, is proposed. The detail of the method is given in [18]. Here, we just
give a brief review of the~Cauchy method and point out some important
characteristics of it.

The purpose of Cauchy method is to obtain the approximated rational

polynomials of §11(s) and §21(s) in the following form

- I "Wk
5= L0 _ Za g 1)
E(S) Zkzobksk

~ p gDk
5,(9= 20 _ Zua S o g
E(S) Zkzobksk

In the Eq. (2-17) (2-18), n is the order of filter and n, is the number of finite
transmission zeros. Note that the gll(s) and §21(s) have common denominator.
Instead of directly fitting the simulated or measured data into the rational polynomial

§11(s) and §21(s) , the first step 1is to fit the characteristic function
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K(s)= §1 (8)/ §21(s). In this step, one can obtain the F (s) and }ND(S). The second
step is to reconstruct the polynomial E (s) by the Feldtkeller’s equation:

F($)F" (=) + P(s)P"(=s) = E(s)E" (-s) (2-19)
Note that there is no need to calibrate the reference plane before applying the Cauchy
method, which makes the Cauchy method a perfect CAD tool. After obtaining the
approximated rational polynomials in (2-17) and (2-18), the synthesis method given in
section 2.3 can be directly applied to obtain the coupling matrix M. The M
represents the equivalent electrical parameters of the filter corresponding to the

present geometrical dimensions.

B. Update the geometrical parameters

The cross-coupled network shown in Figure 2-1 can be treated as a surrogate
model. The status of the surrogate model-is.tepresented by a coupling matrix. The
object of filter diagnosis is to decide-how to-adjust the geometrical dimension of a
filter by comparing the extracted coupling matrix M to the object coupling matrix

M, ,where M. correspond to the desired response.

obj >

In a coupling matrix, only the nonzero elements are significant since they
represent either the coupling coefficients or the shifting of resonant frequencies. To

facilitate the discussion, we collect those nonzero elements to form a vector y and

collect the geometrical parameters of the filter to form a vector X . The relation

between vector y and vector X can be denote as y = f(X). The object surrogate
parameters can be denoted as y,, . The present geometrical parameters of the filter

can be donated as X, and its corresponding significant surrogate parameters can be

donated as y,. The goal of optimization is to find an optimal geometrical parameter
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x,, to let the corresponding y,, approach y,. So, updating the vector x from

X, to x,, isthe core of the optimization. The update method used in [13] is taken in

this dissertation and outlined in the following.

Before the surrogate model can be optimized, the sensitivities of the parameters
with respect to the geometrical parameters must be determined. This is done by using
finite difference approximation as described in the following four steps:

1. Calculate S-parameter of the filter structure in basis (non-ideal) position using the

field solver and extract the characteristic parameters : M 5‘”” M

X +Ax

2. Change first geometry parameter to x, + Ax, , and repeat step 1=> M U.X‘MX,M i

3. Repeat step2 for all other geometry parameters x,,x;,....,X,

The above information is to construct thefirst'order Taylor expansion with respect to
the initial design (the initial- design must be near the solution, otherwise the
convergence is not guaranteed).

4. The surrogate model can be approximated as

S 1
M7 (x4 dy oy + dye X, +d,)

n \ X A, _Mbasis
_ﬂbasiS( )+Z( i ij )d
=M ;" (x),X,,000X, Ax k
o (0 +Ax ) —x,
n 7 X +Ax,  xorbasis
__ a gbasis ij i
= M ™" (X}, %y e X,) + D ( e )d,
k=1 k
Xp+Ax basis
M (x;,%,y,..0%,), and  (— ) are determined in the first three steps.
(o, +Ax, ) —x,

The object of optimization is to determine the set {d,,d,,..d,} which minimize
the difference between coupling matrix of surrogate model and object coupling matrix

get from standard filter synthesis. The cost function is defined as
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Udy,dyrnd,)
= Z(M”surrogute ()Cl + d1> X, + dz,....,xn + dn) _ Mﬁ()bj)z

YN (M (x  dy Xy dyenx, +d) = M)
joi ‘
The termination condition can be set by the value of cost function U(d,,d,,...,d,) or

—12 —
by the value of Hd , where d =(d,.,d,,---,d,). If the updated geometric parameters

do not exhibit the desired response, repeat the stepl to step 4 until the termination
condition is achieved. It usually takes several times for the optimization since  in
most case the parameters of surrogate model are not a linear function of the geometry
parameters. However, this method is attractive since the step can easily be followed in
practice. Besides, testing the sensitivity is crucial since it not only give the
information of how to update the filter but also give a measure of how sensitive a

filter is.

2.6 The Optimization Flow of Cross-Coupled Microwave Filters
In this section, the step by step optimization algorithm is given. The flow of the
optimization algorithm is shown in Figure 2-4. Each step is numbered.
1.  Give a specification.
2. Generation of the ideal characteristic polynomials, F'(s), P(s), E(s) which satisfy
specifications.
3. Synthesis of the ideal coupling matrix M which would be the object matrix we
want to achieve in the optimization process.

The methods for the first three steps are given in section 2.3.

4. Computation of the initial dimensions of the microwave filter from the

information of the ideal coupling matrix by segmentation method. Detail is given
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10.

in section 2.4.
Simulate the circuit in an EM simulator. Then, acquire N samples points of

S-parameters, S,,(s;) S,,(s;) from the simulated response to reconstruct the
rational model, S’ll(s) and §21(s), by Cauchy method. The detail is given in
section 2.5.

Synthesize the coupling matrix corresponding to the rational functions §11(S)

and S ,1(8). The obtained coupling matrix is M . The synthesis technique is the

same as that used in step 3.

Calculate the difference between the object coupling matrix M, and extracted

coupling matrix M . AM :AZ—Mobj.

Do the sensitivity test

Generate the correction vegtor, d , for the geometric parameters of the filter.

The methods for Step 7 to stép 9 are given in section 2.5.

If the change of the geometric dimension is small enough (depending on the
limitation of the fabrication), then stop the optimization procedure. Otherwise,

change the geometric dimension to be x, + Ax and repeat step 4 to step 10.
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Figure 2-4 The flow of the optimization algorithm
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2.7 Limitations of the Proposed Design Flow

The diagnosis and tuning process presented in this Chapter is only true for filters
which can be described by the cross-coupled network shown in Figure 2-1(a). Thus,
the correspondence between a physical layout and a cross-coupled prototype network,
served as surrogate model, must be tested at first. This kind of test can be achieved in
the process of sensitivity test. By observing the shift of the resonant frequencies or
variation of coupling coefficients as the physical dimension is changed, we can tell
whether the correspondence between the physical layout and surrogate model exists.

The surrogate model used in this dissertation can only apply for narrow band
filters. The maximum fractional bandwidth may range from 10% to 40% depending
on the type of resonators and coupling methods. The diagnosis and tuning process is
not a “black box” process, which-means knowing more about the design process
would help do the parameter extraction and diagnosis. For example, when doing the
design, the formula for lowpass-to bandpass.transformation may differ from design to
design. When doing the diagnosis, we must. map the frequency response from
bandpass domain to lowpass domain by the bandpass to lowpass transformation.
Definitely, the bandpass to lowpass transformation is the reverse operation of the
lowpass to bandpass transformation used in the design. Thus, knowing the lowpass to
bandpass transformation used in the design is important for the process of filter

diagnosis.
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Chapter 3 Cross-Coupled Filters with Source-Load Coupling

In this chapter, quadruplet microstrip filters with source-load coupling are
proposed to achieve similar skirt selectivity and/or in-band flat group delay as that of
a sixth-order canonical form or an extracted pole microstrip filter. Diagnosis method
of unwanted effects such as asynchronous resonant frequencies and unwanted
couplings, which often occurs in microstrip’s open environment, is described in detail.
A systematic design flow to implement a quadruplet microstrip source-load coupled
filter with proper filter response is also provided. Two trial filters exhibited
quasi-elliptical and flat group delay response are designed and fabricated. Both

theoretical and experimental results are presented.

3.1 Introduction

High performance microstrip-filters with high selectivity and linear in-band
phase response has been studied over:thettast two decades [12]. Additional cross
coupling between nonadjacent resonators| are often used to generate finite
transmission zeros for high selectivity, or linear phase. Naturally, the topology of the
coupling network determines the number of finite transmission zeros, whereas the
relative signs and magnitudes of the different coupling coefficients control the
positions of finite transmission zeros. Some well-known topologies such as canonical
form, cascade quadruplet (CQ), cascade trisection (CT) [12], and extracted-pole [27]
have been successfully realized using microstrip. For instance, Jokela [28] has shown
that sixth-order canonical form filter can achieve both high selectivity and linear
phase, which is attractive when comparing the passband insertion loss with the CQ
filter. In the CQ configuration, a minimal of eighth order is required to generate the

real-frequency transmission zeros pair for selectivity, and real-axis transmission zeros
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pair for linear phase. An eighth-order CQ filter introduces more insertion loss than
that of a sixth-order canonical form filter, but it gains the independent control of
transmission zeros where the design and tuning becomes easy. However, there are
some disadvantages attached to the canonical structure as mentioned in [27]. Besides,
according to Jokela’s paper [28], the in-band flat group delay and skirt selectivity can
be obtained simultaneously but a requirement of Mys=0 should hold for easy
implementation. This requirement simplifies the coupling routine but greatly

constrains the freedom of choice of filter response.

c o
Lol

- B3
__Y

______________________

_________________

Controlling line of Controlling line of
source-load coupling source-load coupling

(b)
Figure 3-1 Microstrip implementation for (a) sixth-order quasi-elliptic filter with
linear phase response using extracted-pole technique (b) proposed quadruplet filter

with source-load coupling.
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To avoid the disadvantage of the canonical form filter, Yeo et al. [27] proposed
the extracted-pole microstrip filter as shown in Figure 3-1(a) where the concept is
originally used in a waveguide filter. The extracted-pole filter depicts better control of
finite transmission zeros than that of canonical form filter, but it is relatively large due
to the need of phase shifters. Here, we propose the fourth-order filter with source-load
coupling, as shown in Figure 3-1(b), to generate two pairs of transmission zeros as
sixth-order canonical form or eighth-order CQ filter does. The synthesis methods of
the symmetric resonator filters with source-load coupling are well documented in
literatures [23, 29]. Coupling diagram of the symmetric fourth-order filter with
source-load coupling is shown in Figure 3-2(a). However, in realistic implementation
of microstrip filter, the unwanted cross couplings always exist and lead the coupling
route becomes complicated as shown in Figure'3-2(b). To identify all parameters
corresponding to unwanted cross,couplings,-frequency alignment, and source-load
coupling, powerful CAD tools are needed-—Recently, an elegant diagnosis method is
proposed to help designing of symmetric. coupled-resonator filters [17]. However, the
method in [17] has not taken the source-load coupling into account. In this chapter,
we propose a diagnosis scheme, which is applicable to arbitrary topologies with or
without source-load coupling.

This chapter is organized as follows. In section 3.2, the phenomenon of
asymmetric responses of quadruplet filter is discussed and design guidelines are
provided. In section 3.3, the CAD method is introduced to extract the coupling matrix
with prescribed topologies. In section 3.4, the diagnosis method is applied to
designing the proposed filter. Both theoretical and experimental results are presented

for comparison.
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Figure 3-2 Coupling and routing scheme of symmetric cross-coupled quadruplet filter
with source-load coupling (a) ideal case, (b) including the unwanted diagonal cross
couplings.
3.2 Asymmetric Frequency Responses

The fourth order cross-coupled quadruplet filter is the well-known building block
for generating a pair of finite transmission zeros, which can improve skirt selectivity
or in-band group delay flatness.' The-Conventional ‘coupling diagram of quadruplet
filter is similar to Figure 3-2(a) except:source-load coupling is excluded. The explicit
relation between the finite transmission zeros and the coupling coefficients of it can

be expressed in lowpass domain as follows

_ M,M ;M

Q> =M.’
? M14

(-1

In Eq. (3-1),Q is the normalized frequency and Mj; are the coupling coefficients in
lowpass prototype. The relation between € and actual frequency f is
Q=(f, /' AOS/f,—f,/f),where f, isthe center frequency of the filter, and Af
is the bandwidth of the filter. For improving the skirt selectivity of the filter, the finite
transmission zeros are put in real frequency axis and the relation M, My3s M3a M4 < 0
must be satisfied. On the other hand, to generate the imaginary frequency

transmission zeros for in-band group delay flatness, M2 Ma3 M34 M 14> 0 must hold.
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However, the unwanted diagonal cross couplings always exist in the microstrip
cross-coupled filter due to microstrip’s open environment. Both unwanted diagonal
cross couplings and asynchronous resonant frequencies of resonators would distort the
ideal symmetric response of the reflection coefficient |S;;| and transmission
coefficient [Sy;|. In [17, 30], the authors have shown how to extract the unwanted
diagonal cross couplings and to adjust the resonant frequencies of resonators to
compensate the distortion of return loss for a skirt selectivity filter. However, in the
case of flat group delay filter we find that the unwanted cross couplings seriously
degrade the flatness of in-band group delay and should be suppressed to a negligible
level. Figure 3-3 shows some examples to demonstrate the phenomena. In Figure
3-3(a), an ideal response of the synchronous-tuned quadruplet filter with symmetric
finite transmission zeros at Q =%*2 is shown:.If the values of unwanted cross
couplings M3 and My are equal to.~0.06, the frequency response after adjusting the
resonant frequencies is shown infiFigure-3-3(b); It can be observed that the
transmission zeros drift slightly and the height of |S,;| bumps tilts. In many practical
applications this change of |S,)| is acceptable. However, in the case of flat group delay
filter as shown in Figure 3-3(c), the finite transmission zeros are located at
Q=+,1.55. Set M3=M24=-0.06, which is similar to the previous case, and adjust the
resonant frequency to optimize the in-band return loss, we would get the results as
shown in Figure 3-3(d). It is obvious that the response of |S;;| has negligible change
but the in-band group delay tilts seriously. In most of linear phase filter applications
this tilting of group delay is not allowed.

From the above discussion, some observations are summarized as follows. First,
higher order symmetric filters in folded form are hard to design since tuning of
resonant frequencies is needed for compensating the in-band return loss distortion.

Besides, controlling more than one pair of finite transmission zeros and keep the
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return loss good is even more difficult. On the contrary, the source-load coupling has
extremely small contribution to the passband response and is much easier to
implement extra pair of transmission zeros. In other words, we can control the
additional pair of finite transmission zeros and keep the original finite transmission
zeros nearly unchanged by merely adjusting source-load coupling without fine-tuning
other portion of the filter. Second, the unwanted cross coupling is surprisingly harmful
to the performance of in-band flap group delay response. The only way to implement

a good in-band flap group delay filter is to avoid the unwanted cross coupling.
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Figure 3-3. Quadruplet filters with (a) ideal quasi-elliptical response, (b) including
unwanted cross coupling, (c) ideal flap group delay response, and (d) including

unwanted cross coupling.
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3.3 CAD Methods for Filter Diagnosis

In previous section, we ignore the coupling term, My ;, Ms4, and Mg, to facilitate
the discussion and give some design guidelines for the quadruplet filter. To get further
insight about the correspondence between the proposed physical layout in Figure
3-1(b) and the coupling diagram shown in Figure 3-2(b), we introduce the CAD tool
to extract the entire filter network parameters from the EM simulated results in this
section.

The extraction method proposed here has two major steps. In the first step, we
extract the (N+2)x(N+2) transversal coupling matrix, for the filter of order N, from
the EM simulated response as Alejandro et al. have done in [18]. In [18], the authors
apply the Cauchy method to get the rational polynomial approximation of S, (Q)and
S,,(€) from the EM simulated’results, and rthen generate the corresponding
transversal coupling matrix by the.anethod proposed-by Cameron [9]. Extracting the
coefficients of the rational function by Cauchy.method is attractive since there is no
need of calibrating the reference plane.as thatiin‘[16, 17]. In this step, we would get
the transversal coupling matrix like the follows (take the proposed quadruplet filter

for instance).

O MSI MS2 MS3 MS4 MSL
Mg M, 0 0 0 M,
Y| M 0 M, 00 My,
Mg 0 0 M, 0 M, )
Mg, 0 0 0 M, M,
_MSL MlL M2L M3L M4L O _

The coupling matrix is related to the responses of S, (Q)and S,,(Q) via the following

equation
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S11 :1+2]'[A71]11 (3-3)

S21 = _2j[A_1]N+2,1 (3-4)
Here, A=Q[U,1+[M]-j[R], Q=(f,/N)YS/fy—1fo!f)> [Uy] 1is similar to the
(N+2) x (N+2) identity matrix except that [U],, =[Ugly.on., =0, [M] is the

(N+2)x(N+2) symmetric coupling matrix, f, is the center frequency of the filter

and Af 1s its bandwidth, and [R] 1s the diagonal matrix
fo

) ) 1
which value is ——, accounts for the

u

[R] =diag{l,R R, I} . R

loss >***> loss >

resonator loss. O, is the unloaded quality factor of the resonator. Note that R, is

loss
set to be zero in the filter parameter extraction process since the assumption of
lossless network must be satisfied in the extraction of §,,(€2)and S,,(Q) [18]. After

getting the coupling matrix of prescribedstopology, one can put the R, back to

loss
calculate the practical filter response.

In the second step, the transversal'coupling- matrix is transformed into the
prescribed topology. It is known “that by applying the multiple similarity
transformations to the coupling matrix, one can get the equivalent coupling matrix
with the same electrical performance as the original coupling matrix. Some methods
may be found in the literature, which describe how to find the sequence of rotations
(and the corresponding angles) required for obtaining a few specific topologies [8, 9,
31]. However, to the best of authors’ knowledge, how to transfer the transversal
coupling matrix into the topology shown in Figure 3-2 is still not known. Fortunately,
one can apply the numerical optimization technique to determine the sequence and
rotation angles of the multiple similarity transformations as Macchiarella has done in

[25]. The method, reported in [25], works well for the synthesis of a filter with order

up to 12. The initial coupling matrix being used in [25] is the canonical folded form or
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generic form, which corresponds to the filter of order N with maximum of N-2 finite
transmission zeros.

We apply the optimization method as proposed by Macchiarella to transform the
transversal coupling matrix to the prescribed topology as shown in Figure 3-2 (b).
Note that using the transversal coupling matrix as initial coupling matrix extends the
method of [25] applicable to a filter of order N with maximum of N finite
transmission zeros. In the follows, we take the quadruplet filters as an example since
they will be used in the next section. Applying the multiple similarity transformations
to the transversal coupling matrix M in Eq. (3-2), we would get the new coupling

matrix M and M canbe expressed as
M = (R23 "Ryy - Rys - Ry - Ry 'R45)
'M'(R45t 'R3st 'R34t 'stt 'Rz4t 'Rzat) (3-3)
= S('9239'924 :"a'945) M- St(1923»'924 ,--71945)

where R;(9,) is the rotation matrix ‘of“order.N+2 corresponding to pivot (i, j), and

angle 9,. R,(§,) is defined as follows:

Rij (i,0) = Rij (]:J) = COS(‘gij)
Rij (la .]) - _Rij (]’l) - Sin(‘gij)
Ry(kk),,, =1 LG<)#LN+2 G

R, (ki) =0 LRk, =0

k#i,j

The cost function U for the topology shown is Figure 3-2(b) is defined as
U(8y3, %45 %45)
A Ms: > +|Mss|” +| M |> +| M3 | (3-7)
+ | My —Mau > +| My —M s ? +|M13 —M 2 ? +|Ms4 -Mu ?

The first four terms in the cost function indicate which cross coupling elements must

vanish while the last four terms indicate the symmetry of the coupling route. If the
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symmetric condition was not included in the cost function, we might get the
non-physical solutions. In the practical implementation of the minimization procedure,
the Gauss-Newton method is used to determine the rotation angles (8,,%,,..,%;s),
which minimize the cost function U . Once the rotation angles are determined, we
can get the corresponding coupling matrix M moder

It should be mentioned that the proposed extraction scheme could be applied to
arbitrary topologies once their feasibility has been assessed. Depending on the setting
of different cost functions, different topologies can be obtained after multiple
similarity transformations. For the filter of order N, one can choose the NxN coupling
matrix or (N+2)x(N+2) coupling matrix as the initial coupling matrix, depending on
the maximum number of finite transmission zeros. If the maximum number of finite
transmission zeros is less than N=2; either NxN.coupling matrix or (N+2)x(N+2)
extended coupling matrix can -be.chosen. Otherwise, the (N+2)x(N+2) transversal
coupling matrix should be applied.

3.4 Filter Design-Examples

In this section, we will develop two novel quadruplet filters with source-load
coupling and utilize the CAD tool introduced in previous section to do diagnosis of
proposed filters. The design procedures are summarized as following. Follows the
synthesis method described in [9], one would get the ideal coupling matrix with the
topology shown in Figure 3-2(a). The corresponding spacing between every resonator
is determined through the characterization of the couplings as described in chapter 8
of [12]. After EM simulation, the values of unwanted cross couplings are extracted.
Fixing the values of unwanted couplings, the optimization technique is then applied to
determining the required frequency shifts of resonators and the change of other
coupling elements to compensate the distortion of |S1;|[17]. Two examples are given

to show the design procedures. The first filter, shown in Figure 3-4, is designed to
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have two pairs of real frequency transmission zeros at normalized frequency

Q =+2,+6 for skirt selectivity. The second filter, shown in Figure 3-7, is intended to

have one pair of real frequency transmission zero at normalized frequency Q=+4.5

for selectivity and another pair at Q=+,1.55 for in-band flap group delay. The center
frequency, the fractional bandwidth, and the maximum in-band return loss of both
filters are 2.4GHz, 3.75% and 20dB respectively. The filters are built on a
20-mil-thick Rogers RO4003 substrate with &, =3.38 , tano =0.0021 . The
commercial EM simulation software Sonnet 9.0 [32] is used to perform the

simulation.
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Figure 3-4. (a) quadruplet filter with the capacitive S/L coupling controlled by the

controlling line (b) photograph of the fabricated filter with dimension (in mils) S1=4,

S2=8, S3=41, E1=90, E2=20, W1=64, W2=30, h1=310, h2=250, gl=42, g2=26,

Line=160
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A. Quadruplet filter with two pair of real frequency transmission zeros

In order to see the effect of the controlling line, we exclude the controlling line at
first and adjust the quadruplet filter with the previously mentioned procedures. After
extracting the unwanted diagonal cross couplings of the quadruplet filter and
compensate them, we would get the EM simulated response shown as circles in
Figure 3-5(a). Using the CAD tool developed in section 3.3 together with the cost
function defined in Eq. (3-7), the extracted coupling matrix M, (with the value of cost

function U =107") is obtained as following.

0 1.0089 0 0 0 0
1.0089 —0.0021 0.8514 —0.0090 —0.1436 0
v | 0 08514 00317 07380 -0009% 0
1 0 —0.0090 0.738011:20.0317  0.8514 0
0 —0.1436 —0.009070.8514 —0.0021 1.0089
0 0 0 0 1.0089 0 |

The corresponding response of "M, is:also=shown in Figure 3-5(a) as solid line for
comparison.

After adding the controlling line of source-load coupling, the EM simulated
response is shown in Figure 3-5(b) as circles. The corresponding extracted coupling

matrix M, (with the value of cost function U =107") s

0 1.0189 0 0 0.0032  0.0035]]
1.0189 -0.0120 0.8572 -0.0057 -0.1420 0.0033
M. = 0 0.8572  0.0204  0.7390 —-0.0058 0
’ 0 -0.0057 0.7390  0.0204  0.8571 0
0.0032 -0.1420 -0.0058 0.8571 —0.0120 1.0189
10.0035  0.0033 0 0 1.0189 0

The corresponding response of coupling matrix M; is also shown in Fig. 5(b) as solid

line.
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Figure 3-5. (a) response of quadruplet filter (b) response of quadruplet filter with
controlling line of source-load coupling. Circle: EM simulated results; solid line:

circuit model.
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Comparing M; and M,, it can be easily observed that the introduction of
controlling line is only a small perturbation to the original quadruplet. In other words,
the controlling line has negligible contribution to the passband response. Besides, the
existence of the tiny unwanted diagonal cross couplings Mss and My, in matrix M,
explain why the response is asymmetric because the response becomes symmetric as
the Mgy and My, are excluded from M,. Taking matrix M, into equation (3) and (4),
and setting unloaded quality factor O, =150, the results are shown in Figure 3-6 as
dashed lines. The measured responses are also shown in Figure 3-6 as solid lines.
Comparing the circuit model responses with measured responses an excellent fit can

be observed except some frequency drift toward lower frequency.

S1118,,1 4B

2 22 24 26 2.8 3
frequency(GHz2)

Figure 3-6. Experimental and circuit model results. Solid line: experimental results,

dashed line: circuit model including loss term.
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Figure 3-7. (a) quadruplet filter with the inductive S/L coupling controlled by the

controlling line (b) photograph of the fabricated filter with dimension (in mils) d=20,

Line=800, s=4, L3=575, L1=940, L2=770, L3=575, h1=340, h2=304.
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B. Quadruplet filter for flap group delay and skirt selectivity

As mentioned in section 3.2, the unwanted cross couplings M3 and M4 would
destroy the in-band group delay flatness. To reduce the strength of unwanted
couplings, we use the L-shaped resonator and arrange the resonators in square to
maximize the distance between diagonal resonators as shown in Figure 3-7. The
coupled lines with length L;, Ly, and L3 control the strength of coupling between
L-shape resonators respectively. The inductive source-load coupling is effectively
controlled by changing the length of controlling line with both ends connected to
ground. Resonant frequencies of resonators can be tuned by adjusting the length hl
and h2. Following similar procedures in the previous design, we can get the extracted

coupling matrix M3 as

0 —1.0945 0 0 0.0052  0.0099 |
-1.0945 03663 =1.0093: +0.0274 -0.1681 0.0054
M. = 0 —1.0093 =0.3402 - =0.624L -0.0272 0
} 0 —0.0274 =0.62417770:3404° —1.0089 0
0.0052 -0.1681 -0.0272 -1.0089 0.3664 —1.0936
| 0.0099  0.0054 0 0 —-1.0936 0 |

The corresponding response of M fit well with the EM simulated results as shown in
Figure 3-8. Taking Mj into equation (3-3) and (3-4) and setting unloaded quality
factor O, =150, we have the filter responses shown in Figure 3-9 as doted lines. The
experimental results are also shown in Figure 3-9 as solid lines that they are similar to
the circuit model results except similar frequency drift as the former example. The
frequency drift might come from the discrepancy of the substrate dielectric const. In

other words, the dielectric const ¢, might be greater than data sheets’ value 3.38.
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Figure 3-8. Response of quadruplet filter with controlling line of source-load coupling.

Circle: EM simulated results; solid line: circuit model.
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From above two examples, we can conclude that the controlling line of
source-load coupling can effectively adjusting the position of finite transmission zeros
with negligible perturbation to the passband. It is suggested that one can design the
symmetric folded coupled-resonator filter at first and then adds the controlling line to
control the source-load coupling without fine-tuning other portion of the filter. The

design method may apply to higher order symmetric folded coupled-resonator filter.
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Figure 3-9. Experimental and circuit model results (a) return loss and insertion loss (b)
group delay. Solid line: experimental results, dashed Line: circuit model including

loss term.
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Chapter 4 Modified Parallel-Coupled Filter with Two Independently
Controllable Upper Stopband Transmission Zeros

In this chapter, a microstrip cross-coupled filter with two independently
controllable transmission zeros on upper stopband is presented. The initial filter
structure is a conventional Chebyshev-response parallel-coupled filter that can be
easily realized by the analytical method. The newly proposed coupling/shielding lines
can effectively control the cross and main couplings without changing the original
filter layout. This approach allows designer to eliminate tedious segmentation method,
which is usually used to establish the relation between coupling coefficient and
physical distance between resonators. A 3-order filter is designed and fabricated for

demonstration.

4.1 Motivation

The cross-coupled microstrip filters-have.-been extensively studied in recent years.
Research efforts are focused mainly on two-aspects. One is finding new shape of
resonator. Another is developing novel synthesis methods, which enable designer to
arrange resonators in different ways to achieve advanced response such as generalized
Chebyshev response. Resonators with different shape, such as loop [11], hairpin [33],
and patch [34], have been arranged in specific topologies for improving the selectivity
or in-band group delay of filters. Some widely applied topologies are cascade
quadruplet (CQ) and cascade trisection (CT). Besides CQ and CT, novel synthesis
methods have leaded to novel topologies containing couplings of source/load to
multi-resonator [23, 35]. In a word, novel physical structures accompanied with
advanced synthesis methods have enriched the possibilities of a microstrip filter.
However, the designs of cross-coupled filters are not as straightforward as

conventional ones such as parallel-coupled filter, end-coupled filter, etc. In the design
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of cross-coupled filter, there are no explicit expressions to relate synthesized electrical
parameters to physical dimensions of a filter. Therefore, when designing a
cross-coupled filter, the first step is to synthesize a coupling matrix. Then, use
segmentation method to relate coupling strength to physical distance between
resonators [12]. The drawback of the design procedures is that once the size of
resonator changes, designers must redo the segmentation method to find physical
dimensions of filters. Moreover, since segmentation method can provide only

approximated dimensions of filter, fine tunings are always needed.

To skip the tedious designing routine of segmentation method, we propose an
easy designing procedure to realize a filter with two upper stopband transmission
zeros. The basic structure of proposed filter utilizes the conventional microstrip
parallel-coupled filter [36], as shown in Figure 4-1(a), to serve as the initial design.
Then, vertically flip feeding lines of the source-and the load as shown in Figure 4-1(b).
As described by Chang and Itoh 11 [37] that.the physical dimensions keep the same
during flipping. Next, adding the proposed coupling/shielding lines at the ends of
input and output feed lines as depicted in Figure 4-1(b). Figure 4-1(c) shows the
coupling diagram of Figure 4-1(b) and the coupling elements can be optimized and
fine-tuned by the method given in Chapter 2. The proposed layout of the filter is
somewhat similar to those of [37]. Nevertheless, the strengths of couplings Ms, and
My .1 in the filters described in [37] are extremely weak and not taken them into
account during filter design procedures. In this paper, we introduce these
coupling/shielding lines to control the strength of Ms, and My .1, which makes it

possible to independently control two transmission zeros in upper stopband.
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Figure 4-1. (a) The conventional parallel-coupled filter. (b) The modified filter. (c)

The coupling route of the modified filter.
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4.2 Circuit Description and Design Feasibility

The design procedures are started with the conventional microstrip
parallel-coupled filter. Following easy design procedures, dimensions of a
Chebyshev-response parallel-coupled filter as shown in Figure 4-1(a) can be obtained.
Then, vertically flip feeding lines of the source and the load with respect to the
resonator “1” and resonator “n” respectively, which is shown in Figure 4-1(b). Note
that the gap spacing S; in Figure 4-1(a) is identical to that in Figure 4-1(b). During
practical layout, designers may shorten resonators in advance to prevent the feed lines
from directly connecting to the resonator “2” or resonator “n-1" if needed.

To introduce two independently controllable transmission zeros on the upper
stopband, the design procedures could be started with the Chebyshev-response
coupling matrix and perturb it by introducing cross couplings Ms » and My 5.1 to form
two trisection blocks as shown m Eigure 4:1(¢). During this procedure, it is found that
in order to keep equal ripple in-band iresponse,-the strength of M, ; and M,,.; , must be
decreased and the frequencies of résonators.need to be adjusted. Therefore, a suitable
manner to simultaneously introduce the couplings, M, and M ,.;, and decrease the
strength of M, », and M,,.;_, is needed. The coupling/shielding lines shown in Figure
4-1(b) seem to be a perfect candidate. The coupling/shielding lines can introduce
couplings, Ms, and My .1, and decrease the strength of M;, and M,.; , by shielding
part of the coupling gaps of them. Practically, length, width, and vertical position of
the coupling/shielding line can be adjusted. Here, we fix the line width and adjust the
line length and vertical position. The vertical position of the coupling/shielding line
has little effect on shielding but has strong influence on cross-coupling. In
Chebyshev-response parallel-coupled filters, the relations S;<S, and S,:<S, always
hold, which makes it possible to add coupling/shielding line at the end of feed lines.

Another merit of the parallel-coupled filter structure is that when adjusting the length
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of resonator to align the resonant frequencies, the coupling between resonators is
nearly unchanged. The feasibility of nearly independently tuning the coupling and
frequencies makes it easy to implement the asynchronous tuned filter as that in Figure

4-1(c).
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Figure 4-2. The layout of the fabricated filter (unit: mil). L1=354, L.2=354, L.3=354,
L4=354, S1=11, S2=35, W1=19, W2=21, K1=19, K2=20, T1=87, T2=39. The line

with of coupling/shielding lines is . 8mil.

4.3 Design Example-and Experiment

To show the feasibility of the propesed structure, an example is given below. The
center frequency, in-band return loss, and fractional bandwidth of the filter are chosen
to be 5GHz, 20dB, and 5% respectively. The filter is built on a Rogers RO4003
substrate withe, =3.58, thickness=20mil, and tan o = 0.0021. The initial dimensions
of the parallel-coupled filter are obtained by analytical method described in [7]. The
coupling/shielding lines with length T, and T, are added at the ends of feed lines as
shown in Figure 4-2, to introduce two transmission zeros separately. Two prescribed
transmission zeros are located at 5.35GHz, and 5.7GHz respectively. The initial value
of T} and T, can be arbitrarily set, say, T1=50 mil, T,=30 mil. The S-parameters of the
filter is then obtained with the help of the commercial EM simulator Sonnet [32].
Next, the method described in chapter 2 can be used to extract the coupling matrix

from the simulated S-parameters. The physical dimensions of filter are then adjusted
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according to the extracted coupling matrix to match the prescribed response. After
totally five of EM-simulation, matrix extraction, and physical parameters adjusting
loops, one can get the simulated results as shown in Figure 4-3. The measured results
are also shown in Figure 4-3 for comparison. The corresponding physical sizes are

shown in Figure 4-2. And the corresponding coupling matrix M is extracted as follows

0 10103 04275 0 0
1.0103 —0.7811 0.8549 0 0
M =|04275 0.8549 0.4562 1.0258 0.2334
0 0  1.0258 —0.3857 1.1058
0 0 02334 11058 0 |

1S,.1. 1S, dB]

frequency (GHz)

Figure 4-3. Simulated and measured responses. Solid line: measured results. Dashed
lines: EM simulated results.
It should be emphasized that filter shown in Figure 4-2 has exactly the same

layout as the initial design except two coupling/shielding lines. So, designers can
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easily realize this filter even by trial and error method without using of matrix

extracting procedure.

-+=35,,,T2=39 mil

---3,,,T2=39 mil

——3,,,T2=24 mil

« 8,,,T2=24 mil

—3$,,,T2=14 mil

¢ §,,T2=14 mil

-9 i i i
2.5 5 5.5 6 6.5
frequency({GHz)

Figure 4-4. EM simulated results.of three different cases. The dimensions of the
simulated filter are the same as theseishown.in-Figure 4-2 except T2 is set to different

values.

It is mentioned in section 4-2 that the introduction of the coupling/shielding lines
in this way can effectively adjust the transmission zeros with slight perturbation of the
passband return loss. To demonstrate the merits of easy tuning of the proposed
structure, three EM simulations are taken in which the Ilength of the
coupling/shielding line, T2, are set to 14mil, 24mil, and 39mil respectively while the
other dimensions are the same as these given in Figure 4-2. From the EM simulated
results shown in Figure 4-4, it is obvious that the transmission zero can be tuned over

a wide range with negligible change in the passband return loss.
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Chapter 5 Microstrip Realization of Generalized Chebyshev Filters
with Box-Like Coupling Schemes

In this chapter, generalized Chebyshev microstrip filters with box-like coupling
schemes are presented. The box-like coupling schemes taken in this chapter include
doublet, extended doublet, and fourth-order box-section. The box-like portion of the
coupling schemes is implemented by an E-shaped resonator. Synthesis and realization
procedures are described in detail. The example filters show an excellent match to the
theoretical responses.

5.1 Introduction

The microstrip filters with generalized Chebyshev response attract considerable
attention due to its lightweight, easy fabrication and ability to generate finite
transmission zeros for sharp skirts. In the literature, most of them are based on
cross-coupled schemes such as cascade trisection-and cascade quadruplet. Some
representative examples of cross-coupled-microstrip- filters are available in the book
[12].

Recently, with the progress of the synthesis technique, new coupling schemes
such as “doublet”, “extended doublet”, and “box-section” are introduced [38]-[40]. As
shown in Figure 5-1, these coupling schemes have a box-like center portion, so we
call them box-like coupling schemes. These coupling schemes impact the filter design
since they do not only provide new design possibilities but exhibit some unique and
attractive properties as well. They differ from the conventional cascade trisection and
cascade quadruplet mainly on two aspects. First, there are two main paths for the
signal from source to load while there is only one main path in the case of cascade
trisection and cascade quadruplet. Second, the configuration of doublet and
box-section exhibit the zero-shifting property which make it possible to shift

transmission zero from one side of the passband to the other side simply by changing

56



the resonant frequencies of the resonator while keeping other coupling coefficients
unchanged. The zero-shifting property implies that the similar physical layout can
implement a filter with transmission zero at the lower stopband or at the upper
stopband, which is not feasible on the conventional trisection configuration. Besides,
the third-order extended-doublet configuration, as shown in Figure 5-1(b), exhibits
one pair of finite transmission zeros as that of a cross-coupled quadruplet filter. Pairs
of finite transmission zeros can be used to improve the selectivity of the filter or
flatten the in-band group delay. However, to the author’s knowledge, only a few
studies in the literature are focused on realization of the coupling schemes shown in

Figure 5-1 with microstrip line [41], [42].

(a) (b)

O Source/Load
@ Resonator

(©)

Figure 5-1. Basic box-like coupling schemes for generalized Chebyshev-response
filters discussed in this paper. (a) doublet. (b) extended doublet (c) box-section. ( The

gray area is realized by the proposed E-shaped resonator)
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An important property of the schemes in Figure 5-1 is that one of the coupling
coefficients on the two main paths must be negative while others are positive. The
simplest way to obtain the required negative sign is to use higher-order resonance [39],
[42]. Unfortunately, higher-order resonance leads to a spurious resonance in the lower
stopband. Instead of using higher-order resonance, loop resonators are arranged
carefully to satisfy the required sign of coupling coefficients for the box-section
configuration [41]. However, a similar method can not apply to doublet or
extended-doublet. To overcome these difficulties, an E-shaped resonator as shown in

Figure 5-2(a) is proposed to implement the required coupling signs.

- € 0dd Mode
0

o Even Mode

The dual mode resonator
(a) (b)
Figure 5-2. A doublet filter (a) the proposed layout (gray area indicate the E-shaped

resonator) (b) the corresponding coupling scheme.

The E-shaped resonator can achieve the required magnitude and sign of the coupling
schemes shown in Figure 5-1. As shown in Figure 5-2(a), the E-shaped resonator

comprises a hairpin resonator and an open stub on its center plane. This symmetric
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structure can support two modes: even mode and odd mode. Thus, the source and the
load are coupled to both modes of the E-shaped resonator. That is even though only
one physical path exists between source and load, there are two electrical paths
between them. Consequently, the layout in Figure 5-2(a) can be modeled by the
coupling scheme, a doublet, in Figure 5-2(b). The doublet filter illustrates how an
E-shaped resonator directly couples to external feeding network.

Based on the proposed E-shaped resonator, filters with extended-doublet and
box-section configuration can be realized as well. The E-shaped resonator can use
either its even mode or odd mode to couple an extra resonator. Thus, the
extended-doublet configuration in Figure 5-1(b) is achievable. Besides, the E-shaped
resonator can couple to external resonators with two of its modes simultaneously and
forms the box-section configuration in Figure 5-1I(c). The feasibility of realization of
the basic coupling schemes in Figure 5-1 with proposed E-shaped resonator makes it

possible to realize a class of coupled miciostrip-filters in a unified approach.

5.2 Circuit Modeling

A. Filters in the doublet configuration

The E-shaped resonator filter in Figure 5-2(a) was originally reported in [43]. In
[43], the E-shaped resonator was not modeled as a two-mode resonator. Instead, the
circuit was modeled as two quarter-wavelength resonators with a tapped open stub in
the center plane. The open stub is considered as a K-inverter between two
quarter-wavelength resonators to control the coupling strength and as a quarter-wave
open stub to generate a transmission zero at the desired frequency. However, the filter
cannot be designed with a prescribed quasi-elliptic response since there is no suitable
prototype corresponding to the circuit model in [43].

In this dissertation, a doublet as shown in Figure 5-2 (b) is used to model the
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circuit in Figure 5-2 (a). In Figure 5-2(b), the resonator 1 represents the odd-mode
resonance, where the center plane of the E-shaped resonator is an electric wall
(E-plane). On the other hand, the resonator 2 represents even-mode resonance, where
the center plane of the E-shaped resonator is a magnetic wall (H-plane). With the

notation shown in Figure 5-2(b), the corresponding coupling matrix M can be written

down as
0 My M, 0
M: MSI Mll 0 MIL
MS2 O M22 MZL (5'1)
0 M, M, 0 |

There are some interesting properties of the doublet filter in Figure 5-2(a). First,
since the E-shaped resonator =exhibits symmetty, the relationship Mg;=-M;; and
Mg,=M,, holds. Second, |Mgp>Mgp| is-always true for this structure since the
coupling strength between the odd mode and external feeding network is always
larger than that of the even mode.

To get more insight of how to control a transmission zero of a doublet filter in
this configuration, an explicit expression relating the coupling elements and the

transmission zero (2 is provided in a low-pass domain as follows

Q=(M, M2, -M,,M:)/(M; —-M?:)) (5.2)
Note that the mapping between normalized frequency @' and actual frequency f
iso'=(f/f,—fo/ )N/ f,, where f, and Af are center frequency and bandwidth
of a filter, respectively.

Based on the Eq (5.2), observations are summarized in the following:

1. The transmission zero is always located at finite frequency since Mg, # Mg, . In
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other words, the structure exhibits finite transmission zero inherently.

2. The transmission zero can be moved from upper stopband to the lower stopband,
or vice versa, by changing the sign of M;; and My, simultaneously. This property
makes it possible to generate upper stopband or lower stopband finite transmission
zero with similar structure.

3. If M,,>0 and M,, <0, ©Q would be greater than zero. In a more explicit
expression, M,, and M,, can be related to the resonant frequencies of odd

mode, f, ,,, and even mode, f, , , respectively by the following equations.

ven 2

= - Maxaf
Joaa = Jo(1 27 ) (5.3)
_r1-Muxaf
j;velz _ﬁ)(l 2f0 ) (54)

where f, and Af are center frequency and bandwidth of a filter, respectively. That
isif f,,<f, and f, > f,,the transmission zero-would be on the upper stopband.
4. If M,, <0 and M,, >0, “©Q would be smaller than zero. That is if £, > f,

and f

even

< f, the transmission zero would be on the lower stopband.

To get the related electrical parameters indicated in Figure 5-2(a), one can take
the following procedures. First, synthesize a coupling matrix M corresponding to the
prescribed response. Then, consider parameters concerning the odd mode only by
removing the open stub on the center plane. Once the open stub is removed, the
circuit becomes a first-order hairpin filter. The first-order hairpin filter can be
synthesized by the conventional method [44] with the center frequency set to be the
resonant  frequency of odd mode, which can be expressed as
Sosa = Jo(1=M, xAf/2f,). At this step, one can specify the values of $.,Z, and
Y, and obtain the values of Z,,,Z by analytical method [44]. Second, put the

open stub back. The two parameters of the open stub,Z, and 4,, can be adjusted to
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achieve the desired resonant frequency and the needed external coupling strength of
the even mode. Here, the resonant frequency of the even mode is
Jeven = Jo(1=My, xAf 12 f).

To illustrate the procedure, an example is taken of a second order generalized
Chebyshev filter with a passband return-loss of 20-dB and a single transmission zero
at a normalized frequency Q=3 . The corresponding coupling coefficients are
Mg;=1.1110, Ms,=0.6170, M;=1.4545, and M,,=-1.6260. For filter with center
frequency fy;=2.4 GHz and fractional bandwidth FBW=0.05, the ideal response is

depicted in Fig. 3 as solid lines. After getting the coupling matrix, 9. could first be
specified. Here, we set 4.=60°, Z =50 ohm, and 9 =60° and obtain

Z,, =7525520hm, Z,, =38.1022 ohm for a uniform impedance resonator with
characteristic impedance Z, = 50.,0hm atfrequency, f, ,, =2.3127 GHz. Next, put the
open stub back and adjust the values of Z; and 4, by the optimization method to
let the response of the circuit match with-the-ideal response calculated from the M

matrix. The optimized values of Z, and 9, “are 62 ohm and 86.8°, respectively, at

frequency f

even

=2.4976 GHz. According to the obtained electrical parameters in

Figure 5-2 (a), the corresponding response is shown in Figure 5-3 as circled lines. The
frequency response contributed only by the odd mode is also depicted in Figure 5-3 as

dashed lines to let us understand the procedures clearer.
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Figure 5-3. Responses generated from the coupling matrix and from electrical

network shown in Fig. 2(a) with synthesis parameters.

B. Extended-Doublet Filters

Based on the doublet filters developed-in‘previous section, the emphasis is put on
how to extend the design to extended-doublet filters in this section. There are two
possible arrangements suitable to form extended-doublet filters. One possible
arrangement is indicated in Figure 5-4 where the extended doublet filter consists of a
doublet filter plus a grown resonator. The grown resonator is a half-wavelength
resonator with both ends open. In this case, the grown resonator would mainly couple
to the odd mode of the E-shaped resonator. And for the even mode of the E-shaped
resonator, it acts as a non-resonant element, which slightly perturbs the resonant
frequency of the even mode. Another possible design is shown in Figure 5-5 where
both ends of the grown resonator are shorted to ground. In this case, the grown
resonator mainly couples to the even mode of the E-shaped resonator and acts as a

non-resonant element to the odd mode of the E-shaped resonator. To clarify the
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coupling relationship between each resonator, the coupling routes are accompanied

with layouts in Figure 5-4 and Figure 5-5.

L

Figure 5-4. A layout of extended-doublet filter and its corresponding coupling scheme.

o Even mode

€@ 0dd mode

The design is for flat group delay response

L

Figure 5-5. A layout of extended-doublet filter and corresponding coupling scheme.

€ 0dd Mode

o Even Mode

The design is for skirt selectivity response

The extended-doublet filter has a pair of finite transmission zeros. For the design
in Figure 5-4, the pair of transmission zeros is on the imaginary-frequency axis. On
the other hand, to generate a pair of real-frequency transmission zeros, the design in

Figure 5-5 must be adopted. The difference between the two designs can be

64



understood from the governing equation of finite transmission zeros. Since the
proposed extended doublet filters are symmetric structures, the relations |Mgsi|=[My|
and |Ms;|=|My.| always hold. Thus, the governing equation of finite transmission zero

can be expressed as
2 = Ml (5-5)
Mg —Ms,
As discussed in the design of doublet, the coupling coefficient of source to odd mode
is stronger than that of source to even mode. Thus, for the design in Figure 5-4,
IMs2[>|Ms|, which leads to Q° <0. On the contrary, for the design in Figure 5-5,
IMg2|<|[Msi|, which results in Q° > 0. In conclusion, the design in Figure 5-4 can be
used to generate delay-flattening transmission zeros while the design in Figure 5-5
can be used to generate a pair of attenuation poles.

To illustrate the procedure.of the design; a generalized Chebyshev filter with
passband return loss of 20-dB and‘a pair of fransmission zeros at Q=12 is taken as
an example. The design of an extended doublet starts from the synthesis of coupling
matrix, which can be done using the ‘technique in [9]. The synthesized coupling
matrix is shown in Figure 5-6(a). Using the information of Mg; and Msg;, one can
construct the doublet by the method provided in section 5-2A. Excluding the M»3; and
M3, in the coupling matrix, one can calculate the response contributed from the
doublet only. For instance, if the center frequency and fractional bandwidth of the
designed filter are 2.4GHz and 5% respectively, the responses of the doublet are
shown as dotted lines in Figure 5-6(b). After getting the initial design of doublet, add
the grown resonator. Since Q>0 in this case, the layout in Figure 5-5 must be
adopted. Ideally, the response of the extended-doublet would be the solid lines shown
in Figure 5-6. The physical implementation of this design will be presented in section

5-3 to confirm the validity.
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M S 1 2 3 L
S 0 0.8613 0.6202 0 0
1 0.8613 0 0 0 -0.8613
2 0.6202 0 0 1.3878 0.6202
3 0 0 1.3878 0 0
L 0 -0.8613 0.6202 0 0
(a)
O | T I
L e e . i
m |V N
o -20F -
Q_g
;“: -30F —|S11|: whole circuit
—|821|: whole circuit
-=+|8, ,|: doublet
40+ 11
---|821|: doublet
_58.1 2.|2 2.‘3 2.4 2.‘5 2.|6 2.7
frequency(GHz)
(b)

Figure 5-6. The extended-doublet filter with in-band return loss RL=20dB,
normalized transmission zeros at Q =12. (a) its coupling matrix (b) Responses of

extended doublet filter and responses contributed by doublet only.
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C. Box-section Filters

The fourth order filter in the “box-section” configuration was first proposed in
[38] and realized by coaxial resonators. With the zero-shifting property, it is possible
to use the similar filter structure to realize the finite transmission zero either on the
upper stopband or on the lower stopband. The box-section filter is suitable for the
complementary filters of a transmit /receive duplexer [42] since it has asymmetric
response with high selectivity on one side of the passband. The microstrip box-section
filter was first reported in [41] with open square loop resonators. Because the
box-section coupling diagram is symmetric where Mg;=Mar, M,=-M, M3=M34,
and M;;=Mu4 should be held in the coupling route shown in Fig. 5-7(a). Therefore, it
is preferable to layout the filter symmetrically because a symmetrical-layout filter can
inherently obtain symmetrical coupling coeffictents. The asymmetrical layout causes
the filters in [41] to be difficult to. keep the-coupling coefficients to be symmetric.
Another microstrip box-section filteriwas-proposed in [42]. Although the layout of the
filters in [42] is symmetric, it suffers.from.spurious response in the filter’s lower
stopband due to one of filter’s resonators to be a higher order mode resonator. In this
paper, the layout depicted in Figure 5-7(b) solves the problems mentioned. The
E-shaped resonator is symmetric and is free from lower stopband spurious resonances.
Due to the symmetry, only half of the electrical parameters are shown in Fig. 5-7(b).
As explained in doublet filter, the circuit layout in Fig. 5-7(b) satisfies the required

sign of couplings.
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The dual mode
resonator

(b)
Figure 5-7. A Box-section filter. (a) filter’s coupling scheme. (b) the proposed
layout.

To illustrate how to obtain the corresponding electrical parameters in Figure
5-7(b) from a prescribed response, examples are taken as follows. The first example is
a fourth order generalized Chebyshev filter with a passband return-loss of 20-dB, a
single transmission zero at Q=-2.57 which gives a lobe level of -48 dB on the
lower side of the passband. The corresponding coupling matrix M is shown in Figure
5-8(a). After the lowpass-to-bandpass transformation, the ideal bandpass response of
this filter with center frequency of 2.4 GHz and fractional bandwidth of 5% is shown

in Figure 5-8(b).
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The design procedures are described as follows. First, remove the open stub in
the E-shaped resonator in Figure 5-7(b), which is equivalent to discarding the even
mode (resonator 3 in the Figure 5-7(a)) of the E-shaped resonator. After removing the
open stub, the circuit becomes a third-order hairpin-like filter. The coupling matrix M;
of this hairpin-like filter is identical to the coupling matrix M in Figure 5-8(a) except
M;; and Mj; being zero. The ideal response of this hairpin-like filter can be calculated
from M; matrix as circled lines in Figure 5-8(b). To get the electrical parameters
associated with the asynchronously tuned third-order hairpin-like filter, a synchronous
tuned third-order hairpin filter provides the initial design and is synthesized at first.
The synchronous tuned hairpin filter has coupling matrix M, which is identical to M;

except M;=0. When synthesizing the synchronously tuned hairpin filter, we
set 3., =90°, 9.,=60°, Z.£50 ohm, .Z,=50 ohm at f =7, , and the

characteristic impedance of each ‘resonator to be 50 ohm. With these settings, the
electrical parameters of the synchronously-tuned -hairpin filter are calculated and
shown in Table. 5.1, which provides ‘the mitial values for the asynchronous-tuned
hairpin-like filter. Then, an optimization routine is involved. The goal of optimization
routine is to find a set of electrical parameters which can make the response match
with the response of the ideal asynchronously-tuned hairpin-like filter calculated from
M, matrix. The optimized parameters are shown in Table 5.1 for comparison. Note
that the optimized values of associated parameters are nearly identical to the initial
values; therefore, the optimization routine can converge within a few times. Finally,
put the open stub back and optimize the parameters Z, and & to make the
response matched with the response of the desired box-section filter’s response as
solid lines in Figure 8(b). The optimized values of Z; and $, are given in Table 5.1

as well.
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M| S 1 2 3 4 L
S 0 1.0343 0 0 0 0
1 | 1.0343 | -0.0342 | 0.7291 | 0.5441 0 0
0 0.7291 | -0.5572 0 |-0.7201 0
3 0 0.5441 0 0.8282 | 0.5441 0
4 0 0 -0.7291 | 0.5441 | -0.0342 | 1.0343
L 0 0 0 0 1.0343 0
(a)
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o
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-*‘.|S11|:th>ird-order hairpin-like filter

o
o

a |821|:third-order hairpin-like filter
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(b)

Figure 5-8. A fourth order box-section filter: (a) its coupling matrix (b) the responses

of the box-section filter and ideal responses of the asynchronous tuned third-order
hairpin-like filter calculated by M; matrix.

Instead of a lowpass prototype filter with a transmission zero at Q =-2.57in the
first example, the second example locates the transmission zero at a normalized
frequency Q=2.57 and keeps all other parameters unchanged. According to the
synthesis procedures in [38], the inter-resonator couplings are unchanged but

self-couplings (principal diagonal matrix elements, M;;, Mp,,...etc., of the coupling
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matrix in Figure 5-8(a)) must change sign. Following the same procedures in the
previous design, one can get the electrical parameters given in Table 5.1. In Table 5.1,
the column of design #1 corresponds to lowpass prototype filter transmission zero at
Q=-2.57 and the column of design #2 corresponds to a lowpass prototype filter
transmission zero at 2 =2.57. The responses obtained from the electrical parameters
listed in Table 5.1 and responses calculated from M matrix in Figure 5-8(a) are both

plotted in Figure 5-9 for comparison.

Initial | Design #1 | Design #2
e values

Z_ (ohm) 68.6941 68.6967 | 68.6169
Z_ (ohm) 39.7079 39.7204 | 39.7758
Z_, (ohm) 53.5286 542217 | 52.5632
Z ,, (ohm) 46.9091 47.5517 46.0413
191 (degrees) 30 30.2141 29.7113
%, (degrees) 60 58.1787 61.635

I
23 (ohm) NaN 19.1823 20.2808
%, (degrees) NaN 95.9949 | 84.3721

Table 5.1. Electrical parameters corresponding to box-section filters shown in Fig.
7(b). Here, 9., =90°, 9.,=60°, Z =500hm, Z, =500hm. All of the electrical

lengthes are corresponding to the center frequency of the filter.
Design 1: in-band return loss RL=20dB, Q=-2.57, and FBW=5%

Design 2: in-band return loss RL=20dB, Q =2.57, and FBW=5%
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5.3 Design Examples and Experimental Results

The extended-doublet filter discussed in Section 5-2-B with its ideal response
shown in Figure 5-5, and the design #1 of box-section filter discussed in Section
5-2-C with its ideal response shown in Figure 5-9(a) are fabricated to verify the
designs. Although all of the electrical parameters obtained in Section 5-2 can be
transformed to physical parameters, it does not include the junction effect. Therefore,
a commercial EM simulator Sonnet [32] is adopted to take all the electromagnetic
effects into consideration. To efficiently tune the physical dimensions of the filter to
achieve the prescribed response, the diagnosis and tuning methods given in Chapter2
are taken. Figure 5-10 shows the physical dimensions and the corresponding
responses for the extended-doublet filter where a RO6010 substrate with dielectric
constant of 10.8 and thickness of 50mil is used. Figure 5-11 depicts the physical
dimensions and corresponding responses for.the box=section filter where an RO4003
substrate with dielectric constant of-3.63-and a ‘thickness of 20mil is used. The
measured in-band insertion loss of the filters.in Figure 5-10 and Figure 5-11 are 1.4dB
and 2.7dB, respectively. In Figure 5-10 (b), the experimental results show a larger
passband than the simulated ones. The deviation mainly results from the fabrication
error. In Figure 5-11 (b), the measured response is shifted about 30MHz. Further
investigation showed that the dielectric constant of the substrate is closer to 3.4 rather
than 3.63. The wideband measurement results of the fabricated box-section filter are

shown in Figure 5-11 (c).
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Figure 5-9 Responsess of the box-section filters. (a) Responses obtained by electrical
parameters of design #1 in Table 5.1 and its coupling matrix respectively. (b)
Responses obtained by electrical parameters of design #2 in Table 5.1 and its coupling

matrix respectively.
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Figure 5-10. Fabricated extended-doublet filter (a) layout(unit:mil) (b) simulated and

measured response.
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Figure 5-11. fabricated box-section filter (a) layout (unit:mil) (b) simulated and

measured response. (c¢) the measured wideband response
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5.4 Discussion

In Section 5-2, we have discussed how to get the electrical parameters of a filter
network in doublet, extended-doublet, and box-section configuration from the
corresponding coupling matrices. With the understanding of the correspondence
between the coupling matrix and physical structure, the layout is not limited to those
provided in this paper. A filter can be modeled by the box-like coupling scheme as
long as it contains a two-mode resonator that is physically symmetric and supports
two resonant modes. For instance, the filters in Figure 5-12 can also be modeled as a
doublet filter since it is symmetric and has two resonant modes. However, for the
filter in Figure 5-12, it is not easy to get the initial physical dimensions. On the
contrary, the initial dimensions of the layouts proposed in this paper can easily be
obtained. Besides, using the E-shaped resonator and the design procedures provided
in this paper, all electrical parameters of a filter with box-like coupling schemes can
be easily obtained. These parametersican-be-applied to filters with the same low-pass
prototype and fractional bandwidth but.a different center frequency and a different
substrate. Having clear initial dimensions of a filter can save quite a lot of time in the
design when comparing to the conventional design procedures of cross-coupled filters,
e.g. the filters in [11]. In the design of a conventional cross-coupled filter, once the
substrate, shape of resonator, or center frequency of a filter is changed, one must redo

the design from the very beginning of the procedures.

Figure 5-12. A possible filter layout that can be modeled as a doublet configuration.
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The sensitivity analysis of the box-like coupling routes can be performed by the
method proposed in [45]. The most sensitive part of the proposed structures is the
coupling section between the E-shaped resonator and the source/load or other
resonators because the coupling section controls the coupling strengths of two modes

of E-shaped resonator to external circuit simultaneously.
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Chapter 6 Parameter Extraction Method Based on
Vector Fitting Formulation

In previous chapters, the parameter extraction method applied to all of the
mentioned filters is based on a lossless condition. In this Chapter, a formulation based
on the vector fitting is applied to extract the equivalent circuit model from the
frequency response of lossy cross-coupled microwave filters. By approximating the
lossy response with short-circuit admittance parameters in partial fractional expansion
form, the proposed method can evaluate the unloaded quality factor of resonators and
extract the transversal coupling matrix simultaneously. The methodology of the vector
fitting can identify the poles and residues of the short-circuit admittance parameters
even when the poles are on the complex plane. And the extracted transversal coupling
matrix can further transform intosthe prescribed form corresponding to the physical
layout. The proposed method can be'used in the tuning process of filter designs where
the extraction of a coupling matrix isiessential-To verify the method, a cross-coupled
quadruplet filter is used as an example:

6.1 Introduction

The cross-coupled filters based on the model proposed in [5], [23] have found
wide applications in wireless communication systems since they can provide the
generalized Chebyshev response which exhibits the optimal in-band response and
selectivity. However, the tuning of the filters based on cross-coupled topologies is
time-consuming. In order to tune the cross-coupled filters more efficiently, therefore,
diagnosis methods are needed to guide the process of the filter tuning [13]-[18]. Since
the model proposed in [5], [23] can be expressed by a coupling matrix, most diagnosis
methods in literatures are focused on extracting a coupling matrix from the simulated
or measured response. By comparing the extracted coupling matrix to the desired

coupling matrix, one can determine how to adjust the filter [13], [18].
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Most parameter extraction methods are only valid for lossless filters since this
is the assumption in their formulations. Thus, getting a coupling matrix from a lossy
filter response is still an important research topic. Recently, a modified formulation of
the Cauchy method which can extract the parameters of a lossless model from the
response of a lossy bandpass filter is proposed [21]. The formulation in [21] can
generate characteristic polynomials suitable for the synthesis of a low pass prototype
associated with the lossless model of the filter, which is not feasible in the formulation
proposed in [18], [20]. Strictly speaking, the methods in [21] would require lossless
measured data and can not give a measure of how lossy a filter is.

To take the loss of a filter into consideration, we propose to use the model in
Figure 6-1. The model in Figure 6-1 was modified from the model first proposed in [9]
for filter synthesis and known as transversal network. The only difference between the
model used in [9] and here is that we added the conductance, Gy, in each branch of the
transversal network to model the loss,-as-showa in/Figure 6-1(b). As the formulation
in [9], the short-circuit admittance:parameters,.also known as Y-parameters, of the
model in Figure 6-1, can be expressed by a polynomial in partial fractional expansion
form. Here, the introduction of the loss positions the poles of the Y-parameters on the
complex plane instead of on the imaginary axis as in the lossless case. To effectively
get the short-circuit admittance parameters in the form of partial fraction expansion,
the technique of vector fitting [46] is applied. The formulation based on the vector
fitting can identify the positions of poles and calculate the residue of the Y-parameters.
The poles of the Y-parameters contain the information of how lossy a filter is. Thus,
the proposed method allows:

1. the evaluation of how lossy a filter is from the simulated or measured data;
2. the generation of the Y-parameters in the partial fraction expansion form, which is

suitable for the synthesis of a low-pass prototype by the method in [9].
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Figure 6-1. Canonical transversal array. (a) N—resonator transversal array including
direct source—load coupling Ms;. (b) Equivalent circuit of the kth “low-pass

resonator” in the transversal array.
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6.2 Review of the Vector Fitting Technique
To facilitate the discussion in the next section, we briefly review the technique of
vector fitting in this section. The technique of vector fitting was first proposed in 1997
by Bjorn Gustavsen and Adam Semlyen, and the authors further improved the
technique in 1999 [46]. To one who is interested in the vector fitting technique, the
paper published by the author in 1999 is highly suggested. The review below is based
on the material in [46].

Consider the rational approximation

f(s):i I (6-1)

15—a,

where the ¢, ,a,, d and h are unknowns. Vector fitting solves the problem (6-1)

sequentially as a linear problem in two, stages: pole identification and residue

identification. In the stage of pole identification; specify a set of starting poles Z in

(6-1) and multiply f(s) with=an unknown functiom o(s). The o(s) is expressed

by rational approximation. This gives the augmented problem:

N cn
o). 2o T o)
ols) i—g”_ +1

n=1 8 — an

Multiplying the second row in (6-2) with f(s) yields the following equation:

N c, B N En ]
;S_Z+d+sh_(gs_z+1]f(s) (6-3)
or
(0 f)u(s)=0,/(s)f(s) (6-4)

Equation (6-3) is linear in its unknowns c,,d ,h and c,.Writing (6-3) for several

n?

frequency points gives the overdetermined linear problem
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Ax=>b (6-5)
where unknowns are in solution vector x. Equation (6-5) is solved as a least squares
problem. An important fact is that the zeros of o(s) are the poles of f(s), so we

can calculate the zeros of o(s) from the solution vector x to be the new poles of

Sf(s). Note that the numerator and denominator of o (s) have been specified in

(6-2) to be of the same order. This imply that if the starting poles are correct, then the

new poles (zeros of o, (s)) become equal to the starting poles (o, (s)=1). In

practical application, this has the consequence that the rational function will converge
if the new poles are used as starting poles in an iteration procedure.
After identifying the poles of f(s), we can take the poles a, to the original

problem (6-2) and solve the equationlike that'in (6-5) to find the unknowns c,.d ,h,

which is called residue identification in the vector fitting.

6.3 Applying Vector Fitting to Parameters Extraction
Following the formulation in [9], one can determine the two-port short-circuit

admittance matrix [¥, ]| for the parallel-connected transverse array in Figure 6-1 as

[Y ]=|:)’11(S) y12(s)}
" Vu(8)  yy(s)

_ j{ 0 MSL} (6-6)
M, 0
" i 1 M;k Mg M
o (sC + jB +G) | Mg M Msz

Thus, if we can approximate the measured or simulated Y-parameters by polynomials,

Vij.appx (8) » 1 the following form
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[Y ] _ yll,appx (S) ylZ,appx (S)
w y21,appx (S) y22,appx (‘S)

=j{0 K0:|+ﬁ: 1' |:’”11k 7’121{}
K, 0 o (5= JA) " Tk

Note that the residues 7, ,5,,.7%,, and r,, are real numbers while the A4, is a

(6-7)

complex number in general in Equation (6-7). By comparing the first column of the

Equation (6-6) and Equation (6-7), we can obtain M, =K, , C, =1,
M, =B, =-Re[4],G, =Im[A, ], Mgy =1, .M, =r, /i, . Once the My,

Msk, Mik, Mgy are determined, the transversal matrix is formed [9]. To transform the
transversal coupling matrix into another coupling matrix with the prescribed coupling
route corresponding to the physical structure, the methodology in [46] is used in this
paper.

To obtain approximated Y-parameters of simulated or measured data in the form
of Equation (6-7), the technique of vector fitting' is applied. The vector fitting
technique is a general methodology for the fitting'of measured or calculated frequency
domain response with rational function approximation [9]. Instead of directly fitting
the data into a ratio of two polynomials, the methodology generates a polynomial in
partial fractional expansion form. The source code can be obtained from the authors
of the paper [46], but it can not be directly used to determine the polynomials that fit
the model in Figure 6-1. The reason is that the formulation in [46] is in the bandpass
frequency domain s, s= j2zf, and the generated polynomials can not fit into the
model in Figure 6-1 even after bandpass-to-lowpass frequency transformation. To
apply the formulation of vector fitting to fit the model in Figure 6-1, the formulation
in [46] is followed except that the symbol s stands for normalized frequency

s = jQ. For the need of parameter extraction, one must calibrate the position of
reference planes of the input and output ports [17], and then fit the y, . (s)and
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Varappe () simultaneously. Thus, stack the y, .. (s) and y, . (s) to form a

VGCtOI‘;(S) , as shown in following equation:

S Nk
) - {yu,w(s)} _ 2 (6-8)
Yot appx () K < ik
Ko+ 2

The procedure in [46] is followed to identify the poles. As mentioned in [46], final
positions of poles are determined through iterative calculations and not sensitive to
the starting positions of poles. It is worth noting that the complex poles come in pairs
in [46]; however, for the case here, it is not necessary for the poles to be in complex
pairs since they are in the normalized frequency domain. After identifying the poles,
one can identify the corresponding residues and obtain the polynomials in Equation

(6-8).

6.4 Example
To illustrate the proposed method, a cross-coupled quadruplet filter is given as an
example. The layout of the filter is the same as Figure 3-4 in Chapter 3 excluding the
S/L coupling controlling line. The center frequency and fractional bandwidth of the
filter are 2.4 GHz and 3.75%, respectively. To demonstrate the ability of extracting
the coupling matrix from a lossy filter response, the conductor loss is included. The
simulation was performed using Sonnet [32] and the result is shown in Figure 6-2.
The method in [17] is used to calibrate the position of the reference plane. The
following bandpass-to—lowpass frequency transformation is adopted:
s=JQ=jfo /AT fo=So! ) (6-9)
where Af and f, are bandwidth and center frequency of the filter, respectively. By
using the proposed method, the extracted normalized transversal coupling matrix M,

1s calculated to be
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0 03409 0.5920 03704 0.6124 0
03409 1.3887 0 0 0 —0.3629
05920 0 08265 0 0 0.5941
M, = ~ (6-10)
03704 0 0 1.0926 0 0.3886
0.6124 0 0 0 —04793 -0.6192
| 0 03629 0.5941 03886 -0.6192 0 |

, along with other parameters G, =0.1472 , G,=0.1427 , G, =0.1539 , and
G,=0.1501. Then, transform the coupling matrix M, into the coupling matrix
M, which corresponds to the coupling route of the cross-coupled quadruplet. The
matrix M, is

0 1.0016 0 0 0 0
1.0016 0.1178  0.8401 —0.0016 —0.1496 0
0 0.8401  0.1592  0.7409 -0.0016 0

M. =
: 0  —0.0016 0.7409 0.1592  0.8401 0 (6-11)
0 —0.1496 —0:000167 0.8401 =~ 0.1178 1.0016
0 0 0 0 1.0016 0

With the approximation that the-unloaded quality factor of each resonator is the
same, we can get a measure of how lossy the filter is by calculating the average value

of Gys. In this case, the average value of Gys 1S

G,., =(G, +G, +G, +G,)/4=0.1476 . From the quantity G, _, we can evaluate the

loss °

unloaded quality factor, Q, by O, =Af /G, f,). In this case, O, is equal to
180.67. A normalized coupling matrix [M] is related to the responses of S, (Q)and

S,,(©)via the following equations:
Sy =-1-2j14],, (6-12)
Sy = =214 Tyaa, (6-13)
Here, 4A=Q[U, 1+ [M]-j[G],Q=(f, /NS /S, - f,! ), [U,] is similar to the

(N+2)x(N+2) identity matrix except that [U,], =[Uyly., ., =0, and [G] is the
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diagonal matrix [G]=diag{l,G G, -1} . Substituting the extracted coupling

loss 2°**>

matrix M, with G, =0.1476 into the Eq.(6-12) and Eq. (6-13), one can obtain

the response shown in Figure 6-2.

O
o |S11|:simulated
-10F ‘g 1
o |821|.S|mulated
= —|S11|: extracted
o -201 8
= —1S,,,|: extracted
w
o -30
-40
N 1 1 1 I I
58.1 2.2 2.3 2.4 25 2.6 2.7
freq (GHz)

Figure 6-2. The simulated and extrac¢ted-results of the cross-coupled quadruplet filter

under consideration.
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Chapter7 Summary and Future Work
7.1 Summary

The design of microwave filter is not a new filed, but there are always new
things in this area. In recent years, a big advance is in filter design is the development
of computer aided design (CAD) tools for filter diagnosis and tuning. In this
dissertation, we try to keep the state of art to make filter design more systematical and
faster.

A review of related algorithms and methods for the filter diagnosis and tuning
are given in Chapter 2. The Pros and Cons of each method are discussed. An
optimization design flow is given in Figure 2-6. Actually, each step of the flow is
implemented in MATLAB except the EM simulation part which is done by
commercial EM simulator. We have applied the extraction method and tuning process
to design the microstrip filters in Chapter 3, Chapter4, and Chapter 5. Although only
microstrip filter are given in this diss€rtations-the design flow in Figure 1-3 is not
limited to the microstrip filters. That.is the-design procedure can apply to design
microwave filters with different material and guiding structure with the condition that
the filter under consideration can be described by a coupling matrix with a proper
topology.

A Parameter extraction method is given in Chapter 6. The proposed parameter
extraction method can reconstruct the model of a lossy filter, which makes the
proposed method different from other methods that are only effective for lossless
filters. The ability of modeling a lossy filter makes the proposed parameter extraction

method can not only be used in EM-simulation stage but also in production line.
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7.2 Future work

The application interface between the commercial EM-simulator and MATLAB
is needed. In the optimization procedure presented in Chapter 2, the EM-simulator is
used to calculate the response of filters and export the simulated files to MATLAB.
From the simulated response, programs written in MATLAB are applied to extract a
coupling matrix and decide how to adjust the filter to achieve a prescribed response.
The EM solver used in this dissertation i1s a commercial EM simulator. Thus, the
application interface (API) between the EM-simulator and MATLAB is needed for the
fully automatic tuning. That is to make the MATLAB able to co-simulate with a
commercial EM-simulator, an interface is needed.

Although the API is not done yet, the ability of co-simulation is a trend.
MATLAB is very powerful sincé it includes a.lot of functions that can handle
numerical operations and draw wonderful graphics.: It is easy to develop an algorithm
and verify it with MATLAB. On the othei-hands; it is-hard for an individual to develop
an EM solver to compete with the commercial EM simulators such as HFSS, IE3D,
and Sonnet. Thus, if we can combine MATLAB with a commercial EM simulator, like
HFSS, to solve a complicated EM problem, the design procedure would be more

systematic and fast.
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