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Abstract

In this work, the maximum-likelithood sequential-search decoding algorithm
proposed in [17] is revisited. By replacing the conventional Fano metric with one that is
derived based on the Wagner rulg, the sequential-search decoding in [17] guarantees the
maximum-likelihood (ML) performance, and was therefore named the
maximum-likelihood sequential decodingalgorithm (MLSDA). It was then concluded by
simulations that when the MLSDAUis operated over the convolutional code trellis, its
software computational complexity is‘in general considerably smaller than that of the
Viterbi algorithm.

A common problem on sequential-type decoding is that at the signal-to-noise ratio
(SNR) below the one corresponding to the cut off rate, the average decoding complexity
and the required stack size grow rapidly with the information length [25]. This problem,
to some extent, prevents the practical use of sequential-type decoding from codes with
long information sequence. In order to alleviate the problem in the MLSDA, we propose
to directly eliminate the top path whose end node is A-trellis-level prior to the farthest one
among all nodes that have been expanded thus far by the sequential search, which we
termed the early elimination. We then analyze the early-elimination window that results
in negligible performance degradation for the MLSDA. Our asymptotic-based analytical
result indicates that the required early elimination window for negligible performance
degradation is around three times (resp. 2.2-fold) of the constraint length for rate one-half
convolutional codes under additive white Gaussian (resp. binary symmetric) channel. For
rate one-third convolutional codes, the required early-elimination window reduces to two
times (resp. 1.2-fold) of the constraint length for the same channel. The theoretical level
thresholds almost coincide with the simulation results.

As a consequence of small early elimination window required for near
maximum-likelihood performance, the MLSDA with early elimination modification

il



rules out considerable computational burdens, as well as memory requirement, by
directly eliminating a big number of the top paths. This makes the MLSDA with early
elimination suitable for applications that dictate a low-complexity software
implementation with near maximum-likelihood performance. The upper bounds of
decoding complexity of both the MLSDAs with and without early elimination are
subsequently derived by utilizing the Berry-Esseen inequality. Both the upper bound and
the simulated complexity indicate that the average decoding complexity per output bit for
the MLSDA with early elimination is almost irrelevant to the memory order, as well as
the message length, for medium to high SNRs.
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Chapter 1

Introduction

The convolutional code, as invented by Elias [5] in 1955, is perhaps the most famous error cor-
recting code in the history of communication industry. Right after its invention, Wozencraft
and Reiffen [39] proposed a sequential decoding algorithm to effectively decode convolutional
codes with large constraint lengths..3Thereafter,zFano [6] developed the sequential decod-
ing algorithm with extreme efficiency.—These works. further inspired Zigangirov [40], and

independently, Jelinek [21] for the invention and development of the stack algorithm.

Unfortunately, the sequential déecoding algorithm has received little attention in the past
30 years due to its sub-optimum performance and lack of efficient and cost-effective hardware
implementation. It is however specially suitable for the decoding of convolutional codes with
large memory order because its decoding complexity is irrelevant to the code constraint
length. For this reason, the sequential decoding algorithm has recently been proposed to be
used in the decoding of the so-called “super-code” that considers the joint effect of multi-path

channels and convolutional codes [19].

Another commonly used decoding algorithm for convolutional codes is the Viterbi algo-
rithm. It operates on a convolutional code trellis, and has been shown to be a maximum-

likelihood decoder [25]. Since its decoding complexity grows exponentially with the code



constraint length, the Viterbi algorithm is usually applied only for convolutional codes with

short constraint lengths.

In 2002, a variant of the sequential decoding algorithm has been established. The new
variant uses a novel metric derived based on the Wagner rule, and was proved to result
in maximum-likelihood performance [17]. The new sequential-type decoding algorithm was
therefore termed the mazimum-likelihood sequential decoding algorithm (MLSDA). By sim-
ulations, the authors in [17] observed that from pure software implementation standpoint,
the average decoding complexity of the MLSDA is in general considerably smaller than the
Viterbi algorithm when the signal-to-noise ratio (SNR) of the additive white Gaussian noise

(AWGN) channel is larger than 2 dB.

When the information sequence is long, path truncation was suggested for a practical
implementation of the Viterbi decoder 25} Instead of keeping all trellis branches of the
survivor paths in the decoder mémory;tonly aicertain number of the most recent trellis
branches is retained, and a decision is forced on the-oldest trellis branch whenever a new
data arrives in the decoder. In literature, three strategies have been proposed on the forceful
decision: (1) majority-vote strategy that tracesback from all states, and outputs the decision
that occurs most often; (2) best state strategy that only traces back from the state with the
best metric, and outputs the information bits corresponding to the path being traced; (3)
random state strategy that randomly traces back from one state, and outputs the information
bits corresponding to the path being traced. Although none of the three forceful strategies
guarantees maximum-likelihood, their performance degradation can be made negligible as

long as the traceback window or truncation window is sufficiently large.

In [9], Forney proved by random coding argument that a truncation window of 5.8-fold
of the code constraint length suffices to provide negligible performance degradation for the

best state strategy. Hemmati and Costello [20] later derived an upper performance bound



as a function of the truncation window for a specific convolutional encoder, and obtained
a similar conclusion for the best state strategy. McEliece and Onyszchuk [28] studied the
tradeoff between length of the truncation window and performance loss for the random state
strategy, and concluded that the truncation window for the random state strategy should be

about twice as large as that for the best state strategy.

Similar to the Viterbi algorithm, the decoding burden of the sequential decoding algo-
rithm, both in memory consumption and in computational complexity, grows as the length
of the information sequence increases. Yet, in order to compensate the SNR loss due to the
additional zeros at the end of the information sequence, a long information sequence is often
preferred in practice. One solution to reduce the decoding burden as a result of a practi-
cally long information sequence is to introduce the path truncation concept of the Viterbi
algorithm to the sequential decoding algerithm, As an example, Zigangirov considered the
situation, in which the decoder trages backsthetop path in stack to force the decisions of the
symbols at those levels prior to a backsearch-limit, and derived an error probability upper
bound for the sequential decoding with backsearch limit [41]. In case the channel critical
rate is smaller than (k — 1)/k of thé/eemputational cutoff rate, where x is the ratio of the
backsearch limit against code constraint length, Zigangirov’s bound was shown to reduce
to the Yudkin-Viterbi bound [11] for infinite backsearch limit at low to medium rates, and

coincide with the random coding bound at high rate [41].

In this dissertation, an alternative approach to lower the decoding complexity of the
new variant of the sequential decoding algorithm, i.e., the MLSDA, is examined. Instead of
tracing back the top path in stack to force the decision of the symbols beyond the backsearch
limit, we propose to directly eliminate the top path whose end node is A-level-prior to the
farthest node among all that have been expanded thus far by the sequential search, which is

so named the early elimination.



In the analysis of sufficiently large A such that the performance degradation is negligible,
two attempts based on different techniques are made. The first one follows similarly the
random coding argument used by Forney [9], while the second one elaborates the code
generator polynomial specifically for the convolutional code adopted. The random coding
argument then indicates that under binary symmetric channels (BSCs), the required early
elimination window for negligible performance degradation is just 2.2-fold of the constraint
length for rate one-half convolutional codes, and for rate one-third convolutional codes, the
required early-elimination window even reduces to 1.2-fold of the constraint length. With the
knowledge of code generator polynomial, additional error rate due to early elimination can
be formulated under additive white Gaussian noise (AWGN) channels, which is accordingly
used to determine the sufficient large early elimination window for near optimal performance.

Simulations are henceforth performed, and confirm the accuracy of these analytical results.

As a consequence of small early-eliminationwindow required for near maximum-likelihood
performance, the MLSDA with early-elimination modification rules out considerable compu-
tational burden, as well as memaory. réguirement; by directly eliminating a large number of
the top paths. It can also be implemented together with the backsearch scheme to provide
timely decision of fixed delay to further reduce the decoding complexity. This suggests the
potential and suitability of the MLSDA with early elimination for applications that dictate

a low-complexity software implementation with near maximum-likelihood performance.

In the analysis of the decoding complexity of the MLSDA, as well as the complexity
reduction due to early elimination, upper bounds that utilize the Berry-Esseen inequality
[7, Sec. XVI. 5] are established. Both the analytical and simulation results substantiate
that the early elimination modification can significantly reduce the decoding computational
complexity. Also shown from these results is that the average decoding complexity per

information bit for the MLSDA with early elimination does not grow with the message



length, which makes it specially suitable for the timely decoding of codes with long message

lengths.

The rest of the dissertation is organized as follows. The channel model, convolutional
coding, and the conventional sequential decoding algorithm as well as the Fano metric are
briefed in Section 2. The MLSDA algorithm and its variation with early elimination are
presented in Section 3. The analyses of the sufficient early elimination window for near-
maximum-likelihood performance under BSC and AWGN channels are given in Sections 4
and 5, respectively. Complexity upper bounds for both the MLSDAs with and without early
elimination scheme are presented in Section 6. The concluding remarks and future work are

summarized in Section 7.



Chapter 2

Convolutional Codes, Channel Models
and Sequential Decoding algorithms

In this chapter, the convolutional coding and channel model considered are introduced in
Sections 2.1 and 2.2, respectively. Then, the conventional decoding algorithm as well as the

Fano metric is briefed in Section 2.3.

2.1 Convolutional ‘code ‘and its graphical representa-
tion

A binary convolutional encoder is conveniently structured as a mechanism with shift registers
and modulo-2 adders, where the encoder output bits are given by modulo-2 additions of
selective shift register contents and input bits at present. Let € denote a binary (n, k,m)
convolutional code, in which the encoder outputs a block of n bits whenever a block of k
information bits are inputted. The value m designates the maximum number of previous
k-bit blocks that have to be memorized in the encoder (i.e., if the number of stages of the
Jth shift register is K, then m = max;<;< K;). The initial values of shift registers are all

zeros,! and the current n output bits are linear combination of the present k input bits and

1One exception is the tail-biting convolutional code



the previous m x k input bits. In this work, we assume that the input sequence contains
k x L bits that come from £ input sequences, each of length L bits. In addition, m zeros will
be attached at the end of each input sequence in order to reset the encoder shift registers.

Consequently, these k(L 4+ m) input bits jointly induce n(L 4+ m) output bits.

. o vy = (1010011)
u = (11101) I o v=(11011001001011)
® o wy = (1101001)

Figure 2.1: Encoder for the binary (2, 1,2) convolutional code with generators g; = 7 (octal)
and go = 5 (octal), where g; is the geiierator pelymomial characterizing the ith output.

Figures 2.1 and 2.2 exemplify the encoders of binary (2,1,2) and (3,2,2) convolutional
codes, respectively. As illustrated in Fig. 2.1, the encoder of the (2, 1,2) convolutional code

emits two output sequences,
V1 = (Ul,()a V1,1, U1,27 Ce ,’ULG) = (1010011)

and

Vo = (’Ug,(), U271, /U2,2, e ,U276) = (1101001)

due to the single input sequence w = (uq, uy, Uz, uz, us) = (11101) of length L = 5, where u,

is fed in the encoder first. The encoder then interleaves v, and v, to yield the codeword
vV = (’Ul’o, 1)2’0, Ul,l; U2,1, e ,U176, U2,6) = (].1 01 ].0 01 00 ].0 1].)

of which the length is 2(5 + 2) = 14. On the other hand, the encoder of the (3,2,2)



o vy = (1000)
o vy = (1100)

uy = (11) => o v = (0001)

u = (11 01) v = (110 010 000 001)

Figure 2.2: Encoder for the binary (3,2,2) systematic convolutional code with generators
ggl) = 4 (octal), gf) = 0 (octal), gél) = 0 (octal), géz) = 4 (octal), g:gl) = 2 (octal) and géz) =3
(octal), where ggj )is the generator polynomial characterizing the ith output according to the
gth input. The dashed box is redundant and can actually be removed from this encoder; its
presence here is only to help demonstrating the derivation of generator polynomials. Thus
as far as the number of stages of the jth shift register is concerned, K1 = 1 and K, = 2.

convolutional code in Fig. 2.2 generates the output sequences of
v ="{01,0,%1,1, V1,2, gg) = (1000),

vy = (V2,0, V2,1, V2,2, V2,3) = (1100)

and

vy = (3,0, V3,1, V3,2, V33) = (0001)

due to the two input sequences w; = (u10,u1,1) = (10) and ug = (u2, u21) = (11) of length

L = 2, which in turn generates the interleaved output sequence
v = (V1,0, V2,0, V3,0, V1,1, V2,1, V3,1, V1,2, V2,2, U3,2, U1 3, V2.3, U3,3) = (110010000 001)

of length 3(2 4 2) = 12. In terminology, the interleaved output v is called the convolutional

codeword corresponding to the combined input sequence u.



One representation that characterizes the relation between the encoder inputs and en-
coder outputs is the generator polynomials. For example, g;(z) = 1+z+2? and go(x) = 1+22
can be used to identify v; and v, induced by w in Fig. 2.1, where the appearance of
x' indicates that a physical connection is applied in Fig. 2.1 at the (i + 1)th dot po-
sition, counted from the left. To be specific, putting w and v; in polynomial form as
u(z) = ug+wz+ugx®+- - and v;(z) = v g+ v 1x+v;22%+- - - yields that v,;(z) = u(z)g;(z)

for i = 1,2, where addition of coefficients is based on modulo-2 operation.

Similarly, the relation between the inputs and the outputs can also be characterized by

matrix operation. For example, the relation in Fig. 2.2 can be formulated as

g (@) ¢ () ¢ (x)
’UI(I> ’UQ(IIJ) ’Ug(l’) = ul(x) 'LLQ(I)
| I=1 | g (z) ¢P(x) ¢ (x)

where v;(z) = v g + V1@ + v 92? + -eetAldiw () = uj0 + 1T + ujer? + - -+ define the
1th output sequence and the jth input sequence,.respectively, and the generator polynomial
gi(j ) (x) characterizes the relation-between the ith output and the jth input sequences. For
simplicity, generator polynomials.are; sometimes abbreviated by their coefficients in octal

number format. Continuing the example-in Fig. 2.1, the generator polynomials in octal

format are g; = 7 (octal) and g, = 5 (octal).

A finite-length (n, k,m) convolutional code can be transformed to an equivalent linear
block code with effective code rate® R egective = kL/[n(L + m)], where L is the length of the
information input sequences. Usually, the code rate of the (n,k,m) convolutional code is
referred to as R = k/n, which can be viewed as the effective code rate at L approaching

infinity.

The constraint length of an (n, k,m) convolutional code has two different definitions in

literature: ny = m+1 [38] and na = n(m+1) [25]. In this dissertation, the former definition

2The effective code rate is defined as the average number of input bits carried by an output bit [25].



is adopted, because it is more extensively used in industrial publications.

Let v(ap) = (Va,Vat1,--.,0p) denote a portion of codeword v, and abbreviate vy by

v@). Define the Hamming distance between the first rn bits of codewords v and z by:

rn—1
dH (U(rn—l)a z(rn—l)) = Z v; D Ziy
i=0
where “@” denotes modulo-2 addition. The Hamming weight of the first rn bits of codeword
v thus can be represented by dg (v(rn—1), 0¢n—1)), Where O represents the all-zero codeword.
Furthermore, define the column distance function (CDF) d.(r) of a binary (n,k,m) con-
volutional code as the minimum Hamming distance between the first rn bits of any two

codewords whose first n bits are distinct, i.e.,

dC(T) = min {dH('U(rn—l)7 Z(rn—l)) PV (n—1) 7§ Z(n—1) forv,z € ’g} ,

where € is the set of all codewords.€learly, d.(r)is nondecreasing in r. Two cases of CDFs
are of specific interest: r = m £ 1 and ¥ |= 06.» Iim.r = oo case, the Hamming distance
should be calculated with infinite-length-“input.sequences. However, d.(r) for an (n,k, m)
convolutional code reaches its largest . value d.(oco). when r is a little beyond 5 x m in most
cases. This property facilitates the determination of d.(0c0). The value d.(00), or dee in
general, is called the free distance, whereas d.(m + 1) is called the minimum distance of the

convolutional code.

The operational meanings of the minimum distance, the free distance and the CDF of a
convolutional code are as follows. When a maximum-likelihood decoder is employed onto a
received codeword with sufficiently large length, the error correcting performance is mainly
characterized by dge. [36]. On the other hand, if a decoder figures the transmitted bits only
based on the first n(m + 1) received bits (as in, for example, the majority-logic decoding
[26]), d.(m + 1) can be used instead to characterize the error correcting capability. Finally,

the column distance function characterizes the decoding computational complexity, defined
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as the number of metric computations performed for the sequential decoding algorithm.
Usually, the sequential decoding algorithm requires a rapid initial growth of CDF in order

to have a small decoding complexity.

Next, we introduce two graphical representations, code tree and trellis, of convolutional
codewords. A code tree of a binary (n,k, m) convolutional code presents every codeword as
a path on a tree. For input sequences of length L bits, the code tree consists of (L +m + 1)
levels. The single leftmost node at level 0 is called the origin node. At the first L levels,
there are exactly 2¥ branches leaving each node. For those nodes located at levels L through
(L + m), only one branch remains. The 2*L rightmost nodes at level (L + m) are called
the terminal nodes. As expected, a path from the single origin node to a terminal node
represents a codeword; therefore, it is named the code path corresponding to the codeword.
Figure 2.3 illustrates the code tree for theiencoder in Fig. 2.1 with a single input sequence

of length 5.

In contrast to a code tree, a ¢ode trellis-as termed by Forney [8] is a structure obtained
from a code tree by merging thosenodes in the same state. The state associated with a node
is determined by the associated shift-register ¢ontents. For a binary (n, k, m) convolutional
code, the number of states at levels m through L is 2%, where K = 2521 K; and K; is the
length of the jth shift register in the encoder; hence, there are 2% nodes on these levels.
Due to node merging, only one terminal node remains in a trellis. Analogous to a code tree,

a path from the single origin node to the single terminal node in a trellis also mirrors a

codeword. Figure 2.4 exemplifies the trellis of the (3,1, 2) convolutional code.

11
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Figure 2.3: Code tree for the binary (2,1, 2) convolutional code in Fig. 2.1 with single input
sequence of length 5. Each branch is labeled by its respective “input bit/output code bits”.
The code path indicated by the thick line is labeled in sequence by code bits 11, 01, 10, 01,
00, 10 and 11, and its corresponding codeword is v = (110110010010 11).

12



Om’gina; y TGTT’?nal
node 000 noace
level ¢ 0 1 2 3 4 5 6 7

Figure 2.4: Trellis for a (3,1, 2) binary convolutional code with information length L = 5. In this
case, the code rate R = 1/3 and the codeword length N = 3(5 + 2) = 21. The code path indicated
by the thick line is labeled by 111, 010, 001, 110, 100, 101 and 011, thus its corresponding codeword
is v = (111010001110100101011).
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2.2 Channel models for hard-decision and soft-decision
decoders

When the n(L + m) convolutional code bits, encoded from kL input bits, are modulated
into respective waveform for transmission over a physical medium, the received waveform is
garbled by attenuation, distortion, interference, noise, etc. The demodulator then transforms
the received waveform into discrete signals for use by the decoder to determine the original
transmitted sequences. If the discrete signals are of two values, usually denoted by {0,1},
then the demodulator is termed a hard-decision demodulator. If the demodulator passes
discrete-in-time but continuous-in-value analog outputs to the decoder, then it is classified
as a soft-decision demodulator. Terminologically, if a soft-decision demodulator is employed,
then the subsequent decoder is also classified as a soft-decision decoder. In situation in
which the decoder receives inputs froma hard-déeision demodulator, the decoder is called a
hard-decision decoder. In general“the softzdecision decoder provides better error correcting

performance than the hard-decision decodet:

The decoder should determine the original inferination sequences based on the n(L +m)
demodulator decision outputs according to some criterion. The criterion that most frequently
applies is the mazimum-likelihood decoding (MLD) rule. It is well-known that the MLD
minimizes the codeword error probability under the premiss that the transmitted codewords

are equiprobable.

In this dissertation, we focus on two typical channel types — the binary symmetric chan-
nel (BSC) and the additive white Gaussian noise (AWGN) channel. The former is a typical
channel model for the performance evaluation of hard-decision decoders, while the latter is
widely used in examining the error rate of soft-decision decoders. It should be mentioned that
for a coding system, a channel is simply a signal passage that aggregates all the intermediate

effects onto the signal, including modulation, upconversion, signal distortion, downconver-
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sion, demodulation, thermal noise and others. The demodulator in concept incorporates

these effects into a widely adopted additive channel model as
r=Ss-+n,

where r is the demodulator output, s is the transmitted signal, and n represents the aggre-

gated signal distortion, simply termed noise.

The aggregated signal distortions for every transmitted and received bits are further
assumed to be independent and identically distributed with common marginal distribution,
which is termed memoryless. The extension to multiple independent channel usages is given
by

T’j = sj—i—nj,

for 0 < j < N — 1, where all {n; é\f:—ol share thé:same probability distribution. In situation
where the power spectrum of the noise samples is.a constant, which can be interpreted as the
noise contributing equal power at all frequencies, the noise is dubbed white. Therefore, the
AWGN channel for a time-discrete coding system specifically indicates a memoryless noise

sequence with a Gaussian distributed ‘marginal.

As it turns out, the decoder inputs rg,71,...,ry_1 are independent and Gaussian dis-
tributed with means sq, s1,. .., Sy_1, respectively, and equal variance Ny/2, where Ny/2 is
the doubled-sided noise power per hertz. Assuming an antipodal transmission and equal prior
on ¢; € {0,1} gives

sj = si(¢;) = (=1)9VE,

where ¢; € {0,1} is the jth code bit, and

B=E) = (VE) +

2 <_\/E)2

1
2
is the average energy for single code bit transmission.
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An index that guides the error performance for AWGN channels is the signal-to-noise
ratio (SNR). For the time-discrete system considered, it is defined as the average signal
energy E divided by Ny. Notably, the SNR ratio is invariable with respect to scaling of the
demodulator output. In other words, the SNR ratio remains unchanged by scaling r; by a

multiplicative factor A, since
Aerj =X (=1D)9VE + X nj.

Accordingly, the performance of the soft-decision decoding algorithm under AWGN channels
is often illustrated by error rate against SNR. In order to account for the code redundancy
for different code rates, the code bit energy FE is further transformed to E}, the equivalent
average transmission energy per information bit. Their relation can be easily characterized
by Ey = E/Refiective = F X [n(L +m)/(kL)] as the energy of n(L + m) code bits should be
equally distributed to kL informatien bits. Thusya new index, denoted by Ej,/Ny, is used

instead of SNR= E//N, in plotting the performaince eurves.

The channel model can be further simplified-to binary channel input and binary channel
output, for which the noise sample n. and the transmitted signal s are both elements of
{0,1}. Their modulo-2 addition yields the hard-decision demodulation output . The binary
channel statistics can be defined using two crossover probabilities: p; = Pr(r = 1|s = 0)
and py = Pr(r = 0|s = 1). In this dissertation, we focus on the case that two crossover
probabilities are equal p; = ps = p. The binary channel is therefore symmetric, and is called
the binary symmetric channel. The binary symmetric channel can be treated as a quantized

simplification of the AWGN channel. Hence, the crossover probability p can be derived from

Tj = (-1)0]@ + nj

1 ¢ E
p = jerfc No )
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where

2 e
erfe(x) = — e Vdx
7

is the complementary error function. This convention is adopted here in presenting the

performance figures for BSCs.

Throughout the dissertation, as there exists a one-to-one correspondence between the

transmitted signals s = (sg, s1,...,Sy_1) and the code words ¢ = (¢cg, ¢y, ..., cn_1),

Pr(ric) = [] Priryle)

and
N—-1
Pr(r|s) = [] Pr(ryls;)
=0

will be used interchangeably to represent the channel statistics of receiving r given that s

(equivalently, ¢) is transmitted.

2.3 Sequential decoding of convolutional codes

Since its discovery in 1963 [6], the Fanoimetrie-has become the most popular path metric in
sequential decoding. The Fano metric was originally discovered through massive simulations,
and was first used by Fano in his sequential decoding algorithm on code trees [6]. For any

path v(g,—1) that ends at level £ on a code tree, the Fano metric is defined as:

In—1

M (v n)|r @) = > M(vlry),

j=0

where 7 = (rg,71,...,rN_1) is the received vector, and the bit metric is defined as

M (vj]r;) = log, (%ﬂ;’)ﬂ)) ~R.

In the above bit metric formula, R = k/n is the convolutional code rate, and the calculation

of Pr(r;) follows the convention that the code bits are transmitted with equal probability,
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ie.,

1 1
Pr(r;) = > Pr(v)) Pr(r;lv;) = 5 Pr(rjlv; = 0) + 5 Pr(rfv; = 1).

v;€{0,1}
For example, for BSCs with crossover probability p, where 0 < p < 1/2, the Fano metric

for path v(g,—1) is given by:

In—1

M (v(n—1)|7(@n—1)) = Y _ log, Pr(r;lv;) + ¢n(1 - R), (2.1)

=0
where
logy(1 —p), for rj = vy;

ows it = oy b v

In terms of the Hamming distance, (2.1) can be re-written as:

M (Vn—1)|7(en-1)) = —a - dy(P@n—1), V(en-1)) + B - L, (2.2)

where o = —logy[p/(1—p)] > 0, and G+=n[l=R+log,(1—p)]. It can be easily observed from
(2.2) that a larger Hamming distancebetween the path labels and the respective portion of
the received vector results in a smaller path-mietric. This property guarantees that when the
received vector r is exactly the transmitfed ‘eodeword, and R < 1+1log,(1 —p) (equivalently,
B > 0), the path metric increases alongthe correct code path, and the path metric along
any incorrect path is smaller than that of the equally long correct path.® Such a property is

essential for a metric to work properly with sequential decoding.

The ZJ algorithm was discovered by Zigangirov [40] and later independently by Jelinek
[21] to search over a code tree for the optimal codeword based on the Fano metric. The
algorithm is also called the stack algorithm because a stack is required in its implementation.

For completeness, the stack algorithm [25] is quoted below.

3 Without the assumption of error free reception, the code rate margin, below which the Fano-metric-
based sequential decoding performs well, is the channel capacity. For BSCs with crossover probability P, the
channel capacity is equal to C = 1+ plogy(p) + (1 —p)logs (1 — p). The condition that R < 1+1log,(1 —p) =
C + plog,y[(1 — p)/p], derived from B > 0, can only justify the subsequent argument under the special case
of error free reception. Channel capacity as a well-performed code rate margin for sequential decoding is
beyond the scope of this dissertation. Interested readers can refer to [4].
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<The Stack (ZJ) Algorithm>

Step 1. Load the stack with the origin node in the tree, whose metric is taken to be zero.
Step 2. Compute the metrics of the successors of the top path in the stack.
Step 3. Delete the top path from the stack.

Step 4. Insert the new paths in the stack and rearrange the paths in the stack in order of

decreasing metric values.

Step 5. If the top path in the stack ends at a terminal node in the tree, the algorithm

stops. Otherwise, return to Step 2.

A major issue in the implementation of the stack algorithm is the efficient maintenance
of the stack. For example, the efficiéncy in the rearrangement of paths in the stack in Step

4 will greatly affect the time consumed in the sequential search.

Another issue that a practical implementation of*the stack algorithm may encounter is
that the stack size is finite in practice;.and therefore, may be insufficient to accommodate
the possible large number of paths examined during the search process. The situation is
usually addressed as stack overflow. A straightforward way to deal with the stack overflow
problem is to discard the paths with smaller metric values [25], since they are less likely to
be the optimal code path. The technical issue remained is the determination of the practical
stack size such that the performance degradation due to path discarding is within acceptable

region.

19



Chapter 3

MLSDA and the Proposed Early
Elimination Scheme

Assume that the binary codeword in a (N, K) linear block code € is transmitted over a
binary-input time-discrete channel with channel output » = (ro,71,...,7x_1). Define the

hard-decision sequence ¥y = (yo, Y14+ , Yn—1) cortésponding to 7 as:

0, otherwise,

where ¢; £ log[Pr(r;|lv; = 0)/ Pr(rjlu;.= 1)], and Pr(r;|v;) is the channel transition proba-
bility of r; given v;. According to the Wagner rule, the maximum-likelihood decoding output
v for received vector r is given by

where “@” is the bit-wise exclusive-or operation, e* is the one with the smallest Z;V;Ol e;lo;l
among all error patterns e € {0, 1}” satisfying eH” = yH’, and H is the parity check matrix
of €. Here, superscript “T"” is used to denote the matrix transpose operation. Recall that
a binary (n,k, m) convolutional code with input sequence of length L can be treated as a
(N, K) linear block code with N = n(L + m) and K = kL. Based on the observation in

(3.1), a new sequential-type decoder can be established by replacing the Fano metric in the
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conventional sequential decoding algorithm by a metric defined as:

In—1
p(@em) 2 nly), (3.2)
§=0
where @ (n,—1) = (o, 21, ..., Ten—1) € {0, 1} represents the label of a path ending at level ¢

in the (n,k,m) convolutional code tree, and u(z;) = (y; ® z;)|¢;|. Since the new decoding
metric is nondecreasing along the code path, and since finding e* is equivalent to finding
the code path with the smallest metric in the code tree, it was proved in [17] that the new
sequential-type decoder can always locate the maximum-likelihood codeword through the
priority-first sequential codeword search. For this reason, the new sequential-type decoder

is named the mazimum-likelihood sequential decoding algorithm (MLSDA) [17].

By adding a second stack, the MLSDA can be made to operate on a code trellis instead of
a code tree [17]. The two stacks used in the trellis-based MLSDA are referred to as the Open
Stack and the Closed Stack. The Open Stack contains all paths that end at the frontier part
of the trellis being thus far explored (cf. Fig\. 3.4). The Open Stack functions similarly as the
single stack in the conventional sequential‘decoding algorithm. The Closed Stack stores the
information of the ending states and ending levels of the paths that had been the top paths
of the Open Stack. The Closed Stack is used to determine whether two paths intersect in
the code trellis during the sequential search. The trellis-based MLSDA [17] is quoted below

for completeness.

<Trellis-Based MLSDA>

Step 1. Load the Open Stack with the origin node whose metric is zero.

Step 2. Put into the Closed Stack both the state and the same level of the end node of
the top path in the Open Stack. Compute the path metric for each of the successor
paths of the top path in the Open Stack by adding the branch metric of the extended

branch to the path metric of the top path. Delete the top path from the Open Stack.
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Step 3. Discard the successor paths in Step 2, which end at a node that has the same
state and level as any entry in the Closed Stack. If any successor path ends at the
same node as a path already in the Open Stack, eliminate the path with higher

path metric.!

Step 4. Insert the remaining successor paths into the Open Stack in order of ascending
path metrics. If two paths in the Open Stack have equal metric, sort them in order
of descending levels. If, in addition, they happen to end at the same level, sort

them randomly.

Step 5. If the top path in the Open Stack reaches the end of the convolutional code trellis,

the algorithm stops; otherwise go to Step 2.

Figure 3.1: Bit error rates of the MLSDA for (2,1,6) and (2, 1, 10) convolutional codes with
L = 100.

I For discrete channels, it may occur that the successor path not only ends at the same node as some
path already in the Open Stack but also has equal path metric to it. In such case, just randomly eliminate
one of them.

22



Average Decoding Complexity Per Information Bit

Figure 3.2: Average decoding complexities of the MLSDA for (2,1,6) and (2, 1,10) convo-
lutional codes with L = 100.

We next show the simulation-results of performance and average decoding complexity
for the MLSDA. The bit error rates of'the MESDA for (2,1,6) and (2,1, 10) convolutional
codes are summarized in Fig. 3.1, while the decoding complexity as measured by the num-
ber of metric computations is depicted in Fig. 3.2. Notably, the computational efforts of
sequential-search decoding algorithms, including the MLSDA, are in fact determined not
only by the number of metrics computed but also by the cost of searching and inserting of
the stack elements. The latter cost however can be made of comparable order to the former
by adopting the double-ended heap (DEAP) [3] data structure in the stack implementation.?
This justifies the common usage of number of metric computations as the key determinant

of the algorithmic complexity of the sequential-search decoding algorithm.

2In practical decoder design, only stacks with finite size are available. When the stack is full, one common
strategy is to remove the bottom path, that is, the path with the worst path metric. A double ended heap
is thus useful in this regard because it can access the top path as well as the bottom path in case of stack
overflow. Throughout this dissertation, we assume an infinite stack size and hence, no stack overflow strategy
is required. However, we propose to use DEAP for future practical decoder implementation.

23
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Figure 3.3: Average decoding complexitysversus information length for the MLSDA applied
to the (2,1, 10) convolutional code.

It can be observed from Fig. 3.2'that the average decoding complexities for the MLSDA
is high for low SNRs. An even more serious problem is that the average decoding complexity
per information bit grows as the informatien length increases as shown in Fig. 3.3. This

phenomenon restricts the usage of the MLSDA for long convolutional codes.

We therefore introduce the early elimination modification to alleviate the problem of
growing complexity with respect to the information length. The modification is based on the
following observation. Suppose that the path ending at node C' in Fig. 3.4 is a portion of the
final code path to be located at the end of the sequential search, and suppose that the path
ending at node D happens to be the current top path. Then, expanding node D until all of its
offsprings finally have decoding metrics exceeding those of the successors of the path ending
at node C' may consume considerable but unnecessary number of computational efforts. This

observation hints that by setting a proper level threshold A and directly eliminating the top
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path whose level is no larger than ({y,.c — A), where £, is the largest level for all nodes
that have been expanded thus far by the sequential search, the computational complexity of

the MLSDA may be reduced without sacrificing much of the performance.

Early Elimination Threshold A

® Close Stack
O Open Stack

Figure 3.4: Early elimination window A in the trellis-based MLSDA.

It should be mentioned that sinece the decoding' metric is monotonically nondecreasing
along the path portion to be searched, the path that updates the current /., is always the
one with the smallest path metric among all paths ending at the same level [17]. In fact, this
is the key to ensure that for the sequential search using the maximume-likelihood metric in
(3.2), the first top path that reaches the last level of the code tree or code trellis is exactly

the maximum-likelihood code path.

Based on the above observation, we propose to set a level threshold A in the trellis-based
MLSDA, and directly eliminate the top path whose level is no larger than (£,,x — A). For

this modification, we only need to modify Step 2 in the trellis-based MLSDA as follows.

<Trellis-Based MLSDA with Early Elimination Modification>
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Initialization. Set a level threshold A. Assign {,., = 0.

Step 2. Perform the following check before executing the original Step 2 in the trellis-
based MLSDA.

e [f the top path in the Open Stack ends at a node whose level is no larger than
(lmax — A), directly eliminate the top path, and go to Step 5; otherwise, update

Umax If it is smaller than the ending level of the current top path.

The choice of A is apparently a tradeoff between complexity and bit error probability.
Intuitively, the smaller the A, the higher the possibility that the maximum-likelihood path
is early eliminated. From simulation results, we found that the performance degradation is
almost negligible simply for a small A. This encourages us to analyze the least value of A
to produce near maximum-likelihood peérformance as well as the complexity reduction due

to this early elimination modification!
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Chapter 4

Analysis of the Window Size for
Negligible Performance Degradation

over BSC Channels

This chapter provides detailed derivation. emthe early elimination window that yields negligi-
ble performance degradation for bimary symmetric ¢hannel (BSC) channels. As the random
coding analysis is the main technique used to analyze the window size for the MLSDA, we
will first review the random coding technique-in-the analysis of the truncation window size
in Viterbi decoders in Section 4.1. Then, the derivation of the early elimination window for
the MLSDA such that the performance degradation is negligible is presented in Section 4.2.

Numerical and simulation results will be given in Section 4.3.

4.1 Random Coding Analysis of the Path Truncation
Window in Viterbi Decoder

In [10], Gallager considered the discrete memoryless channel with input alphabet size I,
output alphabet size J and channel transition probability Pj;, and presented the random

coding bound for the maximum-likelihood decoding error P, of the (NN, K) block code as:

P, < exp{—N [—pR + Eo(p, p)|}
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for all 0 < p < 1, where R = log(I®)/N = (K/N)log(I) is the code rate measured in nats
per symbol, p = (p1,p2,- -+ ,ps) is the input distribution adopted for the random selection

of codewords, and

J I 1+p
Eq(p,p) £ —log ) (Z P}/ (””)) . (4.1)
j=1 \i=1

Gallager’s result leads to the well-known random coding exponent:

E,(R) £ max max|—pR + Bolp, p)] = max [~pR + Eo(p)]

0<p<1 p
where Ey(p) £ max, FEy(p,p) is the Gallager function [42]. Notably, the random coding
exponent is a lower bound of the channel reliability function E(R) £ limy .., —(1/N)log(P,)

(provided the limit exists), and is tight for code rates above the cutoff rate.

(m+1)-Stage Shift Register

Input—b{ s D

o o e _’
n GF(g) SO @ Channel Symbol
Inner N
Product I A T A A B oo Selector
roduc . Commutator

Comput rs‘ A A 4 y v — ~ ’_.’

Scrambler

Sequence

Figure 4.1: Single-input n-output encoder model considered in [36]. All elements are in GF(q),
where ¢ is either a prime or a power of a prime.

In [36], Viterbi applied similar random coding argument to the derivation of the decoding
error for time-varying convolutional codes. Specifically, he considered a single-input n-output
convolutional encoder with one (m + 1)-stage shift register as shown in Fig. 4.1. The n inner
product computers may change with each new input symbol, and hence, a time-varying
code trellis is resulted. As all elements are assumed to be in GF(gq), each input symbol will

induce ¢ branches on the code trellis, and each branch is labelled by n channel symbols.
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As a result of the attached m zeros at the end, the encoder will produce n(L + m) output
channel symbols in response to the input sequence of L symbols. Under the above system
setting, Viterbi showed that the maximum-likelihood decoding error P, . for time-varying

convolutional codes can be upper-bounded by:

P<q_1

ST VR exp[—n(m + 1) Eo(p)] (4.2)

for all 0 < p < 1, where R £ log(q)/n is the code rate in unit of nats per symbol, and

A2 Ey(p) — pR is a constant. Since ) is required to be positive, it can be concluded that:

1
liminf ——log P.. > (m + 1)E.(R),
n

n—oo

where E.(R) £ max{,c,1] : 5o(p)>pr} Fo(p). For symmetric channels, Ey(p) is an increasing

and concave function in p with Ey(0) = 0; therefore, E.(R) can be reduced to:

Ry aif 0:< R < Ry;
E.(R)= | Eo(ph). it Ro.< R < C; (4.3)
0, it R>C,

where Ry = Ey(1) is the cutoff rate, €' = E{(0) is the channel capacity, and p* = p*(R) is
the unique solution of Ey(p) = pR. It'is-alsesshown in the same work that E.(R) is a tight

exponent for R > R,.

In order to derive the path truncation window with near-optimal performance, Forney [9]
treated the truncated convolutional code as a block code, and upper-bounded the additional
decoding error P, r due to path truncation in the Viterbi decoder by means of Gallager’s

technique as:

P.r < exp[-nTE,(R)], (4.4)

where 7 is the truncation window size. Forney then noticed that as long as

1 1
lim inf ——log P, 7 > limsup ——log P, ., (4.5)
n n

n—oo n—oo
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the additional error P, 7 due to path truncation becomes exponentially negligible with respect

to P. .. For R > Ry, condition (4.5) reduces to
TE.(R) > (m+ 1)E.(R)

by inequality (4.4) and the tightness of E.(R). A specific case is given in Fig. 4.2 in which the
binary symmetric channel (BSC) with crossover probability 0.4 gives that the path truncation
window at the cutoff rate Ry = 0.0146 bit/symbol must be larger than E.(Ry)/E,(Ry) =~
0.0146/0.0025 = 5.84-fold of the code constraint length. This number parallels the one
obtained under the very noisy channels, where 5.8-fold of the code constraint length is

suggested for the path truncation window at the cutoff rate [37].

Cross Over Probability 0.4, Capacity = 0.0290, Cutoff Rate 0.0146 bits/symbol
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Figure 4.2: Exponent lower bound FE,.(R) of the additional error due to path truncation and
exponent E.(R) of the maximum-likelihood decoding error for time-varying convolutional codes
(without path truncation) under the BSC with crossover probability 0.4.
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4.2 Sufficient Large Window Size for the MLSDA

For simplicity, the analysis in this section is restricted to the simple BSC with crossover

probability e. Extension analysis to other discrete channels can be likewise established.

Refer to Fig. 3.4 in our analysis below. Suppose that the path ending at node B at level
¢ is the current top path of the Open Stack, and let the current /., be updated due to
the expansion of node C. According to the merging operation at Step 3 of the trellis-based
MLSDA, any two paths that survive in the Open stack can be traced back to a common
node before which they shares common traces. Hence, we may assume that the path that
ends at node B and the path that updates the current /.., have common traces before node

A, whose level, without loss of generality, can be assumed zero in the below analysis.

Observe that the current top path ending at node B is early-eliminated if, and only if|
node C'is expanded earlier than node B, previded ¢ < /... —A. Since the decoding metric of
the MLSDA is nondecreasing aloig the path pettion t6 be searched, that node C' is expanded

prior to node B is equivalent to that

1 (e 1)) 21 (X 1)) » (4.6)

which in turn is equivalent to

(1= )"0 Pr ()| Z(n1)) < Pr(P(tyasn—1) | Ztmuun—)) - (4.7)

The above statement can be proved as follows. For the BSC with crossover probability

0<e<1/2,
b, & 10g LETl0 = 0) _ [ log[(1 =€)/, if r; = 0;
i = gPr(rj\vjzl)_ logle/(1 —¢)], ifr; =1.

Hence,

Y

1, if ¢; <O0;
T]:y]:{ qu

0, otherwise
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and p(z;) = (y; ® z;)|¢;] = (r; ® ;) log[(1 — €)/€]. As a result, (4.6) is equivalent to

(@ n-1)) > 1 (Z(laen—1))

In—1 Lrnaxn—1
= Z plz;) = p(;)
7=0
In—1 Lmaxn—1
= Z(erij)z (Tj@i‘j)
§=0 §=0
n—1 lmaxn—1
& Z (r; ® ;) — (r; ® x;)] + Z (r; @ z;) <0.

j=fn

Similarly, (4.7) is equlvalent to

(1= )" =9 Pr (r(n1)| 2@n-1)) <P (T (traen—1)| E(tmaen—1))

In—1 Zmaxn 1
& Z log Pr(7;]|z;) + n(lmax — ) log(l —€) < Z log Pr(r;]Z;)
=0
In—1
& Z (1 —r; ® ;) log(la=e) + (r;@a;)log(e)] + n(lmax — £)log(l —¢)
=0
lrnaxn—1
< (Y= @) Tog(L— €) + (r; & Z;) log(e)]
=0
(1 . 6) In—1 lmaxn—1
| . o) — . , . T -
08— (Z[(TJ & T (158 T5)] + Z (7"]@%)> <0
Jj=0 j=tn
In—1 Crnaxn—1
A Z[(TJ@%) (r; @ ;)] + Z (rj®2;) <0
7=0 j=tn

Therefore, the desired equivalence of (4.6) and (4.7) is validated.

By noting that for the MLSDA, the path that updates the current ¢,., is exactly the
one with the smallest path metric among all paths ending at the same level [17], condition

(4.7) can be equivalently re-written as:

(1 — E)n(ﬁmax_g) - Pr (’l"(@n,l)‘ w(gn,l)) S B max Pr (T(gmaxn,1)| i(fmaxnfl)) s (48)

m(zmaxn— 1) € rglmax

where G, . is the set of all labels of length /,,.xn, whose corresponding paths consist of

different branches from path AB after node A. Consequently, additional decoding error may
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be introduced by early elimination if (4.8) is valid for some ¢ and £y, with € < £ — A,

when « is the transmitted codeword.’

Continue the derivation by replacing /.« by ( for notational convenience. The proba-
bility (¢, 3) that (4.8) occurs is given by:
£, 8) = Z Do (7(gn-1)) Pr (7(s0-1)| Z(gn-1)) ; (4.9)
r(ﬂn_l)E{O,l}ﬁn

where ®g (7 (g,_1)) = 1 if (4.8) is valid, and 0, otherwise. From

_ p
S Pr (| E@an)

T (gn—1)€¥p
1/(1

d, (T(,Bn—l)) < for p >0,

we obtain:

. P
Z Pr (’r(ﬂn—l)‘ w(ﬁn—l)) 1/(1+p)

T gie1)E€B
5(& 6) S Z i /(1 Pr (T(ﬁn—l)‘ x(ﬁn_l)) .
P €{0,1}5 (1 — eymE=O/ER P71, 5) | 2 (0n-1)) /(1+p)

Taking expectation of (¢, 3) with fespect to randem selection of codewords of length (3n)

according to code bit selection distribution p = (pg, p1), where py and p; are the probabilities

1Since early-elimination of the path with label x is always performed whenever (4.8) is valid, it is clear
that additional error is introduced only when the transmitted label & corresponds to the maximum-likelihood
code path. In other words, when @ does not label the maximum-likelihood code path, the validity of (4.8)
or early-elimination of the path with label  will not add a new error to maximum-likelihood decoding. As
what we concern is an upper probability bound for the additional error due to early-elimination, it suffices
to analyze the probability bound on the occurrence of (4.8).
Notably, when equality holds in (4.8), « will still be early-eliminated according to Step 4 of the algorithm.
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respectively for bits 0 and 1, yields that:

0P < (1-eme /i Z Z Pr(r(ﬂnfl)‘i(ﬁn—l))l/(l—m)

r(ﬁnfl)e{ovl}/@n i(ﬁ"*DE’gﬁ

1/(14p) Pr (

x Pr (T(Zn—l)‘w(f'n—l)) T (tn,Bn— 1)’$(znﬁn 1) ( .10)

< (1 — e)TB0p/(tp) Z Z Pr (7 (gn_1)| &(on_1)) 1/ (1+p)

r(ﬁn—l)e{()’l}'g" &:(ﬁn—l)efgﬁ

VO by (o

x Pr (T(ﬁn—l)‘ Cl?(gn_l)) (ﬁn Bn—1) ‘ m(én Bn— 1 (4 11
p

(G- - 1/(1+p)
= |64 x(1—¢) (B=0)p/(1+p) Z [Pr ("“(ﬁn_n‘ w(ﬁn—l)) P
r(ﬁn_l)E{O,l}ﬁ"

Pr (7 (en-1)| @(en-1) " Pr (T n 01| Tiengn-1))

where (4.10) holds since labels @ (,—1) and any labels in €4 are selected independently, and
(4.11) is valid due to Jensen’s inequality with p!< 1. Finally, by noting that €] < 2% =

2"PR e obtain:

£, p) < 9~ n[—pBt Eo (P~ 2—(5“5)”[‘93+P10':’;2(1*6)/(1+,0)+El(/%P)]7 (4.12)
where
1 1 I+p
Eo(p.p) & —log, Y (Zpi Pr(r = jlv = i>1/<1+ﬂ>>
=0 \ i=0
and
1 1 1 P
) |3 (S retr = o= 0) (Somprto = o =00} |

Inequality (4.12) provides an upper probability bound for a top path ending at level
¢ being early-eliminated. Based on (4.12), we can proceed to derive the bound for the
probability P. p that an incorrect codeword is claimed at the end of the sequential-type

search because the correct path is early-eliminated during the decoding process.
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Without loss of generality, assume that the all-zero codeword 0 is transmitted. Then,

L-A
P.p=P.g(A) < Pr (U 0,/_1 18 early—eliminated)

=1
L—A

< Z 9—tn[=pR+Eo(p)]g—An[—pR+plogy(1—€)/(1+p)+E1(p)] 7 (4.13)
=1

where the last inequality follows from (4.12) by taking p = p*, and the observations that
B—¢>Aand [-pR+ plogy(1 —€)/(1+ p) + E1(p)] is non-negative subject to Ey(p) > pR.

Denoting A £ FEy(p) — pR, we continue the derivation from (4.13):

L-A
P, p < 2 Anl-pRtplog;(1=¢)/(1+p)+E1(p)] Z 9—tn
=1

< 9~ Anl-pRtplogy(1-0)/(1+p)+E1 (o) Z 2~ tnA
/=1
_ K, . 9-Onl-pRtploss(1-0/ (L) +Er(p)] (4.14)

where K,, = 27""/(1 — 27™) is a constantyindépendent of A. Consequently,

v

1
lim inf - logy P Al=pR+ plog,(L —€)/(1+ p) + E1(p)] + A

n—oo

> A=pR+ plogg(l —€) /(1 + p) + Ei(p)],

subject to Ey(p) > pR with 0 < p < 1, which immediately implies:

1
liminf ——log, P. g > A - Ey(R),
n

n—oo

where Eq(R) £ max(,c01] : Bo(p)>pr}[— PR+ plogs(1—e€)/(1+ p) + E1(p)]. Following similar
argument as [9], we conclude that the additional error due to early elimination in the MLSDA

becomes exponentially negligible if
A-Eg(R) > (m+1)E.(R), orequivalently, A/(m+1)> E.(R)/E,4(R)  (4.15)
for convolutional code rates above the channel cutoff rate Ry, where

E.(R) & max Ey(p),
( (pel0.1] = Eo(p)>pR) o(p)
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since (m + 1)E.(R) is the exact error exponent of the maximum-likelihood decoding error

for convolutional codes for R > R [36].

4.3 Numerical and Simulation Results

By choosing € = 0.045 and € = 0.095 to approach the desired cutoff rate 1/2 and 1/3, it can
be observed from numerical plots in Figs. 4.3 and 4.4 (or directly derived from (4.15)) that

the suggested early elimination windows are:

0.4996

A > 00771 - (m+1) = 2.1999(m + 1) for rate 1/2 codes; (4.16)
0.3342
A > 02516 < (m + 1) ~ 1.1868(m + 1) for rate 1/3 codes. (4.17)

Condition (4.16) and (4.17) indicate that for (2,1,12) and (3,1,8) convolutional codes, taking
A =29 and A = 11 respectively should suffice torésult in negligible performance degradation
at the cutoff rate. It can be observed|respectively. from the simulations in Figs. 4.5 and 4.6
that the MLSDA with early eliminatipn-window A:= 30 for (2,1,12) convolutional code
and A = 11 for (3,1,8) convolutional c¢ode exhibit;negligible performance degradation for
all E,/Ny’s simulated, where we take e = Lerfc(y/E;/Ny) as a convention, and erfc(+) is the
complementary error function. For comparison, the performance of the stack algorithm with

the Fano metric is also illustrated.
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Figure 4.3: Exponent lower bound E(R) of the additional error due to early elimination and
exponent E.(R) of the maximum-likelihood decoding error for time-varying convolutional codes
(without early elimination) under the BSC with erossover probability 0.045.
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Figure 4.4: Exponent lower bound E(R) of the additional error due to early elimination and
exponent E.(R) of the maximum-likelihood decoding error for time-varying convolutional codes
(without early elimination) under the BSC with crossover probability 0.095.
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Figure 4.5: Performance for (2,1,12) convolutional codes for maximum-likelihood (ML) decoder,
stack algorithm with Fano metric, and MLSDA with early elimination window A = 30 under BSC.
The generator polynomial of the code is, 142554 77304] in octal. The message length L = 500.
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Figure 4.6: Performance for (3,1,8) convolutional codes for maximum-likelihood (ML) decoder,
stack algorithm with Fano metric, and MLSDA with early elimination window A = 11 under BSC.
The generator polynomial of the code is [557 663 711] in octal. The message length L = 500.
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Chapter 5

Analysis of the Window Size with
Negligible Performance Degradation
over AWGN Channels

In this chapter, the analysis on the early elimination window that suffices to provide near
optimal performance over AWGN#*channelgrisiprovided. The road map is as follows. In
Section 5.1, we obtain a union bound of block error-rate (BLER) for convolutional codes
with finite length. This upper bound is‘accurate-at high SNRs, and hence, can be used as a
faithful replacement of the BLERs. In Section 5:2; an upper bound for additional BLER due
to the introduction of early elimination is established. In Section 5.3, the suggestive values of
early elimination window A for negligible performance degradation is obtained based on the
analytic bounds in the previous two sections. Simulation results are also shown to validate

the suggested values.
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5.1 Block Error Rate Analysis for Finite-Length Con-
volutional Codes with ML Decoder

For a convolutional code with specific code rate and generator polynomial, the weight enu-
merator function (WEF) A(z) is defined as [25]
Ax) = i Agx®,
d=dfree
where dge. is the free distance and A; denote the number of codewords with weight d. The
WEF can be calculated by Mason’s gain formula or by computers. For example, the WEF

for the (2,1,6) convolutional code with generator polynomial [554,744] (in octal) is
A(x) = 112" 4 382" + 1932 + 13312'° + 72752 + 404062*° + - - - |

and it means that there are 11 codéwords withfweight 10, 38 codewords with weight 12,
193 codewords with weight 14, and se-on. - For.convolution decoding, we say that the a
first event error is made at time unit ¢ if ‘the correet path is eliminated (in, e.g., Viterbi
decoder) for the first time at timé-unit"?. For infimite length convolutional codes, the first
event error probability, denoted by P.,, 1s shown to be independent of ¢. For binary-input

AWGN channels, P,, can be bounded above as follows: (c.f. equation (12.20) and (12.44a)

P, < i A4Q (,/2d3%>, (5.1)

d:dfree

in [25])

where R is the code rate, E,/N, is the signal-to-noise ratio per information bit, and Q(x) =
I \/%76_952/ 2dz. Notably, the union upper bound in (5.1) is also valid for the finite-length
convolutional code since the competitor paths (that compete with the correct path) of the
finite-length convolutional code are only sub-portions of the competitor paths of the corre-

sponding infinite-length convolutional code.
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Based on the first event error probability P,,, we can derive a “union-type” upper bound

for block error rate (BLER) for convolutional codes with finite information length L as
BLER < Pp=L-P,,. (5.2)

It should be mentioned that the union-type bounds are generally accurate at high SNRs,
which can be substantiated by simulations. Figures 5.1 and 5.2 summarize Pp in (5.2) and
the simulation results of BLERs for (2,1,6) and (2,1,10) convolutional codes, respectively,
with information length L = 200. The two figures show that at SNR higher than 4 dB, Pp
is almost indifferent to the true BLER. We hereafter use Pp in (5.2) as an approximate of
BLER for finite-length convolutional codes in determining the early-elimination window as
what we concern in this work is medium to high SNRs.

(2,1,6) Code with Message Length 200

= T T

10° @ =

Al

5 BLER UB ]
—©- BLER Simulation |]

0k ‘ ; 3

Block Error Rate

Figure 5.1: Block error rate upper bound (BLER UB) given by (5.2) and simulated BLER for
(2,1,6) convolutional code under AWGN channels.
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(2,1,10) Code with Message Length 200
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Figure 5.2: Block error rate upper bound  BLER UB) given by (5.2) and simulated BLER for
(2,1,10) convolutional code under AWGN channels.

5.2 Moment Generating Function Bound of Additional
Error Due to Early Elimination

In the derivation of the error rate, we may assume without loss of generality that the all-
zero codeword 0 is transmitted. Then, the block error occurs when either (i) the all-zero
code path is not maximum-likelihood (ML), or (ii) any offspring of the all-zero code path is

early eliminated (EE). This observation results in that the BLER for the MLSDA with early
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elimination is upper-bounded by:

Pr ([0 not ML] or [0 EE])

<

IN

IA

Pr (0 not ML) + Pr (0 EE and 0 ML)

L+m—A
Pr (0 not ML) +Pr{ ] [0O@—1) EE and 0 ML])

le=1

L+m—Al.—1
Pr (0 not ML) + Pr U U [0(nge_1) EE due to an offspring of ﬁ(ngb) and O ML})
le=1 £,=0

L+m—A—1 L+m—A )

Pr (0 not ML) + Pr U U [O(nge_l) EE due to an offspring of ﬁ(ngb) and 0 ML}
0=0  fLe=lp+1

L+m—-A—-1 L+m—A
Pr (0 not ML) + Z Pr ( U [O(nge_l) EE due to an offspring of ()(ngb) and 0 ML})
£,=0 le=Lyp+1

L+m—A-1 L+m—A
Pr (0 not ML) + Z Pr ( U [0(ne.—1) EE due to an offspring of 0(p) and 0 ML]) (5.3)

£,=0 fe=l

L+m—A

Pr (0 not ML) + (L + m — &) Pr ( U [O(nge,l) EE due to an offspring of 6(0) and 0 ML}) ,
Le=1

(5.4)

where

O(nr,) = (0,0,...,0,1),

nly of them

and (5.3) follows from the fact that the probability of

L+m—A
Pr ( U [O(nge_l) EE due to an offspring of ﬁ(ngb) and 0 ML})
Le=0p+1

is non-increasing in ¢, as the set of competitor paths that possibly eliminate the all-zero

path for a larger ¢, is a subset of those for a smaller ¢,. Notably, in the above derivation,

the event [0 not ML] includes those cases that the all-zero path has been eliminated due to

other equal-metric path even if it has the smallest metric (cf. Footnote 1.) Similarly, [0 ML]

includes those cases that the smallest-metric all-zero path survives the random choice in

footnote 1 whenever it merges with some other equal-metric paths.
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The first term in (5.4) is the BLER of the maximum-likelihood decision, while the sec-
ond term can be regarded as a probability upper bound of additional BLER due to early
elimination. Observe that the second term is non-increasing in A. Therefore, if A is chosen
to be sufficiently large such that the additional BLER is negligibly less than the BLER of

the maximum-likelihood decision, the desired near optimal performance is obtained.

Before calculating the second term in (5.4), we notice that the offspring of O(ngb), which
causes the early-elimination of 0, 1), will never re-visit the zero state after level £;. This
is because if the offspring of O(ngb) merges with the all-zero path at some level ¢ with ¢ > ¢,
and survives after the conduction of Step 3 in the MLSDA (so that it can later cause the
early-elimination of 0, 1)), its metric up to the merged level £ must be smaller than that
of O(ne—1), which indicates the violation of event [0 ML] (that includes the situation that 0

wins the random pick in footnote 1).

Now, in lie of this observation,swe let Py (A be the set of paths of length n(¢.+ A), which
diverge from Oy, _1) at level 0, and never re-visit the zero state. Denote by @ (s, +a)-1) one

particular path in P, A with weightody in-the first. n/. bits and weight ds in the last nA
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bits. Then, The probability that 0, 1) is early eliminated by @(,@.+a)-1) is
Pr (O(nge,l) EE due to x(,¢.4+a)-1) and 0 ML)
< Pr (O(nge,l) EE due to Cl,'(n(geJrA),l))

= Pr(p(@me.+a)-1)) < #(0@pe.—1)))

n(f5+A)71 née—l
= Pr| Y eyl <) (o)l
=0 =0
n(le+A)—1
e[ Y el S wlel<o
JET (B (n(tetn)-1)) j=nle
1 nle+A)—1
= Pr Y. oty D (lel-e) <0
JET (®(n(tetn)-1)) j=nle
n(le+A)-1
= Pr > 2+ Y (Il =r)<0], (5.5)
JET (B(n(te+2)=1)) g=nle
where J (@) = {j : «; = 1} is the set of indices ina ) = (zo, 21, ..., ;) such that z; = 1,

and (5.5) follows from ¢; = log[Rr(ryjv; = 0)/Pr(r;|v; = 1)] = (4V/E/No)r;.

Under the assumption that xg,e, ray—1y has weight d; in the first nf. bits and weight
dy in the last nA bits, and also the observation that {7‘3 ", is independent and identically
Gaussian distributed with mean £ and variance Ny/2 with respect to the transmitted 0, the

probability in (5.5) is in turn equal to

di+d2 di+nA
(ZQTJ Z (Irsl +r5) + Z (Irs[ = 75) <0>

j=di+1 j=di+d2+1
di+ds d1+TLA
_ pr(zrﬁ SIS rjgo)
j=1 j=di1+1 j=di+d2+1
d1 d1+d2 di+nA
SR POEARSD SR EFI RS ST U BT
j=1 j=d1+1 j=d1+da+1
where
v Jory, it >0
i { 0, elsewhere, (5.7)
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and

J elsewhere.

7”],

The moment generating functions M (t), M (t) and M_(t) of (=r;), (=r;) and (—r;) are

respectively given by:

o 1
M) = / em\/ﬂ_Noexp

M(t) = @( ;0/2 / e ( “;05)2)6;
- o) g s) [ Lo ()
- o o) P o ().
and
M_(t) = 1—@( ;0/2 / \/W_NO < (x]—vog)2>d
o) e (44 [ ()
- 1) o ()0 (M)

The probability that 0, 1) is early-eliminated by one particular path @, +a)-1) in Py 4a

is therefore upper-bounded by the moment generating bound as:

Pr (i: (=rj) + 12:2 (=) + 12: (=r;) > 0) < [M(O]™ [My(8)]™ [M_(2)]"

j=1 j=di+1 j=di+d2+1

for t > 0.
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Define the weight distribution function for all paths in Py A by
W(le, A) =Y Agya, (e, A) - wft - w2, (5.9)
dy,d2
where Ag, 4,(le, A) is the number of paths with weight d; in the first nf. bits and weight d,
in the last nA bits. This function can be established by computers. For example, for (2,1,6)

convolutional code with generator polynomial [554,744] (in octal), we have:

W (2,3) = 2wiwy + 3wiws + 6wiws + 4wiws + wiws;
W (3,2) = wiwy + 2wiws + wiws + wi + wiws + 3wiwi + 3wiws + 2wiw, + wiws + wiws;

W (3,5) = 2wiws + 2wiws + 8wiwy + - - - + 2wiwy + wiw; + Swiws + - - + 3wiws + - - - .
As a consequence, the second term in (5.4) can be bounded above by

L+m—A
Pr ( U [O(nge,l) EE due to an ¢ffspring of 6(0) and 0 ML})
=1
L+m—A
< Z Pr (O(nge_l) EE due toan offspring of 0y and 0 ML)
le=1
L+m—A
>3 A lOhd) - min 0" M (0% M ] ()

t>0
le=1 dy ad2

IN

5.3 Numerical and Simulation Results

In the previous two sections, we obtain that the first term in (5.4) can be well approximated
by (5.2), and the second term can be bounded above by the moment generating bound in
(5.10). The numerical values of these bounds respectively for (2,1,6), (2,1,8), (2,1, 10),

(2,1,12) and (3, 1,8) convolutional codes are plotted in Figs. 5.3, 5.4, 5.5, 5.6 and 5.7.

Define the sufficiently large window size A to be the least integer such that the BLER
upper bound of the MLSDA with early elimination (BLER UB MLSDA/EE) is less than 0.1
dB inferior to the BLER upper bound (BLER UB) of the ML decoding at BLER UB=10"5.
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The resultant sufficiently large window sizes are summarized in Tables 5.1 and 5.2 for rate
one-half and rate one-third convolutional codes, respectively. We found that the window sizes
suggested by the upper bounds are close to those obtained by simulations, and therefore can
be used as a guide to predict the near-optimal window size (especially when simulations for
some codes are not available).

(2,1,6) Code with Message Length 200

10 T T T T T
F —7- BLER UB MLSDA/EE (A=21)

¥ ~%- BLER UB MLSDA/EE (A=22)
10 B —— BLER UB MLSDA/EE (A=23) | |
-5 BLERUB

Block Error Rate

8
3 3.5 4 4.5 5 5.5 6 6.5

Figure 5.3: Block error rate upper bounds for (2,1,6) convolutional codes with L = 200.

Table 5.1: Suggested A values for rate one-half convolutional codes

Memory Order m 6 8 10 12 14 16

554 561 4672 42554 | 56721 | 716502

Generator Polynomial 744 | 753 7542 | 77304 | 61713 | 514576

imin 10 12 14 16 18 20
Sufficiently Large A by UB 23 29 33 38 42 46
Sufficiently Large A by Simulations || 20 24 28 32 36 40
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(2,1,8) Code with Message Length 200

10 T T T T ; T 3
p —7— BLER UB MLSDA/EE (A=27) |]

: —%— BLER UB MLSDA/EE (A=28) |

10° & ; — BLER UB MLSDA/EE (A=29) |
—-5- BLER UB 1

Block Error Rate

Figure 5.4: Block error rate upperybound for (2,1, 8) convolutional codes with L = 200.

(2,1,10) Code with Message Length 200

10 T T 3
—7— BLER UB MLSDA/EE (A=31)
—%— BLER UB MLSDA/EE (A=32) |
o —— BLER UB MLSDA/EE (A=33) |]
10~ —=- BLER UB E
107k
ﬁ 107
S
iy
S
S 10 £
o
10°k
10°E
1077 | | | 1 |
2 25 3 3.5 4 4.5 5
Eb/N0

Figure 5.5: Block error rate upper bounds for (2,1, 10) convolutional codes with L = 200.
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(2,1,12) Code with Message Length 200

10" ¢ T T
3 —7- BLER UB MLSDA/EE (A=34)
—=— BLER UB MLSDA/EE (A=36)
71{ —— BLER UB MLSDA/EE (A=38)
10 F —=- BLERUB El

Error Rate

Figure 5.6: Block error rate upper, bounds for (2,1, 12) convolutional codes with L = 200.

o (3,1,8) Code with Message Length 200
10 T ;

T I 3
~v BLER UB MLSDA/EE (A=17) |
~& BLER UB MLSDA/EE (A=18) |]
—— BLER UB MLSDA/EE (A=19) |1
-5 BLER UB

e

Block Error Rate

2 25 3 3.5 4 4.5 5

Eb/NO

Figure 5.7: Block error rate upper bounds for (3, 1,8) convolutional codes with L = 200.
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(2,1,6), Message Length 200
T

T T

— A=16 |

- A=18 |]

Block Error Rate

Figure 5.8: Simulated block errofrates for (2,1, 6) convolutional codes with L = 200.

10° T

—— A=20 ]
- A=22 |]
—— A=24 |]
== ML |]

Block Error Rate
SI
[

10 : .

Figure 5.9: Simulated block error rates for (2,1, 8) convolutional codes with L = 200.
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(2,1,10), Message Length 200
10 T T T

— A=24

—©- A=26 |]

Block Error Rate

Figure 5.10: Simulated block errorrates for (2;.1, 10) convolutional codes for L = 200.

(2,1,12), Message Length 200

10 T T T
—— A=28
-&~ A=30
- A=32
—# MLSDA
107k
107k
° F
=
o
S
iy
E
107}
107
10-5 | | | |
1 15 2 25 3 3.5
E,/N,

Figure 5.11: Simulated block error rates for (2,1, 12) convolutional codes for L = 200.
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Table 5.2: Suggested A values for rate one-third convolutional codes

Memory Order m 6 8 10

554 557 4726

Generator Polynomial 624 663 5562

764 711 6372
Minimum Distance ds 15 19 22
Sufficiently Large Aby-tUB 14 18 23
Sufficiently Large A"by Simulation |k'12 16 20
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Chapter 6

Analysis of the Computational Efforts
of MLSDA and MLSDA with Early

Elimination

In this chapter, the large deviations technique and the Berry-Esseen theorem [7, sec. XVI. 5]
are utilized to estimate the computationalicomplexity of the MLSDA with and without early
elimination. The large deviations technique-is generally applied to compute the exponent
of an exponentially decaying probability-mass==In order to obtain a better computational
complexity upper bound, we also apply:the Berry-Esseen inequality to evaluate the subexpo-
nential detail of the concerned probability. Simulations show that the resultant complexity

upper bounds are close to the true complexity at both low and high SNRs.

6.1 Berry-Esseen Theorem and Probability Bound

The Berry-Esseen theorem [7, sec.XVI. 5] states that the distribution of the sum of indepen-

dent zero-mean random variables { X;}"_;, normalized by the standard deviation of the sum,

3

n’

differs from the unit Gaussian distribution by no more than C'r,/s3, where s> and 7, are,

respectively, the sums of the marginal variances and the marginal absolute third moments,
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and the Berry-Esseen coefficient, C', is an absolute constant. Specifically, for every a € R,

Pr{i(xl+---+xn)ga}—cp(a)

Sn

<C =, (6.1)

where ®(-) represents the unit Gaussian cumulative distribution function (cdf). A typical
estimate of the absolute constant is C' = 6 [7, sec.XVI. 5, Thm. 2]. When {X,}?, are
identically distributed, in addition to independent, the absolute constant can be reduced to
C' = 3, and has been reported to be improved down to 2.05 [7, sec.XVI. 5, Thm. 1]. Shiganov
improved the absolute constant down to 0.7915 for an independent sample sum, and, 0.7655,
if these samples are also identically distributed [34]. Shiganov’s result is generally considered

to be the best result yet obtained thus far [32].

Based on the Berry-Esseen inequality, we first derive an upper probability bound for the
sum of independent, but non-Gaussian random. variables, and later use this bound to analyze

computational efforts.

Lemma 1. Let Y, = > " | X, be the sum of i.1.d. #vandom variables whose marginal dis-
tribution is F(-). Define the tunSted"distribution with parameter 6 corresponding to F(-)

| exp{0z} dF(x)
M(0) ’

where M (0) 2 E[e?*1]. Let the random variable with probability distribution F©(-) be X©).

dF9(z) &

Then, for every 6 < 0,
Pr{Y, < —na} < A, (6, a)e’" M™(6),

where A, (0, ) = min{ B, (0, o), 1},

O'(e) —(u(0)+a)?n/[202(8)] p(@) ' )
Varn e WOT/BEON L o0 2 if a > 002(6) — p(h);
0[05>(0)~2(u(0)+a)ln/2 | o P\Y) '
‘ + CO-S(Q)\/E’ otherwise,
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and C = 0.7655.

Proof. Define F\” (y) = Pr[Xfe) + XQ(Q) +oo4xP < y], and let the distribution of [(Xl(e) -
w(0) + -+ (X — w()]/[o(6)v/n] be H,(-), where in the evaluation of the above two
statistics, {Xl-(e)}?:1 are assumed independent with common marginal distribution F®)(.).
Then, by denotin VO =xO 4 x4 4 X,(LG), we obtain:
y ) 1 2
Pr(Y, < —na) = / dF(x1)dF(z3) - - dF (zy,)
[Z1++2n<—na]
— M) / @+ GO () IFO) (1) - - - dFO (1)
[Z1++zn<—na]
- M"(0)E [e*H(Xig)*“*Xﬁg))1{)(1(‘9) b X0 < _na}]
= M"(0)FE [e’ey’ge)l{Yn(e) < —na}

= M"(0) /_ 7 e dBO@), ey — o (0)vny + p(0)n)

—(u(0)+a) /i (0) ,
= M"(9) / e~ 7Oy OO (1) (6.2)
=(u(0)+)v/n/a(8) ,
_ e@anMn(e) / 6790(0)\/5[21 +(u(9)+a)\/ﬁ/o(9)]dHn(y/>7 (63)

where 1{-} is the set indicator function, and (6.2) follows from H,(y) = 7Y (o(0)y/ny +
(0)n).

Integrating by parts on (6.3) with A(dy) 2= — 0o(0)/nexp{—0c(0)/nly + (u(0) +
a)y/n/o(0)]}dy defined over (—oo, —(u(0) + a)y/n/o(6)], and then applying equation (6.1)
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yields

~(u(6) ) Vo (0)
/ g =IOV IO+ O g . () (6.4)

o0

—(u@)+a)vn/a(0) [ _M _
i (O ) = o At

IN

Ol [ (OO ) 420 A0 sy

/oo i o (0) a3(0)v/n
~O+VE/SO) T ((6) +a)\/ﬁ> p(0)
— O ——r—— | - Dy } Ady) + 2C——~——=
/. (-0 W) M) +2C 50 7
THORANVRITO) oy @+l _L 22 p(0)
_ —00(0)v/n [y+(u(0)+a)y/n/o V20 + 002 6.5
/oo ‘ T kT (65)
0202 (0)n/2 ,~0(k(0)+o)n gy (1(0) + a)v/n 9 _r0)
e (swtorv— HELGEIE) w20t
a(6) — (0 +)*n/[20%(6)] p®) . 2
e > niles +20————, ifa>00°(0)— u);
V2mn[(pu(0) + a) — 00%(6)) a3(0)v/n @) 26?6)
e0?%(0)n/2o=0(u(0)+e)n 4 QCL otherwise,

()’

where (6.5) holds by, again, applying integration by part, and (6.6) follows from

IA
~  —N—

1
O(—u) < e /% —and O(u) <1 for u>0.
21U

It remains to show that

—(p(0)+a)v/n/a(9)
/ 6—90(9)\/5[y+(#(9)+a)\/ﬁ/0(9)]d[—[n(y> <1,

[e.9]

which be established by observing that

—(1(0)+a)v/n/o(0)
690471]\471(9)/ 6—90(9)\/5[y+(u(9)+a)\/ﬁ/0(9)]dHn(y) = Pr{Yn < —TLO[} (67)
— Pr {GG(Yn-l—noc) > 1}
< E[ee(Yn+na)]

= e pm(o). (6.8)

O
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Some remarks are made following Lemma 1 as follows. First, the upper probability
bound in Lemma 1 consists of two parts, the exponentially decaying e’*"M™() and the

subexponentially bounded A, (6, «). When « > 00%(0) — () and o # —pu(6),

a) = o (%) e (1(0)+0)*n/[202(0)] PO p(9)
By(0,a) VI l(a(®) + o) —602(8)] +2003(9)\/ﬁ 2003(9)\/5

since the first term decays exponentially fast, and B, (0, «) reduces to the Berry-Esseen

probability bound. However, when 6 is taken to satisfy p(f) = —a,

Bu(,a) = ———— 42020 _

V2mn|0]o(9) a*(0)v/n’
and a larger bound (than the Berry-Esseen one) is resulted. In either case, B, (6, a) vanishes
exactly at the speed of 1/4/n. Secondly, when A,(#,a) = 1, the upper probability bound
reduces to the simple Chernoff bound e’ M™(6) for which a four-line proof from (6.7) to
(6.8) is sufficient [11, Eq. (5.4.9)], and is always valid for every 6 < 0, regardless of whether

a > 002(0) — u(6) or not.

The independent samples { X}, ‘with-which our decoding problems are concerned ac-
tually consist of two i.i.d. sequences,/one of which is Gaussian distributed and the other is
non-Gaussian distributed. One way to bound the desired probability of Pr[> " | X; < 0] is
to directly use the Berry-Esseen inequality for independent but non-identical samples (which
can be done by following similar proof of Lemma 1). However, in order to manage a better
bound, we will apply Lemma 1 only to those non-Gaussian i.i.d. samples, and manipulate
the remaining Gaussian samples directly by way of their known probability densities in the

below lemma (cf. The derivation in (6.9)).

Lemma 2. Let Y, =Y " | X; be the sum of independent random variables {X;} |, among
which {X;}L | are identically Gaussian distributed with positive mean p and non-zero vari-

ance o2, and {X;}" ;. have common marginal distribution as min{Xy,0}. Let v =
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(1/2)(p?/o?). Then

Pr{Yn < 0} < B(dan_ d77)7
where
[ O(—v27n), if d=n;
d <_(n—d)ﬂ+d\/ﬂ) + A (A)
vd n—d
B(dn—d) =14 x [@(4)6—7@”/2 + cp(\/ﬂ)}
el () 1> 2 el
L L otherwise,
a = —i+ (/27 = N3\ + i),
i 5(A) p(A)
Ap_g(N) 2 min | 1{a >0 o C +1{a <0},1],
a(A) ({ }L m(n—d) F3(M\Vn —d te <0}
i 2 BlXan) = —(1/ 8T + \JB0(—/29),
. d
d nd n 1
~2 A é o . AQ_'_ 7
() n—d (n—d)? = 14"/ 21 e (1/27)
) 2 n A { d(n +d) \2
g (n—d) [1 +V2rAe7®(1/27)] (n — d)?

2

( —

n—d[(n—d)

and A is the unique solution (in [0,+/27)) of

A2V P(—)) = L (1 — g)

)\2 + 2:| d(2n—d)\2/[2(n—d)?]
d d
[n a A2+ 3] V21" P(1/27)
)\2+3] Vo /2<1>( n )\)}
n—d

— Low(y/an

n

Proof. Only the bound for d < n is proved since the case of d = n can be easily substantiated.
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Let

0 0
BIX, — BIxE P

o3

Var[X\") ]
[l = o Q — —H
fi(0) —— a(0) 3

Cand j(6) = ,
and let i = F[X441]/0. By noting that (u/0) = /27, and for any 6 < 0 satisfying that
A A -9 -
a=—n—o005°(0) + () >0,

Pr(Y,, <0) can be bounded by

Pr(Y, <0)

= Pr{X;+ o+ Xg+ Ko+ + X, < 0}

> 1 (z—du)?
= / Pr{Xg+ -+ X, <—x} \/m‘f e dr, (v — o)
—oo wdo

o0 1 2 — 5 2
— / Pr{Xg+ -+ X, <—02} \/i-de_(éf) de', (2" — (n—d)a")
— 00 vis

/ TP {Xa o+ X, <0 AR 1 ST gy
= T DR n S —o(ln— i e n— €T
e d) (10 — )2
0052 (0)—ji(0)+a B 1 _<x”_dmmn2_d>>2 o
— PI‘ X _I_ bt N _|_ X S —o(tn — x e 2d/(n—d) €T
/oo Kan 55t I ey —
/ ) Pr{X Xsea(n— d)2} . S gy
+ r\Xg41+ -+ X, S =an—a)x e 2d/(n—d z
5052(0)—fi(0)+a 2rd/(n — d)?
005%(0)—a(0)+a 1 (@ —dyE/(n—d))?
< / e 20/(n=7 " dz"
—o0 2rd/(n — d)?
i / - min [ 7O —aorro-apor oo PO
0052(0)—ji(0)+a a\/2m(n — d) a3(0)vn —d
" 1 _ (@ —dv2y/(n—d))?
w efo(n—d)z M"=(6) e 2/ (n )2 dx", (6.9)
2rd/(n — d)?

where M () = E[e?X¢+1]) and the last inequality follows from Lemma 1. Observe that

o~ (BO)+2")? (=) [126°(0)] < 1
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Thus,

_ (@ —dv3y/(n=d))?

Pr(Y, <0) 2d/(n=d) g

IN

/oo V2rdl(n—d?
> a(0) p(6)
" /_,1 mln (a 27(n — d) +2C53(9)\/n—d71)

Xeeg(n_d)xﬁMn_d(e) ! Q_de//
2nd/(n — d)?
_ % (_ (n—d)p+ d\/ZPy)
Vd
+ A, ()M (p)etmV T gy <<” LT ea\/Zl> ,
d

(6.10)

where for a > 0,

i _ min a(0) p(o)
Ap-a(l) = <a\/27r(Td—)+2063(6)\/H’1>'

Now for # < 0 and a < 0, we can use Chern6ff bound in (6.9) instead, in which case the

derivation up to (6.10) similarly follovis With-Ape4(8) = 1.

We then note that
Mn—d(e)ed(90m+92a2/2)

is exactly the moment generating function of V;, = >  X;; hence, if E[Y,] = du + (n —

d)oji > 0, then the solution 6 of OE[e’Y"]/00 = 0 is definitely negative.

For notational convenience, we let A = (/o) + 06 = /27 + 06, and yield that
M(O) = ® (=N e "N 2 4 B(\/27) and PV — 1N 2,
Accordingly, the chosen A\ = /27 + 06 should satisfy

n—d
o ([pnee + agya) i)
[
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or equivalently,

o« (1) oa ) o

As it turns out, the solution A = A(y) of the above equation depends only on . Now, by
replacing e(/2X ®(=X) with (1 — d/n) /(vV27)) — (d/n)e?®(/27), we obtain

B [xg] ;
i) = —- 4 %
fi(A) - —
0=(\—v27)/o
Var [Xﬁ)l}
O
ag
0=(\—v/27) /o
_ d B nd )\2_'_ n 1
n—d (n—d?  n—dl+2re0(y27)
and
O A
E )XdJrl_:u‘
pA) =

b=(“v/2y)/o
_ n A {1 B d
— (n—d) L4 VRRNGED(R/27)] (n — d)?

2

n 2 2
49 [ )\2 hre e—d(and)/\ /[2(n—d)?]
(n —d)?

_ {” L 3} V2T D(1/27)

n—d|n—d

2n n? \2 n
— D) 12¢ | —
T d {(n—d)Z)\ +3] e ( dA)}

Hence, the previously obtained upper bound for Pr(Y,, < 0) can be reformulated as

()

A 2 n—d ) s
FAnaN) [(=Ne 7N 4 o(y/27)| el g (M—ﬂ“d) 7

where

An—d()‘) = min (1{a >0} [% + 20&




Finally, a simple derivation yields
ElY,] = dE[Xi]+ (n —d)E[X441]
= o (av27+ (=) [~(1/Vam)e T + 230(-/27)] ).

and hence, the condition of E[Y,] > 0 can be equivalently replaced by

VAarye?
1+ Aryer®(\/27)

>1-

S|

O

Again, if the simple Chernoff inequality is used instead in the derivation of (6.9), the

bound remains of the same form in Lemma 2 except that A,_4()\) is always equal to one.

Empirical evaluations of A,_4(\) in Figs. 6.1 and 6.2 indicates that when the sample
number n < 50, fln_d()\) will be clese to 1, andrthe subexponential analysis based on the
Berry-Esseen inequality does not:help-improving the upper probability bound. However,
for a slightly larger n such as n = 200, a_visible reduction in the probability bound can be

obtained through the introduction.of the Berry-Esseen inequality.

One of the main studied subjects in this chapter is to examine whether the introduction
of the subexponential analysis can help improving the complexity bound at practical code
length. The observation from Figs. 6.1 and 6.2 does coincide with what we obtained in later
applications. That is, some visible improvement in complexity bound can really be obtained

for a little larger codeword length in the MLSDA (specifically, N = 2(1004-10) or 2(100+6)).

We end this section by presenting the operational meanings of the three arguments in
function B(-, -, -) before their practice in subsequent sections. When in use for sequential-type
decoding complexity analysis, the first integer argument is the Hamming distance between
the transmitted codeword and the examined codeword up to the level of the currently visited

tree (or trellis) node. The second integer argument represents a prediction of the future route,
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......... v =1dB
10) v = —1dB
Aoyl
HO) v = —3dB
10) v = —5dB
0 | | 1 | | | |
50 100 150 200 250 300 350 400

Figure 6.1: A,_4()\) for fixed d/n = 0.2 with respect to different v. Notation “1(0)” repre-
sents that the y-tic is either 1 (for the curve below) or 0 (for the curve above).

which is not yet occurred.? The third argument is-exactly the signal-to-noise ratio for the

decoding environment, and is reasonably assumed to be always positive.

6.2 Computation Complexity for MLSDA

Notations that will be used in the next theorem are first introduced. Denote by s;(¢) the
node that is located at level ¢ and corresponds to state index j. Let S;(¢) be the set of
paths that end at node s;(¢). Also let H;(¢) be the set of the Hamming weights of the paths
in §;(¢). Denote the minimum Hamming weight in H;(¢) by d;({). As an example, S3(3)
equals {111010001,000111010} in Fig. 2.4, which results in H3(3) = {5,4} and d%(3) = 4.

'The metric for use of sequential-type decoding can be generally divided into two parts, where the
first part is determined by the past branches traversed thus far, while the second part helps predict-
ing the future route to speed up the code search process [15]. For example, by adding a constant term
Zilil log, Pr(y;) to the accumulant Fano metric Y7 ; (logy[Pr(y;|b;)/ Pr(y;)] — R) up to level g, it can be
seen that -7 | (log,(Pr(y;|b;) — R) weights the history, and Zﬁiqﬂ log, Pr(y;) is the expectation of branch
metrics to be added for possible future routes. Based on the intuition, the first argument and the second
argument respectively realize the historical known part and the future predictive part of the decoding metric.
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Figure 6.2: A,_4(\) for fixed v = —3dB with respect to different d/n ratios. Notation “1(0)”
represents that the y-tic is either 1 (for the curve below) or 0 (for the curve above).

Theorem 1 (Complexity of the MLSDA): Consider an (n,k,m) binary convolutional
code transmitted via an AWGN chanmel. The average number of branch metric computations

evaluated by the MLSDA, denoted by Lypsnatow), 18- upper-bounded by

L=12m—1 KL
Lyiispa () < 2 Z Z B (d* N —In, W%) (6.12)

where if H;({) is empty, implying the non-existence of state j at level £, then B(d;({), N —
In, kL /N) = 0.

Proof. Assume without loss of generality that the all-zero codeword 0 is transmitted. First,
observe that for any two paths that end at a common node, only one of them will survive
in the Open Stack. In other words, one of the two paths will be discarded either due to a
larger path metric or because its end node has the same state and level as an entry in the
Closed Stack. In the latter case, the surviving path has clearly reached the common end

node earlier, and has already been extended by the MLSDA at some previous time (so that
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the state and level of its end node has already been stored in the Closed Stack). Accordingly,
the branch metric computations that follow these two paths will only be performed once. It
therefore suffices to derive the computational complexity of the MLSDA based on the nodes

that have been extended rather than the paths that have been extended.

Let «* label the minimum-metric code path for a given log-likelihood ratio ¢. Then we
claim that if a node s;(¢) is extended by the MLSDA, given that & ,_1) is the only surviving

path (in the Open Stack) that ends at this node at the time this node is extended, then

) < pl”). (6.13)

The validity of the above claim can be simply proved by contradiction. Suppose

(@ (1)) > p(a”).

Then the non-negativity of the individual metric, (y;® x;)|¢;|, which implies yi(x*) > pu(x(,)
for every 0 < b < N — 1, immediately gives si(@,_1y) > ,u(a:’{b)) for every 0 < b < N — 1.
Therefore, ,—1) cannot be on top of the-Open Stack (because some wZ‘b) always exists in

the Open Stack), and hence violates the assumption that s;(¢) is extended by the MLSDA.

For notational convenience, denote by A(s;(£), & (m—1)) the event that “@(s,_1) is the only
path in the intersection of S;(¢) and the Open Stack at the time node s;({) is extended.”

Notably,
{A(s5(0), ®(en-1)) Yo _1yes;(0)

are disjoint, and

Z Pr {"4 (8j(£>7w(€n—1))} = 1.

T(pr—1)ES; (£)
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Then according to the above claim,

Pr{node s;(¢) is extended by the MLSDA}

node s;({) is extended
= ZS o Pr {A (SJ<€)7 w(fn—ﬂ)} Pr { by the]MLSDA ‘ A (S](g)7 w(f’n—l)) }
T(pn—1)€S;

IN

node s;(¢) is extended .
m(enr_ri?e}‘{sj(z) Pr { by the MLSDA A (55(0), (en-1))

max Pr T (o S "
®(gn-1)€S; (€) {u( (n—1)) < p( )}

max Pr T S 0
®(pn—1)€S; (L) {“< (tn—1)) < p( )}

In—1 N-1
=  max (Z)PF{Z(%@%)WH < Z(yj@0)|¢j|}v (6.14)

(tn—1) €S =0 j=0

IA

IA

where the replacement of &* by the all-zero codeword 0 follows from p(x*) < 1(0). We then
observe that for the AWGN channel, ¢; = 4\/@1} /No; hence, y; can be determined by

) A, i< 0
BT 0, - otherwise.

This observation, together with the fact that 2(y; &x;)|r;| = r;[(—1)¥ — (=1)%], gives
Pr{node s;(¢) is extended by the MLSDA }

In—1 N-1
< mae)fs-(é) Pr {Z(yj S¥ xj)|7ﬁj| < Z(yj b O)lrj’} )

T

(4n—1) j=0 j=0
In—1 N-1
= max Pr Z ri [(=1)% — (=1)%] < Z i [(=1)% — (_1)0}
m([nfl) ESj(f) =0 =0

N-1
= max Pr r;+ min(r;,0) <0
ey €510 | 2. n ,Z g ’
JET (®(4n-1)) j=tn

where j(a:(gn_l)) is the set of index j, where 0 < 7 < ¢n — 1, for which z; = 1. As r;

is Gaussian distributed with mean v/E and variance Ny/2 due to the transmission of the
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all-zero codeword, Proposition 1 (in the Appendix) and Lemma 2 can be applied to obtain

Pr{node s;(¢) is extended by the MLSDA}

N-1
< max Pr<r s min(r;,0) <0
< e {1+ ey <j,>_}

N-1
= Pr {rl Tt et Z min(r;,0) < 0}

j=fn

kL
< B (d;f(f),N — {n, W’Yb) -

Consequently,

2m

1
kL
B (d;('g)v N — gnu _’Yb) ;

-1
Lynspa(p) < ka N
=0

5=0
where the multiplication of 2 is due to the fact that whenever a node is extended, 2* branch

metric computations will follow. O

6.3 Computation Complexity for MLSDA with Early
Elimination

Next we analyze the decoding complexity for the MLSDA with early elimination. Note that

in this section, we assume again that the all-zero sequence is transmitted.

By referring to Fig. 6.3, let T Ayn—1)r E((+A)n-1)> and O((s4+a)n—1) label the first extended
path, the minimum metric path, and the all-zero path, respectively, among all paths from
so(0) to nodes at level (¢ + A) by the MLSDA with early elimination. We claim that a
node s;(¢) is extended by the MLSDA with early elimination, given that @1 is the only
surviving path (in the Open Stack) that ends at this node at the time this node is extended,
only if

(T (1)) < (04 A)n-1))- (6.15)
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The validity of the above claim can be simply proved by contradiction. Suppose

P (r—1)) > :U/(m?(é-&-A)n—l))'

Then :c‘(’(HA)nfl) will be extended before the expansion of x(,—1), and hence x,_1) will be
early eliminated, which violates the assumption that s;(¢) is extended by the MLSDA with
early elimination.

level

/+A
5;(0)

s.(L+A)

((£+A)n-1)

X ((L+A)n-1)

5,(0) so(L+A)

Figure 6.3: Exemplified trellis diagram for the MLSDA with early elimination.

Unlike the MLSDA without early€limination, where the first extended path must be the
minimum metric path among all paths ending at the same level, the path a:‘(’(é +Ayn—1) WAy
not be the minimum metric path T4 Ayn—1) for the MLSDA with early elimination. An
example is illustrated in Fig. 6.4. In this example, the minimum-metric (resp. all-zero) path
is path OB (resp. OD) with metric 4 +2 = 6 (resp. 5 + 6 = 11). The first extended path
T4 A1) however is path OC whose path metric 3 + 10 = 13 is larger than the metrics
of paths OB and OD. This is because path OC’ that has a small accumulated metric 3 at

early steps eliminates paths OB’ and OD'.

We denote the probability that a node s;(¢) is extended by the MLSDA with early
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Threshold A

+——>

A=x

(fn-1) o
B=x ((£+A)n-1)
B' 2

4 3/\6“./10/. C= 'x(()(f-%—A)n—l)
5 . 6 . D =045

D|

Figure 6.4: Example that the first extended path has a larger metric, when it is compared with
the all-zero path for the MLSDA with early elimination.

elimination by Pr{s;(¢) Ext}, and separate it into two cases:

Pr{s;(() Ext} = Pr{s;(¢) Ext, and p(x{rap-1) > #Oqeram-1)}

+ Pr {s;(€) Ext, aid (T o Ayn-1)) < 1(0(e+am-1))} -  (6.16)
Notably, the event [sj(f) Ext, and /’L(w?(Z—I—A)n—l)) > M(O((€+A)n—1))i| happens only when path
O((¢+2)n—1) has smaller metric than that-of path :v((’(eJrA)n_l) but path O(qayn—1) is early-

eliminated before it reaches level (£4A). This evént clearly implies the occurrence of block

error. Therefore,

Pr {s;(0) Ext, and (214 ayn-1)) > #(Oeraym-1)) } < Peu(, D), (6.17)

where Pgg(7s, A) denotes the block error rate of the MLSDA with early elimination window
A under SNR 73, which can be further upper-bounded by the results in Chapter 5.2 No-
tably, since A is presumably chosen to be large enough to achieve near ML performance, the
event [sj (¢) Ext, and (@, py,-1y) > M(O((€+A)n—1)>i| actually has a much smaller probabil-

ity than event [sj(f) Ext, and (@, A),-1)) < ,LL(O((@JFA),L,U)} We therefore call the event

2Taking the block error rate upper bound in Chapter 5 as the upper bound on the first term in (6.16)
only provides satisfactory result for medium to high SNRs. However, from simulations (not shown in this
dissertation), we found the SNR range that the effect of the first term to the overall decoding complexity is
negligible can actually be extended to low SNRs.
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corresponding to the second term in (6.16) the normal event, and simply bound the first term
in (6.16) by the block error rate of the MLSDA with early elimination. The next theorem

gives the decoding complexity upper bound due to the occurrence of the normal event.

Theorem 2. (Complexity of the MLSDA with early elimination due to the normal event)
Consider an (n, k,m) binary convolutional code transmitted via an AWGN channel. The av-
erage number of branch metric computations evaluated by the MLSDA with early elimination
given the occurrence of the normal event, denoted by Lgg normal(7s), s upper-bounded by
= kL
LgE normat (1) < 2 ZO ]ZO ( ), An, W%}) (6.18)

where if H;(¢) is empty, implying the non-existence of state j at level ¢, then

B(d;(¢), Ans kLy/N) = 0.
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Proof. Given that the normal event occurs,

Pr {Sj( ) Ext, and (@4 ayn— 1)) < M(O((HA)nfl))}

> Pr{A(s;(0),zem )}

T(en—1)ES;(£)
x Pr {s;(¢) Ext, and (T o ayn—1)) < 10+ ayn—1)) | A (5;(0), ®en-1)) }

< ( m)aég © Pr{s;(¢) Ext, and (T o A1) < 10+ 2yn—1)) | A (55(€), (1)) }
L(tn—1 J
< max  Pr{u(®wm-1)) < p(0qeram-1)}
Z(n—1)€S;(£)
In—1 (l+A)n—1
= max_ Pro Y (g@a)lel < Y (1,00)
@ o1y €55 () = =
tn-1 (+A)n-1
= max Pr Z(y] @fﬁj)‘rj‘ < Z (yj @O)‘rj‘ )
Ten—1) €55(0) =0 §=0
n—1 (t+A)n—1
= max Pr Z i [(— 1) (— 1) Z T [(_1)yj - (_1)0]
(on—1)€Si (0) =0 =0
(+A)n-1
= max Pr Z rj + Z min 7"], <0
Lln— 1)65 © JjeT(®(en—1}) j=n
(CH=A)n—1
_ P nir.. 0) <
dg_g}({é) r{ry+---+rg+ g;n min(r;,0) <0
((+A)n—1
= Pr ry+---+ Td;(g) + Z min(rj, O) S 0
j=fn
. kL
< B <d] (g)a An? W’yb) :
Consequently;,

L—12m—1 L
LEE normal ’Yb S 2k Z Z B (d* An WVb)

(=0 5=0

0J

We remark that the upper bound for the complexity of the MLSDA with early elimination
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due to the occurrence of the normal event is exactly the same as that of the MLSDA without
early elimination except the second parameter in function B(-,-,-). Since the new parameter
An is not related to the message length, it is anticipated (and later confirmed by numericals)

that the resultant upper bound is less relevant to the message length.

Finally, we bound the overall complexity of the MLSDA with early elimination, Lgg(7s),
by combining (6.17) and (6.18), and obtain:

L-12m-1

kL
L) < 2% 5 [Peston 2+ B (0, 80 500 )|
=0 j=0
L—12m—-1

_ L.2k+m.pEE<%,A)+2kZZB(d;(z),An,kL ) (6.19)

=0 j=0 W%
6.4 Numerical and Simulation Results

We examine the complexity boudds in terms of (2,1,10) convolutional code with message

length L = 100 in this section.

We first note from Fig. 6.5 that'the complexity upper bound in (6.19) is dominated by the
second term for medium to high SNRs. Thisfigure also shows that the complexity reduction
of the early elimination modification is significant especially when SNR < 5 dB. Specifically,
Fig. 6.5 indicates that for (2,1,10) convolutional code, the average decoding complexities of
the MLSDA and the MLSDA with early elimination window A = 30 are 79.78 and 14.8 at
SNR = 3.5 dB, and therefore, more than 80% of the decoding efforts is saved without visible

degradation in performance.

A potential problem of the MLSDA (without early elimination) is that its decoding com-
plexity grows as the message length increases. This complexity dependence of the MLSDA
in message length can be observed in Fig. 6.6 in both the simulations and analytical bounds

in Theorem 1. To be specific, Fig. 6.6 shows that the average decoding complexity per infor-
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mation bit of the MLSDA is 79.78 when L = 100 but increases dramatically to 446.15 when
L = 200.

By adding the early elimination modification, it is shown in Fig. 6.6 that the average
decoding complexity of the MLSDA with early elimination becomes almost independent of
message length L. For example, the average decoding complexities of the MLSDA with early

elimination window A = 30 are 14.07 and 12.09 respectively for L = 100 and L = 200.

Fig. 6.7 depicts the simulated average decoding complexities for codes with different
memory order m. Five different rate one-half convolutional codes with memory order 2, 4, 6,
8 and 10 are respectively examined. The early elimination window A are thus chosen to be
10, 15, 20, 25 and 30 such that no performance degradations can be observed. The message
length is L = 100. It can be observed from this figure that the decoding complexities of
both the MLSDA with and without early elimihation grow as the memory order increases at
SNR = 3 dB. However, when we further-increase.the’SNR to 5 dB, the decoding complexity
grows at a very slow speed especially for the MLSDA swith early elimination. This enhances
the potentiality of the MLSDA with early elimination in applications over codes with large

constraint length (at medium to high SNRs):
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(2,1,10) Convolutional codes, A = 30

‘104 r T T T T
[ -©- UB MLSDA
—&- Sim MLSDA
—£- UB MLSDA with EE
UB MLSDA with EE (normal)
—%— Sim MLSDA with EE

X

Average Decoding Complexity Per Information Bit

Figure 6.5: Decoding complexity upper_beundsrand simulations for (2,1,10) convolutional codes.
The message length L = 100.

10 T T

T
—©- UB MLSDA
—&- Sim MLSDA
—A— UB MLSDA with EE
—— Sim MLSDA with EE |{

Average Decoding Complexity Per Information Bit

0 I | I 1 I

50 100 150 200 250 300 350
Message Length

10

Figure 6.6: Upper bounds and simulation results of the average decoding complexity per informa-
tion bit versus message length L for (2,1,10) convolutional codes at SNR = 3.5 dB.
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T T
MLSDA SNR = 3 dB 1
MLSDA with EE SNR =3 dB ||
MLSDA SNR = 4 dB 1
MLSDA with EE SNR =4 dB |+
MLSDA SNR =5 dB J
MLSDA with EE SNR =5 dB

[Feotts

Average Decoding Complexity Per Information Bit

0 I I I I | I I

2 3 4 5 6 7 8 9 10
Memory Order of Convolutional Codes

Figure 6.7: Simulation results of the average decoding complexity per information bit versus

the memory order m. The message length L = 100. The chosen A = 10,15, 20, 25,30 for m =
2,4,6,8,10.
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Chapter 7

Concluding Remarks and Future
Work

In this work, we propose to improve the computational complexity and memory requirement
of the maximum-likelihood sequential-search decoding algorithm by early elimination. By
setting a window and directly eliminating the partial path outside the window, the decod-
ing complexity should be reduced with negligible performance degradation if the window
size is large enough. The analysis. of the“sufficient early elimination window for negligible
performance degradation, as well ag the subsequent simulations, confirms our anticipated
improvement. We also analyze the average decoding complexity for both the MLSDA with
and without early elimination. The analytical and simulation results confirm the complexity

reduction by introducing early elimination.

Since the MLSDA, after the introduction of early elimination modification, is justified to
suit applications that dictate a near-ML software decoder with limited support in computa-
tional power and memory, a future work of practical interest will be to apply the MLSDA
with early elimination to the “super-code” for joint multi-path channel equalization and

convolution decoding [19].
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Appendix A

Proposition 1. For a fized non-negative integer k, the probability mass of
Pr{ri+---+ 74+ min(w,0) + ... + min(wy,0) < 0}

1s a decreasing function for non-negative integer d, provided that r1, 9, ..., Tq, W1, Wa, ...,

wy, are i.1.d. with a Gaussian marginal distribution of positive mean p and variance o2.

Proof. Assume without loss of generality that g? =.1. Also, assume k > 1 since the propo-

sition is trivially valid for k£ = 0.
Let Q4 = 7 +--- + 74 Denote the-probability density function of w; by f(-). Then
putting v = Pr{w; = 0} yields
Pr{Qd+w1+w2+~-+wk < O}

k
= ZPr {exactly (k — j) zeros in (wy,ws, ..., wg)}

=0
Pr{Qs+ wy +wy + -+ wi < 0]exactly (k — j) zeros in (wy,ws, ..., wy)}
= (IS VP Pr{Q < 0} + (T) '1—v / f(x)Pr{Qy < —z}dx
+<2) / / f(x1) f(xe) Pr{Qq < — (1 + x2) }dx1dxs
+
k
+<k:) (1-v) / / flxy) - flag) Pr{Qy < —(z1 4+ - - + z¢) }dxy - - - dg.
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Accordingly, if each of the above (k + 1) terms is non-increasing in d, so is their sum. Let

4:(d) é/ / Fen) - fla) Pr{Qu < — (21 + -+ + ;) Yy - - - da

= /_m.../_oof(xl)...f(xj)q)(_W_\/gu)dxl...dx

8321% _ /io.../zof(xl)---f(%)

y <w . ,U) 1 e —(z1+- +f6j+d'#)2/(2d)dx1 R dxj
V2

/ F) - flay)e e dw @ gp e (7.1)

Then

<

m/

<

where (7.1) follows from z; < 0 (agcording to the range of integration) for 1 < ¢ < j.
Consequently, g;(d) is decreasing™in d for=d pesitiveé and every 1 < j < k. The proof is
completed by noting that the first term, Pr{Q, < 0} = ®(—v/dpu), is also decreasing in

d. O
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