

(a) Structure of metal/n-GaN contact.

(b) Structure of metal/n-AlGaN contact.

(c) Structure of metal/n-GaN contact.

Gap(µm)	Correction factor
5	1.013
10	1.026
15	1.040
25	1.070
35	1.103
45	1.139

(a)

Figure 4-2. (a) CTLM pad structure and correction factor; (b) The plotting of total resistance against gap distance.

Figure 4-3. The I-V curves measured for Ti/Al/Ni/Au contact on n-GaN annealed at different conditions (Diode gap $10 \ \mu m$).

Figure 4-4. Total resistance (R_T) v.s. gap spacing at different annealing temperatures for Ti/Al/Ni/Au contact on n-GaN.

Figure 4-5. Specific contact resistivity as a function of annealing temperature for Ti/Al/Ni/Au contact on n-GaN.

Figure 4-6. The I-V curves measured for Ti/Al/Ni/Au contact on n-AlGaN annealed at different conditions (Diode gap $10 \ \mu m$).

Figure 4-7. Total resistance *v.s.* gap spacing at different annealing temperatures for Ti/Al/Ni/Au contact on n-AlGaN.

Figure 4-8. Specific contact resistivity as a function of annealing temperature for Ti/Al/Ni/Au contact on n-AlGaN.

Figure 4-9. The I-V curves measured for Ti/Al/Pt/Au contact on n-AlGaN annealed at different conditions (Diode gap $10 \ \mu m$).

Figure 4-10. Total resistance *v.s.* gap spacing at different annealing times for Ti/Al/Pt/Au contact on n-AlGaN

Figure 4-11. Specific contact resistivity as a function of annealing time for Ti/Al/Pt/Au contact on n-AlGaN.

Figure 4-12. Current *v.s.* applied voltage for TiWN_x/n-GaN; (b) WN_x/n-GaN.

Figure 4-13. Current v.s. applied voltage for WN_x/n-GaN.

Figure 4-14. Schottky barrier height and ideality factor *v.s.* annealing temperature for TiWN_x/n-GaN

Figure 4-15. Schottky barrier height and ideality factor *v.s.* annealing temperature for WN_x/n -GaN.

Figure 4-16. Leakage current density *v.s.* applied voltage of TiWN_x/n-GaN.

Figure 4-17. Leakage current density v.s. applied voltage of WN_x/n -GaN.

Figure 4-18. The XRD spectra of WN_x/n -GaN contacts at different annealing temperatures.

Figure 4-19. The XRD spectra of the $TiWN_x/n$ -GaN contacts after different annealing temperatures.

Figure 4-20. Lattice constant of WN_{x} and $TiWN_{x}$ before and after annealing.

Figure 4-21. Surface morphology analysis by AFM for (a) As-deposited WN_x film. (b) WN_x film after annealing at 850°C. (c) As-deposited TiWN_x film. (c) TiWN_x film after annealing at 850°C.

Figure 4-22. SIMS depth profiles of the $TiWN_x/n$ -GaN contacts after thermal treatments (a)As-deposited; (b)After 650°C annealing; and (c) After 850°C annealing.

(a)

Figure 4-23. SIMS depth profiles of the WN_x/n -GaN contacts after thermal treatments (a)As-deposited ; (b)After 650°C annealing;(c) After 850°C annealing.

(b)

(c)