

 國 立 交 通 大 學

電信工程學系

博 士 論 文

二元迴旋碼之接近最大機率循序搜尋解碼

演算法

Near Maximum-Likelihood Sequential-Search
Decoding Algorithms for Binary

Convolutional Codes

研 究 生：謝 欣 霖

指導教授：陳 伯 寧 博 士

中 華 民 國 九十七 年 六 月

二元迴旋碼之接近最大機率循序搜尋解碼演算法

Near Maximum-Likelihood Sequential-Search
Decoding Algorithms for Binary Convolutional Codes

研究生：謝欣霖 Student: Shin-Lin Shieh

指導教授：陳伯寧 博士 Advisor: Dr. Po-Ning Chen

國立交通大學

電信工程學系

博士論文

A Dissertation
Submitted to Institute of Communication Engineering

College of Electrical and Computer Engineering
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in
Communication Engineering

Hsinchu, Taiwan

2008 年 6 月

 i

二元迴旋碼之接近最大機率循序搜尋

解碼演算法

研究生：謝欣霖 指導教授：陳伯寧 博士

國立交通大學電信工程研究所

摘 要

在本篇論文中，我們重新探索[17]裡的最大機率循序搜尋解碼演算法

(Maximum-Likelihood Sequential-Search Algorithm)。藉由更換傳統的費諾計

量值(Fano metric)為基於華格納規則(Wagner rule)推導出的計量值，[17]裡的

循序搜尋解碼演算法可以保證產生最大機率效能，於是被命名為最大機率循序搜

尋解碼演算法。藉由模擬結果顯示出此演算法比維特比演算法(Viterbi

algorithm)擁有明顯較低的軟體解碼複雜度。

一個循序搜尋解碼演算法共通的問題是當訊雜比(signal-to-noise ratio)

低於對應於切斷率(cut-off rate)的訊雜比時，平均解碼複雜度和所需的堆疊

(stack)大小會隨著訊息長度快速增加。此共通問題限制了循序搜尋解碼演算法使

用於訊息長度較長的迴旋碼。為了降低此問題的影響，本文中建議在搜尋過程中

如果堆疊裡的最高路徑(top path)的層級(level)比搜尋過程最遠的展開層級還少

超過△以上，則將此最高路徑直接丟棄。我們將此動作稱為提早淘汰(early

elimination)。我們接著分析使得解碼的效能衰退忽略不計所需要的最小△值。

由我們的理論分析結果顯示所需的△值大小對編碼率1/2的迴旋碼在加成性高斯

白雜訊(additive white Gaussian noise)通道及二元對稱(binary symmetric)通

道大約分別為3倍及2.2倍的限制長度(constraint length)。對編碼率1/3的迴旋

 ii

碼，所需的△值大小更分別下降到2倍及1.2倍的限制長度。這些理論分析結果也

幾乎與模擬的結果相吻合。

由於只需要很小的△值即可達到接近最大機率的效能，經過此修改的循序搜

尋解碼演算法消除了大量的計算量及記憶體需求。這使得此修改過後的循序搜尋

解碼演算法適合於需要低軟體複雜度卻又要求接近最大機率解碼效能的應用。我

們更進一步使用Berry-Esseen不等式分析修改前及修改後的循序搜尋解碼演算法

複雜度。理論分析得到的平均複雜度上界及模擬得到的平均複雜度結果都顯示此

修改將大幅降低解碼的複雜度，並且使得修改過後循序搜尋解碼演算法的每單位

訊息長度所需之解碼複雜度在中到高訊雜比狀況下幾乎與迴旋碼的計憶深度

(memory order)無關。

 iii

NEAR MAXIMUM-LIKELIHOOD
SEQUENTIAL-SEARCH DECODING ALGORITHM

FOR BINARY CONVOLUTIONAL CODES

Student: Shin-Lin Shieh Advisor: Dr. Po-Ning Chen

Department of Communication Engineering
National Chiao Tung University

Abstract

In this work, the maximum-likelihood sequential-search decoding algorithm
proposed in [17] is revisited. By replacing the conventional Fano metric with one that is
derived based on the Wagner rule, the sequential-search decoding in [17] guarantees the
maximum-likelihood (ML) performance, and was therefore named the
maximum-likelihood sequential decoding algorithm (MLSDA). It was then concluded by
simulations that when the MLSDA is operated over the convolutional code trellis, its
software computational complexity is in general considerably smaller than that of the
Viterbi algorithm.

A common problem on sequential-type decoding is that at the signal-to-noise ratio
(SNR) below the one corresponding to the cut off rate, the average decoding complexity
and the required stack size grow rapidly with the information length [25]. This problem,
to some extent, prevents the practical use of sequential-type decoding from codes with
long information sequence. In order to alleviate the problem in the MLSDA, we propose
to directly eliminate the top path whose end node is ∆-trellis-level prior to the farthest one
among all nodes that have been expanded thus far by the sequential search, which we
termed the early elimination. We then analyze the early-elimination window that results
in negligible performance degradation for the MLSDA. Our asymptotic-based analytical
result indicates that the required early elimination window for negligible performance
degradation is around three times (resp. 2.2-fold) of the constraint length for rate one-half
convolutional codes under additive white Gaussian (resp. binary symmetric) channel. For
rate one-third convolutional codes, the required early-elimination window reduces to two
times (resp. 1.2-fold) of the constraint length for the same channel. The theoretical level
thresholds almost coincide with the simulation results.

As a consequence of small early elimination window required for near
maximum-likelihood performance, the MLSDA with early elimination modification

 iv

rules out considerable computational burdens, as well as memory requirement, by
directly eliminating a big number of the top paths. This makes the MLSDA with early
elimination suitable for applications that dictate a low-complexity software
implementation with near maximum-likelihood performance. The upper bounds of
decoding complexity of both the MLSDAs with and without early elimination are
subsequently derived by utilizing the Berry-Esseen inequality. Both the upper bound and
the simulated complexity indicate that the average decoding complexity per output bit for
the MLSDA with early elimination is almost irrelevant to the memory order, as well as
the message length, for medium to high SNRs.

 v

誌 謝

首先要感謝指導教授陳伯寧老師及韓永祥老師。由於兩位多年來的悉心教

誨，使得我能完成這篇論文。感謝兩位適時指導我研究方向，指正我研究路上的

錯誤、以及讓我學習到出色的研究所需要的嚴謹態度。

接下來感謝金湖幼稚園、柏村國小、金湖國小、金城國中、金門高中、清華

電機系、清華電機研究所一路所遇到的所有師長。感謝大家在我求學路上的教導

及照顧，為我取到博士學位奠定穩固的基礎。

再來感謝家人一路的付出及關懷。沒有你們的支持和鼓勵，我無法堅持到現

在完成學業。願全家人能共享這份榮耀。

最後感謝工業技術研究院、凌陽科技股份有限公司、凌陽電通科技股份有限

公司一路上對我研究的支持。

Contents

Abstract i

Contents vi

1 Introduction 1

2 Convolutional Codes, Channel Models and Sequential Decoding algorithms 6

2.1 Convolutional code and its graphical representation 6

2.2 Channel models for hard-decision and soft-decision decoders 14

2.3 Sequential decoding of convolutional codes 17

3 MLSDA and the Proposed Early Elimination Scheme 20

4 Analysis of the Window Size for Negligible Performance Degradation over

BSC Channels 27

4.1 Random Coding Analysis of the Path Truncation Window in Viterbi Decoder 27

4.2 Sufficient Large Window Size for the MLSDA 31

4.3 Numerical and Simulation Results . 36

vi

5 Analysis of the Window Size with Negligible Performance Degradation

over AWGN Channels 39

5.1 Block Error Rate Analysis for Finite-Length Convolutional Codes with ML

Decoder . 40

5.2 Moment Generating Function Bound of Additional Error Due to Early Elim-

ination . 42

5.3 Numerical and Simulation Results . 47

6 Analysis of the Computational Efforts of MLSDA and MLSDA with Early

Elimination 54

6.1 Berry-Esseen Theorem and Probability Bound 54

6.2 Computation Complexity for MLSDA . 64

6.3 Computation Complexity for MLSDA with Early Elimination 68

6.4 Numerical and Simulation Results . 73

7 Concluding Remarks and Future Work 77

Bibliography 78

vii

List of Figures

2.1 Encoder for the binary (2, 1, 2) convolutional code with generators g1 = 7

(octal) and g2 = 5 (octal), where gi is the generator polynomial characterizing

the ith output. 7

2.2 Encoder for the binary (3, 2, 2) systematic convolutional code with generators

g
(1)
1 = 4 (octal), g

(2)
1 = 0 (octal), g

(1)
2 = 0 (octal), g

(2)
2 = 4 (octal), g

(1)
3 = 2

(octal) and g
(2)
3 = 3 (octal), where g

(j)
i is the generator polynomial character-

izing the ith output according to the jth input. The dashed box is redundant

and can actually be removed from this encoder; its presence here is only to

help demonstrating the derivation of generator polynomials. Thus as far as

the number of stages of the jth shift register is concerned, K1 = 1 and K2 = 2. 8

2.3 Code tree for the binary (2, 1, 2) convolutional code in Fig. 2.1 with single

input sequence of length 5. Each branch is labeled by its respective “input

bit/output code bits”. The code path indicated by the thick line is labeled

in sequence by code bits 11, 01, 10, 01, 00, 10 and 11, and its corresponding

codeword is v = (11 01 10 01 00 10 11). 12

2.4 Trellis for a (3, 1, 2) binary convolutional code with information length L = 5. In

this case, the code rate R = 1/3 and the codeword length N = 3(5 + 2) = 21. The

code path indicated by the thick line is labeled by 111, 010, 001, 110, 100, 101 and

011, thus its corresponding codeword is v = (111010001110100101011). 13

viii

3.1 Bit error rates of the MLSDA for (2, 1, 6) and (2, 1, 10) convolutional codes

with L = 100. 22

3.2 Average decoding complexities of the MLSDA for (2, 1, 6) and (2, 1, 10) con-

volutional codes with L = 100. 23

3.3 Average decoding complexity versus information length for the MLSDA ap-

plied to the (2, 1, 10) convolutional code. 24

3.4 Early elimination window Δ in the trellis-based MLSDA. 25

4.1 Single-input n-output encoder model considered in [36]. All elements are in GF(q),

where q is either a prime or a power of a prime. 28

4.2 Exponent lower bound Er(R) of the additional error due to path truncation and

exponent Ec(R) of the maximum-likelihood decoding error for time-varying convo-

lutional codes (without path truncation) under the BSC with crossover probability

0.4. 30

4.3 Exponent lower bound Eel(R) of the additional error due to early elimination and

exponent Ec(R) of the maximum-likelihood decoding error for time-varying convo-

lutional codes (without early elimination) under the BSC with crossover probability

0.045. 37

4.4 Exponent lower bound Eel(R) of the additional error due to early elimination and

exponent Ec(R) of the maximum-likelihood decoding error for time-varying convo-

lutional codes (without early elimination) under the BSC with crossover probability

0.095. 37

ix

4.5 Performance for (2,1,12) convolutional codes for maximum-likelihood (ML) decoder,

stack algorithm with Fano metric, and MLSDA with early elimination window

Δ = 30 under BSC. The generator polynomial of the code is [42554 77304] in octal.

The message length L = 500. 38

4.6 Performance for (3,1,8) convolutional codes for maximum-likelihood (ML) decoder,

stack algorithm with Fano metric, and MLSDA with early elimination window

Δ = 11 under BSC. The generator polynomial of the code is [557 663 711] in octal.

The message length L = 500. 38

5.1 Block error rate upper bound (BLER UB) given by (5.2) and simulated BLER for

(2, 1, 6) convolutional code under AWGN channels. 41

5.2 Block error rate upper bound (BLER UB) given by (5.2) and simulated BLER for

(2, 1, 10) convolutional code under AWGN channels. 42

5.3 Block error rate upper bounds for (2, 1, 6) convolutional codes with L = 200. . . . 48

5.4 Block error rate upper bound for (2, 1, 8) convolutional codes with L = 200. . . . 49

5.5 Block error rate upper bounds for (2, 1, 10) convolutional codes with L = 200. . . 49

5.6 Block error rate upper bounds for (2, 1, 12) convolutional codes with L = 200. . . 50

5.7 Block error rate upper bounds for (3, 1, 8) convolutional codes with L = 200. . . . 50

5.8 Simulated block error rates for (2, 1, 6) convolutional codes with L = 200. 51

5.9 Simulated block error rates for (2, 1, 8) convolutional codes with L = 200. 51

5.10 Simulated block error rates for (2, 1, 10) convolutional codes for L = 200. 52

5.11 Simulated block error rates for (2, 1, 12) convolutional codes for L = 200. 52

x

6.1 Ãn−d(λ) for fixed d/n = 0.2 with respect to different γ. Notation “1(0)”

represents that the y-tic is either 1 (for the curve below) or 0 (for the curve

above). 64

6.2 Ãn−d(λ) for fixed γ = −3dB with respect to different d/n ratios. Notation

“1(0)” represents that the y-tic is either 1 (for the curve below) or 0 (for the

curve above). 65

6.3 Exemplified trellis diagram for the MLSDA with early elimination. 69

6.4 Example that the first extended path has a larger metric, when it is compared with

the all-zero path for the MLSDA with early elimination. 70

6.5 Decoding complexity upper bounds and simulations for (2,1,10) convolutional codes.

The message length L = 100. 75

6.6 Upper bounds and simulation results of the average decoding complexity per infor-

mation bit versus message length L for (2,1,10) convolutional codes at SNR = 3.5

dB. 75

6.7 Simulation results of the average decoding complexity per information bit versus the

memory order m. The message length L = 100. The chosen Δ = 10, 15, 20, 25, 30

for m = 2, 4, 6, 8, 10. 76

xi

Chapter 1

Introduction

The convolutional code, as invented by Elias [5] in 1955, is perhaps the most famous error cor-

recting code in the history of communication industry. Right after its invention, Wozencraft

and Reiffen [39] proposed a sequential decoding algorithm to effectively decode convolutional

codes with large constraint lengths. Thereafter, Fano [6] developed the sequential decod-

ing algorithm with extreme efficiency. These works further inspired Zigangirov [40], and

independently, Jelinek [21] for the invention and development of the stack algorithm.

Unfortunately, the sequential decoding algorithm has received little attention in the past

30 years due to its sub-optimum performance and lack of efficient and cost-effective hardware

implementation. It is however specially suitable for the decoding of convolutional codes with

large memory order because its decoding complexity is irrelevant to the code constraint

length. For this reason, the sequential decoding algorithm has recently been proposed to be

used in the decoding of the so-called “super-code” that considers the joint effect of multi-path

channels and convolutional codes [19].

Another commonly used decoding algorithm for convolutional codes is the Viterbi algo-

rithm. It operates on a convolutional code trellis, and has been shown to be a maximum-

likelihood decoder [25]. Since its decoding complexity grows exponentially with the code

1

constraint length, the Viterbi algorithm is usually applied only for convolutional codes with

short constraint lengths.

In 2002, a variant of the sequential decoding algorithm has been established. The new

variant uses a novel metric derived based on the Wagner rule, and was proved to result

in maximum-likelihood performance [17]. The new sequential-type decoding algorithm was

therefore termed the maximum-likelihood sequential decoding algorithm (MLSDA). By sim-

ulations, the authors in [17] observed that from pure software implementation standpoint,

the average decoding complexity of the MLSDA is in general considerably smaller than the

Viterbi algorithm when the signal-to-noise ratio (SNR) of the additive white Gaussian noise

(AWGN) channel is larger than 2 dB.

When the information sequence is long, path truncation was suggested for a practical

implementation of the Viterbi decoder [25]. Instead of keeping all trellis branches of the

survivor paths in the decoder memory, only a certain number of the most recent trellis

branches is retained, and a decision is forced on the oldest trellis branch whenever a new

data arrives in the decoder. In literature, three strategies have been proposed on the forceful

decision: (1) majority-vote strategy that traces back from all states, and outputs the decision

that occurs most often; (2) best state strategy that only traces back from the state with the

best metric, and outputs the information bits corresponding to the path being traced; (3)

random state strategy that randomly traces back from one state, and outputs the information

bits corresponding to the path being traced. Although none of the three forceful strategies

guarantees maximum-likelihood, their performance degradation can be made negligible as

long as the traceback window or truncation window is sufficiently large.

In [9], Forney proved by random coding argument that a truncation window of 5.8-fold

of the code constraint length suffices to provide negligible performance degradation for the

best state strategy. Hemmati and Costello [20] later derived an upper performance bound

2

as a function of the truncation window for a specific convolutional encoder, and obtained

a similar conclusion for the best state strategy. McEliece and Onyszchuk [28] studied the

tradeoff between length of the truncation window and performance loss for the random state

strategy, and concluded that the truncation window for the random state strategy should be

about twice as large as that for the best state strategy.

Similar to the Viterbi algorithm, the decoding burden of the sequential decoding algo-

rithm, both in memory consumption and in computational complexity, grows as the length

of the information sequence increases. Yet, in order to compensate the SNR loss due to the

additional zeros at the end of the information sequence, a long information sequence is often

preferred in practice. One solution to reduce the decoding burden as a result of a practi-

cally long information sequence is to introduce the path truncation concept of the Viterbi

algorithm to the sequential decoding algorithm. As an example, Zigangirov considered the

situation, in which the decoder traces back the top path in stack to force the decisions of the

symbols at those levels prior to a backsearch limit, and derived an error probability upper

bound for the sequential decoding with backsearch limit [41]. In case the channel critical

rate is smaller than (κ − 1)/κ of the computational cutoff rate, where κ is the ratio of the

backsearch limit against code constraint length, Zigangirov’s bound was shown to reduce

to the Yudkin-Viterbi bound [11] for infinite backsearch limit at low to medium rates, and

coincide with the random coding bound at high rate [41].

In this dissertation, an alternative approach to lower the decoding complexity of the

new variant of the sequential decoding algorithm, i.e., the MLSDA, is examined. Instead of

tracing back the top path in stack to force the decision of the symbols beyond the backsearch

limit, we propose to directly eliminate the top path whose end node is Δ-level-prior to the

farthest node among all that have been expanded thus far by the sequential search, which is

so named the early elimination.

3

In the analysis of sufficiently large Δ such that the performance degradation is negligible,

two attempts based on different techniques are made. The first one follows similarly the

random coding argument used by Forney [9], while the second one elaborates the code

generator polynomial specifically for the convolutional code adopted. The random coding

argument then indicates that under binary symmetric channels (BSCs), the required early

elimination window for negligible performance degradation is just 2.2-fold of the constraint

length for rate one-half convolutional codes, and for rate one-third convolutional codes, the

required early-elimination window even reduces to 1.2-fold of the constraint length. With the

knowledge of code generator polynomial, additional error rate due to early elimination can

be formulated under additive white Gaussian noise (AWGN) channels, which is accordingly

used to determine the sufficient large early elimination window for near optimal performance.

Simulations are henceforth performed, and confirm the accuracy of these analytical results.

As a consequence of small early-elimination window required for near maximum-likelihood

performance, the MLSDA with early-elimination modification rules out considerable compu-

tational burden, as well as memory requirement, by directly eliminating a large number of

the top paths. It can also be implemented together with the backsearch scheme to provide

timely decision of fixed delay to further reduce the decoding complexity. This suggests the

potential and suitability of the MLSDA with early elimination for applications that dictate

a low-complexity software implementation with near maximum-likelihood performance.

In the analysis of the decoding complexity of the MLSDA, as well as the complexity

reduction due to early elimination, upper bounds that utilize the Berry-Esseen inequality

[7, Sec. XVI. 5] are established. Both the analytical and simulation results substantiate

that the early elimination modification can significantly reduce the decoding computational

complexity. Also shown from these results is that the average decoding complexity per

information bit for the MLSDA with early elimination does not grow with the message

4

length, which makes it specially suitable for the timely decoding of codes with long message

lengths.

The rest of the dissertation is organized as follows. The channel model, convolutional

coding, and the conventional sequential decoding algorithm as well as the Fano metric are

briefed in Section 2. The MLSDA algorithm and its variation with early elimination are

presented in Section 3. The analyses of the sufficient early elimination window for near-

maximum-likelihood performance under BSC and AWGN channels are given in Sections 4

and 5, respectively. Complexity upper bounds for both the MLSDAs with and without early

elimination scheme are presented in Section 6. The concluding remarks and future work are

summarized in Section 7.

5

Chapter 2

Convolutional Codes, Channel Models
and Sequential Decoding algorithms

In this chapter, the convolutional coding and channel model considered are introduced in

Sections 2.1 and 2.2, respectively. Then, the conventional decoding algorithm as well as the

Fano metric is briefed in Section 2.3.

2.1 Convolutional code and its graphical representa-

tion

A binary convolutional encoder is conveniently structured as a mechanism with shift registers

and modulo-2 adders, where the encoder output bits are given by modulo-2 additions of

selective shift register contents and input bits at present. Let C∼ denote a binary (n, k,m)

convolutional code, in which the encoder outputs a block of n bits whenever a block of k

information bits are inputted. The value m designates the maximum number of previous

k-bit blocks that have to be memorized in the encoder (i.e., if the number of stages of the

jth shift register is Kj, then m = max1≤j≤k Kj). The initial values of shift registers are all

zeros,1 and the current n output bits are linear combination of the present k input bits and

1One exception is the tail-biting convolutional code

6

the previous m × k input bits. In this work, we assume that the input sequence contains

k×L bits that come from k input sequences, each of length L bits. In addition, m zeros will

be attached at the end of each input sequence in order to reset the encoder shift registers.

Consequently, these k(L + m) input bits jointly induce n(L + m) output bits.

�

� � �� � �
����������

����������
�

�

�

⊕

⊕

�

�

�	
	

	
	

u = (11101)

v1 = (1010011)

v2 = (1101001)

v = (11 01 10 01 00 10 11)

Figure 2.1: Encoder for the binary (2, 1, 2) convolutional code with generators g1 = 7 (octal)
and g2 = 5 (octal), where gi is the generator polynomial characterizing the ith output.

Figures 2.1 and 2.2 exemplify the encoders of binary (2, 1, 2) and (3, 2, 2) convolutional

codes, respectively. As illustrated in Fig. 2.1, the encoder of the (2, 1, 2) convolutional code

emits two output sequences,

v1 = (v1,0, v1,1, v1,2, . . . , v1,6) = (1010011)

and

v2 = (v2,0, v2,1, v2,2, . . . , v2,6) = (1101001)

due to the single input sequence u = (u0, u1, u2, u3, u4) = (11101) of length L = 5, where u0

is fed in the encoder first. The encoder then interleaves v1 and v2 to yield the codeword

v = (v1,0, v2,0, v1,1, v2,1, . . . , v1,6, v2,6) = (11 01 10 01 00 10 11)

of which the length is 2(5 + 2) = 14. On the other hand, the encoder of the (3, 2, 2)

7

�� � �

��� � �

�

�
�
��

��

�

⊕�

�
�

�

�
��� �u2 = (11)

u1 = (10)

u = (11 01)

v1 = (1000)
v2 = (1100)

v3 = (0001)

v = (110 010 000 001)

Figure 2.2: Encoder for the binary (3, 2, 2) systematic convolutional code with generators

g
(1)
1 = 4 (octal), g

(2)
1 = 0 (octal), g

(1)
2 = 0 (octal), g

(2)
2 = 4 (octal), g

(1)
3 = 2 (octal) and g

(2)
3 = 3

(octal), where g
(j)
i is the generator polynomial characterizing the ith output according to the

jth input. The dashed box is redundant and can actually be removed from this encoder; its
presence here is only to help demonstrating the derivation of generator polynomials. Thus
as far as the number of stages of the jth shift register is concerned, K1 = 1 and K2 = 2.

convolutional code in Fig. 2.2 generates the output sequences of

v1 = (v1,0, v1,1, v1,2, v1,3) = (1000),

v2 = (v2,0, v2,1, v2,2, v2,3) = (1100)

and

v3 = (v3,0, v3,1, v3,2, v3,3) = (0001)

due to the two input sequences u1 = (u1,0, u1,1) = (10) and u2 = (u2,0, u2,1) = (11) of length

L = 2, which in turn generates the interleaved output sequence

v = (v1,0, v2,0, v3,0, v1,1, v2,1, v3,1, v1,2, v2,2, v3,2, v1,3, v2,3, v3,3) = (110 010 000 001)

of length 3(2 + 2) = 12. In terminology, the interleaved output v is called the convolutional

codeword corresponding to the combined input sequence u.

8

One representation that characterizes the relation between the encoder inputs and en-

coder outputs is the generator polynomials. For example, g1(x) = 1+x+x2 and g2(x) = 1+x2

can be used to identify v1 and v2 induced by u in Fig. 2.1, where the appearance of

xi indicates that a physical connection is applied in Fig. 2.1 at the (i + 1)th dot po-

sition, counted from the left. To be specific, putting u and vi in polynomial form as

u(x) = u0+u1x+u2x
2+· · · and vi(x) = vi,0+vi,1x+vi,2x

2+· · · yields that vi(x) = u(x)gi(x)

for i = 1, 2, where addition of coefficients is based on modulo-2 operation.

Similarly, the relation between the inputs and the outputs can also be characterized by

matrix operation. For example, the relation in Fig. 2.2 can be formulated as

[
v1(x) v2(x) v3(x)

]
=
[
u1(x) u2(x)

] [g
(1)
1 (x) g

(1)
2 (x) g

(1)
3 (x)

g
(2)
1 (x) g

(2)
2 (x) g

(2)
3 (x)

]
,

where vi(x) = vi,0 + vi,1x + vi,2x
2 + · · · and uj(x) = uj,0 + uj,1x + uj,2x

2 + · · · define the

ith output sequence and the jth input sequence, respectively, and the generator polynomial

g
(j)
i (x) characterizes the relation between the ith output and the jth input sequences. For

simplicity, generator polynomials are sometimes abbreviated by their coefficients in octal

number format. Continuing the example in Fig. 2.1, the generator polynomials in octal

format are g1 = 7 (octal) and g2 = 5 (octal).

A finite-length (n, k,m) convolutional code can be transformed to an equivalent linear

block code with effective code rate2 R effective = kL/[n(L + m)], where L is the length of the

information input sequences. Usually, the code rate of the (n, k,m) convolutional code is

referred to as R = k/n, which can be viewed as the effective code rate at L approaching

infinity.

The constraint length of an (n, k,m) convolutional code has two different definitions in

literature: nA = m+1 [38] and nA = n(m+1) [25]. In this dissertation, the former definition

2The effective code rate is defined as the average number of input bits carried by an output bit [25].

9

is adopted, because it is more extensively used in industrial publications.

Let v(a,b) = (va, va+1, . . . , vb) denote a portion of codeword v, and abbreviate v(0,b) by

v(b). Define the Hamming distance between the first rn bits of codewords v and z by:

dH

(
v(rn−1),z(rn−1)

)
=

rn−1∑
i=0

vi ⊕ zi,

where “⊕” denotes modulo-2 addition. The Hamming weight of the first rn bits of codeword

v thus can be represented by dH(v(rn−1),0(rn−1)), where 0 represents the all-zero codeword.

Furthermore, define the column distance function (CDF) dc(r) of a binary (n, k,m) con-

volutional code as the minimum Hamming distance between the first rn bits of any two

codewords whose first n bits are distinct, i.e.,

dc(r) = min
{
dH(v(rn−1),z(rn−1)) : v(n−1) �= z(n−1) for v,z ∈ C∼} ,

where C∼ is the set of all codewords. Clearly, dc(r) is nondecreasing in r. Two cases of CDFs

are of specific interest: r = m + 1 and r = ∞. In r = ∞ case, the Hamming distance

should be calculated with infinite-length input sequences. However, dc(r) for an (n, k,m)

convolutional code reaches its largest value dc(∞) when r is a little beyond 5 × m in most

cases. This property facilitates the determination of dc(∞). The value dc(∞), or dfree in

general, is called the free distance, whereas dc(m + 1) is called the minimum distance of the

convolutional code.

The operational meanings of the minimum distance, the free distance and the CDF of a

convolutional code are as follows. When a maximum-likelihood decoder is employed onto a

received codeword with sufficiently large length, the error correcting performance is mainly

characterized by dfree [36]. On the other hand, if a decoder figures the transmitted bits only

based on the first n(m + 1) received bits (as in, for example, the majority-logic decoding

[26]), dc(m + 1) can be used instead to characterize the error correcting capability. Finally,

the column distance function characterizes the decoding computational complexity, defined

10

as the number of metric computations performed for the sequential decoding algorithm.

Usually, the sequential decoding algorithm requires a rapid initial growth of CDF in order

to have a small decoding complexity.

Next, we introduce two graphical representations, code tree and trellis, of convolutional

codewords. A code tree of a binary (n, k,m) convolutional code presents every codeword as

a path on a tree. For input sequences of length L bits, the code tree consists of (L + m + 1)

levels. The single leftmost node at level 0 is called the origin node. At the first L levels,

there are exactly 2k branches leaving each node. For those nodes located at levels L through

(L + m), only one branch remains. The 2kL rightmost nodes at level (L + m) are called

the terminal nodes. As expected, a path from the single origin node to a terminal node

represents a codeword; therefore, it is named the code path corresponding to the codeword.

Figure 2.3 illustrates the code tree for the encoder in Fig. 2.1 with a single input sequence

of length 5.

In contrast to a code tree, a code trellis as termed by Forney [8] is a structure obtained

from a code tree by merging those nodes in the same state. The state associated with a node

is determined by the associated shift-register contents. For a binary (n, k,m) convolutional

code, the number of states at levels m through L is 2K , where K =
∑k

j=1 Kj and Kj is the

length of the jth shift register in the encoder; hence, there are 2K nodes on these levels.

Due to node merging, only one terminal node remains in a trellis. Analogous to a code tree,

a path from the single origin node to the single terminal node in a trellis also mirrors a

codeword. Figure 2.4 exemplifies the trellis of the (3, 1, 2) convolutional code.

11

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

level 0 1 2 3 4 5 6 7

0/00

1/11

0/00

1/11

0/10

1/01

0/00

1/11

0/10

1/01

0/11

1/00

0/01

1/10

0/00

1/11

0/10

1/01

0/11

1/00

0/01

1/10

0/00

1/11

0/10

1/01

0/11

1/00

0/01

1/10

0/00

1/11

0/10

1/01

0/11

1/00

0/01

1/10

0/00

1/11

0/10

1/01

0/11

1/00

0/01

1/10

0/00

1/11

0/10

1/01

0/11

1/00

0/01

1/10

0/00

1/11

0/10

1/01

0/11

1/00

0/01

1/10

0/00

0/10

0/11

0/01

0/00

0/10

0/11

0/01

0/00

0/10

0/11

0/01

0/00

0/10

0/11

0/01

0/00

0/10

0/11

0/01

0/00

0/10

0/11

0/01

0/00

0/10

0/11

0/01

0/00

0/10

0/11

0/01

0/00

0/11

0/00

0/11

0/00

0/11

0/00

0/11

0/00

0/11

0/00

0/11

0/00

0/11

0/00

0/11

0/00

0/11

0/00

0/11

0/00

0/11

0/00

0/11

0/00

0/11

0/00

0/11

0/00

0/11

0/00

0/11

Figure 2.3: Code tree for the binary (2, 1, 2) convolutional code in Fig. 2.1 with single input
sequence of length 5. Each branch is labeled by its respective “input bit/output code bits”.
The code path indicated by the thick line is labeled in sequence by code bits 11, 01, 10, 01,
00, 10 and 11, and its corresponding codeword is v = (11 01 10 01 00 10 11).

12

� � � � � � � �s0 s0 s0 s0 s0 s0 s0 s0

� � � � �s1 s1 s1 s1 s1

� � � � �s2 s2 s2 s2 s2

� � � �s3 s3 s3 s3

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
��

�
�

�

�
�

�
�

�
�

�
�

Original
node

Terminal
node

level � 0 1 2 3 4 5 6 7

000 000 000 000 000 000 000

111

111 111 111 111

101 101 101 101 101

010 010 010 010

001 001 001

110 110 110 110

100 100 100

011 011 011 011 011

�
�
�
�
�
�
�
�
�

�
�

�
� �

�
�
�
�
�
�
�
� �

�
�

� �
�

�
�

�
�

�
�

Figure 2.4: Trellis for a (3, 1, 2) binary convolutional code with information length L = 5. In this
case, the code rate R = 1/3 and the codeword length N = 3(5 + 2) = 21. The code path indicated
by the thick line is labeled by 111, 010, 001, 110, 100, 101 and 011, thus its corresponding codeword
is v = (111010001110100101011).

13

2.2 Channel models for hard-decision and soft-decision

decoders

When the n(L + m) convolutional code bits, encoded from kL input bits, are modulated

into respective waveform for transmission over a physical medium, the received waveform is

garbled by attenuation, distortion, interference, noise, etc. The demodulator then transforms

the received waveform into discrete signals for use by the decoder to determine the original

transmitted sequences. If the discrete signals are of two values, usually denoted by {0, 1},
then the demodulator is termed a hard-decision demodulator. If the demodulator passes

discrete-in-time but continuous-in-value analog outputs to the decoder, then it is classified

as a soft-decision demodulator. Terminologically, if a soft-decision demodulator is employed,

then the subsequent decoder is also classified as a soft-decision decoder. In situation in

which the decoder receives inputs from a hard-decision demodulator, the decoder is called a

hard-decision decoder. In general, the soft-decision decoder provides better error correcting

performance than the hard-decision decoder.

The decoder should determine the original information sequences based on the n(L+m)

demodulator decision outputs according to some criterion. The criterion that most frequently

applies is the maximum-likelihood decoding (MLD) rule. It is well-known that the MLD

minimizes the codeword error probability under the premiss that the transmitted codewords

are equiprobable.

In this dissertation, we focus on two typical channel types — the binary symmetric chan-

nel (BSC) and the additive white Gaussian noise (AWGN) channel. The former is a typical

channel model for the performance evaluation of hard-decision decoders, while the latter is

widely used in examining the error rate of soft-decision decoders. It should be mentioned that

for a coding system, a channel is simply a signal passage that aggregates all the intermediate

effects onto the signal, including modulation, upconversion, signal distortion, downconver-

14

sion, demodulation, thermal noise and others. The demodulator in concept incorporates

these effects into a widely adopted additive channel model as

r = s + n,

where r is the demodulator output, s is the transmitted signal, and n represents the aggre-

gated signal distortion, simply termed noise.

The aggregated signal distortions for every transmitted and received bits are further

assumed to be independent and identically distributed with common marginal distribution,

which is termed memoryless. The extension to multiple independent channel usages is given

by

rj = sj + nj,

for 0 ≤ j ≤ N − 1, where all {nj}N−1
j=0 share the same probability distribution. In situation

where the power spectrum of the noise samples is a constant, which can be interpreted as the

noise contributing equal power at all frequencies, the noise is dubbed white. Therefore, the

AWGN channel for a time-discrete coding system specifically indicates a memoryless noise

sequence with a Gaussian distributed marginal.

As it turns out, the decoder inputs r0, r1, . . . , rN−1 are independent and Gaussian dis-

tributed with means s0, s1, . . . , sN−1, respectively, and equal variance N0/2, where N0/2 is

the doubled-sided noise power per hertz. Assuming an antipodal transmission and equal prior

on cj ∈ {0, 1} gives

sj = sj(cj) = (−1)cj
√

E,

where cj ∈ {0, 1} is the jth code bit, and

E = E[s2
j] =

1

2

(√
E
)2

+
1

2

(
−
√

E
)2

is the average energy for single code bit transmission.

15

An index that guides the error performance for AWGN channels is the signal-to-noise

ratio (SNR). For the time-discrete system considered, it is defined as the average signal

energy E divided by N0. Notably, the SNR ratio is invariable with respect to scaling of the

demodulator output. In other words, the SNR ratio remains unchanged by scaling rj by a

multiplicative factor λ, since

λ · rj = λ · (−1)cj
√

E + λ · nj.

Accordingly, the performance of the soft-decision decoding algorithm under AWGN channels

is often illustrated by error rate against SNR. In order to account for the code redundancy

for different code rates, the code bit energy E is further transformed to Eb, the equivalent

average transmission energy per information bit. Their relation can be easily characterized

by Eb = E/R effective = E × [n(L + m)/(kL)] as the energy of n(L + m) code bits should be

equally distributed to kL information bits. Thus, a new index, denoted by Eb/N0, is used

instead of SNR= E/N0 in plotting the performance curves.

The channel model can be further simplified to binary channel input and binary channel

output, for which the noise sample n and the transmitted signal s are both elements of

{0, 1}. Their modulo-2 addition yields the hard-decision demodulation output r. The binary

channel statistics can be defined using two crossover probabilities: p1 = Pr(r = 1|s = 0)

and p2 = Pr(r = 0|s = 1). In this dissertation, we focus on the case that two crossover

probabilities are equal p1 = p2 = p. The binary channel is therefore symmetric, and is called

the binary symmetric channel. The binary symmetric channel can be treated as a quantized

simplification of the AWGN channel. Hence, the crossover probability p can be derived from

rj = (−1)cj
√

E + nj

as

p =
1

2
erfc

(√
E

N0

)
,

16

where

erfc(x) =
2√
π

∫ ∞

x

e−x2

dx

is the complementary error function. This convention is adopted here in presenting the

performance figures for BSCs.

Throughout the dissertation, as there exists a one-to-one correspondence between the

transmitted signals s = (s0, s1, . . . , sN−1) and the code words c = (c0, c1, . . . , cN−1),

Pr(r|c) =
N−1∏
j=0

Pr(rj|cj)

and

Pr(r|s) =
N−1∏
j=0

Pr(rj|sj)

will be used interchangeably to represent the channel statistics of receiving r given that s

(equivalently, c) is transmitted.

2.3 Sequential decoding of convolutional codes

Since its discovery in 1963 [6], the Fano metric has become the most popular path metric in

sequential decoding. The Fano metric was originally discovered through massive simulations,

and was first used by Fano in his sequential decoding algorithm on code trees [6]. For any

path v(�n−1) that ends at level � on a code tree, the Fano metric is defined as:

M
(
v(�n−1)|r(�n−1)

)
=

�n−1∑
j=0

M(vj|rj),

where r = (r0, r1, . . . , rN−1) is the received vector, and the bit metric is defined as

M(vj|rj) = log2

(
Pr(rj|vj)

Pr(rj)

)
− R.

In the above bit metric formula, R = k/n is the convolutional code rate, and the calculation

of Pr(rj) follows the convention that the code bits are transmitted with equal probability,

17

i.e.,

Pr(rj) =
∑

vj∈{0,1}
Pr(vj) Pr(rj|vj) =

1

2
Pr(rj|vj = 0) +

1

2
Pr(rj|vj = 1).

For example, for BSCs with crossover probability p, where 0 < p < 1/2, the Fano metric

for path v(�n−1) is given by:

M(v(�n−1)|r(�n−1)) =
�n−1∑
j=0

log2 Pr(rj|vj) + �n(1 − R), (2.1)

where

log2 Pr(rj|vj) =

{
log2(1 − p), for rj = vj;
log2(p), for rj �= vj.

In terms of the Hamming distance, (2.1) can be re-written as:

M
(
v(�n−1)|r(�n−1)

)
= −α · dH(r(�n−1),v(�n−1)) + β · �, (2.2)

where α = − log2[p/(1−p)] > 0, and β = n[1−R+log2(1−p)]. It can be easily observed from

(2.2) that a larger Hamming distance between the path labels and the respective portion of

the received vector results in a smaller path metric. This property guarantees that when the

received vector r is exactly the transmitted codeword, and R < 1+ log2(1−p) (equivalently,

β > 0), the path metric increases along the correct code path, and the path metric along

any incorrect path is smaller than that of the equally long correct path.3 Such a property is

essential for a metric to work properly with sequential decoding.

The ZJ algorithm was discovered by Zigangirov [40] and later independently by Jelinek

[21] to search over a code tree for the optimal codeword based on the Fano metric. The

algorithm is also called the stack algorithm because a stack is required in its implementation.

For completeness, the stack algorithm [25] is quoted below.

3 Without the assumption of error free reception, the code rate margin, below which the Fano-metric-
based sequential decoding performs well, is the channel capacity. For BSCs with crossover probability P , the
channel capacity is equal to C = 1+ p log2(p)+ (1− p) log2(1− p). The condition that R < 1+ log2(1− p) =
C + p log2[(1 − p)/p], derived from β > 0, can only justify the subsequent argument under the special case
of error free reception. Channel capacity as a well-performed code rate margin for sequential decoding is
beyond the scope of this dissertation. Interested readers can refer to [4].

18

<The Stack (ZJ) Algorithm>

Step 1. Load the stack with the origin node in the tree, whose metric is taken to be zero.

Step 2. Compute the metrics of the successors of the top path in the stack.

Step 3. Delete the top path from the stack.

Step 4. Insert the new paths in the stack and rearrange the paths in the stack in order of

decreasing metric values.

Step 5. If the top path in the stack ends at a terminal node in the tree, the algorithm

stops. Otherwise, return to Step 2.

A major issue in the implementation of the stack algorithm is the efficient maintenance

of the stack. For example, the efficiency in the rearrangement of paths in the stack in Step

4 will greatly affect the time consumed in the sequential search.

Another issue that a practical implementation of the stack algorithm may encounter is

that the stack size is finite in practice, and therefore, may be insufficient to accommodate

the possible large number of paths examined during the search process. The situation is

usually addressed as stack overflow. A straightforward way to deal with the stack overflow

problem is to discard the paths with smaller metric values [25], since they are less likely to

be the optimal code path. The technical issue remained is the determination of the practical

stack size such that the performance degradation due to path discarding is within acceptable

region.

19

Chapter 3

MLSDA and the Proposed Early
Elimination Scheme

Assume that the binary codeword in a (N,K) linear block code C∼ is transmitted over a

binary-input time-discrete channel with channel output r � (r0, r1, . . . , rN−1). Define the

hard-decision sequence y � (y0, y1, . . . , yN−1) corresponding to r as:

yj �
{

1, if φj < 0;
0, otherwise,

where φj � log[Pr(rj|vj = 0)/ Pr(rj|vj = 1)], and Pr(rj|vj) is the channel transition proba-

bility of rj given vj. According to the Wagner rule, the maximum-likelihood decoding output

v̂ for received vector r is given by

v̂ = y ⊕ e∗, (3.1)

where “⊕” is the bit-wise exclusive-or operation, e∗ is the one with the smallest
∑N−1

j=0 ej|φj|
among all error patterns e ∈ {0, 1}N satisfying eH

T = yH
T , and H is the parity check matrix

of C∼. Here, superscript “T” is used to denote the matrix transpose operation. Recall that

a binary (n, k,m) convolutional code with input sequence of length L can be treated as a

(N,K) linear block code with N = n(L + m) and K = kL. Based on the observation in

(3.1), a new sequential-type decoder can be established by replacing the Fano metric in the

20

conventional sequential decoding algorithm by a metric defined as:

μ
(
x(�n−1)

)
�

�n−1∑
j=0

μ(xj), (3.2)

where x(�n−1) = (x0, x1, . . . , x�n−1) ∈ {0, 1}�n represents the label of a path ending at level �

in the (n, k,m) convolutional code tree, and μ(xj) � (yj ⊕ xj)|φj|. Since the new decoding

metric is nondecreasing along the code path, and since finding e∗ is equivalent to finding

the code path with the smallest metric in the code tree, it was proved in [17] that the new

sequential-type decoder can always locate the maximum-likelihood codeword through the

priority-first sequential codeword search. For this reason, the new sequential-type decoder

is named the maximum-likelihood sequential decoding algorithm (MLSDA) [17].

By adding a second stack, the MLSDA can be made to operate on a code trellis instead of

a code tree [17]. The two stacks used in the trellis-based MLSDA are referred to as the Open

Stack and the Closed Stack. The Open Stack contains all paths that end at the frontier part

of the trellis being thus far explored (cf. Fig. 3.4). The Open Stack functions similarly as the

single stack in the conventional sequential decoding algorithm. The Closed Stack stores the

information of the ending states and ending levels of the paths that had been the top paths

of the Open Stack. The Closed Stack is used to determine whether two paths intersect in

the code trellis during the sequential search. The trellis-based MLSDA [17] is quoted below

for completeness.

<Trellis-Based MLSDA>

Step 1. Load the Open Stack with the origin node whose metric is zero.

Step 2. Put into the Closed Stack both the state and the same level of the end node of

the top path in the Open Stack. Compute the path metric for each of the successor

paths of the top path in the Open Stack by adding the branch metric of the extended

branch to the path metric of the top path. Delete the top path from the Open Stack.

21

Step 3. Discard the successor paths in Step 2, which end at a node that has the same

state and level as any entry in the Closed Stack. If any successor path ends at the

same node as a path already in the Open Stack, eliminate the path with higher

path metric.1

Step 4. Insert the remaining successor paths into the Open Stack in order of ascending

path metrics. If two paths in the Open Stack have equal metric, sort them in order

of descending levels. If, in addition, they happen to end at the same level, sort

them randomly.

Step 5. If the top path in the Open Stack reaches the end of the convolutional code trellis,

the algorithm stops; otherwise go to Step 2.

2 2.5 3 3.5 4 4.5
10

−6

10
−5

10
−4

10
−3

10
−2

E
b
 / N

0

B
E

R

(2,1,6)
(2,1,10)

Figure 3.1: Bit error rates of the MLSDA for (2, 1, 6) and (2, 1, 10) convolutional codes with
L = 100.

1 For discrete channels, it may occur that the successor path not only ends at the same node as some
path already in the Open Stack but also has equal path metric to it. In such case, just randomly eliminate
one of them.

22

1 2 3 4 5 6 7
10

0

10
1

10
2

10
3

10
4

E
b
 / N

0

A
ve

ra
ge

 D
ec

od
in

g
C

om
pl

ex
ity

 P
er

 In
fo

rm
at

io
n

B
it

(2,1,10)
(2,1,6)

Figure 3.2: Average decoding complexities of the MLSDA for (2, 1, 6) and (2, 1, 10) convo-
lutional codes with L = 100.

We next show the simulation results of performance and average decoding complexity

for the MLSDA. The bit error rates of the MLSDA for (2, 1, 6) and (2, 1, 10) convolutional

codes are summarized in Fig. 3.1, while the decoding complexity as measured by the num-

ber of metric computations is depicted in Fig. 3.2. Notably, the computational efforts of

sequential-search decoding algorithms, including the MLSDA, are in fact determined not

only by the number of metrics computed but also by the cost of searching and inserting of

the stack elements. The latter cost however can be made of comparable order to the former

by adopting the double-ended heap (DEAP) [3] data structure in the stack implementation.2

This justifies the common usage of number of metric computations as the key determinant

of the algorithmic complexity of the sequential-search decoding algorithm.

2In practical decoder design, only stacks with finite size are available. When the stack is full, one common
strategy is to remove the bottom path, that is, the path with the worst path metric. A double ended heap
is thus useful in this regard because it can access the top path as well as the bottom path in case of stack
overflow. Throughout this dissertation, we assume an infinite stack size and hence, no stack overflow strategy
is required. However, we propose to use DEAP for future practical decoder implementation.

23

50 100 150 200 250 300 350
10

1

10
2

10
3

Message Length

A
ve

ra
ge

 D
ec

od
in

g
C

om
pl

ex
ity

 P
er

 In
fo

rm
at

io
n

B
it

(2,1,10) Codes, AWGN, E
b
/N

0
 = 3.5 dB

Figure 3.3: Average decoding complexity versus information length for the MLSDA applied
to the (2, 1, 10) convolutional code.

It can be observed from Fig. 3.2 that the average decoding complexities for the MLSDA

is high for low SNRs. An even more serious problem is that the average decoding complexity

per information bit grows as the information length increases as shown in Fig. 3.3. This

phenomenon restricts the usage of the MLSDA for long convolutional codes.

We therefore introduce the early elimination modification to alleviate the problem of

growing complexity with respect to the information length. The modification is based on the

following observation. Suppose that the path ending at node C in Fig. 3.4 is a portion of the

final code path to be located at the end of the sequential search, and suppose that the path

ending at node D happens to be the current top path. Then, expanding node D until all of its

offsprings finally have decoding metrics exceeding those of the successors of the path ending

at node C may consume considerable but unnecessary number of computational efforts. This

observation hints that by setting a proper level threshold Δ and directly eliminating the top

24

path whose level is no larger than (�max − Δ), where �max is the largest level for all nodes

that have been expanded thus far by the sequential search, the computational complexity of

the MLSDA may be reduced without sacrificing much of the performance.

Figure 3.4: Early elimination window Δ in the trellis-based MLSDA.

It should be mentioned that since the decoding metric is monotonically nondecreasing

along the path portion to be searched, the path that updates the current �max is always the

one with the smallest path metric among all paths ending at the same level [17]. In fact, this

is the key to ensure that for the sequential search using the maximum-likelihood metric in

(3.2), the first top path that reaches the last level of the code tree or code trellis is exactly

the maximum-likelihood code path.

Based on the above observation, we propose to set a level threshold Δ in the trellis-based

MLSDA, and directly eliminate the top path whose level is no larger than (�max − Δ). For

this modification, we only need to modify Step 2 in the trellis-based MLSDA as follows.

<Trellis-Based MLSDA with Early Elimination Modification>

25

Initialization. Set a level threshold Δ. Assign �max = 0.

Step 2′. Perform the following check before executing the original Step 2 in the trellis-

based MLSDA.

• If the top path in the Open Stack ends at a node whose level is no larger than

(�max−Δ), directly eliminate the top path, and go to Step 5; otherwise, update

�max if it is smaller than the ending level of the current top path.

The choice of Δ is apparently a tradeoff between complexity and bit error probability.

Intuitively, the smaller the Δ, the higher the possibility that the maximum-likelihood path

is early eliminated. From simulation results, we found that the performance degradation is

almost negligible simply for a small Δ. This encourages us to analyze the least value of Δ

to produce near maximum-likelihood performance as well as the complexity reduction due

to this early elimination modification.

26

Chapter 4

Analysis of the Window Size for
Negligible Performance Degradation
over BSC Channels

This chapter provides detailed derivation on the early elimination window that yields negligi-

ble performance degradation for binary symmetric channel (BSC) channels. As the random

coding analysis is the main technique used to analyze the window size for the MLSDA, we

will first review the random coding technique in the analysis of the truncation window size

in Viterbi decoders in Section 4.1. Then, the derivation of the early elimination window for

the MLSDA such that the performance degradation is negligible is presented in Section 4.2.

Numerical and simulation results will be given in Section 4.3.

4.1 Random Coding Analysis of the Path Truncation

Window in Viterbi Decoder

In [10], Gallager considered the discrete memoryless channel with input alphabet size I,

output alphabet size J and channel transition probability Pji, and presented the random

coding bound for the maximum-likelihood decoding error Pe of the (N,K) block code as:

Pe ≤ exp {−N [−ρR + E0(ρ,p)]}

27

for all 0 ≤ ρ ≤ 1, where R = log(IK)/N = (K/N) log(I) is the code rate measured in nats

per symbol, p = (p1, p2, · · · , pI) is the input distribution adopted for the random selection

of codewords, and

E0(ρ,p) � − log
J∑

j=1

(
I∑

i=1

piP
1/(1+ρ)
ji

)1+ρ

. (4.1)

Gallager’s result leads to the well-known random coding exponent:

Er(R) � max
0≤ρ≤1

max
p

[−ρR + E0(ρ,p)] = max
0≤ρ≤1

[−ρR + E0(ρ)],

where E0(ρ) � maxp E0(ρ,p) is the Gallager function [42]. Notably, the random coding

exponent is a lower bound of the channel reliability function E(R) � limN→∞−(1/N) log(Pe)

(provided the limit exists), and is tight for code rates above the cutoff rate.

Figure 4.1: Single-input n-output encoder model considered in [36]. All elements are in GF(q),
where q is either a prime or a power of a prime.

In [36], Viterbi applied similar random coding argument to the derivation of the decoding

error for time-varying convolutional codes. Specifically, he considered a single-input n-output

convolutional encoder with one (m+1)-stage shift register as shown in Fig. 4.1. The n inner

product computers may change with each new input symbol, and hence, a time-varying

code trellis is resulted. As all elements are assumed to be in GF(q), each input symbol will

induce q branches on the code trellis, and each branch is labelled by n channel symbols.

28

As a result of the attached m zeros at the end, the encoder will produce n(L + m) output

channel symbols in response to the input sequence of L symbols. Under the above system

setting, Viterbi showed that the maximum-likelihood decoding error Pe,c for time-varying

convolutional codes can be upper-bounded by:

Pe,c ≤ q − 1

1 − q−λ/R
exp[−n(m + 1)E0(ρ)] (4.2)

for all 0 ≤ ρ ≤ 1, where R � log(q)/n is the code rate in unit of nats per symbol, and

λ � E0(ρ) − ρR is a constant. Since λ is required to be positive, it can be concluded that:

lim inf
n→∞

−1

n
log Pe,c ≥ (m + 1)Ec(R),

where Ec(R) � max{ρ∈[0,1] : E0(ρ)>ρR} E0(ρ). For symmetric channels, E0(ρ) is an increasing

and concave function in ρ with E0(0) = 0; therefore, Ec(R) can be reduced to:

Ec(R) =

⎧⎨
⎩

R0, if 0 ≤ R < R0;
E0(ρ

∗), if R0 ≤ R < C;
0, if R ≥ C,

(4.3)

where R0 = E0(1) is the cutoff rate, C = E ′
0(0) is the channel capacity, and ρ∗ = ρ∗(R) is

the unique solution of E0(ρ) = ρR. It is also shown in the same work that Ec(R) is a tight

exponent for R ≥ R0.

In order to derive the path truncation window with near-optimal performance, Forney [9]

treated the truncated convolutional code as a block code, and upper-bounded the additional

decoding error Pe,T due to path truncation in the Viterbi decoder by means of Gallager’s

technique as:

Pe,T ≤ exp[−nτEr(R)], (4.4)

where τ is the truncation window size. Forney then noticed that as long as

lim inf
n→∞

−1

n
log Pe,T > lim sup

n→∞
−1

n
log Pe,c, (4.5)

29

the additional error Pe,T due to path truncation becomes exponentially negligible with respect

to Pe,c. For R ≥ R0, condition (4.5) reduces to

τEr(R) > (m + 1)Ec(R)

by inequality (4.4) and the tightness of Ec(R). A specific case is given in Fig. 4.2 in which the

binary symmetric channel (BSC) with crossover probability 0.4 gives that the path truncation

window at the cutoff rate R0 = 0.0146 bit/symbol must be larger than Ec(R0)/Er(R0) ≈
0.0146/0.0025 = 5.84-fold of the code constraint length. This number parallels the one

obtained under the very noisy channels, where 5.8-fold of the code constraint length is

suggested for the path truncation window at the cutoff rate [37].

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Rate (bit/symbol)

E
rr

or
 E

xp
on

en
t

Cross Over Probability 0.4, Capacity = 0.0290, Cutoff Rate 0.0146 bits/symbol

E
c
(R)

E
r
(R)

0.0146

0.0025

Figure 4.2: Exponent lower bound Er(R) of the additional error due to path truncation and
exponent Ec(R) of the maximum-likelihood decoding error for time-varying convolutional codes
(without path truncation) under the BSC with crossover probability 0.4.

30

4.2 Sufficient Large Window Size for the MLSDA

For simplicity, the analysis in this section is restricted to the simple BSC with crossover

probability ε. Extension analysis to other discrete channels can be likewise established.

Refer to Fig. 3.4 in our analysis below. Suppose that the path ending at node B at level

� is the current top path of the Open Stack, and let the current �max be updated due to

the expansion of node C. According to the merging operation at Step 3 of the trellis-based

MLSDA, any two paths that survive in the Open stack can be traced back to a common

node before which they shares common traces. Hence, we may assume that the path that

ends at node B and the path that updates the current �max have common traces before node

A, whose level, without loss of generality, can be assumed zero in the below analysis.

Observe that the current top path ending at node B is early-eliminated if, and only if,

node C is expanded earlier than node B, provided � ≤ �max−Δ. Since the decoding metric of

the MLSDA is nondecreasing along the path portion to be searched, that node C is expanded

prior to node B is equivalent to that

μ
(
x(�n−1)

) ≥ μ
(
x̃(�maxn−1)

)
, (4.6)

which in turn is equivalent to

(1 − ε)n(�max−�) · Pr
(
r(�n−1)

∣∣x(�n−1)

) ≤ Pr
(
r(�maxn−1)

∣∣ x̃(�maxn−1)

)
. (4.7)

The above statement can be proved as follows. For the BSC with crossover probability

0 < ε < 1/2,

φj � log
Pr(rj|vj = 0)

Pr(rj|vj = 1)
=

{
log[(1 − ε)/ε], if rj = 0;
log[ε/(1 − ε)], if rj = 1.

Hence,

rj = yj =

{
1, if φj < 0;
0, otherwise

,

31

and μ(xj) = (yj ⊕ xj)|φj| = (rj ⊕ xj) log[(1 − ε)/ε]. As a result, (4.6) is equivalent to

μ
(
x(�n−1)

) ≥ μ
(
x̃(�maxn−1)

)
⇔

�n−1∑
j=0

μ(xj) ≥
�maxn−1∑

j=0

μ(x̃j)

⇔
�n−1∑
j=0

(rj ⊕ xj) ≥
�maxn−1∑

j=0

(rj ⊕ x̃j)

⇔
�n−1∑
j=0

[(rj ⊕ x̃j) − (rj ⊕ xj)] +
�maxn−1∑

j=�n

(rj ⊕ x̃j) ≤ 0.

Similarly, (4.7) is equivalent to

(1 − ε)n(�max−�) Pr
(
r(�n−1)

∣∣x(�n−1)

) ≤ Pr
(
r(�maxn−1)

∣∣ x̃(�maxn−1)

)
⇔

�n−1∑
j=0

log Pr(rj|xj) + n(�max − �) log(1 − ε) ≤
�maxn−1∑

j=0

log Pr(rj|x̃j)

⇔
�n−1∑
j=0

[(1 − rj ⊕ xj) log(1 − ε) + (rj ⊕ xj) log(ε)] + n(�max − �) log(1 − ε)

≤
�maxn−1∑

j=0

[(1 − rj ⊕ x̃j) log(1 − ε) + (rj ⊕ x̃j) log(ε)]

⇔ log
(1 − ε)

ε

(
�n−1∑
j=0

[(rj ⊕ x̃j) − (rj ⊕ xj)] +
�maxn−1∑

j=�n

(rj ⊕ x̃j)

)
≤ 0

⇔
�n−1∑
j=0

[(rj ⊕ x̃j) − (rj ⊕ xj)] +
�maxn−1∑

j=�n

(rj ⊕ x̃j) ≤ 0.

Therefore, the desired equivalence of (4.6) and (4.7) is validated.

By noting that for the MLSDA, the path that updates the current �max is exactly the

one with the smallest path metric among all paths ending at the same level [17], condition

(4.7) can be equivalently re-written as:

(1 − ε)n(�max−�) · Pr
(
r(�n−1)

∣∣x(�n−1)

) ≤ max
x̃(�maxn−1)∈ C∼�max

Pr
(
r(�maxn−1)

∣∣ x̃(�maxn−1)

)
, (4.8)

where C∼�max is the set of all labels of length �maxn, whose corresponding paths consist of

different branches from path AB after node A. Consequently, additional decoding error may

32

be introduced by early elimination if (4.8) is valid for some � and �max with � ≤ �max − Δ,

when x is the transmitted codeword.1

Continue the derivation by replacing �max by β for notational convenience. The proba-

bility ξ(�, β) that (4.8) occurs is given by:

ξ(�, β) =
∑

r(βn−1)∈{0,1}βn

Φ0

(
r(βn−1)

)
Pr

(
r(βn−1)

∣∣x(βn−1)

)
, (4.9)

where Φ0

(
r(βn−1)

)
= 1 if (4.8) is valid, and 0, otherwise. From

Φ0

(
r(βn−1)

) ≤
⎡
⎢⎢⎢⎣

∑
x̃(βn−1)∈ C∼β

Pr
(
r(βn−1)

∣∣ x̃(βn−1)

)1/(1+ρ)

(1 − ε)n(β−�)/(1+ρ) Pr
(
r(�n−1)

∣∣x(�n−1)

)1/(1+ρ)

⎤
⎥⎥⎥⎦

ρ

for ρ ≥ 0,

we obtain:

ξ(�, β) ≤
∑

r(βn−1)∈{0,1}βn

⎡
⎢⎢⎢⎣

∑
x̃(βn−1)∈ C∼β

Pr
(
r(βn−1)

∣∣ x̃(βn−1)

)1/(1+ρ)

(1 − ε)n(β−�)/(1+ρ) Pr
(
r(�n−1)

∣∣x(�n−1)

)1/(1+ρ)

⎤
⎥⎥⎥⎦

ρ

Pr
(
r(βn−1)

∣∣x(βn−1)

)
.

Taking expectation of ξ(�, β) with respect to random selection of codewords of length (βn)

according to code bit selection distribution p = (p0, p1), where p0 and p1 are the probabilities

1Since early-elimination of the path with label x is always performed whenever (4.8) is valid, it is clear
that additional error is introduced only when the transmitted label x corresponds to the maximum-likelihood
code path. In other words, when x does not label the maximum-likelihood code path, the validity of (4.8)
or early-elimination of the path with label x will not add a new error to maximum-likelihood decoding. As
what we concern is an upper probability bound for the additional error due to early-elimination, it suffices
to analyze the probability bound on the occurrence of (4.8).

Notably, when equality holds in (4.8), x will still be early-eliminated according to Step 4 of the algorithm.

33

respectively for bits 0 and 1, yields that:

ξ(�, β) ≤ (1 − ε)−n(β−�)ρ/(1+ρ)
∑

r(βn−1)∈{0,1}βn

⎡
⎣ ∑

x̃(βn−1)∈ C∼β

Pr
(
r(βn−1)

∣∣ x̃(βn−1)

)1/(1+ρ)

⎤
⎦ρ

×Pr
(
r(�n−1)

∣∣x(�n−1)

)1/(1+ρ)
Pr

(
r(�n,βn−1)

∣∣x(�n,βn−1)

)
(4.10)

≤ (1 − ε)−n(β−�)ρ/(1+ρ)
∑

r(βn−1)∈{0,1}βn

⎡
⎣ ∑

x̃(βn−1)∈ C∼β

Pr
(
r(βn−1)

∣∣ x̃(βn−1)

)1/(1+ρ)

⎤
⎦ρ

×Pr
(
r(�n−1)

∣∣x(�n−1)

)1/(1+ρ)
Pr

(
r(�n,βn−1)

∣∣x(�n,βn−1)

)
(4.11)

= | C∼β|ρ × (1 − ε)−n(β−�)ρ/(1+ρ)
∑

r(βn−1)∈{0,1}βn

[
Pr

(
r(βn−1)

∣∣ x̃(βn−1)

)1/(1+ρ)
]ρ

Pr
(
r(�n−1)

∣∣x(�n−1)

)1/(1+ρ)
Pr

(
r(�n,βn−1)

∣∣x(�n,βn−1)

)
,

where (4.10) holds since labels x(�n−1) and any labels in C∼β are selected independently, and

(4.11) is valid due to Jensen’s inequality with ρ ≤ 1. Finally, by noting that | C∼β| ≤ 2kβ =

2nβR, we obtain:

ξ(�, β) ≤ 2−�n[−ρR+E0(ρ,p)] · 2−(β−�)n[−ρR+ρ log2(1−ε)/(1+ρ)+E1(ρ,p)], (4.12)

where

E0(ρ,p) � − log2

1∑
j=0

(
1∑

i=0

pi Pr(r = j|v = i)1/(1+ρ)

)1+ρ

and

E1(ρ,p) � − log2

[
1∑

j=0

(
1∑

i=0

pi Pr(r = j|v = i)

)(
1∑

i=0

pi Pr(r = j|v = i)1/(1+ρ)

)ρ]
.

Inequality (4.12) provides an upper probability bound for a top path ending at level

� being early-eliminated. Based on (4.12), we can proceed to derive the bound for the

probability Pe,E that an incorrect codeword is claimed at the end of the sequential-type

search because the correct path is early-eliminated during the decoding process.

34

Without loss of generality, assume that the all-zero codeword 0 is transmitted. Then,

Pe,E = Pe,E(Δ) ≤ Pr

(
L−Δ⋃
�=1

0n�−1 is early-eliminated

)

≤
L−Δ∑
�=1

2−�n[−ρR+E0(ρ)]2−Δn[−ρR+ρ log2(1−ε)/(1+ρ)+E1(ρ)], (4.13)

where the last inequality follows from (4.12) by taking p = p∗, and the observations that

β− � ≥ Δ and [−ρR + ρ log2(1 − ε)/(1 + ρ) + E1(ρ)] is non-negative subject to E0(ρ) > ρR.

Denoting λ � E0(ρ) − ρR, we continue the derivation from (4.13):

Pe,E ≤ 2−Δn[−ρR+ρ log2(1−ε)/(1+ρ)+E1(ρ)]

L−Δ∑
�=1

2−�nλ

≤ 2−Δn[−ρR+ρ log2(1−ε)/(1+ρ)+E1(ρ)]

∞∑
�=1

2−�nλ

= Kn · 2−Δn[−ρR+ρ log2(1−ε)/(1+ρ)+E1(ρ)], (4.14)

where Kn = 2−nλ/(1 − 2−nλ) is a constant, independent of Δ. Consequently,

lim inf
n→∞

−1

n
log2 Pe,E ≥ Δ[−ρR + ρ log2(1 − ε)/(1 + ρ) + E1(ρ)] + λ

≥ Δ[−ρR + ρ log2(1 − ε)/(1 + ρ) + E1(ρ)],

subject to E0(ρ) > ρR with 0 ≤ ρ ≤ 1, which immediately implies:

lim inf
n→∞

−1

n
log2 Pe,E ≥ Δ · Eel(R),

where Eel(R) � max{ρ∈[0,1] : E0(ρ)>ρR}[−ρR+ρ log2(1− ε)/(1+ρ)+E1(ρ)]. Following similar

argument as [9], we conclude that the additional error due to early elimination in the MLSDA

becomes exponentially negligible if

Δ · Eel(R) > (m + 1)Ec(R), or equivalently, Δ/(m + 1) > Ec(R)/Eel(R) (4.15)

for convolutional code rates above the channel cutoff rate R0, where

Ec(R) � max
{ρ∈[0,1] : E0(ρ)>ρR}

E0(ρ),

35

since (m + 1)Ec(R) is the exact error exponent of the maximum-likelihood decoding error

for convolutional codes for R ≥ R0 [36].

4.3 Numerical and Simulation Results

By choosing ε = 0.045 and ε = 0.095 to approach the desired cutoff rate 1/2 and 1/3, it can

be observed from numerical plots in Figs. 4.3 and 4.4 (or directly derived from (4.15)) that

the suggested early elimination windows are:

Δ >
0.4996

0.2271
× (m + 1) ≈ 2.1999(m + 1) for rate 1/2 codes; (4.16)

Δ >
0.3342

0.2816
× (m + 1) ≈ 1.1868(m + 1) for rate 1/3 codes. (4.17)

Condition (4.16) and (4.17) indicate that for (2,1,12) and (3,1,8) convolutional codes, taking

Δ = 29 and Δ = 11 respectively should suffice to result in negligible performance degradation

at the cutoff rate. It can be observed respectively from the simulations in Figs. 4.5 and 4.6

that the MLSDA with early elimination window Δ = 30 for (2,1,12) convolutional code

and Δ = 11 for (3,1,8) convolutional code exhibit negligible performance degradation for

all Eb/N0’s simulated, where we take ε = 1
2
erfc(

√
Eb/N0) as a convention, and erfc(·) is the

complementary error function. For comparison, the performance of the stack algorithm with

the Fano metric is also illustrated.

36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate (in bit/symbol)

E
rr

or
 E

xp
on

en
t

Cross Over Probability 0.045, Cutoff Rate 0.5 bit/symbol

Random Convolutional Code E
c
(R)

MLSDA Early Elimination E
el

(R)

Figure 4.3: Exponent lower bound Eel(R) of the additional error due to early elimination and
exponent Ec(R) of the maximum-likelihood decoding error for time-varying convolutional codes
(without early elimination) under the BSC with crossover probability 0.045.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rate (in bit/symbol)

E
rr

or
 E

xp
on

en
t

Cross Over Probability 0.095, Cutoff Rate 0.334 bit/symbol

Random Convolutional Code E
c
(R)

MLSDA Early Elimination E
el

(R)

Figure 4.4: Exponent lower bound Eel(R) of the additional error due to early elimination and
exponent Ec(R) of the maximum-likelihood decoding error for time-varying convolutional codes
(without early elimination) under the BSC with crossover probability 0.095.

37

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
 / N

0

B
it

E
rr

or
 R

at
e

MLSDA (Δ=30)
Stack Algo. with Fano Metric
ML

Figure 4.5: Performance for (2,1,12) convolutional codes for maximum-likelihood (ML) decoder,
stack algorithm with Fano metric, and MLSDA with early elimination window Δ = 30 under BSC.
The generator polynomial of the code is [42554 77304] in octal. The message length L = 500.

2 2.5 3 3.5 4 4.5 5 5.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
 / N

0

B
it

E
rr

or
 R

at
e

MLSDA (Δ=11)
Stack Algo. with Fano Metric
ML

Figure 4.6: Performance for (3,1,8) convolutional codes for maximum-likelihood (ML) decoder,
stack algorithm with Fano metric, and MLSDA with early elimination window Δ = 11 under BSC.
The generator polynomial of the code is [557 663 711] in octal. The message length L = 500.

38

Chapter 5

Analysis of the Window Size with
Negligible Performance Degradation
over AWGN Channels

In this chapter, the analysis on the early elimination window that suffices to provide near

optimal performance over AWGN channels is provided. The road map is as follows. In

Section 5.1, we obtain a union bound of block error rate (BLER) for convolutional codes

with finite length. This upper bound is accurate at high SNRs, and hence, can be used as a

faithful replacement of the BLERs. In Section 5.2, an upper bound for additional BLER due

to the introduction of early elimination is established. In Section 5.3, the suggestive values of

early elimination window Δ for negligible performance degradation is obtained based on the

analytic bounds in the previous two sections. Simulation results are also shown to validate

the suggested values.

39

5.1 Block Error Rate Analysis for Finite-Length Con-

volutional Codes with ML Decoder

For a convolutional code with specific code rate and generator polynomial, the weight enu-

merator function (WEF) A(x) is defined as [25]

A(x) =
∞∑

d=dfree

Adx
d,

where dfree is the free distance and Ad denote the number of codewords with weight d. The

WEF can be calculated by Mason’s gain formula or by computers. For example, the WEF

for the (2,1,6) convolutional code with generator polynomial [554,744] (in octal) is

A(x) = 11x10 + 38x12 + 193x14 + 1331x16 + 7275x18 + 40406x20 + · · · ,

and it means that there are 11 codewords with weight 10, 38 codewords with weight 12,

193 codewords with weight 14, and so on. For convolution decoding, we say that the a

first event error is made at time unit t if the correct path is eliminated (in, e.g., Viterbi

decoder) for the first time at time unit t. For infinite length convolutional codes, the first

event error probability, denoted by Pev, is shown to be independent of t. For binary-input

AWGN channels, Pev can be bounded above as follows: (c.f. equation (12.20) and (12.44a)

in [25])

Pev ≤
∞∑

d=dfree

AdQ

(√
2dR

Eb

N0

)
, (5.1)

where R is the code rate, Eb/N0 is the signal-to-noise ratio per information bit, and Q(x) =∫∞
x

1√
2π

e−x2/2dx. Notably, the union upper bound in (5.1) is also valid for the finite-length

convolutional code since the competitor paths (that compete with the correct path) of the

finite-length convolutional code are only sub-portions of the competitor paths of the corre-

sponding infinite-length convolutional code.

40

Based on the first event error probability Pev, we can derive a “union-type” upper bound

for block error rate (BLER) for convolutional codes with finite information length L as

BLER ≤ PB = L · Pev. (5.2)

It should be mentioned that the union-type bounds are generally accurate at high SNRs,

which can be substantiated by simulations. Figures 5.1 and 5.2 summarize PB in (5.2) and

the simulation results of BLERs for (2,1,6) and (2,1,10) convolutional codes, respectively,

with information length L = 200. The two figures show that at SNR higher than 4 dB, PB

is almost indifferent to the true BLER. We hereafter use PB in (5.2) as an approximate of

BLER for finite-length convolutional codes in determining the early-elimination window as

what we concern in this work is medium to high SNRs.

0 1 2 3 4 5 6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
lo

ck
 E

rr
or

 R
at

e

(2,1,6) Code with Message Length 200

BLER UB
BLER Simulation

Figure 5.1: Block error rate upper bound (BLER UB) given by (5.2) and simulated BLER for
(2, 1, 6) convolutional code under AWGN channels.

41

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

E
rr

or
 R

at
e

(2,1,10) Code with Message Length 200

BLER UB
BLER Simulation

Figure 5.2: Block error rate upper bound (BLER UB) given by (5.2) and simulated BLER for
(2, 1, 10) convolutional code under AWGN channels.

5.2 Moment Generating Function Bound of Additional

Error Due to Early Elimination

In the derivation of the error rate, we may assume without loss of generality that the all-

zero codeword 0 is transmitted. Then, the block error occurs when either (i) the all-zero

code path is not maximum-likelihood (ML), or (ii) any offspring of the all-zero code path is

early eliminated (EE). This observation results in that the BLER for the MLSDA with early

42

elimination is upper-bounded by:

Pr ([0 not ML] or [0 EE])

= Pr (0 not ML) + Pr (0 EE and 0 ML)

≤ Pr (0 not ML) + Pr

(
L+m−Δ⋃

�e=1

[
0(n�e−1) EE and 0 ML

])

= Pr (0 not ML) + Pr

(
L+m−Δ⋃

�e=1

�e−1⋃
�b=0

[
0(n�e−1) EE due to an offspring of 0̃(n�b) and 0 ML

])

= Pr (0 not ML) + Pr

(
L+m−Δ−1⋃

�b=0

L+m−Δ⋃
�e=�b+1

[
0(n�e−1) EE due to an offspring of 0̃(n�b) and 0 ML

])

≤ Pr (0 not ML) +
L+m−Δ−1∑

�b=0

Pr

(
L+m−Δ⋃
�e=�b+1

[
0(n�e−1) EE due to an offspring of 0̃(n�b) and 0 ML

])

≤ Pr (0 not ML) +
L+m−Δ−1∑

�b=0

Pr

(
L+m−Δ⋃

�e=1

[
0(n�e−1) EE due to an offspring of 0̃(0) and 0 ML

])
(5.3)

= Pr (0 not ML) + (L + m − Δ) Pr

(
L+m−Δ⋃

�e=1

[
0(n�e−1) EE due to an offspring of 0̃(0) and 0 ML

])
,

(5.4)

where

0̃(n�b) = (0, 0, . . . , 0︸ ︷︷ ︸
n�b of them

, 1),

and (5.3) follows from the fact that the probability of

Pr

(
L+m−Δ⋃
�e=�b+1

[
0(n�e−1) EE due to an offspring of 0̃(n�b) and 0 ML

])

is non-increasing in �b as the set of competitor paths that possibly eliminate the all-zero

path for a larger �b is a subset of those for a smaller �b. Notably, in the above derivation,

the event [0 not ML] includes those cases that the all-zero path has been eliminated due to

other equal-metric path even if it has the smallest metric (cf. Footnote 1.) Similarly, [0 ML]

includes those cases that the smallest-metric all-zero path survives the random choice in

footnote 1 whenever it merges with some other equal-metric paths.

43

The first term in (5.4) is the BLER of the maximum-likelihood decision, while the sec-

ond term can be regarded as a probability upper bound of additional BLER due to early

elimination. Observe that the second term is non-increasing in Δ. Therefore, if Δ is chosen

to be sufficiently large such that the additional BLER is negligibly less than the BLER of

the maximum-likelihood decision, the desired near optimal performance is obtained.

Before calculating the second term in (5.4), we notice that the offspring of 0̃(n�b), which

causes the early-elimination of 0(n�e−1), will never re-visit the zero state after level �b. This

is because if the offspring of 0̃(n�b) merges with the all-zero path at some level � with � > �b,

and survives after the conduction of Step 3 in the MLSDA (so that it can later cause the

early-elimination of 0(n�e−1)), its metric up to the merged level � must be smaller than that

of 0(n�−1), which indicates the violation of event [0 ML] (that includes the situation that 0

wins the random pick in footnote 1).

Now, in lie of this observation, we let P �e+Δ be the set of paths of length n(�e+Δ), which

diverge from 0(n�e−1) at level 0, and never re-visit the zero state. Denote by x(n(�e+Δ)−1) one

particular path in P �e+Δ with weight d1 in the first n�e bits and weight d2 in the last nΔ

44

bits. Then, The probability that 0(n�e−1) is early eliminated by x(n(�e+Δ)−1) is

Pr
(
0(n�e−1) EE due to x(n(�e+Δ)−1) and 0 ML

)
≤ Pr

(
0(n�e−1) EE due to x(n(�e+Δ)−1)

)
= Pr

(
μ(x(n(�e+Δ)−1)) ≤ μ(0(n�e−1))

)
= Pr

⎛
⎝n(�e+Δ)−1∑

j=0

(yj ⊕ xj)|φj| ≤
n�e−1∑
j=0

(yj ⊕ 0)|φj|
⎞
⎠

= Pr

⎛
⎝ ∑

j∈J (x(n(�e+Δ)−1))

(1 − 2yj)|φj| +
n(�e+Δ)−1∑

j=n�e

yj|φj| ≤ 0

⎞
⎠

= Pr

⎛
⎝ ∑

j∈J (x(n(�e+Δ)−1))

φj +
1

2

n(�e+Δ)−1∑
j=n�e

(|φj| − φj) ≤ 0

⎞
⎠

= Pr

⎛
⎝ ∑

j∈J (x(n(�e+Δ)−1))

2rj +

n(�e+Δ)−1∑
j=n�e

(|rj| − rj) ≤ 0

⎞
⎠ , (5.5)

where J (x(b)) = {j : xj = 1} is the set of indices in x(b) = (x0, x1, . . . , xb) such that xj = 1,

and (5.5) follows from φj � log[Pr(rj|vj = 0)/ Pr(rj|vj = 1)] = (4
√E/N0)rj.

Under the assumption that x(n(�e+Δ)−1) has weight d1 in the first n�e bits and weight

d2 in the last nΔ bits, and also the observation that {rj}N
j=1 is independent and identically

Gaussian distributed with mean E and variance N0/2 with respect to the transmitted 0, the

probability in (5.5) is in turn equal to

Pr

(
d1∑

j=1

2rj +

d1+d2∑
j=d1+1

(|rj| + rj) +

d1+nΔ∑
j=d1+d2+1

(|rj| − rj) ≤ 0

)

= Pr

(
d1∑

j=1

rj +

d1+d2∑
j=d1+1

r+
j +

d1+nΔ∑
j=d1+d2+1

r−j ≤ 0

)

= Pr

(
d1∑

j=1

(−rj) +

d1+d2∑
j=d1+1

(−r+
j

)
+

d1+nΔ∑
j=d1+d2+1

(−r−j
) ≥ 0

)
, (5.6)

where

r+
j =

{
rj, if rj > 0;
0, elsewhere,

(5.7)

45

and

r−j =

{
0, if rj > 0;
−rj, elsewhere.

(5.8)

The moment generating functions M(t), M+(t) and M−(t) of (−rj), (−r+
j) and (−r−j) are

respectively given by:

M(t) =

∫ ∞

−∞
etx 1√

πN0

exp

(
−(x + E)2

N0

)
dx

= exp

(
N0t

2

4
− Et

)∫ ∞

−∞

1√
πN0

exp

(
−(x + E − N0t

2
)2

N0

)
dx

= exp

(
N0t

2

4
− Et

)
,

M+(t) = Q

(
E√
N0/2

)
+

∫ 0

−∞
etx 1√

πN0

exp

(
−(x + E)2

N0

)
dx

= Q

(
E√
N0/2

)
+ exp

(
N0t

2

4
− Et

)∫ 2E−N0t√
2N0

−∞

1√
2π

exp

(
−z2

2

)
dz

= Q

(
E√
N0/2

)
+ exp

(
N0t

2

4
− Et

)
Q

(
N0t − 2E√

2N0

)
,

and

M−(t) = 1 − Q

(
E√
N0/2

)
+

∫ 0

−∞
etx 1√

πN0

exp

(
−(x − E)2

N0

)
dx

= 1 − Q

(
E√
N0/2

)
+ exp

(
N0t

2

4
+ Et

)∫ −2E−N0t√
2N0

−∞

1√
2π

exp

(
−z2

2

)
dz

= 1 − Q

(
E√
N0/2

)
+ exp

(
N0t

2

4
+ Et

)
Q

(
N0t + 2E√

2N0

)
.

The probability that 0(n�e−1) is early-eliminated by one particular path x(n(�e+Δ)−1) in P �e+Δ

is therefore upper-bounded by the moment generating bound as:

Pr

(
d1∑

j=1

(−rj) +

d1+d2∑
j=d1+1

(−r+
j

)
+

d1+nΔ∑
j=d1+d2+1

(−r−j
) ≥ 0

)
≤ [M(t)]d1 [M+(t)]d2 [M−(t)]nΔ−d2

for t > 0.

46

Define the weight distribution function for all paths in P �e+Δ by

W (�e, Δ) =
∑
d1,d2

Ad1,d2(�e, Δ) · wd1
1 · wd2

2 , (5.9)

where Ad1,d2(�e, Δ) is the number of paths with weight d1 in the first n�e bits and weight d2

in the last nΔ bits. This function can be established by computers. For example, for (2,1,6)

convolutional code with generator polynomial [554,744] (in octal), we have:

W (2, 3) = 2w3
1w2 + 3w3

1w
2
2 + 6w3

1w
3
2 + 4w3

1w
4
2 + w3

1w
6
2;

W (3, 2) = w3
1w2 + 2w3

1w
2
2 + w3

1w
3
2 + w4

1 + w4
1w2 + 3w4

1w
2
2 + 3w4

1w
3
2 + 2w5

1w2 + w5
1w

2
2 + w5

1w
4
2;

W (3, 5) = 2w3
1w

2
2 + 2w3

1w
3
2 + 8w3

1w
4
2 + · · · + 2w4

1w2 + w4
1w

2
2 + 8w4

1w
3
2 + · · · + 3w5

1w
2
2 + · · · .

As a consequence, the second term in (5.4) can be bounded above by

Pr

(
L+m−Δ⋃

�e=1

[
0(n�e−1) EE due to an offspring of 0̃(0) and 0 ML

])

≤
L+m−Δ∑

�e=1

Pr
(
0(n�e−1) EE due to an offspring of 0̃(0) and 0 ML

)

≤
L+m−Δ∑

�e=1

∑
d1,d2

Ad1,d2(�e, Δ) · min
t>0

[
M(t)d1 · M+(t)d2 · M−(t)nΔ−d2

]
. (5.10)

5.3 Numerical and Simulation Results

In the previous two sections, we obtain that the first term in (5.4) can be well approximated

by (5.2), and the second term can be bounded above by the moment generating bound in

(5.10). The numerical values of these bounds respectively for (2, 1, 6), (2, 1, 8), (2, 1, 10),

(2, 1, 12) and (3, 1, 8) convolutional codes are plotted in Figs. 5.3, 5.4, 5.5, 5.6 and 5.7.

Define the sufficiently large window size Δ to be the least integer such that the BLER

upper bound of the MLSDA with early elimination (BLER UB MLSDA/EE) is less than 0.1

dB inferior to the BLER upper bound (BLER UB) of the ML decoding at BLER UB=10−5.

47

The resultant sufficiently large window sizes are summarized in Tables 5.1 and 5.2 for rate

one-half and rate one-third convolutional codes, respectively. We found that the window sizes

suggested by the upper bounds are close to those obtained by simulations, and therefore can

be used as a guide to predict the near-optimal window size (especially when simulations for

some codes are not available).

3 3.5 4 4.5 5 5.5 6 6.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
lo

ck
 E

rr
or

 R
at

e

(2,1,6) Code with Message Length 200

BLER UB MLSDA/EE (Δ=21)
BLER UB MLSDA/EE (Δ=22)
BLER UB MLSDA/EE (Δ=23)
BLER UB

Figure 5.3: Block error rate upper bounds for (2, 1, 6) convolutional codes with L = 200.

Table 5.1: Suggested Δ values for rate one-half convolutional codes

Memory Order m 6 8 10 12 14 16
554 561 4672 42554 56721 716502

Generator Polynomial
744 753 7542 77304 61713 514576

dmin 10 12 14 16 18 20
Sufficiently Large Δ by UB 23 29 33 38 42 46

Sufficiently Large Δ by Simulations 20 24 28 32 36 40

48

2.5 3 3.5 4 4.5 5 5.5 6
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

E
b
/N

0

B
lo

ck
 E

rr
or

 R
at

e

(2,1,8) Code with Message Length 200

BLER UB MLSDA/EE (Δ=27)
BLER UB MLSDA/EE (Δ=28)
BLER UB MLSDA/EE (Δ=29)
BLER UB

Figure 5.4: Block error rate upper bound for (2, 1, 8) convolutional codes with L = 200.

2 2.5 3 3.5 4 4.5 5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
lo

ck
 E

rr
or

 R
at

e

(2,1,10) Code with Message Length 200

BLER UB MLSDA/EE (Δ=31)
BLER UB MLSDA/EE (Δ=32)
BLER UB MLSDA/EE (Δ=33)
BLER UB

Figure 5.5: Block error rate upper bounds for (2, 1, 10) convolutional codes with L = 200.

49

2.5 3 3.5 4 4.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

E
rr

or
 R

at
e

(2,1,12) Code with Message Length 200

BLER UB MLSDA/EE (Δ=34)
BLER UB MLSDA/EE (Δ=36)
BLER UB MLSDA/EE (Δ=38)
BLER UB

Figure 5.6: Block error rate upper bounds for (2, 1, 12) convolutional codes with L = 200.

2 2.5 3 3.5 4 4.5 5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
lo

ck
 E

rr
or

 R
at

e

(3,1,8) Code with Message Length 200

BLER UB MLSDA/EE (Δ=17)
BLER UB MLSDA/EE (Δ=18)
BLER UB MLSDA/EE (Δ=19)
BLER UB

Figure 5.7: Block error rate upper bounds for (3, 1, 8) convolutional codes with L = 200.

50

2 2.5 3 3.5 4 4.5 5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
 / N

0

B
lo

ck
 E

rr
or

 R
at

e

(2,1,6), Message Length 200

Δ=16
Δ=18
Δ=20
ML

Figure 5.8: Simulated block error rates for (2, 1, 6) convolutional codes with L = 200.

1 1.5 2 2.5 3 3.5 4
10

−4

10
−3

10
−2

10
−1

10
0

E
b
 / N

0

B
lo

ck
 E

rr
or

 R
at

e

Δ=20
Δ=22
Δ=24
ML

Figure 5.9: Simulated block error rates for (2, 1, 8) convolutional codes with L = 200.

51

1 1.5 2 2.5 3 3.5 4
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
 / N

0

B
lo

ck
 E

rr
or

 R
at

e

(2,1,10), Message Length 200

Δ=24
Δ=26
Δ=28
ML

Figure 5.10: Simulated block error rates for (2, 1, 10) convolutional codes for L = 200.

1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
 / N

0

B
it

E
rr

or
 R

at
e

(2,1,12), Message Length 200

Δ=28
Δ=30
Δ=32
MLSDA

Figure 5.11: Simulated block error rates for (2, 1, 12) convolutional codes for L = 200.

52

Table 5.2: Suggested Δ values for rate one-third convolutional codes

Memory Order m 6 8 10
554 557 4726

Generator Polynomial 624 663 5562
764 711 6372

Minimum Distance dmin 15 19 22
Sufficiently Large Δ by UB 14 18 23

Sufficiently Large Δ by Simulation 12 16 20

53

Chapter 6

Analysis of the Computational Efforts
of MLSDA and MLSDA with Early
Elimination

In this chapter, the large deviations technique and the Berry-Esseen theorem [7, sec.XVI. 5]

are utilized to estimate the computational complexity of the MLSDA with and without early

elimination. The large deviations technique is generally applied to compute the exponent

of an exponentially decaying probability mass. In order to obtain a better computational

complexity upper bound, we also apply the Berry-Esseen inequality to evaluate the subexpo-

nential detail of the concerned probability. Simulations show that the resultant complexity

upper bounds are close to the true complexity at both low and high SNRs.

6.1 Berry-Esseen Theorem and Probability Bound

The Berry-Esseen theorem [7, sec.XVI. 5] states that the distribution of the sum of indepen-

dent zero-mean random variables {Xi}n
i=1, normalized by the standard deviation of the sum,

differs from the unit Gaussian distribution by no more than C rn/s3
n, where s2

n and rn are,

respectively, the sums of the marginal variances and the marginal absolute third moments,

54

and the Berry-Esseen coefficient, C, is an absolute constant. Specifically, for every a ∈ �,∣∣∣∣Pr

{
1

sn

(X1 + · · · + Xn) ≤ a

}
− Φ(a)

∣∣∣∣ ≤ C
rn

s3
n

, (6.1)

where Φ(·) represents the unit Gaussian cumulative distribution function (cdf). A typical

estimate of the absolute constant is C = 6 [7, sec.XVI. 5, Thm. 2]. When {Xn}n
i=1 are

identically distributed, in addition to independent, the absolute constant can be reduced to

C = 3, and has been reported to be improved down to 2.05 [7, sec.XVI. 5, Thm. 1]. Shiganov

improved the absolute constant down to 0.7915 for an independent sample sum, and, 0.7655,

if these samples are also identically distributed [34]. Shiganov’s result is generally considered

to be the best result yet obtained thus far [32].

Based on the Berry-Esseen inequality, we first derive an upper probability bound for the

sum of independent, but non-Gaussian random variables, and later use this bound to analyze

computational efforts.

Lemma 1. Let Yn =
∑n

i=1 Xi be the sum of i.i.d. random variables whose marginal dis-

tribution is F (·). Define the twisted distribution with parameter θ corresponding to F (·)
as:

dF (θ)(x) � exp{θx} dF (x)

M(θ)
,

where M(θ) � E[eθX1]. Let the random variable with probability distribution F (θ)(·) be X(θ).

Then, for every θ < 0,

Pr {Yn ≤ −nα} ≤ An(θ, α)eθαnMn(θ),

where An(θ, α) = min{Bn(θ, α), 1},

Bn(θ, α) �

⎧⎪⎪⎨
⎪⎪⎩

σ(θ)√
2πn[(μ(θ) + α) − θσ2(θ)]

e−(μ(θ)+α)2n/[2σ2(θ)] + 2C
ρ(θ)

σ3(θ)
√

n
, if α > θσ2(θ) − μ(θ);

eθ[θσ2(θ)−2(μ(θ)+α)]n/2 + 2C
ρ(θ)

σ3(θ)
√

n
, otherwise,

55

μ(θ) = E[X(θ)], σ2(θ) = E[|X (θ) − μ(θ)|2], ρ(θ) = E[|X (θ) − μ(θ)|3]

and C = 0.7655.

Proof. Define F
(θ)
n (y) = Pr[X

(θ)
1 + X

(θ)
2 + · · ·+ X

(θ)
n ≤ y], and let the distribution of [(X

(θ)
1 −

μ(θ)) + · · · + (X
(θ)
n − μ(θ))]/[σ(θ)

√
n] be Hn(·), where in the evaluation of the above two

statistics, {X (θ)
i }n

i=1 are assumed independent with common marginal distribution F (θ)(·).
Then, by denoting Y

(θ)
n = X

(θ)
1 + X

(θ)
2 + · · · + X

(θ)
n , we obtain:

Pr (Yn ≤ −nα) =

∫
[x1+···+xn≤−nα]

dF (x1)dF (x2) · · · dF (xn)

= Mn(θ)

∫
[x1+···+xn≤−nα]

e−θ(x1+···+xn)dF (θ)(x1)dF (θ)(x2) · · · dF (θ)(xn)

= Mn(θ)E
[
e−θ(X

(θ)
1 +···+X

(θ)
n)1{X(θ)

1 + · · · + X(θ)
n ≤ −nα}

]
= Mn(θ)E

[
e−θY

(θ)
n 1{Y (θ)

n ≤ −nα}
]

= Mn(θ)

∫ −nα

−∞
e−θydF (θ)

n (y) (y → σ(θ)
√

ny′ + μ(θ)n)

= Mn(θ)

∫ −(μ(θ)+α)
√

n/σ(θ)

−∞
e−θσ(θ)

√
ny′−θμ(θ)ndHn(y′) (6.2)

= eθαnMn(θ)

∫ −(μ(θ)+α)
√

n/σ(θ)

−∞
e−θσ(θ)

√
n [y′+(μ(θ)+α)

√
n/σ(θ)]dHn(y′), (6.3)

where 1{·} is the set indicator function, and (6.2) follows from Hn(y) = F
(θ)
n (σ(θ)

√
ny +

μ(θ)n).

Integrating by parts on (6.3) with λ(dy) � − θσ(θ)
√

n exp{−θσ(θ)
√

n[y + (μ(θ) +

α)
√

n/σ(θ)]}dy defined over (−∞,−(μ(θ) + α)
√

n/σ(θ)], and then applying equation (6.1)

56

yields∫ −(μ(θ)+α)
√

n/σ(θ)

−∞
e−θσ(θ)

√
n [y+(μ(θ)+α)

√
n/σ(θ)]dHn(y) (6.4)

=

∫ −(μ(θ)+α)
√

n/σ(θ)

−∞

[
Hn

(
−(μ(θ) + α)

√
n

σ(θ)

)
− Hn(y)

]
λ(dy)

≤
∫ −(μ(θ)+α)

√
n/σ(θ)

−∞

[
Φ

(
−(μ(θ) + α)

√
n

σ(θ)

)
− Φ(y) + 2C

ρ(θ)

σ3(θ)
√

n

]
λ(dy)

=

∫ −(μ(θ)+α)
√

n/σ(θ)

−∞

[
Φ

(
−(μ(θ) + α)

√
n

σ(θ)

)
− Φ(y)

]
λ(dy) + 2C

ρ(θ)

σ3(θ)
√

n

=

∫ −(μ(θ)+α)
√

n/σ(θ)

−∞
e−θσ(θ)

√
n [y+(μ(θ)+α)

√
n/σ(θ)] 1√

2π
e−y2/2dy + 2C

ρ(θ)

σ3(θ)
√

n
(6.5)

= eθ2σ2(θ)n/2e−θ(μ(θ)+α)nΦ

(
θσ(θ)

√
n − (μ(θ) + α)

√
n

σ(θ)

)
+ 2C

ρ(θ)

σ3(θ)
√

n

≤

⎧⎪⎪⎨
⎪⎪⎩

σ(θ)√
2πn[(μ(θ) + α) − θσ2(θ)]

e−(μ(θ)+α)2n/[2σ2(θ)] + 2C
ρ(θ)

σ3(θ)
√

n
, if α > θσ2(θ) − μ(θ);

eθ2σ2(θ)n/2e−θ(μ(θ)+α)n + 2C
ρ(θ)

σ3(θ)
√

n
, otherwise,

(6.6)

where (6.5) holds by, again, applying integration by part, and (6.6) follows from

Φ(−u) ≤ 1√
2πu

e−u2/2 and Φ(u) ≤ 1 for u > 0.

It remains to show that∫ −(μ(θ)+α)
√

n/σ(θ)

−∞
e−θσ(θ)

√
n [y+(μ(θ)+α)

√
n/σ(θ)]dHn(y) ≤ 1,

which be established by observing that

eθαnMn(θ)

∫ −(μ(θ)+α)
√

n/σ(θ)

−∞
e−θσ(θ)

√
n [y+(μ(θ)+α)

√
n/σ(θ)]dHn(y) = Pr{Yn ≤ −nα} (6.7)

= Pr
{
eθ(Yn+nα) ≥ 1

}
≤ E[eθ(Yn+nα)]

= eθαnMn(θ). (6.8)

57

Some remarks are made following Lemma 1 as follows. First, the upper probability

bound in Lemma 1 consists of two parts, the exponentially decaying eθαnMn(θ) and the

subexponentially bounded An(θ, α). When α > θσ2(θ) − μ(θ) and α �= −μ(θ),

Bn(θ, α) =
σ(θ)√

2πn[(μ(θ) + α) − θσ2(θ)]
e−(μ(θ)+α)2n/[2σ2(θ)] + 2C

ρ(θ)

σ3(θ)
√

n
≈ 2C

ρ(θ)

σ3(θ)
√

n

since the first term decays exponentially fast, and Bn(θ, α) reduces to the Berry-Esseen

probability bound. However, when θ is taken to satisfy μ(θ) = −α,

Bn(θ, α) =
1√

2πn|θ|σ(θ)
+ 2C

ρ(θ)

σ3(θ)
√

n
,

and a larger bound (than the Berry-Esseen one) is resulted. In either case, Bn(θ, α) vanishes

exactly at the speed of 1/
√

n. Secondly, when An(θ, α) = 1, the upper probability bound

reduces to the simple Chernoff bound eθαnMn(θ) for which a four-line proof from (6.7) to

(6.8) is sufficient [11, Eq. (5.4.9)], and is always valid for every θ < 0, regardless of whether

α > θσ2(θ) − μ(θ) or not.

The independent samples {Xi}n
i=1 with which our decoding problems are concerned ac-

tually consist of two i.i.d. sequences, one of which is Gaussian distributed and the other is

non-Gaussian distributed. One way to bound the desired probability of Pr[
∑n

i=1 Xi ≤ 0] is

to directly use the Berry-Esseen inequality for independent but non-identical samples (which

can be done by following similar proof of Lemma 1). However, in order to manage a better

bound, we will apply Lemma 1 only to those non-Gaussian i.i.d. samples, and manipulate

the remaining Gaussian samples directly by way of their known probability densities in the

below lemma (cf. The derivation in (6.9)).

Lemma 2. Let Yn =
∑n

i=1 Xi be the sum of independent random variables {Xi}n
i=1, among

which {Xi}d
i=1 are identically Gaussian distributed with positive mean μ and non-zero vari-

ance σ2, and {Xi}n
i=d+1 have common marginal distribution as min{X1, 0}. Let γ �

58

(1/2)(μ2/σ2). Then

Pr {Yn ≤ 0} ≤ B (d, n − d, γ) ,

where

B (d, n − d, γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ(−√
2γn), if d = n;

Φ
(
− (n−d)μ̂+d

√
2γ√

d

)
+ Ãn−d(λ)

×
[
Φ(−λ)e−γeλ2/2 + Φ(

√
2γ)

]n−d

×ed(−γ+λ2/2)Φ
(

(n−d)μ̂+λd√
d

)
, if 1 > d

n
≥ 1 −

√
4πγeγ

1+
√

4πγeγΦ(
√

2γ)
;

1, otherwise,

a � −μ̂ + (
√

2γ − λ)σ̃2(λ) + μ̃(λ),

Ãn−d(λ) � min

(
1{a > 0}

[
σ̃(λ)

a
√

2π(n − d)
+ 2C

ρ̃(λ)

σ̃3(λ)
√

n − d

]
+ 1{a ≤ 0}, 1

)
,

μ̂ � E[Xd+1] = −(1/
√

2π)e−γ +
√

2γΦ(−
√

2γ),

μ̃(λ) = − d

n − d
λ,

σ̃2(λ) � − d

n − d
− nd

(n − d)2
λ2 +

n

n − d

1

1 +
√

2πλeγΦ(
√

2γ)
,

ρ̃(λ) � n

(n − d)

λ

[1 +
√

2πλeγΦ(
√

2γ)]

{
1 − d(n + d)

(n − d)2
λ2

+2

[
n2

(n − d)2
λ2 + 2

]
e−d(2n−d)λ2/[2(n−d)2]

− d

n − d

[
n + d

n − d
λ2 + 3

]√
2πλeγΦ(

√
2γ)

− 2n

n − d

[
n2

(n − d)2
λ2 + 3

]√
2πλeλ2/2Φ

(
− n

n − d
λ

)}
,

and λ is the unique solution (in [0,
√

2γ)) of

λe(1/2)λ2

Φ(−λ) =
1√
2π

(
1 − d

n

)
− d

n
eγΦ(

√
2γ)λ.

Proof. Only the bound for d < n is proved since the case of d = n can be easily substantiated.

59

Let

μ̃(θ) =
E[X

(θ)
d+1]

σ
, σ̃(θ) =

Var[X
(θ)
d+1]

σ2
, and ρ̃(θ) =

E[|X(θ)
d+1 − E[X

(θ)
d+1]|3]

σ3
,

and let μ̂ = E[Xd+1]/σ. By noting that (μ/σ) =
√

2γ, and for any θ < 0 satisfying that

a � −μ̂ − σθσ̃2(θ) + μ̃(θ) > 0,

Pr(Yn ≤ 0) can be bounded by

Pr(Yn ≤ 0)

= Pr {X1 + · · · + Xd + Xd+1 + · · · + Xn ≤ 0}

=

∫ ∞

−∞
Pr {Xd+1 + · · · + Xn ≤ −x} 1√

2πdσ2
e−

(x−dμ)2

2dσ2 dx, (x → σx′)

=

∫ ∞

−∞
Pr {Xd+1 + · · · + Xn ≤ −σx′} 1√

2πd
e−

(x′−d
√

2γ)2

2d dx′, (x′ → (n − d)x′′)

=

∫ ∞

−∞
Pr {Xd+1 + · · · + Xn ≤ −σ(n − d)x′′} 1√

2πd/(n − d)2
e
− (x′′−d

√
2γ/(n−d))2

2d/(n−d)2 dx′′

=

∫ σθσ̃2(θ)−μ̃(θ)+a

−∞
Pr {Xd+1 + · · · + Xn ≤ −σ(n − d)x′′} 1√

2πd/(n − d)2
e
− (x′′−d

√
2γ/(n−d))2

2d/(n−d)2 dx′′

+

∫ ∞

σθσ̃2(θ)−μ̃(θ)+a

Pr {Xd+1 + · · · + Xn ≤ −σ(n − d)x′′} 1√
2πd/(n − d)2

e
− (x′′−d

√
2γ/(n−d))2

2d/(n−d)2 dx′′

≤
∫ σθσ̃2(θ)−μ̃(θ)+a

−∞

1√
2πd/(n − d)2

e
− (x′′−d

√
2γ/(n−d))2

2d/(n−d)2 dx′′

+

∫ ∞

σθσ̃2(θ)−μ̃(θ)+a

min

(
σ̃(θ)

a
√

2π(n − d)
e−(μ̃(θ)+x′′)2(n−d)/[2σ̃2(θ)] + 2C

ρ̃(θ)

σ̃3(θ)
√

n − d
, 1

)

×eθσ(n−d)x′′
Mn−d(θ)

1√
2πd/(n − d)2

e
− (x′′−d

√
2γ/(n−d))2

2d/(n−d)2 dx′′, (6.9)

where M(θ) = E[eθXd+1], and the last inequality follows from Lemma 1. Observe that

e−(μ̃(θ)+x′′)2(n−d)/[2σ̃2(θ)] ≤ 1.

60

Thus,

Pr(Yn ≤ 0) ≤
∫ −μ̂

−∞

1√
2πd/(n − d)2

e
− (x′′−d

√
2γ/(n−d))2

2d/(n−d)2 dx′′

+

∫ ∞

−μ̂

min

(
σ̃(θ)

a
√

2π(n − d)
+ 2C

ρ̃(θ)

σ̃3(θ)
√

n − d
, 1

)

×eθσ(n−d)x′′
Mn−d(θ)

1√
2πd/(n − d)2

e
− (x′′−d

√
2γ/(n−d))2

2d/(n−d)2 dx′′

= Φ

(
−(n − d)μ̂ + d

√
2γ√

d

)

+Ãn−d(θ)M
n−d(θ)ed(θσ

√
2γ+θ2σ2/2)Φ

(
(n − d)μ̂ + d

√
2γ√

d
+ θσ

√
d

)
,

(6.10)

where for a > 0,

Ãn−d(θ) = min

(
σ̃(θ)

a
√

2π(n − d)
+ 2C

ρ̃(θ)

σ̃3(θ)
√

n − d
, 1

)
.

Now for θ < 0 and a ≤ 0, we can use Chernoff bound in (6.9) instead, in which case the

derivation up to (6.10) similarly follows with Ãn−d(θ) = 1.

We then note that

Mn−d(θ)ed(θσ
√

2γ+θ2σ2/2)

is exactly the moment generating function of Yn =
∑n

i=1 Xi; hence, if E[Yn] = dμ + (n −
d)σμ̂ > 0, then the solution θ of ∂E[eθYn]/∂θ = 0 is definitely negative.

For notational convenience, we let λ = (μ/σ) + σθ =
√

2γ + σθ, and yield that

M(θ) = Φ (−λ) e−γeλ2/2 + Φ(
√

2γ) and eθσ
√

2γ+θ2σ2/2 = e−γeλ2/2.

Accordingly, the chosen λ =
√

2γ + σθ should satisfy

∂

([
Φ(−λ)e−γeλ2/2 + Φ(

√
2γ)

]n−d

ed(−γ+λ2/2)

)
∂λ

= 0,

61

or equivalently,

e(1/2)λ2

Φ(−λ) =
1√
2πλ

(
1 − d

n

)
− d

n
eγΦ(

√
2γ). (6.11)

As it turns out, the solution λ = λ(γ) of the above equation depends only on γ. Now, by

replacing e(1/2)λ2
Φ(−λ) with (1 − d/n) /(

√
2πλ) − (d/n)eγΦ(

√
2γ), we obtain

μ̃(λ) =
E
[
X

(θ)
d+1

]
σ

∣∣∣∣∣∣
θ=(λ−√

2γ)/σ

= − d

n − d
λ

σ̃2(λ) �
Var

[
X

(θ)
d+1

]
σ2

∣∣∣∣∣∣
θ=(λ−√

2γ)/σ

= − d

n − d
− nd

(n − d)2
λ2 +

n

n − d

1

1 +
√

2πλeγΦ(
√

2γ)
,

and

ρ̃(λ) �
E

[∣∣∣X(θ)
d+1 − μ̂

∣∣∣3]
σ3

∣∣∣∣∣∣∣∣
θ=(λ−√

2γ)/σ

=
n

(n − d)

λ

[1 +
√

2πλeγΦ(
√

2γ)]

{
1 − d(n + d)

(n − d)2
λ2

+2

[
n2

(n − d)2
λ2 + 2

]
e−d(2n−d)λ2/[2(n−d)2]

− d

n − d

[
n + d

n − d
λ2 + 3

]√
2πλeγΦ(

√
2γ)

− 2n

n − d

[
n2

(n − d)2
λ2 + 3

]√
2πλeλ2/2Φ

(
− n

n − d
λ

)}
Hence, the previously obtained upper bound for Pr(Yn ≤ 0) can be reformulated as

Φ

(
−(n − d)μ̂ + d

√
2γ√

d

)

+Ãn−d(λ)
[
Φ(−λ)e−γeλ2/2 + Φ(

√
2γ)

]n−d

ed(−γ+λ2/2)Φ

(
(n − d)μ̂ + λd√

d

)
,

where

Ãn−d(λ) = min

(
1{a > 0}

[
σ̃(λ)

a
√

2π(n − d)
+ 2C

ρ̃(λ)

σ̃3(λ)
√

n − d

]
+ 1{a ≤ 0}, 1

)
.

62

Finally, a simple derivation yields

E[Yn] = dE[X1] + (n − d)E[Xd+1]

= σ
(
d
√

2γ + (n − d)
[
−(1/

√
2π)e−γ +

√
2γΦ(−

√
2γ)

])
,

and hence, the condition of E[Yn] > 0 can be equivalently replaced by

d

n
≥ 1 −

√
4πγeγ

1 +
√

4πγeγΦ(
√

2γ)
.

Again, if the simple Chernoff inequality is used instead in the derivation of (6.9), the

bound remains of the same form in Lemma 2 except that Ãn−d(λ) is always equal to one.

Empirical evaluations of Ãn−d(λ) in Figs. 6.1 and 6.2 indicates that when the sample

number n ≤ 50, Ãn−d(λ) will be close to 1, and the subexponential analysis based on the

Berry-Esseen inequality does not help improving the upper probability bound. However,

for a slightly larger n such as n = 200, a visible reduction in the probability bound can be

obtained through the introduction of the Berry-Esseen inequality.

One of the main studied subjects in this chapter is to examine whether the introduction

of the subexponential analysis can help improving the complexity bound at practical code

length. The observation from Figs. 6.1 and 6.2 does coincide with what we obtained in later

applications. That is, some visible improvement in complexity bound can really be obtained

for a little larger codeword length in the MLSDA (specifically, N = 2(100+10) or 2(100+6)).

We end this section by presenting the operational meanings of the three arguments in

function B(·, ·, ·) before their practice in subsequent sections. When in use for sequential-type

decoding complexity analysis, the first integer argument is the Hamming distance between

the transmitted codeword and the examined codeword up to the level of the currently visited

tree (or trellis) node. The second integer argument represents a prediction of the future route,

63

0

1(0)

1(0)

1(0)

1

50 100 150 200 250 300 350 400
n

d/n = 0.2

γ = −5dB

γ = −3dB

γ = −1dB

γ = 1dB

Ãn−d(λ)

Figure 6.1: Ãn−d(λ) for fixed d/n = 0.2 with respect to different γ. Notation “1(0)” repre-
sents that the y-tic is either 1 (for the curve below) or 0 (for the curve above).

which is not yet occurred.1 The third argument is exactly the signal-to-noise ratio for the

decoding environment, and is reasonably assumed to be always positive.

6.2 Computation Complexity for MLSDA

Notations that will be used in the next theorem are first introduced. Denote by sj(�) the

node that is located at level � and corresponds to state index j. Let Sj(�) be the set of

paths that end at node sj(�). Also let Hj(�) be the set of the Hamming weights of the paths

in Sj(�). Denote the minimum Hamming weight in Hj(�) by d∗
j(�). As an example, S3(3)

equals {111010001, 000111010} in Fig. 2.4, which results in H3(3) = {5, 4} and d∗
3(3) = 4.

1The metric for use of sequential-type decoding can be generally divided into two parts, where the
first part is determined by the past branches traversed thus far, while the second part helps predict-
ing the future route to speed up the code search process [15]. For example, by adding a constant term
∑N

i=1 log2 Pr(yi) to the accumulant Fano metric
∑q

i=1 (log2[Pr(yj |bj)/Pr(yj)] − R) up to level q, it can be
seen that

∑q
i=1 (log2(Pr(yj |bj) − R) weights the history, and

∑N
i=q+1 log2 Pr(yj) is the expectation of branch

metrics to be added for possible future routes. Based on the intuition, the first argument and the second
argument respectively realize the historical known part and the future predictive part of the decoding metric.

64

0

1(0)

1(0)

1(0)

1

50 100 150 200 250 300 350 400
n

γ = −3dB

d/n = 0.1

d/n = 0.2

d/n = 0.3

d/n = 0.4

Ãn−d(λ)

Figure 6.2: Ãn−d(λ) for fixed γ = −3dB with respect to different d/n ratios. Notation “1(0)”
represents that the y-tic is either 1 (for the curve below) or 0 (for the curve above).

Theorem 1 (Complexity of the MLSDA). Consider an (n, k,m) binary convolutional

code transmitted via an AWGN channel. The average number of branch metric computations

evaluated by the MLSDA, denoted by LMLSDA(γb), is upper-bounded by

LMLSDA(γb) ≤ 2k

L−1∑
�=0

2m−1∑
j=0

B
(

d∗
j(�), N − �n,

kL

N
γb

)
, (6.12)

where if Hj(�) is empty, implying the non-existence of state j at level �, then B(d∗
j(�), N −

�n, kLγb/N) = 0.

Proof. Assume without loss of generality that the all-zero codeword 0 is transmitted. First,

observe that for any two paths that end at a common node, only one of them will survive

in the Open Stack. In other words, one of the two paths will be discarded either due to a

larger path metric or because its end node has the same state and level as an entry in the

Closed Stack. In the latter case, the surviving path has clearly reached the common end

node earlier, and has already been extended by the MLSDA at some previous time (so that

65

the state and level of its end node has already been stored in the Closed Stack). Accordingly,

the branch metric computations that follow these two paths will only be performed once. It

therefore suffices to derive the computational complexity of the MLSDA based on the nodes

that have been extended rather than the paths that have been extended.

Let x∗ label the minimum-metric code path for a given log-likelihood ratio φ. Then we

claim that if a node sj(�) is extended by the MLSDA, given that x(�n−1) is the only surviving

path (in the Open Stack) that ends at this node at the time this node is extended, then

μ(x(�n−1)) ≤ μ(x∗). (6.13)

The validity of the above claim can be simply proved by contradiction. Suppose

μ(x(�n−1)) > μ(x∗).

Then the non-negativity of the individual metric (yj ⊕xj)|φj|, which implies μ(x∗) ≥ μ(x∗
(b))

for every 0 ≤ b ≤ N − 1, immediately gives μ(x(�n−1)) > μ(x∗
(b)) for every 0 ≤ b ≤ N − 1.

Therefore, x(�n−1) cannot be on top of the Open Stack (because some x∗
(b) always exists in

the Open Stack), and hence violates the assumption that sj(�) is extended by the MLSDA.

For notational convenience, denote by A(sj(�),x(�n−1)) the event that “x(�n−1) is the only

path in the intersection of Sj(�) and the Open Stack at the time node sj(�) is extended.”

Notably,

{A(sj(�),x(�n−1))}x(�n−1)∈Sj(�)

are disjoint, and ∑
x(�n−1)∈Sj(�)

Pr
{A (

sj(�),x(�n−1)

)}
= 1.

66

Then according to the above claim,

Pr {node sj(�) is extended by the MLSDA}

=
∑

x(�n−1)∈Sj(�)

Pr
{A (

sj(�),x(�n−1)

)}
Pr

{
node sj(�) is extended
by the MLSDA

∣∣∣∣A (
sj(�),x(�n−1)

)}

≤ max
x(�n−1)∈Sj(�)

Pr

{
node sj(�) is extended
by the MLSDA

∣∣∣∣A (
sj(�),x(�n−1)

)}
≤ max

x(�n−1)∈Sj(�)
Pr

{
μ(x(�n−1)) ≤ μ(x∗)

}
≤ max

x(�n−1)∈Sj(�)
Pr

{
μ(x(�n−1)) ≤ μ(0)

}
= max

x
(�n−1)

∈Sj(�)
Pr

{
�n−1∑
j=0

(yj ⊕ xj)|φj| ≤
N−1∑
j=0

(yj ⊕ 0)|φj|
}

, (6.14)

where the replacement of x∗ by the all-zero codeword 0 follows from μ(x∗) ≤ μ(0). We then

observe that for the AWGN channel, φj = 4
√

Erj/N0; hence, yj can be determined by

yj =

{
1, if rj < 0;
0, otherwise.

This observation, together with the fact that 2(yj ⊕ xj)|rj| = rj[(−1)yj − (−1)xj], gives

Pr {node sj(�) is extended by the MLSDA}

≤ max
x

(�n−1)
∈Sj(�)

Pr

{
�n−1∑
j=0

(yj ⊕ xj)|rj| ≤
N−1∑
j=0

(yj ⊕ 0)|rj|
}

,

= max
x

(�n−1)
∈Sj(�)

Pr

{
�n−1∑
j=0

rj [(−1)yj − (−1)xj] ≤
N−1∑
j=0

rj

[
(−1)yj − (−1)0

]}

= max
x

(�n−1)
∈Sj(�)

Pr

⎧⎨
⎩ ∑

j∈J (x(�n−1))

rj +
N−1∑
j=�n

min(rj, 0) ≤ 0

⎫⎬
⎭ ,

where J (x(�n−1)) is the set of index j, where 0 ≤ j ≤ �n − 1, for which xj = 1. As rj

is Gaussian distributed with mean
√

E and variance N0/2 due to the transmission of the

67

all-zero codeword, Proposition 1 (in the Appendix) and Lemma 2 can be applied to obtain

Pr {node sj(�) is extended by the MLSDA}

≤ max
d∈Hj(�)

Pr

{
r1 + · · · + rd +

N−1∑
j=�n

min(rj, 0) ≤ 0

}

= Pr

{
r1 + · · · + rd∗j (�) +

N−1∑
j=�n

min(rj, 0) ≤ 0

}

≤ B
(

d∗
j(�), N − �n,

kL

N
γb

)
.

Consequently,

LMLSDA(γb) ≤ 2k

L−1∑
�=0

2m−1∑
j=0

B
(

d∗
j(�), N − �n,

kL

N
γb

)
,

where the multiplication of 2k is due to the fact that whenever a node is extended, 2k branch

metric computations will follow.

6.3 Computation Complexity for MLSDA with Early

Elimination

Next we analyze the decoding complexity for the MLSDA with early elimination. Note that

in this section, we assume again that the all-zero sequence is transmitted.

By referring to Fig. 6.3, let x◦
((�+Δ)n−1), x∗

((�+Δ)n−1), and 0((�+Δ)n−1) label the first extended

path, the minimum metric path, and the all-zero path, respectively, among all paths from

s0(0) to nodes at level (� + Δ) by the MLSDA with early elimination. We claim that a

node sj(�) is extended by the MLSDA with early elimination, given that x(�n−1) is the only

surviving path (in the Open Stack) that ends at this node at the time this node is extended,

only if

μ(x(�n−1)) ≤ μ(x◦
((�+Δ)n−1)). (6.15)

68

The validity of the above claim can be simply proved by contradiction. Suppose

μ(x(�n−1)) > μ(x◦
((�+Δ)n−1)).

Then x◦
((�+Δ)n−1) will be extended before the expansion of x(�n−1), and hence x(�n−1) will be

early eliminated, which violates the assumption that sj(�) is extended by the MLSDA with

early elimination.

()js

level

+ Δ

(() 1)
o

nx +Δ −

(1)nx −

*
(() 1)nx +Δ −

() 10 n+Δ −0 (0)s 0 ()s + Δ

*()s + Δ

Figure 6.3: Exemplified trellis diagram for the MLSDA with early elimination.

Unlike the MLSDA without early elimination, where the first extended path must be the

minimum metric path among all paths ending at the same level, the path x◦
((�+Δ)n−1) may

not be the minimum metric path x∗
((�+Δ)n−1) for the MLSDA with early elimination. An

example is illustrated in Fig. 6.4. In this example, the minimum-metric (resp. all-zero) path

is path OB (resp. OD) with metric 4 + 2 = 6 (resp. 5 + 6 = 11). The first extended path

x◦
((�+Δ)n−1) however is path OC whose path metric 3 + 10 = 13 is larger than the metrics

of paths OB and OD. This is because path OC ′ that has a small accumulated metric 3 at

early steps eliminates paths OB ′ and OD′.

We denote the probability that a node sj(�) is extended by the MLSDA with early

69

(() 1)
o

nC x +Δ −=

(1)nA x −=
*
(() 1)nB x +Δ −=

(() 1)0 nD +Δ −=

'C

'D

'B

Threshold Δ

O

Figure 6.4: Example that the first extended path has a larger metric, when it is compared with
the all-zero path for the MLSDA with early elimination.

elimination by Pr {sj(�) Ext}, and separate it into two cases:

Pr {sj(�) Ext} = Pr
{
sj(�) Ext, and μ(x◦

((�+Δ)n−1)) > μ(0((�+Δ)n−1))
}

+ Pr
{
sj(�) Ext, and μ(x◦

((�+Δ)n−1)) ≤ μ(0((�+Δ)n−1))
}

. (6.16)

Notably, the event
[
sj(�) Ext, and μ(x◦

((�+Δ)n−1)) > μ(0((�+Δ)n−1))
]

happens only when path

0((�+Δ)n−1) has smaller metric than that of path x◦
((�+Δ)n−1) but path 0((�+Δ)n−1) is early-

eliminated before it reaches level (� + Δ). This event clearly implies the occurrence of block

error. Therefore,

Pr
{
sj(�) Ext, and μ(x◦

((�+Δ)n−1)) > μ(0((�+Δ)n−1))
} ≤ PEE(γb, Δ), (6.17)

where PEE(γb, Δ) denotes the block error rate of the MLSDA with early elimination window

Δ under SNR γb, which can be further upper-bounded by the results in Chapter 5.2 No-

tably, since Δ is presumably chosen to be large enough to achieve near ML performance, the

event
[
sj(�) Ext, and μ(x◦

((�+Δ)n−1)) > μ(0((�+Δ)n−1))
]

actually has a much smaller probabil-

ity than event
[
sj(�) Ext, and μ(x◦

((�+Δ)n−1)) ≤ μ(0((�+Δ)n−1))
]
. We therefore call the event

2Taking the block error rate upper bound in Chapter 5 as the upper bound on the first term in (6.16)
only provides satisfactory result for medium to high SNRs. However, from simulations (not shown in this
dissertation), we found the SNR range that the effect of the first term to the overall decoding complexity is
negligible can actually be extended to low SNRs.

70

corresponding to the second term in (6.16) the normal event, and simply bound the first term

in (6.16) by the block error rate of the MLSDA with early elimination. The next theorem

gives the decoding complexity upper bound due to the occurrence of the normal event.

Theorem 2. (Complexity of the MLSDA with early elimination due to the normal event)

Consider an (n, k,m) binary convolutional code transmitted via an AWGN channel. The av-

erage number of branch metric computations evaluated by the MLSDA with early elimination

given the occurrence of the normal event, denoted by LEE,normal(γb), is upper-bounded by

LEE,normal(γb) ≤ 2k

L−1∑
�=0

2m−1∑
j=0

B
(

d∗
j(�), Δn,

kL

N
γb

)
, (6.18)

where if Hj(�) is empty, implying the non-existence of state j at level �, then

B(d∗
j(�), Δn, kLγb/N) = 0.

71

Proof. Given that the normal event occurs,

Pr
{
sj(�) Ext, and μ(x◦

((�+Δ)n−1)) ≤ μ(0((�+Δ)n−1))
}

=
∑

x(�n−1)∈Sj(�)

Pr
{A (

sj(�),x(�n−1)

)}
×Pr

{
sj(�) Ext, and μ(x◦

((�+Δ)n−1)) ≤ μ(0((�+Δ)n−1))
∣∣A (

sj(�),x(�n−1)

)}
≤ max

x(�n−1)∈Sj(�)
Pr

{
sj(�) Ext, and μ(x◦

((�+Δ)n−1)) ≤ μ(0((�+Δ)n−1))
∣∣A (

sj(�),x(�n−1)

)}
≤ max

x(�n−1)∈Sj(�)
Pr

{
μ(x(�n−1)) ≤ μ(0((�+Δ)n−1))

}

= max
x

(�n−1)
∈Sj(�)

Pr

⎧⎨
⎩

�n−1∑
j=0

(yj ⊕ xj)|φj| ≤
(�+Δ)n−1∑

j=0

(yj ⊕ 0)|φj|
⎫⎬
⎭ .

= max
x

(�n−1)
∈Sj(�)

Pr

⎧⎨
⎩

�n−1∑
j=0

(yj ⊕ xj)|rj| ≤
(�+Δ)n−1∑

j=0

(yj ⊕ 0)|rj|
⎫⎬
⎭ ,

= max
x

(�n−1)
∈Sj(�)

Pr

⎧⎨
⎩

�n−1∑
j=0

rj [(−1)yj − (−1)xj] ≤
(�+Δ)n−1∑

j=0

rj

[
(−1)yj − (−1)0

]⎫⎬⎭
= max

x
(�n−1)

∈Sj(�)
Pr

⎧⎨
⎩ ∑

j∈J (x(�n−1))

rj +

(�+Δ)n−1∑
j=�n

min(rj, 0) ≤ 0

⎫⎬
⎭

= max
d∈Hj(�)

Pr

⎧⎨
⎩r1 + · · · + rd +

(�+Δ)n−1∑
j=�n

min(rj, 0) ≤ 0

⎫⎬
⎭

= Pr

⎧⎨
⎩r1 + · · · + rd∗j (�) +

(�+Δ)n−1∑
j=�n

min(rj, 0) ≤ 0

⎫⎬
⎭

≤ B
(

d∗
j(�), Δn,

kL

N
γb

)
.

Consequently,

LEE,normal(γb) ≤ 2k

L−1∑
�=0

2m−1∑
j=0

B
(

d∗
j(�), Δn,

kL

N
γb

)
.

We remark that the upper bound for the complexity of the MLSDA with early elimination

72

due to the occurrence of the normal event is exactly the same as that of the MLSDA without

early elimination except the second parameter in function B(·, ·, ·). Since the new parameter

Δn is not related to the message length, it is anticipated (and later confirmed by numericals)

that the resultant upper bound is less relevant to the message length.

Finally, we bound the overall complexity of the MLSDA with early elimination, LEE(γb),

by combining (6.17) and (6.18), and obtain:

LEE(γb) ≤ 2k

L−1∑
�=0

2m−1∑
j=0

[
PEE(γb, Δ) + B

(
d∗

j(�), Δn,
kL

N
γb

)]
,

= L · 2k+m · PEE(γb, Δ) + 2k

L−1∑
�=0

2m−1∑
j=0

B
(

d∗
j(�), Δn,

kL

N
γb

)
. (6.19)

6.4 Numerical and Simulation Results

We examine the complexity bounds in terms of (2,1,10) convolutional code with message

length L = 100 in this section.

We first note from Fig. 6.5 that the complexity upper bound in (6.19) is dominated by the

second term for medium to high SNRs. This figure also shows that the complexity reduction

of the early elimination modification is significant especially when SNR ≤ 5 dB. Specifically,

Fig. 6.5 indicates that for (2,1,10) convolutional code, the average decoding complexities of

the MLSDA and the MLSDA with early elimination window Δ = 30 are 79.78 and 14.8 at

SNR = 3.5 dB, and therefore, more than 80% of the decoding efforts is saved without visible

degradation in performance.

A potential problem of the MLSDA (without early elimination) is that its decoding com-

plexity grows as the message length increases. This complexity dependence of the MLSDA

in message length can be observed in Fig. 6.6 in both the simulations and analytical bounds

in Theorem 1. To be specific, Fig. 6.6 shows that the average decoding complexity per infor-

73

mation bit of the MLSDA is 79.78 when L = 100 but increases dramatically to 446.15 when

L = 200.

By adding the early elimination modification, it is shown in Fig. 6.6 that the average

decoding complexity of the MLSDA with early elimination becomes almost independent of

message length L. For example, the average decoding complexities of the MLSDA with early

elimination window Δ = 30 are 14.07 and 12.09 respectively for L = 100 and L = 200.

Fig. 6.7 depicts the simulated average decoding complexities for codes with different

memory order m. Five different rate one-half convolutional codes with memory order 2, 4, 6,

8 and 10 are respectively examined. The early elimination window Δ are thus chosen to be

10, 15, 20, 25 and 30 such that no performance degradations can be observed. The message

length is L = 100. It can be observed from this figure that the decoding complexities of

both the MLSDA with and without early elimination grow as the memory order increases at

SNR = 3 dB. However, when we further increase the SNR to 5 dB, the decoding complexity

grows at a very slow speed especially for the MLSDA with early elimination. This enhances

the potentiality of the MLSDA with early elimination in applications over codes with large

constraint length (at medium to high SNRs).

74

1 2 3 4 5 6 7
10

0

10
1

10
2

10
3

10
4

E
b
 / N

0

A
ve

ra
ge

 D
ec

od
in

g
C

om
pl

ex
ity

 P
er

 In
fo

rm
at

io
n

B
it

(2,1,10) Convolutional codes, Δ = 30

UB MLSDA
Sim MLSDA
UB MLSDA with EE
UB MLSDA with EE (normal)
Sim MLSDA with EE

Figure 6.5: Decoding complexity upper bounds and simulations for (2,1,10) convolutional codes.
The message length L = 100.

50 100 150 200 250 300 350
10

0

10
1

10
2

10
3

10
4

Message Length

A
ve

ra
ge

 D
ec

od
in

g
C

om
pl

ex
ity

 P
er

 In
fo

rm
at

io
n

B
it

UB MLSDA
Sim MLSDA
UB MLSDA with EE
Sim MLSDA with EE

Figure 6.6: Upper bounds and simulation results of the average decoding complexity per informa-
tion bit versus message length L for (2,1,10) convolutional codes at SNR = 3.5 dB.

75

2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

Memory Order of Convolutional Codes

A
ve

ra
ge

 D
ec

od
in

g
C

om
pl

ex
ity

 P
er

 In
fo

rm
at

io
n

B
it

MLSDA SNR = 3 dB
MLSDA with EE SNR = 3 dB
MLSDA SNR = 4 dB
MLSDA with EE SNR = 4 dB
MLSDA SNR = 5 dB
MLSDA with EE SNR = 5 dB

Figure 6.7: Simulation results of the average decoding complexity per information bit versus
the memory order m. The message length L = 100. The chosen Δ = 10, 15, 20, 25, 30 for m =
2, 4, 6, 8, 10.

76

Chapter 7

Concluding Remarks and Future
Work

In this work, we propose to improve the computational complexity and memory requirement

of the maximum-likelihood sequential-search decoding algorithm by early elimination. By

setting a window and directly eliminating the partial path outside the window, the decod-

ing complexity should be reduced with negligible performance degradation if the window

size is large enough. The analysis of the sufficient early elimination window for negligible

performance degradation, as well as the subsequent simulations, confirms our anticipated

improvement. We also analyze the average decoding complexity for both the MLSDA with

and without early elimination. The analytical and simulation results confirm the complexity

reduction by introducing early elimination.

Since the MLSDA, after the introduction of early elimination modification, is justified to

suit applications that dictate a near-ML software decoder with limited support in computa-

tional power and memory, a future work of practical interest will be to apply the MLSDA

with early elimination to the “super-code” for joint multi-path channel equalization and

convolution decoding [19].

77

Bibliography

[1] J. B. Anderson and S. Mohan, “Sequential coding algorithms: a survey and cost anal-

ysis,” IEEE Trans. Commun., vol. COM-32, no. 2, pp. 169–176, February 1984.

[2] M. Bossert, Channel Coding for Telecommunications. New York: John Wiley and Sons,

1999.

[3] S. Carlsson, “The DEAP–a double-ended heap to implement double-ended priorify

queues,” Information Processing Letters, vol. 26, pp. 33–36, September 1987.

[4] T. M. Cover and J. A. Thomas, Elements of Information Theory, New York, NY: John

Wiley and Sons, 1991.

[5] P. Elias, “Coding for Noisy Channels,” I.R.E. Convention Record Part 4, pp. 37–47,

September 1987.

[6] R. Fano, “A heuristic discussion of probabilistic decoding,” IEEE Trans. Inform. The-

ory, vol. IT-9, no. 2, pp. 64–73, April 1963.

[7] W. Feller, An Introduction to Probability Theory and its Applications. New York, NY:

John Wiley and Sons, 1970.

[8] G. D. Forney, Jr., “Review of random tree codes,” Appendix A. Study of Coding Systems

Design for Advanced Solar Missions. NASA Contract NAS2-3637. Codex Corporation.

December 1967.

78

[9] G. D. Forney, Jr., “Convolutional codes II: Maximum likelihood decoding,” In-

form. Control, 25:222–66, July 1974.

[10] R. G. Gallager, “A simple derivation of the coding theorem and some applications,”

IEEE Trans. Inform. Theory, vol. IT-11, pp. 3–18, Jan. 1965.

[11] R. G. Gallager, Infirmatian Theory and Reliable Communication. New York: Wiley,

1968.

[12] J. M. Geist, “Am empirical comparison of two sequential decoding algorithms,” IEEE

Trans. Commun. Technol., vol. COM-19, no. 4, pp. 415–419, August 1971.

[13] D. Haccoun and M. J. Ferguson, “Generalized stack algorithms for decoding convolu-

tional codes,” IEEE Trans. Inform. Theory, vol. IT-21, no. 6, pp. 638–651, November

1975.

[14] Y. S. Han, “A new treatment of priority-first search maximum-likelihood soft-decision

decoding of linear block codes,” IEEE Trans. Inform. Theory, vol. 44, no. 7, pp. 3091–

3096, November 1998.

[15] Y. S. Han and P.-N. Chen, “Sequential decoding of convolutional codes,” The Wiley

Encyclopedia of Telecommunications, edited J. Proakis, John Wiley and Sons, Inc.,

2002.

[16] Y. S. Han, P.-N. Chen, and M. P. C. Fossorier, “A generalization of the fano metric

and its effect on sequential decoding using a stack,” in IEEE Int. Symp. on Information

Theory, Lausanne, Switzerland, 2002.

[17] Y. S. Han, P.-N. Chen, and H.-B. Wu, “A maximum-likelihood soft-decision sequential

decoding algorithm for binary convolutional codes,” IEEE Trans. Commun., vol. 50,

no. 2, pp. 173–178, February 2002.

79

[18] Y. S. Han, C. R. P. Hartmann, and C.-C. Chen, “Efficient priority-first search maximum-

likelihood soft-decision decoding of linear block codes,” IEEE Trans. Inform. Theory,

vol. 39, no. 5, pp. 1514–1523, September 1993.

[19] C. Heegard, S. Coffey, S. Gummadi, E. J. Rossin, M. B. Shoemake and M. Wilhoyte,

“Combined equalization and decoding for IEEE 802.11b devices,” IEEE Journal on

Selected Areas in Commun., vol. 21, no. 2, pp. 125–138, February 2003.

[20] F. Hemmati and D. J. Costello, Jr., “Truncation error probability in Viterbi decoding,”

IEEE Trans. Comm., vol. 25, no. 5, pp. 530–532, May 1977.

[21] F. Jelinek, “A fast sequential decoding algorithm using a stack,” IBM J. Res. and Dev.,

13, pp. 675–685, November 1969.

[22] R. Johannesson and K. Sh. Zigangirov, Fundamentals of Convolutional Coding, Wiley-

IEEE Press, 1999.

[23] D. E. Knuth, The Art of Computer Programming. Volume III: Sorting and Searching,

Reading, MA: Addison-Wesley, 1973.

[24] P. Lavoie, D. Haccoun, and Y. Savaria, “A systolic architecture for fast stack sequential

decoders,” IEEE Trans. Commun., vol. 42, no. 5, pp. 324–335, May 1994.

[25] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications,

2nd ed. Upper Saddle River, NJ: Pearson Prentice-Hall, 2004.

[26] J. L. Massey, Threshold Decoding, MIT Press, Cambridge, Mass., 1963.

[27] J. L. Massey, “Variable-length codes and the fano metric,” IEEE Trans. Inform. Theory,

vol. IT-18, no. 1, pp. 196–198, January 1972.

80

[28] R. J. McEliece and I. M. Onyszchuk, “Truncation effects in Viterbi decoding,” in

Proc. MILCOM ’89, October 1989, pp. 29.3.1–29.3.5.

[29] S. Mohan and J. B. Anderson, “Computationally optimal metric-first code tree search

algorithms,” IEEE Trans. Commun., vol. COM-32, no. 6, pp. 710–717, June 1984.

[30] I. M. Onyszchuk, “Truncation length for Viterbi decoding,” IEEE Trans. Comm.,

vol. 39, no. 7, pp. 1023–1026, July 1991.

[31] B. Reiffen, “A note on very noisy channels,” Inform. Control, vol. 6, pp. 126–130, 1963.

[32] Senatov and V. Vladimir, Normal Approximation: New Results, Methods, and Problems.

Utrecht: The Netherlands, 1998.

[33] S. L. Shieh, Y. S. Han, and P.-N. Chen, “Reduction of computational complexity

and sufficient stack size of the MLSDA by early elimination,” in IEEE Int. Symp. on

Information Theory, Nice, France, 2007.

[34] I. S. Shiganov, “Refinement of the upper bound of the constant in the central limit

theorem,” Journal of Soviet Mathematics 2545–2550, 1986.

[35] Texas Instruments “Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP),”

SPRA750D Texas Instruments Application Report, Sep. 2003. (Download from:

www.ti.com.)

[36] A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically Optimum

Decoding Algorithm,” IEEE Trans. Inform. Theory, vol. IT-13, no. 2, pp. 260–269,

April 1967.

[37] A. J. Viterbi and J. K. Omura, Priciples of Digital Communications and Coding, New

York: McGraw-Hill, 1979.

81

[38] S. B. Wicker, Error Control Systems for Digital Communication and Storage, Engle-

wood Cliffs, NJ: Prentice-Hall, Inc., 1995.

[39] J. M. Wozencraft and B. Reiffen, Sequential Decoding, MIT Press, Cambridge, 1961.

[40] K. Sh. Zigangirov, “Some sequential decoding procedures,” Probl. Peredachi Inf., 2,

pp. 13–25, 1966.

[41] K. Sh. Zigangirov, “On the error probability of the sequential decoding in the BSC,”

IEEE Trans. Inform. Theory, vol. IT-18, no. 1, pp. 199–202, January 1972.

[42] K. Sh. Zigangirov, “New upper bounds for decoding error probability for convolutional

codes,” Probl. Peredachi Inform., 21:20–31, 1985.

82

Appendix A

Proposition 1. For a fixed non-negative integer k, the probability mass of

Pr {r1 + · · · + rd + min(w1, 0) + . . . + min(wk, 0) ≤ 0}

is a decreasing function for non-negative integer d, provided that r1, r2, . . ., rd, w1, w2, . . .,

wk are i.i.d. with a Gaussian marginal distribution of positive mean μ and variance σ2.

Proof. Assume without loss of generality that σ2 = 1. Also, assume k ≥ 1 since the propo-

sition is trivially valid for k = 0.

Let Ωd � r1 + · · · + rd. Denote the probability density function of w1 by f(·). Then

putting ν � Pr{wj = 0} yields

Pr {Ωd + w1 + w2 + · · · + wk ≤ 0}

=
k∑

j=0

Pr {exactly (k − j) zeros in (w1, w2, . . . , wk)}

Pr {Ωd + w1 + w2 + · · · + wk ≤ 0| exactly (k − j) zeros in (w1, w2, . . . , wk)}

=

(
k

0

)
νk Pr{Ωd ≤ 0} +

(
k

1

)
νk−1(1 − ν)

∫ 0

−∞
f(x) Pr{Ωd ≤ −x}dx

+

(
k

2

)
νk−2(1 − ν)2

∫ 0

−∞

∫ 0

−∞
f(x1)f(x2) Pr{Ωd ≤ −(x1 + x2)}dx1dx2

+ · · ·

+

(
k

k

)
(1 − ν)k

∫ 0

−∞
· · ·

∫ 0

−∞
f(x1) · · · f(xk) Pr{Ωd ≤ −(x1 + · · · + xk)}dx1 · · · dxk.

83

Accordingly, if each of the above (k + 1) terms is non-increasing in d, so is their sum. Let

qj(d) �
∫ 0

−∞
· · ·

∫ 0

−∞
f(x1) · · · f(xj) Pr{Ωd ≤ −(x1 + · · · + xj)}dx1 · · · dxj

=

∫ 0

−∞
· · ·

∫ 0

−∞
f(x1) · · · f(xj)Φ

(
−x1 + · · · + xj√

d
−
√

dμ

)
dx1 · · · dxj.

Then

∂qj(d)

∂
(√

d
) =

∫ 0

−∞
· · ·

∫ 0

−∞
f(x1) · · · f(xj)

×
(

x1 + · · · + xj

d
− μ

)
1√
2π

e−(x1+···+xj+d·μ)2/(2d)dx1 · · · dxj

≤ − μ√
2π

∫ 0

−∞
· · ·

∫ 0

−∞
f(x1) · · · f(xj)e

−(x1+···+xj+d·μ)2/(2d)dx1 · · · dxj (7.1)

< 0,

where (7.1) follows from xi ≤ 0 (according to the range of integration) for 1 ≤ i ≤ j.

Consequently, qj(d) is decreasing in d for d positive and every 1 ≤ j ≤ k. The proof is

completed by noting that the first term, Pr{Ωd ≤ 0} = Φ(−√
dμ), is also decreasing in

d.

84

簡 歷

姓 名 ：謝欣霖

性 別 ： 男

出生年月日 ： 民國 66 年 11 月 04 日

籍 貫 ： 福建省金門縣

學 歷 ：

國立清華大學電機工程學系 84年9月～88年6月

國立清華大學電機工程研究所碩士班 88年9月～90年6月

國立交通大學電信工程研究所博士班 92年9月～97年6月

經 歷 ：

工研院電通所副工程師、凌陽科技正工程師、凌陽電通資深工程師

論文題目 ：

二元迴旋碼之接近最大機率循序搜尋解碼演算法

Near Maximum-Likelihood Sequential-Search Decoding Algorithms

for Binary Convolutional Codes

Vita

Shin-Lin Shieh was born in Kinmen, Taiwan, R.O.C., in 1977. He received
the B.Sc. and M.Sc. degrees in electrical engineering from the National
Tsing-Hua University, Hsinchu, Taiwan, in 1999 and 2001, and the Ph.D.
degree from the Department of Communications Engineering, National
Chiao-Tung University, Hsinchu, Taiwan, in 2008.

He was in the military service for three months. In 2002, he
joined the Wireless Communication Technology Department, Computer and
Communication Laboratory (CCL), Industrial Technology Research
Institute (ITRI), Taiwan, where he was engaged in several projects on
developing baseband communication algorithms. In 2005, he joined the
Wideband Code Division Multiple Access (WCDMA) Project, Sunplus
Technology Company, Ltd. He is currently with the Sunplus mMobile, Inc.,
Hsinchu, a subsidiary spun-off from the Sunplus Technology Company, Ltd.,
and is involved in designing baseband algorithms of enhanced data rates for
global system for mobile communications evolution (EDGE), WCDMA,
high-speed downlink packet access (HSDPA), and other communication
systems.

His current research interests include error-control coding,

information theory, and wireless communications.

	1封面.pdf
	2書名頁.pdf
	3博士論文有中文的部分.pdf
	paper.pdf
	4.Vita.pdf

