第四章 實驗結果與討論

4.1 銲接條件對可銲區之影響

在本實驗中用三種電極來比較銲接結果,可銲區之定義其可銲之 定義由金相圖來判定,圖 4-1 中(a)為未接合(b)可銲(c)電極黏著,在 圖 4-2 到圖 4-4 中均可發現,可銲區之變化隨著操作壓力(operating) pressure)與充電電壓(charging voltage)息息相關。由於使用相同的試 片, 電極材料的合金元素便對銲接結果產生重大的影響, 這些因素分 別為導電率、硬度與軟化溫度,其性質之比較如表 4-1 所示。在電阻 銲中導電率是一個影響最大的性質,因為銲接電流產生的熱直接正比 於導電率,一個高導電率的狀態比一個低導電率的狀態更需要較多的 電流去生成所需的熱量。換言之,當電流通過金屬時,會因為金屬本 4411111 身的電阻特性而產生熱,由文獻回顧中之2.1 式可得知,電流與電阻 愈大時,相對的功率就越大;因此,低導電率的材料可以獲得高電阻 值,可快速且輕易達成氣密式接合。此外,電阻銲接中之接觸面積對 功率的影響頗大,除了預接合部位之接觸面積可以採用浮凸點來增加 銲接功率;而電極頭的硬度大小亦會對功率產生變化,因為較硬的電 極頭有較小的接觸面積,面積愈小電阻值也越高。綜合上述之討論, 採用鎢銅電極會有比較高的銲接功率;而且,鎢銅電極本身的軟化溫 度可高達 1000 °C ,對於 TO-Package 大量生產的耐用度會提高。

75

	導電率(IACS)	硬度(HRB)	軟化溫度(℃)
鉻銅	75%	75	475
鎬銅	45%	94	1000
黄銅	25%	60	450

表 4-1 電極頭機械及物理性質

圖 4-2 中可以發現在充電電壓為 275V 時,由於操作壓力 0.35MPa 過大會將凸點擠壓變形使其尖端頓化,造成電流密度降低而沒有辦法 有效的使熱量集中在凸點的尖端,而無法成為一有效的銲件;在充電 電壓 300V 時除了 0.1Mpa 的操作壓力過小以外,其餘操作壓力都可 以有效的銲接。在實驗的過程中若選用的充電電壓大於可銲區上方, 則電極頭會產生黏著的現象且需要施一些外力將電極頭和銲件分 離,這些過大的充電電壓會使得電極頭和銲件產生過多的熱量,並發 生火花飛濺的情況,而造成銲件表面的鍍層熔化,這些狀況都將不列 入可銲區的範圍。值得一提的是在實驗的過程中,在0.35Mpa的實驗 條件下,須將充電電壓提升到 375V 時才會發生電極黏著或發生火花 飛濺的情況,與其他操作壓力相較可以發現,其間差了25~100V,其 4111111 主要的因素為過大的操作壓力會將浮凸點鈍化,讓接觸面積加大使接 觸電阻變小;因此,在浮凸點的尖端沒有辦法有一集中的電流密度, 亦即無法產生較集中的熱量進行接合。

在圖 4-3 黃銅電極頭可銲區中與圖 4-2 鉻銅電極頭可銲區中相較 可以發現,其可銲接的區域縮小了,且在充電電壓 275V 時,在 0.1 Mpa 到 0.35Mpa 的操作壓力下都可以有效的銲接,主要的原因為黃銅本有 較低的導電率,可提高銲接功率之效果,相對來說即可使用較低的充 電電壓便可以形成一有效的銲件;在會產生火花飛濺或電極黏著前的 區域中可以發現最小充電電壓為 275V 最大為 325V,其間的差異沒 有圖 4-2 中來的大,其主要的原因為導電率太低會使大量的熱在電極 和銲片間產生,所以充電電壓太高會造成電極黏著;且在各個操作壓 力下產生火花飛濺前一個充電電壓之參數,可發現一共同之現象,上 電極頭(黃銅)會因熱產生膨脹進而將銲接試片夾住,需用手去取下, 但並沒有產生電極黏著的發生,試片也沒有產生明顯的缺陷,發生的 4111111 原因主要是因黃銅本身導電率與軟化溫度都較低,便有較多的熱在電 極頭上造成電極頭產生熱膨脹。

Brass

圖 4-4 中可以明顯的觀察到整個可銲接區都往上移,原先絡銅電 極和黃銅電極在充電電壓 275V 及操作壓力從 0.1 到 0.35Mpa,都可 以順利地獲得成功的銲件,但鷂銅電極卻使整個可銲區下方往上移, 造成的原因是由於鷂銅電極本身有很高的硬度,在尚未通電之前就先 將凸點壓鈍化,一但通電後便無法有很高的電流密度使其集中在凸點 的尖端,也無法產生足夠的熱量在凸點尖端,所以效果不佳,必須要 加大充電電壓才能產生夠大的熱量使銲件接合。再者鷂銅電極相對於 黃銅電極有較高導電率,意指在低充電電壓時能量也較不足以提供凸 點熔化。

4.2 充電電壓與銲接電流之分析

電流峰值(peak current)為銲接過程中由監測器中所讀取到的值, 在電容放電式微電阻銲機中若是固定的充電電壓,其釋放出的能量應 為相同但電流峰值與總體電阻有絕對的關係,採用相同的試片所以電 阻值變化並不大,因以影響電流峰值的主因為電極頭的電阻值,相同 的充電電壓下鎢銅電極有較大的電流峰值,鉻銅電極次之,而黃銅則 是有最小的電流峰值;如圖 4-5 到 4-7 所示。

4.3 金相組織觀察

銲接時,大量的熱能被供給作為熔化鍍層與母材之用,因此銲道附 近的母材金屬也會受到殘餘熱量的影響而產生組織上的變化。在銲道附 近至母材金屬之間,實際上存在著溫度分佈的梯度,將使其承受升溫和 急遽冷卻之溫度變化,此過程稱之為熱循環過程(thermal cycle process)。

母材金屬經歷了熱循環過程之後,如同經歷一次短時間的熱處理過 程,材料之微觀組織將因而產生變化。改變之程度則視母材金屬銲前之 狀態而定。經銲接加工後之母材大抵上可區分為熱影響區及未受熱影響 區等兩種截然不同的區域。熱影響區由於受到銲接高溫之影響,材料之 微觀組織產生變化;依受熱影響程度而有退火、再結晶、晶粒成長的過 程,造成在熱影響區內母材之硬度及強度會因而降低。因此,母材熱影 響區所涵蓋之範圍與銲接所輸入之熱量與材料厚度有密切關係;然減少 銲接輸入之熱量,將可縮小熱影響區之範圍。

圖 4-8 至 4-11 所示分別為未銲合前、上蓋、凸點和母材之金相微觀 組織圖。上蓋和凸點均有一層鍍層,鍍層與母材間有不純的雜質出現, 凸點處的晶粒與底座處的晶粒大小並無異,但銲接後卻產生了晶粒細小 的現象。

圖 4-12 至 4-15 所示分別為接合處、熱影響區與母材之金相顯微組 織圖。由圖中可以看到其組織為網狀細線包圍的粒狀結晶之集合,而且

87

各結晶粒是呈現任意方向(具異方性)的單結晶構造之純鐵組織。此外, 在晶界上由於不純物容易集聚於此,使晶界容易被侵蝕產生鮮明之對 比;而照片中的結晶內部的黑點為非金屬介在物(氧化物)。綜觀金相 顯微組織圖而比較之,我們可發現在接合處晶粒較細,熱影響區相對於 接合處之晶粒有粗大化之現象。

由於鍍層間沒有全熔化所以在金相微觀組織中可以發現,圖 4-16 接合處還有一明顯的細縫。

圖 4-8 未銲接前之金相組織圖

圖 4-9 銲接前(a)封蓋與凸點(b)凸點圖

(a)

(b)

圖 4-10 銲接前封蓋母材

圖 4-11 銲接前凸點(a)左側(b)右側

圖 4-12 銲道之金相組織圖

圖 4-13 接合處之微觀組織圖(a)銲道左側(b)銲道右側

圖 4-14 熱影響區之微觀組織圖 (a)封蓋 (b)底座

圖 4-15 母材之微觀組織圖 (a)底座母材 (b)封蓋母材

圖 4-16 鍍層之微觀組織圖

圖 4-17 TO-Can 金相組織圖(鉻-銅電極)

圖 4-17 TO-Can 金相組織圖 (鉻-銅電極) (續)

圖 4-17 TO-Can 金相組織圖 (鉻-銅電極) (續)

圖 4-17 TO-Can 金相組織圖 (鉻-銅電極) (續)

圖 4-18 TO-Can 金相組織圖 (黃銅電極)

圖 4-18 TO-Can 金相組織圖 (黃銅電極) (續)

圖 4-18 TO-Can 金相組織圖 (黃銅電極) (續)

圖 4-19 TO-Can 金相組織圖(鎢銅電極)

圖 4-19 TO-Can 金相組織圖 (鎢銅電極) (續)

圖 4-19 TO-Can 金相組織圖 (鎢銅電極) (續)

圖 4-19 TO-Can 金相組織圖 (鎢銅電極) (續)

4.4 測漏結果

本試片最重要的就是要通過氦氣檢測,從可銲區中挑選上下界限來 作檢測,若能通過氦氣測漏則可代表這是一個成功的銲件且可銲區中的 試片均可通過檢測;在實驗當時的背景值為 1.6×10⁻⁹ mbar.l/s,而實驗可 接受值為 5.0×10⁻⁸ mbar.l/s,只要是在此設定條件以下均可稱為通過該測 漏標準。

由該測漏的結果發現與先前所設定的可銲區均可通過測漏,再次証 明可銲區內之銲接品質相當的高,且由表中可發現在相同的加壓力下較 高的充電電壓有較好的氣密性,但過高的充電電壓則會使熱影響區加 大,或使得試片加壓變形;因此,建議使用可銲區的中間區域即可通過 測漏,也可以有良好的銲接品質。

加壓力(MPa)	充電電壓(V)	單位:×10 ⁻⁸ mbar.l/s	
0.10	250	4.7	
0.10	275	3.6	
0.15	275	3.0	
0.15	300	2.6	
0.20	275	2.5	
0.20	300	2.6	
0.25	275	3.9	
0.23	325	2.1	
0.20	275	2.4	
0.30	350	3.4	
0.25	300	1.9	
0.55	350	4.4	

表 4-2 氦氣洩漏測試結果(鉻銅電極)

表 4-3 氦氣洩漏測試結果 (黃銅電極)

加壓力(MPa)	充電電壓(V)	單位:×10 ⁻⁸ mbar.l/s			
0.10	250	4.6			
0.10	275	3.5			
0.15	275	3.3			
0.13	300	2.7			
0.20	275	3.2			
0.20	300	2.9			
0.25	275	3.2			
0.25	300	2.3			
0.20	275	2.2			
0.30	325	2.0			
0.25	275	3.1			
0.55	325	1.8			

加壓力(MPa)	充雷雷壓(V)	單位:×10 ⁻⁸ mbar.l/s
0.10	250	4.9
0.10	300	2.5
0.15	275	4.8
0.15	325	1.9
0.20	275	2.1
0.20	300	1.9
0.25	300	2.2
0.23	325	1.9
0.20	300	2.9
0.30	325	1.8
	300	2.2
0.35	325	1.9
	350	2.0

表 4-4 氦氣洩漏測試結果 (鎢銅電極)

4.5 轉換區面積與參數關係

在圖 4-20 到圖 4-22 中均可以看到在相同的操作壓力下,充電電壓 愈大則轉換區的面積愈大;在相同的充電電壓下操作壓力愈大則面積愈 小,其發生的原因為較大的操作壓力會將浮凸點壓潰,造成總體電阻下 降以至於無法將熱量產生在凸點部份,所以轉換區的面積下降。且在相 同的充電電壓下的曲線為近似拋物線形。

圖 4-20 參數與轉換區面積(鉻銅)

圖 4-21 參數與轉換區面積(黃銅)

圖 4-22 參數與轉換區面積(鎢銅)

4.6 微硬度結果

從微硬度的結果中可以發現母材銲接前後硬度的變化非常的大,其 生成原因從金相圖中可以觀察到,未銲接前的上蓋母材其硬度值並不 高,但銲接後在轉換區內上蓋母材其硬度值升高約3倍其主要的原因 是,在轉換區內的母材因受高壓高熱產生晶粒細化,且在銲接的過程為 一高溫然後急冷,最後會形成一高硬度的材料。然基座的母材雖然硬度 有提高但其硬度值約為2倍,並沒有上蓋母材來的高。

上蓋母材	104.5	93	87.9	95.2
轉換區內上蓋母材	339, 6	325.5	309	292.6
基座母材	85.2	1896 88. 6	86.7	100.6
轉換區內基座母材	210	183	180	189

表 4-5 銲接前後母材硬度變化(單位 Hv)