
CHAPTER 3. METHODOLOGY AND RESEARCH 

FRAMEWORK 

This chapter presents two frontier approaches for measuring efficiency and 
effectiveness, Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis 
(SFA). In addition to the DEA and SFA, a non-parametric method for measuring 
productivity index and sales force index are also included in this chapter. Once the 
approaches have been described, the research framework is then presented. The chapter 
is organized as follows, 3.1 presents the methodologies, including DEA, SFA and the 
comparison between two methods. The methods for measuring productivity and sales 
force indexes are presented in 3.2, and the research framework follows. 

3.1 The Methods for Measuring Efficiency and Effectiveness  

In the neoclassical production economics, a production technology may be 
represented in many ways. The economists usually relate outputs and inputs by 
estimating production function or its duality: cost function. A shortcoming in specifying 
production or cost function is its strong assumption of profit maximization or cost 
minimization. In many cases, due to some reasons, the firms may not produce the 
outputs efficiently. In other words, the behaviors of DMU dose not satisfy the strong 
assumption. Another drawback is the data availability. The cost function depends on 
output quantities and input prices. It is impossible to estimate cost function if the price 
information is not available. Since this research attempts to compare the efficiency, 
effectiveness, productivity, and sales force of some selected worldwide railways, in 
consideration of the data availability and/or monetary conversion for the input factor 
prices among different countries, therefore, DEA and SFA are adopted in this research. 
The followings describe each of these methods in turn.  

3.1.1 Data Envelopment Analysis 

The data envelopment analysis begins with Edwardo Rhodes’s Pd. D. disseration 
research. Since that, many DEA models have been developed. In this research, CCR, 
BCC and SZ models are applied to measure efficiency and effectiveness, which can be 
briefly described as follows.   

3.1.1.1 CCR model 

In 1978, Charnes, Cooper and Rhodes (CCR) introduced a mathematical 
programming method to measure the relative efficiency for organizations or firms and 
termed as date envelopment analysis (DEA). The advantage of DEA is that no explicit 
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functional forms need to be imposed on the data. Thus, the use of DEA has become 
increasingly widespread since then. The CCR DEA model is a fractional programming, 
which can be transformed to linear programming (LP) as follows:  
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Where X and Y are the K×N input matrix and the M×N output matrix, respectively. For 
the ith firm these are represented by the vector xi and yi, respectively. λ is a N×1 vector 
of constant and θ is a scalar, which stands for efficiency of ith firm. Solve this LP for 
each of the N firms; one obtains the efficiency score for each firm. One can easily 
transform model (3-1) to output orientation DEA forms as shown in model (3-2). 
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Where Y, X, xi, yi and λ are defined as previous; φ  denotes proportional increase in 

output, which ranges from one to infinity; φ
1  defines the service effectiveness of firm, 

which varies between zero and one. 

3.1.1.2 BCC model 

Note that model (3-1) is an input orientation DEA model under the assumption of 
constant returns to scale (CRS) technology. Banker, Charnes and Cooper (BCC, 1984) 
relaxed the restriction of CRS to account for variable returns to scale (VRS) 
technologies by adding convexity constraint to model (3-1). The BCC input orientation 
DEA model then becomes: 

(3-3) 
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Similarly, one can easily transform input-oriented BCC model into output-oriented BCC 
model as shown in (3-4). 
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(3-4) 
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3.1.1.3 SZ model 

Many researchers criticize the robustness of DEA because the efficiency scores 
may be sensitive to data error, for example, Charnes and Neralic (1990), Charnes, et al. 
(1992), Zue (1996), Seiford and Zue (1998a, 1998b). To investigate which DMUs are 
sensitive to possible data error, Seiford and Zue (1998b) consider the case when all data 
(including the efficient DMU under consideration and the other DMUs) are changed 
simultaneously by solving the following LP model.  
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Seiford and Zue (1998b) show that under the circumstance of *1 β≤ , where β* is 

the optimal value to (3-5), an efficient DMUk with efficiency score equal to 1.000 will 
still remain efficient, if the percentages increase in all inputs for the DMUk are less than 

1* −= βkg  and the percentages decrease in all inputs for the remaining DMUs are 

less than ** /)1( ββ −=−kg . The upper-bound levels (gk, g-k) can be viewed as the 

sensitivity indexes. Similarly, consider the following LP model 
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Seiford and Zue (1998b) also show that under the circumstance of 1* ≤α ,, whereα

*is the optimal value to (3-6), an efficient DMUk will remain efficient, if the percentages 

decrease in all outputs for the DMUk are less than )1( *α−=kh  and the percentages 
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increase in all outputs for the remaining DMUs are less than )/)1(( ** αα−=−kh . 

The upper-bound levels (hk, h-k) are the sensitivity indexes. 

3.1.2 Stochastic Frontier Analysis 

SFA is an alternative method for measuring efficiency of production. The most 
popular functional forms used in the literature are stochastic production and cost 
function, which are briefly described as follows. 

3.1.2.1 Stochastic production frontier 

Inspiration of Farrell’s concepts, Aigner and Chu (1968) proposed a method for 
estimating a parametric frontier production function. Their model is as follows. 
(3-7) Niuxfy iii ,...,1   ,);()ln( =−= β  
Where ln(yi) is the logarithm of the output for the i-th DMU; xi is a vector , whose 
elements are the logarithms of the K-input quantities used by the i-th DMU; β is a 
vector of unknown parameters to be estimated; and ui is non-negative random variable, 
associated with technical inefficiency in production of DMUs. Instead of econometric 
technique, they proposed to use so-called Parametric Linear Programming (PLP) for 
estimating production function and thus measuring the efficiency of firms, that is, 
technical efficiency of i-th DMU becomes: 
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This efficiency measure is an out-oriented Farrell measure of technical efficiency. 
Aigner et al. (1977) proposed a composite error to count technical efficiency and 
statistical noise. The model can be defined as 
(3-9) iiiiiii TEvxfuvxfy ××=−××= )exp();()exp()exp();( ββ                    
Where yi is the output of i-th firm, vi is symmetric random error term. Aigner et al. 
(1977) assume that vi follows a normal distribution with zero mean and constant 
variance, and ui is non-negative independent and identical distributed (i.i.d.) random 
variable, which counts technical inefficiency of firms. Then,  
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In order to estimate ui , one has to impose a distribution form (such as half-normal, 
truncated-normal, gamma, etc.) on the model. For example, one specifies half-normal 
distribution, that is, assume (Kumbhakar and Lovell, 2000): 
i) vi ~ i.i.d. N (0, σv

2) 
ii) ui ~ i.i.d. N+(0, σu

2) 
iii) Both vi and ui are independently distributed of each other, and of the regressors.. 
Because vi is independent of ui, the joint p.d.f. of ui and vi are 
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cumulative distribution function and density function, respectively. The log likelihood 
function of f (ε) is 
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Then, one can estimate by using maximum likelihood estimation method. Jondrow et al. 
(1982) have derived 
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The technical efficiency of firms then becomes  
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Battese and Coelli (1988) (hereafter BC) proposed another point estimator for TEi  
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For a nonlinear function g (x), E[g(x)] is not equal to g(E[x]), Kumbhakar and Lovell 
(2000) pointed out that BC is preferred. Hence, this research uses BC estimator. 

3.1.2.2 Stochastic cost frontier 

The stochastic production frontier described in 3.1.2.1, has a shortcoming, 
estimation of a production frontier requires that producers produce only a single output. 
This is not the case for many producers. To deal with the efficiency of a 
multiple-outputs and multiple-inputs firm, the stochastic cost frontier method than been 
developed. Based on the literatures, the cost efficiency, CEi can be defined as 
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In (3-16), the cost frontier c (yi, wi, β) is deterministic, which can be transformed into a 
stochastic form by adding random term to it, as shown in (3-17). 
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Equation (3-17) defines the cost efficiency as the ratio of minimum cost attainable in a 
random environment characterized by exp (vi) to observed expenditure, Ei. CEi is 
bounded between zero and unity. CEi=1, if and only if the firm is cost efficient. If we 
assume that c (yi, wi, β) takes the log-linear functional form, then 

(3-18) ∑∑ ++++= iijjmmi uvwyE lnlnln 0 βββ . 

Where, vi is the two-sided random error term, and ui is the non-negative term which 
captures the cost inefficiency. That is  
(3-19) )exp( ii uCE −= . 
Similar to production function case, one needs to make the distributional assumptions 
on the random error term and the inefficiency term, such as: 
i) vi ~ i.i.d. N (0, σv

2) 
ii) ui ~ i.i.d. N+(0, σu

2) 
iii) vi and ui are independently distributed of each other, and of the regressors. 
Because vi is independent of ui, the joint p.d.f. of ui and vi are 
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cumulative distribution function and density function, respectively. Once joint p.d.f. has 
been defined, one can estimate by using maximum likelihood method as described in 
3.1.2.1. 

3.1.3 The Comparison between DEA and SFA 

Although both DEA and SFA are attributed to frontier methods, and both are 
inspirited by Farrell’s (1957) efficiency measurement concept, however, DEA uses 
different techniques from SFA to construct frontiers. DEA uses the mathematical 
programming technique; while SFA applies the econometric technique to estimate the 
inefficiency of production or cost or revenue functions. The two approaches have some 
common merits and some monopolistic advantages or disadvantages, which can be 
summarized in Table 3-1. 

 
 
 

Table 3-1 the comparison between DEA and SFA 
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Items to be  
compared. D E A S F A 
Parametric/ 
nonparametric 

Non-parametric frontier method Parametric frontier method 

Technique Mathematical programming technique. Econometric technique. 
Can be use to 
measure 

Technical efficiency. 
Scale efficiency. 
Scale economies. 
Allocative efficiency. 
Productivity (if panel data are available). 
Technical change and efficiency change (if 
panel data are available). 
Congestion efficiency. 

Technical efficiency. 
Scale efficiency. 
Scale economies. 
Allocative efficiency. 
Productivity. 
Technical change and efficiency change. 
 

Assumption The frontier is constructed by the best 
firms and all deviations from frontier are 
imputed to inefficiency. 

The frontier which firms faced is 
stochastic, it may influenced by weather, 
strike, luck, measurement errors, etc. 
Exclusion of these statistical noises, the 
remaining deviations from frontier can be 
attributed to inefficiency. 

Merit It does not assume that all firms are fully 
efficient.  
It can be used to deal with multi- output 
and multi-input problem. 
It does not require price information. 
It does not require specification of a 
functional form. 
It is not need to specify a distributional 
form for the inefficiency term. 
When measuring productivity, it permits
TFP to be decomposed into technical 
change and efficiency change. 

It does not assume that all firms are fully 
efficient. 
It accounts for noise, such as the effects of 
weather, strikes, luck, etc. 
It does not require price information. 
It can be used to conduct tests of 
hypotheses.  
When measuring productivity, it permits 
TFP to be decomposed into technical 
change and efficiency change. 

Shortcoming It does not account for noise. 
It cannot be used to conduct tests of 
hypotheses.  
The inclusion of outliers may reduce 
efficiency scores. 
 

It is need to specify a functional form for 
production or cost function. 
It is need to specify a distributional form 
for the inefficiency term. 
It is sensitive to distribution form 
assumed. 

Limitation The efficiency scores are only relative to 
the best firms in the sample. 
Measurement error and other noise may 
influence the shape and position of the 
frontier. 
Exclusion of an important input or output 
may bias the results. 
Not accounting for environmental 
difference may give misleading results. 

The efficiency scores are only relative to 
the best firms in the sample. 
Sufficient observations are needed so as to 
enlarge degree of freedom. 
Not accounting for environmental 
difference may give misleading results. 

 
Both DEA and SFA are by now two well-established non-parametric and 

parametric techniques, respectively, widely employed in management science. However, 
some researchers criticize that SFA methods do not process practicality in real 
applications. If one goes away from academics will there be people using SFA as a tool 
for running a firm? Färe (1996) mentioned at the Advanced Research Workshop on 
Efficiency Measurement, held at Odense University, May 22-24, 1995, “I have seen 
DEA being used but I have never seen anyone use SFA.”  On the other hand, Lovell 
(1996) criticized that there is no way to construct confidence intervals for the results 
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based on DEA measurements. He argued at the same workshop, “how confident are we 
in the numbers we are generating from DEA?” Although none of methods is perfect, 
however, DEA and SFA provide substantially better measures of efficiency than simple 
partial measures. In application fields, one frequently asked question is: which method 
should one use? The answer to this question often depends upon the application being 
considered. If one is using farm level data where measurement error, missing variables, 
for example, data on an input is not available or not suitably measured, whether, etc. are 
likely to play a significant role, then the assumption that all deviations from the frontier 
are due to inefficiency, which is made by DEA, may be a brave assumption (Coelli, 
1995). In other words, when measuring the efficiency of the firms or industries, in 
which their data are indeterminist, then SFA is more suitable.  
DEA and SFA have become the two important and widespread analytical tools in the 
applications of efficiency measurement. With increasing applications in the empirical 
studies, some questions become more critical. Seiford (1996) has pointed out two major 
issues. The first one is that how do we know that the model selected best approximates 
the reality of the problem? The second one is that how do we know the results are 
correct? To valid the results of DEA, one needs some statistical tests for model 
specification. Besides, to overcome the shortcoming of data errors, perhaps one needs 
some innovative technique, which incorporate DEA and SFA. Lewin and Lovell (1990) 
also pointed out that two issues are necessary to be researched in the future. In the 
theory area, ongoing work in pursuit of a convergence of the two techniques can be 
expected both by making DEA stochastic and by relaxing parametric restrictions in the 
econometric models. In the applications area, we see a need for the simultaneous use of 
both techniques, particularly when important policy recommendations might be 
sensitive to the choice of analytical method. 

3.2 The Method for Measuring Productivity and Sales Force 

As mentioned in previous chapter, Malmquist (1953) defined input quantity index 
in the consumer context, Caves et al. (1982) defined the analogous productivity index, 
which is named after Malmquist (1953). Unlike Caves et al. (1982), Färe et al. (1994) 
calculated the Malmquist index directly by using the technical efficiency measures 
developed by Farrell (1957). In fact, the Farrell’s (1957) measurement in efficiency is 
based on the input distance function; which is introduced by Shephard (1953, 1970), 
and which can be described as follows. 

Let  denote a vector of inputs, and  denote a 

vector of output. The production technology T is defined by  

N
N Rxxx +∈= ),...,( 1

M
M Ryyy +∈= ),...,( 1

}{ produceycanxyxT  :),(= , and it consists of all input-output vectors that are 
technically feasible. The input distance function is defined on the technology T as 
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}),(:sup{),( TyxyxDi ∈=
λ

λ . In words, that is to find the maximal feasible contraction 

ratio of x, keeping all observed data point remains in the feasible set. Similarly, the 
output distance function is defined as }),(:inf{),( TyxyxDo ∈= θθ . Following Färe 
et al. (1994), to define the Malmquist index; one needs to define distance functions with 
respect to two different time periods such as 

(3-21) }),(:inf{),( 1111 tttttt
O TyxyxD ∈= ++++ θθ  

This distance function measures the maximal proportional change in outputs required to 
make (xt+1, yt+1) feasible in relation to the technology at period t. Note that, if the 
production (xt+1, yt+1) occurs outside the set of feasible production in period t, that is, 
technical change has occurred. Similarly, one may define a distance function that 
measures the maximal proportional change in output required to make (xt, yt) feasible in 
relation to the technology at period t+1, which Färe et al. (1994) called Do

t+1(xt, yt). 
Caves et al. (1982) defined the Malmquist productivity index as 
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In (3-22), technology in period t is the reference technology. Similarly, the period 
t+1-based Malmquist productivity index can be defined as 
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In order to avoid choosing an arbitrary benchmark, Färe et al. (1994) specified the 
output-based Malmquist productivity index as the geometric mean of the two CCD-type 
Malmquist productivity index and as the follows. 
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Following Färe et al. (1989, 1992), model (3-26) can be rewrite as 

(3-25) 
2
1

1!11

!1!11
11

),(
),(

),(
),(

),(
),(),,,( ⎥

⎦

⎤
⎢
⎣

⎡
×= ++++

+++++
++

ttt
O

ttt
O

ttt
O

ttt
O

ttt
O

ttt
Otttt

O yxD
yxD

yxD
yxD

yxD
yxDyxyxM  

Model (3-25) can be decomposed into two terms, technical change (TC) and efficiency 
change (EC) as (3-26) and (3-27), respectively. 
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Similar to (3-25), (3-26) and (3-27), one can defines the input-based Malmquist 
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productivity index as (3-28) and decomposes it into (3-29) and (3-30) 
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The four distance functions can be calculated by solving four linear programming as 
described in the previous chapter. 

3.3 The Research Framework 

3.3.1 The Three-stage Model  

Although DEA has become increasingly widespread in the efficiency 
measurement in the past two decades, however, existence of input excesses and outputs 
slacks, neglecting the affects of environmental factors, and without taking statistical 
errors into account are its common shortcomings. The slack problems arise because we 
use the sections of piece-wise linear to stand for isoquant. As shown in Figure 3-1, 
assume that there are five DMUs, both C and E located on the frontier, therefore, they 
are efficient. DMUA and DMUB, on the other hand, are inefficient which can be moved 
to C and D, respectively, by proportionally reducing its inputs. However, it is 
questionable as to whether the point D is an efficient point because D could reduce the 
amount of input x1 used (by the amount of S2) and still produce the same amount of 
output. This is known as non-radial input slack in the literature. In this research, two 
kinds of slacks are defined, one is radial slack, S1, and the other is non-radial slack, S2. 
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Figure. 3-1 Radial and Non-radial Input Slacks 
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Similar to input slacks, the output slacks can be portrayed by using Figure 3-2. In 

which, each DMU utilize one input to produce two outputs. C and E are output-oriented 
efficient, and B and A are inefficient. S2 (that is DE) is the non-radial slack. 

A 

B 

  C

  D 

E 

S2 

 

y2 /x  
 
 
 
 
 
 
 
 
 
 O 

y1/x  
Figure. 3-2 Radial and Non-radial Output Slacks  

 
Some researchers are aware that these shortcomings may influence the measure 

results and thus propose several revised models. Based on literatures, the revised 
models can be classified into three categories. The first, to take the non-discretionary 
environmental factors into account, for example, Banker and Morey (1986a) propose an 
exogenously fixed inputs and outputs DEA model. Banker and Morey (1986b) further 
introduce a categorical DEA model, in which benchmark is classified into several 
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reference sets based on operating environments. Then a particular DMU only be 
compared to other DMUs with the same rating of operating environment. The second 
category, to consider the external operating environment and slacks simultaneously, 
Fried et al. (1993) adopt traditional DEA model to evaluate performance of U.S. credit 
unions in the first stage, and then regress the sum of radial and non-radial slacks on 
some explaining variables by using seemingly unrelated regression (SUR) technique in 
the second stage. Some researchers consider that the ability of a DMU to transform 
inputs into outputs is influenced by its technical efficiency and external operating 
environment. Fried et al. (1999) thus introduced a procedure for obtaining a measure of 
managerial efficiency that controls for exogenous features of operating environment. 
Since the slacks are always generated in conventional DEA models, which are assumed 
influenced by the environmental factors, statistical noises, and managerial efficiency, 
Fried et al. (2002) thus proposed a three-stage technique. The method proposed by Fried 
et al. (2002) can be attributed to the third category, and are described as follows. 
In the first stage, conventional DEA model (CCR and BCC model, that is, (3-1) and 
(3-2)) are applied to measure the preliminary efficiency score for each DMU using input 
and output quantity data only. The results thus are used to compare and to test which 
model is more suitable for rail industry. The optimal one provides initial performance 
evaluation for each DMU. In addition to efficiency scores, the solutions also contain 
nonnegative slacks as shown in Figure 3-1. However, actual performances are likely to 
be under-evaluate since environmental factors and statistical noises, as well as slacks 
are neglected.   
  
The total slacks estimated from the first stage (radial and non-radial slacks) then regress 
on environmental factors by using stochastic frontier analysis (SFA) approach in the 
second stage. The N separate SFA regressions take the general form 
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Where the  are deterministic slack frontier with composed error terms 

,  are the parameters to be estimated. Consistent with a stochastic cost 

frontier formulation, Fried et al. (2002) assumed that the  reflect 

statistical noises and the  reflect the managerial inefficiency. This 

allowed the slacks to be decomposed into three parts, a part attributable to 
environmental effects, a part attributable to managerial efficiency, and a part attributable 
to statistical noise. Each of the N regressions may be estimated by maximum likelihood 
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technique described in 3.1.2 section. 
In the third stage, input or output data, (depending on the orientation used in the first 
stage) are adjusted by using the results of SFA regressions in the second stage. The 
equation for adjustment is as 

(3-32) [ ] [ ] IiNnvvzzxx ninii
n

i
n

iini
A
ni ,...,1,,...,1,)(max)(max ==−+−+= ββ  

Where  and  are adjusted and observed input quantities, respectively. The first 

adjustment on the right hand side of the equation puts all DMU into a common 
operating environment, the least favorable environment observed in the sample. The 
second adjustment puts all DMU into a common state of nature, the unluckiest situation 
encountered in the sample. After adjusting the data, then re-evaluate producer 
performance by using DEA model again.  

A
nix nix

3.3.2 The Four-stage Model 

The analytical procedure proposed by Fried et al. (2002) take environmental 
effects and statistical noise into account when measuring efficiency, however, there is 
no guarantee that such measurement can always completely eliminate the slacks. In 
order to measure the efficiency of DMUs by taking the residual slacks into account, this 
research extends Fried’s et al. (2002) three-stage DEA to four-stage DEA and further 
expands it to effectiveness, productivity, and sales force measurement. The analytical 
framework can be described as follows. 

3.3.2.1 The efficiency measurement 

The first-stage 
In the first stage, we use input-orientation DEA (measuring the maximum possible 
proportional reduction in all inputs, keeping all outputs fixed) to measure the technical 
efficiency and productivity by selecting number of passenger cars per kilometer of lines, 
number of freight cars per kilometer of lines, and number of employees per kilometer of 
lines as inputs and passenger-train-kilometer per kilometer of lines and 
freight-train-kilometer per kilometer of lines as inputs and passenger-train-kilometer per 
kilometer of lines and freight-train-kilometer per kilometer of lines as outputs. Assume 
that there are n firms, each of them produces k products by utilizing m input factors; the 
input-orientation BCC DEA model can then be mathematically described as follows 
(Banker et al., 1984). 
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(3-33) 
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Where, X and Y are the m×n input matrix and the k×n output matrix (for the ith firm 
these are represented by the vector xi and yi), respectively. λ is a n×1 vector of constant 
and θ is a scalar, which stands for efficiency of ith firm. Solve this LP for each of the n 
firms; one obtains the efficiency score for each firm. 

The Second-stage 
The variables involved in the first-stage are observed input and output data. To 
incorporate the environmental effects into the models, factors affecting the technical 
efficiency are further investigated by Tobit regression analysis in some previous studies 
(see for example, Oum and Yu, 1994). One shortcoming is that, however, previous 
studies only consider radial inefficiency and ignore the input and output slacks. Thus, in 
this research, the input slacks estimated from the first-stage are decomposed into 
environmental influences, managerial inefficiency and statistical error terms at the 
third-stage by using the following stochastic cost frontier function model.  
(3-34) ,1,...,  ,1,..., ,);( IiNnuvzfS niniini ==++= β  
Where, dependent variables Sni are the sum of radial and non-radial input excesses 
estimated from first-stage, zi are environmental factors, β are parameters to be estimated, 
f (zi;β) are deterministic slack frontiers. Consistent with stochastic cost frontier function, 
vni is assumed to be a statistical noise and follow normal distribution with zero mean 
and variance σv

2, uni represents managerial inefficiency which was assumed that the 
uni~N+(µ, σu

2) and distributed independently with vni.  

The Third-stage 
At the third-stage, producers’ adjusted inputs are constructed from the estimated results 
of (3-34) by using 

(3-35)  

Where, are adjusted and observed input quantities, respectively. The 

adjustment thus puts all DMUs into a common operating environment and a common 
state of nature (Fried et al., 2002). DEA-based efficiencies are re-estimated by 
substituting the adjusted data into the model (3-33), which are incorporated with the 
environmental and noise effects.  
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The Fourth-stage 
Although we re-run the efficiency measurement model based on the adjusted data, 
however, there is no guarantee that such measurement can always completely eliminate 
the slacks, at fifth-stage, we thus employ the Slack-adjusted DEA model proposed by 
Sueyoshi (1999). The SA-DEA model can be expressed as follows, for more detail, 
refers Sueyoshi (1999), Sueyoshi et al. (1999), Hibiki and Sueyoshi (1999), and 
Sueyoshi and Goto (2001).  

(3-36) 
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The model (3-36), proposed by Sueyoshi (1999), counts the slacks in one model. 
However, the results are likely to be biased if slacks occur in two or more dimensions. 
In order to measure slacks more precisely, Coelli (1998) suggests using a multi-stage 
DEA model to avoid the problems inherent in the model. In this research, Coelli’s (1998) 
model is adopted to estimate the efficiency and slacks, then, substitute the efficiencies 
and slacks into the objective function of the model (3-36) to get the slack-adjusted 
efficiencies.  

3.3.2.2 The effectiveness measurement 

In the effectiveness measurement, similar procedures (that is four-stage model) are 
adopted with exceptions of input and output data selected and model adopted. More 
specifically, this research employs output-orientation DEA model (measuring the 
maximum possible proportional expansion in all outputs while all inputs remaining 
unchanged) by selecting passenger-train-kilometer and freight-train-kilometer as input 
factors, and passenger-kilometer and ton-kilometer and output variables. The model for 
estimating service effectiveness then becomes: 

(3-37) 
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Where Y, X, xi, yi and λ are defined as previous; φ  denotes proportional increase in 
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output, which ranges from one to infinity; φ1 defines the service effectiveness of firm, 
which varies between zero and one. 

Similar to the procedure of efficiency measurement, at the second-stage, stochastic 
cost frontier function model (i.e. model 3-34) is applied to find out the potential factors 
which influencing the amount of slacks, and the amount of slacks which were affected 
by the factors. At the third-stage, data are adjusted by using model (3-35), and the 
effectiveness of each DMU is re-estimate by adopting model (3-37) based on the 
adjusted data. Again, there is no guarantee that such measurement can always 
completely eliminate the slacks, at fourth-stage, I thus employ the output-orientated 
Slack-adjusted DEA model, which then becomes (Sueyoshi, 1999) 

(3-38) 
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3.3.2.3 The productivity measurement  

Conventional FGNZ Method 
Following Färe, Grosskopf, Norris and Zhang (1994) (hereinafter, FGNZ) assume 

that the production technology satisfies constant returns to scale and free disposability 
of inputs and outputs, the input-based Malmquist Productivity Index (MPI) mI can be 
expressed as 

(3-39) 
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It should be note that we choose input-oriented MPI since we are measuring the 
productivity rather than sales force, the objective of distance functions is to seek a 
minimum proportional reduction in input usage while keeping outputs unchanged. Thus 
the dI 

t(yt ,xt) in (3-39), stands for input-oriented distance function between observation 
(yt ,xt) of period t and frontier under technology of period t. The MPI mI can be further 
decomposed to efficiency change (EC) and technology change (TC) as follows. 

(3-40) 
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Where, the first term in right hand side is defined as EC, which captures the catching-up 
effect, and the second term is defined as TC, which measures the movement of the 
frontier. To measure the mI one needs to calculate four distance functions by using linear 
programming technique. It is worthy to note that, when solving four LPs, we adopt CCR 
model (i.e. model 3-1), rather than BBC model. The reason can be found from Färe et al. 
(1997). Four distance function models are as follows. 
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Proposed Four-stage Method 

In the productivity measurement model (3-39) and (3-40), the Malmquist 
Productivity Index is based on four distance functions (3-41)-(3-44), which can be 
solved by using linear programming technique. However, the solutions of linear 
programs frequently contain slacks, which are typically ignored. When slacks are 
presented, radial efficiency measures may overstate the true efficiency thus affects 
productivity index in an unknown way. In addition, previous studies do not take 
environmental factors and statistical noise into account when measuring productivity 
index. To measure MPI more precisely, we thus solve four distance functions by 
substituting adjusted data obtained from third-stage in efficiency measurement 
procedure and adopting SA-DEA model (3-36). The model (hereafter, four-stage 
method) thus takes environmental factors, statistical noise, and residual slacks into 
account. 

3.3.2.4 The sales force measurement 
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Measuring Sales Force by FGNZ Method 
The model (3-40) and (3-41), measure the Malmquist Productivity Index, which is 

related to productive efficiency measurement. As aforementioned, sales process differs 
from production process. Therefore, productivity measurement reflects only the 
capability of production division; on the other hand, sales force usually to be used to 
measure a firm’s capability in sale or a salesperson’s productivity. However, the 
previous studies related to measurement of railways’ performance do not measure sales 
force. In this research, sales force is defined as the sale capability of railways, which is 
corresponding to service effectiveness. The Malmquist Sales force Index (MSI) thus can 
be defined as output-based Malmquist Index as follows. 

(3-45) 
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(3-46) 
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Similar to MPI, MSI can be decomposed into effectiveness change (EC) and sales 
technology change (TC). In model (3-46), the first term of right hand side stands for EC, 
and the second term represents for TC. To measure MSI, one needs to calculate four 
distance functions as shown in chapter two by using linear programming technique. 
Hereinafter, the method proposed by Färe, Grosskopf, Norris and Zhang (1994) is called 
FGNZ method. 

Measuring Sales Force by Proposed Four-stage Method 
Similar to productivity measurement, the FGNZ method does not take 

environmental factors, statistical noises, as well as slacks into account. When slacks are 
presented, radial effectiveness measures may overstate the true effectiveness thus affects 
sales force index in an unknown way. In order to measure MSI more precisely, this 
research thus proposes to solve four distance functions by substituting adjusted data 
obtained from third-stage in effectiveness measurement and adopting SA-DEA model 
(3-38). Hereinafter, the method proposed by this research is called four-stage method. 
Again, the four-stage method accounts for environmental factors and statistical noise, as 
well as slacks. 
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