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Chapter 1 Introduction 

 

1-1Background 

 

Recently developed artificial media, called the left-hand-materials, with simultaneously 

negative values of effective permeability µeff  and permittivity ε eff  have received much interest 

[1-4].  These left-hand-materials exhibit unusual properties such as negative index of refraction, 

antiparallel wave vector and Poynting vector [5].  Smith et al [3] found that in a frequency 

region both µeff  and ε eff  were negative and refraction index was unambiguously negative.  

Shelby et al [4] demonstrated that an electromagnetic (EM) wave undergoes negative refraction 

in a prism made by the left-hand-materials.  In particular, it has been suggested that negative 

refraction leads to a superlensing effect that can overcome the diffraction limit inherent in 

conventional lenses [1].  These phenomena have been investigated and at the moment only 

appear possible in the microwave regime.  To explore the negative refraction in the optical 

regime, one may turn to a photonic crystal (PC) as interesting alternative.  Experimental [6] and 

theoretical works [7] indicate that the negative refraction phenomenon in PC are possible in 

regimes of negative group velocity and negative effective index above the first band near the 

band edge.   

 

In 2003, Costas Soukoulis and colleagues at Iowa State University in the US and the 

FORTH laboratory in Greek performed computer simulations on a left-handed photonic crystal to 

show that causality remains intact in such materials [8]. The researchers solved Maxwell's 

equations to study how an electromagnetic wave evolves in time as it hits the surface of a 

negative-index material. They saw that the incoming beam was refracted in the negative direction 

- as expected - but they also noticed that this refraction did not occur straight away. Instead, the 

whole wave front was temporarily trapped in the surface region. Soukoulis and colleagues argue 

that the delays caused by this trapping explain how the outer rays in the beam appear to travel 

faster than the velocity of light.  

 

"These calculations are an important confirmation that the speed of light is not violated by 
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negative refraction," John Pendry, a theorist at Imperial College in London who did much of the 

early work on negative-index materials, told us. "It is time to move on and start making use of 

these amazing new materials." Further experiments and simulations confirming the existence of 

negative-index materials have been performed by Claudio Parazzoli and co-workers at the 

Boeing Phantom Works in Seattle [9], and by Andrew Houck and colleagues at Harvard 

University and the Massachusetts Institute of Technology. 

 

 

1-2 Motivation 

 

There are several applications for negative refractive index material. We can't anticipate 

specific examples, yet. We believe that when one creates a new material that scatters 

electromagnetic radiation in a unique manner, some useful purpose will be found. We can 

envision, for example, uses in the cellular communications industry, where novel filters, antennas, 

and other electromagnetic devices are of great importance. Even slight improvements to these 

devices can make a significant financial impact. 

 

In this paper, we measure the EM wave propagation through the photonic crystal prism to 

find the refraction phenomenon in microwave regime; the other, we simulate the experimental 

situation with finite-difference time domain (FDTD) and we can say that the EM wave 

propagating in PC behaves like a massive quasi-particle with the pk •  theorem. A light beam is 

traveling through different media. As our research progresses, we will look for physics suited to 

this technology and develop appropriate structures. 

 

Materials with a negative refractive index do not violate the laws of physics according to a 

series of recent experiments and computer simulations. First proposed in 1968, these materials - 

which bend light in the opposite direction to conventional materials, and which are also known as 

left-handed materials - were only demonstrated in experiments for the first time in 2000. 

However, some physicists argued that although the phase velocity of the light was negatively 

refracted, the group velocity was not. Others claimed that negative refraction violated causality 

by permitting velocities greater than the speed of light. Several experiments [6] and simulations  
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[7] have now demonstrated that negative refraction is real and that causality is not violated. 

 

Recently, the one-dimensional (1D) version of a photonic crystal has long been known as a 

multilayer reflector, but 2-dimention/3-dimention (2D/3D) photonic crystals have only recently 

started to attract attention after the appearance of a prediction that photonic insulators can be 

developed by photonic crystals [10]. In photonic crystals, light travels as Bloch waves, in a 

similar way to plane waves in continuous material. Bloch waves travel through crystals with a 

definite propagation direction despite the presence of scattering, but their propagation is 

complicated because it is influenced by the band structure. There have been some works related 

to this issue in the literature, but systematic and consistent way of understanding is still lacking. 

Therefore, we will clarify features of light propagation in photonic crystals, and show how a 

strongly modulated photonic crystal exhibits remarkably interesting propagation characteristics 

which can be understood as refractionlike phenomenon in standard geometrical optics with 

unusual refractive index.  

 

 

1-3 Organization of the thesis 

 

We will systematically analyze the light propagation phenomena in periodic structures and 

photonic crystals with the help of the band theory and numerical simulations. Our research is to 

examine whether light propagation in photonic crystals can be understood by simple geometrical 

optic analogies. First, we will present the effect of the band  folding that is directly related to the 

periodic boundary condition of the structure. Second, we’ll describe the novel phenomenon with 

microwave experimental frame. And then, we’ll discuss the experimental phenomenon with 

pk •  theory. It will been shown that the propagation characteristics of diffraction gratings and 

weakly modulated photonic crystals are much alike and can be explained within a similar 

framework. This explains anomalous propagation phenomena in photonic crystals. These studies 

have clarified that the light propagation in these media is fundamentally different from 

conventional refraction, and therefore we cannot define appropriate refractive  index. Then, in 

order to support our experiment and pk •  theorem, we will use the FDTD algorism to simulate 

our experimental setup. We will demonstrate the negative refractive phenomenon. 
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Chapter 2 Theory and Methodology 

 

2-1  Introduction 

 

2-1.1 Refraction phenomenon in homogenous medium 

 

When light enters a transparent medium it is refracted as shown in FIG. 1. Refraction is the 

cause of the apparent bending of a ray of light when it enters water or glass. The magnitude of the 

effect is given by the index of refraction or refractive index, n, where: 

21 sin/sin θθ=n                              (2.1) 

1θ  being called the angle of incidence and 2θ  the angle of refraction .this equation is known as 

Snell’s  law. The plane of incidence is the plane containing the incident ray and the normal to the 

surface. The above equation is a special case of the more general relation: 

1221 /sin/sin nn=θθ                          (2.2) 

for light passing from a medium of refractive index n1 to one of refractive index n2. 
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The effect of refraction is familiar to anyone who has looked into a deep pool of water. In a 

swimming pool, for example, the bottom always seems closer to the surface than it really is. For 

the same reason, a stick will appear bent towards the surface when dipped into water, as shown in 

figure kingfishers, birds which catch fish by diving into rivers, must allow for this effect and aim 

below the object that they apparently see in order to hit the target, as depicted in FIG. 2. 

 

   In effect, the refractive index is a manifestation of the fact that the light is slowed down on 

entering a transparent material. We shall see below that this is due to the interaction of the light 

with the electrons  around the atoms which make up the solid. It is found that the refractive index, 

n, of a transparent substance is given by: 

n = velocity of light in a vacuum (c) / velocity of light in the medium (v)  

The frequency of the light does not alter when it enters a transparent medium and because of the 

relationship between the velocity of a light wave and its frequency: 

velocity=νλ                               (2.3) 

it is possible to write: 

subsvacvcn λλ // ==                          (2.4) 

where vacλ  is the wavelength of the light wave in a vacuum and subsλ  is the wavelength in the 

transparent substance. It is thus seen that light has a smaller wavelength in a transparent material 

than in vacuum. 

 

 

2-1 .2 Refraction phenomenon in photonic crystal 

 

A photonic crystal is a structure whose refractive index is periodically modulated, and the 

resultant photonic dispersion exhibits a band nature analogous to the electronic band  structure in 

a solid. What is the refraction phenomenon in photonic crys tal? Over the last decade, the 

one-dimensional (1D) version of a photonic crystal has long been known as a multilayer reflector, 

but 2D/3D photonic crystals have only recently started to attract attention after the appearance of 

a prediction that photonic insulators can be developed by photonic crystals. In photonic crystals, 

light travels as Bloch waves, in a similar way to plane waves in continuous material.  Bloch waves 
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travel through crystals with a definite propagation direction despite the presence of scattering, but 

their propagation is complicated because it is influenced by the band structure. We are interesting 

in this big problem. 

 

The essential explanation of these phenomena should lie in the photonic band structure 

because the direction of light propagation inside the photonic crystal is determined by the  

equifrequency surface of the photonic bands in these structures. This is the most important 

physics picture what we want to present. Although this feature of photonic crystals has been 

frequently  discussed, there have been very few reports about quantitative comparison between 

theory and experiment so far. Considering this feature, it might be possible to reconstruct the 

photonic band structure from measurements of the light propagation inside the photonic crystal. S. 

Kawakamin et al. recently demonstrated such an experiment for 3D Si/SiO2 photonic crystals 

that were fabricated by auto cloning technology and his work was published [11]. A very detailed 

photonic band structure was successfully obtained by the measurement, which was published by 

M. Notomi et al. [12]..  This experiment directly shows that the light propagation is  indeed 

determined by the photonic band structure. This means that, if we want to investigate the light 

propagation in photo nic crystals, what we have to do is just to calculate the corresponding 

photonic band structure. However, photonic band structures are fairly complicated and it is thus 

not easy to understand the light propagation phenomena in photonic crystals in qualitative terms. 

Moreover, the relation between the light propagation in photonic crystals and that in conventional 

dielectric materials or gratings has yet to be clearly demonstrated. We believe that a simpler way 

of understanding light propagation in photonic crystals is possible and should be established, 

which will clarify the difference between behavior in photonic crystals and conventional 

refraction or diffraction phenomena. As mentioned above, light propagation in photonic crystals  

is represented by Bloch waves. Bloch waves have a definite propagation direction in spite of 

strong scattering by the periodic structure. This character leads us to consider a geometrical optic 

approach to understand the propagation in it. In conventional geometrical optics in dielectric 

materials, light propagation— as shown in Fig. 3— is described by the  phase refractive index and 

Snell’s law. However, the phase velocity is defined as the velocity of the propagation of an 

equi-phase surface. This velocity has a definite meaning, for example, for plane waves and 

spherical waves for which the equi-phase surface can be defined without ambiguity, in the 
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photonic crystal, however, the equi-phase surface cannot be difined rigorously, since its 

eigenfunction is a superposition of plane waves. This means that the phase velocity cannot be 

defined appropriately in photonic crystal. Therefore, in order to  pursue geometrical approaches 

for photonic crystals, we will examine the concept of phase refractive index and the group 

refractive index for photonic crystals. The phase refractive index of photonic crystals has been 

discussed by several authors in the long wavelength limit. [13-15].They have homogenized the 

periodic structures and deduced an appropriate phase index in the lowfrequency limit. However, 

such a result cannot be extended to higher frequencies of which wavelength becomes comparable  

to, or smaller than, the lattice period. Since most of interesting phenomena, including unusual 

beam propagation,  occur outside the low- frequency limit, we are not satisfied with this 

homogenization method to understand the light propagation in photonic crystals. 

 

 

 
 

About the refraction phenomenon, there are some works to discuss the phase refraction 

index. Lin et al. investigated the lowest band of a 2D photonic crystal near its first gap, and 

argued that the refractive index is modified from the low-frequency limit value near the gap 

because the slope of the dispersion curve is reduced[16]. This effect is not significantly large 

because the control range of index is limited within refractive indices of materials. The  present 

photonic crystal effect simply arises as a modification of the mixing ratio of index values, similar 

to the way in which the effective refractive index of a conventional slab wave guide is 

derived.[17]  Furthermore, their argument did not show whether the index they deduced could 

be meaningful outside the low- frequency limit (M. Notomi et al. showed that such index is 

medium 1 medium 2 medium 3 
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Fig. 3 Schematic diagram of light propagation phenomenon
through different media. 
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generally meaningless except under a certain condition and it is not clear how this index is related 

to propagation direction)[7]. Dowling et al. used essentially the some argument, which the phase 

refraction index equation is n=ck/w, to predict an ultra small index for photonic crystals.[ 18] 

This effect is due to the reduction of wave vector k near the zone center as a result of the band 

folding.  However, this argument leads to an ultra small n even for an empty lattice with the same 

crystal structure. In their photonic crystal model,  we know that light propagation in such an 

empty- lattice photonic crystal (at least when its frequency does not satisfy the Bragg condition) 

should be normal; however, this model still predicts abnormal phase index. This apparent 

contradiction shows that the deduced small n does not posses real meaning and that the band 

folding itself does not lead to unusual beam propagation. This contradiction arises mainly 

because we have only considered k in the above analysis. We must also consider the group 

velocity vector to study beam propagation in photonic crystals. We thus need to investigate the 

equifrequency surface (EFS) of the photonic band structure to discuss the negative refractive 

phenomenon, and the propagation direction which should be positive or negative could be 

corresponded to the k.p theorem directly. 

 

   We can describe the index of refraction with the EFS of the photonic crystal. Firstly, we show 

a very simple example of EFS analysis in FIG. 4, which describes a light incident problem from 

air to a dielectric material. A circle in the figure is an EFS of the photonic band of a dielectric, 

namely, v=ck/w . The k vector in the dielectric medium is determined by the continuity of 

tangential components of the k vector across the interface, and light always propagates parallel to 

the k vector in this case. This is an EFS expression of conventional refraction phenomenon, and 

this plot is a graphical representation of Snell’s law in k space 

1221 /sin/sin nn=θθ                          (2.5) 

 

In photonic crystal, the light propagate direction is highly related to the EFS. We can show 

the reciprocal lattice space to describe the phenomenon In FIG. 4. We can take the FIG. 4 into 

two part. One is the photonic crystal with the small index modulation, and the other is the PC 

with the finite index modulation which was larger than former. In the situation, if a plane wave is 

launched to this photonic crystal from air at a certain incident angle, several phenomena are 

expected from this figure. First, a light beam is decomposed into more than one nonidentical 
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waves. In the situation in Fig.4(a), two waves A and B are excited. Wave A corresponds to a 

transmitted wave, and wave B is a diffracted wave. Second, the propagation direction is 

apparently not parallel to the k vector for diffracted waves. The propagation direction is oriented 

to the group velocity vector wv k∇=g  which is normal to the EFS. Third, the propagation 

angle is very sensitive to the incident angle and wavelength if the launched beam excites the 

waves near intersec ting points (e.g., point C), which leads to large beam steering. This is the 

origin of the superprism effect as reported in Ref. [6]. Fourth, in some regions of the EFS near the 

Γ  point, k vector becomes very small and it leads to a very small index value. But such an index 

is not meaningful by the same reason as for a grating. As readers already may have noticed, the 

situation as a whole is similar to that for a grating. The anomalous beam propagation in photonic 

crystals can be explained by the mechanism outlined above for a diffraction grating. 

Consequently, we still cannot define a proper phase refractive index for a weakly modulated 

photonic crystal which precisely reflects the light propagation. On the other hand, we can know 

that the photonic band structure is the highly related reason of the negative refraction 

phenomenon. We will discuss the phenomenon with the k.p theorem and FDTD algorism. 

Whereas, with the k.p theory, the photons can be viewed as the quasi-particals. We can describe 

the negative refraction phenomenon as the photons trapped on the interface between photonic 

crystal medium and air latter. 
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2-2 Refractive index in photonic crystal 

 

2-2.1 Phase velocity, Group velocity, and Energy velocity 

 

In photonic crystal, we can use the plane -wave expansion method to calculate the dispersion 

relations of the radiation modes in the photonic crystals. we can also calculate their wave 

functions. In addition to the eigenfrequencies and eigenfunctions, there are several parameters 

that characterize the radiational waves. One of them is the wave velocity. In contrast to the case 

Fig. 4  (a) Schematic EFS plot for a hexagonal 2D photonic crystal with a varnishing
small index modulation. The first Brillouin  zone (BZ) is shown as a hexagon.  (b) EFS 
plot for a hexagonal 2D photonic crystal with finite index modulation. This type of 
EFS is general for pho tonic crystals at frequencies far from the gaps or photonic 
crystals with a small index modulation. (c) Schematic of anomalous diffraction near 
the singular point. 
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of particles for which the velocity has a single meaning, waves have three different kinds of 

velocities, i.e., the phase velocity, the group velocity, and the energy velocity. These velocities are 

equal to each other in uniform materials with dielectric constants which are real and independent 

of frequency.  

 

   The phase velocity is defined as the velocity of the propagation of an equi-phase surface. This 

velocity has a definite meaning, for example, for plane waves and spherical waves for which the 

equi-phase surface can be defined without ambiguity, in the photonic crystal, however, the 

equi-phase surface cannot be defined rigorously, since its eigenfunction is a superposition of 

plane waves. This means that the phase velocity cannot be defined appropriately in photonic 

crystal. 

 

   On the other hand, the group velocity, which is the velocity of the propagation of a wave 

packet, can be defined as usual: 

k
v

∂
∂

=
w

g                                   (2.6) 

The energy velocity is defined as the velocity of the propagation of the electromagnetic 

energy. The propagation of the electromagnetic energy is described by Poynting’s vector. The 

time-averaged Poynting’s vector ( )rknS  is given by 

( ) ( )[ ] ( )[ ]>×<≡ −− tiw
n

tiw
nkn

knkn eeaverager rHrES kk ReRe              (2.7) 

     = ( ) ( )[ ].Re
2

1 * rHrE knkn ×                                      

On the other hand, the time-averaged electromagnetic energy density ( )rknU  is given by 

( ) ( ) ( )[ ]{ }{ } ( )[ ]{ }{ }2020 Re
2

Re
2

tiw
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     (2.8) 
 

     ( ) ( ){ }2
0

2
0 )(

4
1

rHrEr knkn µεε +=  

Thus, the energy velocity ev is defined as 

( )
( )ru
rS

v
kn

kn
e =                                    (2.9) 
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Where ⋅⋅⋅  means the spatial average. 

   Now, the group velocity is equal to the energy velocity even though the dielectric constant is 

modulated periodically. The proof was given by Yeh[19].  

ge vv =                                             (2.10) 

 

2-2.2 Calculation of Group Velocity 

 

As we learned in the last section, the group velocity of the radiation modes has very 

important role in light propagation and optical response in the photonic crystals. Hence, the 

calculation of the group velocity is an essential task for the understanding of their optical 

properties. Since the group velocity is defined as the derivative of the angular frequency with 

respect to the wave vector, we may calculate it by numerical differentiation. That is, we may 

actually evaluate the following limit: 

k
v kk

k ∆

−
= ∆+

→∆

nnk
g

ww ,,

0
lim                                   (2.11) 

 

This numerical differentiation needs a limiting procedure for which we have to know a 

series of eigenfrequencies as a function of the wave vector.  

 

   There is quite a convenient method to avoid this procedure and give an accurate evaluation of 

the group velocity. We use the Hellmann-Feynman theorem for this purpose, with which the 

readers may be familiar as it relates to quantum mechanical calculations. In the case of quantum 

mechanics, the Hellmann-Feynman theorem is stated as follows. First, we assume an Hermitian 

operator Ĥ  that depends on an external variable α , and denote it by αĤ . We also assume that 

we know the orthonormal set composed of the eigenfunctions of αĤ , which we denote by 

{ }:,2,1; Λ=nnα  

1

,ˆ

=

=

nn

nnH n

αα

αλα αα                                          (2.12) 
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In the above two equations, we used the standard notation of “bra” and “ket” vectors. nαλ  

is the eigenvalue of αĤ  for state nα  and ΛΛ denotes the inner product. Now, our 

problem is to calculate the derivative of nαλ  with respect to α . Because the state vector (or the 

eigenfunction) nα  is normalized to unity, the following.holds. 
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                    (2.13) 

 

Once we know the analytical expression of αλα αα ∂∂∂∂ /,/ˆ
nH  can readily be obtained using 

this equation without the limiting procedure in (2.11). 

 

   Now, we will see how to use the Hellmann-Feynman theorem for the calculation of the group 

velocity. Here, we show the method for the E polarization. The dispersion relation is obtained by 

solving the eigenvalue equation, which is the photonic band structure correspond to. 

 

When we define a column vector //nkA  by 

),()( ////,//////// GGkGA kk nzn E+=                              (2.14) 

When we apply Bolch’s theorem to structure the plane-wave method, we obtain the 

following eigenvalue equations for the expansion coefficients in E-polarization condition: 
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////

'
//// //

2
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is transformed to 
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where 
//k

M is a //k -dependent matrix whose ( )'
//// ,GG component is given by the following 

equation: 

( ) ).(, '
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'
////////

'
//////

GGGkGkGGMk −++= κ                            (2.17) 

The //k -dependent vector nk//
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and it is normalized to unity, i.e., 1
//

=nkA ,h is the normalization constant. 
 
   Here, we assume that ( )//rε is real. Then, ( ) ( )//

*
// GG κκ =−  and 

//kM  is an Hermitian 
matrix. Therefore, we can apply the Hellmann-Feynman theorem to the present problem, and we 
obtain 
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where t denotes the transposed matrix and  
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Therefore, the group velocity ( )nwvg , can be readily evaluated once the eigenvector nk//

A  

and the eigenvalue ( ) 2/
2

//
cw E

nk are obtained by the band calculation based on the plane-wave 
expansion method. 
 
 

2-3 Electromagnetic simulation using the FDTD method 

 

2-3.1 Introductions  to the FDTD algorism 

 

In 1966 Yee [20] proposed a technique to solve Maxwell's curl equations using the 

finite-difference time-domain (FDTD) technique. Yee's method has been used to solve numerous 

scattering problems on microwave circuits, dielectrics, and electromagnetic absorption in 

biological tissue at microwave frequencies [21-26].  
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Initially there was little interest in the FDTD method, probably due to a lack of 

sufficient computing resources [26]. However, with the advent of low cost, powerful 

computers and advances to the method itself, the FDTD technique has become a popular 

method for solving electromagnetics problems, especially in periodic structure.  

2-3.2 One dimension free space formulation  

 

  The time-dependent Maxwell’s curl equations in free space are 
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t
                                       (2.21) 

E and H are vectors in three dimensions, so in general, Eq.(2.21) represent three equations each. 

We will star with a simple one-dimensional case using only Ex and Hy, so Eq.(2.21) become 
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There are the equations of a plane wave with the electric field oriented in the x direction, 

magnetic field oriented in the y direction, and traveling in the z direction. 

 

   Taking the central difference approximations for both the temporal and spatial derivatives 

gives 
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in these two equations, time is specified by the superscripts, i.e., “n” actually means a time 

.ntt ⋅∆=  Remember, we have to discrete everything for formulation into the computer. The term 

“n+1” means one time step later. The terms in parentheses represent distance, i.e., “k” actually 

means the distance .kxz ⋅∆= (However, x∆  is so commonly used for a spatial increment that I 

will use x∆ .)The formulation of Eq. (2.23) assumes that the E and H fields are interleaved in both 
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space and time. H uses the argument k+1/2 and k-1/2 to indicate that the H field values are 

assumed to be located between the E field values.  

 

Let us return to discuss the stability. An electromagnetic wave propagating in free space 

cannot go faster than the speed of light. So the relationship between x∆  and t∆ can be written 

as the well-known “Courant Condition” 

    xt
nc

∆∆ ≤                                                       (2.24) 

where n is the dimension of the simulation and c is the speed of light. 

 

We still need to add incident wave source condition and absorbing boundary condition. It is 

a great subject in talking about the wave source condition. For simplicity, we divide it into two 

categories: hard source and soft source. In a hard source, a propagation wave will see that value 

and be reflected, because the hard value of Ex looks like a metal wall to FDTD. However a soft 

source is added to Ex at a certain point and a propagating pulse will just pass through. In 

calculating photonic crystal, we must consider the field scattering from the boundary. Therefore 

we use a soft source. And, in order to support our experimental result we use the plane wave 

incident as our source. We will introduce the periodic structure simulation with FDTD method 

further. 

 

2-3.3 Simulation in periodic structure  

 

In order to simulate a photonic crystal medium, we have to add the relative dielectric constant rε  

to Maxell’s equations: 

E
H

H
E

ρ
ρ

ρ
ρ

×∇−=
∂

∂

×∇=
∂

∂

0

0

1

1

µ

εε

t

t r                                             (2.25) 

In PC medium, the dielectric constant rε  is periodic. 

 

We have been using the form of Maxwell’s equations, which use only the E and H files. We 
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will begin by normalizing these equations, using 

D,D
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⋅
⋅
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⋅=
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0
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~

µε

µ
ε

                                 (2.26) 

which leads to  
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H
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                             (2.27) 

where D is the electric flux density. Notice that Eq.(2.27) is written in the frequency domain.  

We will assume we are dealing with a lossy dielectric medium of the form 

( )
0

*

ωε
σ

εε
j

w rr +=                                  (2.28) 

and substitute Eq.(2.28) into (2.27): 

 

( ) ( ) ( ).
0

w
jw

ww r EED
ε

σ
ε +⋅=                        (2.29) 

taking the first term into the time domain is not a problem because it is simple multiplication. In 

the second term, Fourier theory tells us that jw/1  in the frequency domain is integration in the 

time domain, so Eq.(2.29) becomes 

( ) ( ) ( ) '

0

'

0

dtttt
t

r ⋅+⋅= ∫ EED
ε
σε                        (2.30) 

we will want to go to the sampled time domain, so the integral will be approximated as a 

summation over the time steps t∆  
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ε   (2.31) 

now we can calculate nE  
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Suppose now that we are asked to calculate the E field distribution at every point in a dielectric 

medium subject to illumination at various frequencies. One approach would be to use a sinusoidal 

source and iterate the FDTD program until we observe that a steady state has been reached, and 

determine the resulting amplitude and phase at every point of interest in the medium. This would  

work, but then we must repeat the process for every frequency of interest. System theory tells us 

that we can get the response to every frequency if we use an impulse as the source. We could go 

back to using the Gaussian pulse, which, if it is narrow enough, is a good approximation to an 

impulse, which, if it is narrow enough, is a good approximation to an impulse. We then iterate the 

FDTD program until the pulse has died out, and take the Fourier transform of the E fields in the 

slab. If we have the Fourier transform of the E field at a point, then we know the amplitude and 

phase of the E field that would result from illumination by any sinusoidal source. This, too, has a 

very serious drawback: the E field for all the time domain data at every point of interest would 

have to be stored until the FDTD program is through iteration so the Fourier transform of the data 

could be taken, presumably using a fast Fourier transform algorithm. This presents a logistical 

nightmare. 

 

  Here is an alternative. Suppose we want to calculate the Fourier transform of the E field ( )tE  

at a frequency f1 . This can be done by the equation 

( ) ( ) .12

01 dtetEfE tfjtT π−⋅= ∫                                 (2.33) 

  Notice that the lower limit of the integral is 0 because the FDTD program assumes all causal 

functions. The upper limit is tT , the time at which the FDTD iteration is halted. Rewriting (2.33) 

in a finite difference form. 

( ) ( ) 12 ( )
1

0

T
j f n t

n

E f E n t e π− ∆

=

= ∆∑ gg g                           (2.34) 

Where T is the number of iterations  and t∆  is the time step, so tTtT ∆⋅= . Equation (2.34) 

may be divided into its real and imaginary parts 
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1
0

1 ntftnEjntftnEfE
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T

n

⋅∆⋅⋅∆⋅−⋅∆⋅⋅∆⋅= ∑∑
==

ππ    (2.35) 

Note that there is an amplitude and phase associated with every frequency at each cell. 

 

   In our simulation, I use it to observe the plane wave propagate through the photonic crystal 

prism. We can not only get the phase distribution with every frequency at our simulation domain 

of our question but find the amplitude distribution.  

 

However, absorbing boundary conditions (ABCs) are necessary to keep outgoing E and H 

fields form being reflected back into the problem space. Normally, in calculating the E field, we 

need to know the surrounding H values; this is a fundamental assumption of the FDTD method. 

At the edge of the problem space we will not have the value to one side. However, we have an 

advantage because we know there are no sources outside the problem space. Therefore, the fields 

at the edge must be propagating outward. We will use these two facts to estimate the value at the 

end. 

 

One of the most flexible and efficient ABCs is the perfectly matched layer (PML) developed 

by Berenger [27]. In our simulation problem, we use this way to prevent the boundary refraction 

of the propagation light. Whereas, in order to simulate a plane wave in a 2D FDTD program, the 

problem space will be divided up into two regions, the total field and the scattered field (FIG.  5). 

There are two primary reasons for doing this: (1) The propagation plane wave should not interact 

with the absorbing boundary conditions; (2) the load on the absorbing boundary conditions 

should be minimized. These boundary conditions are not perfect, i.e., a certain portion of the 

impinging wave is reflected back into the problem space. By subtraction the incident field, the 

amount of the radiation field hitting the boundary is minimized, thereby reducing the amount of 

error.  
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2-4  k•p theory  

 

   In order to study the propagation of light in a photonic crystal, we start from the Maxwell’s 

equations in cgs units:  

       

1
0,             E+ 0,

c
1 4

4 ,         H ,
c

B
B

t
D

D J
t c

π
πρ

∂
∇ = ∇× =

∂
∂

∇ = ∇× − =
∂

uv
uv uv
g

uv
uv uv uv
g

                           (2.36)  

where E and H are the macroscopic electric and magnetic fields, D and B are the displacement 

and magnetic induction fields, and ρ and J are the free charge and current densities. We consider 

the light propagation within a periodic mixed dielectric medium, a composite of regions of 

homogeneous dielectric material, with no free charge or currents ( ρ =J=0).           

 

    In general, the components Di of the displacement field D are related to the component Ei of 

the electric filed E via a complicated power series. First we assume the field strengths are small 

PML 

Total field 

Scattered field 

Incident plane 
wave is 
subtracted out 
here. 

Incident plane 
wave is 
subtracted out 
here. 

The periodic structure 
can be set here 

Fig. 5 Total field/scattered field of the two-dimensional problem space 

 



- 21 - 

enough so that we are in the linear regime, or the operation frequency region far away from the 

resonance frequency region of the photonic materials. Second, we assume the medium is 

macroscopic and isotropic, so that E(r,w) and D(r,w) are related by a scalar dielectric 

constant ε (r,w). Third, we ignore any explicit frequency dependence of the dielectric constant 

and treat ε (r) as purely real, i.e., the materials which construct the photonic crystals are 

non-dispersive.  

( ) ( ) ( )D r r E rε=
uv v v uv v

                               (2.37) 

    For most dielectric materials of interest, the magnetic permeability is very close to unity and 

we may set B = H. Then, we can assume the fields that happen to vary harmonically with time, so 

that we have 

                     
( , ) ( )

( , ) ( )

i t

i t

H r t H r e

E r t E r e

ω

ω

=

=

ruuv uuv v
g

uv v uv v
g

 .                            (2.38) 

    Because there is no free charge or current, the electromagnetic waves considered to be 

transverse. When we eliminate (2.38) in (2.36), we obtain the following equations: 

        
2

2

1( ) { ( )} ( ),
( )E E r E r E r

cr
ω

ε
Θ ≡ ∇× ∇× =
uv v uvv uv v
v                         (2.39) 

        
2

2

1( ) { ( )} ( ).
( )H H r H r H r

cr
ω

ε
Θ ≡ ∇ × ∇× =
uuv v uuv v uuv v

v                        (2.40) 

    Solving (2.39) and (2.40) are the eigen-value problems, the eigen-values construct the 

photonic crystal structure.  

 

One of the most important techniques for investigating the properties of a function is the 

study of its power series expansion. Now we introduce the new basis as follows: 

      H(r)= 0( ) ( , )exp( )n np
np

A H r iS r− ⋅∑ k k  ,                             (2.41)  

         S=k-k0  , 

where k is a wave vector lies within the first Brillouin zone, and k0 is a specific wave-vector in 

which the band maximum or minimum occurs with S= |S |<<1 near the band edge and An(k) 

being the expansion coefficients. Hn,p (k0, r) are the Bloch-type eigenfunctions of eq.(2.40) 

belong k0 wave vector and the corresponding eigenvalues are ωn(k0) which can be derived by 

plane-wave expansion method, where n is a band index and p represents the index of physical 
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solutions (ωn(k0) ≠ 0) and unphysical solutions (ωn(k0) = 0). If we define  

      0( , ) ( , )exp( )n npr H r iS rχ ≡ − ⋅k k .                          (2.42) 

The properties of orthonormality and completeness can be easily proofed that 

* ( , ) ( , ) ( )n m nmq r k r dr k qχ χ δ δ= −∫ ,                              

*( , ) ( , ') ( ')n n
n

k r k r dk r rχ χ δ= −∑∫ .                        (2.43)                

( , )n rχ k  also obeys Bloch’s theorem for a state vector k 

    ( , ) exp( ) ( , )n nr a ik a rχ χ+ =k kg ,                          (2.44) 

where a is lattice constant. An equation for the ( )nA k  is determined by substituting eq. (2.42) 

into eq. (2.40): 
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where 2,  ( / )P i E cω≡ − ∇ ≡
uv uv
h h  and eq.(2.45) can be rewritten as  
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 If 0k
uuv

is the extreme of the band 
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E k
k ρ

δ
δ = =v v
v

                                                (2.47) 

with making the unitary transformation exp[ ]n nH iS h=  in which S=k-k0 is a Hermitian operator, 

we have derived an effective dielectric tensor equation that has a similar structure of the 

effective-mass equation in semiconductors an can be written as 

     

2
0

* 2

( )1 1
( )

2
            

nE k
k kαβ α βε

∂
≡

∂ ∂

uuv

h .                                          (2.48) 

Using the effective-dielectric tensor of eq. (2.48), the Hermitian (2.47) can written as an 
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eigenvalue equation 

     2
0

1
( ) ( ) [ ( ) ( ) ] ( )n n n nE k A k E k S S A kα β

αβ
αβ ε

= + ∑
v v v v

h .                       (2.49) 

Eq. (2.49) is the well-known effective-mass equation, written, however, in momentum space. To 

get more useful formulation, we introduce an envelope function 

3( ) ( )iS r
n nF r e A k d k= ∫ g

v
                                     (2.50) 

the integration being over the first Brillouin zone . Thus, we have  

      
02 2 2( ) 1
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ω ω
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∂ ∂
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h ,          (2.51) 

where i and j are indices of three different directions of r . We can also transform eq. (2.51) back 

to the time space to study the temporal evolution of ( , )F r t
v

. We have a tensor equation: 

     
2

0 2 2
2

( ) 1
( , ) [( ) ( ) ] ( , )n

n n

k
F r t F r t

t c x xαβ
αβ α β

ω
ε
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= +

∂ ∂ ∂∑
v

v vh
h .          (2.52) 

 

Eq. (2.52) is equivalent to the Maxwell equation of eq. (2.40), under the •k p  theory, which is 

the generalized Klein-Gordon equation and is reduced to the Klein-Gordon equation in isotropic 

medium.  This equation indicates there is an energy-storing mechanism near band edges, thus 

we have defined mn= ηωn(k0)/c2 as the inertial mass of quasi-particle(QP) of photon. The inertial 

mass mn is dependent on the band index n and is quantized. Although, by assuming the band 

mixing is negligible, we applied the one-band •k p theory to study photons near band edges.   

 

 To understand the negative refraction phenomena, we shall use the extended k • p theory, 

proposed by Johnson et al. [28], i.e., K.P theory provides an approximate approach to study the 

phenomenon of the light traveling in the PCs. The practical usefulness of K.P method is that these 

K.P parameter can be obtained by fitting either to band structure of bulk PCs calculated using 

computationally intensive methods to EM waves propagating in PC.   

 

According to the extended k • p theory, we can describe  the negative refraction phenomenon 

in photonic crystal. The physical modle to describe the phenomenon will be shown exhaustively 

in chapter four.  
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Chapter 3 Experiment 

 

3-1 Experimental setup  

 

Our 2D isosceles right triangular PCP, which consists of a square lattice of alumina rods 

(dielectric constant ε  = 8.9 and diameter of 4.0 mm) surrounded by air, is shown in Fig. 8.  The 

square lattice supported by two polystyrene plates has lattice constant 15.0 mm.  The length of 

rods is 14.0 cm and is long enough to be considered infinitely long in a reasonable approximation, 

especially in the high frequency region, if the propagation direction is perpendicular to the rods.  

The microwave is incident perpendicularly to the one of the right-angle sides as shown in Fig.  6.  

Therefore, the forward direction of the microwave makes a 45o with respect to the normal of the 

bevel of PCP, which is the exit interface of PC and air.  The experiment setup [as shown in Fig.  

7] was supported by the polystyrene bulk  1.0 m above the ground to prevent the background 

noise disturbing the transmission signal.  The bulk PC or PCP was placed behind a rectangular 

aperture of a metal shield and two horn antennas were connected to a HP 8720A network 

analyzer to measure the transmission power of microwave passing through the bulk PC and PCP.  

Because an EM waveform horn antenna creates spherical wave front, we have set the emitter 

antenna far away from the tested sample, in order to make the incident wave on the sample  

having planar wave front.  The incident microwaves were transverse magnetic (TM) waves, 

where the direction of electric fields is parallel to the axis of the rods. 

 

In order to measure the refraction angles from the exit interface of PCP, the receiving 

antenna was attached to a pivot right on top of the PCP.  For every frequency within 11.5 to 18 

GHz, the receiver horn was rotated by 1.875o per step.  The indices of refraction for different 

frequencies were then deduced from measured refraction angles. 
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Planar  
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θ 
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Fig. 7 The experiment  setup of measuring microwave transmission of a photonic 

crystal. 

 

(a) 

θ 
 

“Negative” 
angle 

“Positive” 
angle 

PCP 

(b) 

Absorption material  

 

Fig. 6 (a) a 2D isosceles right triangle photonic crystal prism (PCP); and (b) the 

schematics of an incident EM wave passing through PCP. 
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l HP 8720 Microwave Network Analyzer 

The HP 8720 is a high performance microwave network analyzer for measurements of 

reflection and transmission parameters. It covers the frequency range of 130 MHz to 20 GHz 

with 1 Hz frequency resolution. It integrates a synthesized source, a switching S-parameter test 

set, and a duel channel receiver to measure and display magnitude, phase, and group delay of 

transmitted and reflected power. Time domain provides the capability of transforming measured 

data from the frequency domain to the time domain. We use it to measure the transmittance 

phenomenon in photonic crystal in microwave regime. 

 

 

 

 

 

 

 

 

 

 

• The 2D photonic crystals in this study consist of 
alumina rods forming a square lattice. The rods are 
supported on both sides by polystyrene plate.  

• The 4.00-mm diameter alumina rods, making up 
the square lattice having a lattice constant of 
15.00mm, have a dielectric constant of 8.9 and are 
surrounded by air.  

• For PC structure, the rods are long enough 
(14cm) to be considered infinitely long to a 
reasonable approximation, especially in high 
frequency regions, if the propagation direction is 
perpendicular to the rods.  

Fig. 8 Photonic crystal 
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Chapter 4 Results and Discussion 

 

4-1 The photonic crystal sample measurement  

 

In Fig. 9, we show the photonic band structure, calculated by plane-wave expansion [29], of 

TM modes of a square PC lattice and the measured transmission spectrum of bulk PC along Γ  to 

M direction.  The transmission spectrum is consistent with the calculated band structure in 

which the photonic-band gap lies within 7.5 to 11.5 GHz.  The lowest band exists below 7.5 

GHz, where shows very extremely noisy.   
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4-2 The refraction angle measurement  

 

Because the third and fourth bands, existing between 11.5 GHz and 18.0 GHz, show much 

less noise, our experiment was performed within this frequency range.  In order to measure the 

refraction angles from the exit interface of PCP, the receiving antenna was attached to a pivot 

right on top of the PCP.  For every frequency within 11.5 to 18 GHz, the receiver horn was 

rotated by 1.875o per step.  The indices of refraction for different frequencies were then deduced 

from measured refraction angles.  

 

Shown in Fig. 10(a) are the curves of typical angle -dependent transmission power with 
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Fig. 9 The photonic band structure (a) of the square PC for the TM polarization, 

calculated by plane-wave expansion method, and the measured transmission 

spectrum (b) of bulk PC along Γ to M direction.  The transmission spectrum is 

consistent with the calculated band structure in which the photonic-band gap lies 

between 7.5 to 11.5 GHz. 
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(dotted curve) and without (solid curve) a PCP at 14.5 GHz.  Note that a positive refraction 

angle with respect to the normal of the bevel of PCP is defined for the ordinary refraction [see 

Fig. 6].  There is a very small transmission at negative angles as the EM wave propagates 

directly through the aperture without PCP.  We found that the transmission power in the 

presence of the PCP is larger than that of free space at certain negative refraction angles.  

However, there are still some microwaves transmit directly without refraction due to finite width 

of PCP.  The transmittance is then evaluated by taking the ratio of transmitted powers with and 

without the PCP as shown in Fig. 10(b).  There are two peaks located at refraction angles 

of –330 ± 30 and –580 ± 30, respectively.   Since the incident beam makes an angle of 45o with the 

normal of exit  interface of the PCP, we used the Snell’s law and obtained two corresponding 

refraction indices as n = –0.77 and –0.22 at 14.5 GHz.   In fact, we observed two sets of negative 

indices of refraction in the frequency range of 14.0 to 18.0 GHz. shown in Fig.11 are angular 

dependent transmission with (solid curves) and without (dotted curves) at the different incident 

microwave frequencies. All of them reveal negative refraction. 
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Fig. 10 (a) A typical angle-dependent transmission power with (dotted curve) 

and without (solid curve) a PCP at 14.5 GHz; and (b) the transmittance is 

evaluated by the ratio of transmitted powers with and without the PCP. 
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Fig. 11 Angle-dependent transmission with (solid curve) and without (dotted curve) a PCP at 14 
GHz, at various incident microwave frequencies as labeled. 
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4-3 The negative refraction index discussed in k• p theory 

 

To understand the negative refraction phenomena, we shall use the extended k • p theory, 

proposed by Johnson et al. [28], to EM waves propagating in PC.  According to the extended 

k • p theory, we can define the reciprocal effective-dielectric tensor for the nth band [30]: 

( )( )
    ,

 2   
 

 
1 22

2
1

βα
αβ ∂∂

ω∂
ε kkc

n
n

k
=                             (4.1) 

where α , β  are indices of three different directions of position r, c is the light velocity, k is a 

wave vector lies within the first Brillouin zone.  ( ) 22 cn kω  is the corresponding eigenvalue of 

wave (Hamiltonian) equation with band index n at k and ωn(k) is the angular frequency of band n  

at k.  From the effective -dielectric equation [30], we obtain a generalized dispersion relation of 

EM waves propagating in PC: 

  ( ) ( )2 2
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nnc c

s s p sα
α β αβ β

α β αβ

ω ω
ε

δ
 

= +    
+∑

k k
,               (4.2) 

where s k k= − 0  is the deviation from the wavevector k 0 , δ αβ  is the Kronecker delta.  p n  

is a band parameter around k0 given by Johnson et al [28] and it behaves like the momentum of 

quasi-particle, p, of the k •p term in the electronic problem.  Notice that the generalized 

dispersion relation represents the eigenvalue of wave equation as a function of k rather than the 

(conventional) dispersion relation which expresses the relationship of ωn(k).  The parameter pn  

is equivalent to the slope of generalized dispersion curve and can be determined by fitting the 

curve pier wisely. 

 

 By performing gradient of (4.2) with respect to s (or k) and then dividing it by k , we obtain 

the group velocity vg = ( )s nω∇ k at an arbitrary wave vector k follow the relation. 

    
( ) ( )

2( )n n s
s s n

c
k k

ω
ω∇ =

k p e
e k

g
g ,                (4.3) 

where es is the unit vector of s.  If we define the phase velocity for the Bloch wave of wave 

vector k as vp = 
( )n

sk
ω k

e , then 
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2 ( )n s
p g

c
k

=
p e

v v
g

g  .                          (4.4) 

From the Eq. (4.4), if the slope of the generalized dispersion curve along the s direction is 

negative, i.e., 0n s <p eg , then <0 p gv vg represents the negative refraction phenomenon with 

anti-parallel of phase velocity and group velocity.   If we further define the phase index n
pλ  and 

the group index λ g
n  of Bloch wave for band n as the usual way, i.e., ,/ n

p gc λ , we have  

    n n
p g

n s

k
λ λ =

p eg
                     (4.5) 

In the negative refraction medium, the phase velocity and the group velocity is anti-parallel 

to each other, one is not able to tell which way is the forward direction since the wave vector has 

been folded into the first Brilluoin zone through translation symmetry.  Therefore, strictly 

speaking, only the product of phase index and group index has the physical meaning, thus the 

phase index and the group index are inseparable.  The product is negative in this medium and 

one can not determine which one of them is negative. 

 

 After simple mathematical manipulation of Eq. (4.2), the local optimum ( )2 2
0n cω k  is 

related to the rest mass of the quasi particle by, ( ) 2
0 0n nm cω= k  with Planck constant, η = 1 , 

and the dispersion relation relative to the local optimum can be written as [30] 

2
2 2 2 4 2 2 4 2 2

02

( ) ( )n n n n n n nm c m c c
c

ωε ε ε ε= = +k p ,              (4.6) 

with εnpn being the momentum of the quasi particle.  By using Eq. (4.3), we found the group 

velocity can be defined as the ratio of momentum to relativistic effective mass mn* = εnmn of the 

quasi-particle, i.e. .// 0
2 wPcmPv nnnnng == εε  Therefore, we can say that the EM wave  

propagating in PC behaves like a massive quasi-particle [30].  

 

We show the calculated n n
p gλ λ  of the third and fourth bands along Γ to M direction 

according to Eq. (4.5) by using the photonic band structure of Fig. 9(a) and compare with the 

measured negative indices of refraction in Fig. 12 in the frequency range of 13.5 to 18 GHz 

where two bands, i.e. the third and fourth bands exist.  Because both bands are concave 
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downward, we found 3  s•p e is negative between 13.5 GHz and 17 GHz and 4  s•p e < 0 

between 14 GHz and 18 GHz.  The solid-circle data in Fig. 12 correspond to the dispersion 

curve of the third band (dashed curve) and the open-square data is a result of the fourth band 

(dash-dotted curve).  We found the theoretically calculated negative group indices of both bands 

are consistent reasonably well with the experimental data except for those data on the high 

frequency side of the fourth band.  By consulting the band structure, the maximum of the fourth 

band is a result of two non-crossing bands coupling to each other, therefore, the one -band model 

of the Eq. (4.2) may not be adequate and two-band model is needed to describe this problem.  

Form the above discussion, implies that the product of phase index of the Bloch wave and the 

group index n n
p gλ λ  is equivalent to the refractive index of the photonic crystal. 

 

We have also tried to calculate the group index by performing the gradient of the dispersion 

relation, i.e., ( )kk nω∇  and realized that the group index approaches negative infinity if the 

frequency is close to the optima and is much larger than the experimental results.  The results 

are showed in Fig.13 . It shows the calculated group indices are too large as compared with the 

experimental data. These experimental results do not match with the experimental results. 

 

We have observed the electromagnetic waves undergo negative refraction in a 

two-dimensional photonic crystal prism in microwave frequency regime.  By measuring the 

refraction angles of EM waves propagating through a PCP, and applying the Snell’s law to the 

exit interface of PC and air,  we deduced the negative refractive indices.  The group index, 

calculated by taking gradient of the dispersion relation curve, disagrees with the experiment.  

Whereas, we show that only the product of phase index and group index has the physical 

meaning. The calculated product of phase index and group index derived from the extended k • p 

theory fit reasonably well with the experimental data.  

 

Thus, it is possible to reconstruct the photonic band structure from measurement of 

refraction angles for light propagation through the PC.  And, according to the extended k • p 

theory, the group velocity of EM waves in PC can be defined as the ratio of momentum to 

relativistic effect mass of a quasi-particle.  The EM wave propagating in PC behaves like a 
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massive quasi-particle. 

 

With the Hellmann-Feynman theorem which we have discussed in 2-2.2, the refractive index 

can be readily evaluated once the eigenvector nk//
A  and the eigenvalue ( ) 2/

2

//
cw E

nk are obtained by 
the band calculation based on the plane-wave expansion method.  

 
 

         (4.7) 
 
 

 

Fig. 12   Comparison between the experimental group indices (solid circles and 

open squares) and the theoretical group indices with the k.p theorem (the dashed 

curve and the dash-dotted curve).  The group indices of the dashed and the 

dash-dotted curves are calculated by the dispersion curves of the third and the fourth 

bands of Fig. 9, respectively. 
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Fig. 13. It shows the calculated group indices are too large as compared with the experimental 
data. 

 
In order to consider the band folding effect, we product the 1/ ok  into eq.(4.7) , we can get the 
following form: 
 

                                                                   (4.8) 
 

The eq.(4.8) is equal to the production between group velocity and phase velocity. As the 

production is negative, the negative refractive phenomenon will be observed.  The result can be 

shown as the Fig. 14. These results have been considered with the band folding.  
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Fig. 14 Comparison between the experimental group indices (solid circles and open 

squares) and the theoretical group indices with the Hellmann-Feynman theorem (the 

dashed curve and the dash-dotted curve).  The group indices of the dashed and the 

dash-dotted curves are calculated by the dispersion curves of the third and the fourth 

bands of Fig. 9, respectively. 
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4-4 The negative refraction phenomenon simulated with the FDTD method 

 

In order to conform the relation of Eq. (4.5), we use the FDTD method to study the 

refraction phenomenon in material. As plane waves in a nonconductioin medium the phase 

velocity of the wave is 
n
c

k
w

v ===
µε
1

 . The light propagation form can be described with 

phase velocity directly. This is the conventional refraction phenomenon.  The Fig. 15 is shown 

the EM wave propagation through the glass prism. We can find the normal refraction angle 

various from different refractive index of glass. So, I can find the light cannot propagate through 

the glass prism. Because the glass prism and air are all isotropic medium, the propagation of EM 

wave can be defined as the normal direction of the phase wave front directly. The amplitude 

distributions can rightly display the refraction phenomenon also. When the index is 2 , the 

all-refractive angle is 450. This is to be what we show. Other conditions, including the refractive 

index are 1.2 & 1.3, are displayed.    

 

 

 

Fig. 15 The EM wave propagates through the glass prism. The refractive 
phenomenon are shown as the refractive index are 1.2, 1.3, and 1.414. When the 
index is 2 , the all-refractive angle is 450. 



- 39 - 

We know the phase velocity is shown as the velocity of the propagation of an equi-phase 

surface. This velocity has a definite meaning, for example, for plane waves and spherical waves 

for which the equi-phase surface can be defined without ambiguity. In the photonic crystal, 

however, the equi-phase surface cannot be defined rigorously, since its eigenfunction is a 

superposition of plane waves. This means that the phase velocity cannot be defined appropriately 

in the photonic crystal. As to former, the light propagates with the block wave form in the 

periodic structure; the refraction index cannot be described with the former EM wave theory all. 

The phase velocity and group velocity, the both of all, directly involves the refraction 

phenomenon.  

 

We observe the negative refraction phenomenon with the experiment result already as the EM 

wave propagate through the photonic crystal prism in negative index state. Now, we use the 

FDTD algorithm to simulate this phenomenon.  

 

In order to understand our former experimental result that the light propagation in photonic 

crystals is due to highly anisotropic dispersion surfaces derived by photonic band structure, we 

have numerically analyzed experiment of a negative index of refraction that the EM wave is 

refracted by the photonic crystal prism with the finite-difference time domain (FDTD) algorisms 

[20]. In this simulation, we focus on the structure as shown in the experimental setup. The 

structure with the photonic crystal prism as our experimental setup is modeled and performed 

FDTD numerical simulations with perfectly matched layer boundary regions. We show that EM 

waves, in a frequency range of microwave, undergo negative refraction in a two-dimensional (2D) 

prism-shaped PC, a photonic crystal prism (PCP).  From the refraction angles of EM waves 

propagating through a PCP, we deduced the indices of negative refraction according to the Snell’s 

law. We choice a plane wave as the incident source, because the wave propagate incident the PCP 

former plat was planar wave fronts in our real experimental situation. The results are shown in 

Fig. 16 and Fig. 17 that shows wave fronts with fixed frequency in phase space. It is clear that the 

incident E-polarized EM wave was refracted by the photonic crystal prism. As to the phase 

velocity, we use the FDTD method in phase space to find out the phase wave fronts through the 

photonic structure.  
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The Fig. 16 show that the plan wave incident the PCP and the discussion surrounding are in the 

phase domain. The phase wave fronts were refracted with the interface between the air and the 

photonic crystal. We can use the wave fronts to define the phase refractive index. The phase 

refraction phenomenon was deduced form the phase velocity which differs from anisotropic and 

isotropic medium. In our simulation, we can find the refraction differ form varies wavelengths. 

The negative refraction phenomenon in our simulation problem can correspond to the photonic 

band structure. It occurs as the fixed frequency in the negative state band. However, the fixed 

frequency in the three and fourth band regime exist two modes, phase wave fronts display the 

singularity point. With the Snell’s law we defined the refractive index directly. The Fig. 16 show 

the refractive angle is -180 at 16GHz. In the forward direction, we can still find there is the EM 

wave propagation also. However, the plane wave run through the photonic crystal prism was 

refracted to the negative angle. In fact, the phase distribution in our discussion domain can be 

defined as the phase refraction index explicitly. With the Snell’s law, we 

can get the phase refraction index. The direct direction was the phenomenon of the 

Fourier transform form real space to phase space of the FDTD, even if the propagation amplitude 

in direct direction is not significant.  

 
 

 

  

 
Fig. 16  This shows the refractive angle is -180 at 16GHz 

14GHz 

15.5GHz 

17.0GHz 

Fig. 17      
This shows the 
refractive angle is 
different form the 
different wavelengths 
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In the negative refraction medium, the phase velocity and the group velocity is anti-parallel 

to each other, one is not able to tell which way is the forward direction since the wave vector has 

been folded into the first Brilluoin zone through translation symmetry.  Therefore, strictly 

speaking, only the product of phase index and group index has the physical meaning, thus the 

phase index and the group index are inseparable.  The product is negative in this medium and 

one can not determine which one of them is negative. By consulting the band structure, the 

maximum of the fourth band is a result of two non-crossing bands coupling to each other, 

therefore, the one-band model may be not adequate and two-band model is needed to describe 

this problem.  It implies that the product of phase index of the Bloch wave and the group index 
n n
p gλ λ  is equivalent to the refractive index of the photonic crystal. It implies that the product of 

phase index of the Bloch wave and the group index n n
p gλ λ  is equivalent to the refractive index of 

the photonic crystal. 

 

If we define the phase velocity for the Bloch wave of wave vector k as vp = 
( )n

sk

ω k
e  and 

the group velocity as vg = ( )s nω∇ k  , the phase velocity and the group velocity produced to each 

other is the same to the dispersion relationship of the pk •  theorem. The form of n n
p gλ λ  is 

considered the folding effect of the periodic structure. This physical equation includes the wave 

vector folding to the first Brilluoin zone. That is must be considered at the photonic band 

structure. We can directly describe the light beam propagate thorough the negative refraction 

medium with this form.  

 

   The Fig. 19 shows the n n
p gλ λ  match to the experiment data. Although the two refracted mode 

propagation in the medium, the phase front was not clearly defined. We still can find the 

experiment data was corresponded to mixed mode well.  
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Fig. 18  The phase refraction indices are defined with the refraction angle of FDTD 
simulation results. the group refraction indices are derived from the photonic band 
structure. 
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Fig. 19  Comparison between the experimental refractive  indices and the theoretical 
effective refracive  indices.  The refractive  indices of dash-dotted curve  are defined 
with the product of the FDTD simulation results with the Snell’s law and the group 
indices. 
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  We have observed the negative refraction phenomenon with the FDTD algorism. The 

phase fronts can be refracted as the EM wave through the photonic crystal prism. We can define  

the phase refraction index with the Snell’s law. From the photonic crystal band gap, we can get 

the group velocity with various wavelengths.  Whereas, we show that only the product of phase 

index and group index has the physical meaning.  The calculated product of phase index and 

group index derived from the FDTD algorism fit reasonably well with the experimental data. And, 

according to the extended k • p theory, the group velocity of EM waves in PC can be defined as 

the ratio of momentum to relativistic effect mass of a quasi-particle.  The EM wave propagating 

in PC behaves like a massive quasi-particle. The phase refraction index is the same to the 

refraction factor with it. The simulation with the FDTD method told me this fact. 
 

 

4-5 The negative refraction phenomenon 
 

The fact that we can realize an arbitrary refractive index state leads to many possibilities for 

the control of light propagation. The most interesting point is that this realizes negative refraction, 

as illustrated in Fig. 20(a) This negative refraction leads to many anomalous light propagation 

phenomena. We show some examples: an imaging effect [Fig. 20(b)] and an open cavity 

formation [Fig. 20(c)]. In the latter case, there exist many closed optical paths running across the  

four interfaces which form a kind of an open cavity despite the fact that there is no reflecting wall 

surrounding the cavity. In the former case, light is emitted from a point source to a negatively 

refractive photonic crystal. Within the conventional paraxial-ray treatment, the refracted wave 

converges at another point in the photonic crystal. This means that objects in the left-hand space 

produce real images in the right-hand  space. This imaging is fundamentally different from 

conventional imaging by a lens. Figure 21 schematically illustrates two types of imaging. 

Imaging by a lens is described by Newton’s formula, in which the focal length is an important 

parameter. Magnification depends on the relative distance of an object from the lens and focus 

point. Therefore it only produces a 2D image on the focal plane and does not produce a 3D image. 

On the contrary, a negatively refractive photonic crystal produces a 3D image (if it is a 3D 

negatively refractive photonic crystal! by the mirror- inversion transformation 

( ) ( ), , , ,x y z x y zβ→ − where ( )0abs n / neffβ = , which is different from Newton’s formula. In 

addition, the lens imaging has a definite principal axis, but the present imaging has translational 
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symmetry in the boundary plane. In this sense, this imaging is rather close to imaging by a mirror. 

The apparent difference between a photonic crystal and a mirror is that the former produces a real 

image but the latter only produces a virtual image. This unique property is suggesting 

possibilities of 3D photographing by use of negatively refractive photonic crystals. 
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Fig. 20 Schematic diagrams of light propagation in negativelyrefractive photonic 
crystals: (a) negative refraction, (b) mirrorinverted imaging effect, and (c)
formation of an open cavity. 
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FIG. 21 Schematics of imaging by a negatively-refractive photonic crystal and 

imaging by a lens. 
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Chapter 5 Conclusion 

 

 

We have observed the electromagnetic waves undergo negative refraction in a 

two-dimensional photonic crystal prism in microwave frequency regime. The negative refractive 

phenomenon displays in the negative state of photonic crystal band structure which can be solved 

with k.p theorem. The refraction phenomenon is derived form the refraction index, such as phase 

refraction index and group refraction index. By measuring the refraction angles of EM waves 

propagating through a PCP, and applying the Snell’s law to the exit interface of PC and air, we 

deduced the negative refractive indices.  The group index, calculated by taking gradient of the 

dispersion relation curve, disagrees with the experiment. And, The phase velocity is defined as 

the velocity of the propagation of an equi-phase surface. This velocity has a definite meaning, for 

example, for plane waves and spherical waves for which the equi-phase surface can be defined 

without ambiguity, in the photonic crystal, however, the equi-phase surface cannot be defined 

rigorously, since its eigenfunction is a superposition of plane waves. This means that the phase 

velocity cannot be defined appropriately in photonic crystal. Whereas, we show that only the 

product of phase index and group index has the physical meaning.  The calculated product of 

phase index and group index derived from the extended k • p theory fit reasonably well with the 

experimental data.  Thus, it is possible to reconstruct the photonic band structure from 

measurement of refraction angles for light propagation through the PC.  And, according to the 

extended k • p theory, the group velocity of EM waves in PC can be defined as the ratio of 

momentum to relativistic effect mass of a quasi-particle.  The EM wave propagating in PC 

behaves like a massive quasi-particle. 

 

 We have also observed the negative refraction phenomenon with the FDTD algorism. We 

show the refraction phenomenon is different from the conventional medium, such as glass. The 

phase fronts can be refracted as the EM wave through the photonic crystal prism. We can define  

the phase refraction index out of the photonic crystal prism with the Snell’s law. From the 

photonic crystal band structure, we can get the group velocity with various wavelengths  also.  

We show the product of phase index and group index was good match to our experimental result.  

And, according to the extended k • p theory, the group velocity of EM waves in PC can be 
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defined as the ratio of momentum to relativistic effect mass of a quasi-particle. The negative 

refraction phenomenon can be seen as the particle was trapped on the interference between the 

photonic crystal medium and the air. The thinking, the EM wave propagating in PC behaves like 

a massive quasi-particle, are an important confirmation that the speed of light is not violated by 

negative refraction.  

 

  “The EM wave propagating in PC behaves like a massive quasi-particle ”. “The phase 

refraction index and the group refraction index are the kinds of the refraction factors with it”.  

We demonstrate this fact with FDTD method and k.p theorem. 
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