Figure Caption

Fig. 1- 1 Separation of the recording layer from environment effects
Fig. 1- 2 Optical system for rewritable (PC) storage system
Fig. 1- 3 Optical system for magneto-optical (MO) storage system6
Fig. 1- 4 Polarization of (a) before and after reflection from the disk (b) after
reflection from LPBS (c) after passing through $\lambda/2$ plate
Fig. 1- 5 (a) Schematic diagram and (b) photograph of miniature actuator7
Fig. 1- 6 Schematic of the integrated optic disk pickup (IODPU). The curved and
chirped grating incorporates the input/output coupling and the focusing by the
wavefront conversion based on holographic principle
Fig. 1- 7 Schematic of the planar optical disk pickup based on glass-substrate based:
(a) side view, (b) plane figure11
Fig. 1-8 (a) Schematic and (b) scanning electron micrograph of free-space integrated
optical head12
Fig. 1- 9 Schematic representation of the proposed MEMS-type DVD Pickup13
Fig. 1- 9 Schematic representation of the proposed MEMS-type DVD Pickup13
Fig. 1- 9 Schematic representation of the proposed MEMS-type DVD Pickup13 Fig. 2- 1 Ray and wavefront aberration for a general optical system
Fig. 1- 9 Schematic representation of the proposed MEMS-type DVD Pickup13 Fig. 2- 1 Ray and wavefront aberration for a general optical system
Fig. 1- 9 Schematic representation of the proposed MEMS-type DVD Pickup13 Fig. 2- 1 Ray and wavefront aberration for a general optical system
Fig. 1- 9 Schematic representation of the proposed MEMS-type DVD Pickup13 Fig. 2- 1 Ray and wavefront aberration for a general optical system
Fig. 1- 9 Schematic representation of the proposed MEMS-type DVD Pickup13 Fig. 2- 1 Ray and wavefront aberration for a general optical system

Fig. 3- 1 The reflow fabrication process (a) lithographic fabrication of photoresist cylinder (b) reflow : photoresist melting (c) refractive etching into the substrate for refractive

lenses	.30
Fig. 3- 2 Photoresist (a) before and (b) after reflow process	1
Fig. 3-3 (a) the lens diameter and (b) the lens thickness as functions of focal length	
	33
Fig. 3- 4 Projection printing lithographic illumination	
Fig. 3- 5 Design of mask	36
Fig. 3- 6 The lens profile (a) before and (b) after corrected gray-tone mask. The	
maximum deviation from the desired shape can be achieved to less than 5%	

Fig. 4- 1 The variation of focal length with respect to refractive index change40
Fig. 4- 2 NA as functions of lens diameter and patterned photoresist thickness t42
Fig. 4- 3 Maximum NA as a function of refractive index
Fig. 4- 4 Schematic diagram of focal length
Fig. 4- 5 (a) The spot diagram and (b) the system overview of reflow lens with $D =$
500 μ m and t = 30 μ m. The black circle denotes the Airy disk

Fig. 5- 1 Phase profile slicing steps (a) refractive phase profile (b) slicing into layer	
with $2m\pi$ phase shift and (c) equivalent DOE4	18
Fig. 5- 2 Aspheric lens performance of (a) spot diagram, (b) optical path difference,	
and (c) point spread function	.50
Fig. 5- 3 Arrangement of the annular rings in Fresnel lens: (a) texture of the Fresnel	
zone plate and (b) optical path differences between light rays from different zones51	

Fig. 5- 4 Schematic diagram of Fresnel lens shape53
Fig. 5- 5 Simulation results (a) aberration and (b) illumination plot for sliced
harmonic lens (a) and (b)
Fig. 5- 6 Schematic diagram of aberration of focal shift
Fig. 5- 7 Lens parameters for paraxial calculation
Fig. 5- 8 The approaches of slicing (a), (b), and (c)60
Fig. 5-9 Layout and performances of (a) spot diagram, (b) optical path difference, and
(c) point spread function of the first segment
Fig. 5- 10 Redesigned harmonic lens simulation results of the side view of harmonic
lens63
Fig. 5- 11 The density distribution of the redesigned harmonic lens simulated by using
geometrical ray-tracing
Fig. 5- 12 The diffraction performance of the harmonic lens
Fig. 5- 13 Schematic diagram of harmonic lens65
Fig. 5- 14 Root mean square (RMS) radius of focused spot as a function of (a)
thickness, (b) radius, and (c) conic constant of the first segment in harmonic lens66
Fig. 5- 15 Root mean square (RMS) radius of focused spot as a function of (a)
thickness, (b) radius, and (c) conic constant of the second segment in harmonic lens
Fig. 5- 16 Root mean square (RMS) radius of focused spot as a function of (a)
thickness, (b) radius, and (c) conic constant of the third segment in harmonic lens68
Fig. 5- 17 Spot size of the fourth zone
Fig. 5- 18 Schematic diagram of aberrations due to the oblique surface
Fig. 5- 19 The relationship between the normalized flux in the recording layer and the
tilt angles of the inner edge of each zone