Chapter 2
Fundamental Opticsfor DVD Pickups

2.1 Introduction to basic optics

The theory of the geometrical aberrationand diffraction limits are introduced for
estimating the focused laser beam spot of a DVD pickup. The concept and formula for
evaluating the image quality of an optical system are also reviewed. Then the DVD

specifications are presented. Finally, the optimization procedure is described.
2.2 Geometrical optics

To obtain a sufficiently small spot on the disk, the geometrical aberrations need
to be well-controlled. The performance of focused spot can be evaluated with
transverse ray aberration, or wavefront aberration. The wavefront aberration is a
measurement of the differences in optical path length between the exact wavefront
and the reference wavefront, as shown in Fig. 2- 1. From the shape of the wavefront,

the nature of the aberrations can be visudized more easly.
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Fig. 2- 1 Ray and wavefront aberration for agenera optical system
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The wavefront and ray aberratiors are related as follows [1]. Referring to Fig. 2-
1, the rays emitted from the ideal point source, such as the laser diode, enter the pupil,
pass through the optical system, leave the exit pupil, and then converge orto the
image plane. If the systemis aberration free, the wavefront in image space is spherical
in shape and the wave associated with this wavefront converges to paraxia image
point. In most system, the point where the ray passes through the pupil plane is
represented by the fractional coordinate (x, y). The ray displacements (??, ?7?)

measured from the chief ray (0, ?) isgiven by [1]

(Dx,Dn) =- — E o s
nheg X Ty g
Where istheradius of the reference sphere,

R
n is the refractive index of the image space, and
he isthe exit pupil height.

Apart from a proportional factor F_Q/n he , the transverse aberration is the
derivative of the wavefront aberration with respect to the coordinates of the ray at the
exit pupil. For most cases, the wavefront shape of a given object point (2, ?) is a
function of the pupil position (x, y), and therefore the wavefront aberration can be
defined as W(x,h;x, y).

Because the optical system in pickup head can be treated as a cascade of
rotationally symmetrical subsystems, we will consider the optical system consisting of
aseriesof refracting surfaces. An object point is displaced along y-axis (See Fig. 2- 2)
by adistance ?, and the pupil position is expressed in polar coordinate (X, y) = (? sinf ,
? cosf). Then the wavefront aberration can be expressed as a polynomial of
parameters ?, ?, and f in terms of wavefront aberration coefficients W,

W(h;r,f)=& W, h“r'cos"f (Eq. 2-1)

k,I,m

Where k is the power of ?,
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I isthe power of ?, and

m isthe power of cosf .

lmage
plane

Fig. 2- 2 Coordinate of the pupil and the image plane

The coefficients W, have numerical values dependent on the construction
parameters, including the curvatures of the surfaces, the refractive indices of the
materias, and the thickness between the elements.

As aconseguence of the rotational symmetry, the net power (k + 1) of the length
factors (h and r ) can only be 0, 2, 4, 6, etc which determines the order of the
aberration These terms are referred to as the second-, fourth, sixth-order wavefront
aberrations and so on Because the ray aberration is given by the derivative of the
wavefront function, these terms correspond to the first-, third-, fifth-order of ray
aberrations and so on, and are, traditionally, named as paraxial, primary, secondary,
tertiary, aberrations etc. The following paragraph summarizes the wavefront
polynomid of the first three orders.

(2) Congtant term (k +1 =0):
W(h;r,f)=W,,, (Eq. 2-2)
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(2) Paraxid (first-order) terms (k +1 = 2):
W(h;r,f)=W,,h? +W, hr cosf +W,,r 2, (Eq. 2-3)
(3) Primary (third-order) terms (k +1 = 4):

W(h;r,f)=W,,.r * +W,hr ®cosf +W,h?r 2cos®f +W,,h?r 2 +W, h°r cosf
(Eq. 2-4)

In practice, the aberration coefficients can be computed through the finite ray
tracing [2, 3, 4]. First, we determine the wavefront shape through finite ray tracing at
several points on the exit pupil, and then subtract a sphere from that shape, giving the
wavefront aberration. Interpolation of a two-dimensional polynomia provides an
analytical expression. However, the calculation of the exact aberrations generaly isa
tedious procedure. In the next paragraph, an elegant method for calculating

primary-aberrationis presented.

This classic approach was developed by Seidel (1856), Hopkins (1950) and
Welford (1986) [1, 5, 6], stating that the primary wavefront aberrations (the first five
terms in the aberration polynomial) can be calculated through the Seidel

UMSS, , S, Sy 1S|v’and S/

W :ESI re +£S”hr ® cosf +£3,,h2r 2 cos?f +1(51u +S,, h?r? +£S,h3r cosf
8 2 2 4 2
(Eq. 2-5)
where the formulae of the Seidd sums are given by
__ R A2y R0
S=-aAh WDGET
n ela (Eq. 2-6)
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S, =-3 AAhDEY
" eng, (Eq. 2-7)
S, =-8 A h,D0E%2, (Eq. 2-8)

n eng,

Sy =-Q HGDED
n ena, (Eq. 2-9)

o A o A, &b

=30 npBO D2 pBEQ Eq. 2-10
S =8 noEe +ihHe of e (Eq. 2-10)

In the formulae, the summationis carried over al the surfaces in the optical

system; c, isthe curvature of the n th surface indicated; n, isthe refractive index
of the nth medium; D(u/n) =(u/n) .- (u/n) , Dn), =¥n) . - [/n) ; the
paraxial Lagrange invariants are A, =n, (h,c, +u,) and A =n, (h,c, +T,) for
the margina rays and chief rays, respectively. All the quantities in the formulas are
only related to the margind and chief rays.

The relation between the Seidel sums and geometrical aberration is tabulated in

Tab. 2- 1. The common geometrical aberrations are spherical aberration, coma,

adigmatism, fidd curvature, and distortion.

Tab. 2- 1 Geometricd aberrations and Seidd sums

[ Name | Waveiront Averaiions |

Spheical S/8 |
Coma S, /4
Astigmatism 35, /4
Petzval Syv/4
Distortion S /2
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In our design, the monochromatic laser diode is used. The spherical aberration is

the primary concern among the monochromatic aberrations tabulated in Tab. 2- 1.

2.2.1 Spherical aberration

Spherical aberration is defined as the variation of focus with aperture. A convex
lens is taken as an example (Fig. 2 3). As the ray height at the lens increases, the
position of the ray intersection with the optical axis move further away from the
paraxial focus. The distance from the paraxia focus to the ray intersection on the

opticd axis is cdled longitudina spherica aberration.
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Fig. 2- 3A smple converging lenswith undercorrected sphericad aberration
The aspheric surface is a powerful design approach for correcting primary
aberrations especialy spherical aberration. There are various forms of aspheric

surface. The most common form of an aspheric surfaceis

2
z= () +(ad)r® +(ag)r® + (af )r® + (ag)r* (Eg. 2-11)
1+ Jl- (cv)(cc+1)r?
Where  cv isthe sphericd radius of the surface,
cc isthe conic constant of a surface,

ad, ae, a,ag  aethe coefficient for higher order terms
The common fabrication approaches for aspheric components are

injection-moalding, diamond-turning, and glasses molding [6].



2.3 Diffraction limit

The laser beam is focused by objective lens onto the optical disk to perform the
function of read/writelerase for optical recording. From the viewpoint of geometrical
optics, the light can be focused into an infinitesimal point if no aberration presented.
However, the fundamental limitation for minimum spot size is the wave behavior of
light. When the light passes through a kens with a finite aperture sizes, it will be
diffracted and form a diffraction pattern which is called Airy disk with roughly 84%
encircled energy in the center ring. Therefore, the minimum spot size (full-width at
1/€?) can not be reduced without any limitation.

The diffraction limited spot size is determined by laser wavelength and NA of

objective lens depicted in Fig. 2- 4.
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Fig. 2- 4 Thediffraction limitsof forming a focused Gaussan beam diagram

The total power P and the variance of Gaussian beam s? are used for

representing the intensity distribution dong radia direction. [7]

P =
1(r) = 25 Eq. 2-12
(r) P (Eq. 2-12)

Thevariance s ? is expressed as:
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Where, ? isthe wavelength of laser diode.
The definition of spot size sis full width at half maximum (FWHM) of Gaussian

digribution.
s=24/2| s @2.3 & (Eq. 2-14)

- 1
For example, when apodization factor K equals 2.5, then

|
s @.2 5— (Eq. 2-15)
N A

Subdtituting the Eq. 3-16 into Eq. 3-15, the spot Sze

I I
s @n.59 =0.59—-2 Eq. 2-16
@0 A o NA (Eq. 2-16)
And, theNA is,
NA:nsinq~% ; n=1(for air) (Eq. 2-17)

n is the refractive index of the media in image space and D is the diameter of
lens. The f represents the focal length of objective, and ?y is the wavelength in the air.
According to Eq. 2-16, the spot size is proportional to the wavelength and inversely
proportional to NA. Data density on the disk can be increased by using shorter
wavelength laser diodes or increasing the numerica aperture of objective.

After focusing, the Gaussian beam will propagate with Gaussian distribution
with the beam size varying along the optical axis, and the total power keeping
constant. The depth of focus is given by the distance of change within which the spot
size will not alter too much. The depth of focus has significant influence on the
mechanical tolerance in the longitudinal direction The longer the depth of focus, the

larger error tolerance of the postion of the servo.
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From Marecha’s criteria [8]:

Strehl ration: % >0.8 (Eq. 2-18)

0

lo(2) is the beam intengity at a distance z from the beam waist. 1p(0) is the beam

intengity at the beam wais.
S 2
lo(2) 1 S—g (Eg. 2-19)
And s isthe root mean square radius at the waist.
1
s 1 1222 (2
s _! ; Eq. 2-20
SO ’:\l+ 16p 25 gl\; ( q )
Subgtituting into Eq. 2-18,
s 2
z @tGSl—O (Eq. 2-21)
Replacethe s withs in Eq. 2-20
Dz @0.8—— (Eq. 2-22)

N X
According to Eq. 2-22, the depth of focus is in inversely proportional to the
sguare of numerical aperture. Although increasing numerical aperture can reduce the
spot size, the difficulty in focusing servo rises due to the significant reduction of
depth of focus.
A briefly summary isasfollows.

1 The diffraction limited full width a haf maxima spot Sze gives
I
s@0.59—
@ A

For DVD, waveength = 650 nm and spot size = 1.08 um, NA is 0.6.

2. The depth of focus, A z, gives

Dz @+0.8
NA?

For DVD, wavelength = 650 nm and NA = 0.6, the depth of focusis 1.44

pumwhich iswithin the vibration of disk when rotating.
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From the derivation above, NA is 0.6 for DVD application. For aplantic system
with well corrected geometrical aberrations like the objective lens in DVD pickup,
NA is approximately equal to D/f, where D and f are the diameter and the focal length
of the objective lens, respectively. From the approximation, the ratio of lens diameter

and focd length can be determined.

2.4 DVD specification

The spot size is the key specification related to NA of objective lens. Fig. 2 5
can be used to define the required spot size for CD, DVD, and high density digital
versatile disk (HDDVD). The optical demands of DVD pickup are tabulated as Tab.
2- 2. Usuadly the NA of objective lens is measured by using collimated plane wave.
However, in our system, the spot is practically a focused Gaussian beam emerging
from the edge emitting laser. The NA of objective lens derived from spot size in the

previous sectionis dightly different from the NA of DVD specification listed below.

DVD(4.7GB) HD-DVD 20GB)

_I Ur,_gm
)4 pum o
@I .3019 m
ﬂ?-lum 36 m

Wavelength : 780 nm  Wavelength : 650 nm Wavelength : 405 nm
NA : 0.45 NA : 0.60 NA : 0.85

Fig. 2- 5 The opticd specification for CD, DVD, and HDDVD
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Tab. 2- 2 The dataformats and optical demands of DVD pickup [9]

~ b | obweros) | roowases

Disk
Laye_r n front of 0.6 (substrate) || 0.1 (cover layer)
recording layer (mm)
Track Pitch (um) 0.74 0.35~-0.4
Shortest Pit Length (um) 0.4 ~2
Optical Stylus
Wavelength (nm) 650 405
Planer Wave NA 0.6 0.85
Spot Size (um) 1.08 =0.5

To design an objective lens yield a nearly diffraction limited performance, the
spot size must be smaller than the Airy disk and the optical path difference must meet

Rayleigh criteria [6].
2.5 Optimization procedures

With ray-tracing program, the optical system performance can be examined to
meet the given design specification. In optimization, the performance can be
characterized by a single function, caled the merit function F, which can be

expressed in the form of aweighted sum of the squares of the defect functions:

F=8 wii(<x>) (Eq. 2-23)

i=1

Where the vector <x> denotes the optimization variables, and
X >=<X L, Xy, Xggennens X, >
Where fi (i=1, 2..., m) are called operands. The fi(<x>) denotes the deviations

from the target values, which in general are nonlinear functions of construction



parameters x, and the desired attribute, such as the paraxial constants, aberration
coefficients, and exact ray displacements. The surface parameters xj (j=1, 2, 3... n)
are the variables to be adjusted, including the surface curvature, arrangement of
elements, refractive indices of materials, etc. The target of optimization is to search
for the suitable xj to make the merit function as small as possible. Minimization of the
merit function is based on a piece-wise linear model of operand dependencies on the
variables. If a small change of operands has been made, the new distributions,
described by avector f (x+?Xx), can be expanded in the vidnity of theinitid vauex as
f.(x+Dx) = f,(x) + ADx (Eq. 2-27)
where< Dx >=< Dx,Dx, ,Dx,....., DX, > denotes the step vector and A isthe

derivative of the matrix of each of the operands with respect to each of the variables,

o o, Jff |
dr, df.

A= I d,
df, df,
3, o, |

) (Eq. 2-24)
The merit function is at its minimum value when all the operands are zero. The

merit function iswritten as

Y =fTf (Eq. 2-25)
Where
f=<f,f, fy.. f,> (Eq. 2-26)

According to the optimization theory, if the step vector Dx is the solution of the
|east- squares equation,
(ATADx=- ATf(X) (Eq. 2-27)

the merit function is optimdl.
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In addition, to assure the convergence of the equation above, a dumping factor p
was proposed by Levenberg, Wynne, and Girard [2, 3, 4]. A damping term [ is added
to the merit function so that the following function isto be minimized.

Y = f7f + nDx"Dx (Eq. 2-28)

Therefore, we derive the damped |east- square equation

(ATADx+mDx=- A" f(X), (Eq. 2-29)

where | is an identity matrix. In carrying out the optimization procedure, one
takes the x+? x as anew initial point, and aberration of their derivation is re-computed.
The program will iterate the process until aminima merit function is found.

To design the aspheric profile of objective lens, the curvature, conic constant,
and higher order coefficients are taken as optimization variables <x>, shown in Fig.
2- 6. Then, the merit function, f(<x>), is sum of edge thickness and spot size of the
objective lens. To optimize the lens profile, the target of merit functions is spot
diagram smaller than the Airy disk and positive thickness. Next, the variables are

optimized and the aspheric profiles are obtained.

: : ] Edge
Variables Merit Function Thickness
(th)

-| '|:0I1It.' Constant )—' th

—+ 4th Clrdnr Aspheric Coefficient (ad) —

> 6th Drdur Aspheric Cosfficient (ag) —

-| gth Drder Aspheric Coefficient (af) }— Spot Size < Airy Disk
&th=>0

Optimized |_ I
Lens Profile

|

([ END

Fig. 2- 6 Optimization flow chart for agpheric profiles
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2.6 Summary

To design an objective lens for focusing the spot size smaller then 1.08 umin the
disk is the main objective of this work. First, the theories related to the image
evaluation were reviewed, which includes the aberration function. The aberration
theory presents the image qualities dependent on constructional parameters. To
eliminate the geometrical aberrations, e main aberration should be considered in
designing the objective lens is spherical aberration. Next, the minimum spot size
restricted by the wave characteristic of light is the diffraction limit. Based on the
diffraction theory, the diffraction limits and depth of focus were discussed. Then, the
DVD specification is illustrated. Finally, we described the merit function and

numerica methods for searching the optimized optica systems.

28



