CHAPTER 4. EFFICIENCY AND EFFECTIVENESS MEASUREMENT FOR RAIL TRANSPORT

This chapter measures productive efficiency and service effectiveness for 44 selected railways worldwide over the period of 1995 to 2001. More specifically, the research measures efficiency by adopting input-orientated DEA models and by selecting number of passenger cars per kilometer of lines, number of freight cars per kilometer of lines, and number of employees per kilometer of lines as input factors, and passenger-train-kilometer per kilometer of lines and freight-train-kilometer per kilometer of lines as output variables. Both three-stage DEA method and proposed four-stage DEA method are applied and the results are compared. In addition, this research also measures effectiveness by employing output-orientated DEA models and by choosing passenger-kilometers and ton-kilometers as two output variables and passenger train-kilometers and freight train-kilometers as two input factors. Similar to efficiency measurement, the results measured from three-stage and four-stage DEA method are compared. The remaining of this chapter is organized as follows. The data set is presented in 4.1. 4.2 and 4.3 describe analytical results of efficiency and effectiveness measurement, respectively, including measured by CCR, BCC models and three-stage, four-stage DEA approaches. The concluding remarks are described in 4.4.

"Allower of the second

4.1 The Data

For measuring the rail technical efficiency, previous studies usually select passenger train-kilometers and freight train-kilometers as two outputs, number of employees, number of cars, and length of lines as input factors (for example, Coelli and Perelman, 2000). There are two reasons, however, this research does not choose length of lines as an input factor. The first one is that, for rail industry, from the perspective of economics, line facility is always attributed to fixed cost due to sunk characteristics; this research attempts to measure the efficiency of the variable input factors usage. The second reason is that, the length of lines varies from 220 to 62,915 kilometers in the samples, since we are looking for a more homogeneous set of DMUs, where comparison makes sense. Therefore, this research measures the technical efficiency and productivity by selecting number of passenger cars per kilometer of lines, number of freight cars per kilometer of lines, and number of employees per kilometer of lines as inputs and passenger-train-kilometer per kilometer of lines and freight-train-kilometer per kilometer of lines as input factors and passenger-train-kilometer per kilometer of lines and freight-train-kilometer per kilometer of lines as output variables. For measuring the service effectiveness and sales force, on the other hand, we choose passenger-kilometers and ton-kilometers as two outputs and utilize passenger train-kilometers and freight train-kilometers as two inputs. For simplicity, we do not account for such external factors as public/private ownership and regulatory differences across the firms.

The data set used in this research is drawn from International Railway Statistics published by the International Union of Railways (UIC). The complete data set contains 50 railways and covers seven years (1995-2001), so there is a total of 350 observations for the panel data. Since DEA method measures the efficiency (effectiveness) of each sample related to efficient (effective) DMUs, the results are affected by the influential observations. Therefore, it is important to detect the outliers from the samples. In this paper, we conduct the boxplot test to identify the potential outliers and remove from the sample. The procedure for detecting outliers is described as follows. Firstly, all possible ratios, including output to input and consumption to output, are computed and then a boxplot is constructed for each ratio. Fifty percent of the sample lies within the box. The median $\pm 3.5 \times IR$ represents an extended boxplot, where IR is the inter-quartile range, or the difference between the third quartile and the first quartile. Any DMU with the value of ratio outside the extended boxpolt is considered as an outlier. After the procedure has been preceded, six DMUs are considered as outliers thus been removed from the sample set. The final sample set consists of 44 DMUs over seven years, that is, 308 observations. Table 4-1 summarizes the descriptive statistics of the data including two consumption (passenger-kilometers and ton-kilometers), two outputs (passenger train-kilometers and freight train-kilometers), four inputs (length of lines, number of passenger cars, number of freight cars, and number of employees), two environmental variables (gross national income per capita and population density), and two variables characterizing the railways (percentage of electrified and ratio of passenger train-kilometers to total train-kilometers).

Year	Statistics	consun	ervice ptions	Service	output		Serv	vice input	t	Enviror Varia		Characte of railwa	
		Pax-km	Ton-km	Pax Train-km	Freight Train-km		Pax cars	Freight cars	Labors	GNI	POP	ELEC (%)	ROP
1995	Max.	319365	252967	695323	240924	62660	34314	467884	1602051	45060	982.2	1.000	0.925
	Min.	104	265	562	858	220	40	162	1265	200	0.4	0.000	0.173
	Mean	22725	21910	89495	33525	8152	4684	43602	93436	13716	42.7	0.377	0.666
	Std.	60476	47782	153275	53945	12219	7419	84453	248375	13427	147.1	0.290	0.163
1996	Max.	341999	273515	693664	245810	62915	34188	269783	1586429	45251	980.2	1.000	0.932
	Min.	119	265	553	832	220	46	170	1253	200	0.4	0.000	0.168
	Mean	23227	21291	90142	32651	9025	4324	34060	90441	13846	41.6	0.355	0.670
	Std.	63312	48053	154794	53379	14414	7205	59071	245024	13317	145.1	0.283	0.164
1997	Max.	357013	277567	697635	249528	62725	34648	261482	1583614	45388	982.2	1.000	0.930
	Min.	120	331	856	891	220	52	170	1235	210	0.4	0.000	0.232
	Mean	23369	21137	90587	32735	8095	4233	32409	87757	13605	41.9	0.385	0.670
	Std.	64735	48277	155648	52881	11994	7137	56226	243334	13220	147.3	0.286	0.166
1998	Max.	379897	284249	698160	250465	1 B 62495	28729	443527	1578802	45098	982.2	1.000	0.964
	Min.	135	314	1112	934	220	50	170	1212	220	0.4	0.000	0.220
	Mean	23477	21071	91746	31942	8071	4047	39356	85401	13826	42.7	0.391	0.666
	Std.	67072	48904	159405	52189	11946	6596	79304	242089	13317	147.1	0.288	0.166
1999	Max.	403884	284270	726938	246185	62810	35656	243540	1578000	43630	999.0	1.000	0.939
	Min.	136	326	679	1068	220	47	165	1241	220	0.4	0.000	0.182
	Mean	24326	20530	93400	31486	8054	4290	31818	83607	13533	43.2	0.395	0.669
	Std.	70141	48634	164154	52651	11927	7347	54737	241654	13062	149.6	0.289	0.174
2000	Max.	430666	305201	739800	260594	62759	36621	235346	1577192	41860	1015.9	1.000	0.941
	Min.	74	326	752	1095	220	52	165	1241	210	0.4	0.000	0.180
	Mean	25103	21927	94115	32578	7974	4222	30728	82263	13627	43.7	0.399	0.660
	Std.	73649	52446	166611	55562	11753	7469	51990	241380	13052	152.1	0.288	0.184
2001	Max.	457022	312371	697781	260218	62759	36476	233993	1545300	39840	1032.4	1.000	0.949
	Min.	75	334	752	1034	220	45	175	1450	210	0.4	0.000	0.156

Table 4-1 The descriptive statistics for the observations	s (44 railways over 7 years)
---	------------------------------

Year	Statistics	consur	ervice nptions	Service output			Serv	vice input	į	Environmental Variables		Characteristics of railways	
		Pax-km	Ton-km	Pax Train-km	Freight Train-km	0	Pax cars	Freight cars	Labors	GNI	POP	ELEC (%)	ROP
	Mean	25739	22034	92989	31644	7884	4205	26899	80013	13246	44.2	0.405	0.664
	Std.	77099	53489	162547	53275	11662	7424	47935	236541	12617	154.6	0.289	0.191
Panel	Max.	457022	312371	739800	260594	62915	36621	467884	1602051	45060	1032.4	1.000	0.964
	Min.	74	265	553	832	220	40	162	1212	200	0.4	0.000	0.156
	Mean	23995	21414	91782	32366	8179	4286	34124	86131	13604	43.0	0.387	0.666
	Std.	67626	49216	158003	52901	12190	7165	62917	240308	13085	147.9	0.285	0.171

Note: GNI denotes per capita gross national income (US dollar) and POP denotes population (in million persons) of the country to which the railway belongs. ELEC represents the percentages of lines being electrified. ROP is defined as the ratio of passenger train-kilometers to total train-kilometers.

In addition to outlier detecting, another important procedure is the isotonicty testing. The isotonicty relations are assumed for DEA, which means that an increase in any input should not result in a decrease in any output (see for example, Golany and Roll, 1989). Consequently, the correlation coefficients between any input and any output should be positive. The isotonicty test results are indicated in Table 4-2, from the table, we see that all correlation coefficients are positive. Some coefficients are relative high, for example, correlation between passenger-train-kilometer to length of lines, while some are relative low, for instance, freight-train-kilometer to passenger-kilometer. This is because using freight cars cannot produce passenger service. Same results can be found in the relation between service outputs and consumptions, the correlation coefficient between freight-train-km and passenger-km are high, but relative low between freight-train-km. This is because freight service output cannot be consumed by passengers.

Table 4-2 the correlation coefficients between input and output, output and consumption

Ef	ficiency	measur	ement		Effectivenes	ss measu	rement
Input/output	Line	Labor	Pcars	Fcars	Output/consum.	P-tr-km	F-tr-km
P-tr-km	0.7595	0.6955	0.8918	0.4548	Pass-km	0.8557	0.4586
F-tr-km	0.9595	0.7937	0.4936	0.8419	Ton-km	0.5050	0.8226

4.2 Efficiency Measurements

4.2.1 Measured by CCR and BCC models

To measure the efficiency, this research solves both CCR and BCC models by employing GAMS computer program. The estimated results for the two models are indicated in Table 4-3 and 4-4, respectively. From the tables, we note that, in general, low efficiency scores are found in the rail industry with only a few exceptions. The average efficiencies are 0.565 and 0.653, based on CCR and BCC model, respectively. This partly reflects that most railways have been facing a decline situation. In addition, the results indicate that BCC efficiencies are greater than or equal to those estimated from CCR model. This result explains that the BCC approach forms a convex hull of intersecting planes; which envelop the data points more tightly than the CCR conical hull. Therefore, technical efficiency scores provided by BCC model are greater than or equal to those obtained from CCR model.

The results denoted above are based both on the assumptions of constant returns to scale (CRS) and variable returns to scale (VRS). To investigate which returns to scale is more appropriate to rail systems, Banker (1996) proposed the following method. Assume that is half-normally distributed, the research evaluates the statistic $T_{HN} = \sum_{j=1}^{N} (\theta_j^C - 1)^2 / \sum_{j=1}^{N} (\theta_j^B - 1)^2$, where θ_j^C and θ_j^B are CCR and BCC efficiencies, respectively. If T_{HN} is greater than $F_{critical}(N, N)$, then reject the null hypothesis of CRS. Firstly, we test for normality by applying the kurtosis method (Thode, 2002), $b_2=m_4 / (m_2)^2$, where b_2 is coefficient of kurtosis, m_4 and m_2 are the fourth and second moments, respectively. Since b_2 is 2.308, for two-sided 0.05 test, 2.20<2.308<4.16, we cannot reject the null hypothesis of normality. That is, the efficiency scores follow half-normal distribution. Then we test for CRS, since T_{HN} (=76.7032/58.5708=1.3095) is greater than F (308,308)=1.2876, thus reject the null hypothesis of CRS. That is, VRS is prevailing for the rail industry. In the following analysis, therefore, only the measurements based on BCC model are discussed.

		he efficiency r					2	· ·	/	1	
No	Country	Railways					1999				
1	Austria	ÖBB	0.528	0.558	0.581	0.662	0.677	0.697	0.840	0.649	0.106
2	Belgium	SNCB/NMBS	0.418	0.432	0.442	0.413	0.418	0.411	0.435	0.424	0.012
3	Denmark	DSB	0.617	0.613	0.812	0.990	0.987	1.000	1.000	0.860	0.180
4	Finland						0.682				
5	France	SNCF									
	Germany	DBAG									
	Greece						0.542				
	Ireland						0.794				
	Italy	FS SpA									
	Luxembourg	1					0.780				
	Netherlands	NS N.V.									
	Portugal						0.769				
	Spain	RENFE									
	Sweden	SJ AB									
	Norway	NSB BA									
	Switzerland						1.000				
	Switzerland	CFF/SBB/FFS									
	Bulgaria						0.282				
							0.282				
	Croatia		-								
	Czech Rep					1. C.	0.348				
	Estonia						0.602				
	Hungary	GYSEV/RÖEE									
	Hungary	MÁV Rt.									
	Latvia					-	0.712				
	Lithuania						0.396				
	Poland						0.432				
	Romania						0.152				
	Slovak						0.360				
	Slovenia						0.610				
	Moldova	CFM (E)									
31	Ukraine						0.372				
32	Turkey	TCDD									
33	Israel	IsR	0.571	0.659	0.567	0.444	0.445	0.532	0.674	0.556	0.092
34	Morocco	ONCFM	0.269	0.354	0.346	0.407	0.413	0.409	0.500	0.385	0.072
35	Syria	CFS	0.355	0.312	0.335	0.307	0.302	0.346	0.343	0.329	0.021
	Mozambique						0.233				
	Tanzania						0.810				
	Azerbaijan						0.178				
	Korea						0.819				
	Japan						0.994				
	India						0.337				
	Taiwan						0.690				
	Turkmenistan						0.456				
	Australia						0.983				
	Mea						0.581				
	IVICA	,11	0.500	0.554	0.507	0.570	0.501	0.575	0.004	0.505	0.071

Table 4-3 the efficiency measurement for 44 railways (CCR)

		ne efficiency r						· ·		/	· · · · ·
		Railways					1999				
	Austria						0.950				
2	Belgium	SNCB/NMBS									
3	Denmark	DSB	0.619	0.616	0.819	0.987	1.000	1.000	1.000	0.863	0.180
4	Finland	VR	0.635	0.648	0.675	0.689	0.685	0.686	0.692	0.673	0.022
5	France	SNCF	0.497	0.775	0.813	0.605	0.630	0.679	0.857	0.694	0.128
6	Germany	DBAG	0.769	0.804	0.806	0.859	0.914	1.000	0.952	0.872	0.086
7	Greece	СН	0.385	0.406	0.444	1.000	0.672	0.593	0.622	0.589	0.213
8	Ireland	CIE	0.830	0.852	0.827	0.868	0.862	0.797	0.786	0.832	0.032
9	Italy	FS SpA									
10	Luxembourg						0.673				
	Netherlands	NS N.V.									
	Portugal						0.787				
_	Spain	RENFE									
	Sweden	SJ AB									
	Norway	NSB BA									
-	Switzerland						1.000				
	Switzerland	CFF/SBB/FFS									
	Bulgaria						0.265				
-	Croatia						0.488				
-	Czech Rep						0.355				
-	Estonia					1 mile	0.861				
	Hungary	GYSEV/RÖEE									
	Hungary	MÁV Rt.									
	Latvia						0.645				
	Lithuania						0.393				
	Poland						0.446				
	Romania						0.172				
_	Slovak						0.437				
	Slovenia						0.936				
	Moldova	CFM (E)									
-	Ukraine	. ,					0.314				
-	Turkey	TCDD									
-	Israel						0.623				
-	Morocco	ONCFM									
	Syria						0.308				
	Mozambique						0.793				
	Tanzania						1.000				
	Azerbaijan						0.173				
	Korea						0.989				
	Japan						1.000				
	India						0.340				
	Taiwan						0.904				
-	Turkmenistan						0.904				
-	Australia						1.000				
44	Mea						0.660				
	Ivita	, 11	0.303	0.003	0.023	0.040	0.000	0.0/9	0.004	0.039	0.009

Table 4-4 the efficiency measurement for 44 railways (BCC model)

4.2.2 Sensitivity analysis

As mentioned in 3.1.1.3, many researchers criticize the robustness of DEA since the measured results may be sensitive to the possible data errors. Based on BCC measurement described in 4.2.1, there are 49 efficient DMUs. To analyze whether these 49 efficient DMUs are sensitive or not, this research thus employs Seiford and Zue's sensitivity analysis model; which was described in 3.1.1.3. The results are indicated in Table 4-5. Note that some efficient DMUs are sensitive while some efficient DMUs are relative robust. For instance, the efficient DMU 149 (CFF, 98), DMU 281 (CFF, 2001) and DMU 306 (TRA, 2001) are rather robust (stable) because their sensitivity indexes are relative large (higher than 15%), suggesting that they are not sensitive to possible data error. By contrast, the efficient DMU 44(QR, 95), DMU 125 (TRC, 97), DMU 176 (QR, 98), DMU 179 (DSB, 99), DMU 191 (NSB, 99), DMU 220 (QR, 99), DMU 257 (TRC, 2000), DMU 264 (QR, 2000), DMU 278 (SJ, 2001), DMU 279 (NSB, 2001) and DMU 286 (GYSEV, 2001) are very sensitive to possible data error because they have relatively small sensitivity indexes (less than 1%).

ATT ILLER

Firm	g _k	g _{-k}	Firm <i>â</i>	g _k E	S g _{-k}	Firm	g _k	g _{-k}
DMU10	4.18%	4.02%	DMU176	0.14%	0.14%	DMU242	4.52%	4.33%
DMU11	6.71%	6.28%	DMU179	0.90%	0.89%	DMU257	0.54%	0.54%
DMU14	4.59%	4.39%	DMU191	0.89%	0.88%	DMU264	0.49%	0.49%
DMU42	8.15%	7.53%	DMU192 🍢	6.53%	6.13%	DMU265	8.56%	7.89%
DMU44	0.99%	0.98%	DMU198	6.51%	6.12%	DMU267	11.93%	10.66%
DMU58	8.10%	7.50%	DMU213	5.83%	5.51%	DMU275	5.71%	5.40%
DMU66	2.52%	2.45%	DMU216	10.11%	9.18%	DMU278	0.27%	0.27%
DMU81	2.61%	2.54%	DMU220	0.01%	0.01%	DMU279	0.84%	0.83%
DMU102	5.48%	5.20%	DMU221	5.40%	5.13%	DMU280	3.52%	3.40%
DMU110	1.82%	1.79%	DMU223	6.10%	5.75%	DMU281	15.81%	13.65%
DMU125	0.06%	0.06%	DMU226	2.70%	2.63%	DMU286	0.92%	0.91%
DMU128	1.67%	1.64%	DMU231	2.25%	2.20%	DMU301	2.65%	2.58%
DMU139	5.34%	5.07%	DMU234	3.86%	3.72%	DMU304	12.20%	10.87%
DMU147	3.19%	3.09%	DMU235	4.82%	4.60%	DMU306	15.50%	13.42%
DMU148	2.16%	2.11%	DMU236	4.37%	4.19%	DMU308	3.14%	3.05%
DMU149	16.03%	13.82%	DMU237	2.37%	2.32%			
DMU169	7.13%	6.65%	DMU241	4.23%	4.06%			

Table 4-5 The results of sensitivity analysis for BCC efficiency measurement.

Note: g_k denotes the percentages increase in all inputs for the DMU_k, and g_{-k} denotes the percentages decrease in all inputs for the remaining DMUs.

4.2.3 Measured by 3-stage DEA procedure

One shortcoming is that the CCR and BCC models do not take environmental factors and statistical errors into account. To incorporate environmental factors and statistical noises into the efficiency measurement model, this research thus adopts Fried's *et al.* (2002) three-stage model. Since the BCC efficiency scores and slacks

(including radial and non-radial) have been estimated, and the factors influencing efficiency have been identified, we thus regress the amount of slacks on the potential environmental factors by using stochastic cost frontier model. Following Fried's *et al.* (2002), this research opts for the estimation of three separate SFA regressions. The dependent variables in the SFA regression models are the total slacks, that is the sum of radial slack and non-radial slack, calculated from the BCC model. The estimated results of SFA model are indicated in Table 4-6, from which we see that most parameters are significant except ROP to input 2 (slack of passenger cars) and Line to input 3 (slack of freight cars). It should also be noted that negative coefficient, for example, coefficient of ELEC, means greater percentage of electrified lines will leads to lower input slacks, and thus higher efficiency.

Parameters	Input 1	(Labor)	Input 2	(Pcars)	Input 3 (F	cars)
	coefficient	t-ratio	coefficient	t-ratio	coefficient	t-ratio
Constant	1.457	10.472*	0.731	5.867*	-1.217	-5.272*
ln(ELEC)	-0.327	-4.561*	-0.255	-3.873*	-0.462	-4.741*
ln(ROP)	-2.546	-5.551*	-0.106	-0.344	-3.200	-5.760*
ln(Line/1000)	0.195	6.156*	0.060	1.191*	0.055	1.215
σ^2	15.639	2.450*	9.397	3.662*	14.621	1.140
γ	0.996	413.306*	0.997	555.945*	0.989	112.241*
μ	-7.893	-1.974*	FC -6.121	-2.886*	-6.445	-0.745
Log likelihood function	-329.029	S I	-259.455	E A	-355.538	
LR one-sided test	98.370	N.	106.256	T.	61.975	

Table 4-6 estimated results of SFA model.

Note: t-values in parentheses, asterisks (*) represent significance at the 0.05 levels. Also note that

$$\sigma^2 = \sigma_u^2 + \sigma_v^2, \gamma = \sigma_u^2 / \sigma^2$$

Thus, the stochastic slack functions for labor, passenger cars, freight cars become: $Slack_{Labor} = -1.475 - 0.327 ELEC - 2.546ROP + 0.159Line / 1000 + v_i + u_i$ $Slack_{Pcars} = -0.731 - 0.255 ELEC - 0.106ROP + 0.060Line / 1000 + v_i + u_i$ $Slack_{Fcars} = -1.217 - 0.462 ELEC - 3.200ROP + 0.055Line / 1000 + v_i + u_i$

Once parameters of SFA model have been estimated, the input data were adjusted by applying model (3-35). It should be noted, when adjusting input data, in contrast to Fried *et al.* (2002), who accomplished by using the Jondrow's *et al.* (1982) methodology, this research adopts another point estimator proposed by Battese and Coelli (1988). The reason has been described in previous chapter. After adjusting the input data, the efficiency thus been re-estimated by applying BCC DEA model, the results are indicated in Table 4-7.

		ne efficiency r									
		Railways					1999				
1	Austria										0.014
2	Belgium	SNCB/NMBS									
3	Denmark	DSB	0.962	0.959	1.000	0.947	0.937	0.938	1.000	0.963	0.027
4	Finland	VR	0.935	0.932	0.923	0.940	0.921	0.924	0.924	0.929	0.007
5	France	SNCF	0.983	0.937	0.921	0.938	1.000	0.917	0.893	0.941	0.038
6	Germany	DBAG	0.908	0.931	0.968	0.989	0.927	0.872	0.947	0.934	0.039
7	Greece	СН	0.909	0.956	0.912	0.767	0.890	0.919	0.911	0.895	0.060
8	Ireland	CIE	0.836	0.855	0.846	0.859	0.862	0.880	0.879	0.860	0.016
9	Italy	FS SpA	1.000	0.965	0.940	0.955	1.000	0.977	0.964	0.971	0.023
10	Luxembourg	· · ·					0.996				
	Netherlands	NS N.V.									
	Portugal						0.943				
	Spain	RENFE									
_	Sweden	SJ AB									
	Norway	NSB BA									
	Switzerland						0.971				
	Switzerland	CFF/SBB/FFS									
	Bulgaria						0.921				
_	Croatia						0.937				
	Czech Rep						0.897				
-	Estonia										0.078
	Hungary	GYSEV/RÖEE									
	Hungary	MÁV Rt.									
	Latvia						0.932				
	Lithuania						0.940				
	Poland						0.921				
	Romania				100 100 100						0.074
	Slovak						0.985				
	Slovenia						0.855				
	Moldova	CFM (E)									
	Ukraine						0.828				
	Turkey	TCDD									
	Israel						0.936				
	Morocco	ONCFM									
	Syria						0.932				
_	Mozambique						0.871				
	Tanzania										0.006
	Azerbaijan										0.000
	Korea						0.993				
	Japan						0.990				
	India										0.013
	Taiwan						1.000				
	Turkmenistan										0.003
	Australia						0.903				
	Mea	~									0.003
	Iviea	111	0.927	0.731	0.928	0.710	0.929	0.713	0.921	0.924	0.00/

Table 4-7 the efficiency measurement for 44 railways (3-stage)

4.2.4 Measured by 4-stage procedure

As mentioned in previous chapter, although we re-estimate efficiency by substituting adjusted data, however, there is no guarantee that such measurement can always completely eliminate the slacks. One can see from table 4-8, although the amounts of slacks are decreased, there still exist some slacks in all input variables. To incorporate slacks into the measurement, this research thus employs the Slack-adjusted DEA model (3-36) with exception of calculation method of slacks. The results are documented in Table 4-9. Comparing the results measured from three-stage with those from adjusted-data DEA model, 52 DMUs remain unchanged in efficiency scores, since they do not have non-radial slacks. It is worthy to note that, the average efficiency decreased when we adopt SA-DEA model. On average, efficiency scores estimated from SA-DEA model are slightly less than those from data-adjusted DEA model. In other words, the efficiency scores may be overestimate if the slacks are neglected.

		Estim	nated by	y BCC m	odel		Estimated by using adjusted data.							
						ALL DE LE	alles .							
	Emp	oloyee	Pc	ars	Fo	cars	Empl	oyee	Pc	ars	Fc	ars		
					E/		100	3						
	Ra.	Non-ra	Ra.	Non-ra	Ra.	Non-ra	Ra.	Non-ra	Ra.	Non-ra	Ra.	Non-ra		
						_ //	1	E						
No.	260	96	260	11	260	141	275	15 44	275	67	275	20		
					E	18	96	3						
TS	1182	161.5	65.1	16.6	726	141.3	327.8	159.5	41.5	8.1	262.8	18.9		
					-4	4444	ILL'S							
AS	3.839	0.524	0.211	0.054	2.357	0.459	1.064	0.518	0.135	0.026	0.853	0.061		

Table 4-8 the results of input slack analysis

Note: No., TS, AS, stand for number of DMUs with slacks, total slacks, average slacks (defined as total slacks / 308), respectively, Ra and Non-ra stand for radial and non-radial slacks, respectively.

4.2.5 Comparison

The analytical results reveal that different model will lead to different result. Table 4-10 shows the distribution frequencies of estimated results based on CCR, BCC models and 3-stage, 4-stage DEA approaches. On average, the efficiency estimated by 3-stage DEA procedure is the highest, while CCR efficiency is the lowest. It should be noted that the efficiencies based on CCR and BCC model are somewhat lower than those from 3-stage and 4-stage DEA approaches, because they do not take the environmental factors, managerial inefficiency and statistical noises into account. In other words, the conventional CCR and BCC models attribute all deviation from frontier to inefficiency.

		ne enficiency i		1		r	· · ·	<u>`</u>	<u> </u>		
-	Country	Railways								mean	
	Austria									0.821	
2	Belgium	SNCB/NMBS	0.927	0.987	0.962	0.965	1.000	0.850	0.964	0.951	0.050
3	Denmark	DSB	0.945	0.926	1.000	0.928	0.881	0.901	1.000	0.940	0.046
4	Finland	VR	0.885	0.879	0.877	0.888	0.883	0.884	0.881	0.882	0.004
5	France	SNCF	0.977	0.920	0.902	0.915	1.000	0.885	0.842	0.920	0.054
6	Germany	DBAG	0.908	0.924	0.923	0.939	0.817	0.772	0.781	0.866	0.073
7	Greece	СН	0.743	0.773	0.715	0.595	0.691	0.719	0.718	0.708	0.056
8	Ireland	CIE	0.788	0.770	0.758	0.770	0.776	0.739	0.788	0.770	0.017
9	Italy	FS SpA	1.000	0.965	0.940	0.955	1.000	0.968	0.954	0.969	0.023
10	Luxembourg	CFL	1.000	0.903	0.862	0.916	0.863	0.782	0.800	0.875	0.074
11	Netherlands	NS N.V.	0.969	1.000	1.000	1.000	1.000	0.931	0.950	0.979	0.029
12	Portugal	СР	0.838	0.839	0.946	0.967	0.894	0.901	0.889	0.896	0.049
13	Spain	RENFE	1.000	0.964	0.963	0.971	0.965	0.961	0.938	0.966	0.018
14	Sweden	SJ AB	0.904	0.931	0.891	0.901	0.908	0.910	0.901	0.906	0.012
	Norway	NSB BA									
	Switzerland									0.881	
17	Switzerland	CFF/SBB/FFS	1.000	0.986	0.980	1.000	0.843	0.790	1.000	0.943	0.088
18	Bulgaria									0.895	
	Croatia									0.826	
	Czech Rep	CD	0.812	1.000	1.000	0.861	0.873	0.879	0.908	0.905	0.071
	Estonia									0.797	
-	Hungary	GYSEV/RÖEE									
	Hungary	MÁV Rt.	0.897	0.925	0.814	0.787	0.883	0.872	0.867	0.864	0.048
	Latvia									0.883	
25	Lithuania									0.882	
26	Poland									0.868	
	Romania									0.855	
28	Slovak									0.788	
29	Slovenia	SZ	0.745	0.849	0.751	0.698	0.609	0.639	0.742	0.719	0.080
30	Moldova	CFM (E)									
	Ukraine									0.738	
32	Turkey	TCDD									
33	Israel									0.850	
34	Morocco	ONCFM	0.962	0.830	0.948	0.909	0.926	0.906	0.870	0.907	0.045
	Syria									0.898	
	Mozambique									0.706	
	Tanzania									0.666	
-	Azerbaijan									0.698	
	Korea									0.962	
	Japan									0.869	
	India									0.671	
-	Taiwan									0.998	
-	Turkmenistan									0.918	
	Australia									0.829	
<u> </u>	Mea									0.849	
L	11100	*11	0.000	0.005	0.000	0.040	0.0-0	0.025	10.040		0.004

Table 4-9 the efficiency measurement for 44 railways (4-stage)

Range	CCR	BCC	3-stage	4-stage
Less than 0.2	15	15	0	0
0.200~0.299	22	16	0	0
0.300~0.399	58	37	0	0
0.400~0.499	52	53	0	2
0.500~0.599	29	22	0	3
0.600~0.699	40	33	0	27
0.700~0.799	29	23	6	59
0.800~0.899	22	28	91	64
0.900~0.999	27	32	178	80
1	14	49	33	32
Max.	1.000	1.000	1.000	1.000
Min.	0.093	0.143	0.752	0.409
Mean	0.565	0.639	0.923	0.849
Std. Dev.	0.245	0.269	0.054	0.109

Table 4-10 Distribution frequencies of estimated results based on CCR, BCC, 3-stage, and 4-stage efficiency measurement

Furthermore, comparing the results measured from 4-stage with those from 3-stage DEA procedure, 52 DMUs remain unchanged in efficiency measurement. It is worthy to note that, the average efficiency decreased when we adopt SA-DEA model. On average, efficiency scores estimated from four-stage DEA model are slightly less than those from three-stage DEA model (0.849 vs. 0.924). Then we conclude that, the efficiency scores may be overestimate if the residual slacks are neglected.

4.3 Effectiveness Measurements

4.3.1 Measured by CCR and BCC model

As aforementioned in previous chapter, due to the transport service is non-storable, therefore, measuring service effectiveness is not a trivial task. This research evaluates the effectiveness for 44 selected railways by adopting output-oriented CCR and BCC model and by using GAMS computer program. The results are indicated in Table 4-12 (for CCR model) and 4-13 (for BCC model). It is need to note that, average effectiveness for 44 railways over 7 years are 0.446 and 0.497, based on CCR and BCC model, respectively. Comparing Table 4-12 with Table 4-13, one can see that, the BCC approach forms a convex hull of intersecting planes which envelop the data point more tightly than the CCR conical hull and thus provides effectiveness scores which are greater than or equal to those estimated using the CCR model.

4.3.2 Sensitivity analysis

Similar to efficiency measurement, to analyze whether the 18 effective DMUs are sensitive or not, this research thus employs Seiford and Zue's sensitivity analysis model; which was described in 3.1.1.3. The empirical results are indicated in Table 4-11. From the table one can see that some effective DMUs are sensitive while some are relative stable. For instance, the effective DMU 36 (CFM, 95), DMU 66 (GYSEV, 96), DMU 81 (TRC, 96) and DMU 227(CH, 2000) are rather robust because their sensitivity indexes are rather large (higher than 15%), implying that they are not sensitive to possible data error. By contrast, the effective DMU 84 (JR, 96), DMU 251 (UZ, 2000) and DMU 295 (UZ, 2001) are very sensitive to possible data error because they have relatively small sensitivity indexes (less than 1%). Note that DMU 81 (TRC, 96) is the most robust (stable) in effectiveness analysis because its sensitivity indexes are the largest. In other words, it is not sensitive to possible data error. By contrast, the effective to possible data error. By contrast, the effective possible data error. By contrast, the effective possible data error because they have relatively small sensitivity indexes (less than 1%). Note that DMU 81 (TRC, 96) is the most robust (stable) in effectiveness analysis because its sensitivity indexes are the largest. In other words, it is not sensitive to possible data error. By contrast, the effective DMU 84 (JR, 96) and DMU 251 (UZ, 2000) are sensitive to possible data error because they have relatively small sensitivity indexes.

Firm	h _k	h _{-k}	Firm	h _k	h _{-k}	Firm	h _k	h _{-k}
DMU11	1.18%	1.20%	DMU80	7.45%	8.05%	DMU251	0.20%	0.20%
DMU31	2.16%	2.21%	DMU81	17.39%	21.05%	DMU260	1.43%	1.45%
DMU36	16.61%	19.92%	DMU84	0.10%	0.10%	DMU285	7.48%	8.08%
DMU37	2.26%	2.31%	DMU110	8.11%	8.82%	DMU295	0.81%	0.82%
DMU44	1.19%	1.21%	DMU227	15.80%	18.76%	DMU305	3.63%	3.76%
DMU66	16.13%	19.23%	DMU250	10.58%	11.83%	DMU308	5.92%	6.29%

Table 4-11 The results of sensitivity analysis for BCC effectiveness measurement.

Note: h_k denotes the percentages decrease in all outputs for the DMU_k, and h_{-k} denotes the percentages increase in all outputs for the remaining DMUs

Table 4-12 Service effectiveness (CCR model)	

10	1010 4-12 501	vice effective				·					
	Country	Railways					1999				
	Austria		0.208	0.228	0.203	0.185	0.176	0.186	0.202	0.199	0.016
2	Belgium	SNCB/NMBS	0.314	0.318	0.292	0.307	0.286	0.291	0.317	0.303	0.014
3	Denmark	DSB	0.272	0.278	0.304	0.338	0.376	0.401	0.757	0.390	0.169
4	Finland	VR	0.310	0.302	0.311	0.303	0.302	0.308	0.304	0.306	0.004
5	France	SNCF	0.246	0.281	0.254	0.264	0.266	0.277	0.285	0.267	0.014
6	Germany	DBAG	0.212	0.220	0.246	0.252	0.246	0.235	0.258	0.238	0.017
7	Greece	СН	0.318	0.354	0.381	0.420	0.433	0.495	0.471	0.410	0.063
8	Ireland	CIE	0.160	0.155	0.169	0.174	0.178	0.218	0.182	0.177	0.021
9	Italy	FS SpA									
10	Luxembourg	ĈFL	0.233	0.238	0.307	0.300	0.301	0.305	0.294	0.283	0.032
	Netherlands	NS N.V.									
	Portugal						0.279				
	Spain	RENFE									
	Sweden	SJ AB									
	Norway	NSB BA									
	Switzerland										0.036
	Switzerland	CFF/SBB/FFS									
	Bulgaria						0.316				
	Croatia						0.186				
	Czech Rep						0.219				
	Estonia						0.961				
	Hungary	GYSEV/RÖEE									
-	Hungary	MÁV Rt.									
	Latvia						0.832				
	Lithuania						0.654				
	Poland						0.318				
	Romania						0.333				
	Slovak						0.254				
-	Slovenia	SZ	0.199	0.186	0.186	0.186	0.180	0.182	0.197	0.188	0.007
30	Moldova	CFM (E)									
	Ukraine						0.982				
	Turkey	TCDD									
	Israel						0.433				
	Morocco	ONCFM									
-	Syria										0.110
	Mozambique						0.308				
	Tanzania						0.722				
-	Azerbaijan						0.621				
	Korea						0.514				
	Japan						0.979				
	India						0.948				
	Taiwan										0.030
	Turkmenistan										0.036
	Australia						0.868				
	Mea										0.052
L	1,100									0	

Table 4-13 Service effectiveness (BCC model

	aute 4-15 Set	vice effective	`			/					
	~	Railways					1999				
	Austria						0.177				
2	Belgium	SNCB/NMBS	0.319	0.322	0.297	0.311	0.290	0.295	0.322	0.308	0.014
	Denmark	DSB	0.284	0.291	0.319	0.354	0.395	0.422	0.848	0.416	0.197
4	Finland	VR	0.317	0.310	0.318	0.309	0.308	0.315	0.310	0.312	0.004
5	France	SNCF	0.246	0.281	0.254	0.264	0.266	0.277	0.285	0.268	0.014
6	Germany	DBAG	0.247	0.250	0.279	0.287	0.265	0.269	0.279	0.268	0.015
7	Greece	СН	0.462	0.511	0.565	0.738	0.764	1.000	0.798	0.691	0.189
8	Ireland	CIE	0.189	0.182	0.199	0.205	0.209	0.275	0.214	0.210	0.031
9	Italy	FS SpA	0.350	0.347	0.335	0.329	0.363	0.373	0.402	0.357	0.025
10	Luxembourg						0.456				
11	Netherlands	NS N.V.	1.000	0.656	0.645	0.737	0.724	0.756	0.764	0.755	0.118
12	Portugal	СР	0.317	0.316	0.272	0.245	0.292	0.251	0.281	0.282	0.029
13	Spain	RENFE	0.228	0.247	0.231	0.256	0.247	0.258	0.281	0.250	0.018
	Sweden	SJ AB									
15	Norway	NSB BA	0.200	0.190	0.185	0.184	0.235	0.208	0.217	0.203	0.019
16	Switzerland	BLS	0.452	0.972	0.413	0.328	0.434	0.355	0.462	0.488	0.219
17	Switzerland	CFF/SBB/FFS	0.254	0.241	0.265	0.277	0.287	0.287	0.264	0.268	0.017
18	Bulgaria						0.326				
19	Croatia	HZ	0.242	0.228	0.205	0.199	0.198	0.226	0.205	0.215	0.017
20	Czech Rep	CD	0.234	0.239	0.237	0.222	0.220	0.229	0.248	0.233	0.010
21	Estonia	EVR	0.714	0.758	0.796	0.856	0.996	0.927	1.000	0.864	0.114
22	Hungary	GYSEV/RÖEE	0.701	1.000	1.000	0.753	0.636	0.454	0.424	0.710	0.232
23	Hungary	MÁV Rt.	0.260	0.283	0.280	0.288	0.287	0.301	0.320	0.288	0.019
24	Latvia	LDZ	0.744	0.798	0.827	0.822	0.850	0.882	0.922	0.835	0.058
25	Lithuania	LG	0.609	0.637	0.672	0.674	0.675	0.706	0.714	0.670	0.037
	Poland	РКР	0.351	0.349	0.345	0.326	0.318	0.324	0.281	0.328	0.024
27	Romania	CFR	0.377	0.395	0.348	0.344	0.336	0.347	0.337	0.355	0.022
28	Slovak	ZSR	0.292	0.271	0.267	0.273	0.258	0.281	0.277	0.274	0.011
	Slovenia						0.188				
30	Moldova	CFM(E)	0.772	0.794	0.877	0.997	0.932	1.000	0.970	0.906	0.094
31	Ukraine	UZ	1.000	0.985	0.945	0.976	0.982	1.000	1.000	0.984	0.020
32	Turkey	TCDD	0.318	0.310	0.319	0.321	0.325	0.320	0.338	0.322	0.009
33	Israel	IsR	0.655	0.650	0.617	0.634	0.573	0.639	0.640	0.630	0.028
34	Morocco	ONCFM									
	Syria						0.542				
36	Mozambique	CFM	1.000	1.000	0.618	0.575	0.532	0.284	0.286	0.614	0.295
	Tanzania	TRC	1.000	1.000	0.390	0.252	0.724	0.608	0.728	0.672	0.283
38	Azerbaijan	AZ	0.442	0.405	0.510	0.585	0.654	0.628	0.590	0.545	0.095
	Korea	KNR	0.557	0.573	0.574	0.573	0.524	0.521	0.559	0.554	0.023
40	Japan	JR	0.975	1.000	0.985	0.980	0.980	1.000	0.991	0.987	0.010
	India	IR	0.863	0.920	0.924	0.935	0.948	0.977	1.000	0.938	0.044
42	Taiwan	TRA	0.473	0.470	0.491	0.523	0.553	0.561	0.564	0.519	0.041
43	Turkmenistan	TRK	0.902	0.916	0.881	0.923	0.885	0.970	0.879	0.908	0.032
44	Australia						0.872				
	Mea	n	0.499	0.506	0.479	0.486	0.498	0.499	0.513	0.497	0.066

4.3.3 Measured by 3-stage procedure

Following Fried's *et al.* (2002), this research opts for the estimation of two separate SFA regressions. The dependent variables in the SFA regression models are the total slacks, that is the sum of radial slack and non-radial slack, calculated from the BCC model. The estimated results of SFA model are indicated in Table 4-14. From the Table 4-14, the evidence shows that all of parameters are significant. It should be noted that negative coefficient, for example, coefficient of PD, means greater population density will leads to lower amount of slacks, and thus higher effectiveness. On the other hand, positive sign in coefficients of GNI indicates that higher income per capita will generate higher amount of slacks in service consumption thus lower service effectiveness. This is partly because, in general, higher income per capita usually leads higher ownership of private car thus lower ridership of public transportation. This seems consistent with the underlying transportation theory.

	Pa	ıx-km	Ton-km			
Parameters	coefficient	t-ratio	coefficient	t-ratio		
Constant	-5.092	-6.854*	-2.745	-5.593*		
ln(PD)	-2.183	-3.409*	-0.258	-5.383*		
ln(GNI)	0.605	14.461*	0.297	8.551*		
ln(Line)	1.076	15.688*	1.315	26.333*		
2	10.390	5.729*	10.559	2.685*		
	0.987	275.729*	0.987	251.639*		
μ	-6.404	-3.935*	-6.456	-1.799*		
Log likelihood function	-410.812	1	-403.307			
LR one-sided test	129.93	1000	101.97			

Table 4-14 SFA result for output slacks

Note: t-values in parentheses, asterisks (*) represent significance at the 0.05 levels. Also note that

$$\sigma^2 = \sigma_u^2 + \sigma_v^2, \gamma = \sigma_u^2 / \sigma^2$$

Hence, the stochastic slack frontier functions become $Slack_{Paxkms} = -7.951 + 1.288 \ln(Line) - 0.54(POP) + 0.505 \ln(GNI) + v_i + u_i$, and $Slack_{Tonkms} = -1.373 + 1.046 \ln(Line) - 0.073 \ln(POP) + 0.265 \ln(GNI) + v_i + u_i$.

Once the stochastic slack frontier functions have been estimated, one needs to adjust the consumption data by using the equation (3-35), and re-measure effectiveness by using BCC model. This is so-call Fried's *et al.* (2002) three-stage DEA procedure. The Table 4-15 indicates the results measured by three-stage DEA method. It should be note that average effectiveness for 44 railways over 7 years is 0.923, which is considerably higher than those measured based on CCR and BCC models. The main reason is that three-stage DEA procedure incorporates environmental factors and statistical noises into the analytical model.

<u> </u>		Service effect						1000	• • • •			1
-	•	Railways "						1999				
	Austria							0.872				
	Belgium	SNCB/NMBS										
	Denmark							0.954				
	Finland	VR	0.	.877	0.876	0.878	0.876	0.876	0.877	0.879	0.877	0.001
5	France	SNCF										
6	Germany	DBAG	0.	.247	0.271	0.353	0.367	0.368	0.396	0.428	0.347	0.065
7	Greece	СН	0.	.976	0.979	0.981	0.961	0.918	1.000	0.992	0.972	0.027
8	Ireland	CIE	0.	.954	0.953	0.954	0.955	0.840	0.957	0.953	0.938	0.043
9	Italy	FS SpA	0.	.797	0.795	0.791	0.790	0.800	0.804	0.818	0.799	0.010
10	Luxembourg	CFL	0.	.988	0.966	0.951	0.961	0.961	0.978	0.994	0.971	0.016
11	Netherlands	NS N.V.	1.	.000	0.977	0.976	0.982	0.981	0.984	0.985	0.984	0.008
12	Portugal							0.967				
13	Spain	RENFE	0.	.835	0.838	0.835	0.840	0.839	0.841	0.849	0.840	0.005
	Sweden	SJ AB	0.	.773	0.771	0.750	0.756	0.760	0.764	0.770	0.764	0.008
	Norway	NSB BA										
_	Switzerland		_					0.957				
-	Switzerland	CFF/SBB/FFS										
	Bulgaria		_					0.975				
	Croatia		-					0.969				
	Czech Rep							0.881				
_	Estonia							1.000				
	Hungary	GYSEV/RÖEE										
	Hungary	MÁV Rt.	_									
	Latvia		_					0.995				
	Lithuania							0.992				
	Poland		-					0.794				
	Romania							0.936				
	Slovak							0.962				
	Slovenia		-					0.982				
	Moldova	CFM (E)										
	Ukraine		_					0.997				
-	Turkey	TCDD	-									
-	Israel		-					0.982				
	Morocco	ONCFM										
	Syria		_					0.996				
	Mozambique							0.990				
	Tanzania		_			1		0.989				
	Azerbaijan		_					0.994				
	Korea							0.990				
								0.984				
	Japan India							0.991				
-	India Taiwan											
	Taiwan Turkmanistan		_			1		0.993				
	Turkmenistan		-					0.997				
44	Australia							0.973				
	Mea	n	U.	.922	0.923	0.915	0.922	0.920	0.928	0.930	0.923	0.012

Table 4-15 Service effectiveness (3-stage)

4.3.4 Measured by 4-stage procedure

As mentioned earlier, when re-estimate effectiveness by substituting adjusted data, there is no guarantee that such measurement can always completely eliminate the slacks. Table 4-16 indicates the estimated slacks based on BCC model and 3-stage DEA method. As one can see from table 4-16, although both the number of DMUs with slacks and the amount of consumption slacks are decreased, there still exist some slacks in passenger-km and ton-km. In order to incorporate the residual into the effectiveness measurement model, this research thus employs the 4-stage DEA method to estimate the effectiveness of railways; the results are documented in Table 4-17. Comparing the measured results with 3-stage DEA procedure, the average effectiveness is slight decreased since the 4-stage procedure takes the residual slacks into account. In other words, the effectiveness scores may be overestimate if the residual slacks are neglected.

Та	Table 4-16 the results of consumption slack analysis												
	Estimated by using raw data Estimated by using adjusted data.												
	Passenger-km Ton-km Passenger-km Ton-km												
	Radial.	Non-rad.	Radial.	Non-rad,	Radial.	Non-rad.	Radial.	Non-rad.					
No.	290	57	290		288	45	288	13					
TS	6,608,582	638,475	7,011,008	68,274	2,711,095	392,360	2,855,532	2,911					
AS	21,456	2,073	22,763	222	8,802	1,273	9,271	9.5					

Note: No., TS, AS, stands for number of DMUs with slacks, total slacks, average slacks (defined as total slacks / 308), respectively.

	1	Service effect			`	U /						
	Country	Railways				1997						
	Austria		_			0.873						
2	Belgium	SNCB/NMBS	0.	.946	0.946	0.942	0.945	0.941	0.942	0.945	0.944	0.002
3	Denmark	DSB	0.	.944	0.944	0.949	0.952	0.954	0.962	0.968	0.953	0.009
4	Finland	VR	0.	.877	0.876	0.878	0.876	0.876	0.877	0.879	0.877	0.001
5	France	SNCF	0.	.421	0.441	0.428	0.439	0.448	0.505	0.523	0.458	0.040
6	Germany	DBAG	0.	.223	0.246	0.313	0.322	0.328	0.343	0.382	0.308	0.055
7	Greece	СН	0.	.976	0.977	0.981	0.960	0.917	1.000	0.992	0.972	0.027
8	Ireland	CIE	0.	.954	0.953	0.954	0.956	0.840	0.957	0.953	0.938	0.043
9	Italy	FS SpA	0.	.797	0.795	0.791	0.790	0.800	0.804	0.818	0.799	0.010
10	Luxembourg	ĈFL	0.	.988	0.965	0.950	0.960	0.960	0.977	0.993	0.970	0.016
	Netherlands	NS N.V.										
-	Portugal					0.966						
_	Spain	RENFE	_									
	Sweden	SJ AB										
	Norway	NSB BA	-									
	Switzerland		_			0.961						
	Switzerland	CFF/SBB/FFS										
	Bulgaria		-			0.977						
_	Croatia					0.969						
-	Czech Rep					0.882						
	Estonia		-			0.997	L and					
	Hungary	GYSEV/RÖEE										
	Hungary	MÁV Rt.	_									
	Latvia		_		1 - F - F - F - F	0.993						
	Lithuania					0.991						
	Poland					0.531						
	Romania		_		the second second	0.937						
	Slovak					0.962						
	Slovenia					0.982						
	Moldova	CFM (E)										
	Ukraine		_			0.991						
-	Turkey	TCDD	_									
-	Israel		_			0.986						
	Morocco	ONCFM	_									
	Syria		_			0.954						
	Mozambique					0.934						
	Tanzania					0.923						
-	Azerbaijan		_			0.932						
-	Korea		_			0.994						
	Japan					0.978						
	India		_			0.990						
	Taiwan		-			0.817						
-			_									
-	Turkmenistan					0.996						
44	Australia	~	_									
	Mea	,11	U.	912	0.91/	0.908	0.91/	0.910	0.923	0.923	0.91/	0.016

Table 4-17 Service effectiveness (4-stage)

4.3.5 Comparison.

Once again, the analytical results reveal that different model will lead to different result. Table 4-18 shows the distribution frequencies of estimated results based on CCR, BCC models, and 3-stage, 4-stage DEA approaches. On average, the efficiency estimated by 3-stage DEA procedure is the highest, while CCR efficiency is the lowest. It should be noted that the effectiveness scores based on BCC model are somewhat lower than those based on 3-stage and 4-stage DEA procedures, because BCC model does not take the environmental effects, managerial ineffectiveness and statistical noises into account.

Table 4-18 Distribution frequencies of estimated results based on CCR, BCC, 3-stage, and 4-stage effectiveness measurement

Range	CCR	BCC	3-stage 4	4-stage
Less than 0.2	26	16	0	0
0.200~0.299	95	89	1112	2
0.300~0.399	66	56	4	SINS
0.400~0.499	18	20	6	
0.500~0.599	19	22	2	896
0.600~0.699	23	23	1	0
0.700~0.799	13	23	16	18
0.800~0.899	18	15	40	42
0.900~0.999	21	26	217	213
1	9	18	20	20
Max.	1.000	1.000	1.000	1.000
Min.	0.155	0.177	0.247	0.223
Mean	0.446	0.497	0.923	0.917
Std. Dev.	0.254	0.271	0.130	0.135

Furthermore, comparing the results measured from four-stage procedure with those from three-stage procedure, 199 DMUs remain unchanged in effectiveness measurement. It is worthy to note that, in general, the average effectiveness score decreased when the four-stage procedure is adopted. Thus this research concludes that the effectiveness scores may be overestimate if the residual slacks are neglected.

4.4 Concluding Remarks

This chapter measures the technical efficiency and service effectiveness for some selected 44 railways in the world over the period of 1995 to 2001. There are some conclusions can be draw based on the analytical results. The first one is that efficiency and effectiveness scores estimated from conventional DEA models (CCR and BCC) are relative low. From Table 4-3, 4-4, 4-12, and 4-13, one can easily note that, in general, low efficiency and effectiveness scores are found in the rail industry with only few exceptions. The average efficiency is 0.565 and 0.639, while average effectiveness is 0.446 and 0.497, based on CCR and BCC model, respectively. This partly reflects that most railways have been facing a decline situation in market share.

The second one is that efficiency and effectiveness scores estimated from three-stage data-adjusted model are no less than those from BCC models. The results of three-stage DEA indicate that the efficiency and effectiveness scores estimated from adjusted data are considerably greater than those estimated from unadjusted data (0.924 vs. 0.639 and 0.923 vs. 0.497, respectively). However, the standard deviations of both efficiency and effectiveness between firms decrease, and the number of efficient (and effective) railways increased after data adjusted. The results seem more reasonable since both the environment impacts and the statistical noise terms are taken into account.

The third one is that factors affecting efficiency and effectiveness are identified. This research found that line density, ratio of passenger service, and percentage of electrified lines are the environmental factors significantly influencing the technical efficiency scores and thus affecting the amount of input slacks. Meanwhile, the length of lines, population density, and gross national income per capita are the factors significantly affecting the service effectiveness scores and thus influencing the amount of consumption slacks.

The last one is that, as mentioned earlier, when re-estimate efficiency and effectiveness by substituting adjusted data, there is no guarantee that such measurement can always completely eliminate the slacks. From table 4-8 and 4-16, although slacks are decreased, both input and output slacks are still existed. This research thus employs

the four-stage DEA procedure to efficiency and effectiveness measurement. The results conclude that efficiency and effectiveness scores estimated from four-stage model slightly decrease in comparison with three-stage procedure. Because of the former procedure takes slacks into account.

