第五章 液晶盒厚度及扭轉角量測結果與討論

在實驗中,我們使用兩個具有不同液晶參數的 80⁰MTN mode LCOS 來量測,第一個待測樣品使用的液晶為 Merck-00675,且液晶 盒已貼在印刷電路板上,第二個待測樣品使的液晶為 Chisso-5064, 而液晶盒未貼在印刷電路板上,兩個液晶盒的液晶參數值分別如表一 所示:

LC	ne	no	//		K11	K22	K33
Merck-00675	1.5869	1.4872	11	3.5	10.1	5.4	15
Chisso-5064	1.586	1.486	16.4	4.3	7.3	8.4	21.1

表一、待測樣品的液晶參數

5.1、入射面液晶指向矢為已知

5.1.1、旋轉液晶盒及檢光片法

在假設入射面液晶盒的指向矢方向為已知的情況下,將其調整至 與偏光片平行,開始旋轉液晶盒及檢光片進行量測。由於旋轉液晶盒 時,其反射率的變化為一週期為 /2的弦波函數,因此我們只需將液 晶盒由零度轉至 90 度即可,圖 5.1 即為旋轉液晶盒實驗的結果。在 圖 5.1 中,我們可以找到曲線的最低點所對應的角度,將其代入 3.6 式,在扭轉角為已知的條件下,即可得到厚度解,表 5.1 為假設扭轉 角為 80 度下量測第一個樣品的結果,為了減低誤差,我們對待測液 晶盒樣品的同一個點進例多次而重覆地量測,最後將其平均。

圖 5.1、實驗量測旋轉液晶盒之反射光強度

實驗	$\mathbf{\Psi}_0$	d
1	34.2357	2.4926
2	34.1412	2.4996
3	34.1544	2.4986
4	34.3396	2.4848
5	34.1956	2.4956
average	34.2133	2.4942

表 5.1、旋轉液晶盒第一組實驗結果(樣品一)

而在旋轉檢光片時,其反射率的變化為一週期為 的弦波函數, 因此我們必須將檢光片由零度轉至 180 度,其結果如圖 5.2 所示。在 圖 5.2 中,我們可以找到曲線的最低點所對應的角度,將其代入 3.8 式,一樣在假設扭轉角為 80 度的情況下,可以得到如表 5.2 所示之 結果,為了減低誤差,我們一樣對待測液晶盒樣品的同一個點進例多

次而重覆地量測,最後將其平均。

圖 5.2、實驗量測旋轉檢光片之反射光強度

實驗	ψ_{A}	d
1	24.0201	2.5564
2	24.2792	2.5662
3	23.5923	2.5401
4	23.4866	2.5361
5	23.7917	2.5477
average	23.8340	2.5493

表 5.2、旋轉檢光片第一組實驗結果(樣品一)

理論上,若入射面液晶指向矢方向已對至和偏光片平行且扭轉角 為 80度,則表 5.1及 5.2應該要得到相同的厚度角,但比較其結果, 可以發現利用兩種方法求解出來的厚度並沒有相同,誤差約為 0.05 μm。 若將扭轉角設為未知,則可以利用求方程式(3.6)及(3.8)兩 式的聯立解,同時求得厚度及扭轉角。圖 5.3 為利用表 5.1 及 5.2 的 結果代入 3.6 及 3.8 式求解的結果,在圖中二條曲線的交點即為液晶 盒的厚度及扭轉角。另外,我們也對多次實驗中,最大誤差進行評估, 其結果如表 5.3 所示。

圖 5.3、式 (3.6) 及 (3.8) 的聯立解

	Omin	Amin	d		d/d(%)	/ (%)
average	34.2133	23.834	2.3331	84.8088		
Errormax	34.3396	24.2792	2.2647	86.3577	5.1948	3.3893
Errormin	34.1412	23.4886	2.3859	83.4833		

表 5.3、同時解厚度及扭轉角第一組結果(樣品一)

表 5.3的結果與我們預期的結果有很大的落差,可以發現在解聯 立方程式時,兩組實驗的誤差被加乘而放大了,而這也很可能是由於 入射面第一層液晶指向矢並沒有對到和偏光片平行的位置,因此我們 先將貼在旋轉平台上的第一個樣品取下,然後重新將入射面第一層液 晶指向矢對到和偏光片平行,重覆實驗步驟而得到第二組數據,其結 果如表 5.4、5.5 及 5.6 所示。

實驗	Ψ_0	d
1	34.47	2.475
2	34.45	2.4765
3	34.29	2.4885
4	34.47	2.475
5	34.33	2.4855
average	34.4020	2.4801

實驗	ψ_{A}	d
1	23.19	2.5247
2	22.32	2.4911
3	22.91	2.514
4	23.64	2.5419
5	24.1	2.5594
average	23.2320	2.5262

表 5.4、旋轉液晶盒第二組實驗結果(樣品一)

表 5.5、旋轉檢光片第二組實驗結果(樣品一)

	0min	Amin	d		d/d(%)	/f(%)
average	34.40	23.33	2.3398	84.1844		
Error _{max}	34.47	24.1	2.2646	86.0588	9.0093	6.6987
Error _{min}	34.29	22.32	2.4754	80.4195		

表 5.6、同時解厚度及扭轉角第二組結果(樣品一)

比較二次的實驗結果,我們發現量測到的數據並沒有太大的改變,誤差仍然太大,因此我們推論誤差應不是來自於入射面第一層液 晶指向矢和偏光片夾角的誤差所造成。

由於第一個樣品已經貼在印刷電路板上了,其背面並不是很平 整,當將其貼在旋轉平台上而轉動時,不但很難控制雷射光保持垂直 入射及反射光的光點要精確地打在光偵測器上,而且也很難保証液晶 盒樣品在旋轉時,雷射光的光點會打在液晶盒的同一點上,因此我們 使用了一個並未貼在印刷電路板上的液晶盒為第二個待測樣品,由於 LCOS 的下基板為矽晶圓,一般的半導體製程都會控制矽晶圓的厚度 在很精確的範圍內,因此我們只要將雷射光正射於旋轉平台的軸心位 置,即可大幅減低了實驗誤差。

將第二個液晶盒重覆實驗步驟及量測,其實驗結果列在表 5.7、 5.8 及 5.9 中。

實驗	Ψ_0	d
1	37.96	2.1914
2	37.96	2.1914
3	37.97	2.1906
4	37.96	2.1914
5	37.97	2.1906
average	37.9640	2.1911

表 5.7、旋轉液晶盒第一組實驗結果(樣品二)

實驗	ψ_{A}	d
1	15.3	2.1914
2	15.51	2.2008
3	15.85	2.2159
4	15.61	2.2053
5	15.77	2.2124
average	15.6080	2.2052

表 5.8、旋轉檢光片第一組實驗結果(樣品二)

	0min	Amin	d		d/d(%)	/ (%)
average	37.964	15.608	2.1518	81.0047		
Error _{max}	37.97	15.85	2.125	81.6595	3.1462	2.0872
Error _{min}	37.96	15.3	2.1927	79.9688		

表 5.9、同時解液晶盒厚度及扭轉角結果(樣品二)

比較表 5.7 及 5.8 的結果, 我們發現利用不同實驗條件下算出來

的厚度解已經由樣品一的 0.055 µ m 大幅降低至 0.014 µ m, 因此利用 解聯立方程式求液晶盒厚度及扭轉角的誤差也大幅地降低,這可由表 5.9 的結果得到印證,待測樣品的上下基板摩擦配向角度差為 80 度, 若以製程誤差為 ± 度來說,則我們的實驗結果已在製程誤差的邊緣。 且實驗的最大及最小誤差均在 3%附近,相較於之前的結果也大幅地 降低了。

如第一個液晶盒般的實驗步驟,我們也將第二個液晶盒由旋轉平 台取下,然後重新對準入射面第一層液晶指向矢與偏光片的夾角,然 後作了第二組實驗,其結果列於表 5.10、5.11 及 5.12 中。

實驗	Ψ_0	d
1	37.8578	2.2
2	37.8369	2.2018
3	37.9224	2.1946
4	37.8575	2.2
5	37.8526	2.2005
average	37.8654	2.1994

表 5.7、旋轉液晶盒第二組實驗結果(樣品二)

實驗	$\psi_{\rm A}$	d
1	15.6927	2.209
2	15.6809	2.2084
3	15.7918	2.2134
4	15.6889	2.2088
5	15.6002	2.2048
average	15.6909	2.2089

表 5.10、旋轉檢光片第二組實驗結果(樣品二)

	Omin	Amin	d		d/d(%)	/f(%)
average	37.8654	15.6909	2.171	80.7291		
Error _{max}	37.9224	15.7918	2.1435	81.3035	2.2248	1.2957
Error _{min}	37.8369	15.6002	2.1918	80.2575		

表 5.11、同時解液晶盒厚度及扭轉角結果(樣品二)

比較表 5.9 及 5.10 的結果,其誤差只有 9.5nm,較第一組實驗結 果更小,因此其厚度及扭轉角的誤差也更小,可以在表.11 中得到印 證,其扭轉角的誤差已經在製程的誤差範圍內,且各個實驗數據的最 大及最小誤差也都更低。

5.1.2、旋轉檢光片法

在入射面液晶盒的指向矢方向為已知的情形下,我們可以利用 3.9 式至 3.12 式或 3.16 式至 3.18 式,只需旋轉檢光片求解 。及 。, 再將 。及 。代入 3.13 式 3.14 式及 3.15 式求解液晶厚度及扭轉角, 圖 5.5 即為求解的結果,在圖中可以看到三條方程式會交叉於同一 點,圖中的交叉點所對應的橫軸即為液晶厚度,縱軸即為扭轉角。

圖 5.5、3.15、3.16 及 3.17 式的聯立解

將 5.1 節中旋轉檢光片量測的結果代入方程式中,結果如表 5.13、5.14、5.15 及 5.16 所示之結果,比較表 5.13 及 5.3,量測到平 均液晶盒的厚度由 2.3331 µ m 提高至 2.5333 µ m,非常接近 Spacer 的厚度,而液晶盒的扭轉角也由 84.8088⁰降低至 80.5374⁰,已經在製 程的誤差範圍內,厚度的最大及最小量測誤差降低了約一倍,扭轉角 的最大及最小量測誤差更降低了約 5 倍。因此此種量測方法對於反射 式液晶盒的背板並不平整的樣品來說是一種非常好的方法。 比較表 5.13 及 5.14 的結果,兩組數據的液晶盒平均厚度差為 0.0267µm,液晶盒平均扭轉角差為 1.2574⁰。由於兩組實驗的初始條 件並不完全相同,包括入射面液晶指向矢和偏光片夾角偏差或雷射光 的光點有些許的偏移,因此其結果有些許的誤差是可理解的,但都在 可容許的範圍內。

除了大幅增加背板不平整的反射式液晶盒樣品量測的正確性 外,對於背板很平整的樣品,如果只用一個步驟來取代二個步驟的 話,一樣可以增進量測的正確性,比較表 5.15 及 5.9 的結果,雖然 5.9 的結果已經在製程誤差的邊緣,但 5.15 的結果更為接近我們預期 的結果,且其最大及最小的量測誤都在 1%以下。

若比較 5.15 及 5.16 的結果,兩組數據的液晶盒平均厚度差為 4nm,液晶盒平均扭轉角差為 0.0146⁰,相差非常小。

	d		d/d(%)	/ (%)
average	2.5366	80.5186		
Errormax	2.565	80.897	2.562	0.947
Errormin	2.5	80.1343		

表 5.13、旋轉檢光片求厚度及扭轉角第一組實驗結果(樣品一)

52

	d		d/d(%)	/ (%)
average	2.560	79.28		
Error _{max}	2.591	79.48	2.461	0.479
Error _{min}	2.528	79.1		

表 5.14、旋轉檢光片求厚度及扭轉角第二組實驗結果(樣品一)

	d		d/d(%)	/ (%)
average	2.2274	79.474		
Error _{max}	2.238	79.75	0.763	0.856
Error _{min}	2.221	79.07		

表 5.15、旋轉檢光片求厚度及扭轉角第一組實驗結果(樣品二)

	d		d/d(%)	/ (%)
average	2.2278	79.4846		
Error _{max}	2.2381	79.7632	0.754	0.877
Error _{min}	2.2213	79.0664		

表 5.16、旋轉檢光片求厚度及扭轉角第二組實驗結果(樣品二)

5.2、入射面液晶指向矢為未知

5.2.1、加電壓及旋轉液晶盒

在入射面液晶指向矢為未知的情況下,我們可以利用對液晶盒施 加電壓,然後找尋入射面液晶指向矢和液晶盒扭轉角的關係,如 3.19 或 3.20 式的結果,圖 5.5 為當對液晶盒施加不同電壓時,反射光強度 最大時所對應的角度。

圖 5.5、最大反射光強度時的角度對不同電壓圖

圖中可以觀察到和圖 3.11 相似的結果,但當電壓大於 2.6 伏時就 會和模擬的結果有出入,這可能是由於電壓愈大時,反射光的強度就 愈弱,使得在高電壓時會產生很大的誤差,因此我們只取曲線的最高 點時所對應的角度 20.11[°]。

將液晶盒固定 20.11⁰後,將檢光片由零度轉至 180度,並記錄每 一點的反射光強度,將其結果代入 3.9 3.12 式解得 。及 。,將 3.19 式代入 3.13 3.15 式則可求得厚度及扭轉角,圖 5.6 為利用三條方程 式解三個變數的結果,表 5.17 為實驗的結果。

	5.17 20107	
	h	0

圖 56 319 式代入 313 315 式的解

	d		0
_	2.432	79.983	5.009
_	2.465	80.446	4.777
Ξ	2.48	80.261	4.87
Average	2.459	80.23	4.885

表 5.17、加電壓及旋轉液晶盒求入射面液晶指向矢角度結果

在圖 5.5 中,若我們找尋最大反射光強度所對應的角度有 1⁰的誤 差時,所計算出來液晶盒的厚度會有 1.6%的變化,而液晶盒的扭轉 角會有 0.6%的變化,因此在這種計算條件下,厚度的誤差會較扭轉 角的誤差大。

5.2.1、加電壓及旋轉 Half-Wave Plate

雖然加電壓及旋轉液晶盒可以找出入射面液晶指向矢和扭轉角 的關係,但在實驗過程中,只要旋轉液晶盒,就會引入許多的誤差, 且在電壓較高時,我們也需要較好的放大器來放大訊號,另外還需要 一低通濾波器來濾除量測過程中產生的高頻雜訊,這些需求都可使用 鎖相放大器來達到,圖 5.7 為對液晶盒施加不同電壓時,鎖相放大器 的讀取到的相位值。

圖 5.7、鎖相放大器的相位值對不同電壓圖

圖 5.7 的實驗結果就已十分接近圖 3.11 所模擬的結果,在圖中, 我們取相位為最低時的值代入 3.21 式中,將檢光片由零度轉至 180 度,並記錄每一點的反射光強度,將其結果代入 3.9 3.12 式解得 。 及 。,將 3.21 式代入 3.13 3.15 式則可求得厚度及扭轉角,圖 5.8 為利用三條方程式解三個變數的結果,表 5.18 為實驗的結果。

圖 5.8、3.21 式代入 3.13 3.15 式的解

	d		0
—	2.588	80.005	-12.203
<u> </u>	2.589	79.903	-12.151
Ξ	2.592	79.871	-12.136
average	2.5897	79.9263	-12.1632

表 5.18 加電壓及旋轉 Half-Wave Plate 求入射面液晶指向矢角度結果 在圖 5.7 中,若所讀取鎖相放大器的相位()值有 ±1 的誤差時,則 液晶盒厚度會有 0.47%的變化,而液晶盒的扭轉角會有 0.14%的變 化,結果可以發現厚度的誤差也會大於扭轉角的誤差。