

Erratum: "Analysis of GaAs/GaSb/GaAs structures under optical excitation considering surface states as an electron reservoir" [J. Appl. Phys. 105, 103515 (2009)]

Hong-Wen Hsieh and Shun-Tung Yen

Citation: Journal of Applied Physics 105, 129906 (2009); doi: 10.1063/1.3159041

View online: http://dx.doi.org/10.1063/1.3159041

View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/105/12?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

GaAsSb bandgap, surface fermi level, and surface state density studied by photoreflectance modulation spectroscopy

Appl. Phys. Lett. 100, 222104 (2012); 10.1063/1.4724097

Erratum: "Role of surface trap states on two-dimensional electron gas density in InAIN/AIN/GaN heterostructures" [Appl. Phys. Lett. 100, 152116 (2012)]
Appl. Phys. Lett. 100, 219901 (2012); 10.1063/1.4720077

Analysis of Ga As Ga Sb Ga As structures under optical excitation considering surface states as an electron reservoir

J. Appl. Phys. 105, 103515 (2009); 10.1063/1.3129616

Measurement of the GaSb surface band bending potential from the magnetotransport characteristics of GaSb–InAs–AlSb quantum wells

Appl. Phys. Lett. 89, 202113 (2006); 10.1063/1.2388147

Carrier lifetime reduction in 1.5 m AlGaAsSb saturable absorbers with air and AlAsSb barriers Appl. Phys. Lett. **89**, 071114 (2006); 10.1063/1.2240742

Re-register for Table of Content Alerts

Create a profile.

Sign up today!

Erratum: "Analysis of GaAs/GaSb/GaAs structures under optical excitation considering surface states as an electron reservoir" [J. Appl. Phys. 105, 103515 (2009)]

Hong-Wen Hsieh and Shun-Tung Yen^{a)}

Department of Electronics Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan, People's Republic of China

(Received 27 May 2009; accepted 4 June 2009; published online 26 June 2009)

[DOI: 10.1063/1.3159041]

In the paper, Fig. 5 should be corrected as follows.

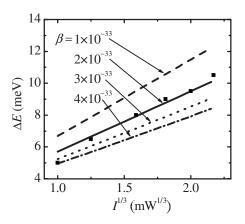


FIG. 5. The calculated energy difference ΔE as a function of the cube root of excitation power, $I^{1/3}$, with β as a parameter (in mW·cm⁶). Also shown are the experimental data (denoted by the filled squares) which are obtained by shifting the data of Ref. 3 by a common energy for the structure with a 2 ML GaSb layer. They give a slope $d\Delta E/dI^{1/3} \approx 4.1 \text{ meV/mW}^{1/3}$, corresponding to $\beta \approx 2 \times 10^{-33} \text{ mW·cm}^6$.

^{a)}Electronic mail: styen@cc.nctu.edu.tw.