Figure Caption

Fig. 1.1 CP-HN-38 circular polarizer
Fig. 1.2 Ambidextrous polarizer
Fig. 1.3 Wire-grid Polarizer
Fig. 1.4 Wollaston Prism
Fig. 1.5 MacNeille polarizing beam splitter cube
Fig. 1.6 Polarized light separation of a sub-wavelength grating
Fig. 2.1 A dielectric grating
Fig. 2.2 Schematic of a laminar zero-order grating ($p \ll \lambda$) with the orientations of
the incident electric wavefield and definitions of rectangular grating
parameters
Fig. 2.3 Diagram of n_{\parallel} and n_{\perp} versus fill factor f
Fig. 2.4 Coordinate definition for deriving effective refraction indices
Fig. 2.5 Structure of double-layered sub-wavelength grating
Fig. 3.1 (a) Schematics, and (b) photograph of an electron beam writer
Fig. 3.2 Under-cut of PMMA
Fig. 3.3 Flow of fabricating single-layered sub-wavelength grating
Fig. 3.4 Flow of fabricating sub-wavelength grating with double-layer structure by
using tri-level resist system
Fig. 3.5 Schematic diagram of conventional RIE system
Fig. 3.6 Schematic diagram of high-density-plasma ICP-RIE system
Fig. 3.7 Flow of fabricating sub-wavelength grating with double layer by using

	ICP-RIE process	39
Fig. 3.8	Schematic diagram of scanning electron microscope	40
Fig. 3.9	Concept of AFM and the optical lever	41
Fig. 3.1	0 Schematic diagram of the experimental setup for the characterization of t	he
	fabricated sub-wavelength grating	43

Fig. 4.1 Simulated results of p ray transmission efficiency versus wavelength of
incident light with various periods of the sub-wavelength grating
Fig. 4.2 Simulated results of s ray reflection efficiency versus wavelength of incident
light with various periods of the sub-wavelength grating
Fig. 4.3 Simulated results of p ray transmission efficiency versus wavelength of
incident light with various thicknesses of metallic layer
Fig. 4.4 Simulated results of s ray reflection efficiency versus wavelength of incident
light with various thicknesses of metallic layer
Fig. 4.5 Simulated results of p ray transmission efficiency versus wavelength of
incident light with various duty cycles of grating
Fig. 4.6 Simulated results of s ray reflection efficiency versus wavelength of incident
light with various duty cycles of grating 54
Fig. 4.7 Simulated results of p ray transmission efficiency versus wavelength of
incident light with various materials of metallic layer
Fig. 4.8 Simulated results of s ray reflection efficiency versus wavelength of incident
light with various materials of metallic layer
Fig. 4.9 Resonance wavelength of the sub-wavelength grating with metallic layer only
and period of 0.2 <i>µm</i>
Fig. 4.10 Simulated results of p ray transmission efficiency versus wavelength of
incident light with various thickness of dielectric layer

Fig. 4.11	1 Simulated results of s ray reflection efficiency versus wavelength of inci-	dent
	light with various thickness of dielectric layer	. 60

Fig.	5.1	Film	thickness	versus	spin	speed	for	495k	MW	PMMA	in	anisole	with
	C	oncent	tration of (a) 2%, -	4%, a	nd 6%,	and	l (b) 89	% and	11%			67

Fig.	5.3	Film	thickness	versus	spin	speed	for	950k	MW	PMMA	in	anisole	with
	c	oncent	tration of (a) 2%, 4	4%, a	nd 7%,	and	l (b) 99	% and	11%			67

Fig.	5.5	Designed	pattern	for	dose	test	 59

Fig. 5.10 Definition of polarization angle
Fig. 5.11 Comparison of measured and calculated results of reflection efficiency
versus polarization angle
Fig. 5.12 Comparison of measured and calculated results of reflection efficiency
versus wavelength of incident light
Fig. 5.13 Etched results of tri-level resist system
Fig. 5.14 Etched result of aluminum layer by using ICP-RIE with $Cl_2/CH_4/Ar$ 83
Fig. 5.15 Etched results of aluminum layer by using ICP-RIE with Cl_2/BCl_3 84

Fig. 6.1 Schematic layout of a conventional backlight module	86
Fig. 6.2 Schematic layout of an integrated lightguide	87
Fig. 6.3 Schematic layout of an liquid crystal projector	88
Fig. 6.4 Schematic diagram of a pickup head	89