CHAPTER 5. PRODUVTIVITY AND SALES FORCE

MEASUREMENT FOR RAIL TRANSPORT

This research measures productivity and sales force for 44 selected railways worldwide over the period of 1995 to 2001 by using the same data set as been used in chapter 4. More specifically, the research measures productivity by adopting input-based Malmquist Productivity Index (hereinafter, MPI) and by selecting number of passenger cars per kilometer of lines, number of freight cars per kilometer of lines, and number of employees per kilometer of lines as input factors, and passenger-train-kilometer per kilometer of lines and freight-train-kilometer per kilometer of lines as output variables. In addition, this research also measures sales force by employing Malmquist Salesforce Index (hereinafter, MSI), and by choosing passenger-kilometers and ton-kilometers as two output variables and passenger train-kilometers and freight train-kilometers as two input factors. The chapter describes MPI and MSI in turn. The remaining of this chapter is organized as follows. The data set is presented in 5.1, and 5.2 describes analytical results of productivity measurement, including measured by conventional method and proposed method. 5.2 presents the empirical results of sales force measurement, also containing measured by conventional method and proposed method. The conclusion follows.

5.1 The Data

The data set used in this chapter is as same as in the previous chapter. The raw data, including two consumptions, two service outputs and four service inputs, are presented in Appendix and the descriptive statistics of the data is indicated in Table 4-1. To see the rate of change in each of the data, Table 5-1 indicates the sum of each item of all DMUs in each year. On average, the statistics show that passenger-km increased 13.26 percent, while passenger-train-km increased only 3.9 percent. Ton-km almost remains the same, while freight-train-km declined for 5.61 percent. In service inputs, this research also observed a decrease in length of line, labor, number of passenger cars and freight cars over the sampling years.

		e				-	e	
Year	P-km	Rate	Tonkm	Rate	Ptrkm	Rate	Ftrkm	Rate
1995	999899	100.00%	964019	100.00%	3937783	100.00%	1475081	100.00%
1996	1021978	102.21%	936789	97.18%	3966266	100.72%	1436644	97.39%
1997	1028215	102.83%	930016	96.47%	3985849	101.22%	1440358	97.65%
1998	1032987	103.31%	927132	96.17%	4036813	102.51%	1405432	95.28%
1999	1070362	107.05%	903322	93.70%	4109591	104.36%	1385383	93.92%
2000	1104535	110.46%	964796	100.08%	4141059	105.16%	1433411	97.18%
2001	1132497	113.26%	969496	100.57%	4091500	103.90%	1392323	94.39%

Table 5-1 the sum and change rate of consumptions and outputs over the sampling time.

Year	Line	Rate	Staff	Rate	Pcar	Rate	Fcar	Rate
1995	358693	100.00%	4111182	100.00%	206091	100.00%	1518479	100.00%
1996	357081	99.55%	3979384	96.79%	190271	92.32%	1498623	98.69%
1997	356188	99.30%	3861297	93.92%	186235	90.37%	1425979	93.91%
1998	355113	99.00%	3757658	91.40%	178056	86.40%	1431668	94.28%
1999	354389	98.80%	3678715	89.48%	188754	91.59%	1400006	92.20%
2000	350877	97.82%	3619575	88.04%	185788	90.15%	1352011	89.04%
2001	346894	96.71%	3520574	85.63%	185000	89.77%	1183574	77.94%

Table 5-1 the sum and change rate of inputs data over the sampling time (continued).

5.2 Productivity Measurement

5.2.1 Measured by conventional FGNZ method

To measure productivity for 44 railways over the period of 1995 to 2001, this research adopts the input-based Malmquist Productivity Index model as described in chapter three, and then decomposes MPI into efficiency change and technical change. Following Färe Grosskopf, Norris and Zhang (1994) (hereinafter, FGNZ method), four linear programming programs are constructed, and then solved by utilizing GAMS computer program. The measured results are indicated in Table 5-2 and 5-3. Note that Table 5-2 shows the cumulative geometric mean efficiency changes (EC), technical changes (TC), and productivity growth for all railways over seven years, while Table 5-3 indicates cumulative efficiency changes, technical changes, and productivity growth for each of 44 railways over the same period. One can see from these two tables, the productivity growth in the sampling period is 20.1 percent, which is due in most part to efficiency change (19.7 percent), rather than technical change, because technical change in the sampling period is only 0.3 percent. Figure 5-1 shows the time trend of EC, TC and TFP change.

			J = @= (= === 0 0 0 0
Year	Efficiency change	Technical change	MPI
1995	1.000	1.000	1.000
1996	1.079	0.971	1.047
1997	1.117	0.988	1.104
1998	1.091	1.020	1.112
1999	1.086	1.043	1.131
2000	1.083	1.065	1.155
2001	1.197	1.003	1.201

Table 5-2 Cumulative indices of EC, TC and MPI by FGNZ method.

Table 5-3 the re	sult of product	ivity measured	by FGNZ method	
No Country	Railways	Efficiency change	Technical change	TFP change
1 Austria	ÖBB	1.209	0.975	1.179
2 Belgium	SNCB/NMBS	1.106	0.969	1.074
3 Denmark	DSB	1.098	1.005	1.104
4 Finland	VR	1.054	0.989	1.045
5 France	SNCF	1.040	1.132	1.177
6 Germany	DBAG	1.032	1.027	1.059
7 Greece	СН	1.135	0.923	1.048
8 Ireland	CIE	0.976	0.929	0.904
9 Italy	FS SpA	1.129	1.026	1.160
10 Luxembourg	ĊFL	0.888	1.065	0.946
11 Netherlands	NS N.V.	1.000	1.069	1.069
12 Portugal	СР	0.979	1.112	1.089
13 Spain	RENFE	1.076	1.084	1.166
14 Sweden	SJ AB	1.000	1.157	1.157
15 Norway	NSB BA	1.077	1.155	1.246
16 Switzerland	BLS	1.000	1.121	1.122
17 Switzerland	CFF/SBB/FFS	1.103	1.069	1.179
18 Bulgaria	BDZ	1.214	0.995	1.207
19 Croatia	HZ	1.265	0.878	1.110
20 Czech Rep	CD	1.172	1.000	1.172
21 Estonia	EVR		1.102	1.206
22 Hungary	GYSEV/RÖEE		1.044	1.045
23 Hungary	MÁV Rt.		1.013	1.105
24 Latvia	LDZ	1 016	1.123	1.141
25 Lithuania	LG	1.203	0.906	1.089
26 Poland	РКР	0.849	1.003	0.973
27 Romania	CFR	1.048	0.905	0.948
28 Slovak	ZSR	1.275	0.965	1.233
29 Slovenia	SZ	1.110	1.008	1.119
30 Moldova	CFM (E)	1.059	0.925	0.980
31 Ukraine	UZ	1.229	0.939	1.154
32 Turkey	TCDD	0.942	1.060	0.999
33 Israel	IsR	1.246	1.033	1.288
34 Morocco	ONCFM	1.289	1.002	1.131
35 Syria	CFS	0.994	1.084	1.077
36 Mozambique	CFM	1.135	1.147	1.302
37 Tanzania	TRC	1.150	1.134	1.303
38 Azerbaijan	AZ	1.155	0.978	1.130
39 Korea	KNR	1.087	1.193	1.294
40 Japan	JR	1.117	1.086	1.213
41 India	IR	1.079	1.077	1.162
42 Taiwan	TRA	1.002	1.089	1.092
43 Turkmenistan		0.955	0.897	0.857
44 Australia	QR	1.000	1.164	1.164
Mea	. –	1.197	1.003	1.201
		-		

Table 5-3 the result of productivity measured by FGNZ method

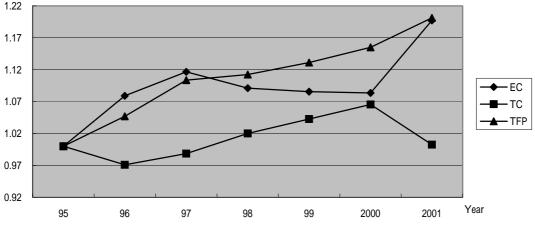



Fig 5-1 Time Trend of EC, TC and TFP Change Measured by FGNZ Method

5.2.2 Measured by proposed four-stage method

In the FGNZ Malmquist productivity measurement, there are two drawbacks. The first one is that the solutions of four linear programs frequently contain slacks, which are typically ignored. When slacks are presented, radial measures may overstate the true efficiency thus affects productivity index in an unknown way. The second one is that FGNZ measurement does not take environmental factors and statistical noises into account. To measure MPI more precisely, this research thus solves four distance functions by substituting adjusted data obtained from third-stage in efficiency measurement procedure and adopting SA-DEA model (3-36) (hereinafter, called four-stage method). The four-stage method thus takes environmental factors and statistical noises, as well as residual slacks into account. Similarly, four linear programs were solved by GAMS computer program. The results are documented in Table 5-4 and 5-5. Again, note that Table 5-4 shows the cumulative geometric mean efficiency changes, technical changes, and productivity growth for all railways over seven years, while Table 5-5 indicates cumulative efficiency changes, technical changes, and productivity growth for each of 44 railways over the same period. From the two tables, we see that the productivity growth in the period is 6.6 percent, which is due to efficiency change (12.6 percent). Figure 5-2 shows the time trend of EC, TC and MPI over the sampling period. Comparing the result with those measured from FGNZ method, the results confirm that radial measures in distance functions may overstate the true efficiencies thus affect productivity index measurement in an unknown way.

Table 5-4 Cumulative	indices	of efficiency	change,	technical	change	and MPI	by using
four-stage method.							

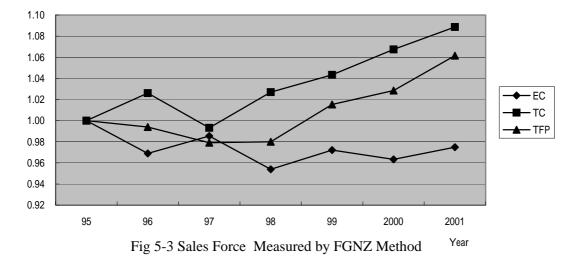
Year	Efficiency change	Technical change	MPI
1995	1.000	1.000	1.000
1996	1.071	0.911	0.976
1997	1.083	0.918	0.994
1998	1.110	0.874	0.970
1999	1.190	0.851	1.013
2000	1.197	0.851	1.019
2001	1.126	0.947	1.066

	-	•		-
No Country	Railways	Efficiency change	-	TFP change
1 Austria	ÖBB	1.312	0.809	1.061
2 Belgium	SNCB/NMBS	0.948	1.070	1.014
3 Denmark	DSB	0.986	1.087	1.071
4 Finland	VR	1.208	1.256	1.517
5 France	SNCF	1.122	0.927	1.040
6 Germany	DBAG	0.934	0.961	0.898
7 Greece	CH	0.870	1.110	0.966
8 Ireland	CIE	1.182	0.865	1.022
9 Italy	FS SpA	0.974	1.039	1.011
10 Luxembourg	CFL	0.942	1.048	0.987
11 Netherlands	NS N.V.	0.801	0.169	0.935
12 Portugal	СР	0.942	1.136	1.069
13 Spain	RENFE	1.039	1.079	1.121
14 Sweden	SJ AB	1.132	1.069	1.210
15 Norway	NSB BA	1.009	0.978	0.987
16 Switzerland	BLS	1.044	1.044	1.090
17 Switzerland	CFF/SBB/FFS	1.000	0.980	0.980
18 Bulgaria	BDZ	1.035	0.929	0.962
19 Croatia	HZ	1.013	0.949	0.962
20 Czech Rep	CD	1.013	0.954	0.966
21 Estonia	EVR		0.795	1.143
22 Hungary	GYSEV/RÖEE	1.683	0.638	1.073
23 Hungary	MÁV Rt.	1.035	0.989	1.023
24 Latvia	LDZ	1.137	0.909	1.034
25 Lithuania	LG	0.946	1.083	1.025
26 Poland	PKP	1.187	0.812	0.963
27 Romania	CFR	1.212	0.831	1.007
28 Slovak	ZSR	1.252	0.698	0.874
29 Slovenia	SZ	1.278	0.704	0.899
30 Moldova	CFM(E)	1.025	0.798	0.818
31 Ukraine	UZ	1.401	0.664	0.931
32 Turkey	TCDD	0.857	0.842	0.722
33 Israel	ISR	0.997	1.116	1.113
34 Morocco	ONCFM	1.015	0.947	0.961
35 Syria	CFS	1.288	0.919	1.183
36 Mozambique	CFM	1.406	0.855	1.202
37 Tanzania	TRC	1.798	0.706	1.262
38 Azerbaijan	AZ	1.822	0.552	1.006
39 Korea	KNR	0.806	1.235	0.995
40 Japan	JR	0.948	1.235	0.953
40 Japan 41 India	JR IR	1.668	0.671	0.933 1.119
41 India 42 Taiwan	TRA			
42 Talwah 43 Turkmenistan		1.000	0.888	0.888
	TRK	0.824	1.244	1.025
44 Australia	QR	1.539	0.845	1.301
Mea	L11	1.154	0.924	1.066

Table 5-5 the results of productivity measured by proposed four-stage method.

5.3 Sales Force Measurement

5.3.1 Measured by conventional FGNZ method


As mentioned in previous chapter, due to non-storable characteristics of transport service, therefore, it is need to measure sales force in addition to productivity. To do so, this research measures sales force for 44 railways over the period of 1995 to 2001 by adopting the output-based Malmquist Salesforce Index model; which can be found in chapter three. Furthermore, to find the determinants of sales force, the MSI then decomposed into effectiveness change and sales technical change. Following Färe, Grosskopf, Norris and Zhang (1994) (hereafter, FGNZ method) four linear programming programs are constructed and solved by GAMS computer program. The measured results are indicated in Table 5-6 and 5-7. Note that Table 5-6 shows the cumulative geometric mean effectiveness changes, technical changes, and sales force growth for all railways over seven years, while Table 5-7 indicates cumulative effectiveness changes, technical changes, and sales force growth for each of 44 railways over the same period. One can see from these two tables, the sales force growth in the sampling period is 7.3 percent, which is due to sales force change (9.2 percent), rather than effectiveness change. Figure 5-3 shows the time trend of EC, TC and MSI change EIS over the sampling period.

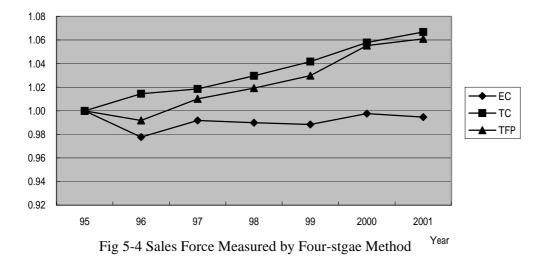
Year	Effectiveness change	Technical change	MSI change
1995	1.000	1.000	1.000
1996	0.969	1.026	0.994
1997	0.985	0.993	0.979
1998	0.954	1.027	0.980
1999	0.972	1.043	1.015
2000	0.963	1.067	1.029
2001	0.983	1.092	1.073

Table 5-6 Cumulative indices of effectiveness change, technical change and MSI change by using FGNZ method.

Table 5-7 the result of sales force measured by FGNZ method					
No Country	Railways	Effectiveness change	Technical change	MSI change	
1 Austria	ÖBB	0.868	1.100	0.953	
2 Belgium	SNCB/NMBS	0.948	1.069	1.012	
3 Denmark	DSB	1.110	1.071	1.189	
4 Finland	VR	0.931	1.061	0.986	
5 France	SNCF	0.980	1.172	1.149	
6 Germany	DB AG	1.110	1.085	1.204	
7 Greece	СН	1.108	1.066	1.181	
8 Ireland	CIE	0.888	1.217	1.082	
9 Italy	FS SpA	0.990	1.143	1.135	
10 Luxembourg	CFL	1.194	1.056	1.262	
11 Netherlands	NS N.V.	0.946	1.035	0.979	
12 Portugal	СР	0.776	1.120	0.869	
13 Spain	RENFE	1.072	1.151	1.234	
14 Sweden	SJ AB	0.857	1.048	0.900	
15 Norway	NSB BA	0.978	1.128	1.105	
16 Switzerland	BLS	1.145	1.059	1.212	
17 Switzerland	CFF/SBB/FFS	0.917	1.132	1.037	
18 Bulgaria	BDZ		1.104	0.854	
19 Croatia	HZ	0.803	1.069	0.859	
20 Czech Rep	CD	0.986	1.071	1.058	
21 Estonia	EVR	1.140	1.118	1.274	
22 Hungary	GYSEV/RÖEE		1.085	0.999	
23 Hungary	MÁV Rt.		1.070	1.232	
24 Latvia	LDZ		1.153	1.353	
25 Lithuania	LG	A N N N N N N N N N N N N N N N N N N N	1.134	1.251	
26 Poland	РКР		1.046	0.936	
27 Romania	CFR	· · · · · · · · · · · · · · · · · · ·	1.119	0.976	
28 Slovak	ZSR		1.088	0.945	
29 Slovenia	SZ	0.907	1.101	0.998	
30 Moldova	CFM (E)	1.007	1.108	1.117	
31 Ukraine	UZ	1.000	1.075	1.075	
32 Turkey	TCDD	0.922	1.147	1.058	
33 Israel	IsR	1.003	1.007	1.011	
34 Morocco	ONCFM		1.069	1.122	
35 Syria	CFS		1.093	1.225	
36 Mozambique	CFM		0.931	0.339	
37 Tanzania	TRC		0.720	0.716	
38 Azerbaijan	AZ		1.131	1.142	
39 Korea	KNR		1.218	0.981	
40 Japan	JR		1.054	1.054	
41 India	IR		1.165	1.165	
42 Taiwan	TRA		1.074	1.125	
43 Turkmenista	TRK		1.160	1.005	
44 Australia	QR		1.073	1.073	
Mean	£	0.983	1.092	1.073	
		317 00			

Table 5-7 the result of sales force measured by FGNZ method

5.3.2 Measured by proposed four-stage method


Similar to productivity measurement, there are two drawbacks in FGNZ method, which are without taking environmental factors into account, and neglecting slacks. To measure sales force more precisely, this research thus adopts proposed four-stage method; which is described in chapter three. More specifically, the research measures four distance functions by applying four-stage method and by substituting adjusted consumption data. GAMS computer program is utilized as in productivity measurement. The results are presented in Table 5-8 and 5-9. Note that, Table 5-8 shows the cumulative geometric mean effectiveness changes, sales technical changes, and sales force growth for all railways over seven years, while Table 5-9 indicates cumulative effectiveness changes, sales technical changes, and sales force growth in the sampling period is 6.1 percent, which is due in large part to sales technical change (6.7 percent), rather than effectiveness change. Figure 5-4 shows the time trend of effectiveness change, technical change and MSI change.

by using	Tour-stage method.		
Year	Effectiveness change	Technical change	MSI change
1995	1.000	1.000	1.000
1996	0.978	1.014	0.992
1997	0.992	1.019	1.010
1998	0.990	1.030	1.019
1999	0.988	1.042	1.030
2000	0.998	1.058	1.055
2001	0.994	1.067	1.061

Table 5-8 Cumulative indices of effectiveness change, technical change and MSI change by using four-stage method.

Table 5-9 the re	sult of sales fo	rce measured by	four-stage meth	od
No Country	Railways	Effectiveness change	Technical change	MSI change
1 Austria	ÖBB	0.967	1.028	0.994
2 Belgium	SNCB/NMBS	1.010	1.002	1.012
3 Denmark	DSB	1.027	0.917	0.942
4 Finland	VR	0.962	1.047	1.007
5 France	SNCF	1.100	1.038	1.142
6 Germany	DBAG	1.087	1.031	1.121
7 Greece	СН	0.984	0.951	0.936
8 Ireland	CIE	0.959	1.062	1.018
9 Italy	FS SpA	0.995	1.031	1.026
10 Luxembourg	CFL	0.788	1.114	0.878
11 Netherlands	NS N.V.	0.976	1.016	0.992
12 Portugal	СР	0.978	1.031	1.008
13 Spain	RENFE	0.986	1.034	1.020
14 Sweden	SJ AB	0.948	1.118	1.060
15 Norway	NSB BA	0.959	1.037	0.994
16 Switzerland	BLS	1.079	1.062	1.146
17 Switzerland	CFF/SBB/FFS	0.977	1.030	1.006
18 Bulgaria	BDZ	0.948	1.141	1.082
19 Croatia	HZ	0.981	1.025	1.006
20 Czech Rep	CD	0.973	1.051	1.023
21 Estonia	EVR	1.040	1.118	1.163
22 Hungary	GYSEV/RÖEE	1.006	1.013	1.019
23 Hungary	MÁV Rt.		1.028	1.011
24 Latvia	LDZ	0.994	1.289	1.281
25 Lithuania	LG	1.091	1.184	1.292
26 Poland	PKP	1.043	1.033	1.077
27 Romania	CFR	0.954	1.033	0.985
28 Slovak	ZSR	0.793	1.150	0.912
29 Slovenia	SZ	0.786	1.314	1.033
30 Moldova	CFM (E)	0.654	1.280	0.837
31 Ukraine	UZ	1.000	0.863	0.863
32 Turkey	TCDD	0.956	1.048	1.002
33 Israel	IsR	1.063	1.006	1.069
34 Morocco	ONCFM	0.962	1.040	1.000
35 Syria	CFS	1.158	0.994	1.151
36 Mozambique	CFM	1.105	0.988	1.092
37 Tanzania	TRC	1.000	0.887	0.887
38 Azerbaijan	AZ	0.983	1.109	1.090
39 Korea	KNR	0.833	1.145	0.954
40 Japan	JR	1.000	1.280	1.280
41 India	IR	1.000	0.806	0.806
42 Taiwan	TRA	0.880	1.026	0.903
43 Turkmenistan		0.951	1.040	0.989
44 Australia	QR	1.000	1.195	1.195
Mea	~	0.994	1.067	1.061

Table 5-9 the result of sales force measured by four-stage method

5.4 Concluding Remarks

This chapter measures productivity for selected 44 railway companies over the period of 1995-2001 by using the Malmquist Productivity Index model and by applying linear programming technique. In contrast to previous studies, the environmental factors, statistical noise, as well as slacks are taken into account. Firstly, the research measures productivity by using FGNZ method. The result shows that the cumulative productivity growth is 20.2 percent on average. It should be noted that, this growth was due to improvements in efficiency or catching-up, rather than innovation or shift of frontier. Secondly, the research measures productivity by using proposed four-stage method and by substituting adjusted data from chapter four. The result indicates that the productivity increases 6.6 percent for the period of 1995-2001; which is less than those measured from FGNZ method. Thus, this research concludes that, in comparison with four-stage method, the productivity measurement will be overestimated if environmental factors, statistical noises and slacks are neglected in this empirical study.

In addition to productivity measurement, because the outputs produced by transportation industries are non-storable, this research thus measures Malmquist sales force index by the same procedure as in productivity measurement but alternative orientated. Both of FGNZ and proposed four-stage methods are adopted to the measurements. The results indicate that, on average, cumulative sales force grows with rate of 7.3 percent over the period of 1995 to 2001 when FGNZ method was adopted. The determinant of sales force growth can be attributed to innovation, rather than effectiveness change. Meanwhile, if the sales force was measured by considering environmental factors, statistical noises and slacks, in other words, by using proposed four-stage method and substituting adjusted data, the sales force growth becomes 6.1 percent. This result indicates that, in this empirical study, sales force index will be

overestimated if one does not take residual slacks into account. The results also reveal that, same as in the measurement by FGNZ method, sales force growth was due to technical change, rather than improvements in effectiveness.

