
Chapter 2 

 

Principle 

 
2.1 Introduction  

 

   A dielectric grating with its period smaller than wavelength of incident light can 

be treated as an effectively birefringent material. Region O is a homogeneous 

dielectric with index of refraction ; region S is a homogeneous dielectric with index 

of refraction n ; the grating region consists of a periodic distribution of two dielectric 

media with refractive indices  and , respectively, as shown in Fig. 2.1. In the 

case of surface-relief grating, 

On

n

S

1n

n

2n

O=1 , Snn =2 . For simplicity, both dielectric media 

are considered as lossless media. The grating profile can be arbitrary since any 

arbitrary grating profile can be approximated by separating the grating region into 

slabs of rectangular one. Therefore, the theory of sub-wavelength grating is developed 

for rectangular profile only in the following sections.  

 

   Effective Medium Theory (EMT) is the most familiar theory used to calculate the 

optical properties of sub-wavelength grating. EMT treats the grating region as a 

unaxial film and can derive the values of effective refractive indices: and . 

Then the reflectance and transmittance of optical wave with its electric vector parallel 

and perpendicular to the grating bar are determined by thin film theory with and 

. It is discussed in detailed in the following.  

//n ⊥n

//n

⊥n
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Fig. 2.1 A dielectric grating.  

 

2.2 EMT by Average Weighting Method 

 

   The birefringence properties of crystals may be explained in terms of the 

anisotropic electrical properties of molecules of which the crystals are composed. 

Birefringence may, however, arise from anisotropy on a scale much larger then 

molecular, namely when there is an ordered arrangement of similar particles of 

optically isotropic material whose size is large compared with the dimensions of 

molecules, but small compared with the wavelength of light.  

 

   We shall explain the principle of the method by considering the grating shown in 

Fig. 2.2. The grating region is composed by dielectric 1 and 2 with widths t1 and t2, 

respectively. A rectangular profile can be defined by three parameters: grating period, 

p; grating depth, d; and fill factor, f, which is defined as
p
t1  [15][16].  
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Fig. 2.2 Schematic of a laminar zero-order grating（ λ<<p ）with the orientations of 

the incident electric wavefield and definitions of rectangular grating parameters. The 

fill factor f is defined as
p
t1 . 

 

   Suppose that the grating period p is much smaller than the wavelength of incident 

light λ, the field in the grating region may be considered as uniform in dielectric 1 

and 2, and the relation of mean field E
r

 and D
r

 can be carried out by averaging 

weighting method with weighting factor f−1  and f, respectively. The equations of 

 and  under normal incidence are derived in sections 2.2.1 and 2.2.2 [16].  //n ⊥n

 

2.2.1 Effective Refractive Index  //n

 

   Suppose that a plane monochromatic wave is incident on the grating and its 

electric vector is parallel to the grating bar. From the boundary conditions of 

Maxwell’s equations, the tangential component of the electric vector is continuous 

across a discontinuity surface [17], so that the electric vector will have the same value 
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in each dielectric layer, and the electric displacements D
r

 in the two dielectric 

regions are  

ED
rr

11 ε=                            2.2.1 

ED
rr

22 ε=                            2.2.2 

Here 1ε  and 2ε  are the dielectric constants of the grating bar and the environment 

respectively. Therefore, the average weighting of electric displacement D
r

 is  

21

2211

tt
EtEtD

+
+

=
rr

r εε
                       2.2.3 

Hence the effective dielectric constant //ε  is, therefore,  

E
D
r

r

=//ε  

          
21

2211

tt
tt

+
+

=
εε  

             ( ) 21 1 εε ff −+=                  2.2.4 

With the refractive index ε=n , we have effective refractive index of the electric 

vector parallel to the grating bar  

( ) 2
2

2
1// 1 nffnn −+=                      2.2.5 

 

2.2.2 Effective Refractive Index  ⊥n

 

  Suppose next that the incident field has its electric vector perpendicular to the 

grating bar. According to boundary conditions of Maxwell’s equations, the normal 

component of electric displacement D
r

 must be continuous across the boundary. 

Hence, vectors D
r

 are the same in both dielectric regions. The corresponding electric 

field E
r

 in each dielectric region is  

 15



1
1 ε
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The average weighting of electric field E
r

 is  
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2
2

1
1

tt

DtDt
E

+

+
=

εε

rr

r
                        2.2.8 

Hence the effective dielectric constant ⊥ε  is now given by  

E
D
r

r

=⊥ε  

           
( )

1221

2121

εε
εε
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=  

              ( ) 12
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1 εε
εε
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Again, we have the effective refractive index of the electric vector perpendicular to 

the grating bar  

( ) 2
1

2
2

2
2

2
1

1 nffn
nn

n
−+

=⊥                     2.2.10 

 

   We, therefore, find that the sub-wavelength grating which has different indices, 

 and , for different polarization angles of the incident light. Since the amount 

of birefringence, described by 

//n ⊥n

//εε −=∆ ⊥n  depends on the grating profile, this 

phenomenon is so-called form birefringence.  

 

   The approximations of the refractive indices described by Eqs 2.2.5 and 2.2.10 are 

the base of the effective medium approximation to zero-order gratings. These 

equations describe the fact that upon transmission through a sub-wavelength grating, 

the zeroth order experiences an effective refractive index resulted from the averaging 

of the dielectric constants of the grating media.  
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2.2.3 Properties of  and  //n ⊥n

 

   The validity of Eqs. 2.2.5 and 2.2.10 can be verified by setting fill factor f equals 

to 1 or 0. For these two special cases, the grating region is made of either dielectric 1 

or dielectric 2. Consequently,  and  are of the same value and are reduced to 

 or n . The relation of  and  versus fill factor f is plotted in Fig. 2.3, and 

several interesting properties of sub-wavelength gratings are observed. First, the 

values of  and  are changed with fill factor f and are between  and . In 

other words, sub-wavelength grating can be utilized as artificial materials of variable 

index of refraction. This property is useful in antireflection (AR) coating, whose 

condition can be fulfilled by such artificial materials. Second,  is always larger 

than . It can be easily verified that  

//n ⊥n

1n 2

⊥

//n ⊥n
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implying that sub-wavelength grating behaves as a negative uniaxial crystal.  
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Fig. 2.3 Diagram of  and  versus fill factor f.  is equal to 3.48, and  is 

equal to 1.  

//n ⊥n 1n 2n

 

2.3 EMT by Bloch Solution Method  

 

   The equations of n  and deduced by averaging weighting method is quite 

simple; and these equations are valid for grating period much smaller than the 

wavelength of incident light. Therefore, it is necessary to develop new equations that 

are suitable for gratings with larger period, which is much easier to be fabricated.  

// ⊥n

 

   F. Bloch has proved the important theorem that the wave function for an infinite 

periodic potential must be of a special form [18]:  

( ) ( ) rKierur KK

rrrr ⋅⋅=ϕ                        2.3.1 
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where ( ) ( )pruru KK +=
rr

( )ruK
r

. Eqs 2.3.1 expresses that the eigenfunctions of the wave 

equation for a periodic potential are the product of a plane wave  times a 

function  with the periodicity of the grating.  

rKie
rr
⋅

 

   Before deriving the effective refractive indices, the coordinates have to be defined 

to describe the components of field vectors E and H that will be used in derivation. 

Assume the light is normally incident on the grating, we then define the direction of 

incident light as x-axis, and the directions parallel and perpendicular to the grating bar 

are defined as y-axis and z-axis, respectively, as shown in Fig. 2.4. The effective 

refractive indices of wave field parallel and perpendicular to the grating bar,  and 

, will be derived by the Bloch method in the following two sections [19].  

//n

⊥n

 

 

Fig. 2.4 Coordinate definition for deriving effective refraction indices. 

 

2.3.1 Effective Refractive Index  //n

 

   For optical wave of its polarization state parallel to the grating bar, the field 
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vectors E
r

 and H
r

 are  

( )0,,0 eE =
r

                          2.3.2 

and  

( )zx hhH ,0,=
r

                        2.3.3 

From Maxwell’s equation,  

HiE
rr

ωµ−=×∇                         2.3.4 

EiH
rr

ωε=×∇                          2.3.5 

Three differential equations are given as  

xhi
z
e ωµ=
∂
∂                           2.3.6 

zhi
x
e ωµ−=
∂
∂                          2.3.7 

ei
x
h

z
h zx ωε=

∂
∂

−
∂
∂

                      2.3.8 

As mentioned above, the wave functions in grating must be in Bloch form; therefore, 

e, hx, hz are assumed as:  

( ) inkxezUe −=                          2.3.9 

( ) inkx
x ezVh −=                         2.3.10 

( ) inkx
z ezWh −=                        2.3.11 

where , , and  are periodic functions, i.e.,  ( )zU ( )zV ( )zW

( ) ( )zUpzU =+                        2.3.12 

( ) ( )zVpzV =+                        2.3.13 

( ) ( )zWpzW =+                       2.3.14 

Substituting Eqs. 2.3.9~2.3.11 into Eqs. 2.3.6~2.3.8, respectively, we obtain  

Vi
dz
dU ωµ=                         2.3.15 
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WU
c
n µ=                          2.3.16 

UiiknW
dz
dV ωε=+                      2.3.17 

Then, we solve the simultaneous equations 2.3.15~2.3.17 for U, V, and W. There are 

two regions that are taken into account.  

 

For ,  01 <<− zt

( ) ( )zBzAU 11 sincos αα +=                   2.3.18 

( ) ([ zBzA
i

V 11
1

1 sincos αα
ωµ

α
+−= )]               2.3.19 

( ) ([ zBzA
c

nW 11
1

sincos αα
µ

+= )]                2.3.20 

22
11 nnk −=α                        2.3.21 

11
2
1 µε=n                           2.3.22 

For ,  20 tz <<

( ) ( )zDzCU 22 sincos αα +=                   2.3.23 

( ) ([ zDzC
i

V 22
2

2 sincos αα
ωµ

α
+−= )]                2.3.24 

( ) ([ zDzC
c

nW 22
2

sincos αα
µ

+= )]                 2.3.25 

22
22 nnk −=α                        2.3.26 

22
2
2 µε=n                           2.3.27 

After applying the four conditions of continuity and periodicity of and  with 

respect to z, i.e.,  

e xh

( ) ( )00 −=+ UU        ( ) ( )12 tUtU −=              2.3.28 

( ) ( )00 −=+ VV        ( ) ( )12 tVtV −=              2.3.29 

we obtain four homogeneous equations for , A B , ,  C D

CA =                            2.3.30 
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( ) ( ) ( ) ( )22221111 sincossincos tDtCtBtA αααα +=−          2.3.31 

xDB =                           2.3.32 

( ) ( ) ( ) ( )[ ]22221111 sincossincos tDtCxtBtA αααα +−=−       2.3.33 

12

21

αµ
αµ

=x                          2.3.34 

By setting the determinant of the system of Eqs. 2.3.30~2.3.31 to be zero, the 

dispersion equation,  as function of , is obtained  n k

( ) ( ) ( ) ( ) ( )[ ] 0coscos12sinsin1 22112211
2 =−++ ttxttx αααα        2.3.35 

Then, solve Eq. 2.3.35 for x ,  
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Eq. 2.3.37 is of no interest because the mean field in the grating region never satisfies 

the condition of zero-order grating（Eq. 1.4.2）. 

 

   Finally, replacing 1α  and 2α  with Eq. 2.3.21 and Eq. 2.3.26,  and t  with 

 and (
1t 2

pf ⋅ ) pf ⋅−1 , respectively, and setting µ  equal to 1, which is suitable for 

most optical materials, then, the effective refractive index of electric field parallel to 

the grating bar  is  //n
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2.3.2 Effective Refractive Index  ⊥n

 

      For optical wave of its polarization state perpendicular to the grating bar, the 

field vectors E
r

 and H
r

 are  

( )zx eeE ,0,=
r

                        2.3.39 

and  

( )0,,0 hH =
r

                        2.3.40 

The steps of deriving effective refractive index  are almost the same as that of 

deriving effective refractive index , except the conditions of continuity are 

imposed on  and e . The three differential equations are  

⊥n
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∂
∂                       2.3.43 

It is interesting to find out that the equations of electric field perpendicular to grating 

bar can be derived by replacing , , h e ε , µ  in Eqs. 2.3.36~2.3.38 with , , e h−

µ , ε . Hence, Eq. 2.3.36 is transformed into  
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and the effective refractive index of electric field perpendicular to the grating bar  

is  

⊥n
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   In the case of grating period p  much smaller than λ , the ( )xtan  in Eqs. 2.3.38 

and 2.3.45 can be approximated by x . In consequence, Eqs. 2.3.38 and 2.3.45 will 

reduce to Eqs. 2.3.5 and 2.3.10, respectively. Therefore, the equations derived by 

weighting method can be regarded as the first order approximation of that by Bloch 

Solution Method.  

 

2.4 EMT of Double-Layered Structure  

 

   In the previous two sections, the effective refraction indices,  and , of  

sub-wavelength grating with one material only were fully derived. The efficiency of 

separating polarized light of a sub-wavelength grating can be further increased by 

adopting multi-layered structure. In this thesis, the attention will be focused on the 

sub-wavelength grating with double-layered structure.  

//n ⊥n

 

   Assume that the grating structure is composed of a dielectric layer and a metal 

layer on glass substrate, and the width of the grating structure is ,  period of the 

sub-wavelength grating is 

W

P , as shown in Fig. 2.5. Generally speaking, W  is 

related to P  by the following inequality 

PWP 9.01.0 ≤≤                        2.4.1 

In order to obtain a higher efficient light separation, period of the sub-wavelength 

grating and wavelength of incident light λ  should be satisfied  

θ
λ

θ
λ

sin
2

sin
5.0

+
≤≤

+ n
P

n
                  2.4.2 

where  is the refractive index of substrate, n θ  is the incident angle of the incident 

light.  
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Fig. 2.5 Structure of double-layered sub-wavelength grating 

 

   Both effective refractive indices,  and , can be derived from the boundary 

conditions of Maxwell’s equations. For S rays, defined as the electric field parallel to 

the grating bar, the relationship between effective refractive index  and refractive 

indices of dielectric layer and metal layer,  and , is  

//n ⊥n

//n

Dn Mn

222
// DM n

P
bn

P
an +=                        2.4.3 

For P rays, defined as the electric field perpendicular to the grating bar, the 

relationship between effective refractive index  and refractive indices of dielectric 

layer and metal layer,  and , is  

⊥n

Dn Mn
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1

DM nP
b

nP
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n ×
+

×
=

⊥

                     2.4.4 

Due to refractive index of metal layer  is much larger than that of dielectric layer, 

Eqs. 2.4.3 and 2.4.4 can be approximated as  

Mn

2/1

// 





×≅

P
ann M                         2.4.5 

and 
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2/1−

⊥ 





×≅

P
bnn D                        2.4.6 

   Some interesting phenomena are noticed from Eqs. 2.4.5 and 2.4.6. When light is 

incident on the sub-wavelength grating, it is as if S rays and P rays are incident on the 

metal layer and dielectric layer, respectively. Therefore, lots of S rays are reflected 

with very high reflection efficiency and most of P rays are transmitted.  

 

2.5 Summary  

 

   As discussed above, the EMT derived can fully describe the phenomenon of form 

birefringence. It can be applied in most conditions with the period of grating much 

smaller than wavelength of incident light, i.e., the period is a factor of 5 smaller than 

wavelength of incident light or more. The efficiency of light separation of 

sub-wavelength grating with multi-layer will be higher than that of sub-wavelength 

grating with single layer. The sub-wavelength grating with double layer will, therefore, 

be focused on in this thesis.  

 

   However, the period designed in this thesis is close to wavelength of incident light. 

The results calculated by EMT derived above are then not so accurate. Thus, another 

theory, said Rigorous Coupled Wave Analysis (RCWA), is more suitable for our 

analysis. RCWA is an exact solution of Maxwell’s equations, the results calculated 

will more accurate than EMT in principle. Since package software based on RCWA is 

already available, we use the software, GAOLVER, to perform the simulation which 

will be introduced in detail in chapter 4.  
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