Table I. Functions of critical parameters for GaN

Parameter	Desired Characteristic	Advantage		
Banddap (Eg)	Wide	- Less susceptible to thermal runaway		
GaN, wurtzite -3.45 eV	GaN:~3x that of Si, ~7%	- High current-carrying capability		
(hexagonal)	greater than that of SiC	- Projects operation at high temperatures		
GaN, zincblende -3.26 eV		- Emission at blue end of spectrum		
(cubic)				
Breakdown electric field (E _B)	High	- Important for high packing densities		
GaN, wurtzite – 5x10 ⁶ V/cm	GaN: ~16x that of Si, ~2x	- Provides lower limit for gate length		
	that of SiC	- Required for high-voltage applications		
		(Rectifiers, thyristors, etc.)		
Thermal conductility (σ_T)	High	- Duty cycles and packing densities (for		
GaN, wurtzite – 1.3 W/cm°C	GaN: ~2.5x that of GaAs,	high-frequency, high-power devices) are		
	$\sim 10\%$ less than for Si	proportional to thermal conductility.		
Electron saturated drift velocity	High	- Higher electron saturated drift velocity		
(V _{sat})	GaN:35% greater than	translates into higher maximum		
GaN, wurtzite -2.7×10^7 cm/sec	GaAs and SiC (4H and	operating frequency		
	6H), 2.7x that of Si			
Dielectric constant (K)	Low for high-frequency	-Reduced K requires less time for excited		
GaN, wurtzite: 9.5	GaN: ~25% less than for	🔊 carriers to recombine, providing higher		
	GaAs; ~20% less than for	frequency operation		
	Si; slightly lower than for			
	SiC (3C)			

Table II. Comparison of 300 K semiconductor material properties

Property	Si	GaAs	4H-SiC	GaN
Bandgap E_g (eV)	1.12	1.42	3.25	3.40
Breakdown field E_b (MV/cm)	0.25	0.40	3.0	4.0
Electron mobility μ (cm ² /V s)	1350	6000	800	1300
Maximum velocity v_s (10 ⁷ cm/s)	1.0	2.0	2.0	3.0
Thermal conductility χ (W/ cm K)	1.5	0.5	4.9	1.3
Dielectric constant ε	11.8	12.8	9.7	9.0
CFOM = $\chi \epsilon \mu v_s E_b^2 / (\chi \epsilon \mu v_s E_b^2)_{Si}$	1	8	458	489

Figure 1-1. Bandgap diagram of III-V compound semiconductors

Figure 1-2. Calculated breakdown voltage as a function of doping concentration and thickness of the drift region in GaN $M-n^--n^+$

Figure 1-3. Electron drift velocity at 300 K in GaN, SiC, Si and GaAs computed using the Monte Carlo technique.

