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Recently, Chen, Hwang and Liu [S.K. Chen, F.K. Hwang, Y.C. Liu, Some combinatorial
properties of mixed chordal rings, J. Interconnection Networks 1 (2003) 3–16] introduced
the mixed chordal ring network as a topology for interconnection networks. In particular,
they showed that the amount of hardware and the network structure of the mixed chordal
ring network are very comparable to the (directed) double-loop network, yet the mixed
chordal ring network can achieve a better diameter than the double-loop network. More
precisely, the mixed chordal ring network can achieve diameter about

√
2N as compared

to
√

3N for the (directed) double-loop network, where N is the number of nodes in the
network. One of the most important questions in interconnection networks is, for a given
number of nodes, how to find an optimal network (a network with the smallest diameter)
and give the construction of such a network. Chen et al. [S.K. Chen, F.K. Hwang, Y.C.
Liu, Some combinatorial properties of mixed chordal rings, J. Interconnection Networks
1 (2003) 3–16] gave upper and lower bounds for such an optimization problem on the
mixed chordal ring network. In this paper, we improve the upper and lower bounds
as 2�√N/2� + 1 and �√2N − 3/2�, respectively. In addition, we correct some deficient
contexts in [S.K. Chen, F.K. Hwang, Y.C. Liu, Some combinatorial properties of mixed chordal
rings, J. Interconnection Networks 1 (2003) 3–16].

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

One of the most important issues in the design of par-
allel and distributed computing systems is the choice of
an interconnection network suitable for a range of dif-
ferent applications. The diameter of a network, which is
the maximum distance over all node-pairs, represents the
maximum transmission delay between two stations. The
ring network (i.e., the single-loop network) is one of the
most frequently used topologies for interconnection net-
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works. It has many attractive properties such as simplic-
ity, extendibility, low degree, and ease of implementation.
Although it has many attractive properties, it has poor
reliability (any failure in an interface or communication
link destroys the function of the network) and it has high
transmission delay (its diameter equals to N − 1 if each
link is directed, where N is the number of nodes). As a re-
sult, a lot of hybrid topologies utilizing the ring network
as a basis for synthesizing richer interconnection schemes
have been proposed to improve the reliability and reduce
the transmission delay [3,4,6,14,17].

One example of the commonly used extensions for the
ring network is the multi-loop network, which was first
proposed by Wong and Coppersmith in [17] for orga-
nizing multi-module memory services. The most studied
multi-loop network is possibly the double-loop network.
The double-loop network DL(N;a,b) is a digraph with N
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Fig. 1. Examples of the double-loop network and the mixed chordal ring network. (a) DL(12;1,3). (b) MCR(12;1,3). (c) Embed MCR(12;1,3) into
DL( 12

2 ; 1−3
2 , 1+3

2 ); i.e., DL(6;5,2).
nodes 0,1, . . . , N − 1 and 2N links (also called steps) (see
Fig. 1(a)):

i → (i + a) mod N, i = 0,1, . . . , N − 1,

i → (i + b) mod N, i = 0,1, . . . , N − 1,

where 1 � a, b < N , a �= b, and gcd(N,a,b) = 1. Doorn [9]
had proven that:

Theorem 1.1. (See [9].) DL(N;a,b) is strongly 2-connected if
and only if gcd(N,a,b) = 1.

Namely, any node or link failure will not disconnect
the network. For a fixed N , let DDL(N) denote the optimal
(i.e., smallest) diameter of all double-loop networks with
N nodes. Many researchers tried to determine the exact
value of DDL(N), but this is a difficult problem even when
one of the two steps is 1 [4]; see also [1,7,8,10,12]. There-
fore, researchers devoted their attention on finding bounds
on DDL(N). A well-known lower bound on DDL(N) is as
follows [17]:

DDL(N) � �√3N� − 2. (1)

For upper bounds on DDL(N), Hwang and Xu [13] managed
to prove, using a heuristic method, that

DDL(N) �
√

3N + 2(3N)1/4 + 5 for N � 6348. (2)

In [16], Rödseth further improved the above upper bound
to be

DDL(N) �
√

3N + (3N)1/4 + 5

2
for N � 1200. (3)

Another example of the commonly used extensions for
the ring network is the chordal ring network; see [3] and
[15]. Recently, Chen et al. [6] proposed the mixed chordal
ring network as a topology of interconnection networks.
The mixed chordal ring network MCR(N; s, w), where N is
even and both s and w are positive odd, is a digraph with
N nodes 0,1, . . . , N −1 and 2N links of the following types
(see Fig. 1(b)):

ring-links:

i → (i + s) mod N, i = 0,1,2, . . . , N − 1,
chordal-links:

i → (i + w) mod N, i = 1,3,5, . . . , N − 1,

chordal-links:

i → (i − w) mod N, i = 0,2,4, . . . , N − 2.

Let d(N; s, w) denote the diameter of MCR(N; s, w). For
a fixed positive even integer N , let DMCR(N) denote the
optimal (i.e., smallest) diameter of all mixed chordal ring
networks with N nodes. It is obvious that each node in the
mixed chordal ring network has two in-links and two out-
links. Therefore, the mixed chordal ring network is very
comparable in hardware to the well-known double-loop
network; see [6]. Surprisingly, Theorems 1.2 and 1.3 show
that the mixed chordal ring network can achieve a bet-
ter diameter than the double-loop network (as compared
to (1), (2) and (3)).

Theorem 1.2. (See [6].) DMCR(N) �
√

2N + o(N1/2).

Theorem 1.3. (See [6].) There exists a choice of s and w such
that the diameter of MCR(N; s, w) is no larger than

√
2N + 3.

In other words, DMCR(N) �
√

2N + 3.

Chen et al. [6] also proved:

Theorem 1.4. (See [6].) MCR(N; s, w) is strongly 2-connected
if and only if gcd(N, s, w) = 1.

The proofs of Theorems 1.3 and 1.4 are based on the
idea of embedding a mixed chordal ring network into a
double-loop network (see Section 2 for details). Unfortu-
nately, we find that this embedding is not always success-
ful and the proofs of Theorems 1.3 and 1.4 are incomplete
(see Section 4 for details). Thus whether

√
2N + 3 is an

upper bound on DMCR(N) and whether gcd(N, s, w) = 1
guarantees the strongly 2-connectivity of MCR(N; s, w) re-
main open. In this paper, we fill these voids by improving
the upper and lower bounds on DMCR(N) and correcting
the proof of Theorems 1.3 and 1.4. We summarize in Ta-
ble 1.

This paper is organized as follows. Section 2 gives some
preliminaries. Section 3 contains our main results. Sec-
tion 4 gives a correct proof to Theorem 1.4. Section 5



J.K. Lan et al. / Information Processing Letters 109 (2009) 757–762 759
Table 1

The bounds In paper [6] In this paper

Upper bound on DMCR(N)
√

2N + 3 2�√N/2� + 1

Lower bound on DMCR(N)
√

2N + o(N
1
2 ) �√2N − 3/2�

Fig. 2. The minimum distance diagram of double-loop networks. (a)
The four parameters. (b) The L-shape of DL(9;1,4). (c) The L-shape of
DL(9;1,3).

is for the concluding remarks; some open problems on
the double-loop networks and the mixed chordal ring net-
works are also given here.

2. Preliminaries, assumptions, and embedding

Since the mixed chordal ring network is very related to
the double-loop network, we first introduce some termi-
nologies of the double-loop network. Given a DL(N;a,b), a
minimum distance diagram (MDD) is a diagram with node
0 in cell (0,0) and node v in cell (i, j) if and only if
ia + jb ≡ v (mod N) and i + j is the minimum among all
(i′, j′) satisfying the congruence. In other words, a shortest
path from 0 to v is through taking i a-links and j b-links
(in any order). Note that, in cell (i, j), i (respectively, j) is
the column (respectively, row) index. An MDD includes ev-
ery node exactly once (in case of two shortest paths, the
convention is to choose the cell with the smaller row in-
dex, i.e., the smaller j).

It had been proven that the MDD of DL(N;a,b) is al-
ways an L-shape determined by four parameters �, h, p, n
[17]; see Fig. 2(a). These four parameters are the lengths of
four of the six segments on the boundary of the L-shape.
For example, DL(9;1,4) has � = 4, h = 3, p = 3, and n = 1;
see Fig. 2(b). An L-shape can degenerate into a rectangle
as Fig. 2(c). Fiol et al. [11] observed that an L-shape always
tessellates the plane regardless of the L-shape is degener-
ate or not. Many studies of the double-loop network are
based on the L-shape [2,5,11]. One important function of
the L-shape is that we can easily compute the diameter of
its double-loop network by

max{� + h − p − 2, � + h − n − 2}.
Throughout this paper, we will assume that MCR(N; s, w)

satisfies the following three conditions:

s �= w, s + w �= N, and gcd(N, s, w) = 1.

The reason is as follows. If s = w or s + w = N , then
MCR(N; s, w) will contain multiple links between two
nodes, which means a waste of the hardware. On the
other hand, MCR(N; s, w) is strongly connected if and
only if gcd(N, s, w) = 1. Since we will only talk about
strongly connected mixed chordal ring networks, we as-
sume gcd(N, s, w) = 1.
Fig. 3. The pseudo-MDD of a mixed chordal ring network. (a) The MDD of
DL(6;5,2). (b) The pseudo-MDD of MCR(12;1,3).

Note that the double-loop network and the mixed
chordal ring network are different network topologies: the
former is vertex-transitive and the latter may or may not
be vertex-transitive. For example, in MCR(12;3,5), node 0
can reach any node within 4 moves, but it takes 5 moves
for node 1 to reach node 8.

Chen, Hwang and Liu showed that the mixed chordal
ring network MCR(N; s, w) can be embedded into the
double-loop network DL( N

2 ; s−w
2 , s+w

2 ) by combining nodes
2k + 1 and 2k + 1 + w as supernode k∗ for all k = 0,1,

. . . , N/2 − 1 [6]. Note that, unless otherwise specified, s−w
2

means ( s−w
2 ) mod N

2 , s+w
2 means ( s+w

2 ) mod N
2 , all nodes

of a mixed chordal ring network are taken modulo N , and
all nodes of a double-loop network with N/2 nodes are
taken modulo N/2.

Another way to embed the mixed chordal ring network
MCR(N; s, w) into the double-loop network DL( N

2 ; s−w
2 ,

s+w
2 ) is to combine nodes 2k and 2k − w as supernode k∗

for all k = 0,1, . . . , N/2 − 1. See Fig. 1(c) for an example.
Such an embedding results in the same double-loop net-
work DL( N

2 ; s−w
2 , s+w

2 ) as the one used in [6] but is more
natural since node 0 of MCR(N; s, w) is in supernode 0∗
of DL( N

2 ; s−w
2 , s+w

2 ). Thus, throughout this paper, we use
DL( N

2 ; s−w
2 , s+w

2 ) to denote the embedding of combining
nodes 2k and 2k − w as supernode k∗ .

Since we can embed a mixed chordal ring network into
a double-loop network, we can embed a mixed chordal
ring network into the MDD of the corresponding double-
loop network. More precisely, given MCR(N; s, w), we re-
place each node k in the MDD of DL( N

2 ; s−w
2 , s+w

2 ) with
two nodes 2k and 2k − w in such a way that if k is in
cell (i, j), then 2k and 2k − w are in cells (2i, j) and
(2i + 1, j), respectively. We call the resultant diagram the
pseudo-MDD of MCR(N; s, w). See Fig. 3 for an exam-
ple.

The following lemma had been proven in [6] and it
follows from the fact that each move in the MDD of
DL( N

2 ; s−w
2 , s+w

2 ) corresponds to either one or two moves
in MCR(N; s, w) (depending on which node in the super-
node we start from).

Lemma 2.1. (See [6].) Suppose DL( N
2 ; s−w

2 , s+w
2 ) has L-shape(�,

h, p,n), then d(N; s, w) � 2 max{�,h} − 1.

3. Improved bounds on DMCR(N)

This section is devoted to improve upper and lower
bounds on DMCR(N). Given a MCR(N; s, w), let nk denote
the number of additional nodes that node 0 can reach in
k moves. Clearly, n0 = 0, n1 = 2 and n2 = 3. Chen et al. [6]
had proven that
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nk � nk−1 + 1 for 2 � k � d(N; s, w). (4)

In other words, for k � 2, the number of additional nodes
that node 0 can reach at the kth move increases by at
most 1. We now have the following result.

Theorem 3.1. DMCR(N) � �√2N − 3/2� and this bound is
tight.

Proof. By (4),

N �
d(N;s,w)∑

k=0

(k + 1) = (d(N; s, w) + 2)(d(N; s, w) + 1)

2
.

Therefore, (d(N; s, w))2 + 3d(N; s, w)+ (2 − 2N) � 0. Since
d(N; s, w) is positive, d(N; s, w) � (

√
8N + 1 − 3)/2 >√

2N − 3/2. Since d(N; s, w) is an integer, d(N; s, w) �
�√2N − 3/2�. This bound is tight since d(8;1,3) = 3 �
DMCR(8) � �√2 · 8 − 3/2� = 3. �

We now obtain an upper bound on DMCR(N). The main
idea used in obtaining the upper bound is, for each N , to
choose s and w suitably so that the corresponding double-
loop network DL( N

2 ; s−w
2 , s+w

2 ) has an L-shape(�,h, p,n)

with � and h being as small as possible and to apply
Lemma 2.1.

Define N̂ to be a function of N as follows:

N̂ =
⌈√

N

2

⌉
. (5)

According to the parity of N̂ , define M as follows:

M =
{

N̂ if N̂ is even,

N̂ + 1 if otherwise.
(6)

Lemma 3.2. Suppose N �= 2(4t2 + 2t − 1) for any positive inte-
ger t and let M be defined as in (6). Then the L-shape(�,h, p,n)

of DL( N
2 ;1, M) satisfies � � M and h � M.

Proof. Consider N = ⋃∞
t=0[4t2 + 1,4(t + 1)2]. Then N

2 ∈
[4t2 + 1,4(t + 1)2] for some non-negative integer t . Thus
M = 2t + 2. Consider the L-shape(�,h, p,n) of DL( N

2 ;1, M).
Since

M · 1 ≡ 1 · M

(
mod

N

2

)
,

cell (M,0) and cell (0,1) contain the same node. Since
M > 1, cell (M,0) is outside the L-shape. Consequently,
� � M . Now let N0(t) = [4t2 + 1,4t2 + 2t − 2], N1(t) =
[4t2 + 2t − 1,4t2 + 4t], N2(t) = [4t2 + 4t + 1,4t2 + 6t + 2],
and N3(t) = [4t2 + 6t + 3,4t2 + 8t + 4]. Note that N0(0),
N1(0), and N0(1) are empty. Then N = ⋃∞

t=0(N0(t) ∪
N1(t)∪ N2(t)∪ N3(t)). Suppose N

2 ∈ Nk(t), where 0 � k � 3.
Define N∗

k (t) to be the maximum integer in Nk(t). Clearly,
N∗

k (t) = 4t2 + 2t − 2 + (2t + 2)k. Suppose N
2 = N∗

k (t) − j
for some non-negative integer j. Then 0 � j � 2t − 3 if
k = 0 and 0 � j � 2t + 1 if 1 � k � 3. Again, consider the
L-shape(�,h, p,n) of DL( N ;1, M). Since
2
j · 1 = N∗
k (t) − N

2

= (
4t2 + 2t − 2 + (2t + 2)k

) − N

2

≡ (2t − 1 + k)(2t + 2)

(
mod

N

2

)

= (2t − 1 + k)M

(
mod

N

2

)
,

cell ( j,0) and cell (0,2t − 1 + k) contain the same node.
Note that j � 2t − 1 + k except when k = 1 and j =
2t + 1, that is, except when N

2 = 4t2 + 2t − 1. Hence
if N �= 2(4t2 + 2t − 1) for any positive integer t , then
cell (0,2t − 1 + k) is outside the L-shape. Consequently,
h � 2t − 1 + k � 2t + 2 = M . �
Lemma 3.3. Suppose N = 2(4t2 + 2t − 1) for some pos-
itive integer t and let M be defined as in (6). Then the
L-shape(�,h, p,n) of DL( N

2 ;2, M − 1) satisfies � � M − 1 and
h � M − 1.

Proof. Since N = 2(4t2 + 2t − 1) for some positive inte-
ger t , we have M = 2t + 2. Consider the L-shape(�,h, p,n)

of DL( N
2 ;2, M − 1). Since

(2t + 1) · 2 ≡ 2 · (2t + 1)

(
mod

N

2

)
,

cell (2t + 1,0) and cell (0,2) contain the same node. Since
t is a positive integer, we have 2t +1 > 2. Thus cell (2t +1,

0) is outside the L-shape. Consequently, � � 2t +1 � M −1.
Similarly, since

(t + 1) · 2 ≡ (2t + 1)(2t + 1)

(
mod

N

2

)
,

cell (t + 1,0) and cell (0,2t + 1) contain the same node.
Clearly, 2t + 1 > t + 1 for t > 0; thus cell (0,2t + 1) is
outside the L-shape. Thus h � 2t + 1 � M − 1. �
Lemma 3.4. Let M be defined as in (6). Then:

1. If N �= 2(4t2 + 2t − 1) for any positive integer t, then
d(N; M + 1, M − 1) � 2M − 1.

2. If N = 2(4t2 + 2t − 1) for some positive integer t, then
d(N; M + 1, M − 3) � 2M − 3.

Proof. Consider the first statement. It is not difficult to
verify that both M + 1 and M − 1 are positive odd integers
and gcd(N, M + 1, M − 1) = 1. Thus MCR(N; M + 1, M − 1)

is a valid mixed chordal ring network. Since we can embed
MCR(N; M + 1, M − 1) into DL( N

2 ;1, M), this statement fol-
lows directly from Lemmas 2.1 and 3.2. The second state-
ment can be proven similarly except that Lemma 3.2 is
replaced with Lemma 3.3. �
Theorem 3.5. Let N̂ be defined as in (5).

1. If N̂ is even, then DMCR(N) � 2�√N/2� − 1.
2. If N̂ is odd and N = 2(4t2 + 2t − 1) for some positive inte-

ger t, then DMCR(N) � 2�√N/2� − 1.
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Fig. 4. The improved ratio of our upper bound as compared to the previ-
ous upper bound for N = 6,8,10, . . . ,10004 (total 5000 N ’s).

3. If N̂ is odd and N �= 2(4t2 + 2t − 1) for any positive integer
t, then DMCR(N) � 2�√N/2� + 1.

Moreover, these bounds are tight.

Proof. Note that if N = 2(4t2 +2t −1) for some positive in-
teger t , then N̂ is odd. Thus if N̂ is even, then N �= 2(4t2 +
2t − 1) for any positive integer t; consequently, M = N̂ . If
N̂ is odd and N = 2(4t2 + 2t − 1) for some positive inte-
ger t , then M = N̂ + 1. If N̂ is odd and N �= 2(4t2 + 2t − 1)

for any positive integer t , then M = N̂ + 1. Statements 1,
2 and 3 in this theorem now follow from Lemma 3.4. By
the aid of a computer program, we obtain DMCR(20) = 7,
DMCR(38) = 9 and DMCR(12) = 5. Thus the bound in state-
ment 1 is tight since DMCR(20) = 7 and 2�√20/2� − 1 = 7.
The bound in statement 2 is tight since DMCR(38) = 9 and
2�√38/2 � − 1 = 9. Similarly, the bound in statement 3 is
tight since DMCR(12) = 5 and 2�√12/2� − 1 = 5. �
Remark 1. The previous upper bound on DMCR(N) is√

2N + 3 [6]. Since
√

2N + 3 is served as an upper bound,
we replace it with √2N + 3�. The largest upper bound
in Theorem 3.5 is 2�√N/2 � + 1 and it is always no
larger than √2N + 3�. To see how good our upper bound
2�√N/2� + 1 is, we use a computer to obtain results for
N = 6,8,10, . . . ,10004. Among these 5000 N ’s, for 3775
(about 75.50%) out of them, our upper bound 2�√N/2�+1
improves the previous upper bound √2N + 3�; see Fig. 4.

Remark 2. The upper bound 2�√N/2� − 1 in Theorem 3.5
is no larger than the upper bound �√2N� + 1 in Theo-
rem 3.5 and is very close to the lower bound �√2N − 3/2�
in Theorem 3.1. In the following, we show that there ex-
ist infinite number of N ’s such that the upper bound
2�√N/2� − 1 matches the lower bound �√2N − 3/2�; in
other words, we determine the exact value of DMCR(N) for
these N ’s.

Theorem 3.6. Suppose N = 2(4t2 − t + k) for some positive
integers t and k, where 1 � k � t. Then

DMCR(N) = 2�√N/2� − 1.

Moreover, d(N; �√N/2� + 1, �√N/2� − 1) = DMCR(N).

Proof. Suppose N = 2(4t2 − t + k) for some positive inte-
ger t and k, where 1 � k � t . Then 2(4t2 − 4t + 1) < N � 2 ·
4t2; therefore, M = N̂ = �√N/2� = 2t . By Lemma 3.4 and
Theorem 3.5, DMCR(N) � d(N; �√N/2� + 1, �√N/2� − 1) �
2�√N/2� − 1. Since 2(4t2 − t + 1

4 ) < N � 2(4t2 + t + 1
4 ),

we have DMCR(N) � �√2N − 3/2� = 4t − 1 = 2�√N/2�− 1.

We now have this theorem. �
The N ’s that satisfy Theorem 3.6 are: 8, 30, 32, 68, 70,

72, 122, . . . , and so on. For N = 6,8,10, . . . ,10004 (total
5000 N ’s), about 12.60% out of them satisfy Theorem 3.6
and their optimal diameter can be determined by Theo-
rem 3.6.

4. Strongly connectivity of MCR(N; s, w)

We first indicate the problem in the proof of Theo-
rem 1.3 in [6]. To obtain DMCR(38), Chen et al. [6] will use
MCR(38;7,5) and embed MCR(38;7,5) into DL(19;1,6).
The L-shape of DL(19;1,6) has � = 5 and h = 7, which has
h > N ′ = 6 and violates

� � N ′ and h = N ′ (7)

needed in the proof of DMCR(38) �
√

2N + 3. In fact, we
can construct infinite many N ’s that violates (7); see [6]
for more details.

In Section 2, we have shown how to embed the
mixed chordal ring network MCR(N; s, w) into the double-
loop network DL( N

2 ; s−w
2 , s+w

2 ). However, this embedding
sometimes fails. Take MCR(10;1,5) as an example; its cor-
responding double-loop network is DL( 10

2 ; 1−5
2 , 1+5

2 ), i.e.,
DL(5;3,3), which is clearly not a valid double-loop net-
work, yet MCR(10;1,5) is a valid mixed chordal ring net-
work. In general, MCR(2(2k + 1);1,2k + 1) is embedded
into DL(2k + 1;k + 1,k + 1) but DL(2k + 1;k + 1,k + 1)

is not a valid double-loop network. The idea used in [6] to
prove Theorem 1.4 is to show that MCR(N; s, w) is strongly
2-connected if and only if the corresponding double-loop
network DL( N

2 ; s−w
2 , s+w

2 ) is strongly 2-connected. We
now correct the proof.

Lemma 4.1. For MCR(N; s, w),

1. if w �= N
2 , then DL( N

2 ; s−w
2 , s+w

2 ) is a double-loop net-
work;

2. if w = N
2 , then DL( N

2 ; s−w
2 , s+w

2 ) is not a double-loop net-

work and MCR(N; s, N
2 ) is itself the double-loop network

DL(N; s, N
2 ).

Proof. DL( N
2 ; s−w

2 , s+w
2 ) is not a valid double-loop net-

work whenever s−w
2 ≡ 0 (mod N

2 ) or s+w
2 ≡ 0 (mod N

2 )

or s−w
2 ≡ s+w

2 (mod N
2 ) or gcd( N

2 , s−w
2 , s+w

2 ) �= 1. Since
we assume s �= w and s + w �= N , it is impossible that
s−w

2 ≡ 0 (mod N
2 ) or s+w

2 ≡ 0 (mod N
2 ). Also, s−w

2 ≡
s+w

2 (mod N
2 ) if and only if w = N

2 . In addition, we have
assumed gcd(N, s, w) = 1; therefore gcd( N

2 , s−w
2 , s+w

2 ) = 1.
Thus we have the first if-statement. When w = N

2 , N
2 ≡

− N
2 (mod N) occurs and the chordal-links of MCR(N; s, w)

become:

i →
(

i + N
)

mod N, i = 0,1, . . . , N − 1.

2



762 J.K. Lan et al. / Information Processing Letters 109 (2009) 757–762
Thus MCR(N; s, N
2 ) is itself the double-loop network

DL(N; s, N
2 ) and we have the second if-statement. �

Lemma 4.1 shows that DL( N
2 ; s−w

2 , s+w
2 ) is a valid em-

bedding if and only if w �= N
2 . It was proven in [6] that

Lemma 4.2. MCR(N; s, w) is strongly connected if and only if
gcd(N, s, w) = 1.

Now we give correct proof of Theorem 1.4.

Proof of Theorem 1.4. Necessity. This follows directly from
Lemma 4.2.

Sufficiency. There are two cases.
Case 1: w �= N

2 . Then by Lemma 4.1, DL( N
2 ; s−w

2 , s+w
2 )

is a double-loop network. Since w �= N
2 , s−w

2 �= s+w
2 . Since

gcd(N, s, w) = 1, gcd( N
2 , s−w

2 , s+w
2 ) = 1. Thus by Theo-

rem 1.1, DL( N
2 ; s−w

2 , s+w
2 ) is strongly 2-connected. Since

the two nodes in each super-node can reach each other
through the chordal-links between them, MCR(N; s, w) is
strongly 2-connected.

Case 2: w = N
2 . By Lemma 4.1, MCR(N; s, w) is itself

the double-loop network DL(N; s, w). Thus by Theorem 1.1
and by the assumption that gcd(N, s, w) = 1, MCR(N; s, w)

is strongly 2-connected. �
5. Concluding remarks

In [6], Chen et al. proposed a new network topol-
ogy called the mixed chordal ring network and discussed
its combinatorial properties. They obtained the surprising
result that the mixed chordal ring network is compara-
ble in hardware to the well-known double-loop network
and yet can achieve a better diameter than the double-
loop network. In this paper, we have improved the upper
and lower bounds on DMCR(N) (i.e., the optimal diame-
ter of mixed chordal ring networks) as 2�√N/2� + 1 and
�√2N − 3/2�, respectively. We have also corrected some
deficient contexts in [6].

For the double-loop network, determining the exact
value of DDL(N) is a hard problem and even determining
DDL(N) = minb{dDL(N;1,b)}, where dDL(N;1,b) is the di-
ameter of DL(N;1,b), is a hard problem, too [4]. By (1), (2)
and (3), the gap between the upper and the lower bounds
on DDL(N) increases by a factor of (3N)1/4 and it seems
that there is no closed form for DDL(N). For the mixed
chordal ring network, we have successfully narrowed the
gap between the upper and the lower bounds on DMCR(N)

as 2 �√N/2� + 1 and �√2N − 3/2 �. It has a great proba-
bility to determine DMCR(N) and therefore solve this opti-
mization problem in the near future.
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