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Abstract. Of concern is a two-dimensional map 7" of the form.
T(z,y) = (y, F(y) — bzx). Here F is a three-piece linear map. In this
paper, we first prove a theorem which states that a semiconjugate
condition for 7" implies the existence of Smale horseshoe. Second,
the theorem is applied to show the spatial chaos of one-dimensional

Cellular Neural Networks. We improve a result of Hsu [2000].

I. Introduct

We consider a piecewise two dimensional map of the form
(2,9) = (v, Fly) = b (1)
where
[ | a1 f’ @y= A 1 0 ( _
F(y) =< aopy + Y , (2)
| = a 1 0 1

Here a9 < 0, a1, a1 >1, b>0, and ¢; € R is a biased term. The

graph of F'is given in Figurel.
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Figure 1.

a1 =12, ag=—-05, a1 =1.5, ¢; =0.2.

The motivation for studying such map is, in part, because that the
form of the map is a generalized version of Lozi map [Lozi, 1978].
More importantly, the map arises in the study of the complexity
of the set of bounded stable stationary solutions of one-dimensional
Cellular Neural Networks (CNNs)(See e.g., [Chua, 1998; Chua and
Yang, 1998a, 1998b]). In this paper, we first prove a theorem which
states that a semiconjugate condition for 7" implies the existence of
Smale horseshoe. Second, we apply the theorem to show the spatial
chaos of one-dimensional Cellular Neural Networks. Such CNNs are
of the form (e.g., [Ban et al., 2002, 2001; Hsu, 2000]).

d,IZ'

E =—x;,+ 2+ O,’f(.T,'_l) + af(x,) + Bf(xi-l-l)’ 1€ Z (33)



where f(z) is a piecewise-linear output function defined by

re+1—r z2>1
flz)=q = [ <1 (3b)
le+1—1 r < -1,
where 7 and [ are positive constants. The quantity z is called thresh-
old or bias term, related to independent voltage sources in electric
circuits. The constants «, a, and 3 are the interaction weights be-
tween neighboring cells. The study of the problems for the case that
r =1 =0 and a = [ has been established in [Chua, 1998; Chua and
Yang, 1998a; Juang and Lin, 2000]. Here we consider r > 0 and
[ > 0. The main results on this part are the following. Given « and
B, if (z,a) is in a certain parameter region X, 3 (see Theorem 3.1),
then there exist 7 and [ sufficiently small for which A;, (see Theorem
3.1) is a hyperbolic invariant set. Consequently, the spatial entropy
of the corresponding set of the bounded, stable stationary solutions

is In2.

II. Main Results
We first introduce some notations. Let
S={(zy) R :|z| <p, [yl <p}. (4)
Here p > 1. Let the four corners of S are labled as
K =(p,p), L=(p,—p), M =(-p,—p), N=(-p,p). (5a)

Set



The z and y coordinate of K are denoted, respectively, by K* and
KY.

We next number the following conditions.

K >p>1, (6a)
LY > p, (6c)

and
MY < —p. (6d)

Here the subscript denotes the iteration index under the map 7T'. For
instance, K} denotes the y coodinate of T(K) = K;. Suppose (6)
holds. Then T'(S) N S has three vertical strips. See Figure 2. Simi-
larly, T='(S) (S has three horizontal strips, and T~ (S) (S T(S)
has 9 components. By induction ﬁ T7(S) has 9" components.

j=—n
With this information we can define a semiconjugate

h:A— {0,1,2}? (7)
which is onto. Here A = [\ (T%(S)[)S). If the components of A
j=-—o00

are points, then A is a Cantor set. This, in turn, implies that the
semiconjugacy h is one to one and so is a conjugacy. This motivates

the following definition.
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Definition 1.1 Conditions on b, a_1, ag, and a; so that there exists

a p > 1 for which (6) holds are called a semiconjugate condition for
T.

To prove the main theorem, we need to introduce more notations.
Now, T'(S)( S, has three vertical strips, say Si, U;, and V;. The
one on the right, see Fig.2, is labeled as S;. Clearly, T(S1) (S has
also three vertical strips. The strip of 7'(S1) () S1 is to be denoted
by S;. We then define S,, inductinely. Note that S,, n € N, are all



parallelograms. Uy and V,, are defined similarly.

The parallelogram N,K{K{N; see Fig.2, is to be denoted by S;.
Likewise, S,, denotes the parallelogram N,K,K,N,. The length of
the shorter side of the parallelogram S, (resp., S,) is to be denoted
by

dy(resp., cy)- (8a)

The slope of the longer side of the parallelogram S,, is to be denoted
by

My (8b)

Ci
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Figure 3.

Lemma 2.1 The following recursive relations hold.
(i) di = 2

.. _ b
pgl Cit1 — bdz (11) mi+1 — a1 — —

m;? my = ax.

Proof. The first recursive relation is obvious. To see (ii), let I; be

given as in Fig.3. We see then that K; = (p — sz_ii’p) and K; =
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(p— %, 1). Now, the slope m;,; = the slope of T(K;)T(K;) =
- — — I_J
KoK = F(p)=F(1)+b(*=2) gy — b 0

p—1 m;

Lemma 2.2 If b > 0 and a; > 2(1 + b), then lim ¢, = 0.

n—o0

Proof. We first prove that lim m, = —Y%-2—. To this end, we

n—oo

see that an induction would yield that m; > 1 for all + € N and that

m; is decreasing in 7. Suppose z is the limit of {m,}. Then z must

satisfy equation z = a; — % Upon using the the fact that m; = a4,

a1+\/a274b
we conclude that z = —%1—

5 as asserted. Now, using Lemma
2.1-(i), we get that d, = 29 Thus,
fm
2b
dn S ( )nildl
a; + /a2 — 4b
2b
< _ 'nfld
< (al) 1
b
< - n—ld .
s @)
We have just completed the proof of the lemma. O

Similarly, we have the following lemma.

Lemma 2.3 If b > 0 and a_; > 2(1 + b), then the length of the

shorter side of the parallelogram V,, shrinks to zero as n — oc.

Using Lemmas 2.2 and 2.3, we have the following lemma.



Lemma 2.4 If b > 0, min{ay, a_1} > 2(1 + b), then the length

of the shorter side of the parallelogram U, shrinks to zero as n — oc.

Remark. The assumptions on Lemmas 2.2-2.4 would also yield
that () (77(S) (N S) are pairwise disjoint horizontal linesegments.
§=0

We are now ready to state our main results.
Theorem 2.1 Let F' be a piecewise linear map defined as in (2)
and the bias term c¢; satisfy the inequality
maz{—1—b,ap +1+b} < c; <min{l+b,—ao—1—-0>0}, (9)

then a semiconjugate condition for 7" implies the conjugate of h.

Proof. Note that K{ > p, (6b) and (6d) are equivalent to the

following inequalities.

plar —1—=10) > a; —ag — ¢y, (10a)
—ag+c1 > p(l+0), (10Db)
—ag —c¢1 > p(1+0), (10c)
and
placy —1=0) > a1 —ap+ ¢y, (10d)

respectively. We remark (10b) and (10c) ensure that —ag—1—b > 0,
as a result, inequality (9) makes sense. Using (10a) and (10b), we
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see immediately that

—ag + C1 a; —ag —C
— 2P
b—{—l al—b—l

v

(11)

Note that a; — b — 1 being positive is guaranteed by the fact that
p > 1 and the assumptions on ¢;. Using (10), we get that

—2a0(b+1)  2(b+1)
_Cl—ao—l—b_1+1+(l;—gcl

>2(b+1).  (12a)

a

The last inequality is justified by the assumptions on ¢;. Similarly,

we see that

-1 =

2a0(b+1) 2(b+1)
= >2(b+1). 12b
citag+14b 14 HHe ™ 6+1) (12b)

It then follows from Lemmas 2.2-2.4 that () (T7(S)(9) is a

j=—00
Cantor set. We thus complete the proof of the main theorem. [

Remarks.

1. If F(y), as defined in 2, is such that ay > 0, and a1, a_; < —1,
then a similar result can also be obtained.

2. The theorem holds true in general for F' being a finitely many
piecewise linear map. Specifically, if the bias term ¢; is not ” too
biased ” , then a semiconjugate condition for 7" implies the existence

of Smale horseshoe.
In the following, we give conditions on ag, a1, a_1, b and c for

which 7" has a semiconjugate condition.

Theorem 2.2 Let ag < 0, a1, a_y > 1 and b > 0. Suppose
ag+14+b <0, min{a;,a_1} > 2(1+b). Let the bias term ¢; satisfy



(9), and that

—2a0(b+1)
13
al_Cl—ao—l—b’ ( a)
and
2&0(1)—{—1)
_ . 13b
a1_01+a0+1+b ( )

then there exists a p > 1 such that 7" has a semiconjugate condition.

IT1I. Applications To CNNs

A basic and important class of solutions of (1) is the bounded,
stable stationary solutions. In the case that r =1 =0 and o = £,
the corresponding stable stationary solutions have been studied in
[Chua and Yang, 1998a; Juang and Lin, 2000]. The case that r and
[ are positive is considered in [Ban et al., 2002, 2001; Hsu, 2000].
The techniques in these two cases are quite different. Specifically,
in the latter case, the question of the complexity of the set of stable
stationary solutions is converted to asking how chaotic of a map
is. If @ or B = 0, then the resulting map is one-dimensional ([Ban
et al., 2002, 2001]). If o, 8 # 0, then the resulting map is a two
dimensional of the following form [Hsu, 2000]

T(xay) = (y’ B
=: (y, F(y) — bx).

(Fly) —ay —z) — %x) (14a)

Here

Fly)=qv yl <1 (14b)



In [Hsu, 2000], Hsu used a theorem of Afraimovich (see e.g., [Afraimovich,
1993]) as well as a semiconjugate condition to show that in cer-
tain parameters’ region, the map 7" has Smale horseshoe structure.
However, Afraimovich’s Theorem is not needed in this case. Only a
semiconjugate condition is required.

1/1

To apply Theorem 2.2, we first note that a1 = 3(; —a), a0 =

5(1—a), a1 =3(; —a), aa =7, b= %. With the above identi-
fications, we immediately have the following results concerning the

complexity of the set of the bounded, stable stationary mosaic so-

o0

lutions of (3). Here the stationary mosaic solutions (z;)2_ . means

that (z;)°_., is a stationary solution of (3) and that |z;| > 1 for

1=—00
all 4 € Z. Moreover, the mosaic solutions obtained in the following

theorem are bounded and stable (see e.g.,[Chua and Yang, 1998a;
Hsu, 2000]).

Define s = a+a+ 3. Assume the bias term z satisfy the following

inequality.

mar{—s+a,s —2a+1} <z <min{s —a,2a — 1 —s}. (15)
Define, respectively, the regions ¥, s and ¥, g, as follows.
Yas = {(2,a) € R?| (15) holds}, (16)
and

Yapir={(z,a) €R|r <rt, and | <1} (17)
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Here,

-  2a—s-1-2
2008 (145 —2) — 25’

(18a)

and

20—s—1+z
I+ = ) 18b
2,050, a(l+s+2z)—2s (18b)

We are now in a position to state the following results.

Theorem 3.1 Let o and § be positive numbers and let a >
1+a+p. Suppose (z,a) € Y o Then there exist r and [ sufficiently
small, more precisely 0 < r < rt = T:—,a,a,ﬁ and 0 <l <[t = lza,aﬁ
for which T has a hyperbolic invariant set A;,(z,a,a,8) = A, in
the (x,y) plane such that T4,  is topologically conjugate to a two-
side Bernoulli shift of two symbols. Hence, the spatial entropy of

the corresponding set of stationary solutions equals to In 2.

Remarks

1. Note that if (2,a) € X,4, then —2s+a(l+s—2) = a(—2z —
1—-—s+4+2a)+2a—-1)(s—a) > 0and —2s +a(l +s+2) =
a(z—1—-s+2a)+2(a—1)(s—a) > 0. Consequently, those r* and

[T are positive.

2. Adapting the notations in [Juang and Lin, 2000], we let o = 3 =
ae. Then the set X, g = X is given in the following figure.

Note that for 0 < & < 1, . C [3,3]c(see Fig.5.1 of [8] for the

definition of [3,3]), and for ; < e < 3, B¢ = [3,3]c (see Figures 4
and 5). Applying Theorem 3.1, we conclude that let a = 8 = ae,

12



Figure 4.
=1,
li:—z+a(l—2¢) =1, pp: z = 2ae,
r_1:z+a(l—2) =1, p: 2= —2ae.

Figure 5.
1

€=,
li: —z4+a(l —2€) =1, py : 2 =2ae,
ro1:z+a(l—2€ =1, p: 2= —2ae.

1 <e< 3, andif (z,a) € S, = [3,3], then there exist 7 and !
sufficiently small for which A;, is a hyperbolic invariant set. This
result generalized those in [Chua, 1998, Chua and Yang, 1998a;
Juang and Lin, 2000]. For 0 < € < %, if (z,a) € %, and that
r, I > 0 sufficiently small, then the corresponding set of stable,

bounded stationary solutions also has spatial entropy (n2.

3. To get a feel how small 7 and [ are required to be. Set € = i and

13



z = 0. We see easily that r* = [T has a maximum 1 for 2 < a < oo.

4. Figure6 is a collection of a computer simulation with a set of
parameters, satisfyinga > 1+a+8,0<r <rt=r],  ;and 0 <
I <1t =1},.5 Specifically, we choose a = 8 =1, r = | = 0.005,
z =0, a = 4. Each collection in figure6 contains 2 arrays of colors.
The first array is the initial outputs. The second array represents
the final outputs. If the state x; of a cell ¢; is such |z;| < 1, then we
color it with green. If the state z; of a cell ¢; is less than -1 (greater

than 1, respectively), then we color it with blue (red, respectively).

(€3] (1D

(IID) (av)

42 (4%8)

(VID) (VIID)

(IX)

Figure 6.
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