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Abstract

The paper presents a systematic scheme to calculate the vibration at any specific location on a half-space medium due to

harmonic vibrations of a circular rigid plate on the medium. In the scheme, the analytic solutions of 3D wave equations in

cylindrical coordinates are employed. The vibration at any specific location on half-space medium is obtained analytically

by a semi-infinite integration with respect to wave number k from 0 to N. Because of decaying nature of integrand with

respect to wave number k, the numerical integration can only be performed up to a certain upper limit ku instead of N

without loosing accuracy. The choosing of the integration upper limit ku is dependent upon the factors of nondimensional

vibration frequency and nondimensional distance between vibration source and receiving location. From the numerical

results, one finds that some components of vibration on the surface may not attenuate monotonically along the distance

from source. Some verification for the accuracy of the presented scheme will be made, and selected numerical results will be

shown and discussed. Comments on the presented scheme will be given, and the presented scheme is proved to be effective

and efficient for accurately predicting the vibrations on the surface induced by harmonic loadings applied at rigid circular

plate.

r 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Environmental vibrations near vibration source will affect the performance of high precision equipments or
hi-tech production machines; e.g. optical tools used by microelectronics industry. Therefore how to specify the
allowance of ground vibration for those hi-tech production equipments and how to evaluate the ground
vibration due to a specific vibration source have become important issues for design and construction of hi-
tech production plants.

In response to the first problem, Gordon and Dresner [1] have proposed the generic vibration criterion
curves for different vibration sensitive equipments. From these curves, one can find the allowable ground
vibration is getting smaller as the production requirement is getting stricter. To address the second problem
Sheng et al. [2] and Krylov [3] employed Euler beam theory to model whole track including rails, sleepers and
ballast, and Kaynia et al. [4], Takemiya and Bian [5,6] proposed a more sophisticate analysis model, which
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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takes dynamic interaction into account, to evaluate the ground vibration induced by passing train. To reduce
the ground vibrations near track, open or in-fill trenches are usually recommended. Ahmad and Al-Hussaini
[7] and Dasgupta et al. [8] have done some theoretical studies. Moreover, if the track is elevated on bridges, the
ground vibration due to the excitations by bridge abutments will produce more serious problem to the hi-tech
production tools. Takemiya [9] designed a wave impeding barrier of honeycomb piles to reduce the ground
vibrations near bridge abutments. Therefore, the evaluation of ground vibrations induced by vibration of
bridge foundation due to highway traffic or passage of train is very important for high precision production
equipments nearby.

Most above mentioned analysis models, finite element or boundary element based methods are employed to
model half-space medium or layered half-space medium. Regarding the analytical approach to evaluate the
ground vibration due to specific sources, Miller and Pursey [10] have calculated the energy flux of
compressional, shear and Rayleigh waves in the far-field of a semi-infinite medium generated by vertical
harmonic vibration of circular plate, and Apsel and Ruco [11] have calculated the vibration in half-space
medium due to point source (Green’s Function). Also, from the practical point of view, Woods and Jedele [12]
collected some observation data and deduced these data into a simple formula expressing the attenuation
relationship of vibration in terms of distance and soil damping.

The paper will employ an semi-analytic scheme to calculate the vibration at any location on half-space
medium due to harmonic vibration of a rigid circular plate. The term ‘‘semi-analytic’’ used to describe the
scheme is because the semi-infinite integration of analytic solution will be replaced with a finite integration. The
components of harmonic vibration of the plate are torsional, vertical, horizontal and rocking motions. In the
scheme, the technique, developed by Liou [13], to decompose the applied tractions induced by vibrations of plate
has been employed to solve the problem of wave propagation in half-space medium. These decomposed
tractions will be easily fitted into the analytic solutions of 3D wave equations in cylindrical coordinates. This
technique has been employed to generate the impedance functions for circular plate on half-space medium by
Liou et al. [14]. The presented scheme in the paper will extend the work of Liou et al. [14] to generate the
vibration at any location on half-space medium due to a harmonic loading applied at a rigid circular plate.

The formulation of the presented scheme can be derived from the work by Liou et al. [14] and the expression
for the vibration at a specific location on half-space medium will end up with a semi-infinite integration with
respect to wave number k. However, from the decaying nature of the integrand with respect to k, the vibration
can be calculated by integration only up to a certain upper limit ku without losing accuracy.

Some selected numerical results for a rigid circular plate subjected to torsional, vertical, and horizontal
loadings are presented to demonstrate the effectiveness and efficiency of the proposed scheme .The numerical
results will be verified by a special case and presented in nondimensional forms. In the numerical
investigations, some numerical aspects regarding integration scheme, selection of ku and influence of
nondimensional frequency and distance on the numerical scheme will be discussed. Also, some comments
about the presented scheme will be made.
2. Analytical model for half-space medium

The analytical model is a rigid circular plate on a half-space medium subjected to time harmonic loadings.
The interaction tractions between plate and surrounding medium are shown in Fig. 1, and can be expressed in
cylindrical coordinates in terms of Fourier components with respect to azimuth.
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Fig. 1. Dynamic loading on half-space medium.
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where the superscript n denotes the nth Fourier component in the series; in this rigid circular plate case, n ¼ 0
represents vertical (symmetric with respect to y ¼ 0) and torsional loadings (anti-symmetric), n ¼ 1 represents
horizontal and rocking loadings (symmetric); o ¼ frequency; and a0 is radius of circular plate. Since the time
variation eiot appears on both sides of the equation and can therefore be canceled, it is omitted hereinafter.

To solve 3D wave equations with prescribed tractions given by Eq. (1), some fundamental solutions in
cylindrical coordinates can be exploited. Sezawa [15] developed a technique for separating the dilatational and
rotational waves in the general equations of wave propagation, and used the technique of separation of
variables to obtain general solution for nth Fourier component with respect to azimuth. After mathematical
manipulation of the general solutions, one can express the displacement components at the surface z ¼ 0 in
terms of the traction components on the surface for any nth Fourier component as follows:
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and shear wave velocities, respectively; G is shear modulus; k is wave number in the r-direction; Jn(kr) is first
kind of Bessel function of order n; and J 0nðkrÞ ¼ ½dJnðkrÞ=dr�.

In order to simulate the arbitrary distributions of interaction tractions in r-direction , the distribution of
tractions in r-direction of Eq. (1) is approximated by piecewise linear model. Assuming that the interval (0,a0)
for Eq. (1) is divided into m subintervals with equal width b ¼ a0/m, one can express the variation for each
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Fourier component in r-direction of Eq. (1) by the piecewise linear distribution as follows:

trz ¼
Xm�1
j¼1

hjðrÞpj þ h0ðrÞp0 þ hmðrÞpm ¼ hTp

szz ¼
Xm�1
j¼1

hjðrÞqj þ h0ðrÞq0 þ hmðrÞqm ¼ hTq

tyz ¼
Xm�1
j¼1

hjðrÞsj þ h0ðrÞs0 þ hmðrÞsm ¼ hTs (3)

where

hjðrÞ ¼

1þ
r� jb

b
if ðj � 1Þbprpjb and 1pjpm

1�
r� jb

b
if jbprpðj þ 1Þb and 0pjpm� 1

0 otherwise

8>>>><
>>>>:

(3a)

and pj, qj and sj are the traction intensities at node j for trz, szz and tyz, respectively. Liou [13] has developed a
technique to decompose the tractions in Eqs. (3) as follows:
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The integrals on the right hand side of third equal sign in Eq. (4) and integrals in Eqs. (4a) are Hankel
transform pairs, respectively. One should also notice that the vectors (1,0,�1)T, (0,1,0)T and (1,0,1)T are
orthogonal eigenvectors corresponding to eigenvalues �kJn+1(kr), kJn(kr) and kJn�1(kr) of the Bessel function
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matrix J in Eq. (2c). Therefore, Eq. (4) can be replaced with the following equation.
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Using t0 ¼ �t0 and substituting t0 ¼ �JDP dk from Eq. (5) into Eq. (2b), the following equation can be
obtained by integrating the resulting expression from 0 to N.

u0 ¼ �

Z 1
0

JQDP dk (6)

Eq. (6) can be employed to calculate the vibration at any specific location on half-space medium (z ¼ 0),
if the intensity vector P described in Eqs. (3) is known. For the vibration at arbitrary location in
half-space medium (za0), the formulations above should be re-derived to include the vertical variations
(e�n

0z and e�nz) of vibrations. But the paper will focus on calculating the vibrations on half-space medium for
simplicity.

For the cases of rigid circular foundation excited by vertical and horizontal forces, and torsional and
rocking (or pitching) moments, the impedance matrix has to be found first. As stated by Liou et al. [14], to find
the impedance matrix, finite element model for displacement field of foundation itself is assumed and
variational principle (principle of virtual work ) and reciprocal theorem are employed. Then, the intensity
vector P in Eqs. (3) and (6) can be obtained for all the excitation forces and moments in the process of finding
impedance matrix.

For the cases of rigid circular foundation, the displacement fields in the foundation can be assumed as
follows: uy(r,y) ¼ v1r (n ¼ 0 of anti-symmetric mode) for excitation of torsional moment, uz(r,y) ¼ v2 (n ¼ 0 of
symmetric mode) for excitation of vertical force, and uz(r,y) ¼ v3r cos y, ur(r,y) ¼ v4 cos y and uy(r,y) ¼
�v4 sin y (n ¼ 1 of symmetric mode) for excitations of rocking moment and horizontal force. In the
expressions, v1 is the unknown generalized displacement at center of foundation for torsional excitation, v2 is
for vertical excitation, and v3 and v4 are, respectively, for rocking and horizontal excitations which are
coupled.

With these displacement fields, the impedance matrix and interaction traction in Eq. (3) can therefore be
calculated for a rigid circular foundation subjected to harmonic loadings.

3. Numerical investigations

In the semi-infinite integration of Eq. (6), singular point may exist, provided there is no damping assumed
for half-space medium. This is because L ¼ 0 in matrixQ in Eq. (2a) when wave number k is equal to Rayleigh
wave number. Although technique such as residue theorem may be used to calculate the integration around
the singular point, material damping is introduced in half-space medium in order to comply with more realistic
situation of medium, and hysteretic type of damping is chosen. This means shear modulus G in Eqs. (2a), (2b)
and (2c) is complex and can be expressed as G ¼ Gð1þ 2xiÞ in which x is damping ratio. Therefore, numerical
integration scheme can be directly employed. Furthermore, using the following three statements, the integrand
in the semi-infinite integral of Eq. (6) can be easily shown to be proportional to 1/k2 as k-N:
(1)
 The elements of matrix J are proportional to k0.5 as k-N.

(2)
 The elements of matrix Q decay with 1/k as k-N, since n¼: n0¼: k as k-N.R R R

(3)
 Using the identities of r2JnðkrÞdr ¼ �ðr2=kÞJnþ1ðkrÞ þ ððnþ 1Þ=kÞ rJn�1ðkrÞdr and rJnðkrÞdr ¼

�ðr=kÞJn�1ðkrÞ þ ðn=kÞ
R

Jn�1ðkrÞdr, and JnðkrÞ / 1=k0:5as k-N, it is concluded that the elements of
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matrix D in Eqs. (4), (4a), (5) and (6) decay with 1/k1.5. Therefore, it is appropriate to replace the infinite
integration limit with a finite number without losing accuracy.
To perform the integrations in Eq. (6) and D matrix in Eqs. (4a), method of Gaussian Quadrature is
employed. In order to simplify the following discussion of the integrations, the radius of foundation a0 in

Eqs. (4a), distance r and wave number k in Eqs. (4a) and (6) have been nondimensionalized by the shear
wave length l of frequency 1Hz. The wave length l ¼ Re(cs)/1 s, in which Re(cs) is real part of shear
wave velocity cs. Complex cs is due to complex shear modulus G. To exploit Gaussian Quadrature
integration method, the sizes of integration subinterval with corresponding number of integration points
has to be chosen first. To do the integration of D matrix in Eqs. (4a), the subinterval Dr with 4
Gaussian integration points is chosen by the formula Drk/pp1. To do the integration in Eq. (6), the
subinterval Dk with 5 Gaussian points is chosen by the formula Dk � r/pp1 for k41.3kR in which kR is
Rayleigh wave number and r is the distance of the location where vibration is calculated. For kp1.3kR, the
subinterval Dk with 5 Gaussian points is calculated by Dk � r/pp0.1, since the variation of integrand for k close
to compressional wave number, shear wave number and Rayleigh wave number is much more dramatic. Using
the above integration criteria, the precision of the semi-infinite integration of Eq. (6) with integration upper
limit N replaced by arbitrary ku can be maintained up to 6 significant figures for all the numerical results
presented in the paper.

After some convergence study, the followings can also be concluded: (1) m ¼ 20 for the number of
subinterval in Eqs. (3) is enough to accurately describe the distribution of interaction tractions between plate
and half-space medium; and (2) In general, the integration upper limit ku for Eq. (6) must be larger as the
nondimensional distance from plate center is farther, or excitation frequency is higher.

Although greater hysteretic damping in half-space medium will generally leads to a larger upper integration
limit ku in order to maintain same accuracy of vibration amplitude by Eq. (6), the increment of ku is not
significant while compared with the other two factors which are distance and frequency. To investigate how
large ku is needed for different distances from foundation center and excitation frequencies, ku like r, k and a0
has also been nondimensionalized with the shear wave length l of frequency 1Hz. If one wants to obtain the
vibration amplitude with less than 1 percent discrepancy, ku to replace N in the integration of Eq. (6) can be
selected for some cases as follows:
(1)
 When nondimensional frequency oa0 � 1 s/2p ¼ 1.0, nondimensional ku should be greater than 650, 1000,
2100, 6200, 15000 and 30000 for calculating the vibration amplitude at nondimensional distance or � 1 s/
2p ¼ 10,20,40,60,80 and 100, respectively.
(2)
 ku should be greater than 1200 for calculating the vibration amplitude at or � 1 s/2p ¼ 10 with oa0 � 1 s/
2p ¼ 0.00005 and ku should be greater than 850 for calculating the vibration amplitude at or � 1 s/2p ¼ 10
with oa0 � 1 s/2p ¼ 0.1.
From the above numerical test, one can conclude that ku ¼ 1200, for nondimensional frequency oa0 � 1 s/2p
between 0.00005 and 1.0 and nondimensional distance or � 1 s/2p up to 10, is necessary for calculating
vibration amplitude by Eq. (6) with 1 percent discrepancy. One should also notice that or � 1 s/2p ¼ 10 is
equivalent to 10 times of shear wave length. The discrepancy is defined by the percentage of the difference
between two numerical results, respectively, with integration upper limits ku and 2ku to the result with ku.
Therefore, one can conclude that the presented scheme is numerically convergent and the numerical
integration is straight forward without any difficulty.

Also, one can observe that larger ku is necessary for larger nondimensional distance or � 1 s/2p and larger ku

is also needed for larger nondimensional frequency oa0 � 1 s/2p if r is fixed; e.g. r from or � 1 s/2p ¼ 100 with
nondimensional frequency oa0 � 1 s/2p ¼ 1.0, in which ku ¼ 30000 is needed as stated above in (1), is the same
as r from or � 1 s/2p ¼ 10 with nondimensional frequency oa0 � 1 s/2p ¼ 0.1, in which ku ¼ 850 is needed as
stated above in (2).

Since the total system is linear, all the quantities can be nondimensionalized. As shown in Ref. [14], the
torsional, vertical, horizontal, coupling and rocking impedance functions are nondimensionalized,
respectively, as follows: ITT=Ga3

0, Ivv/Ga0, IHH/Ga0, IHR=Ga2
0, and IRR=Ga30. Therefore, the excitation forces

are normalized in the similar way. The vertical and horizontal excitation forces are nondimensionalized in the
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forms of FV/Ga0l and FH/Ga0l, respectively, in which l is the shear wave length of frequency 1Hz. The
torsional and rocking excitation moments are normalized in the forms of MT=Ga30l and MR=Ga3

0l,
respectively. The reason to manipulate the quantities in this way is to made the following numerical results of
ur, uz and uy have been nondimensionalized by l. The numerical results shown in the following table and
figures are produced by unit harmonic excitation forces. This means FV ¼ Ga0l, FH ¼ Ga0l, MT=Ga30l or
MR=Ga3

0l ¼ 1.
In the numerical results, the hysteretic damping ratios x ¼ 0.0001, 0.001, 0.01, 0.02, and 0.03 are selected for

half-space medium and the Poisson ratios are assumed to be 0.0, 0.25, 0.33 and 0.45. The reason to select the
case of very low damping (x ¼ 0.0001) is to check and approximate the behavior of vibration in the medium
without material damping. In order to validate the presented scheme, the case for small nondimensional
frequency oa0 � 1 s/2p ¼ 0.00005 and x ¼ 0.0001 is employed to simulate the point source problem and the
numerical results are compared with that for the point source case by Apsel and Ruco [13]. Table 1 shows the
comparison. Comparing with Apsel and Ruco’s results, one should notice that the force units are different for
both schemes . However, the total system of half-space medium for both cases are linearly elastic. The
excitation forces can be scaled to the same level for both schemes. This can be done by scaling one component
of the present results to the same value by point source excitation. And then all the other components of the
presented results are multiplied with the scale factor. In Table 1, real part of r0/4pur1 with r0 ¼ 5.5 (in the last
row of the table) by the presented method is scaled to 0.044 which is Apsel and Ruco results. The 0.44 by both
the presented and Apsel and Ruco methods are indicated bold in Table 1. In the table, the first two columns
are Apsel and Ruco’s results, the last two columns are the present results, the upper half is for vertical
Table 1

Comparison with result of point source case.

r0 ¼ or � 1 s Apsel and Ruco’s results with 0.01% damping

(� 10�3)

Present results with 0.01% damping and nondimensional frequency o � a0 � 1 s/
2p ¼ 0.00005 (� 10�3)

r0
4p ur0ðr0; 0Þ

r0
4p uz0ðr0; 0Þ

r0
4p ur0ðr0; 0Þ

r0
4p uz0ðr0; 0Þ

0.5 �32 7 88 �61 �32.2 7.16 87.2 �61.5

1.0 �33 25 37 �102 �33.1 25.5 36.9 �102

1.5 �21 46 �28 �108 �20.6 46.8 �28.3 �108

2.0 6 60 �87 �77 6.14 60.6 �86.9 �76.4

2.5 41 57 �120 �17 41.1 58.0 �119 �16.3

3.0 73 35 �114 53 73.5 35.1 �113 53.1

3.5 92 �6 �71 109 91.8 �5.21 �69.2 109

4.0 87 �54 �2 134 86.8 �53.5 �0.13 134

4.5 57 �96 72 117 56.2 �96.3 73.0 117

5.0 6 �120 127 63 5.12 �120 127 62.5

5.5 -54 �115 145 �13 �54.4 �115 144 �14.2

r0
4p ur1ðr0; 0Þ

r0
4p uy1ðr0; 0Þ

r0
4p ur1ðr0; 0Þ

r0
4p uy1ðr0; 0Þ

0.5 146 �58 �90 58 145 �58.3 �90.0 57.4

1.0 112 �105 �46 99 110 �105 �46.4 98.7

1.5 62 �133 13 112 61.3 �132 13.0 112

2.0 9 �137 73 93 8.57 �136 72.2 92.7

2.5 �37 �120 115 45 �36.9 �119 114 45.0

3.0 �68 �90 128 �20 �67.4 �88.4 127 �19.2

3.5 �81 �55 107 �84 �80.0 �53.3 106 �83.6

4.0 �78 �24 56 �131 �77.0 �23.0 55.6 �131

4.5 �66 �4 �15 �149 �64.8 �3.45 �14.3 �147

5.0 �52 4 �87 �129 �51.5 4.28 �85.9 �128

5.5 �44 3 �142 �77 �44 3.48 �141 �76.1
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excitation (n ¼ 0), and the lower half is for horizontal excitation (n ¼ 1). From the table, one can see that both
results fairly agree to each other.

Figs. 2–6 show the results of vibration amplitudes along the nondimensional distance from center of circular
plate. Figs. 2–4 show the results for the cases of nondimensional frequencies o ¼ oa0 � 1 =2p ¼ 0:00005 and
1.0 with Poisson ratio m ¼ 0.33. The small nondimensional frequency can be used to approximate point source
excitation problem and nondimensional frequency 1.0 can be used to observe the behavior for the case of high
frequency. Fig. 2 shows the vibration amplitude of uy component due to unit normalized torsional moment
excitation. From the figure, one can see that for or � 1 s=2p� oa0 � 1 =2pp0:5 the attenuation of vibration is
mainly caused by spatial dilution and for or � 1 =2p� oa0 � 1 =2pX0:5 material damping is getting more
significant for attenuation of vibration. Also, the vibration decays along the distance smoothly. Figs. 3 and 4
show the vibration amplitudes of ur and uz, respectively, due to unit nondimensional vertical force. Looking at
these two figures, one can observe that the vibration attenuates over the distance only from marco view of
point, and the amplitudes of vibration along the distance may fluctuate. The fluctuation becomes more
dramatic as damping and frequency getting higher and the period of the fluctuation over the nondimensional
distance is about 1.80�1.90 in the figures. Trying to interpret this phenomenon, one can refer to Eqs. (6) and
(2a). The 1/L in Q matrix of Eqs. (6) or (2a) will be getting huge as k is close to Rayleigh wave number.
Therefore, the contribution of the wave number components in the neighborhood of Rayleigh wave number is
very important in the integration of Eq. (6). Also, the numerical values of elements in matrix Q vary more
Fig. 2. Vibration amplitude of uy due to unit normalized torsional excitation.
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Fig. 3. Vibration amplitude of ur due to unit nondimensional vertical excitation.
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drastically as wave number k approaching compressional and shear wave numbers. This indicates that the
wave number components in the neighborhoods of compressional and shear wave number are important too.
The fluctuation could be caused by the interaction of these properties. In Fig. 3, one should notice that some
curves start from or � 1 s/2p ¼ 1. This is due to welded condition has been assumed at interface of foundation
and half-space medium. This assumption leads to uy ¼ 0 under the foundation. For the cases of foundation
subjected to harmonic horizontal force and rocking harmonic moment, the similar fluctuation phenomenon
can be observed in the numerical results which are not shown in the paper. One should also notice that the
phenomenon mentioned above does not occur in the torsional case (Fig. 2). For torsional excitation, only SH

wave is generated.
The above mentioned interesting phenomenon leads to the curiosity of finding the average energy flux

intensity at z ¼ 0. The average flux intensity is defined by the formula as follows:

E ¼ ro2 o
2p

1

2p

Z o=2p

0

Z 2p

0

ðjurj
2 þ juzj

2 þ juyj
2Þ

sin2 ny

cos2 ny

 !
dy e2iot dt (7)

where r is mass density. The flux intensity in Eq. (7) is the averaging over time period 2p/o and circle length
2pr. Eq. (7) is easy to be integrated. The E can be normalized to become the following equation without losing
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Fig. 4. Vibration amplitude of uz due to unit nondimensional vertical excitation.
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the meaning of average energy flux intensity.

E ¼ jurj
2 þ juzj

2 þ juyj
2 (8)

Now, one can employ Eq. (8) to calculate E for different distances from the center of foundation. The
results are shown in Fig. 5. From the figure, one observes that the fluctuation is smaller. It is also believed that
the curve for average energy flux intensity will be smoother for greater z, since Rayleigh wave is confined in the
depth near free surface.

The fluctuation phenomenon is also investigated by changing Poisson ratio. Fig. 6 shows the results for the
component of ur induced by horizontal vibration of foundation for the cases with different Poisson ratios
which are 0.0, 0.25, 0.33 and 0.45.

In the figure, nondimensional frequency oa0 � 1 s/2p ¼ 0.1 and damping ratio x ¼ 0.02 are assigned. From
the figure one can observe the following two phenomena: (1) The period of fluctuation is getting longer as
Poisson ratio becomes smaller. For example, the periods are about 2.3–2.4, 2.0–2.1, 1.8–1.9 and 1.6–1.7 along
nondimensional distance or � 1 s/2p for Poisson ratios m ¼ 0.0, 0.25, 0.33 and 0.45, respectively; (2) At the first
few cycle of fluctuation, the fluctuation is more drastic for higher Poisson ratio. Also, from this investigation,
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Fig. 5. Average energy flux intensity due to unit nondimensional vertical excitation.
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the period of the fluctuation is mainly corresponding to the change of Poisson ratio and less influenced by
changes of frequency and damping.
4. Concluding remarks

The presented scheme can be combined with finite element model of superstructure to directly calculate
the vibration on half-space medium due to vibration of superstructure, if one assumes the foundation
on the half-space is rigid and circular. Although the vibration is calculated at surface (z ¼ 0) by the
presented scheme, it is possible to extend the scheme to calculate the vibration at depth (za0) and
the vibration induced by vibration of foundation with arbitrary shapes. For the cases of the foundation
with arbitrary shapes, more Fourier components in Eq. (1) must be simultaneously incorporated in the
calculation.

One should notice that the fluctuation phenomenon shown in the numerical results is for single
Fourier component (n ¼ 0 or n ¼ 1 ) with single frequency between (oa0 � 1 s/2p ¼ 0.00005–1.0). For the
cases with combination of many frequency components (e.g. time history excitation ) and combination
of many Fourier components in Eq. (1) (e.g. foundation with arbitrary shape ), the fluctuation could be
flattened.
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Fig. 6. Vibration amplitude of ur due to unit nondimensional horizontal excitation.
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The integrations of the presented scheme is simply straight forward and self-proved convergence.
Therefore, in terms of computational cost and numerical precision, the presented method is better than finite
element and boundary element based methods for the problems which can be dealt with by the presented
method.
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